
Assembler Language Programming

for

IBM System z™ Servers

Mini-Slides and Lecturer Notes, Version 2.00

Chapters I to VIII

John R. Ehrman

IBM Silicon Valley Lab

 Note

These pages have space below the miniature copies of the lecture slides where a lecturer can write notes for
added explanations, digressions, etc.

Because the font sizes used for the full-size slides do not scale exactly to the miniature forms, some of the
miniature slides might overflow the space in which the full-size slides will fit. I expect that these miniature
slides will be used only to connect the full-size lecture slides to these lecturer notes, so the overflows won′t
be a major concern.

Second Edition (March 2016)

IBM welcomes your comments. Please address them to

John Ehrman
IBM Silicon Valley Lab
555 Bailey Avenue
San Jose, CA 95141
ehrman@us.ibm.com

After June 1, 2016, please address comments to

john.ehrman@comcast.net

© Copyright IBM Corporation 2015
US Government Users Restricted Rights − Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

ii

1Chapter I: Starting With System z Assembler Language

© I B M 2015System z Assembler LanguageChap. I, Sec. 1-2

This chapter reviews some basic aspects of System z processors

• Section 1 introduces notation, terminology, and conventions

• Section 2 describes basic properties of the number representations
used in System z processors:
− Binary and hexadecimal numbers

− Arithmetic and logical representations

− 2′s complement arithmetic

− Conversions among number representations

Notes

2Notation and Terminology

© I B M 2015System z Assembler LanguageChap. I, Sec. 1

• When we describe a “field” (an area of memory, part of a register) we
often use a figure like this:

4 4 �─── Field widths
┌────────┬────────┐
│ Field1 │ Field2 │
└────────┴────────┘
0 3 4 7 �─── Start and end positions of fields

We number positions from left to right.
• When we refer to a sequence of similar items, we may use subscripts

like B j, or appended letters like Bj, or the programming-language
subscript notation B(j)

• The contents of some item X is often denoted c(X)

• The operators + − * / represent addition, subtraction, multiplication,
and division, respectively

• To show a blank space, we sometimes use a • character

Notes

1

3What′s an “Operand”?

© I B M 2015System z Assembler LanguageChap. I, Sec. 1.1

• The word “operand” is used in three senses:

1. In the z/Architecture Principles of Operation (or “zPoP”), you may see a
machine instruction described as

LM R1,R3,D2(B2)

where c(R1) is the first operand, and a memory address is determined from
D2(B 2); but “operands” 1, 2, 3 are shown in order 1, 3, 2

2. In Assembler Language, operands are defined by sequential position:

LM 2,12,SaveArea

the first operand is “2”, the second is “12”, and the third is “SaveArea”.

3. During execution, an operand is the subject of an instruction′s operation:

LM 2,12,SaveArea

so c(GR2), c(GR12), and c(SaveArea) are all operands that are subjected to
an operation.

• The intended meaning is usually clear from context

Notes

4Binary and Hexadecimal Numbers

© I B M 2015System z Assembler LanguageChap. I, Sec. 2

Section 2 describes fundamentals of number representations:

• Binary and hexadecimal numbers, and positional notation

• Conversion among different representations

• Logical (unsigned) and arithmetic (signed) representations

• Two′s complement (signed) representation

• Binary addition and subtraction; overflow; signed vs. unsigned results

• Alternative representations of signed binary values

Notes

2

5Positional Notation and Binary Numbers

© I B M 2015System z Assembler LanguageChap. I, Sec. 2.1

We′ l l start with integer values (no fractional parts):

• Decimal integer values like 1705 mean 1000 +700 +00 +5, or
1×103 + 7×102 + 0×101 + 5×100 (base 10)

• In binary, the number B′11010′ means 10000 + 1000 + 000 + 10 + 0,
or 1× 24 + 1× 23 + 0× 22 + 1× 21 + 0× 20 (base 2)

− So B′ 1 1 0 1 0 ′ = 1 6 + 8 +2 = 26; B ′ 1010 ′ = 10 , B′ 1111100111 ′ = 999

− Decimal numbers are written normally, binary numbers as B′ nnn′
− The term “binary digi t” is usual ly abbreviated “bit”

• Exercise: convert to binary: 81, 255

• Exercise: convert to decimal: B′10101010′, B′11110001′

Notes

6Hexadecimal Numbers

© I B M 2015System z Assembler LanguageChap. I, Sec. 2.2

Because the number of bits grows rapidly as numbers get larger, we use
groups of 4 bits called “hexadecimal” or “hex” (base 16)

• The 16 possible hex values from 0 to 15 are represented by 0-9, A-F

┌────┬────┬────┬────┬────┬────┬────┬────┬────┬────┬────┬────┬────┬────┬────┬────┐
│0000│0001│0010│0011│0010│0101│0110│0111│1000│1001│1010│1011│1100│1101│1110│1111│(bin)
│ 0│ 1│ 2│ 3│ 4│ 5│ 6│ 7│ 8│ 9│ 10│ 11│ 12│ 13│ 14│ 15│(dec)
│ 0│ 1│ 2│ 3│ 4│ 5│ 6│ 7│ 8│ 9│ A│ B│ C│ D│ E│ F│(hex)
└────┴────┴────┴────┴────┴────┴────┴────┴────┴────┴────┴────┴────┴────┴────┴────┘

• Hexadecimal numbers are written X′ nnn′
− So B′ 1 1 0 1 0 ′ = X′1 A′; B′ 1 0 1 1 ′ = X′ B′, B′ 1111100111 ′ = X′3E7′

• Exercise: convert to hexadecimal: 145, 500

• Exercise: convert to decimal: X′763′, X′F7′

• Exercise: convert to binary: X′763′, X′F7′

Notes

3

7Converting Between Bases

© I B M 2015System z Assembler LanguageChap. I, Sec. 2.3

• Numbers like 2345 in some base A are written

2×A3 + 3×A2 + 4×A1 + 5×A0

• If we write digits in order of decreasing significance as

dn ... d3 d2 d1 d0

then a number X in base A is

X = dn×An + ... + d3×A3 + d2×A2 + d1×A1 + d0×A0

• To convert X to a new base B, so that

X = em×Bm + ... + e3×B3 + e2×B2 + e1×B1 + e0×B0

1. Divide X by B, save the quotient; the remainder is the low-order digit e0
2. Divide the quotient by B, save the quotient; the remainder is digit e1
3. Repeat until the quotient is zero
4. The remainder digits are created in order of increasing significance

• Exercise: convert 2345 to bases 16, 7 and 13

Notes

8Number Representations: Unsigned and Signed

© I B M 2015System z Assembler LanguageChap. I, Sec. 2.5-2.7

• Three basic representations; first two used on System z:

− Radix-complement (for System z′s binary numbers: 2 ′s complement)

− Sign-magnitude (the way we write numbers: +5, −17)

− Diminished radix-complement (no longer used in modern machines)

• Unsigned binary numbers (“logical” representation)

− Every bit has positive weight

− For an 8-bit integer, the most significant bit has weight + 27

• So (unsigned) B ′ 1 0 0 0 0 0 0 1 ′ = + 27 + 20 = 129

• Signed binary numbers (“arithmetic” representation)

− Every bit has positive weight, but the high-order bit has negative weight

− For an 8-bit integer, the most significant bit has weight −27

• So (signed) B ′ 1 0 0 0 0 0 0 1 ′ = −27 + 20 = −127

• Exercise: convert B′10101010′ (signed and unsigned) to sign-magnitude
decimal

Notes

4

9Two’s Complement

© I B M 2015System z Assembler LanguageChap. I, Sec. 2.8

• Binary addition is very simple:

0 0 1 1
+0 +1 +0 +1
0 1 1 10 (carry)

• Finding the two′s complement (negation) of a binary number:

− Take its ones′ complement: change all 0s to 1s and 1s to 0s;
then add a low-order 1 bit
• Examples, using signed 8-bit values:

 10000001 (signed ─127) 00000001 (signed +1)
 01111110 ones′ complement 11111110 ones′ complement
+ 1 + 1

 01111111 (signed +127) 11111111 (signed ─1)
 11111101 (signed ─3) 00011111 (signed +31)
 00000010 ones′ complement 11100000 ones′ complement
+ 1 + 1

 00000011 (signed +3) 11100001 (signed ─31)

− Carries out of the leftmost bit: ignored for unsigned, important for signed
• But most arithmetic instructions take note of carries

Notes

10Sign Extension

© I B M 2015System z Assembler LanguageChap. I, Sec. 2.9

• Binary numbers can be lengthened to greater precision by sign
extension

• If the sign bit is copied to the left, the value of the number is
unchanged in the new, longer representation

− Examples, using signed 16-bit values extended from 8 bits:

11111111 10000001 (signed ─127) 00000000 00000001 (signed +1)
00000000 01111111 (signed +127) 11111111 11111111 (signed ─1)

− Many instructions do sign extension automatically

Notes

5

11Addition, Subtraction, and Arithmetic Overflow

© I B M 2015System z Assembler LanguageChap. I, Sec. 2.10

• All bits are added; high-order carries are lost (but noted)

− Examples, using signed 4-bit values (range -8 ≤ value ≤ + 7) :

 1111 (─1) 0010 (+2) 0100 (+4)
+0001 (+1) +0010 (+2) +0100 (+4)
 0000 (+0) 0100 (+4) 1000 (─8, overflow)

− Arithmetic addition: overflow possible only when adding like-signed
operands.
• Actions vary: signed overf low can be ignored, or cause an “interruption”

• Unsigned (logical) addition: carries are noted, no overflows

− Examples, using unsigned 4-bit values (range 0 ≤ value ≤ 15):

 1111 (15) 0010 (2) 1100 (12)
+0001 (1) +0010 (2) +1001 (9)
 0000 (0, carry) 0100 (4, no carry) 0101 (5, carry)

• Conditional branch instructions (described in Section 15) can test for
overflow (arithmetic addition or subtraction) and carries (logical
addition or subtraction)

Notes

12Addition, Subtraction, and Arithmetic Overflow ...

© I B M 2015System z Assembler LanguageChap. I, Sec. 2.11

• Subtraction is slightly more complicated than addition...

1. Form the ones ′ complement of the second (subtrahend) operand

2. Add the first (minuend) and complemented second operands and a
low-order 1 bit (but in a single operation!)

− Examples, using signed 4-bit values:

─1─(+1) +2─(+2) 3─5
 1111 (─1) 0010 (+2) 0011 (+3)
 1110 (+1,comp) 1101 (─2,comp) 1010 (+5,comp)
+ 1 + 1 + 1
 1110 (─2, carry) 0000 (+0, carry) 1110 (─2, no carry)

− Arithmetic subtraction: overflows possible; logical subtraction: carries are
noted

• Adding the first operand directly to the two′s complement of the
second operand works almost, but not all the time!

Notes

6

13Addition, Subtraction, and Arithmetic Overflow ...

© I B M 2015System z Assembler LanguageChap. I, Sec. 2.11

• Why must we add all three items at once?

Why not just add the first operand directly to the two′s complement of
the second? An example shows why:

+1─(─8) right way +1─(─8) wrong way
0001 (+1) 0001 (+1)
0111 (─8, 1s comp) +1000 (─8, 2′ s comp)

+ 1 1001 (─7, no overflow)
1001 (─7, overflow)

− Overflow occurred in forming the two ′s complement of −8 before adding

• Adding all three items at once guarantees correct overflow detection

Notes

14A Circular Representation of 4-bit Signed Integers

© I B M 2015System z Assembler LanguageChap. I, Sec. 2.13

• A circular representation of 4-bit
signed integers:

│
O 0100

0101 O │ O 0011
│

0110 O │ O 0010
│
│

0111 O │ O 0001
│

X OVERFLOW POINT │
│ 0000

─────•──────────────────────┼──────────────────────O────
1000 │

│ CARRY POINT X
│

1001 • │ • 1111
│
│

1010 • │ • 1110
│

1011 • │ • 1101
• 1100
│

o = posi t ive number,
• = negat ive number.

Addit ion: move
counter-clockwise

Subtraction: move clockwise

Overflow: move past the
overflow point

Carry from high-order bit:
move past the carry point

Notes

7

15Logical vs. Arithmetic Results, Other Representations

© I B M 2015System z Assembler LanguageChap. I, Sec. 2.14-2.15

• The bit patterns from logical and arithmetic add and subtract are
identical; only the overflow or carry indications are different

• Other representations for binary numbers:
Binary
Digi ts

Logical
Representat ion

Sign-
Magni tude

Ones ′
Complement

Two ′ s
Complement

0000 0 + 0 + 0 0
0001 1 + 1 + 1 + 1
0010 2 + 2 + 2 + 2
0011 3 + 3 + 3 + 3
0100 4 + 4 + 4 + 4
0101 5 + 5 + 5 + 5
0110 6 + 6 + 6 + 6
0111 7 + 7 + 7 + 7
1000 8 −0 −7 −8
1001 9 −1 −6 −7
1010 10 −2 −5 −6
1011 11 −3 −4 −5
1100 12 −4 −3 −4
1101 13 −5 −2 −3
1110 14 −6 −1 −2
1111 15 −7 −0 −1

Notes

16Exercise Answers

© I B M 2015System z Assembler LanguageChap. I, Sec. 2.1-2.7

• Slide 5:

− B′01010001′ , B′11111111′

− 170, 241

• Slide 6:

− X′91′, X′1F4′

− 1891, 247

− B′11101100011′ , B′11110111′

• Slide 7:

− X′929′, 65607, 10B513.

• Slide 8:

− -86, 170

Notes

8

1Chapter II. System z

© I B M 2015System z Assembler LanguageChap. II, Sec. 3-5

This chapter′s three sections introduce the main features of System z
processors:

• Section 3 describes key processor structures: the Central Processing
Unit (CPU), memory organization and addressing, general purpose
registers, the Program Status Word (PSW), and other topics.

• Section 4 discusses the instruction cycle, basic machine instruction
types and lengths, exceptions and interruptions and their effects on the
instruction cycle.

• Section 5 covers address calculation, the “addressing halfword”,
Effective Addresses, indexing, addressing problems, and virtual
memory.

Notes

2Conceptual Structure of System z

© I B M 2015System z Assembler LanguageChap. II, Sec. 3

• The three key elements of System z processors:

┌────────────────────┐ Control ┌──────────────┐
│ Central Processing │�─────────�│ Input/Output │
│ Unit │ Signals │ Units │
└─────────┬──────────┘ └──────┬───────┘

� �
│Data │Data

┌─────────┴─────────────────────────────┴───────┐
│ Memory │
└───┘

1. The CPU executes instructions, coordinates I/O and other activities

2. I/O units transfer data between Memory and external storage devices

3. Memory (“central storage”) holds instructions, data, and CPU-management
data

Notes

9

3Memory Organization

© I B M 2015System z Assembler LanguageChap. II, Sec. 3.1

• Memory storage unit is the 8-bit byte, each has its own address

− Byte groups with addresses divisible by the group length have special
names:

 8DF 8E0 8E1 8E2 8E3 8E4 8E5 8E6 8E7 8E8 8E9 8EA 8EB 8EC 8ED 8EE 8EF 8F0
─┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │

─┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─
│ HALFWORD │ HALFWORD │ HALFWORD │ HALFWORD │ HALFWORD │ HALFWORD │ HALFWORD │ HALFWORD │
│�────────WORD─────────�│�────────WORD─────────�│�────────WORD─────────�│�────────WORD─────────�│
│�─────────────────DOUBLEWORD──────────────────�│�─────────────────DOUBLEWORD──────────────────�│
│�──QUADWORD───�│

• Instructions may reference single bytes, groups as shown, or strings of
bytes of (almost) any length

Notes

4CPU: General Registers

© I B M 2015System z Assembler LanguageChap. II, Sec. 3.2-3.3

• Key elements are registers and the Program Status Word (PSW)

− 16 “general purpose” registers, often arranged in even-odd-numbered pairs;
used for arithmetic, logic, addressing

┌─────────────────────────────────┬──────────────────────────────────┐
│ General Register 0 │ General Register 1 │
├─────────────────────────────────┼──────────────────────────────────┤
│ General Register 2 │ General Register 3 │
├─────────────────────────────────┼──────────────────────────────────┤
: : :
├─────────────────────────────────┼──────────────────────────────────┤
│ General Register 14 │ General Register 15 │
└─────────────────────────────────┴──────────────────────────────────┘

− Each general register is usable as 64 bits or as two 32-bit halves

�───────────────────────────── 64 bits ─────────────────────────────�
�─────────── 32 bits ────────────� �─────────── 32 bits ────────────�
┌─────────────────────────────────┬─────────────────────────────────┐
│ │ │
└─────────────────────────────────┴─────────────────────────────────┘
0 31 32 63

Notes

10

5CPU: Floating-Point Registers and PSW

© I B M 2015System z Assembler LanguageChap. II, Sec. 3.4-3.5

• Floating-point registers: now 16, originally 4:
− Used for floating-point operations; some instructions use only the left half

�───────────────────────── 64 BITS ─────────────────────────�
┌───┐
│ F0 │
├───┤
│ F2 │
├───┤
│ F4 │
├───┤
│ F6 │
└───┘
 0 63

• Program Status Word (PSW) (actually a 128-bit quadword)
− Key components: Instruction Length Code (ILC), Condition Code (CC),

Program Mask (PM), Instruction Address (IA)

┌────────┬─ ─ ─ ─ ─┬─┬─ ─┬─┬─ ─┬────┬─ ─ ─ ─ ─┬────────────────────────────────┐
│ SYSTEM │ │I│ │C│ │PRO─│ │ INSTRUCTION │
│ FLAGS │ │L│ │C│ │GRAM│ │ ADDRESS │
│ │ │C│ │ │ │MASK│ │ (IA) │
└────────┴─ ─ ─ ─ ─┴─┴─ ─┴─┴─ ─┴────┴─ ─ ─ ─ ─┴────────────────────────────────┘

Notes

6Basic Instruction Cycle

© I B M 2015System z Assembler LanguageChap. II, Sec. 4.1

• Easiest to visualize in three steps:
 ┌───────┐ ┌────────┐ ┌─────────┐
┌────�│ FETCH ├─────�│ DECODE ├─────�│ EXECUTE ├────┐
│ └───────┘ └────────┘ └─────────┘ │
│ │
└───┘

1. Fetch: bring instruction from memory, determine its type and length

− Add its length to PSW′s Instruction Address (IA) to form address of “Next
Sequent ial Instruct ion”

2. Decode: determine validity of instruction; access operands

3. Execute: perform the operation; update registers and/or memory as
required

• Possible problems, interruptions (more at slides 9-10)

− Fetch: invalid instruction address

− Decode: invalid or privileged instruction

− Execution: many possibilit ies!

Notes

11

7Basic Instruction Types

© I B M 2015System z Assembler LanguageChap. II, Sec. 4.2

• Original System/360 CPUs supported five instruction types:
1. Register-Register (RR): operands entirely in registers
2. Register-Indexed Storage (RX): Operands in registers and storage
3. Register-Storage (RS): Operands in registers and storage
4. Storage-Immediate (SI): Operand in memory and in the instruction
5. Storage-Storage (SS): Operands in storage

• Instruction formats: 2, 4, or 6 bytes long
┌──────────┬──────────┐

RR │ OPCODE │ REGS │
└──────────┴──────────┘
┌──────────┬──────────┬─────────────────────┐

RX │ OPCODE │ REGS │ ADDRESSING HALFWORD │
└──────────┴──────────┴─────────────────────┘
┌──────────┬──────────┬─────────────────────┐

RS │ OPCODE │ REGS │ ADDRESSING HALFWORD │
└──────────┴──────────┴─────────────────────┘
┌──────────┬──────────┬─────────────────────┐

RS │ OPCODE │ OPERAND │ ADDRESSING HALFWORD │
└──────────┴──────────┴─────────────────────┘
┌──────────┬──────────┬─────────────────────┬─────────────────────┐

SS │ OPCODE │ LENGTHS │ ADDRESSING HALFWORD │ ADDRESSING HALFWORD │
└──────────┴──────────┴─────────────────────┴─────────────────────┘

Notes

8Instruction Lengths

© I B M 2015System z Assembler LanguageChap. II, Sec. 4.3

• Every instruction ′s first two bits of its first byte determine its length:

00xxxxxx 2─byte instructions such as RR─type
01xxxxxx 4─byte instructions such as RX─type
10xxxxxx 4─byte instructions such as RS─ and SI─type
11xxxxxx 6─byte instructions such as SS─type

• Instruction Length Code (ILC) set to the number of halfwords in the
instruction (1,2,3)

ILC
(decimal)

ILC (binary) Instruction types
Opcode bits

0-1
Instruction length

0 B′ 00′ Not avai lable

1 B′ 01′ RR B′ 00′ One hal fword

2 B′ 10′ RX B′ 01′ Two hal fwords

2 B′ 10′ RS, SI B′ 10′ Two hal fwords

3 B′ 11′ SS B′ 11′ Three hal fwords

Notes

12

9Interruptions

© I B M 2015System z Assembler LanguageChap. II, Sec. 4.5-4.6

• The basic instruction cycle is modified to handle interruptions:
┌───────┐ ┌────────┐ ┌─────────┐

┌────�│ FETCH ├─────�│ DECODE ├─────�│ EXECUTE ├────┐
│ └───────┘ └────────┘ └─────────┘ �
� NO ┌──────────┴────┐
│�───────────────────────────────────────┤ANY INTERRUPTS?│
│ └──────────┬────┘

 NO � ┌───�│YES
 │ � YES �
┌───┴────┴──┐ ┌────────────┐ ┌────────────────────┴────┐
│ ANY OTHER │�───┤LOAD NEW PSW│�───│NOTE INTERRUPTION CAUSE, │
│INTERRUPTS?│ │FROM MEMORY │ │SAVE OLD PSW, STATUS INFO│
└───────────┘ └────────────┘ └─────────────────────────┘

• There are six classes of interruption:
1. Restart (operator action)
2. External (timer, clock comparator)
3. Machine Check (processor malfunction)
4. Input-Output (an I/O device has signaled a condition)
5. Program (exception condition during program execution)
6. Supervisor Call (program requests an Operating System service)

Notes

10Interruptions ...

© I B M 2015System z Assembler LanguageChap. II, Sec. 4.5-4.6

• The CPU saves the current (“old”) PSW, loads a new PSW
− Supervisor saves status information, processes the condition
− Supervisor can return to interrupted program by loading old PSW

• Some “popular” Program Interruption Codes (IC):
I C = 1 Invalid Operation Code.
I C = 4 Access, Protection: program has referred to an area of memory

to which access is not allowed.
I C = 6 Specification Error: can be caused by many conditions.
I C = 7 Data Exception: invalid packed decimal data, or by floating-point

conditions described in Chapter IX.
I C = 8 Fixed-Point Overflow: fixed-point binary result too large.
I C = 9 Fixed-Point Divide Exception: quotient would be too big, or a

divisor is zero.
I C = A Decimal Overflow: packed decimal result too large.
I C = B Decimal Divide: packed decimal quotient too large, or a divisor

is zero.
I C = C Hexadecimal floating-point exponent overflow: result too large.
I C = D Hexadecimal floating-point exponent underflow: result too small.

Notes

13

11Addressing and Address Generation

© I B M 2015System z Assembler LanguageChap. II, Sec. 5.1

• System z instructions create many operand addresses using
base-displacement addressing

│�─4 BITS─�│�──────────12 BITS──────────�│
┌──────────┬─────────────────────────────┐
│BASE DIGIT│ DISPLACEMENT │ “ADDRESSING HALFWORD”
└──────────┴─────────────────────────────┘
 0 3 4 15

− The base register specification digit (“base digit”) specifies one of general
registers 1-15, the base register containing the base address or base

− The displacement is an unsigned 12-bit integer
• Operand addresses:

1. Copy displacement to internal Effective Address Register (“EAR”)
2a. If the base digit b is not zero, add c(Rb); ignore carries
2b. If the base digit b is zero, do nothing

• The result in the EAR is the Effective Address.
− Example with 32-bit values: an addressing halfword contains X′ B2D5′ , and

c(R11) = X′ C73E90AF′ . Then, in the EAR:

Step 1: 000002D5 displacement
Step 2a: +C73E90AF base

C73E9384 Effective Address

Notes

12Indexing and Virtual Addresses

© I B M 2015System z Assembler LanguageChap. II, Sec. 5.3,5.6

• RX-type instructions contain an index register specification digit x:

┌───────────┬─────┬─────┬─────┬──────────────────┐
 │ opcode │ r │ x │ b │ displacement │
 └───────────┴─────┴─────┴─────┴──────────────────┘

− Indexed Effective Address calculation adds two more steps:

3a. If the index digit x is not zero, add c(Rx); ignore carries
3b. If the index digit x is zero, do nothing

− Example: RX-type instruction is X′431AB2D5′ , c(R10) = X′ FEDCBA98′ , and
c(R11) = X′ C73E90AF′ . In the EAR:

Step 1: 000002D5 displacement
Step 2a: C73E90AF base (from R11)
Step 3a: +FEDCBA98 index (from R10)

(1)C61B4E1C Indexed Effective Address, carry ignored

• System z supports Dynamic Address Translation (“DAT”)
− DAT translates application addresses into “real“ addresses
− Helps Operating System better manage “actual” memory

• Invisible to your program.

Notes

14

1Chapter III. Assembler Language Programs

© I B M 2015System z Assembler LanguageChap. III, Sec. 6-10

This chapter describes fundamental concepts of Assembler Language
programming.

• Section 6 provides an overview of assembling, linking and loading for
execution; conventions for preparing Assembler Language programs;
and some helpful macro instructions that perform simple I/O and
conversion operations.

• Section 7 discusses key concepts relating to symbols and “variables”.

• Section 8 investigates the elements of expression evaluation, and the
basic Assembler Language operand formats used by instructions.

• Section 9 introduces typical instructions and how to write Assembler
Language statements for them.

• Section 10 shows how the Assembler calculates displacements and
assigns base register values in Addressing Halfwords, and introduces
the important USING and DROP assembler instructions.

Notes

2Assembler Language

© I B M 2015System z Assembler LanguageChap. III, Sec. 6

• The Assembler helps you prepare instructions for execution on
System z

• Gives you maximum control over selection and sequencing of specific
instructions

• Assembler Language itself is much simpler than other programming
languages

• Main difficulties are

− Learning an appropriate set of machine instructions for your applications

− Learning all the auxiliary tools and programs needed to build and use
Assembler Language programs

Notes

15

3Processing Your Program

© I B M 2015System z Assembler LanguageChap. III, Sec. 6.1

• Generally done in three stages:

1. Assembly; The Assembler translates the statements of your source
program into machine language instructions and data (“object code”)
in the form of an object module for eventual execution by the CPU.

2. Linking: The Linker combines your object module with any others
required for satisfactory execution. The resulting load module is
saved.

3. Program Loading: The Program Loader reads your load module into
memory and then gives CPU control to your instructions starting at
the entry point .

Your program then executes your instructions: reading, writing, and
generating data

Notes

4Preparing Assembler Language Statements

© I B M 2015System z Assembler LanguageChap. III, Sec. 6.2

• Assembler Language statements are prepared on 80-byte “card
image” records:

 ┌── first character of a record last character of a record ──┐

1 10 20 30 40 50 60 70 80
....v....│....v....│....v....│....v....│....v....│....v....│....v....│....v....│
� � ��

 │ └── continue column (16) end column (71) ──┘│
 └── start column (1) nonblank character if continued ─────────────┘

• Four types of statement:

1. Comment: no object code generated; for clarification only.
(Must have a * in the start column)

2. Machine instruction: Assembler will generate object code for a CPU
instruction

3. Assembler instruction: a directive to the Assembler; may or may not cause
generation of object code

4. Macro instructions: you combine any of the four statement types into a
group that can be invoked by name to generate other statements

Notes

16

5Statement Fields

© I B M 2015System z Assembler LanguageChap. III, Sec. 6.3

• Non-comment statements have four fields (in left-to-right order):

1. Name field: starts in column 1 (leftmost byte of source record), ends with
first blank; usually optional

2. Operation field: starts at least 1 blank after end of name field entry. Always
required.

3. Operand field: starts at least 1 blank after end of operation field entry.
Usually required.

4. Remarks field: starts at least 1 blank after end of operand field entry.
Always optional.

• Typical practice: to improve readability, start each field in a fixed
column (e.g. 1,10,18,40)

Notes

6Writing Simple Programs

© I B M 2015System z Assembler LanguageChap. III, Sec. 6.4

• First statement should be START, with your program name in the
name field, 0 for the operand

MyProg1 START 0

• Following that should be some explanatory comment statements

• Last statement should be END, with the name of your program in the
operand field

END MyProg1

− The END statement only tells the Assembler to stop reading records; it
doesn ′ t tell your program to stop executing!

Notes

17

7A Sample Program

© I B M 2015System z Assembler LanguageChap. III, Sec. 6.5

• An example of a small program with “Job Control” statements

�─────────────────────────────── 80 characters ────────────────────────────────�
//JRETEST JOB (A925,2236067977),′ J.EHRMAN′ Line 1
// EXEC ASMACLG Line 2
//C.SYSIN DD * Line 3
Test Start 0 First line of program Line 4

Print NoGen Line 5
* Sample Program Line 6

BASR 15,0 Establish a base register Line 7
Using *,15 Inform the Assembler Line 8
PRINTOUT MyName,* Print name and stop Line 9

MyName DC C′ John R. Ehrman′ Define constant with name Line 10
END Test Last statement Line 11

/* Line 12

• “Job Control” statements (lines 1-3, 12) vary from system to system

Notes

8Basic Macro Instructions

© I B M 2015System z Assembler LanguageChap. III, Sec. 6.6

• Six macro instructions are used extensively throughout the text:

PRINTOUT
Display contents of registers and named areas of memory.

READCARD
Read an 80-character record into memory.

PRINTLIN
Send a string of characters to a printer.

DUMPOUT
Display contents of memory in hexadecimal and character formats.

CONVERTI
Convert characters to a 32- or 64-bit binary integer.

CONVERTO
Convert a 32- or 64-bit binary integer to characters.

• Equivalent facilities may be available at your location.

Notes

18

9Self-Defining Terms and Symbols

© I B M 2015System z Assembler LanguageChap. III, Sec. 7

Important elements of the Assembler Language; each has a numeric
value

• Self-defining term: a constant value, writable in four forms (slide 10)

• Symbol: 1-63 characters

− Value assigned by you or by the Assembler

− Many uses in the Assembler Language

Notes

10Self-Defining Terms

© I B M 2015System z Assembler LanguageChap. III, Sec. 7.1

A constant value held by the Assembler in a two′s complement 32-bit
word

• Decimal: an unsigned string of decimal digits with value between 0 and
231 − 1 (2147483647)

• Hexadecimal: a string of hexadecimal digits enclosed in X′ . . . ′ with
value between X′ 0 ′ and X′ FFFFFFFF′ (232 − 1, 4294967295)

• Binary: a string of binary digits enclosed in B′ . . . ′ with value between
B′ 0 ′ and B′11111111111111111111111111111111′ (232 − 1, 4294967295)

• Character: a string of 1-4 characters enclosed in C′ . . . ′ , except that
apostrophes (′) and ampersands (&) are paired for each occurrence, as
in C′ ′ ′ ′ and C′&&′
− Term ′s value determined from EBCDIC representation of characters

Notes

19

11EBCDIC Character Representation

© I B M 2015System z Assembler LanguageChap. III, Sec. 7.2

• Every character is represented by a number

Char Hex Char Hex Char Hex Char Hex

Blank 40 . 4B a 81 b 82

c 83 d 84 e 85 f 86

g 87 h 88 i 89 j 91

k 92 l 93 m 94 n 95

o 96 p 97 q 98 r 99

s A2 t A3 u A4 v A5

w A6 x A7 y A8 z A9

A C1 B C2 C C3 D C4

E C5 F C6 G C7 H C8

I C9 J D1 K D2 L D3

M D4 N D5 O D6 P D7

Q D8 R D9 S E2 T E3

U E4 V E5 W E6 X E7

Y E8 Z E9 0 F0 1 F1

2 F2 3 F3 4 F4 5 F5

6 F6 7 F7 8 F8 9 F9

Notes

12Symbols and Attributes

© I B M 2015System z Assembler LanguageChap. III, Sec. 7.3

Ordinary symbols: 1-63 characters; first must be alphabetic

• Upper and lower case letters are equivalent: no distinction

• $, @, #, _ are treated as alphabetic

− Safest to avoid using the first three in symbols

• Two types: external and internal (the most frequent form)

• Internal symbols have three key attributes (maintained by the
Assembler):

− Value

− Relocatabil ity

− Length (not the number of characters in the symbol!)

Notes

20

13Program Relocatability

© I B M 2015System z Assembler LanguageChap. III, Sec. 7.4

• At assembly time, the Assembler doesn ′ t know

1. Where the Program Loader wil l put your program in memory

− Managed by creating a model of the program, putting re locat ion data in the object
module (Section 38)

2. What other programs will the Linker combine with yours

− Managed by using external l inkages (Chapter X)

• Relocation: You (or the Assembler) assume the program starts at an
origin (usually, 0)

− Assembler calculates posit ions (“locations”) of all assembled instructions
and data relative to that origin

− Program Loader relocates your locations, to addresses relative to the load
address

Notes

14The Location Counter

© I B M 2015System z Assembler LanguageChap. III, Sec. 7.5

• The Assembler uses a Location Counter (LC) to keep track of
assembly-time positions in your program

− Current LC value is represented by an asterisk (*)

− As instructions and data are generated, the Assembler adds the length of the
generated data to form the location of the next item
• Locations of instructions always rounded to an even location

• Important distinction:

1. Locations refer to positions in the Assembler ′s model of your program

2. Addresses refer to positions in memory at execution time

Notes

21

15Assigning Values to Symbols

© I B M 2015System z Assembler LanguageChap. III, Sec. 7.6

• Values are assigned to symbols in two ways:

1. Name-field symbols usually take the current value of the Location Counter
(before adding the length of generated data)

MyProg1 Start 0 Set assumed origin location 0
Start BASR 15,0 Value of symbol “Start” is 0

2. Sometimes symbol values are assigned by the programmer using an EQU
statement

symbol EQU self─defining term The most common form
ABS425 EQU 425 ABS425 has value 425
Char_A EQU C′ A′ Char_A has value X′ C1′

3. The length of the generated data is usually assigned as the symbol ′s length
attr ibute

Notes

16Symbols and Variables

© I B M 2015System z Assembler LanguageChap. III, Sec. 7.7

• Symbols in high-level languages (usually called “variables”) have
execution-time values

X <─ 22./7. ; /* Set X to an approximation to pi */

• Symbols in Assembler Language are used only at assembly time; they
have no execution-time value (are NOT “variables”)

− Used as names of places in a program that may contain execution-time
values

− Symbol values simply help to organize the program

Notes

22

17Terms, Operators, Operands, Expressions

© I B M 2015System z Assembler LanguageChap. III, Sec. 8

• Typical machine instruction statement format:

symbol operation operand1,operand2,... remarks
(optional) (required) �──── 0 to many ────� (optional)

• Assembler Language operands are formed from expressions

− Expressions are formed from terms and operators

• Operators are +, −, *, /
• Terms take several forms... (slide 18)

Notes

18Terms

© I B M 2015System z Assembler LanguageChap. III, Sec. 8.1

• A basic expression element is a term

− A self-defining term (always absolute)

− A symbol (absolute or relocatable)

− A Location Counter reference * (always relocatable)

− A Literal (always relocatable)

− A symbol attribute reference (always absolute)

• Length (L′ symbol)

• Integer (I′ symbol)

• Scale (S′ symbol)

Notes

23

19Expressions

© I B M 2015System z Assembler LanguageChap. III, Sec. 8.2

• An expression is an arithmetic combination of terms and operators
 7+4 X─C′ X′ N/L′ Item Size*Count

• A parenthesized expression is treated as a term
 (A+2)*(X′4780′─JJ) (7)+(6─2)

− Parenthesized sub-expressions are evaluated first

• Unary (prefix) + and - are allowed

Notes

20Evaluating Assembly-Time Expressions

© I B M 2015System z Assembler LanguageChap. III, Sec. 8.3

1. Each term is evaluated to 32 bits, and its relocatability is noted

2. Inner parenthesized sub-expressions evaluated first (from inside to
out)

3. At the same level, do multiplication and division before addition and
subtraction

 So, 2+5*3─6 ──> (2+(5*3)─6), not ((2+5)*3)─6

4. No relocatable terms allowed in multiplication or division

5. For same-priority operations, evaluate from left to right

 So, 5*2/4 ──> (5*2)/4, 5/2*4 ──> (5/2)*4

6. Multiplication retains low-order 32 bits of 64-bit product

Notes

24

21Evaluating Assembly-Time Expressions ...

© I B M 2015System z Assembler LanguageChap. III, Sec. 8.3

7. Division discards any remainder
• Division by zero is allowed; result is zero (!)

8. Evaluation result is a 32-bit two′s complement value

9. Relocatabil ity attribute of expression determined from relocatabil ity
of terms:

a. Pairs of terms with same attribute and opposite signs have no effect (they
“cancel”); if all are paired, the expression is absolute

b. One remaining unpaired term sets the attribute of the expression;
+ means simply relocatable, − means complexly relocatable

c. More than one unpaired term means the expression is complexly
relocatable (a rare occurrence)

Notes

22Machine Instruction Statement Operand Formats

© I B M 2015System z Assembler LanguageChap. III, Sec. 8.5

• Machine-instruction statement operands have only one of these three
forms (where “expr” = express ion)

 expr expr1(expr2) expr1(expr2,expr3)

7 8(7) 22(22,22)
8*N+4 A(B) (A)((B),(C))
(91) (91)(15) (91)(,15)

− In the second and third forms, adjacent parentheses do not imply
multiplication!

− In the third form, expr2 can be omitted if it is zero:

 expr1(,expr3) [The comma is still required!]

Notes

25

23Instructions, Mnemonics, Operands

© I B M 2015System z Assembler LanguageChap. III, Sec. 9

• Machine instructions: how you, the programmer, write them in
Assembler Language

− Mnemonics are brief descriptions of an instruction ′s action

• Examples of five basic instruction formats

− Available operand types for each instruction format

• expr1 — absolute or relocatable

• expr1(expr2) — expr1 absolute or relocatable, expr2 absolute

• expr1(expr2,expr3) — all three expr′s absolute

− Explicit and implied addresses

− Explicit and implied lengths

Notes

24Basic RR-Type Instructions

© I B M 2015System z Assembler LanguageChap. III, Sec. 9.1

• These are some commonly used RR-type instructions:

• Typical operand field described as R1,R2 — operands of “expr1” form

Op Mnem Instruction Op Mnem Instruction

05 BALR Branch And Link 06 BCTR Branch On Count

07 BCR Branch On Condition 0D BASR Branch And Save

10 LPR Load Posit ive 11 LNR Load Negative

12 LTR Load And Test 13 LCR Load Complement

14 NR AND 15 CLR Compare Logical

16 OR OR 17 XR Exclusive OR

18 LR Load 19 CR Compare

1A AR Add 1B SR Subtract

1C MR Mult iply 1D DR Divide

1E ALR Add Logical 1F SLR Subtract Logical

Notes

26

25Writing RR-Type Instructions

© I B M 2015System z Assembler LanguageChap. III, Sec. 9.2

• Assembler must generate machine language form of the instruction:
┌────────────┬──────┬──────┐
│ OPCODE │ R1 │ R2 │
└────────────┴──────┴──────┘

• R1 and R2 designate first and second operand registers, not general
registers 1 and 2!

• Since LR opcode is X′ 1 8 ′ :

LR 7,3 assembles to X′1873′

• Operands can be written as any expression with value
0 ≤ value ≤ 15

LR 3*4─5,1+1+1 also assembles to X′1873′

− Assembly-t ime operands are expressions wi th value “7” and “3”

− Execution-time operands are contents of general registers GR7 and GR3

Notes

26Basic RX-Type Instructions

© I B M 2015System z Assembler LanguageChap. III, Sec. 9.3

• These are some commonly used RX-type instructions:

• RX-instruction first operand field described as R1 (“expr 1” form)

• Second operand field described as S2 (“expr 1” form), as S2(X2)
(“expr 1(expr2)” form), as D2(X2,B2), (“expr1(expr2,expr3)” form), or as
D2(,B2) (“expr 1(,expr3)” form)

Op M n e m Instruction Op M n e m Instruction

42 STC Store Character 43 IC Insert Character

44 EX Execute 45 BAL Branch And Link

46 BCT Branch On Count 47 BC Branch On Condit ion

4D BAS Branch And Save 50 ST Store

54 N AND 55 CL Compare Logical

56 O OR 57 X Exclusive OR

58 L Load 59 C Compare

5A A Add 5B S Subtract

5C M Mul t ip ly 5D D Divide

5E AL Add Logical 5F SL Subtract Logical

Notes

27

27Writing RX-Type Instructions

© I B M 2015System z Assembler LanguageChap. III, Sec. 9.4

• Assembler must generate machine language form of the instruction:
┌────────────┬──────┬──────┬──────┬──────────────────┐
│ OPCODE │ R1 │ X2 │ B2 │ D2 │
└────────────┴──────┴──────┴──────┴──────────────────┘

• First operand designates a general register

• Second operand usually designates a memory reference
− B2, D2, and X2 components used at execution time to calculate memory

address (as described in Section 5)

− Generic RX-instruction operands: R1,address-specification
• Since L opcode is X′ 5 8 ′ ,

L 1,200(9,12) will generate

┌────────────┬──────┬──────┬──────┬──────────────────┐
│ 58 │ 1 │ 9 │ C │ 0C8 │
└────────────┴──────┴──────┴──────┴──────────────────┘

L 1,200(,12) will generate

┌────────────┬──────┬──────┬──────┬──────────────────┐
│ 58 │ 1 │ 0 │ C │ 0C8 │
└────────────┴──────┴──────┴──────┴──────────────────┘

Notes

28Explicit and Implied Addresses

© I B M 2015System z Assembler LanguageChap. III, Sec. 9.5

• Two ways to create an address-specification operand:

1. Explicit: you specify the base register and displacement

− You provide the values in D2(X2,B2) or D2(,B2)

2. Implicit: The Assembler assigns the base register and displacement for you

− You specify an operand of the form S2 or S2(X2); the Assembler does assembly-time
address resolution (described in Section 10)

• Examples of explicit addresses:

430A7468 IC 0,1128(10,7) D2=1128, X2=10, B2=7
43007468 IC 0,1128(0,7) D2=1128, X2=0, B2=7
43070468 IC 0,1128(7,0) D2=1128, X2=7, B2=0

• General forms of RX-instruction second operands:

Explicit Address Implied Address

Not Indexed D2(,B2) S2

Indexed D2(X2,B2) S2(X2)

Notes

28

29Typical RS- and SI-Type Instructions

© I B M 2015System z Assembler LanguageChap. III, Sec. 9.6

• These are some typical RS- and SI-type instructions:

• Many ways to write their operand fields!

Op Mnem Type Instruction Op Mnem Type Instruction

90 STM RS Store Mult iple 91 TM SI Test Under Mask

92 MVI SI Move Immediate 94 NI SI AND Immediate

95 CLI SI Compare Logical
Immediate

96 OI SI OR Immediate

97 XI SI Exclusive OR Immediate 98 LM RS Load Mult iple

88 SRL RS Shift Right Single Logical 89 SLL RS Shift Left Single
Logical

8A SRA RS Shift Right Single 8B SLA RS Shift Left Single

8C SRDL RS Shift Right Double Logical 8D SLDL RS Shift Left Double
Logical

8E SRDA RS Shift Right Double 8F SLDA RS Shift Left Double

Notes

30Writing RS-Type Instructions

© I B M 2015System z Assembler LanguageChap. III, Sec. 9.7

• RS-type instructions have two operand forms:

− “RS-1” form, one register: R1,D2(B 2) or R1,S2

− “RS-2” form, two registers: R1,R3,D2(B 2) or R1,R3,S2

• Assembler must generate machine language form of the instruction:

┌────────────┬──────┬──────┬──────┬──────────────────┐
│ opcode │ R1 │ R3 │ B2 │ D2 │
└────────────┴──────┴──────┴──────┴──────────────────┘

• R1 operand designates a general register; R3 operand can sometimes
be omitted; D2(B2) operand can be a memory reference or a number

• Examples of RS-type instructions:

SRA 11,2 Explicit address (RS─1 form)
SLDL 6,N Implied address (RS─1 form)
LM 14,12,12(13) Explicit address (RS─2 form)
STM 14,12,SaveArea+12 Implied address (RS─2 form)

Notes

29

31Writing SI-Type Instructions

© I B M 2015System z Assembler LanguageChap. III, Sec. 9.7

• Assembler must generate machine language form of the instruction:
┌────────────┬────────────┬──────┬──────────────────┐
│ OPCODE │ I2 │ B2 │ D2 │
└────────────┴────────────┴──────┴──────────────────┘

• D1(B1) (first) operand designates an address-specification

• Second (I2) operand is an immediate operand

• General forms of SI-instruction operands:

• Examples of SI-type instructions

MVI 0(6),C′ *′ Explicit D1(B1) address
CLI Buffer,C′ 0 ′ Implied S1 address

Explicit Address Implied Address

SI D1(B 1),I2 S1,I2

Notes

32Typical SS-Type Instructions

© I B M 2015System z Assembler LanguageChap. III, Sec. 9.8

• SS-type instructions have two memory operands, and one or two
length operands

• These are popular SS-type instructions; the “Len” column shows the
number of length fields in the instruction

• Instructions with F- opcodes operate on packed decimal data,
discussed in Chapter VIII

Op Mnem Len Instruction Op Mnem Len Instruction

D2 MVC 1 Move D4 NC 1 AND

D5 CLC 1 Compare Logical D6 OC 1 OR

D7 XC 1 Exclusive OR DC TR 1 Translate

F0 SRP 2 Shift And Round F1 MVO 2 Move With Offset

F2 PACK 2 Pack F3 UNPK 2 Unpack

F8 ZAP 2 Zero And Add F9 CP 2 Compare

FA AP 2 Add FB SP 2 Subtract

FC MP 2 Mult iply FD DP 2 Divide

Notes

30

33Writing SS-Type Instructions

© I B M 2015System z Assembler LanguageChap. III, Sec. 9.9

• The Assembler generates two forms of SS-type machine instruction:
┌────────────┬─────────────┬──────┬──────────────────┬──────┬──────────────────┐
│ OPCODE │ L1 │ B1 │ D1 │ B2 │ D2 │ ONE LENGTH FIELD (“SS─1”)
└────────────┴─────────────┴──────┴──────────────────┴──────┴──────────────────┘
┌────────────┬──────┬──────┬──────┬──────────────────┬──────┬──────────────────┐
│ OPCODE │ L1 │ L2 │ B1 │ D1 │ B2 │ D2 │ TWO LENGTH FIELDS (“SS─2”)
└────────────┴──────┴──────┴──────┴──────────────────┴──────┴──────────────────┘

• Addresses and lengths can both be specified explicitly or implicitly.

• You write the length as N1; the Assembler subtracts one to form L1

• Some examples of SS-1 form instructions:
MVC 0(80,4),40(9) Explicit length and addresses
CLC Name(24),RecName Explicit length, implied addresses
TR OutCh(,15),7(12) Implied length, explicit addresses
XC Count,Count Implied length and addresses

SS-1 Form Explicit Addresses Implied Addresses

Explicit Length D1(N1,B1),D2(B 2) S1(N1),S2

Implied Length D1(,B1),D2(B 2) S1,S2

Notes

34Writing SS-Type Instructions ...

© I B M 2015System z Assembler LanguageChap. III, Sec. 9.9

• For SS-2 form instructions, either or both operands may have explicit
or implied addresses or lengths
− This table shows some of the possible operand combinations:

• Some examples of SS-2 form instructions:
PACK 0(8,4),40(5,9) Explicit lengths and addresses
ZAP Sum(14),OldSum(4) Explicit lengths, implied addresses
AP Total(,15),Num(,12) Implied lengths, explicit addresses
UNPK String,Data Implied lengths and addresses

SS-2 Form Explicit Addresses Implied Addresses

Explicit Lengths D1(N1,B1),D2(N2,B2) S1(N1),S2(N2)

Implied Lengths D1(,B1),D2(,B2) S1,S2

Notes

31

35Establishing and Maintaining Addressability

© I B M 2015System z Assembler LanguageChap. III, Sec. 10

• Section 5 showed how the CPU creates Effective Addresses from
addressing halfwords

• Now, we will see how the Assembler creates those addressing
halfwords

• You supply the necessary information in a USING assembler
instruction statement:

USING location,register

• USING is your promise to the Assembler:
− If it assumes that this location is in that register, and calculates

displacements and assigns base registers to addressing halfwords, then
correct Effective Addresses will be generated at execution time.

• Understanding USING is important!

Notes

36The BASR Instruction

© I B M 2015System z Assembler LanguageChap. III, Sec. 10.1

• A common method for establishing execution-time addressability uses
the RR-type BASR (“Branch and Save”) instruction

BASR R1,R2
− BASR puts the Instruction Address (IA) in the PSW into the R1 register

− This is the address of the fol lowing instruction
• Remember: the IA was updated with the length of the BASR (2 bytes) during the fetch

portion of the instruction cycle

− If the R2 operand is zero, nothing more is done

• The address in R1 can be used as a base address
• R1 can be used as a base register

Notes

32

37Computing Displacements

© I B M 2015System z Assembler LanguageChap. III, Sec. 10.2

• Suppose we assemble this little program fragment, and that we know it
will be loaded into memory at address X′5000′

5000 START X′ 5000 ′ STARTING LOCATION
5000 BASR 6,0 ESTABLISH BASE ADDRESS
5002 BEGIN L 2,N LOAD CONTENTS OF N INTO GR2
5006 A 2,ONE ADD CONTENTS OF ONE
500A ST 2,N STORE CONTENTS OF GR2 INTO N

──TWENTY─TWO (X′ 1 6 ′) ADDITIONAL BYTES OF INSTRUCTIONS, DATA, ETC.──
5024 N DC F′ 8 ′ DEFINE CONSTANT WORD INTEGER 8
5028 ONE DC F′ 1 ′ DEFINE CONSTANT WORD INTEGER 1

− The length of each statement is added to its starting location (on the left)

• At execution time, after the BASR is executed, c(R6)=X′00005002′
− Since the L instruction wants to refer to the word at X′5024′, its displacement

from X′5002 is X′5024′-X′5002′=X′022′

− So if we create an addressing halfword X′6022′ for the L instruction, we
know that when the L is executed it will refer to the correct address

• We can continue this way...

Notes

38Computing Displacements (continued)...

© I B M 2015System z Assembler LanguageChap. III, Sec. 10.2

• Suppose this fragment is to be loaded into memory at address X′84E8′
84E8 BASR 6,0 ESTABLISH BASE ADDRESS
84EA BEGIN L 2,N LOAD CONTENTS OF N INTO GR2
84EE A 2,ONE ADD CONTENTS OF ONE
84F2 ST 2,N STORE CONTENTS OF GR2 INTO N

──TWENTY─TWO (X′ 1 6 ′) ADDITIONAL BYTES OF INSTRUCTIONS, DATA, ETC.──
850C N DC F′ 8 ′ WORD INTEGER 8
8510 ONE DC F′ 1 ′ WORD INTEGER 1

• At execution time, after the BASR is executed, c(R6)=X′000084EA′
− Since the L instruction wants to refer to the word at X′850C′ , its displacement

from X′84EA is X′850C′ -X′84EA′=X′022′
− So if we create an addressing halfword X′6022′ for the L instruction, we

know that when the L is executed it will stil l refer to the correct address.
Completing all addressing halfwords yields this object code:

ADDRESS ASSEMBLED CONTENTS
84E8 0D60
84EA 58206022
84EE 5A206026
84F2 50206022

─────────────────
850C 00000008
8510 00000001

Notes

33

39Explicit Base and Displacement

© I B M 2015System z Assembler LanguageChap. III, Sec. 10.3

• We now know that it doesn′ t matter where the program is loaded, so
we can assign base and displacement explicitly:

LOCATION NAME OPERATION OPERAND
0000 BASR 6,0
0002 BEGIN L 2,X′ 0 2 2 ′ (0 , 6)
0006 A 2,X′ 0 2 6 ′ (0 , 6)
000A ST 2,X′ 0 2 2 ′ (0 , 6)

───────── 22 BYTES ──────────
0024 N DC F′ 8 ′
0028 ONE DC F′ 1 ′

• Computing displacements can be hard work! So we help the Assembler
by using the values of symbols:

LOCATION NAME OPERATION OPERAND
0000 BASR 6,0
0002 BEGIN L 2,N─BEGIN(0,6) (N─BEGIN = X′ 0 2 2 ′)
0006 A 2,ONE─BEGIN(0,6) (ONE─BEGIN = X′ 0 2 6 ′)
000A ST 2,N─BEGIN(0,6) (N─BEGIN = X′ 0 2 2 ′)

─────── THE USUAL 22 BYTES ───────
0024 N DC F′ 8 ′
0028 ONE DC F′ 1 ′

• The Assembler calculates displacements for us; we assigned the base
register

Notes

40The USING Assembler Instruction and Implied Addresses

© I B M 2015System z Assembler LanguageChap. III, Sec. 10.4

• So we tell the Assembler two items: the symbol BEGIN and register 6:

USING BEGIN,6 Assume R6 will hold address of BEGIN

• The Assembler uses this to assign displacements and bases

• We now can write the program with impl ied addresses:

BASR 6,0 GR6 will hold execution address of BEGIN
USING BEGIN,6 Tell Assembler C(GR6)=address of BEGIN

BEGIN L 2,N Load c(N) into GR2
A 2,ONE Add c(ONE) to GR2
ST 2,N STore sum at N

* ──── 22 bytes ────
N DC F′ 8 ′
ONE DC F′ 1 ′

− And the Assembler does the hard work!

Notes

34

41Location Counter Reference

© I B M 2015System z Assembler LanguageChap. III, Sec. 10.5

• The Assembler builds an accurate model of your program using the
Location Counter (LC)

− The position of each piece of object code (or reserved space) is given a
location during assembly

− The relative positions of all items in each major segment of a program is
fixed at assembly time

• “ *” as a term has the value of the Location Counter, so we can use a
Location Counter Reference

BASR 6,0 Establish base register
USING *,6 Tell Assembler base location is “here”

− No need to define a symbol just for use in the USING statement;
specifying a symbol on the instruction following a BASR is (a) inconvenient,
(b) unnecessary, and (c) sometimes a poor idea

Notes

42Destroying Base Registers

© I B M 2015System z Assembler LanguageChap. III, Sec. 10.6

• Suppose we make a mistake in the L instruction named BEGIN:

Location Object Code Statement
0000 0D60 BASR 6,0

USING BEGIN,6
0002 58606022 BEGIN L 6,N ← Wrong register! (6, not 2)
0006 5A206026 A 2,ONE
000A 50206022 ST 2,N

─────────────────────────
0024 00000008 N DC F′ 8 ′
0028 00000001 ONE DC F′ 1 ′

• The program assembles correctly, but won ′ t execute correctly!

− Suppose it is loaded into memory starting at address X′5000′
• When the L instruction is fetched, c(GR6) = X′00005002′
• When the L instruction is executed, c(GR6) = X′00000008′
• When the A instruction is executed, its Effective Address is X′0000002E′ (not

X′00005028′!)
• Worse: the ST will try to store into memory at address X′0000002A′ , probably causing

a memory protection exception

− Be very careful not to alter the contents of base registers!

Notes

35

43Calculating Displacements: Assembly Process, Pass 1

© I B M 2015System z Assembler LanguageChap. III, Sec. 10.7

• The Assembler scans the program twice; the first time (“Pass 1”):

− Each statement is read

− Lengths of instructions, data, and reserved areas are determined, locations
are assigned

− Symbols whose positions are known are given location values
• Some symbols may appear as operands before having a value

− No object code is generated in Pass 1

• At END statement, all symbols and values should be known (“defined”)

− If not, various diagnostic messages are created

Notes

44Calculating Displacements: Assembly Process, Pass 2

© I B M 2015System z Assembler LanguageChap. III, Sec. 10.8

• Values of expressions can be calculated from known symbol values

• USING statement data is entered in the USING Table. For example:
┌───────┬───────────────┬────┐
│BASEREG│ BASE_LOCATION │ RA │
├───────┼───────────────┼────┤
│ 6 │ 00000002 │ 01 │
└───────┴───────────────┴────┘

− For instructions with implied addresses:

displacement = (implied_address value) − (base_location value)

− Relocatability Attribute (RA) of an implied address expression must match RA of
a USING Table entry

• If successful, the Assembler has resolved the implied address.
If not, the implied address is not addressable

• The Assembler does at assembly time the reverse of what the CPU
does at execution time:

Assembly: displacement = (operand_location) − (base_location)
Execution: (operand address) = displacement + (base address)

Notes

36

45Multiple USING Table Entries

© I B M 2015System z Assembler LanguageChap. III, Sec. 10.9

• Suppose there is more than one USING statement:

Location Statement
0000 BASR 6,0

USING *,6 Original USING statement
0002 BEGIN L 2,N

USING *,7 Added USING statement
0006 A 2,ONE

─────── as before ─────────

• The USING Table now looks like this:
┌───────┬───────────────┬────┐
│BASEREG│ BASE_LOCATION │ RA │
├───────┼───────────────┼────┤
│ 6 │ 00000002 │ 01 │
├───────┼───────────────┼────┤
│ 7 │ 00000006 │ 01 │
└───────┴───────────────┴────┘

− When the A statement is assembled, two addressing halfwords are possible:
• With register 6: X′00000028′-X′00000002′ = X′ 026 ′ with addressing halfword X′6026′
• With register 7: X′00000028′-X′00000006′ = X′ 022 ′ with addressing halfword X′7022′

− The Assembler chooses the resolution with the smallest displacement

Notes

46The DROP Assembler Instruction

© I B M 2015System z Assembler LanguageChap. III, Sec. 10.10

• To remove USING Table entries, use the DROP statement

DROP register

− In the previous examples, if we write

DROP 6

− then the USING Table looks like this:

┌───────┬───────────────┬────┐
│BASEREG│ BASE_LOCATION │ RA │
├───────┼───────────────┼────┤
│ │ EMPTY │ │
├───────┼───────────────┼────┤
│ 7 │ 00000006 │ 01 │
└───────┴───────────────┴────┘

• If a DROP statement is written with no operand, all USING Table
entries are removed:

┌───────┬───────────────┬────┐
│BASEREG│ BASE_LOCATION │ RA │
├───────┼───────────────┼────┤
│ │ EMPTY │ │
├───────┼───────────────┼────┤
│ │ EMPTY │ │
└───────┴───────────────┴────┘

Notes

37

47Addressability Errors

© I B M 2015System z Assembler LanguageChap. III, Sec. 10.11

• Many conditions can cause addressability problems

1. For instructions with 12-bit unsigned displacement fields, the value of
a displacement must lie between 0 (X′000′) and 4095 (X′ FFF′)

• References requiring displacements outside that range are not addressable

SetBase BASR 6,0
USING *,6
L 0,*+5000 Would require positive displacement X′1388′
L 0,SetBase Would require negative displacement X′ FFFFFFFE′

2. If the USING Table is empty, implied addresses can′ t be resolved

• Except for resolutions of absolute implied addresses with register 0; see
slide 48

3. Symbols in other sections have different Relocatability Attributes

• Techniques used to refer to them are described in Chapter X

4. Complexly relocatable operands (rare!) are never addressable

Notes

48Resolutions with Register Zero

© I B M 2015System z Assembler LanguageChap. III, Sec. 10.12

• The Assembler has an implied USING Table entry for register 0:
┌───────┬───────────────┬────┐
│BASEREG│ BASE_LOCATION │ RA │
├───────┼───────────────┼────┤
│ 0 │ 00000000 │ 00 │ (ABSOLUTE EXPRESSIONS HAVE RA = 00)
├───────┼───────────────┼────┤
│ │ ETC. │ │
└───────┴───────────────┴────┘

• If an operand is (a) absolute and (b) between 0 and 4095 in value, the
Assembler can resolve it to an addressing halfword with base register
zero

LA 7,100 100 = X′ 064 ′ , so addressing halfword = X′0 064′
LA 7,4000 4000 = X′ FA0′ , so addressing halfword = X′0 FA0′

• You can specify an absolute base_location in a USING statement:

LA 9,400
USING 400,9 Base address = 400 = X′ 190 ′
LA 3,1000 1000 = X′ 3E8′

− Two resolutions are possible: addressing halfwords X′03E8′ and X′9258′
• The Assembler chooses the one with the smaller displacement: X′9258′

Notes

38

49Summary of USING Resolution Rules

© I B M 2015System z Assembler LanguageChap. III, Sec. 10.13

• The Assembler uses these rules for resolving USING-based
addressing:

1. The Assembler searches the USING Table for entries with a Relocation
Attribute matching that of the implied address.

− (It wil l almost always be simply relocatable, but may be absolute.)

2. For all matching entries, the Assembler tries to derive a valid displacement.
If so, it selects as a base register the register with the smallest
displacement.

3. If more than one register yields the same smallest displacement, the
Assembler selects the highest-numbered register.

4. If no resolution has been completed, and the implied address is absolute,
the Assembler tries a resolution with register zero and base zero.

Notes

1Chapter IV: Defining Constants and Storage Areas

© I B M 2015System z Assembler LanguageChap. IV, Sec. 11-13

• Section 11 describes the Assembler′s basic data definition instruction,
DC (“Define Constant”).

• Section 12 discusses the most often-used data types, introduces the
powerful constant-referencing mechanism provided by literals, and the
LTORG instruction to control their position in your program.

• Section 13 demonstrates methods for defining and describing data
areas in ways that simplify data manipulation problems, including the
very useful DS, EQU, and ORG instructions.

Notes

39

2Defining Constants

© I B M 2015System z Assembler LanguageChap. IV, Sec. 11

• Section 11 describes DC-statement rules for defining constants of any
type

− Fixed-point binary data: signed and unsigned; 16-, 32-, and 64-bit lengths

− Logical data, binary and hexadecimal: 1 to 256 byte lengths

− Address-valued data: 3, 4, and 8 byte lengths

− Character data: 1 to 256 bytes, in EBCDIC, ASCII, Unicode, and Double-Byte
formats

− Decimal data: 1 to 16 bytes, in zoned and packed decimal formats

− Floating-point data: 4, 8, or 16 bytes, in hexadecimal, binary and decimal
formats

• Note: DC defines data with init ial values, not unchangeable
“constants”.

− A program can change those values!

Notes

3Defining Constants: Basic Types

© I B M 2015System z Assembler LanguageChap. IV, Sec. 11.1

• The constant DC F′ 8 ′ generates a 4-byte binary integer X′00000008′
on a word boundary

• A DC statement specifies at least 4 items: [[comments for F′ 8 ′]]

1. The type of conversion from external to internal representations
[[decimal to binary]]

2. The nominal value (external representation) of the constant [[decimal 8]]
3. The length of the constant [[4 bytes]]
4. The alignment of the constant [[word]]

• Examples of four constant types:

DC F′ 8 ′ Word binary integer
DC C′ / ′ Character constant
DC X′ 6 1 ′ Hexadecimal constant
DC B′01100001′ Binary constant

− Note that the last three constants use the same nominal value representation
as the corresponding self-defining terms.

Notes

40

4DC Instruction Statements and Operands

© I B M 2015System z Assembler LanguageChap. IV, Sec. 11.2

• DC statements can use all statement fields; “DC” and “operand(s)” are
required

<name> DC <operand(s)> <remarks>

• Each operand may have up to 4 parts, in this order:

1. Duplication factor (optional; defaults to 1)

2. Type (1 or 2 letters; required)

3. Zero to several modifiers (optional)

4. Nominal value in external representation, enclosed in delimiters (required)

− Delimiters are apostrophes or parentheses, depending on type

Notes

5Boundary Alignment

© I B M 2015System z Assembler LanguageChap. IV, Sec. 11.3

• Many constants have natural boundary alignments (such as type F)

− The Assembler will round up the LC (if needed) to place a constant on the
proper boundary

− Bytes skipped for alignment are normally f i l led with X′ 00 ′ bytes

• Automatic alignment is not performed if

1. It isn′ t needed: that is, the LC happens to fall on the desired boundary

2. The type of constant specified doesn′ t require alignment, such as types C,
B, or X (among others)

3. A length modifier is present, which suppresses alignment

Notes

41

6Length Modifiers

© I B M 2015System z Assembler LanguageChap. IV, Sec. 11.4

• A length modifier specifies a constant′s exact length (within limits)

• Written as the letter L followed by a nonzero decimal integer or
parenthesized positive absolute expression:

Ln or L(expr)

• Examples:

A DC FL3′ 8 ′ Generates X′000008′ at current location
B DC FL(2*4─5)′ 8 ′ Generates X′000008′ at current location
C DC F′ 8 ′ Generates X′00000008′ at next word boundary
D DC FL4′ 8 ′ Generates X′00000008′ at current location

• Symbols A, B, D are given values of the LC where the constants are
generated; symbol C is given the LC value after bytes are skipped for
al ignment

Notes

7Duplication Factors and Multiple Operands

© I B M 2015System z Assembler LanguageChap. IV, Sec. 11.5

• You can generate copies of a constant in several ways:

− Multiple operands

DC F′ 8 ′ , F′ 8 ′ , F′ 8 ′

− Multiple statements:

DC F′ 8 ′
DC F′ 8 ′
DC F′ 8 ′

− Duplication factors:

DC 3F′ 8 ′

• Duplication factors can be used on each operand:

DC 2F′ 8 ′ , 2 F′ 2 9 ′ , F′ 7 1 ′ , 3F′ 2 ′ 8 word constants

Notes

42

8Multiple Nominal Values

© I B M 2015System z Assembler LanguageChap. IV, Sec. 11.6

• Almost all constant types accept multiple nominal values, separated by
commas

DC F′ 1 , 2 , 3 , 4 , 5 ′ Five word constants
DC X′ A,B,C,D,7′ Five one─byte constants
DC B′001,010,011′ Three one─byte constants

• Many constant types accept embedded spaces for readability:

DC F′1 000 000 000′ Easier than counting adjacent zeros
DC X′1 234 567 89A′ Five─byte constant

• Character constants are the exception: a comma or a space is part of
the nominal value

DC C′ 1 , 2 , 3 , 4 , 5 ′ One nine─byte constant
DC C′1 2 3 4 5′ One nine─byte constant

Notes

9Length Attributes

© I B M 2015System z Assembler LanguageChap. IV, Sec. 11.7

• Every symbol has a Length Attribute (LA)

− Assigned by you, or by the Assembler (most usually)

• LA of symbols naming instructions is the length of the instruction

LOAD LR 7,3 LA of LOAD = 2
BEGIN L 2,N LA of BEGIN = 4

• LA of symbols naming DC statements is the length of the first
generated constant, ignoring duplication factors

Implied DC F′ 8 ′ LA of Implied = 4
Explicit DC XL7′ ABC′ LA of Explicit = 7
Multiple DC 3F′ 8 ′ LA of Multiple = 4
List DC F′ 1 , 2 , 3 ′ LA of List = 4
OddOnes DC B′ 1 ′ , F′ 2 ′ , X′ 345 ′ LA of OddOnes = 1

• For almost all EQU statements, the Assembler assigns LA 1:

R7 Equ 7 LA of R7 = 1

Notes

43

10Decimal Exponents

© I B M 2015System z Assembler LanguageChap. IV, Sec. 11.8

• Very large numbers may have many trail ing zeros

− A Decimal Exponent can simplify writing such constants

− Write “En” after the leading (nonzero) digits of the nominal value, where “n”
is the desired number of added zeros

BillionA DC F′1000000000′ The hard way
BillionB DC F′1 000 000 000′ An easier way
BillionC DC F′ 1E9′ The easiest way

• You can even write constants with negative exponent values “n”

HundredA DC F′ 1E2′ Generates X′00000064′
HundredB DC F′1000E─1′ Generates X′00000064′

• Exponent modifiers apply to all nominal values in the operand

Hundreds DC FE2′ 1 , 2 , 3 , 4 ′ Constants for 100, 200, 300, 400
Hundreds DC FE1′ 1E1,2E2,3,4E1′ Constants for 100, 2000, 30, 400

• Decimal exponents and exponent modifiers are often used in
floating-point constants

Notes

11Seven Basic Constants

© I B M 2015System z Assembler LanguageChap. IV, Sec. 12

• Section 12 provides more detail about seven basic constant types:

F Two′s complement binary integers, normally word length

H Two′s complement binary integers, normally halfword length

A Address- or expression-valued, normally word length

Y Expression-valued, normally halfword length

C Character-valued constant, length 1 to 256 bytes

B Bit-valued constant, length 1 to 256 bytes

X Hexadecimal-valued constant, length 1 to 256 bytes

• Literals provide a powerful way to define and address constants

Notes

44

12F-Type and H-Type Constants

© I B M 2015System z Assembler LanguageChap. IV, Sec. 12.1

• F-type and H-type constants generate binary values, with default word
and halfword lengths respectively.

DC F′ ─10′ Generates X′ FFFFFFF6′ , word aligned
DC H′ ─10′ Generates X′ FFF6′ , halfword aligned

• If a length modifier is present, the two types are identical:

DC FL5′ ─10′ Generates X′ FFFFFFFFF6′ , unaligned
DC HL5′ ─10′ Generates X′ FFFFFFFFF6′ , unaligned

• To extend the range of F- and H-type constants by one bit, you can
generate unsigned constants

− Write the letter U before the nominal value

DC F′ U2147483648′ Generates X′80000000′, word aligned (231)
DC H′ U65535′ Generates X′ FFFF′ , halfword aligned (216─1)
DC F′ U4294967295′ Generates X′ FFFFFFFF′ , word aligned (232─1)
DC H′ 1 , U2′ Generates X′00010002′, Mixed forms

Notes

13A-Type and Y-Type Address Constants

© I B M 2015System z Assembler LanguageChap. IV, Sec. 12.2-3

• The address constant (or “adcon”) is useful in many contexts.

− A-type defaults to word length (explicit lengths 1, 2, 3, 4 bytes);
Y-type defaults to halfword length (explicit lengths 1, 2 bytes)

− The nominal value can be an absolute or relocatable expression:

R7 Equ 7 Define a symbol value
Expr1 DC A(C′ A′+48) Generates X′000000F1′ , word aligned

DC A(R7) Generates X′00000007′, word aligned
DC A(Expr1) Will contain execution─time address of Expr1
DC AL1(*─Expr1) Will generate X′ 0C′ , unaligned

Here DC A(*+64) Will contain execution─time address of Here+64

• Y-type constants are rarely used now, and only for absolute
expressions

Expr1 DC Y(C′ A′+48) Generates X′00F1′ , halfword aligned
DC Y(R7) Generates X′0007′ , halfword aligned

− Early (and very small) machines used relocatable 16-bit address constants

• The ability to generate constants from expressions is very powerful

Notes

45

14Constants of Types C, B, and X

© I B M 2015System z Assembler LanguageChap. IV, Sec. 12.4

• C-, B-, and X-type constants can be up to 256 bytes long

− If you don′ t specify an explicit length, the Length Attribute (LA) of symbols
naming such constants is the constant′s impl ied length: the number of bytes
generated for the first operand (ignoring duplication factors)

A DC C′12345′ Generates X′ C1C2C3C4C4′ ; LA of A = 5
B DC X′123456′ Generates X′123456′; LA of B = 3
C DC 2B′10100101′ Generates X′ A5A5′ ; LA of C = 1

• Apostrophes and ampersands in C-type constants must be paired for
each single occurrence in the generated constant

DC C′ ′ ′ ′ Generates X′ 7D′
DC C′&&&&′ Generates X′5050′

Notes

15Padding and Truncation

© I B M 2015System z Assembler LanguageChap. IV, Sec. 12.5

• The space allocated for a constant is defined either by default or by a
length modifier

• If the constant is too small for the space, it must be padded;
if the constant is too large for the space, it must be truncated

• The Assembler ′s actions in such cases depends on the constant type

Type Too Smal l Too Large

F,H Pad with sign bits on left Truncate on left; error message

A,Y Pad with sign bits on left Truncate on left; error message

C Pad with spaces on right Truncate on right

B Pad with zero bits on left Truncate on left

X Pad with zero digits on left Truncate on left

Notes

46

16Literals

© I B M 2015System z Assembler LanguageChap. IV, Sec. 12.6

• A literal is a type of symbol that references and defines a constant

• Written as an equal sign followed by a DC operand

=F′ 8 ′ =H′22′ =4X′40′ =CL2′ $′ =A(X′ 4 0 ′ , C′ $′)

• Some limitations and restrictions:

− Multiple operands are not allowed (but multiple values are OK)

− Duplication factors are allowed, but may not be zero

− Literals are not allowed as operands of address constants

• The Assembler tries to diagnose instructions that can directly modify a
l i teral

L 2,=F′ 8 ′ Valid reference
ST 2,=F′ 8 ′ Invalid; tries to modify the literal

• A literal is more likely to be a “constant” constant

Notes

17The LTORG Assembler Instruction

© I B M 2015System z Assembler LanguageChap. IV, Sec. 12.7

• The Assembler collects literals internally as they are referenced;
they must be assembled somewhere into your program

• The LTORG (“Literal Origin”) instruction lets you specify where the
collected literals should be placed

− It′s important that all l iterals are addressable!

• Literals are placed in the program in order of decreasing alignment
requirement

− Assembler ′s internal collection is emptied

• Subsequent literal references start a new collection

− A subsequent LTORG will generate the new ones
• The same literal can appear more than once; they are treated as distinct symbols

• At the END statement, all remaining literals are generated

Notes

47

18Type Extensions

© I B M 2015System z Assembler LanguageChap. IV, Sec. 12.8

• As System/360 evolved into System z, many Assembler
enhancements have been needed

• Constants (numeric, address-valued, character) were extended
D type extension defaults to doubleword length, alignment

DC FD′ 1E15′ X′00038D7EA4C68000′
DC AD(C′ ABC′) X′0000000000C1C2C3′

• Character constants accommodate all three representations
A type extension converts EBCDIC nominal value to ASCII
U type extension converts EBCDIC nominal value to Unicode UTF-16
E type extension generates the original EBCDIC nominal value, even

if the Assembler ′s TRANSLATE option specifies an arbitrary
conversion

DC C′ ABC′ X′ C1C2C3′ EBCDIC (TRANSLATE─able)
DC CE′ ABC′ X′ C1C2C3′ EBCDIC always
DC CA′ ABC′ X′414243′ ASCII always
DC CU′ ABC′ X′004100420043′ Unicode UTF─16

Notes

19Data Storage Definition

© I B M 2015System z Assembler LanguageChap. IV, Sec. 13

• Section 13 shows ways to define and organize data and work areas
− The DS (“Define Storage”) instruction is similar to DC, but generates no

object code

− The EQU (“Equate”) instruction lets you assign values to symbols, or define
similarit ies of one symbol to another

− The ORG (“Set Origin”) instruction lets you adjust the position of the
Location Counter

• With combinations of these instructions, you can define data structures
that greatly simplify many programming tasks

Notes

48

20Storage Areas: The DS Assembler Instruction

© I B M 2015System z Assembler LanguageChap. IV, Sec. 13.1

• DS is very similar to DC, except that (a) no object code is generated,
(b) no nominal value is required in operands

DS F Both statements allocate 4 bytes of ...
DS F′ 8 ′ uninitialized space on a word boundary

• Multiple operands and values are allowed

DS F′ 1 ′ , X′ ABC′ , C′ ABC′ Allocates 9 bytes, word aligned
DS H′ 2 , 4 , 6 , 8 ′ Allocates 8 bytes, halfword aligned

• As with DC, gaps can appear due to boundary alignment

DS F,X Allocate 5 bytes, word aligned
DS F Skip 3 bytes for word alignment

• Length Attributes of names are derived from first operand

Area1 DS 80C Allocate 80 bytes; LA of Area1 = 1
Area2 DS CL80 Allocate 80 bytes; LA of Area2 = 80

− Both statements allocate 80 bytes, unaligned

Notes

21Zero Duplication Factor

© I B M 2015System z Assembler LanguageChap. IV, Sec. 13.2

• Zero duplication factor can be used with DS and DC
− Boundary al ignment and symbol attr ibutes done “as usual”

DC 0F′ 8 ′ Word alignment, nothing generated

− Only difference is treatment of alignment gaps
• In DS statements, gaps are uninit ial ized

• In DC statements, gaps are uninitialized if the byte preceding the gap was
uninit ial ized; otherwise the gap is f i l led with X′ 0 0 ′ bytes

DC F′ 2 3 ′ , X′ BE′ 5 bytes on a word boundary
DC 0F′ 8 ′ , F′ 4 7 ′ 3─byte gap filled with X′ 0 0 ′

• Useful for overlaying related fields. Example: U.S. telephone number

PhoneNum DS 0CL10 Full ten digits of the number
AreaCode DS CL3 Three digits of area code
Prefix DS CL3 Locality prefix
LocalNum DS CL4 Local number

− You can refer to the full, or individual, fields as needed

Notes

49

22The EQU Assembler Instruction

© I B M 2015System z Assembler LanguageChap. IV, Sec. 13.3

• The basic form of EQU is

symbol EQU expression

• “ symbol” receives the value, relocatability, and length of “expression”

− If we write

A DC F′ 8 ′
B EQU A

− Then B will have the same value, relocatability, and length attributes as A

• Assigning an absolute expression is very useful. For example:

NItems EQU 75 Number of table items (Note: not F′ 7 5 ′)
Count DC A(NItems) Constant with number of table items
Before DS (NItems)F Space for “NItems” words
After DS (NItems)F (Not “75F”)

− If a change must be made to the size of the tables, only the EQU statement
needs updating before re-assembly

Notes

23The EQU Assembler Instruction, Extended Syntax

© I B M 2015System z Assembler LanguageChap. IV, Sec. 13.4

• Extended EQU syntax supports up to 5 operands
(the last two are used for conditional assembly and macros)

symbol EQU value,length,type[,program─attribute,assembler─attribute]

− value operand: its value, relocatability, and length are assigned to symbol

− length is assigned to symbol, overriding any previous length assigned from
value

− type is assigned to symbol. If no type operand is present, the Assembler
assigns type U (“Unknown”)

• Extended syntax is usually used with just the first two operands

• We can rewrite the Phone Number example to use extended syntax:

PhoneNum DS CL10 Space for entire number
AreaCode Equ PhoneNum,3,C′ C′ Overlay AreaCode
Prefix Equ AreaCode+3,3,C′ C′ Overlay Prefix
Local_No Equ Prefix+3,4,C′ C′ Overlay Local_No

Notes

50

24The ORG Assembler Instruction

© I B M 2015System z Assembler LanguageChap. IV, Sec. 13.5

• The ORG instruction modifies the Location Counter by setting its value
to its operand expression:

ORG relocatable_expression

• We can revise the Phone Number example to use ORG:
PhoneNum DS CL10 Space for entire number

ORG PhoneNum Reposition Location Counter
AreaCode DS CL3 Define AreaCode
Prefix DS CL3 Define Prefix
Local_No DS CL4 Define Local_No

• ORG also supports an extended syntax:
ORG relocatable_expression,boundary,offset
ORG *,8,+6 Set to 2 bytes before a doubleword boundary

− The LC is first set to the expression value; then it is rounded up to the next
power-of-two boundary; and finally the offset is added
• Exercise: Why +6? Why not ORG *,8,-2 ?

Notes

25Parameterization

© I B M 2015System z Assembler LanguageChap. IV, Sec. 13.6

• Parameterization uses a small number of values to define and control
constants, data areas, field lengths, offsets, etc.

− Many examples of parameterization were shown on previous slides

• Suppose we must read, modify, and write 80-byte records

RecLen Equ 80 Record length (for now)
InRec DS CL(RecLen) Area for input records
WorkRec DS CL(Reclen) Work area for records
OutRec DS CL(RecLen) Area for output records

− If the record length is changed, only the EQU statement needs updating
• Suppose a table of 45 records must be maintained in storage

NRecs Equ 45 Number of records in storage
RecNum DC Y(NRecs) Constant with number of records allowed
StorRecs DS (NRecs─1)CL(RecLen) Space for all but one records
LastRec DS CL(RecLen) Last record in storage

− Changing the number of records and the allocated space is a simple update

• Parameterization simplifies many aspects of programming!
− I t improves program readabil i ty and understandabil i ty

Notes

51

26Constants Depending on the Location Counter

© I B M 2015System z Assembler LanguageChap. IV, Sec. 13.7

• Address constants usually refer to locations internal (or external) to a
program

• They can also be used to generate tables of constants

− Example: table of byte integers from 0 to 10:

IntTbl DC FL1′ 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 ′ Generates 0,1,...9,10
or

IntTbl DC 11AL1(*─IntTbl) Generates 0,1,...9,10

• In constants with a duplication factor and * in the nominal value, the
nominal value is re-evaluated as each constant is generated

− Example: table of byte integers from 10 to 0:

IntTbl2 DC FL1′ 1 0 , 9 , 8 , 7 , 6 , 5 , 4 , 3 , 2 , 1 , 0 ′ Generates 10,9,...1,0
or

IntTbl2 DC 11AL1(IntTbl2─*+10) Generates 10,9,...1,0

• Very complex tables can be created using such techniques

• Exercise: Which IntTbls are easier to expand?

Notes

27Exercise Solutions

© I B M 2015System z Assembler LanguageChap. IV, Sec. 13

• Slide 24

− Suppose the LC is already at a doubleword boundary: then the offset -2
might back up the LC over existing object code or data areas.

• Slide 26

− The ones with AL1-type constants only need to modify the duplication factor,
not the nominal value as in the FL1-type constants.
• But for the example using IntTbl2, you′ ll need to change the +10 to one less than the

dupl icat ion factor.

• A better way:

NumInt2 EQU 11 Number of generated values
IntTbl2 DC (NumInt2)AL1(IntTbl2─*+NumInt2─1)

− Now, only the EQU statement needs changing

Notes

52

1Chapter V: Basic Instructions

© I B M 2015System z Assembler LanguageChap. V, Sec. 14-19

This chapter introduces basic instructions used in many Assembler
Language programs

• Section 14 discusses instructions that move data among the general
registers (GRs), and between the registers and memory

• Section 15 describes the important “Branch on Condition” instructions
that let your programs select alternate instruction paths

• Section 16 covers instructions for binary addition, subtraction, and
comparison of signed and unsigned operands

• Section 17 examines instructions that shift binary operands in the GRs

• Section 18 reviews instructions that multiply and divide binary
operands in the GRs

• Section 19 introduces instructions that perform the AND, OR, and XOR
logical operations on bit groups in the GRs

Notes

2General Register Data Transmission

© I B M 2015System z Assembler LanguageChap. V, Sec. 14

This section describes instructions that move operands among general
registers, and between general registers and memory

• Data operands can be 1, 2, 4, or 8 bytes long

− For some instructions, operands can be 0-4 bytes long

• Register operands can be 32 or 64 bits wide

− For some instructions, operands can be 1-4 bytes long

• Some instructions will sign-extend the high-order bit of a source
operand to fit the length of the target register

• Some instructions can test the value of an operand, or complement its
value

Notes

53

3Load and Store Instructions

© I B M 2015System z Assembler LanguageChap. V, Sec. 14.1

The Load (L) and Store (ST) instructions move data from memory to a GR
(L) and from a GR to memory (ST)

• Both are RX-type instructions

− The memory address is an indexed Effective Address

• Neither requires word alignment of the memory address

− But it′s advisable for many reasons (performance, access exceptions, ...)

• Only the right half of the GR (bits 32-63) is involved; bits 0-31 are
ignored

• Examples:

L 7,─F′ ─97′ c(GR7) replaced by X′ FFFFFF9F′
ST 7,Num c(NUM) replaced by c(GR7), GR7 unchanged

Notes

4Multiple Loads and Stores

© I B M 2015System z Assembler LanguageChap. V, Sec. 14.2

The RS-type Load Multiple (LM) and Store Multiple (STM) instructions let
you load and store a range of GRs in a single operation

• Rather than write

L 1,A ST 1,B
L 2,A+4 and ST 2,B+4
L 3,A+8 ST 3,B+8

you can write

LM 1,3,A and STM 1,3,B

• The instruction format is

LM (or STM) R1,R3,D2(B2) (explicit address)
LM (or STM) R1,R3,S2 (implied address)

• The register contents are transmitted between GRs and successive
words in memory, starting with the R1 register and ending with the R3
register

− If R3 is smaller than R1 then GRs R1-15 are transmitted followed by GRs 0-R3

• These instructions are often used for “status preservation”

Notes

54

5Halfword Data

© I B M 2015System z Assembler LanguageChap. V, Sec. 14.3

• The RX-type Load Halfword (LH) and Store Halfword (STH) instructions
transfer two bytes between memory and the rightmost 2 bytes of a GR

− STH simply stores the 2 bytes at the Effective Address

− LH puts the 2 bytes in the right end of the GR, and sign-extends the leftmost
through the rest of the GR

┌───────────────────┬───────────────────┐
│�─ sign─extended �─┼s │ GR R1
└───────────────────┴───────────────────┘
32 48 � 63

┌─────────┴─────────┐
│s │ Halfword in memory
└───────────────────┘
0 15

− If the value is in the range -215 ≤ va lue < 215, no data is lost; but:

L 0,=F′65537′ c(GR0)=X′00010001′ +65537 = 216+1
STH 0,A c(A) = X′0001′ Lost a bit!
LH 1,A c(GR1)=X′00000001′ Lost significance!

L 0,=F′65535′ c(GR0)=X′0000FFFF′ +65535 = 216─1
STH 0,A c(A) = X′ FFFF′ No lost bits, but wrong sign
LH 1,A c(GR1)=X′ FFFFFFFF′ (─1!) Lost significance!

Notes

6Insert and Store Character

© I B M 2015System z Assembler LanguageChap. V, Sec. 14.4

• The RX-type Insert Character (IC) and Store Character (STC)
instructions transfer a byte between memory and the rightmost byte of
a GR

• For IC, the remaining bytes of the GR are unchanged
┌─────────────────────────────┬─────────┐
│�──────── unchanged ────────�│ │ GR R1
└─────────────────────────────┴─────────┘
 32 55 � 63

�
┌─────────┐
│ │ Byte in memory
└─────────┘

• Two examples:
(1) L 0,=F′ ─1′ C(GR1) = X′ FFFFFFFF′

IC 0,=C′ A′ C(GR1) = X′ FFFFFFC1′

(2) IC 0,X GET 1ST BYTE OF C(X)
STC 0,Y+1 STORE AT 2ND BYTE OF Y
IC 0,X+1 GET 2ND BYTE OF C(X)
STC 0,Y STORE BYTE AT Y
─ ─ ─

X DC C′ AB′
Y DS CL2 C(Y) BECOMES C′ BA′

Notes

55

7Insert and Store Multiple Characters

© I B M 2015System z Assembler LanguageChap. V, Sec. 14.5

• The RS-type Insert and Store Multiple Characters (ICM and STCM)
instructions are generalizations of IC and STC

• You can specify any or all bytes of a 32-bit GR

ICM (or STCM) R1,M3,D2(B2) (explicit address)
ICM (or STCM) R1,M3,S2 (implied address)

− Bits positions of the M3 “mask” operand specify which GR bytes participate

− Bytes from memory are successive bytes at the Effective Address
(none are skipped)

− ICM sets the Condition Code:

• Example: suppose c(GR1) = X′ AABBCCDD′
ICM 1,B′0101′ ,=X′1122′ c(GR1) now = X′ AA11CC22′ , CC=2
STCM 1,B′ 1010 ′ ,Z c(Z) now = X′ AACC′

CC Meaning

0 M3 = 0, or al l inserted bytes are zero

1 Leftmost bit of f irst inserted byte = 1

2 Leftmost bit of f irst inserted byte = 0

Notes

8RR-Type Data Transmission Instructions

© I B M 2015System z Assembler LanguageChap. V, Sec. 14.6

• Many instructions copy data among registers; some complement,
extend, or test the operand; the R1 and R2 operands need not differ

− CC settings:

CC = 0 Result is zero
CC = 1 Result is negative, < 0
CC = 2 Result is positive, > 0
CC = 0 Result has overflowed

• Examples

LR 0,1 c(R0) �── c(R1), CC unchanged
LTR 1,1 Test c(R1), set CC
LCR 2,1 c(R2) = ─c(R1), set CC
LNR 3,1 c(R2) = ─│c(R1)│, set CC

M n e m o n i c A c t i o n CC Values

LR c(GR R1) �── c(GR R2) Unchanged

LTR c(GR R1) �── c(GR R2) 0,1,2

LCR c(GR R1) �── ─c(GR R2) 0,1,2,3

LPR c(GR R1) �── │c(GR R2)│ 0,2,3

LNR c(GR R1) �── ─│c(GR R2)│ 0,1

Notes

56

9Load, Store, and Insert for 64-bit General Registers

© I B M 2015System z Assembler LanguageChap. V, Sec. 14.7

• 64-bit GRs use many equivalent and extended 32-bit instructions
�─────────────────────────────────── 64 BITS ──────────────────────────────────�
┌──┐
│ │
└──┘
 0 63

• Some instructions use all bits of a 64-bit GR:
LG R1,S2 LOAD A DOUBLEWORD INTO 64─BIT GR
STG R1,S2 STORE A DOUBLEWORD FROM 64─BIT GR
LMG R1,R3,S2 LOAD DOUBLEWORDS INTO 64─BIT GRS
STMG R1,R3,S2 STORE DOUBLEWORDS FROM 64─BIT GRS

• Some instructions use only the leftmost 32 bits of a 64-bit GR:
LMH R1,R3,S2 LOAD WORDS INTO LEFT HALVES OF 64─BIT GRS
STMH R1,R3,S2 STORE WORDS FROM LEFT HALVES OF 64─BIT GRS
ICMH R1,M3,S2 INSERT CHARACTERS INTO LEFT HALF OF GR
STCMH R1,M3,S2 STORE CHARACTERS FROM LEFT HALF OF GR

• Some of these instructions use RXY or RSY format:

− Their 20-bit base-displacement format is described in Section 20

opcode R1 X2 B2 DL2 DH2 opcode

opcode R1 R3 B2 DL2 DH2 opcode

Notes

10RR-Type Data Transmission Instructions for 64-bit GPRs

© I B M 2015System z Assembler LanguageChap. V, Sec. 14.8

• These instructions are similar to the 32-bit forms, but now have G in
the mnemonic. (We sometimes use “GR” for 32-bit registers, and
“GG” for 64-bit registers.) The CC settings are as shown on slide 8

• Examples:

* Assume c(GG2) = +1, c(GG3) = 0
LGR 7,3 c(GG7)=0, CC not set
LTGR 2,2 c(GG2)=1, CC=2
LNGR 1,3 c(GG1)=0, CC=0
LCGR 4,2 c(GG4)=─1, CC=1
LPGR 0,4 c(GG0)=+1, CC=2
LNGR 5,2 c(GG5)=─1, CC=1

M n e m o n i c A c t i o n CC Values

LGR c(GG R1) �── c(GG R2) Not changed

LTGR c(GG R1) �── c(GG R2) 0,1,2

LCGR c(GG R1) �── ─c(GG R2) 0,1,2,3

LPGR c(GG R1) �── │c(GG R2)│ 0,2,3

LNGR c(GG R1) �── ─│c(GG R2)│ 0,1

Notes

57

11Load and Test Instructions

© I B M 2015System z Assembler LanguageChap. V, Sec. 14.9

• These instructions can replace an equivalent pair:

LT R1,S2
replaces

L R1,S2
LTR R1,R1

or even
ICM R1,B′ 1111 ′ ,S2

and,

LTG R1,S2
replaces

LG R1,S2
LTGR R1,R1

• Condition Code settings are the same as for ICM

• Note that L and LG are indexable instructions, but ICM is not

• ICM and ICMH cannot perform the function of LTG, because they set
the CC separately for each half of GG R1

Notes

12Mixed 32- and 64-bit Operands

© I B M 2015System z Assembler LanguageChap. V, Sec. 14.10

These instructions automatically sign-extend a 32-bit operand to 64 bits
┌───────────────────────────────────────┬──┐
│�──────────── sign─extended �──────────┼s │ GG R1
└───────────────────────────────────────┴──┘
 0 � 63

┌──┐
32─bit second operand │s │ GR R2

└──┘
0 31

• Example
LCGFR 0,1 IS EQUIVALENT TO LGFR 0,1

LGCR 0,0

M n e m o n i c A c t i o n CC Values

LGF c(GG R1) �── c(Word in memory) Not changed

LGFR c(GG R1) �── c(GR R2) Not changed

LTGFR c(GG R1) �── c(GR R2) 0,1,2

LCGFR c(GG R1) �── ─c(GR R2) 0,1,2

LPGFR c(GG R1) �── │c(GR R2)│ 0,2

LNGFR c(GG R1) �── ─│c(GR R2)│ 0,1

Notes

58

13Other General Register Load Instructions

© I B M 2015System z Assembler LanguageChap. V, Sec. 14.11

• These instructions simplify occasional programming tasks:

• Load Byte: insert a byte into the rightmost R1 register byte and
sign-extend its leftmost bit (LB, LBR; LGB, LGBR)

• Load Logical Character: insert a byte into the rightmost R1 register
byte and zero the remaining register bits (LLC, LLCR; LLGC, LLGCR)

• Load Logical Halfword: insert 2 bytes into the rightmost R1 register 2
bytes and zero the remaining register bits (LLH, LLHR; LLGH, LLGHR)

• Load Logical (Word): load the right half of a 64-bit register and zero
the left half (LLGF, LLGFR)

• Load Logical Thirty One Bits: load the right half of a 64-bit register;
zero its leftmost bit, and also zero the left half (LLGT, LLGTR)

− Reasons for this unusual behavior are discussed in Sections 20 and 37

Notes

14Easy Misunderstandings

© I B M 2015System z Assembler LanguageChap. V, Sec. 14.12

• Some beginners make misleading assumptions about Assembler
Language and System z instructions

1. Since both L (Load) and LR (Load Register) load a general register,
they must be equivalent.

2. Since L (Load) and ST (Store) are complementary instructions, then
for LR (Load Register) there must be a STR (Store Register)
instruction.

• There ′s no STR; just use LR with reversed operands

3. Because programmers often define symbols like R0, R1, ... R15 to
refer to the general registers, it′s easy to assume that a symbol like
R1 always means GR1.

• But R1 is just a name for a number! You could just as well write

R92 EQU 1 “R92” means Register 92 ??
L R92,XYZ You could write something like this...
L 1,XYZ and get the same result as writing this!

Notes

59

15Testing the Condition Code: Conditional Branching

© I B M 2015System z Assembler LanguageChap. V, Sec. 15

• Many instructions set the value of the PSW′s 2-bit Condition Code (CC)
┌────────┬─ ─ ─ ─ ─┬─┬─ ─┬─┬─ ─┬────┬─ ─ ─ ─ ─┬────────────────────────────────┐
│ System │ │I│ │C│ │Pro─│ │ Instruction │
│ Flags │ │L│ │C│ │gram│ │ Address │
│ │ │C│ │ │ │Mask│ │ (IA) │
└────────┴─ ─ ─ ─ ─┴─┴─ ─┴─┴─ ─┴────┴─ ─ ─ ─ ─┴────────────────────────────────┘

− Possible CC values are 0, 1, 2, 3
• Some instructions set only a subset of the possible values

• “Branch On Condition” instructions let you select alternate execution
paths

− Basic forms are BC (RX-type) and BCR (RR-type)

• Many other branch types extend these basic forms

Notes

16The Branch Address

© I B M 2015System z Assembler LanguageChap. V, Sec. 15.1

• If the branch condition (defined on next slide) is not met:

− Continue execution with the next sequential instruction

• If the branch condition is met:

− For the BC (RX-type) instruction, the branch address is the Effective Address

− For the BCR (RR-type) instruction, the branch address is the address in GR
R2

• But if the R2 digit is zero, no branch occurs and execution continues with the next
sequential instruct ion

• The Instruction Address (IA) in the PSW is replaced by the branch
address

− So the next instruction to be fetched is at the branch address

Notes

60

17The Branch Mask and Branch Condition

© I B M 2015System z Assembler LanguageChap. V, Sec. 15.2

• The branch condition is determined by testing a bit in the M1 mask
field of the instruction:

┌────────┬────┬────┐
│ 07 │ M1 │ R2 │
└────────┴────┴────┘
┌────────┬────┬────┬────┬────────────┐
│ 47 │ M1 │ X2 │ B2 │ D2 │
└────────┴────┴────┴────┴────────────┘

• The current value of the CC selects a bit in the M1 mask;
− If the bit is 0, the branch condition is not met
− If the bit is 1, the branch condition is met

BCR 9,4 M1 = B′1001′ Branch if CC = 0,3
BC 7,4(8,2) M1 = B′0111′ Branch if CC = 1,2,3

CC value tested
Instruct ion b i t

posi t ion
M a s k b i t
posi t ion

Mask bit value

0 8 0 8

1 9 1 4

2 10 2 2

3 11 3 1

Notes

18Examples of Conditional Branch Instructions

© I B M 2015System z Assembler LanguageChap. V, Sec. 15.3

1. Branch to XX if the CC is zero.

BC 8,XX M1 = B′1000′

2. Branch to XX if the CC is not 0.

BC 7,XX M1 = B′0111′

3. Always branch to the instruction whose address is contained in GR14.

BCR 15,14 M1 = B′1111′
or

BC 15,0(0,14) M1 = B′1111′

• When all mask bits are 1, the CC value must match a 1-bit in the mask; this
is called an uncondit ional branch

4. Branch to XX if the CC is 1 or 3.

BC 5,XX M1 = B′0101′

Notes

61

19No-Operation Instructions

© I B M 2015System z Assembler LanguageChap. V, Sec. 15.4

• It ′s useful to have (“no-operation”) instructions that do nothing
− Often used to align other instructions on a specified boundary (see slide 20)

• These instructions never branch, never change the CC:
BC 0,x
BCR 0,any

• The Assembler provides special “extended mnemonics” for them:
NOP S2 is equivalent to BC 0,S2
NOPR R2 is equivalent to BCR 0,R2

• Some no-operation instructions have special side-effects:
BCR 15,0 (“branch always nowhere”)

causes internal overlaps of fetch/decode/execute phases to slow
− Sometimes helps with problem diagnosis or potential memory conflicts

Notes

20Conditional No-Operation

© I B M 2015System z Assembler LanguageChap. V, Sec. 15.5

• Some instructions must be aligned on a specific boundary

− Such as a BASR 14,15 instruction on a halfword boundary before a fullword

• Use the CNOP (“Conditional No-Operation”) instruction to request the
desired alignment

CNOP boundary,width

− width is either 4, 8, or 16

− boundary is an even number such that boundary < width
CNOP 2,4 Align to the next halfword before a fullword
CNOP 0,8 Align to the next doubleword boundary

─┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │

─┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─
│ HALFWORD1 │ HALFWORD2 │ HALFWORD3 │ HALFWORD4 │ HALFWORD5 │ HALFWORD6 │ HALFWORD7 │ HALFWORD8 │
│�────────WORD1────────�│�────────WORD2────────�│�────────WORD3────────�│�────────WORD4────────�│
│�─────────────────DOUBLEWORD1─────────────────�│�─────────────────DOUBLEWORD2─────────────────�│
│�──QUADWORD───�│
0,4 2,4 0,4 2,4 0,4 2,4 0,4 2,4 0,4
0,8 2,8 4,8 6,8 0,8 2,8 4,8 6,8 0,8
0,16 2,16 4,16 6,16 8,16 10,16 12,16 14,16 0,16

Notes

62

21Extended Mnemonics

© I B M 2015System z Assembler LanguageChap. V, Sec. 15.6

• Don ′ t memorize mask-bit positions; use “Extended Mnemonics”

R X M n e m o n i c R R M n e m o n i c M a s k M e a n i n g

B B R 15 Uncondi t ional Branch

BNO BNOR 14 Branch i f Not Ones or No Overf low

BNH BNHR 13 Branch i f Not High

BNP BNPR 13 Branch i f Not Plus

BNL BNLR 11 Branch i f Not Low

B N M B N M R 11 Branch i f Not Minus or Not Mixed

BE BER 8 Branch i f Equal

B Z B Z R 8 Branch i f Zero(s)

BNE BNER 7 Branch if Not Equal

B N Z B N Z R 7 Branch i f Not Zero

BL BLR 4 Branch i f Low

B M B M R 4 Branch i f Minus, or i f Mixed

B H BHR 2 Branch i f High

B P BPR 2 Branch i f Plus

B O BOR 1 Branch i f Ones, or i f Overf low

NOP NOPR 0 No Operat ion

Notes

22Fixed-Point Binary Basic Arithmetic

© I B M 2015System z Assembler LanguageChap. V, Sec. 15

• This section describes instructions for 2′s complement addition,
subtraction, and comparison of many operand types

− Between general registers

− Between general registers and memory

− Arithmetic and logical operations

− Halfword, word, and doubleword operands

− Mixed-length operands
• If a source operand in a register or in memory is used as in an instruction whose

target register is longer than the operand, the operand is extended internally:

− arithmetic operands are sign-extended
− logical operands are extended with zeros.

− Add with carry, subtract with borrow

• Considerable symmetry among related instruction groups

Notes

63

23Signed-Arithmetic Add and Subtract Instructions

© I B M 2015System z Assembler LanguageChap. V, Sec. 16.1

• Instructions with 32-bit operands

• Instructions with 64-bit operands

− Remember: GG is an abbreviation for “64-bit general register”

M n e m Function M n e m Function

AH Add halfword from memory SH Subtract halfword from memory

A Add word from memory S Subtract word from memory

AR Add word from c(GR R2) SR Subtract word from c(GR R2)

M n e m Function M n e m Function

AG Add doubleword from memory SG Subtract doubleword from memory

AGR Add doubleword from c(GG R2) SGR Subtract doubleword from c(GG R2)

Notes

24Signed-Arithmetic Operations With 32- or 64-Bit Registers

© I B M 2015System z Assembler LanguageChap. V, Sec. 16.2-3

• CC settings for instructions with 32- or 64-bit results:

L 1,=F′2147483647′ 231─1
A 1,=F′ 1 ′ CC=3 (overflow)
L 2,=F′2147483647′ 231─1
S 2,=F′ 1 ′ CC=2 (positive)
L 3,=F′ ─2147483648′ ─231

S 3,=F′ 1 ′ CC=3 (overflow)

LG 4,=X′70000000 00000000′
AGR 4,4 CC=3 (overflow)
LG 5,=X′50000000 00000000′
SG 5,=X′60000000 00000000′ CC=1 (negative)

Operation CC Setting and Meaning

 c(GR R1) = c(GR R1) ± c(GR R2)
 c(GR R1) = c(GR R1) ± c(word in memory)

 c(GG R1) = c(GG R1) ± c(GG R2)
 c(GG R1) = c(GG R1) ± c(doubleword in memory)

0: Result is zero; no overflow
1: Result is < zero; no overflow
2: Result is > zero; no overflow
3: Result has overflowed

Notes

64

25Signed-Arithmetic Compare Instructions

© I B M 2015System z Assembler LanguageChap. V, Sec. 16.4

• Comparisons with 32-bit operands

• Comparisons with 64-bit operands

• Condition Code settings:

− The CC cannot be set to 3 as a result of a compare instruction

CH, CHY Compare c(GR R1) to halfword in memory

C, CY Compare c(GR R1) to word in memory

CR Compare c(GR R1) to word in c(GR R2)

CG Compare c(GG R1) to doubleword in memory

CGR Compare c(GG R1) to doubleword in c(GG R2)

CC Meaning

0 Operand 1 = Operand 2

1 Operand 1 < Operand 2

2 Operand 1 > Operand 2

Notes

26Logical-Arithmetic Add and Subtract Instructions

© I B M 2015System z Assembler LanguageChap. V, Sec. 16.5

Logical arithmetic produces bitwise identical results as the equivalent
arithmetic operation; only the CC settings are different

• Instructions with 32- and 64-bit operands

• The CC settings:

M n e m Function M n e m Function

AL Add word from memory SL Subtract word from memory

ALR Add word from c(GR R2) SLR Subtract word from c(GR R2)

ALG Add doubleword from memory SLG Subtract doubleword from memory

ALGR Add doubleword from c(GG R2) SLGR Subtract doubleword from c(GG R2)

Operation CC Setting and Meaning

c(GR R1) = c (GR R1) ± c(GR R2)
c(GR R1) = c (GR R1) ± c(word in memory)
c(GG R1) = c (GG R1) ± c(GG R2)
c(GG R1) = c (GG R1) ± c(doubleword in memory)

0: Zero result, no carry (Note)
1: Nonzero result, no carry
2: Zero result, carry
3: Nonzero result, carry

Note: CC0 cannot occur for logical subtraction

Notes

65

27Add With Carry, Subtract With Borrow

© I B M 2015System z Assembler LanguageChap. V, Sec. 16.6

• Instructions with 32- and 64-bit operands

• Each operation depends on the CC setting of a preceding instruction
− Example: add and subtract pairs of 32-bit operands representing signed

64-bit integers

LM 0,1,A Load A in register pair
AL 1,B+4 Logically add low─order part of B
ALC 0,B Add high─order part of B with carry
STM 0,1,Sum Store the double─length sum
LM 0,1,A Get first operand
SL 1,B+4 Logically subtract low─order parts
SLB 0,B Subtract high─order parts with borrow
STM 0,1,Diff Store 64─bit difference

• These instructions are especially useful for multi-precision arithmetic

M n e m Funct ion M n e m Funct ion

ALC Add word f rom memory SLB Subtract word f rom memory

ACLR Add word from c(GR R2) SLBR Subtract word from c(GR R2)

ALCG Add doubleword f rom memory SLBG Subtract doubleword f rom memory

ALCGR Add doubleword f rom c(GG R2) SLBGR Subtract doubleword from c(GG R2)

Notes

28Operations With Mixed 64-Bit and 32-Bit Operands

© I B M 2015System z Assembler LanguageChap. V, Sec. 16.7

• The 32-bit operand is sign-extended internally to 64 bits before the
operation

− With sign bits for arithmetic instructions

− With zero bits for logical instructions

• For these instructions, the first operand is in 64-bit register GG R1

• These instructions can simplify programs with mixed-length operands

M n e m Function M n e m Function

AGF Add word from memory SGF Subtract word from memory

AGFR Add word from c(GR R2) SGFR Subtract word from c(GR R2)

CGF Compare to word from memory CGFR Compare to word from c(GR R2)

ALGF Logical add word from memory SLGF Logical subtract word from memory

ALGFR Logical add word from c(GR R2) SLGFR Logical subtract word from c(GR R2)

Notes

66

29Logical-Arithmetic Compare Instructions

© I B M 2015System z Assembler LanguageChap. V, Sec. 16.8

• Comparisons with 32- and 64-bit operands, and bytes in memory

• The CC settings are the same as for other logical comparisons

Mnemonic Function

CL Logical compare c(GR R1) to word from memory

CLR Logical compare c(GR R1) to word from c(GR R2)

CLG Logical compare c(GG R1) to doubleword from memory

CLGR Logical compare c(GG R1) to doubleword from c(GG R2)

CLGF Logical compare c(GG R1) to zero-extended word from memory

CLGFR Logical compare c(GG R2) to zero-extended word from c(GR R2)

CLM, CLMY Logical compare bytes from l ow half of c(GG R1) to bytes in memory

CLMH Logical compare bytes from high half of c(GG R1) to bytes in memory

Notes

30Retrieving and Setting the Program Mask

© I B M 2015System z Assembler LanguageChap. V, Sec. 16.9

• These instructions retrieve/set the PSW′s CC and Program Mask (PM)

IPM R1 Insert CC and Program Mask into GR R1
SPM R1 Set CC and Program Mask from GR R1

┌───────────────────────────────────────┬──┐
│///////////////////////////////////////│//CCFDUS////////////////////////////////│ PART OF A PSW
└───────────────────────────────────────┴──┘

− “ CC” represents the two bits of the CC. “FDUS” represents the four individual
bits of the PM; they control whether an exception will (bit=1) or will not
(bit=0) cause a program interruption:

SR 0,0 Set GR0 to zero
SPM 0 Set CC and Program Mask bits to zero

Bit Exception Condition Controlled Int. Code

36 (F) Fixed-point overf low 8

37 (D) Decimal overf low A
38 (U) Hexadecimal f loat ing-point underf low D
39 (S) Hexadecimal f loating-point lost signif icance E

Notes

67

31Binary Shifting

© I B M 2015System z Assembler LanguageChap. V, Sec. 17

• These instructions move bits left and right in 32-bit GRs or GR pairs

• These instructions move bits left and right in single 64-bit GRs

• Shift amounts: the low-order 6 bits of the Effective Address

− So shifts are limited to moving at most 63 bit posiions

M n e m Action M n e m Action

SLL Shift left logical SRL Shift r ight logical

RLL Rotate loft logical

SLA Shift left arithmetic SRA Shift r ight ari thmetic

SLDL Shift left double logical SRDL Shift r ight double logical

SLDA Shift left double arithmetic SRDA Shift r ight double arithmetic

M n e m Action M n e m Action

SLLG Shift left logical SRLG Shift r ight logical

RLLG Rotate loft logical

SLAG Shift left arithmetic SRAG Shift r ight ari thmetic

Notes

32Unit Shifts

© I B M 2015System z Assembler LanguageChap. V, Sec. 17.1

• Assume an n-bit register looks like this:
┌─────┬─────┬─────┬─────┬─ ─ ─ ─┬─────┬─────┬─────┬─────┐
│ A │ B │ C │ D │ │ W │ X │ Y │ Z │ BITS BEFORE SHIFTING
└─────┴─────┴─────┴─────┴─ ─ ─ ─┴─────┴─────┴─────┴─────┘

0 1 2 3 N─4 N─3 N─2 N─1

• A unit shift moves bits left or right by one position

• Logical shifts:
┌─────┬─────┬─────┬─────┬─ ─ ─ ─┬─────┬─────┬─────┬─────┐

0─┼� 0 │ A │ B │ C │ ──� │ V │ W │ X │ Y ┼──┐ RIGHT LOGICAL
└─────┴─────┴─────┴─────┴─ ─ ─ ─┴─────┴─────┴─────┴─────┘ �

│ Z │
└───┘ BIT BUCKET

┌─────┬─────┬─────┬─────┬─ ─ ─ ─┬─────┬─────┬─────┬─────┐
┌─�─┼ B │ C │ D │ E │ �── │ X │ Y │ Z │ 0 �┼─0 LEFT LOGICAL

 � └─────┴─────┴─────┴─────┴─ ─ ─ ─┴─────┴─────┴─────┴─────┘
 │ A │
 └───┘ BIT BUCKET

− The Condition Code is unchanged

Notes

68

33Unit Shifts ...

© I B M 2015System z Assembler LanguageChap. V, Sec. 17.1

• Arithmetic shif ts (“s” = sign bit) :
┌─────┬─────┬─────┬─────┬─ ─ ─ ─┬─────┬─────┬─────┬─────┐

┌──┼� S ─┼� S │ B │ C │ ──� │ V │ W │ X │ Y ┼──┐ RIGHT ARITHMETIC
│ └──┼──┴─────┴─────┴─────┴─ ─ ─ ─┴─────┴─────┴─────┴─────┘ �
│ � │ Z │
└─────┘ └───┘ BIT BUCKET

┌─────┬─────┬─────┬─────┬─ ─ ─ ─┬─────┬─────┬─────┬─────┐
│ S │ C │ D │ E │ �── │ X │ Y │ Z │ 0 �┼─0 LEFT ARITHMETIC
└─────┴──┬──┴─────┴─────┴─ ─ ─ ─┴─────┴─────┴─────┴─────┘

�
│ B │
└───┘ BIT BUCKET

− The Condition Code is set

• For left shifts: if a lost bit differs from the sign bit (s ≠ b), an overflow
exception is indicated

Notes

34Single-Length Logical Shifts

© I B M 2015System z Assembler LanguageChap. V, Sec. 17.2

• For SLL and SRL: operands are R1,D2(B2)
L 7,=X′87654321′ Initial contents of GR7
SLL 7,5(0) Results: c(GR7) = X′ ECA86420′
L 6,=X′87654321′ Initial contents of GR6
SRL 6,5(0) Results: c(GR6) = X′043B2A19′

• For SLLG and SRLG: operands are R1,R3,D2(B2)
− The operand in GG R3 is shifted, the result is placed in GG R1

LG 1,=XL8′123456789ABCDEF0′ c(GG1) initialized
SLLG 0,1,9 c(GG0) = X′68ACF135 79BDE000′

LG 1,=XL8′123456789ABCDEF0′ c(GG1) initialized
SRLG 0,1,9 c(GG0) = X′00091A2B 3C4D5E6F′

• Because the R1 and R3 operands differ, c(GG1) remains unchanged

• Exercise: Verify the example results

Notes

69

35Double-Length Logical Shifts

© I B M 2015System z Assembler LanguageChap. V, Sec. 17.3

• Double-length logical and arithmetic shifts use an even-odd GR pair
GR R1 GR R1 + 1

┌───┬───┬───┬─ ─ ─┬───┬───┐ ┌───┬───┬───┬─ ─ ─┬───┬───┐
│ a │ b │ c │ ... │ l │ m │�─�│ n │ o │ p │ ... │ y │ z │
└───┴───┴───┴─ ─ ─┴───┴───┘ └───┴───┴───┴─ ─ ─┴───┴───┘

LM 0,1,=X′123456789ABCDEF0′ GR(0,1) initialized
SLDL 0,9 c(GR0) = X′68ACF135′ , c(GR1) = X′798DE000′

LM 2,3,=X′123456789ABCDEF0′ GR(2,3) initialized
SRDL 2,9 c(GR0) = X′00091A28′ , c(GR1) = X′ 3C4D5E6F′

− Exercise: Verify the results of the SLDL and SRDL examples.

• Example: is the number in GR6 a multiple of 32 (25)?
SR 7,7 Set c(Gr7) to zero
SRDL 6,5 Move rightmost 5 bits into GR7
LTR 7,7 Are those bits zero?
BZ Yes_It_Is If the bits are zero, it′ s a multiple
B Sorry_No Sorry, it′ s not a multiple of 32

Notes

36Arithmetic Shift Instructions

© I B M 2015System z Assembler LanguageChap. V, Sec. 17.4

• Arithmetic shifts always set the CC:

• Examples:
L 6,=X′87654321′
SRA 6,5 c(GR6) = X′ FC3B2A19′ , CC=1

L 7,=X′87654321′
SLA 7,5 c(GR7) = X′ ECA86420′ , CC=3 (oveflow)

− Remember: for left shifts, if a lost bit differs from the sign bit (s ≠ b), an
overflow exception is indicated

Operation CC Setting and Meaning

Left shif t

0: Result is zero
1: Result is < zero
2: Result is > zero
3: Result has overflowed

Right shif t

0: Result is zero
1: Result is < zero
2: Result is > zero
3: Cannot occur

Notes

70

37Rotating Shifts

© I B M 2015System z Assembler LanguageChap. V, Sec. 17.5

A Rotating shift looks like this (compare slide 32)

┌─────┬─────┬─────┬─────┬─ ─ ─ ─┬─────┬─────┬─────┬─────┐
┌─�─┼ B │ C │ D │ E │ �── │ X │ Y │ Z │ A �┼─┐ AFTER

 │ └─────┴─────┴─────┴─────┴─ ─ ─ ─┴─────┴─────┴─────┴─────┘ │
 └───┘

• Like SLLG and SRLG, RLL and RLLG have three operands: R1,R3,D2(B2)

L 0,=A(X′56789ABC′) Load initial data into GR0
RLL 1,0,10 Rotate 10 bits, result in GR1

− Then c(GR1) = X′ E26AF159′

LG 0,=AD(X′56789ABCDEF01234′) Initialize GG0
RLLG 1,0,10 Rotate 10 bits, result in GG1

− Then c(GG1) = X′ E26AF37BC048D159′

• None of the rotating-shift instructions changes the CC

Notes

38Calculated Shift Amounts

© I B M 2015System z Assembler LanguageChap. V, Sec. 17.6

• Some shift amounts must be determined at execution time

• Solution: put the shift amount in the B2 register

L 9,ShiftAmt Shift amount calculated previously
L 0,Data Get data to be shifted
SLL 0,0(9) Shift left by calculated amount

− Remember: only the low-order 6 bits of the Effective Address are used for
the shift count

• Example: calculate 2N, where 0 ≤ N < 31

L 1,N Get small integer N
L 0,=F′ 1 ′ Put a 1─bit at right end of GR0 (20)
SLL 0,0(1) Leave 2N in GR0

− Exercise: What will happen if N ≥ 31?

Notes

71

39Bit-Length Constants

© I B M 2015System z Assembler LanguageChap. V, Sec. 17.7

An extended form of length modifier lets you specify lengths in bits: put a
period (.) after the modifier L

DC FL3′ 8 ′ and DC FL.24′ 8 ′ are equivalent
(byte length) (bit length)

• A nominal value can be any length (subject to normal truncation and
padding rules)

DC FL.12′ 2047 ′ ,FL.8′ 6 4 ′ , XL.4′ D′ generates X′ 7FF40D′

• Incomplete bytes are padded with zero bits:

DC FL.12′2047′ generates X′ 7FF0′

• Bit-length constants are useful for tightly packed data

Notes

40Binary Multiplication and Division

© I B M 2015System z Assembler LanguageChap. V, Sec. 18

• Multipl ication notation:

Multiplicand First operand
× Multiplier Second operand

Product Single or double─length result

− Products can be as long as the sum of the operand lengths: 456 × 567 =
258552, or as short as the longer operand: 456 × 2 = 912

• Multiplying single-length operands usually requires a double-length
register pair

• Division notation:

Quotient
Divisor) Dividend Dividend = first operand

 ─ ─ ─ ─ Divisor = second operand
Remainder

• Division by a single-length divisor usually requires a double-length
dividend, producing single-length quotient and remainder

• Multiply and divide instructions do not change the CC

Notes

72

41Arithmetic (Signed) Multiplication Instructions

© I B M 2015System z Assembler LanguageChap. V, Sec. 18.2

• For 64-bit signed products of 32-bit operands:

┌ R1 (EVEN) R1+1 (ODD)
│ ┌──────────────────────┐┌──────────────────────┐

REGISTERS │ │//////////////////////││ MULTIPLICAND │
BEFORE │ └──────────────────────┘└──────────────────────┘

│ 32 63 32 63
│
│ ┌──────────────────────┐
│ │ MULTIPLIER │ R2 OR D2(X2,B2)
└ └──────────────────────┘ (IN REGISTER OR MEMORY)
┌ R1 (EVEN) R1+1 (ODD)

REGISTERS │ ┌──────────────────────┐┌──────────────────────┐
AFTER │ │ ││ │

│ └──────────────────────┘└──────────────────────┘
└ �────────────────── PRODUCT ─────────────────�

− Example(1): Square the number in GR1

MR 0,1 c(GR0,GR1) = c(GR1)*c(GR1)

− Example(2): Square the number in GR0

LR 1,0 Copy c(GR0) to GR1 (odd register of pair)
MR 0,0 Multiply c(GR0) by c(GR1)

M n e m Instruct ion M n e m Instruct ion

M Mul t ip l y (32 + 32←32× 32) M R Mult ip ly Register (32 + 32←32× 32)

Notes

42Single-Length Arithmetic Products

© I B M 2015System z Assembler LanguageChap. V, Sec. 18.2.2

• When multiplying small values, you can use a single register:

• Examples
MH 5,=H′ 1 0 0 ′ C(GR5)*100

LH 1,N LOAD C(N) INTO GR1
MSR 1,1 C(GR1)*C(GR1) = N2

LG 1,=FD′12345678′ C(GG1) = 12345678
MSG 1,=FD′23456789′ C(GG1) = 289589963907942

LG 1,=FD′12345678′ C(GG1) = 12345678
L 5,=F′23456789′ C(GR5) = 23456789 (32 BITS!)
MSGFR 1,5 C(GG1) = 289589963907942

M n e m Instruction M n e m Instruction

MH Mult iply Halfword (32←32× 16)

MS,
MSY

Multiply Single (32←32× 32) MSR Mult iply Single Register
(32←32× 32)

MSG Multiply Single (64←64× 64) MSGR Mult iply Single Register
(64←64× 64)

MSGF Multiply Single (64←64× 32) MSGFR Mult iply Single Register
(64←64× 32)

Notes

73

43Logical (Unsigned) Multiplication Instructions

© I B M 2015System z Assembler LanguageChap. V, Sec. 18.3

• For 64-bit products of two 32-bit unsigned operands

• For 128-bit products of two 64-bit unsigned operands

• Examples:

* Logical multiplication: (2**32─1)*(2**32─1) = 18446744065119617025
L 1,=F′ ─1′ c(GR1) = X′ FFFFFFFF′
MLR 0,1 c(GR0,GR1) = X′ FFFFFFFE 00000001′

LG 1,=FD′74296604373′ c(GG1) = 74296604373
MLG 0,=FD′9876543210′ c(GG0,GG1) = 733793623446209457330

M n e m Instruction M n e m Instruction

ML Mult iply Logical (32 +32←32× 32) MLR Mult iply Logical Register
(32 +32←32× 32)

M n e m Instruction M n e m Instruction

MLG Mult iply Logical (64 +64←64× 64) MLGR Mult iply Logical Register
(64 +64←64× 64)

Notes

44Division Instructions

© I B M 2015System z Assembler LanguageChap. V, Sec. 18.5

• Dividing a 2n-digit dividend by an n-digit divisor may not produce an
n-digit quotient:

987*867 = 855729; 855729/123 = 6957, remainder 18

• If the attempted quotient is too big for a register, or a divisor is zero. a
Fixed Point Divide Interruption always occurs (it can′ t be masked off)

• All binary division instructions require an even-odd register pair

− Dividends occupy either an even-odd pair or an odd register

• Quotient and remainder of a successful division:
R1 R1+1

┌──────────────────────┐┌──────────────────────┐
│ Remainder ││ Quotient │
└──────────────────────┘└──────────────────────┘

Notes

74

45Arithmetic (Signed) Division Instructions

© I B M 2015System z Assembler LanguageChap. V, Sec. 18.6

• These instructions support signed-operand division using a
double-length dividend:

R1 (even) R1+1 (odd)
┌──────────────────────┐┌──────────────────────┐
│ ││ │
└──────────────────────┘└──────────────────────┘
�───────────────── Dividend ─────────────────�

┌──────────────────────┐
│ Divisor │ R2 or D2(X2,B2)
└──────────────────────┘ (in register or memory)

− The results are in an even-odd register pair

R1 (even) R1+1 (odd)
┌──────────────────────┐┌──────────────────────┐
│ Remainder ││ Quotient │
└──────────────────────┘└──────────────────────┘

• Example

L 2,=F′ ─14352′ Dividend in GR2
SRDA 2,32 Create double─length dividend
D 2,=F′ 1 7 ′ c(GR2) = ─4. c(GR3) = ─844

M n e m Instruction M n e m Instruction

D Divide (32,32←3 2 + 3 2 ÷ 32) DR Divide Register (32,32←3 2 + 3 2 ÷ 32)

Notes

46Arithmetic (Signed) Division Instructions ...

© I B M 2015System z Assembler LanguageChap. V, Sec. 18.6

• The Divide Single instructions use a single-length dividend in an odd
register; the results are as above.

R1 (even) R1+1 (odd)
┌──────────────────────┐┌──────────────────────┐
│ //////////////////// ││ Dividend │
└──────────────────────┘└──────────────────────┘

┌──────────────────────┐
│ Divisor │ R2 or D2(X2,B2)
└──────────────────────┘ (in register or memory)

• Examples:

LG 5,=FD′12345678901′ c(GG1) = 12345678901
DSG 4,=FD′ 777 ′ Divide by 777 (64─bit divisor)

* c(GG4) = 493 (remainder), c(GG5) = 15888904 (quotient)

M n e m Instruction M n e m Instruction

DSG Divide Single (64,64←64÷ 64) DSGR Divide Single Register
(64,64←64÷ 64)

DSGF Divide Single (64,64←64÷ 32) DSGFR Divide Single Register
(64,64←64÷ 32)

Notes

75

47Logical (Unsigned) Division Instructions

© I B M 2015System z Assembler LanguageChap. V, Sec. 18.7

• These instructions consider al l operands unsigned:

• The dividend is always double-length

• Example:

L 0,=F′ ─2′ Set GR0 to X′ FFFFFFFE′
SR 1,1 Set GR1 to X′00000000′
DL 0,=F′ ─1′ Divide logically by X′ FFFFFFFF′

* Quotient and remainder = X′ FFFFFFFE′

• Only unsigned operands are used for dividing 128-bit dividends

M n e m Instruction M n e m Instruction

DL Divide Logical (32,32←3 2 + 3 2 ÷ 32) DLR Divide Logical Register
(32,32←3 2 + 3 2 ÷ 32)

DLG Divide Logical (64,64←6 4 + 6 4 ÷ 64) DLGR Divide Logical Register
(64,64←6 4 + 6 4 ÷ 64)

Notes

48Summary of Multiply and Divide Instructions

© I B M 2015System z Assembler LanguageChap. V, Sec. 18.9

Function

Product length
(bits)

32 32 + 32 64 64 + 64

Operand 1 length 32 32 64 64

Operand 2 length 16 32 32 32 64 64

Ari thmet ic × MH MS
MSR

M
MR

MSGF
MSGFR

MSG
MSGR

Logical × ML
MLR

MLG
MLGR

Function

Dividend length (bits) 32 + 32 64 64 + 64

Divisor length 32 64 64

Quotient & remainder
length

32 64 64 64

Ari thmet ic ÷ D
DR

DSG
DSGR

Logical ÷ DL
DLR

DSGF
DSGFR

DLG
DLGR

Notes

76

49Logical Operations

© I B M 2015System z Assembler LanguageChap. V, Sec. 19

• System z instructions perform three logical operations: AND, OR, and
Exclusive OR (“XOR”)

• Each operates strictly between corresponding pairs of bits:

┌─────┬─────┐ ┌─────┬─────┐ ┌─────┬─────┐
 AND │ 0 │ 1 │ OR │ 0 │ 1 │ XOR │ 0 │ 1 │
┌─────┼─────┼─────┤ ┌─────┼─────┼─────┤ ┌─────┼─────┼─────┤
│ 0 │ 0 │ 0 │ │ 0 │ 0 │ 1 │ │ 0 │ 0 │ 1 │
├─────┼─────┼─────┤ ├─────┼─────┼─────┤ ├─────┼─────┼─────┤
│ 1 │ 0 │ 1 │ │ 1 │ 1 │ 1 │ │ 1 │ 1 │ 0 │
└─────┴─────┴─────┘ └─────┴─────┴─────┘ └─────┴─────┴─────┘

− Neighboring bits are unaffected, and do not participate

• The instructions here operate only on registers;
others (later!) operate on single memory bytes or strings of bytes

Notes

50Register-Based Logical Instructions

© I B M 2015System z Assembler LanguageChap. V, Sec. 19.2

• Instructions with 32-bit operands:

• Instructions with 64-bit operands:

• Each instruction sets the Condition Code:

M n e m Instruct ion M n e m Instruct ion

N, N Y AND (32) NR AND Register (32)

O, O Y OR (32) OR OR Register (32)

X, X Y Exclusive OR (32) XR Exclusive OR Register (32)

M n e m Instruct ion M n e m Instruct ion

NG AND (64) NGR AND Register (64)

OG OR (64) OGR OR Register (64)

XG Exclusive OR (64) XGR Exclusive OR Register (64)

Operat ion CC sett ing

AND
OR

XOR

0: all result bits are zero
1: result bits are not al l zero

Notes

77

51Examples of AND, OR, and XOR

© I B M 2015System z Assembler LanguageChap. V, Sec. 19.3-5

• Consider each operation, using identical operands:

Operation AND OR XOR

Instruction NR 4,9 OR 4,9 XR 4,9

c(GR4) X′01234567′ X′01234567′ X′01234567′
c(GR9) X′ EDA96521′ X′ EDA96521′ X′ EDA96521′
Result X′01214521′ X′ EDAB6567′ X′ EC8A2046′

• To see in more detail how these results are obtained, examine the
fourth hexadecimal digit (3 and 9) for each case:

AND OR XOR

3 0011 3 0011 3 0011
9 1001 9 1001 9 1001
1 0001 B 1011 A 1010

Notes

52Interesting Uses of Logical Instructions

© I B M 2015System z Assembler LanguageChap. V, Sec. 19.6

1. Exchange the contents of two registers:
XR 1,2
XR 2,1
XR 1,2

2. Turn off the rightmost 1-bit of a positive number X:
Y = X AND (X─1)

• Example:

L 0,=F′ 6 ′ X in GR0 X′00000006′
LR 1,0 Copy X to GR1 X′00000006′
S 1,=F′ 1 ′ (X─1) X′00000005′
NR 1,0 (X─1) AND X X′00000004′

3. Isolate the rightmost 1-bit of a word
Y = X AND (─X)

• Example:

L 0,=F′ 1 2 ′ X in GR0 X′0000000C′
LCR 1,0 Copy ─X to GR1 X′ FFFFFFF4′
NR 1,0 X AND (─X) X′00000004′

Notes

78

1Chapter VI: Addressing, Immediate Operands, and Loops

© I B M 2015System z Assembler LanguageChap. V, Sec. 20-22

This chapter describes three useful and important topics:

• Section 20 discusses ways the CPU can generate Effective Addresses,
and how those addresses depend on the current addressing mode

• Section 21 introduces instructions with immediate operands, where one
of the operands of the instruction is contained in the instruction itself

• Section 22 reviews instructions that help you manage loops: iterative
execution of a block of instructions that perform some repeated action

Notes

2Section 20: Address Generation and Addressing Modes

© I B M 2015System z Assembler LanguageChap. VI, Sec. 20

• System z supports three types of address generation:

1. base-displacement with unsigned 12-bit displacements

− This was described in Section 5

2. base-displacement with signed 20-bit displacements

3. relative-immediate.

• ... and three addressing modes, which define the number of rightmost
bits of an Effective Address that are actually used for addressing:

At any given moment, only one of 24-, 31-, or 64-bit modes is active

Notes

79

3Address Generation: Signed Displacements

© I B M 2015System z Assembler LanguageChap. VI, Sec. 20.1

• Instructions with signed 20-bit displacements have this format:

• Address generation first creates a signed displacement:
─ ─┬───┬───┬───────────┬────────┬─ ─

INSTRUCTION │ X │ B │ DL │S DH │
─ ─┴───┴───┴─────┬─────┴───┬────┴─ ─

� �
┌─────────┼─────────┘
� �

┌──┐
│�──────── SIGN─EXTENDED �─────┼S DH │ DL │ 64─BIT SIGNED DISPLACEMENT
└──────────────────────────┬─────────────────────────┘

� ADD TO
┌──────────────────────────┴─────────────────────────┐
│ C(BASE REGISTER B) │
└──────────────────────────┬─────────────────────────┘

�
EFFECTIVE ADDRESS

• Addressing range is ± 512K (vs. 4K for unsigned 12-bit displacements)

opcode R1 X2 B2 DL2 DH2 opcode

Notes

4Address Generation: Relative-Immediate Operands

© I B M 2015System z Assembler LanguageChap. VI, Sec. 20.1.3

• Relative-immediate instructions have two basic formats:
┌────────┬────┬────┬────────────────┐
│ OPCODE │ R1 │ OP │ RI2 │
└────────┴────┴────┴────────────────┘
┌────────┬────┬────┬────────────────────────────────┐
│ OPCODE │ R1 │ OP │ RI2 │
└────────┴────┴────┴────────────────────────────────┘

• Address generation involves signed offsets:
RI2

┌──────────────┬──────────────┐
│ OPCODE, REGS │SBBBBBBBBBBBBB│ RI─TYPE INSTRUCTION
└──────────────┴───────┬──────┘

┌┘ SHIFT LEFT 1 BIT
�

┌───┴───────┐
│�─────────── SIGN─EXTENDED �─────────┼SBBBBBBBBBBBBB0│ 64─BIT SIGNED OFFSET
└──────────────────────────┬──────────────────────────┘

� ADD TO
┌──────────────────────────┴──────────────────────────┐
│ ADDRESS OF THE INSTRUCTION ITSELF │ (NOT THE PSW′ S IA!)
└──────────────────────────┬──────────────────────────┘

�
EFFECTIVE ADDRESS

• Addressing range is ± 64KB (16-bit offset) or ± 4GB (32-bit offset)

Notes

80

5Addressing Modes

© I B M 2015System z Assembler LanguageChap. VI, Sec. 20.2

• “Addressing Mode” is often abbreviated “AMode”

• Determines which bits of an Effective Address are used for addressing:
 0 39 40 63
┌──┬─────────────────────────────────┐
│ �── XXXXX XXXXX ──� │ │ AMODE 24
└──┴─────────────────────────────────┘
 �────────────── IGNORED ───────────────────────────� �─────── 24─BIT ADDRESS ───────�

 0 33 63
┌───┬──┐
│ �── XXXXX XXXXX ──� │ │ AMODE 31
└───┴──┘
 �────────────── IGNORED ──────────────────� �──────────── 31─BIT ADDRESS ────────────�

 0 63
┌──┐
│ │ AMODE 64
└──┘
 �───────────────────────────────────64─BIT ADDRESS ──────────────────────────────────�

Notes

6Load Address Instructions

© I B M 2015System z Assembler LanguageChap. VI, Sec. 20.3

• These instructions put the Effective Address in the first operand
register

• Small constants can be put in a GR using LA, LAY:

LA 0,n(0,0) 0 ≤ n ≤ 4095
LAY 0,n(0,0) ─219 ≤ n ≤ 219─1

• These instructions are modal: the results depend on the AMode

LAY 0,─1 Put ─1 in register 0

− 24-bit mode: result in GR0 is X′00FFFFFF′
− 31-bit mode: result in GR0 is X′ 7FFFFFFF′
− 64-bit mode: result in GG0 is X′ FFFFFFFFFFFFFFFF′

• LARL always creates a memory address (relative to LARL)

M n e m Instruction M n e m Instruction

LA, LAY Load Address LARL Load Address Relative Long

Notes

81

7Summary

© I B M 2015System z Assembler LanguageChap. VI, Sec. 20.5

• This table summarizes the three Load Address instructions:

Function Instruction
Result in R1 general register

AMode = 24 AMode = 31 AMode = 64

Load
Address
(based)

Load
Address
(relative)

LA
LAY

LARL

Effective Address in
bits 40-63;
zero in bits 32-39;
bits 0-31 unchanged.

Effective Address in
bits 33-63;
zero in bit 32;
bits 0-31 unchanged.

Effective Address in
bits 0-63.

Notes

8Immediate Operands

© I B M 2015System z Assembler LanguageChap. VI, Sec. 21

• “Immediate” operands are part of the instruction itself

− SI-type was described in Section 4.2 (more about them in Section 23)
• The other operand is in memory

− RI-, RIL-types involve a register operand

┌────────┬────┬────┬────────────────┐
RI │ OPCODE │ R1 │ OP │ I2 │

└────────┴────┴────┴────────────────┘

┌────────┬────┬────┬────────────────────────────────┐
RIL │ OPCODE │ R1 │ OP │ I2 │

└────────┴────┴────┴────────────────────────────────┘

• Some instructions affect an entire register, some only parts:
 �───────── HIGH HALF ─────────� �────────── LOW HALF ─────────�

HIGH HIGH HIGH LOW LOW HIGH LOW LOW
┌───────────────┬───────────────┬───────────────┬───────────────┐ 64─BIT R1
│ HH │ HL │ LH │ LL │ GENERAL
└───────────────┴───────────────┴───────────────┴───────────────┘ REGISTER
 0 15 16 31 32 47 48 63

− H = High Half ; HL = High Hal f ′s Low Half, etc.

Notes

82

9Logical-Immediate Insert Instructions

© I B M 2015System z Assembler LanguageChap. VI, Sec. 21.1.1

• These instructions insert an operand into part of a register without
changing any other part

 �───────── HIGH HALF ─────────� �────────── LOW HALF ─────────�
HIGH HIGH HIGH LOW LOW HIGH LOW LOW

┌───────────────┬───────────────┬───────────────┬───────────────┐ 64─BIT R1
│ HH │ HL │ LH │ LL │ GENERAL
└───────────────┴───────────────┴───────────────┴───────────────┘ REGISTER

� └───┬───┘ � � └───┬───┘ �
IIHH│ │IIHF │IIHL IILH│ │IILF │IILL

│ └─────┐ └──┐ ┌──┘ ┌─────┘ │
└───────────┐ │ │ │ │ ┌────────────┘

┌───────────────┬───┴─┴────┴─────────┴────┴─┴─────┐
 │ INSTRUCTION │ 16─ OR 32─BIT IMMEDIATE OPERAND │
 └───────────────┴─────────────────────────────────┘

M n e m Instruction M n e m Instruction

I IHF Insert Logical Immediate (high)
(64←32)

IILF Insert Logical Immediate (low)
(64←32)

I IHH Insert Logical Immediate (high high)
(64←16)

I IHL Insert Logical Immediate (high low)
(64←16)

I ILH Insert Logical Immediate (low high)
(64←16)

I ILL Insert Logical Immediate (low low)
(64←16)

Notes

10Arithmetic- and Logical-Immediate Load Instructions

© I B M 2015System z Assembler LanguageChap. VI, Sec. 21.1.2

• The three arithmetic loads sign-extend the immediate operand:

• These logical loads zero all other parts of the register:

− Their operation is similar to the Insert-Immediate instructions (which don ′ t
zero other parts of the register)

M n e m Instruction M n e m Instruction

LHI Load Halfword Immediate (32←16) LGHI Load Halfword Immediate (64←16)

LGFI Load Immediate (64←32)

M n e m Instruction M n e m Instruction

LLIHF Load Logical Immediate
(high) (64←32)

LLILF Load Logical Immediate
(low) (64←32)

LLIHH Load Logical Immediate
(high high) (64←16)

LLIHL Load Logical Immediate
(high low) (64←16)

LLILH Load Logical Immediate
(low high) (64←16)

LLILL Load Logical Immediate
(low low) (64←16)

Notes

83

11Arithmetic Instructions with Immediate Operands

© I B M 2015System z Assembler LanguageChap. VI, Sec. 21.2

• Arithmetic and logical add and subtract instructions:

• Arithmetic and logical compare instructions:

• Multiply instructions with an immediate operand:

M n e m Instruct ion M n e m Instruct ion

AHI Add Halfword Immediate (32←16) AGHI Add Halfword Immediate (64←16)

AFI Add Immediate (32) AGFI Add Immediate (64←32)

ALFI Add Logical Immediate (32) ALGFI Add Logical Immediate (64←32)

SLFI Subtract Logical Immediate (32) SLGFI Subtract Logical Immediate (64←32)

M n e m Instruct ion M n e m Instruct ion

CHI Compare Halfword Immediate (32←16) CGHI Compare Halfword Immediate (64←16)

CFI Compare Immediate (32) CGFI Compare Immediate (64←32)

CLFI Compare Logical Immediate (32) CLGFI Compare Logical Immediate (64←32)

M n e m Instruct ion M n e m Instruct ion

MHI Mult ip ly Hal fword Immediate (32←16) MGHI Mult ip ly Hal fword Immediate (64←16)

Notes

12Logical Operations with Immediate Operands

© I B M 2015System z Assembler LanguageChap. VI, Sec. 21.3

• These instructions perform AND, OR, and XOR of an immediate
operand and a register, and leave the result in the register

M n e m Instruction M n e m Instruction

NIHF AND Immediate (high) (64←32) NILF AND Immediate (low) (64←32)

NIHH AND Immediate (high high) (64←16) NIHL AND Immediate (high low) (64←16)

NILH AND Immediate (low high) (64←16) NILL AND Immediate (low low) (64←16)

OIHF OR Immediate (high) (64←32) OILF OR Immediate (low) (64←32)

OIHH OR Immediate (high high) (64←16) OIHL OR Immediate (high low) (64←16)

OILH OR Immediate (low high) (64←16) OILL OR Immediate (low low) (64←16)

XIHF XOR Immediate (high) (64←32) XILF XOR Immediate (low) (64←32)

Notes

84

13Summary

© I B M 2015System z Assembler LanguageChap. VI, Sec. 21.4

• The instructions in this section can help in many ways:

1. They eliminate the need to access storage
2. They save the space those operands needed
3. They can save base registers once needed for memory addressing

Operation
Operand 1 32 bits 64 bits

Operand 2 16 bits 32 bits 16 bits 32 bits

Arithmetic Add/Subtract AHI AFI AGHI AGFI

Logical Add/Subtract
ALFI
SLFI

ALGFI
SLGFI

Arithmetic Compare CHI CFI CGHI CGFI
Logical Compare CLFI CLGFI

Mult iply MHI MGHI

Notes

14Branches, Loops, and Indexing

© I B M 2015System z Assembler LanguageChap. VI, Sec. 22

• This section describes three powerful types of branch instruction:

− Branch Relative on Condition: these are similar to the familiar Branch on
Condition instructions, but with a relative-immediate operand address

− Branch on Count: these help control the execution of loops controlled by the
number of iterations

− Branch on Index: these powerful instructions can increment an index value,
compare the sum to an end value, and determine whether or not to branch,
all in a single instruction

• We will also examine some general styles of loop organization

Notes

85

15Branch Relative on Condition Instructions

© I B M 2015System z Assembler LanguageChap. VI, Sec. 22.1

• The BRC and BRCL instructions have these formats:

┌────────┬────┬────┬────────────────┐
│ A7 │ M1 │ 4 │ RI2 │
└────────┴────┴────┴────────────────┘

− The branch target can be as far away as −65536 and +65534 bytes

┌────────┬────┬────┬────────────────────────────────┐
│ C0 │ M1 │ 4 │ RI2 │
└────────┴────┴────┴────────────────────────────────┘

− The branch target can be more than 4 bill ion bytes away from the branch
instruction, in either direction

This means the offset of the branch target can be more than 4 billion
bytes away from the RIL-type instruction, in either direction

• The greatest advantage of these branch instructions is that no base
register is needed for addressing instructions

• Their extended mnemonics are described on slide 16

Notes

16Relative Branch Extended Mnemonics

© I B M 2015System z Assembler LanguageChap. VI, Sec. 22.1

• The extended mnemonics are formed by adding the same suffixes as
for based branch instructions to “BRC” and “BRCL”

− To distinguish them from based branches, different prefixes are sometimes
used: J (for “Jump”) and JL (for “Jump Long”). For example:

RI Mnemonic RIL Mnemonic Mask Meaning

BRC JC BRCL JLC M1 Condit ional Branch

BRU J BRUL JLU 15 Uncondit ional Branch

BRNO JNO BRNOL JLNO 14 Branch if No Overflow

BRNH JNH BRNHL JLNH 13 Branch if Not High

BRNP JNP BRNPL JLNP 13 Branch if Not Plus

BRNL JNL BRNLL JLNL 11 Branch if Not Low

BRNM JNM BRNML JLNM 11 Branch if Not Minus

BRE JE BREL JLE 8 Branch if Equal
...

...
...

...
...

...

BRP JP BRPL JLP 2 Branch if Plus

BRO JO BROL JLO 1 Branch i f Overf low

Notes

86

17Simple Tables and Array Indexing

© I B M 2015System z Assembler LanguageChap. VI, Sec. 22.3

• Programs often deal with tables of data

− The program might scan the table from “top to bottom” stepping from one
row to the next
• This is called “sequential scanning of a one-dimensional array” (more in Section 40)

− Example: Add the integers in a table:

LHI 2,10 Count of numbers in the table
XR 1,1 Set index to zero
XR 0,0 Set sum to zero

Add A 0,Table(1) Add an integer from the table
AHI 1,4 Increment index by number length
AHI 2,─1 Reduce count by 1
JNZ Add If not zero, repeat
ST 0,Sum Store the resulting sum
─ ─ ─

Table DC F′ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 ′

• We used c(GR1) as the “index” to reference each item in turn

Notes

18Branch on Count Instructions

© I B M 2015System z Assembler LanguageChap. VI, Sec. 22.4

• Count-controlled loops are easily managed with these instructions

• Execution follows these steps:
1. Reduce the number in the R1 register by one

− For BCTR and BCTGR: if the R2 operand is zero, do nothing more
2. If the result is zero, do not branch; fall through to the next sequential

instruction
3. If the result is zero, branch to the instruction at the Effective Address

• Example: add the numbers from 1 to 10 (in reverse order)

XR 0,0 Clear GR0 for the sum
LA 1,10 Number of values to add

Repeat AR 0,1 Add a value to the sum
BCT 1,Repeat Reduce counter by 1, repeat if nonzero
ST 0,Sum Store the result for display

M n e m Instruction M n e m Instruction

BCT Branch on Count (32) BCTR Branch on Count Register (32)

BCTG Branch on Count (64) BCTGR Branch on Count Register (64)

BRCT,
JCT

Branch Relative on Count (32)
BRCTG,

JCTG
Branch Relative on Count (64)

Notes

87

19Looping in General

© I B M 2015System z Assembler LanguageChap. VI, Sec. 22.5

• There are many types of loop; some of the most common are:
1. “Do-Unt i l ”

 ┌──────────────────────┐ ┌────────┐ ┌───────────────┐ ┌────────────┐
─�│ INITIALIZE INDEX, ├──�│ LOOP ├─�│ ADD INCREMENT ├─�│ COMPARE TO ├─� DONE

│ INCREMENT, COMPARAND │ � │ BODY │ │ TO INDEX │ │ COMPARAND │
└──────────────────────┘ │ └────────┘ └───────────────┘ └─────┬──────┘

└──────────────────────────────�───────┘ NOT DONE

2. “Do-Whi le”
┌───────────────────────────────────────┐

┌──────────────────────┐ � ┌────────────┐ ┌────────┐ ┌─────┴─────────┐
─�│ INITIALIZE INDEX, ├──�│ COMPARE TO ├─────�│ LOOP ├─�│ ADD INCREMENT │

│ INCREMENT, COMPARAND │ │ COMPARAND │ NOT │ BODY │ │ TO INDEX │
└──────────────────────┘ └─────┬──────┘ DONE └────────┘ └───────────────┘

DONE └──────�

3. A combination
┌�──┐

┌────────────┐ � ┌────────────┐ ┌────────┐ ┌────────────┐ │
──�│ INITIALIZE ├────�│ LOOP BODY, ├──�│ EXIT ├──�│ LOOP BODY, ├──�┘

└────────────┘ │ FIRST PART │ │ TEST │ │ REMAINDER │
└────────────┘ └───┬────┘ └────────────┘

DONE └──────�

Notes

20Branch on Index Instructions

© I B M 2015System z Assembler LanguageChap. VI, Sec. 22.6

• These instructions use 32- or 64-bit operands, and based or
relative-immediate branch addresses; they combine incrementation,
comparison, and branching in a single instruction

┌─────────┐ ┌─────────┐ ┌───────────┐ ┌───────────┐
┌───────┐ │ DECODE: │ │ COMPUTE │ │ COMPARE │ │ IS BRANCH │ YES

──�│ FETCH ├─�│ COMPUTE ├─�│ INDEX + ├─�│ SUM TO ├─�│ CONDITION ├────┐
└───────┘ │ BRANCH │ │INCREMENT│ │ COMPARAND │ │ MET? │ │

│ ADDRESS │ └─────────┘ └───────────┘ └─┬─────────┘ │
└─────────┘ NO│ │

┌─────────────┐ ┌──────────────┐ │ ┌────────┐ │
│ FETCH NEXT │ │ SUM REPLACES │ � │ BR.ADDR│ │

�───┤ INSTRUCTION │�────┤ INDEX │�────┴──┤ TO IA │�─┘
└─────────────┘ └──────────────┘ └────────┘

M n e m Instruction M n e m Instruction

BXH Branch on Index High (32) BXHG Branch on Index High (64)

BXLE Branch on Low or Equal (32) BXLEG Branch on Index Low or Equal (64)

BRXH,
JXH

Branch Relative on Index High (32) BRXHG,
JXHG

Branch Relative on Index High (64)

BRXLE,
JXLE

Branch Relative on Low or Equal (32) BRXLG,
JXLEG

Branch Relative on Index Low or
Equal (64)

Notes

88

21Examples Using BXLE

© I B M 2015System z Assembler LanguageChap. VI, Sec. 22.7

• For all the “Branch on Index” instructions:

• The R1 operand is the index; the increment is in R3, and the comparand
is in R3 |1 (R3 value with low-order bit forced to 1)

• Examples
1. Add the numbers in a table with a two-instruction loop

XR 0,0 Set sum to zero
XR 1,1 Set index to zero
LM 2,3,=F′ 4 , 3 6 ′ Initialize increment, comparand

Add A 0,Table(1) Add an integer from the table
BXLE 1,2,Add Increment index, compare to 36
─ ─ ─

Table DC F′ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 ′
2. Another way to do the same, adding successive index values

XR 0,0 Clear sum to zero
LHI 1,1 Initialize “index” to 1
LM 2,3,=F′ 1 , 1 0 ′ Initialize increment and comparand

Add AR 0,1 Add “index” to sum
BXLE 1,2,Add Repeat 10 times

Notes

22Examples Using BXH

© I B M 2015System z Assembler LanguageChap. VI, Sec. 22.8

• BXH is often used for indexing from “bottom to top”

• Examples
1. Add the numbers in a table with a two-instruction loop

SR 0,0 Clear sum to zero
LHI 1,36 Initialize index to 36 (last element)
L 3,=F′ ─4′ Identical increment and comparand

Add A 0,Table(1) Add an element of the table
BXH 1,3,Add Decrease index, compare to ─4
─ ─ ─

Table DC F′ 3 , 1 , 4 , 1 , 5 , 9 , 2 , 6 , 5 , 8 9 ′

2. Calculate a table of cubes of the first 10 integers

LA 7,10 Initial value of N is 10
LA 4,36 Initial index = 36
LHI 5,─4 Increment and comparand are ─4

Mult LR 1,7 N
MR 0,7 N squared
MR 0,7 N cubed
ST 1,Cube(4) Store in table
BCTR 7,0 Decrease N by 1
BXH 4,5,Mult Count down and loop

Notes

89

23Specialized Uses of BXLE and BXH

© I B M 2015System z Assembler LanguageChap. VI, Sec. 22.9

• BXH and BXLE can do some interesting things. Three examples:

1. Branch to XXX if c(GR4) is ≤ 0

XR 9,9 Set GR9 to zero
BXLE 4,9,XXX Branch to XXX if c(GR4) is <= 0

and...!
XR 9,9 Set GR9 to zero
BXH 4,9,YYY Branch to YYY if c(GR4) is > 0

2. If c(GR2) > 0, branch to XXX after adding 1 to c(GR2)

LHI 7,1 Initialize GR7 to +1
BXH 2,7,XXX Increment c(GR2), branch to XXX

3. If c(GR4) = +1, then increment c(GR5) by 1 and branch to ZZZ if the sum
doesn ′ t overflow

BXH 5,4,ZZZ

Notes

24Summary

© I B M 2015System z Assembler LanguageChap. VI, Sec. 22.10

• These instructions are described in Section 22:

Operation
Relative-Immediate Operand Length

16 bits 32 bits

Branch on Condit ion (Relative) BCR BCRL

Operation
Register Length

32 bits 64 bits

Branch on Count (Register) BCTR BCTGR
Branch on Count (Indexed) BCT BCTG
Branch on Count (Relative) BRCT BRCTG

Branch on Index
BXH
BXLE

BXHG
BXLEG

Branch on Index (Relative)
BRXH
BRXLE

BRXHG
BRXLG

Notes

90

1Bit and Character Data

© I B M 2015System z Assembler LanguageChap. VII, Sec. 23-26

• Section 23 describes new data types and related instructions:
− Individual bits and bytes

− Varying-length character strings

• Section 24 describes SS-type instructions in detail:
− Frequently-used instructions handling large or variable numbers of bytes

− The powerful “Execute” instructions

• Section 25 examines instructions that handle very long strings of
bytes, and byte strings containing special characters

• Section 26 introduces other character representations and associated
instructions, including:
− The popular ASCII character set

− Unicode, that can represent almost all known characters

− Other multiple-byte characters

Notes

2Bit and Byte Data and Instructions

© I B M 2015System z Assembler LanguageChap. VII, Sec. 23

• Unlike RI- and RIL-type instructions, the target operand of SI-type
instructions is a byte in memory.

┌─────────────────────────────┐
│ REGISTERS │
└─┬───────┬──────────┬──────┬─┘

� └──�────�──┘ �
RI,│ RR │
RIL│ │

┌───────────────┴───┐ │RX,
│ INSTRUCTION │ │RS
└───────────────┬───┘ │

│ │
──� SI│ SS │

� ┌──�────�──┐ �
┌─┴───────┴──────────┴──────┴─┐
│ MEMORY │
└─────────────────────────────┘

• SI-type source operands are single bytes

− For RI and RIL types, the source and target operands can have different
lengths
• The resulting register operand can be longer than the immediate (source) operand

Notes

91

3SI- and SIY-Type Instructions

© I B M 2015System z Assembler LanguageChap. VII, Sec. 23.1

• We′ l l discuss these instructions:

• The instructions have these SI- and SIY-type formats:

• Write the operand field as either D1(B1),I2 or S1,I2

Operation Mnemonic Action CC set?

Move MVI, MVIY Operand 1 �── I2 No

AND NI, NIY Operand 1 �── Operand 1 AND I2 Yes

OR OI, OIY Operand 1 �── Operand 1 OR I2 Yes

XOR XI, XIY Operand 1 �── Operand 1 XOR I2 Yes

Compare CLI, CLIY Operand 1 Compared to I2 Yes

Test Under Mask TM, TMY Test Selected Bits of Operand 1 Yes

opcode I2 B1 D1

opcode I2 B1 DL DH opcode

Notes

4MVI Instructions

© I B M 2015System z Assembler LanguageChap. VII, Sec. 23.2

• There are two Move Immediate instructions:

• Each stores its I2 operand byte at the Effective Address

• Examples:

MVI X,0 Set the byte at X to all 0─bits
MVI X,255 Set the byte at X to all 1─bits
MVI X,C′ ′ Store EBCDIC blank at X

MVI FlagByte,0 Set all flag bits to zero
MVI CrrgCtrl,C′ 1 ′ Printer carriage control for new page

M n e m Instruction M n e m Instruction

MVI Move Immediate MVIY Move Immediate

Notes

92

5NI, OI, and XI Instructions

© I B M 2015System z Assembler LanguageChap. VII, Sec. 23.3

• Each instruction sets the Condition Code:

(a) NI X,0 Same as ′ MVI X,0′ except CC set to 0
NI X,B′11111101′ Sets bit 6 at X to 0

(b) OI X,255 Same as ′ MVI X,255′ except CC set to 1
OI X,B′00000010′ Sets bit 6 at X to 1

(c) OI LowerA,C′ ′ c(LowerA) now is C′ A′
 LowerA DC C′ a′ Initially, lower case letter ′ a′
(c) XI X,B′0000010′ Inverts bit 6 at X

M n e m Instruction M n e m Instruction

NI AND Immediate NIY AND Immediate

OI OR Immediate OIY OR Immediate

XI XOR Immediate XIY XOR Immediate

Operation CC setting

AND
OR

XOR

0: all result bits are zero
1: result bits are not all zero

Notes

6CLI Instructions

© I B M 2015System z Assembler LanguageChap. VII, Sec. 23.4

• The first operand is compared logically to the second, to set the CC:

• Note: The first operand is the byte in memory at the Effective Address.

CLI =C′ A′ , X′ C1′ CC = 0: c(Operand 1) = I2
CLI =X′ 0 0 ′ , 0 CC = 0: c(Operand 1) = I2
CLI =C′ ′ , B′01000000′ CC = 0: c(Operand 1) = I2
CLI =X′ 1 ′ , X′ 2 ′ CC = 1: c(Operand 1) < I2
CLI =C′ A′ , 250 CC = 1: c(Operand 1) < I2
CLI =C′ X′ , C′ X′ ─1 CC = 2: c(Operand 1) > I2
CLI =X′ 1 ′ , X′ 0 ′ CC = 2: c(Operand 1) > I2

M n e m Instruction M n e m Instruction

CLI Compare Immediate CLIY Compare Immediate

CC Indication

0 Operand 1 = I2

1 Operand 1 < I2

2 Operand 1 > I2

Notes

93

7Test Under Mask Instructions

© I B M 2015System z Assembler LanguageChap. VII, Sec. 23.5

• The 1-bits of the immediate I2 operand indicate which corresponding
bits of the first operand will be tested; the CC shows the result

TM Num,X′ 8 0 ′ Test leftmost bit of a number
JO Minus Branch if a 1─bit, it′ s negative

TM Num+L′ Num─1,1 Test rightmost bit of a number
JZ Even Branch if low─order bit is zero

TM BB,255 Test all eight bits
JM Mixed Branch if not all zeros or all ones

M n e m Instruction M n e m Instruction

TM Test Under Mask TMY Test Under Mask

CC Indication

0 Bits examined are all zero, or mask is zero

1 Bits examined are mixed zero and one

3 Bits examined are all one

Notes

8Bit Data

© I B M 2015System z Assembler LanguageChap. VII, Sec. 23.6

• It ′s better to name bit-data items than to use bit numbers or bit masks

• Discouraged techniques:

OI Person_X,128 Person has retired [Poor method]
or

OI Person_X,Bit1 Person has retired [Poor method]

• Better technique: name each flag bit separately

Retired Equ X′ 4 0 ′ Retired status flag bit
FullTime Equ X′ 2 0 ′ Full time worker status flag bit
PartTime Equ X′ 1 0 ′ Part time worker status flag bit
Exempt Equ X′ 0 8 ′ Exempt employee status flag bit
Hourly Equ X′ 0 4 ′ Hourly employee status flag bit

─ ─ ─ etc. ─ ─ ─
OI Person_X,Retired Person has retired [Better Method]

Notes

94

9Avoiding Bit-Naming Problems

© I B M 2015System z Assembler LanguageChap. VII, Sec. 23.7

• Remember: bit names are numbers , not addresses!

• Example of a problem: Define a bit in each of two bytes:

Flag1 DS X │ Flag2 DS X
Bit0 Equ X′ 8 0 ′ │ Bit1 Equ X′ 4 0 ′

• Normally we would write something like

OI Flag1,Bit0 │ OI Flag2,Bit1

• But we could accidentally write (without assembler error!)

OI Flag2,Bit0 │ OI Flag1,Bit1

• One way to associate specific bits with their “owning” bytes:

Fulltime Equ *,X′ 2 0 ′ Assign a location and length attribute
PartTime Equ *,X′ 1 0 ′ ... For each bit

─ ─ ─
DS X Now define the (unnamed) owning byte

• Reference a bit using its location and its length attribute; then each
named bit is firmly attached to its owning byte

TM Fulltime,L′ Fulltime [Best!]

Notes

10Instruction Modification

© I B M 2015System z Assembler LanguageChap. VII, Sec. 23.9

• You may see (or be tempted to write) self-modifying programs

1. Skip some statements after they ′re executed once

NOP NOP SkipIt Fall through first time here
OI NOP+1,X′ F0′ Change NOP to unconditional branch
─ ─ ─

SkipIt DC 0H Continue execution here

2. Alternating between branching or not

─ ─ ─
XI Switch+1,X′ F0′ Alternate branch masks at ′ Switch′

Switch BC 15,SomeWhereElse Mask = 0, 15, 0, 15, ...

• This is a poor practice:

1. Serious negative impact on performance

2. The program can ′ t be shared in memory

3. You may not be debugging the program in the listing

• Advice: use a bit flag in a data area

Notes

95

11Summary

© I B M 2015System z Assembler LanguageChap. VII, Sec. 23.10

• These are the Storage-Immediate instructions described in Section 23:

Function
Operand 1 Operand

212-bit displacement 20-bit displacement

Move Immediate MVI MVIY I2

AND Immediate NI NIY I2

OR Immediate OI OIY I2

XOR Immediate XI XIY I2

Compare
Immediate

CLI CLIY I2

Test Under Mask TM TMY I2

Notes

12Character Data and Basic Instructions

© I B M 2015System z Assembler LanguageChap. VII, Sec. 24

• Section 24 introduces key aspects of important SS-type instructions:

− machine instruction and Assembler Language operand formats

− operand formats with explicit and implicit length specifications

− using Length Attribute References

− Program vs. Encoded lengths, and why they ′re different

− three MOVE CHARACTERS instructions

− logical AND, OR, and XOR instructions

− logical comparison

− the TR (Translate) instruction

− Translate and Test instructions

− the powerful and flexible Execute instructions

Notes

96

13Basic SS-Type Instructions

© I B M 2015System z Assembler LanguageChap. VII, Sec. 24.1

• Start with these typical SS-type instructions:

• Each has this machine-instruction format:

• The basic assembler instruction statement format is:

mnemonic D1(N,B1),D2(B2)

− We′ l l see how L and N differ in Section 24.5
− Only TRT and TRTR change general registers (only GR1, GR2)

M n e m Instruction M n e m Instruction

MVC Move [Characters] MVCIN Move [Characters] Inverse

NC AND [Characters] OC OR [Characters]
XC XOR [Characters] CLC Compare Logical [Characters]
TR Translate TRT Translate and Test

TRTR Translate and Test Reverse

opcode L B1 D1 B2 D2

Notes

14Operand Specifications and Explicit Lengths

© I B M 2015System z Assembler LanguageChap. VII, Sec. 24.2

• A machine instruction operand can have one of 3 formats:

expr expr(expr) expr(expr,expr) or expr(,expr)
• For SS-type instructions,

1. Operand 1 can have any of the formats

2. Operand 2 can have only the first and second formats

• If you specify an explicit length N, valid operand forms are:

• Examples:

MVC BB(23),AA S1(N),S2
MVC X′47D′ (2 3 , 9) ,AA D1(N,B1),S2
MVC BB(23),X′125′ (9) S1(N),D2(B2)
MVC 1149(23,9),293(9) D1(N,B1),D2(B2)

Explicit Length

S1(N),S2

D1(N,B1),S2

S1(N),D2(B2)

D1(N,B1),D2(B2)

Notes

97

15Symbol Length Attribute References

© I B M 2015System z Assembler LanguageChap. VII, Sec. 24.3

• Written as L′ followed by a symbol

LA 0,L′ BB C(GR) = Length Attribute of BB

1. Symbols defined in EQU statements with * or a self-defining term as
operand have length attribute 1

− If the EQU has a second operand, its value is the length attribute of the symbol

G Equ * Length attribute of G = 1
H Equ *,20 Length attribute of H = 20

2. Literals have the length attribute of the first operand

LA 0,=X′123456,ABC,FEDCBA98′ c(GR0) = 3

3. The length attribute of a Location Counter Reference (*) is the length of the
instruction in which it appears

MVC BB(L′ *),AA Length attribute of MVC = 6

Notes

16Implied Lengths

© I B M 2015System z Assembler LanguageChap. VII, Sec. 24.4

• If you don′ t specify length N, the assembler assigns an implied length

• Implied lengths simplify specifying how many bytes are involved

MVC AA,BB Move L′ AA bytes from BB to AA

• Summary of explicit/implied addresses and lengths

Implied Length

S1,S2

D1(,B1),S2

S1,D2(B2)

D1(,B1),D2(B2)

First operand form Address specification Length Expression Length used

S1 impl ied impl ied L′ S1

S1(N) impl ied expl ic i t N

D1(,B1) expl ic i t impl ied L′ D1

D1(N,B1) expl ic i t expl ic i t N

Notes

98

17The Encoded Length “L” and Program Length “N”

© I B M 2015System z Assembler LanguageChap. VII, Sec. 24.5

• L is one less than N, unless N is zero; then L is zero also

• Why use two notations (N and L) for lengths?

1. You want to specify the true number of bytes involved, N
2. The CPU needs to see a number one less:

− The Effective Address +L is the address of the operand′s rightmost byte

• Some instructions operate from right to left

3. The useful Execute instructions (Section 24.11) need L= 0

• Warning! The z/Architecture Principles of Operation uses “L” for both N
and L!

• Remember: L = N− 1 unless N=0; then L=0 a l so

Notes

18The MVC and MVCIN Instructions

© I B M 2015System z Assembler LanguageChap. VII, Sec. 24.6

• These instructions move 1-256 bytes (0 ≤ L ≤ 255)

• Examples of MVC

MVC AA(23),BB Move 23 bytes from BB to AA
MVC AA,BB Move L′ AA bytes from BB to AA
MVI Line,C′ ′ Move a single blank to Line
MVC Line+1(120),Line Propagate blanks to fill 121 bytes

MVC Str(40),Str+2 Shift 40 bytes left 2 positions
MVC Str+40(2),=C′ ′ Replace last two bytes at Str by spaces

• Example of MVCIN: the second operand is moved in reverse order to
the first; the second operand address is of the rightmost byte

MVCIN RevData,Data+L′ Data─1 Move reversed from Data to Revdata
─ ─ ─

Data DC C′12345′ Source operand
RevData DC CL(L′ Data) Target operand; result = C′54321′

M n e m Instruction M n e m Instruction

MVC Move [Characters] MVCIN Move [Characters] Inverse

Notes

99

19The NC, OC, and XC Instructions

© I B M 2015System z Assembler LanguageChap. VII, Sec. 24.7

• These instructions perform a logical operation between corresponding
bytes of the first and second operands, and set the CC:

• AND: branch to Z if the word at W is zero:
NC W,W AND each byte to itself
JZ Z Branch if all bytes are zero

• OR: branch to Z if the word at W is zero:
OC W,W OR each byte to itself
JZ Z Branch if all bytes are zero

• XOR: set the at W to zero:
XC W,W XOR each byte with itself

Operation CC setting

AND
OR

XOR

0: all result bits are zero
1: result bits are not all zero

Notes

20The CLC Instruction

© I B M 2015System z Assembler LanguageChap. VII, Sec. 24.8

• CLC compares two byte strings as unsigned 8-bit integers
− Any inequality stops the comparison

• Example: If the 120 bytes at Line contain blanks, branch to AllBlank
CLC LINE(120),=CL120′ ′ COMPARE TO 120 BLANKS
JE ALLBLANK BRANCH IF EQUAL

OR
CLC =CL120′ ′ , LINE COMPARE TO 120 BLANKS
JE ALLBLANK BRANCH IF EQUAL

− Example: Compare the non-negative words at A and B, and branch to AHigh,
ALow, or ABEqual accordingly

CLC A,B COMPARE TWO NON─NEGATIVE INTEGERS
JH AHIGH BRANCH IF C(A) > C(B)
JL ALOW BRANCH IF C(A) < C(B)
J ABEQUAL BRANCH IF C(A) = C(B)

CC Indication

0 Operand 1 = Operand 2

1 Operand 1 < Operand 2

2 Operand 1 > Operand 2

Notes

100

21The TR (Translate) Instruction

© I B M 2015System z Assembler LanguageChap. VII, Sec. 24.9

• TR replaces each first-operand byte with a second-operand byte, one
byte at a time
− The 8-bit binary value of a 1st-operand “argument” byte gives the offset to a

2nd-operand “function” byte

− The function byte replaces the argument byte

− The Condition Code is unaffected

• Example: replace all non-numeric characters at Data with blanks

TR Data,BlankTbl Replace non─numerics with blanks
─ ─ ─

BlankTbl DC 240C′ ′ , C′0123456789′,6C′ ′ Translate table
Data DC C′ A1G2p3?4+5W6/7′ Result = C′ 1 2 3 4 5 6 7′

Notes

22The TRT and TRTR Instructions

© I B M 2015System z Assembler LanguageChap. VII, Sec. 24.10

• TRT and TRTR test 1st-operand bytes using 2nd-operand byte values;
the 1st operand is unchanged

− The value of an “argument” byte is the offset to a “function” byte

− If the function byte is zero, continue. Otherwise:

1. Put the function byte in the rightmost byte of GR1

2. Put the address of the argument byte in GR2, and stop scanning

3. Set the Condition Code:

• Example: scan the table at Data for numeric characters

TRT Data,NumTable Scan Data for numeric characters
─ ─ ─

NumTable DC 240X′ 0 ′ , 1 0X′ 1 ′ , 6 X′ 0 ′ Detect numeric characters
Data DC C′ A1G2p3?4+5W6/7′ Data to be scanned for numerics

CC Meaning

0 All accessed function bytes were zero.

1 A nonzero function byte was accessed before the last argument byte was reached.

2 The nonzero function byte accessed corresponds to the last argument byte.

Notes

101

23The Execute Instructions (1)

© I B M 2015System z Assembler LanguageChap. VII, Sec. 24.11

• EX and EXRL are often used with SS-type instructions

1. Save the R1 digit of the Execute instruction

2. Put the instruction at the Effective Address in the Instruction Register (IR) in
place of the Execute instruction

− The Instruction Address (IA) in the PSW remains unchanged

3. If the instruction in IR is an Execute, cause a program interruption

4. If the R1 digit is nonzero, OR the rightmost digit of GR R1 into the second
byte of the IR

5. Execute the instruction in the IR

• Any CC settings are due to the executed instruction

• The R1 digit is nonzero for almost all uses of Execute instructions

M n e m Instruction M n e m Instruction

EX Execute EXRL Execute Relative Long

Notes

24The Execute Instructions (2)

© I B M 2015System z Assembler LanguageChap. VII, Sec. 24.11

• Example 1: Move a message to Line whose address and length are in
GR8 and GR9 respectively

BCTR 9,0 Reduce length N in GR9 by 1 (L=N─1)
EX 0,MoveMsg Move the message text to Line
─ ─ ─

MoveMsg MVC Line(*─*),0(8) Move text at GR8 address to Line

• Example 2: The fullword at Mask contains an integer whose value lies
between 0 and 15; use it as the mask digit of a BC instruction
branching to CondMet

L 1,Mask Get mask value
SLL 1,4 Position correctly for use as M1
EX 1,BCInst Execute the BC

NotMet ─ ─ ─ Fall through if condition not met
─ ─ ─

BCInst BC 0,CondMet BC with mask of 0
− Note that if the branch condition is met, control will be taken from the EX

instruction

Notes

102

25Summary

© I B M 2015System z Assembler LanguageChap. VII, Sec. 24.12

• Instructions discussed in Section 24:

Function Instruction Data is Processed CC Set?

Move
MVC
MVCIN

Left to right
Right to left

No

AND NC Left to right Yes

OR OC Left to right Yes

XOR OC Left to right Yes

Compare CLC Left to right Yes

Translate TR Left to right No

Translate and Test TRT Left to right Yes

Translate and Test Reverse TRTR Right to left Yes

Execute
EX
EXRL

—
Depends
on target

Notes

26Character Data and Extended Instructions

© I B M 2015System z Assembler LanguageChap. VII, Sec. 25

• Section 25 describes some interruptible instructions that may end
before processing is complete

• The CPU supports resumption in two ways:

A. Update registers to reflect current progress; reset the IA in the
PSW to the address of the interrupted instruction
− When processing resumes the instruction continues as if no interruption had

occurred

B. Update registers to reflect current progress; set CC=3 and
terminate the instruction
− An interruption may or may not occur at this point

− When processing resumes, the fo l lowing instruct ion tests for CC=3 and branches
back to the terminated instruction to continue its task

• Section 25 instructions use both methods

Notes

103

27Move Long and Compare Logical Long

© I B M 2015System z Assembler LanguageChap. VII, Sec. 25.1

 MVCL R1,R2 and CLCL R1,R2

• Both instructions use Method “A” when interrupted, and two even-odd
register pairs

− The even-numbered register holds the operand address
− The odd-numbered register holds the true operand length (0-224 −1 bytes)
− The operands may have different lengths

• The high-order byte of R2+1 holds a pad byte

• All four registers may be updated by the instructions

• Both instructions set the CC

− MVCL sets CC=3 and moves no data if destructuve overlap is possible:
• part of the target field is used as source data after data has been moved into it

M n e m Instruction M n e m Instruction

MVCL Move Long CLCL Compare Logical Long

Notes

28The MVCL Instruction

© I B M 2015System z Assembler LanguageChap. VII, Sec. 25.1.1

• Conceptually, MVCL works like this:
1. As each byte is moved addresses are incremented, lengths decremented
2. If both lengths=0 at the same t ime, set CC=0
3. If the target length c(R1+1) is 0 before the source length c(R2+1), set CC=1
4. If the source length c(R2+1) is 0 before the target length c(R1+1), use the

pad character as source data until the target length is 0; set CC=2

• Example: Set 2400 bytes at Field to zeros

LA 0,Field c(R1) = Target address
LHI 1,2400 c(R1 + 1) = Target length
SR 3,3 c(R2 + 1) = Source length = 0; pad = X′ 0 0 ′

* No source address is required if source length is zero
MVCL 0,2 Move X′ 00 ′ pad bytes to target Field

CC Meaning

0 Operand 1 length = Operand 2 length

1 Operand 1 length < Operand 2 length; part of Operand 2 not moved

2 Operand 1 length > Operand 2 length; Operand 1 was padded

3 Destructive Overlap, no data movement

Notes

104

29The CLCL Instruction

© I B M 2015System z Assembler LanguageChap. VII, Sec. 25.1.2

• Conceptually, CLCL works like this:
1. Compare pairs of bytes; decrement addresses, increment lengths
2. If both lengths=0 at the same t ime, set CC=0
3. If an inequality is found, R1 and R2 contain the addresses of the unequal

bytes; set CC=1 or CC=2
4. If either length is 0, compare bytes from the longer operand to the pad byte

• Example: Branch to Cleared if the 2400 bytes at Field are zeros

LA 0,Field c(R1) = Target address
LHI 1,2400 c(R1 + 1) = Target length
SR 3,3 c(R2 + 1) = Source length = 0; pad = X′ 0 0 ′

* No source address is required if source length is zero
CLCL 0,2 Compare target Field bytes to X′ 0 0 ′
JE Cleared Branch if the Field was all zeros

CC Meaning

0 Operand 1 = Operand 2, or both lengths 0

1 First Operand low

2 First Operand high

Notes

30Move Long and Compare Logical Long Extended

© I B M 2015System z Assembler LanguageChap. VII, Sec. 25.2

• MVCLE and CLCLE generalize MVCL and CLCL. Their form:

• The R1 and R3 operands are like R1 and R2 for MVCL and CLCL;
addresses and lengths depend on addressing mode

− The low-order byte of operand 2 is the pad character (not an address!)
− The odd-numbered registers hold 32- or 64-bit lengths (depending on

addressing mode) vs. 24-bit lengths for MVCL/CLCL

• Assembler Language syntax

mnemonic R1,R3,D2(B2) Target,source,pad_character

as in

MVCLE 2,8,C′ ′ (0) Pad character = C′ ′
CLCLE 4,14,X′ 4 0 ′ (0) Pad craracter = X′ 4 0 ′

M n e m Instruction M n e m Instruction

MVCLE Move Long Extended CLCLE Compare Logical Long Extended

opcode R1 R3 B2 DL2 DH2 opcode

Notes

105

31The MVCLE Instruction

© I B M 2015System z Assembler LanguageChap. VII, Sec. 25.2.1

• Conceptually, MVCLE works like this:
1. As each byte is moved, increment addresses, decrement lengths
2. If both lengths=0 at the same t ime, set CC=0
3. If the target length c(R1+1) is 0 before the source length c(R3+1), set CC=1
4. If the source length c(R3+1) is 0 before the target length c(R1+1), use the

pad character as source data until the target length is 0; set CC=2

• Example: set 2400 bytes at Field to zeros

LA 0,Field c(R1) = Target address
LHI 1,2400 c(R1 + 1) = Target length
SR 3,3 c(R3 + 1) = Source length = 0
SR 5,5 c(R5) = Pad byte = X′ 0 0 ′

* No source address is required if source length is zero
MVCLE 0,2,0(5) Move pad bytes to target Field

CC Meaning

0 Operand 1 length = Operand 2 length

1 Operand 1 length < Operand 2 length; part of operand 2 not moved

2 Operand 1 length > Operand 2 length; operand 1 was padded

3 CPU wants to rest; branch back to the MVCLE

Notes

32The CLCLE Instruction

© I B M 2015System z Assembler LanguageChap. VII, Sec. 25.2.2

• Conceptually, CLCLE works like this:
1. Compare pairs of bytes; decrement addresses, increment lengths
2. If both lengths=0 at the same t ime, set CC=0
3. At inequality, R1 and R3 address the unequal bytes; set CC=1 or CC=2
4. If a length is 0, compare bytes from the longer operand to the pad byte

• Example: branch to Cleared if the 2400 bytes at Field are zeros

LA 0,Field c(R1) = Target address
LHI 1,2400 c(R1 + 1) = Target length
SR 3,3 c(R2 + 1) = Source length = 0
SR 5,5 Set pad character to X′ 0 0 ′

* No source address is required if source length is zero
CLCLE 0,2,0(5) Compare target Field bytes to X′ 0 0 ′
JE Cleared Branch if the Field was all zeros

CC Meaning

0 Operand 1 = Operand 2, or both 0 length

1 First operand low

2 First operand high

3 No inequality found thus far; operands are not exhausted

Notes

106

33Special “C-String” Instructions

© I B M 2015System z Assembler LanguageChap. VII, Sec. 25.3

• Character strings in C/C++ (“C-strings”) end with a null (X′00′) byte
− We sometimes use a bold-italic “n” to represent a null byte

CString DC C′ A C─string.′ , X′ 0 ′ Generates ′ A C─string.n′

• These four instructions simplify working with C-strings:

• Each has Assembler Language syntax
mnemonic R1,R2

• Each requires a special “end” or “test” character in the rightmost byte
of GR0; it can be any character
− TRE also requires a length operand

• Each uses Method B to handle interruptions

• They have many uses beyond C-strings

M n e m Instruction M n e m Instruction

MVST Move Str ing CLST Compare Logical Str ing

SRST Search Str ing TRE Translate Extended

Notes

34Search String Instruction

© I B M 2015System z Assembler LanguageChap. VII, Sec. 25.4

• SRST searches a string of bytes for a match of the test character
1. GR0 is zeroed; the test character is placed in its rightmost byte
2. The start of the string is placed in R2
3. One byte past the end of the string is placed in R1 (to limit the search)

• Condition Code settings:

− Usually, SRST is faster searching for single characters than a CLI loop or
TRT

• Example: Search a byte string at Expr for a left parenthesis
LHI 0,C′ (′ Test character
LA 4,Expr Start of string
LA 8,Expr+L′ Expr One byte past end of string
SRST 8,4 Search for ′ (′ at Expr

CC Meaning

1 Test character found; R1 points to it

2 Test character not found before the byte addressed by R1

3 Partial search with no match; R1 unchanged, R2 points to next byte to process

Notes

107

35Move String Instruction

© I B M 2015System z Assembler LanguageChap. VII, Sec. 25.5

• MVST moves a C-string, including the test character
1. GR0 is zeroed; the test character is placed in its rightmost byte
2. The target-string address is placed in R1
3. The source-string address is placed in R2

• The Condition Code settings are:

• Example: Move a C-string from Here to There
XR 0,0 Test character is a null byte
LA 7,There Target address
LA 1,Here Source address
MVST 7,1 Move from Here to There

• For very long strings with known lengths, MVCL or MVCLE may be
faster

CC Meaning

1 Entire second operand moved; R1 points to end of first operand

3 Incomplete move; R1 and R2 point to next bytes to process

Notes

36Compare Logical String Instruction

© I B M 2015System z Assembler LanguageChap. VII, Sec. 25.6

• CLST compares two strings terminated with the same stop character

• Comparison stops when an inequality is detected, or the end of an
operand is reached

• A shorter operand is always considered “low” compared to the longer

• Condition Code settings:

• Example: Compare the C-strings at Before and After
SR 0,0 Compare null─terminated C─strings
LA 3,Before Address of first operand string
LA 6,After Address of second operand string
CLST 3,6 Compare the two strings

CC Meaning

0 Entire operands are equal; R1 and R2 unchanged

1 First operand low; R1 and R2 point to last bytes processed

2 First operand high; R1 and R2 point to last bytes processed

3 Operands equal so far; R1 and R2 point to next bytes to process

Notes

108

37Translate Extended Instruction

© I B M 2015System z Assembler LanguageChap. VII, Sec. 25.7

• TRE is similar to TR, but more flexible:

1. Translated string address is the R1 operand, translate table address is the
R2 operand

− The string length is in (odd register) R1+ 1

2. GR0 is zeroed; the test character is placed in its rightmost byte

3. TRE stops when (a) all bytes are translated, or (b) a source byte (which is
not translated) matches the stop character

• Condition Code settings:

CC Meaning

0 All bytes translated; R1 incremented by length, R1+1 set to 0

1 R1 points to the byte matching the stop character; R1+1 decremented by the number of
bytes processed before the match

3 R1 incremented and R1+1 decremented by the number of bytes processed

Notes

38Compare Until Substring Equal Instruction (*)

© I B M 2015System z Assembler LanguageChap. VII, Sec. 25.8

• CUSE searches for common substrings of a specified length
• The matching substrings must be at the same offset in both strings

′ ABCDEFG′ and ′ QRSDEFT′ — matching strings at offset 3: lengths 1, 2, or 3
′ ABC′ and ′ BCD**′ — if pad=′ *′ , matching substring at offset 3: length 2

1. Operand addresses are in even-numbered registers R1 and R2; Operand
lengths are in corresponding odd-numbered registers R1+1 and R2+ 1

2. The rightmost bytes of GR0 and GR1 contain the desired substring length
and the padding byte, respectively

• Condition Code settings:

CC Meaning

0 Equal substrings found; R1, R2, and lengths updated; or, the substring length is 0, and
R1, R2 are unchanged

1 Ended at longer operand, last bytes were equal (allows continuing search for further
matches if required)

2 Ended at longer operand, last bytes were unequal; or, both operand lengths = 0 and
the substring length is > 0

3 Search incomplete, last compared bytes unequal; R1, R2, lengths are updated

Notes

109

39Summary

© I B M 2015System z Assembler LanguageChap. VII, Sec. 25.9

• Instructions discussed in this section are summarized in this table:

• Use care with null-terminated C-strings: if the terminating null byte is
omitted, programs scanning or moving such strings may “process” far
more data than intended

Function Length control End-char control

Move
MVCL
MVCLE

MVST

Compare
CLCL
CLCLE
CUSE

CLST

Search SRST
Translate TRE

Notes

40Other Types of Character Data

© I B M 2015System z Assembler LanguageChap. VII, Sec. 26

Section 26 investigates forms of character data other than “Assembler
Language EBCDIC”

• 6-bit “Binary Coded Decimal” (BCD)

• Some of the many alternative EBCDIC representations

• “American Standard Code for Information Interchange” (ASCII)

• Double-byte EBCDIC and its Assembler Language representation

• Unicode, a universal encoding

− Instructions tailored to Unicode data

− Transformation formats

• Byte reversal instructions and workstation data

Notes

110

41Character Representations

© I B M 2015System z Assembler LanguageChap. VII, Sec. 26.1

• Computers that process character data must know how it ′s
represented

− A group of bits can represent a number or a character

− A defined number-character correspondence is an encoding

• Binary Coded Decimal (BCD) was used on early IBM machines

• 8-bit “Assembler Language” EBCDIC was used in many earlier
examples

− Many other EBCDIC encodings have been defined

• The spread of digital technology has led to other encodings

− ASCII, “American Standard Code for Information Interchange”

− Double-Byte EBCDIC for ideographic scripts

− Unicode, and attempt to encode all known characters

Notes

42EBCDIC Representations and Code Pages

© I B M 2015System z Assembler LanguageChap. VII, Sec. 26.2

• The worldwide use of IBM “mainframes” required added character
support

− Each set of 256 encodings is called a Code Page

− “Assembler Language EBCDIC” is Code Page 037

• Other EBCDIC code pages support national characters like á, ä, ç, Ø, Ω
− Many characters have different encodings in different code pages

• The “Syntactic Character Set” has the same encodings across EBCDIC
code pages:

− blank, decimal digits, lower and upper case alphabetics, and

+ < = > % & * ″ ′ () , _ ─ . / : ; ?

− It does not include # @ $ (allowed in Assembler Language symbols)

• All modern EBCDIC code pages support the “euro” character ∈

Notes

111

43ASCII

© I B M 2015System z Assembler LanguageChap. VII, Sec. 26.3

• Widely used on non-System z computers

− Basic encoding is 7 bits wide (X′ 00 ′-X′ 7F′)
• First 32 positions (X′ 0 0 ′-X′ 1F′) are reserved for control codes

• Decimal digits are X′ 3 0 ′-X′ 3 9 ′
• Upper-case letters X′ 4 1 ′-X′ 5A′ ; lower-case X′ 6 1 ′-X′ 7A′
• For ASCII character constants, use subtype A:

DC CA′ ASCII′ Generates X′4153434949′

Notes

44Double-Byte EBCDIC Data

© I B M 2015System z Assembler LanguageChap. VII, Sec. 26.4

• Double-Byte characters have special coding rules

− Groups of DBCS byte pairs always enclosed in Shift-Out, Shift-In bytes
• Shift-Out (X′ 0E′ , “SO”) shif ts out of single-byte mode to double-byte mode

• Shift-In (X′ 0F′ , “SI”) shi f ts in to single-byte mode from double-byte mode

• Example: mixing single-byte EBCDIC (“sb”) and DBCS (“db”) characters

 �── shift codes
┌──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┐
│sb│sb│SO│db│db│db│db│db│db│SI│sb│sb│SO│db│db│db│db│SI│sb│sb│
└──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┘

└─────────────────┘ └───────────┘
3 DB characters 2 DB chars

• Assembling DBCS data requires the DBCS option

− G-type constants and self-defining terms may be needed

• Used most often for representing Japanese characters

Notes

112

45Unicode

© I B M 2015System z Assembler LanguageChap. VII, Sec. 26.5

• All Unicode characters can have any of 3 formats:

− UTF-8: an encoding is 1-4 bytes long

− UTF-16: most characters are 2 bytes long; some are 2 2-byte pairs

− UTF-32: all characters are 4 bytes long

• Instructions can convert any encoding to any other

• UTF-16 is most widely used; notation is U+nnnn where “nnnn” is 4 hex
digits

− The encoding of U+nnnn is X′ nnnn′
− ASCII encodings have values from U+0000 to U+00FF

• Encodings U+0000 - U+FFFF are known as the “Bas i c Mul t i l ingual P lane”

• Unicode constants are written with type extension U, and generate
UTF-16 characters:

DC CU′ Unicode ′ Generates X′0055006E00690063 006F006400650020′

Notes

46Unicode Instructions

© I B M 2015System z Assembler LanguageChap. VII, Sec. 26.6

• We will discuss the instructions in three groups:
1. String search, compare, and move instructions

2. Translation instructions

3. Format conversion instructions

M n e m Instruct ion M n e m Instruct ion

SRSTU Search Str ing Unicode CLCLU Compare Logical Long Unicode

MVCLU Move Long Unicode

M n e m Instruct ion M n e m Instruct ion

TROO Translate One to One TROT Translate One to Two

TRTO Translate Two to One TRTT Translate Two to Two

M n e m Instruct ion M n e m Instruct ion

CU12,
CUTFU

Convert UTF-8 to UTF-16 CU14 Convert UTF-8 to UTF-32

CU21,
CUUTF

Convert UTF-16 to UTF-8 CU24 Convert UTF-16 to UTF-32

CU41 Convert UTF-32 to UTF-8 CU42 Convert UTF-32 to UTF-16

Notes

113

47Unicode Search, Move, and Compare

© I B M 2015System z Assembler LanguageChap. VII, Sec. 26.6.1

• These instructions are equivalent to the similar single-byte instructions
(SRST, MVCLE, CLCLE)

But they handle pairs of bytes (which need not be Unicode characters, nor
halfword aligned)

• SRSTU: scan a string addressed by R2 for a byte pair matching the
rightmost 2 bytes of GR0; R1 has the address of the first byte after the
string

− R2 incremented by 2 for each comparison

• MVCLU: moves pairs of bytes from area addressed by R3 to area
addressed by R1; lengths in R1+1, R3+1; “padding pair” is low-order 16
bits of D2(B2) Effective Address

− Each pair moved increments addresses by 2, decrements lengths by 2

− Special padding rules if any length is odd

• CLCLU: registers and “padding pair” assigned like MVCLU ′s
− Each pair compared increments addresses by 2, decrements lengths by 2

− Lengths must be even

Notes

48Optional Operands

© I B M 2015System z Assembler LanguageChap. VII, Sec. 26.6.2

• Problem for CPU architects: how to enhance an existing instruction
without creating incompatibil it ies?

1. Create a new instruction (but there are quite a few already...)

2. Use previously empty fields that were set to zero by HLASM

− Make new operands optional: i f omitted, same behavior as before

• Example: RRE- and RRF-type instructions

16 8 4 4
┌────────────────┬────────┬────┬────┐

RRE │ opcode │////////│ R1 │ R2 │ /// = zeroed by HLASM
└────────────────┴────────┴────┴────┘

16 4 4 4 4
┌────────────────┬────┬───┬────┬────┐

RRF │ opcode │ M3 │///│ R1 │ R2 │ Omit M3 operand to act like RRE
└────────────────┴────┴───┴────┴────┘

• Assembler instruction format:

mnemonic R1,R2[,M3] [] indicates optional operand

Notes

114

49Unicode Translation

© I B M 2015System z Assembler LanguageChap. VII, Sec. 26.6.3

• Sometimes need to translate to, from, or among Unicode encodings

• Four instructions:

TROO: Translate One to One (like TR but much more flexible)

TROT: Convert single-byte data to double-byte (e.g. EBCDIC or ASCII
to Unicode)

TRTO: Convert couble-byte data to single-byte (e.g. Unicode to
EBCDIC or ASCII)

TRTT: Convert among double-byte data formats to Unicode)

• All four instructions have an optional M3 operand

TRxx R1,R2[,M3]

• Uses aren ′ t l imited to character data!

Notes

50Conversion Among Transformation Formats

© I B M 2015System z Assembler LanguageChap. VII, Sec. 26.6.4

• Unicode characters have 8-, 16-, and 32-bit formats called UTF-8,
UTF-16, and UTF-32

− UTF-8 format is complex; used only for network transmission

• Six instructions for conversion among formats

• Operand formats:

CUxx R1,R2[,M3] For CU12, CU14, CU21, CU24
CUxx R1,R2 For CU41, CU42

− Init ial implementations (CUTFU, CUUTF) did no “well-formedness” tests

− If M3=1, inval id operand data sets CC=2

M n e m Instruction M n e m Instruction

CU12,
CUTFU

Convert UTF-8 to UTF-16 CU14 Convert UTF-8 to UTF-32

CU21,
CUUTF

Convert UTF-16 to UTF-8 CU24 Convert UTF-16 to UTF-32

CU41 Convert UTF-32 to UTF-8 CU42 Convert UTF-32 to UTF-16

Notes

115

51Translate and Test Extended

© I B M 2015System z Assembler LanguageChap. VII, Sec. 26.7

• Each instruction uses an optional operand to create six “additional”
instructions with a single opcode

• Operand format:

Mnemonic R1,R2[,M3] M3 bits are B′ AFL0′

• M3 mask bits:

A 0: Argument characters are 1 byte
1: Argument characters are 2 bytes

F 0: Function codes are 1 byte
1: Function codes are 2 bytes

L 0: Full range of argument and function codes allowed
1: Argument > 255 means function code assumed to be zero

• Mask bits provide greate flexibil ity

− But not all 9 A-F-L combinations are meaningful...

Notes

52Byte Reversal and Workstation Data

© I B M 2015System z Assembler LanguageChap. VII, Sec. 26.8

• Suppose a 32-bit integer X′12345678′ starts at address X′2400′ .
┌────┬────┬────┬────┐
│ 12 │ 34 │ 56 │ 78 │ IBM System z (“Big─Endian”)
└────┴────┴────┴────┘

� �
2400 2403

• On some processors (e.g. Intel) it′s stored like this:
┌────┬────┬────┬────┐
│ 78 │ 56 │ 34 │ 12 │ Some workstations (“Little─Endian”)
└────┴────┴────┴────┘

� �
2400 2403

M n e m Instruction M n e m Instruction

LRV Load Reversed (32) LRVR Load Register Reversed (32)

LRVG Load Reversed (64) LRVGR Load Register Reversed (64)

LRVH Load Halfword Reversed (16) STRVH Store Halfword Reversed (16)

STRV Store Reversed (32) STRVG Store Reversed (64)

Notes

116

1Chapter VIII: Zoned/Packed Decimal Data and Operations

© I B M 2015System z Assembler LanguageChap. VIII, Sec. 27-30

This chapter explores the the zoned and packed decimal representations
and operations on them

• Section 27 describes the zoned and packed representations in detail,
and instructions to convert between them

• Section 28 investigates the operations of packed decimal comparison,
addition and subtraction, multiplication, and division to prepare for the
instructions in Section 29

• Section 29 discusses the instructions that test, move, compare, shift,
and do arithmetic operations on packed decimal operands
− Scaled arithmetic for values with fractional parts is discussed in Section

29.10

• Section 30 examines techniques and instructions for converting among
binary, packed decimal, and character formats

Notes

2Section 27: Zoned and Packed Decimal Representations

© I B M 2015System z Assembler LanguageChap. VIII, Sec. 27

• First, we describe the zoned decimal representation

− It is quite close to “normal” EBCDIC characters

• Next we examine the packed decimal representation

• Then we discuss instructions for converting data between zoned and
packed decimal formats

− All these instructions have SS-1 or SS-2 format

M n e m Instruction M n e m Instruction

MVN Move Numerics M V Z Move Zones

PACK Pack UNPK Unpack

PKA Pack ASCII UNPKA Unpack ASCII

PKU Pack Unicode UNPKU Unpack Unicode

Notes

117

3Zoned Decimal Representation

© I B M 2015System z Assembler LanguageChap. VIII, Sec. 27.1

• Notation used for bytes of any type:
left hex digit of a byte is the “zone” digit (Z);
the right hex digit is the “numeric” digit (n)

┌───┬───┬───┬───┬───┬───┬───┬───┬───┬───┐
│ Z n │ Z n │ Z n │ Z n │ Z n │
└───┴───┴───┴───┴───┴───┴───┴───┴───┴───┘

• Two special move instructions, very much like MVC:

1. MVN: moves only the numeric digits; source and target zone digits are
untouched

2. MVZ: moves only the zone digits; source and target numeric digits are
untouched

• Internal representation of zoned decimal digits is

┌───┬───┬───┬───┬───┬───┬───┬───┬───┬───┐
│ Z d │ Z d │ Z d │ Z d │ S d │ Z=zone digit, d=decimal digit, S=sign code
└───┴───┴───┴───┴───┴───┴───┴───┴───┴───┘

• Sign codes: (+) A, C, E, F; (−) B, D. (Preferred codes are C, D)

Notes

4Zoned Decimal Constants

© I B M 2015System z Assembler LanguageChap. VIII, Sec. 27.2

• Defined using constant type Z
ZCon1 DC Z′1470369258′ Generates X′ F1F4F7F0F3F6F9F2F5C8′
ZCon2 DC Z′ ─1′ Generates X′ D1′
ZCon3 DC Z′ 5 , + 6 ,─749′ Generates X′ C5C6F7F4D7′
ZCon4 DC ZL5′ 2 9 ′ Generates X′ F0F0F0F2C9′

• Only a length modifier is valid (no integer, scale, exponent)

• Decimal points in nominal values are ignored

ZCon5 DC Z′1234.5 ′ Generates X′ F1F2F730F4C5′
ZCon6 DC Z′1 .2345′ Generates X′ F1F2F730F4C5′

− The Assembler assigns Integer and Scale attributes
• But the meaning of a decimal point is up to you!

Notes

118

5Packed Decimal Representation

© I B M 2015System z Assembler LanguageChap. VIII, Sec. 27.3

Often used for business, financial calculations

• “Packed” because there are 2 binary-coded decimal digits per byte

− The rightmost byte has a decimal digit (left half) and a sign code (right half)

┌───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┐
│ d d │ d d │ d d │ d d │ d d │ d S │ d=decimal digit, S=sign code
└───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┘

− An N-byte packed decimal field holds 2N-1 digits

− Sign code S is the same as for zoned decimal

− Examples (Note: no zones, just digits and a sign code)

Value Representation

+12345 X′12345C′
-0012345 X′0012345D′

+3 X′ 3C′
-09990 X′09990D′

39 X′039C′

Notes

6Packed Decimal Constants

© I B M 2015System z Assembler LanguageChap. VIII, Sec. 27.4

• Defined with constant type P
PCon1 DC P′12345′ Generates X′12345C′
PCon2 DC P′ ─27,+62′ Generates X′047D062C′
PCon3 DC PL4′ 999 ′ Generates X′0000999C′ (Padded on left)
PCon4 DC PL2′12345′ Generates X′345C′ (Truncated on left)

• Only a Length modifier is allowed

• Decimal points in nominal values are ignored in generated constants

PCon5 DC P′1234.5 ′ Generates X′12345C′
PCon6 DC P′1 .2345′ Generates X′12345C′

− HLASM assigns Integer and Scale attributes:

PCon5: Integer attribute = 4, Scale attribute = 1
PCon6: Integer attribute = 1, Scale attribute = 4

Notes

119

7Converting Between Packed and Zoned

© I B M 2015System z Assembler LanguageChap. VIII, Sec. 27.5

• Use the PACK and UNPK instructions

• Both have Assembler Language syntax

mnemonic D1(N1,B1),D2(N2,B2)

• Machine instruction format:

• Encoded Lengths L are one less than Program Lengths N

• Each operand can take one of four forms:

opcode L1 L2 B1 D1 B2 D2

Implied Length Explicit Length

Implied Address S1 S1(N1)

Explicit Address D1(,B1) D1(N1,B1)

Notes

8The PACK Instruction

© I B M 2015System z Assembler LanguageChap. VIII, Sec. 27.6

• PACK converts from zoned to packed, working from right to left

PACK Target,Source

┌─────┬─────┬─────┬─────┬─────┐
│ Z d │ Z d │ Z d │ Z d │ S d │ Zoned source (second) operand
└───┬─┴───┬─┴───┬─┴───┬─┴─┬─┬─┘

� � � � � �
│ │ ┌─┘ │ │ │
│ │ │ ┌─────┘ │ │
└───┐ │ │ │ ┌─────┼─┘

│ │ │ │ │ ┌───┘
� � � � � �

┌─────┬─────┬─────┐
│ d d │ d d │ d S │ Packed target (first) operand
└─────┴─────┴─────┘

• Padding/truncation rules for first (target) operand:

− Source too short: pad target on left with zero digits
− Source too long: stop packing when target field is full

• Condition Code is unchanged

− Overlapping operands produce predictable results!

Notes

120

9The UNPK Instruction

© I B M 2015System z Assembler LanguageChap. VIII, Sec. 27.7

• UNPK converts from packed to zoned formats, working from right to left

UNPK Target,Source

┌─────┬─────┬─────┐
│ d d │ d d │ d S │ Packed source (second) operand
└─┬─┬─┴─┬─┬─┴─┬─┬─┘

� � � � � �
┌───┘ │ │ │ │ └───┐
│ │ │ │ └─────┼─┐
│ │ │ └─────┐ │ │
│ │ └─┐ │ │ │
� � � � � �

┌─────┬─────┬─────┬─────┬─────┐
│ Z d │ Z d │ Z d │ Z d │ S d │ Zoned tareget (first) operand
└─────┴─────┴─────┴─────┴─────┘

• Padding/truncation rules for first (target) operand:

− Source too short: pad target on left with zoned zeros (X′ F0′)
− Source too long: stop unpacking when target field is full

• Condition Code is unchanged

− Overlapping operands generate predictable results!

Notes

10Packing and Unpacking ASCII and Unicode Data

© I B M 2015System z Assembler LanguageChap. VIII, Sec. 27.8

Pack ASCII: PKA PDTarget,ASCII_Source(N)
Pack Unicode: PKU PDTarget,Unicode_Source(N)
Unpack ASCII: UNPKA ASCII_Target(N),PDSource
Unpack Unicode: UNPKU Unicode_Target(N),PDSource

• The packed decimal operand is always16 bytes long (31 digits)

• ASCII decimal digits: X′30-39′ ; Unicode decimal digits: X′0030-0039′
• Instruction format for all four instructions:

┌────────┬────────┬────┬────────────┬────┬────────────┐
│ opcode │ L │ B1 │ D1 │ B2 │ D2 │
└────────┴────────┴────┴────────────┴────┴────────────┘

− L is the Encoded Length of the character operand

Must be odd for Unicode (even number of bytes)

• For packing (PKA, PKU): L is length-1 of second (character) operand

For unpacking (UNPKA, UNPKU): L is length-1 of first (character)
operand

Notes

121

11Printing Hexadecimal Values

© I B M 2015System z Assembler LanguageChap. VIII, Sec. 27.9

• It often helps to display data in hex

• Use UNPK and TR in these steps (we′ ll assume 4-byte data):

1. Move source data to right half of a work area:

MVC WorkArea+4(4),SourceData
─ ─ ─

WorkArea DS CL8,X �── The extra byte is important!

2. Unpack one extra byte (at the right end):

UNPK WorkArea(9),WorkArea+4(5) Extra byte is swapped

3. Translate the “spread hex” to EBCDIC characters

TR WorkArea,=C′0123456789ABCDEF′ ─C′ 0 ′

4. 8 bytes at WorkArea are ready for display or print

Notes

12Section 28: Packed Decimal Arithmetic Overview

© I B M 2015System z Assembler LanguageChap. VIII, Sec. 28

• Usually gives expected results

− Operand size l imitations for some operations

• Notation corresponds to internal representations

┌──┬──┬──┬──┐
Packed: │12│34│56│7D│ written 1234567−

└──┴──┴──┴──┘

┌──┬──┬──┬──┐
Zoned: │F1│F2│F3│C4│ written 1234+

└──┴──┴──┴──┘

• Zoned values must be converted to packed for arithmetic

Notes

122

13Packed Decimal Arithmetic: General Rules

© I B M 2015System z Assembler LanguageChap. VIII, Sec. 28.1

• Results of packed decimal operations replace the first operand

− Division fits quotient and remainder in first-operand field

• Preferred signs (X′ C′ , X′ D′) always given to results

• Overflow: set Condition Code to 3

− If Program Mask bit is 1, cause Decimal Overflow interruption with
Interruption Code X′000A′

• Invalid sign or numeric digits cause a Data Exception interruption with
Interruption Code X′0007′

• Remember: packed decimal operands are treated as integers by
System z

Notes

14Decimal Addition and Subtraction

© I B M 2015System z Assembler LanguageChap. VIII, Sec. 28.2

• Shorter operands are extended internally with high-order zeros

− The result ′s significant digits must fit in the first operand field

− If it won′ t, decimal overflow occurs; only low-order digits are kept

• Non-overflowed zero results always have a + sign

003+ 500─
+ 003─ 500─

000+ 000─
 (no overflow) (overflow)

• Condition Code settings:

• Advice: avoid operand overlap

CC Indication

0 Result is zero

1 Result is less than 0

2 Result is greater than 0

3 Decimal overf low

Notes

123

15Decimal Comparison

© I B M 2015System z Assembler LanguageChap. VIII, Sec. 28.3

• Performs an internal subtraction

− Operands extended with high-order zeros as needed

• 0+ treated as equivalent to 0-
• CC settings:

CC Meaning

0 Operand 1 = Operand 2

1 Operand 1 < Operand 2

2 Operand 1 > Operand 2

Notes

16Decimal Multiplication

© I B M 2015System z Assembler LanguageChap. VIII, Sec. 28.4

• The product of N1-digit and N2-digit numbers is at most N1 +N2 digits
long

• The first operand must have at least as many high-order bytes of zeros
as the number of bytes in the second operand

− So operand 1 must be longer than operand 2

− Operand 2 must be ≤ 8 bytes (15 digits) long

• Signs are determined by the rules of algebra

• The Condition Code is unchanged

• Warning: packed decimal products depend on the order of the
operands

Notes

124

17Decimal Division

© I B M 2015System z Assembler LanguageChap. VIII, Sec. 28.5

┌─────────────────────┬─┐ ┌──────────┬─┬─────────┬─┐
Before: │ dividend │s│ After: │ quotient │s│remainder│s│

└─────────────────────┴─┘ └──────────┴─┴─────────┴─┘
┌─────────┬─┐ ┌─────────┬─┐
│ divisor │s│ │ divisor │s│
└─────────┴─┘ └─────────┴─┘

• The remainder has the same bye length as the divisor

− It always has the same sign as the dividend

• Quotient sign is determined by the rules of algebra

• Divisor length must be (a) ≤ 8 bytes, (b) < dividend length

• Division by zero or quotient too large causes a Decimal Divide
exception with Interruption Code X′000B′
− First operand is unchanged

− Condition Code is unchanged; Decimal Overflow cannot occur

Notes

18Section 29: Packed Decimal Instructions

© I B M 2015System z Assembler LanguageChap. VIII, Sec. 29

• The packed decimal instructions are

• All but TP have 2-length SS-type format:

┌────────┬────┬────┬────┬────────────┬────┬────────────┐
│ opcode │ L1 │ L2 │ B1 │ D1 │ B2 │ D2 │
└────────┴────┴────┴────┴────────────┴────┴────────────┘

• All instructions process operands from r ight to left

M n e m Instruction M n e m Instruction

AP Add Decimal SP Subtract Decimal

MP Mul t ip ly Decimal DP Divide Decimal

CP Compare Decimal ZAP Zero and Add Decimal

SRP Shift and Round Decimal MVO Move with Offset

TP Test Decimal

Notes

125

19Test Decimal (TP) Instruction

© I B M 2015System z Assembler LanguageChap. VIII, Sec. 29.1

• TP tests the validity of its operand. Assembler Language syntax:
TP D1(N,B1)

• Its machine instruction format differs from the other instructions:
┌────────┬────┬────┬────┬────────────┬────────┬────────┬
│ opcode │ L │////│ B1 │ D1 │////////│ opcode │
└────────┴────┴────┴────┴────────────┴────────┴────────┘

• Valid Assembler Language instruction operand formats:

• Condition Code settings:

Explicit Length Implied Length

Expl ic i t Address D1(N,B1) D1(,B1)

Impl ied Address S(N) S

CC Meaning

0 All digit codes and the sign code are valid.

1 The sign code is invalid.

2 At least one digit is invalid.

3 The sign code and at least one digit are invalid.

Notes

20Zero and Add (ZAP) Instruction

© I B M 2015System z Assembler LanguageChap. VIII, Sec. 29.2

• ZAP effectively (but not actually!)

1. Sets the first operand to 0 +
2. Adds the second operand

• It can therefore generate

− A data exception for an invalid second operand

− A decimal overflow exception if the first operand is too short

• Assembler Language syntax

ZAP D1(N1,B1),D2(N2,B2) or Target(N1),Source(N2)

• Condition Code settings

CC Indication

0 Result is zero.

1 Result is less than zero.

2 Result is greater than zero.

3 Decimal overf low.

Notes

126

21Add Decimal (AP) and Subtract Decimal (SP) Instructions

© I B M 2015System z Assembler LanguageChap. VIII, Sec. 29.3

• The result replaces the first operand

• Assembler Language syntax:

AP D1(N1,B1),D2(N2,B2) (Same for SP)

• Condition Code settings:

• Overflow is possible if the first operand is too short

AP P123,P9 Result at P123 = 132+. CC=2
AP P9,P234 Result at P9 = 3+, CC=3 (overlow)

P123 DC P′+123′
P234 DC P′+234′
P9 DC P′ + 9 ′

CC Indication

0 Result is zero.

1 Result is less than zero.

2 Result is greater than zero.

3 Decimal overf low.

Notes

22Compare Decimal (CP) Instruction

© I B M 2015System z Assembler LanguageChap. VIII, Sec. 29.4

• CP compares two packed decimal operands

− Internal subtractions do not cause overflow

• Condition Code settings:

• Examples:

CP =P′ +5 ′ ,=P′ + 3 ′ CC=2
CP =P′ +3 ′ ,=P′ + 5 ′ CC=1
CP =P′ +0 ′ ,=P′ ─0′ CC=0

CC Indication

0 Operands are equal.

1 First operand is low.

2 First operand is high.

Notes

127

23Multiply Decimal (MP) Instruction

© I B M 2015System z Assembler LanguageChap. VIII, Sec. 29.5

• Assembler Language syntax:

MP D1(N1,B1),D2(N2,B2)

• Operand length restrictions:

2 ≤ N1 ≤ 16, 1 ≤ N2 ≤ 8, N1 > N2
1 ≤ L1 ≤ 15, 0 ≤ L2 ≤ 7, L1 > L2

• Important additional restriction:

− There must be as many bytes of high-order zeros in the multiplicand (first
operand) as the length of the multiplier (second operand); a specification
exception otherwise

┌────────────────────────┬──────────────┐
 │000 ──────────────── 000 aaaaaaaaaaaaas│ First operand (multiplicand)
 ├────────────────────────┼──────────────┘
 │bbbbbbbbbbbbbbbbbbbbbbbs│ Second operand (multiplier)
 └────────────────────────┘

Notes

24Divide Decimal (DP) Instruction

© I B M 2015System z Assembler LanguageChap. VIII, Sec. 29.6

• Assembler Language syntax:
DP D1(N1,B1),D2(N2,B2)

• Like binary division, the quotient and remainder replace the dividend
(but in the opposite order)

Before After
┌───────────────────────┐ ┌──────────────┬─────────┐
│ dividend │ │ quotient remainder│
└─────────────┬─────────┤ └──────────────┼─────────┤

│ divisor │ │ divisor │
└─────────┘ └─────────┘

− Remainder and divisor have the same length
− There must be at least one high-order zero in the dividend

• Operand lengths must obey the same restrictions as for MP:
2 ≤ N1 ≤ 16, 1 ≤ N2 ≤ 8, N1 > N2
1 ≤ L1 ≤ 15, 0 ≤ L2 ≤ 7, L1 > L2

• Example:
ZAP Dvnd,=P′162843′ Initialize dividend
DP Dvnd,=P′ 762 ′ Divide by 762+
─ ─ ─

Dvnd DS PL4 Result: X′213C537C′

Notes

128

25SRP Instruction

© I B M 2015System z Assembler LanguageChap. VIII, Sec. 29.7

• SRP multiplies and divides by a power of 10, with optional quotient
rounding

• Assembler Language syntax:

SRP D1(N1,B1),D2(B2),I3

• Machine instruction format:

• Shift amount and direction determined by low-order 6 bits of
second-operand Effective Address:
− B′100000′ = −32 ≤ shift count ≤ + 3 1 = B′011111′

• Examples:

SRP X,3,0 Multiply operand at X by 1000
SRP X,64─3,5 Divide operand at X by 1000, round last digit

• Possible overflow on left shifts

• Rounded results are slightly biased

F0 L1 I3 B1 D1 B2 D2

Notes

26Move With Offset (MVO) Instruction

© I B M 2015System z Assembler LanguageChap. VIII, Sec. 29.8

• MVO moves the second operand to the first, but offset to the left by 4
bits

• Assembler Language syntax:

MVO D1(N1,B1),D2(N2,&B2)

• Example of two 4-byte operands with signs s1, s2:

┌───┬───┬───┬───┬───┬───┬───┬───┐
│ x x │ x x │ x x │ x s1│ Operand 1 before
└───┴───┴───┴───┴───┴───┴───┴───┘

┌───┬───┬───┬───┬───┬───┬───┬───┐
│ b c │ d e │ f g │ h s2│ Operand 2 offset left 4 bits
└───┴───┴───┴───┴───┴───┴───┴───┘

┌───┬───┬───┬───┬───┬───┬───┬───┐
│ c d │ e f │ g h │ s2 s1│ Operand 1 after
└───┴───┴───┴───┴───┴───┴───┴───┘

• If N2 ≥ N1, high-order digits are lost
• If N2 < N1, high-order digits positions are filled with zeros

Notes

129

27Decimal Shifting Using MVO (*)

© I B M 2015System z Assembler LanguageChap. VIII, Sec. 29.9

• Before SRP was available, MVO was used for pscked decimal shifting

• Four different instruction sequences were required:

1. Shift right an odd number of digits

2. Shift left an odd number of digits

3. Shift left an even number of digits

4. Shift right an even number of digits

• These are rarely used today, but are instructive

Notes

28Scaled Packed Decimal Computations: General Rules

© I B M 2015System z Assembler LanguageChap. VIII, Sec. 29.10

• Scaled arithmetic uses values having decimal points not always
following the rightmost digit

− Most packed decimal arithmetic uses scaled operands

• Precision: number of digits in a value

− Not the same thing as accuracy!

• The number of fraction digits is the scale of the value:

DC P′ 123 .4 ′ Precision = 4, Scale = 1 (Integer attribute = 3)
DC P′ 5 . 678 ′ Precision = 4, Scale = 3 (Integer attribute = 1)

• If I = number of integer digits, and F = number of fraction digits,
then Precision P=I+F, and Value = I.F

• Given operands 1 and 2 (I1.F1 and I2.F2), then:

− Sum or Difference I.F: I= M a x (I 1,I2), F= M a x (F 1,F2)

− Product I.F: I= I 1+ I2, F= F 1+ F2

− Quotient I.F: I= I 1+ F2; for an N-digit result, F= N −I
• You must keep these in mind doing scaled packed decimal arithmetic

Notes

130

29Section 30: Converting and Formatting Packed Decimal Data

© I B M 2015System z Assembler LanguageChap. VIII, Sec. 30

• These instructions help convert between binary and packed decimal,
and from packed decimal to character

− CVB/CVBY and CVD/CVDY differ only in their displacement′s length and sign

• Binary data is usually converted first to packed decimal

• ED and EDMK are powerful “programmable” instructions that convert
packed to character

− Their behavior is controlled by an Edit Pattern that you provide

M n e m Instruction M n e m Instruction

CVB Convert to Binary (32) CVD Convert to Decimal (32)

CVBY Convert to Binary (32) CVDY Convert to Decimal (32)

CVBG Convert to Binary (64) CVDG Convert to Decimal (64)

ED Edit EDMK Edit and Mark

Notes

30CVD, CVDY, and CVDG Instructions

© I B M 2015System z Assembler LanguageChap. VIII, Sec. 30.1

• Convert 2 ′s complement binary data in registers to packed decimal

• Example: suppose c(GR7) = X′00000087′ (+135 in decimal)

− CVD and CVDY convert 32-bit integers to 8 bytes of 15 packed decimal digits

CVD 7,WorkArea Convert to packed decimal at WorkArea
CVDY 7,WorkArea Convert to packed decimal at WorkArea
─ ─ ─

WorkArea DS D Result = X′00000000 0000135C′

• Example: suppose c(GG8) = X′4000000000000000′ = 2 62

− CVDG converts 64-bit integers to 16 bytes of 31 packed decimal digits.

CVDG 8,WrkArea2 Convert to 16─byte packed decimal
─ ─ ─

WrkArea2 DS 2D Result=X′00000000 00004611 68601842 7387904C′

• The operands need not be aligned on any specific boundary

− But doubleword alignment can improve performance

Notes

131

31CVB, CVBY, and CVBG Instructions

© I B M 2015System z Assembler LanguageChap. VIII, Sec. 30.2

• Convert 8- or 16-byte packed decimal data to 2′s complement binary in
a register

CVB 0,PACKNUM RESULT IN GR0 = X′ FFFFFF79′ = ─135
CVBG 9,PACKNUM2 RESULT IN GG9 = X′ FFFF8FB779F22087′
─ ─ ─

PACKNUM DC 0D,PL8′ ─135′
PACKNUM2 DC 0D,PL16′ ─123456789012345′

• Two interruptions are possible:
1. Invalid decimal operands can cause a decimal data exception; the

Interruption Code is set to 7

2. If the packed decimal operands have values too large for a register, a
fixed-point divide exception may occur; the Interruption Code is set to 9

CVB 0,TooBig Causes divide exception
─ ─ ─

TooBig DC 0D,PL8′123456789012345′ Exceeds 2**31 (somewhat)

• The operands need not be aligned on any specific boundary
− Doubleword alignment can improve performance

Notes

32Editing Overview

© I B M 2015System z Assembler LanguageChap. VIII, Sec. 30.3

• Assembler Language syntax for ED and EDMK:

mnem D1(N,B1),D2(B2) or Pattern(N),PackData

• Machine instruction format:

• The basic operation of the instructions:

┌─┬─┬─┬─┬─┬─┬─┬─┐ ┌──────┐ ┌───┬───┬───┬───┬───┬───┬───┬───┬───┬───┐
 │d│d│d│d│d│d│d│s│ ──� │ edit │ ──� │ C │ C │ C │ C │ C │ C │ C │ C │ C │ C │
└─┴─┴─┴─┴─┴─┴─┴─┘ └──────┘ └───┴───┴───┴───┴───┴───┴───┴───┴───┴───┘

Packed decimal data ED, EDMK EBCDIC characters replacing pattern

• Under control of the pattern (first operand), the instruction maps the
signed or unsigned packed decimal data into EBCDIC characters

− The editing process scans the pattern once , from left to right

opcode L B1 D1 B2 D2

Notes

132

33Editing Overview (continued)

© I B M 2015System z Assembler LanguageChap. VIII, Sec. 30.3a

• Editing actions depend on which pattern character (PC) is being
processed, and
− What happened previously, as determined by CPU ′s Significance Indicator

(SI)

• There are five types of pattern characters (PCs):
1. Fill Character (FC), may have any value; the first byte of the pattern

2. Digit Selector (DS), X′ 20 ′ (DS notated d)
− If a nonzero data digit has been processed previously, or the SI is 1, or the current

digit is nonzero, it is converted to EBCDIC and the SI is set to 1. Otherwise the DS
is replaced by the FC.

3. Digit Selector and Significance Start (SS), X′ 21 ′ (SS notated s)
− The SI is set to 1; if the current digit is nonzero, it is converted to EBCDIC.

Otherwise the SS is replaced by the FC.

4. Field Separator (FS), X′ 22 ′ (FS notated f)
− The SI is reset to 0, and the FS is replaced by the FC.

5. Message character having any other value; unchanged or replaced by FC
− Things l ike decimal points, currency signs, + / − signs, and text like CREDIT

• A pattern like X′402020204B202120′ is represented by C′ •ddd,dsd′

Notes

34Editing Overview (continued)

© I B M 2015System z Assembler LanguageChap. VIII, Sec. 30.3b

• Each edit step produces one of three results, in this priority:
1. A zoned source digit replaces a DS or SS in the pattern

If: the digit is nonzero, or the SI is ON

2. The FC replaces the pattern character
If: the SI is OFF, or the pattern character is FS

3. The pattern character is unchanged
If: the SI is ON, or the pattern character is the FC

• SI settings:
OFF: (1) at start, (2) after FS, (3) source byte has + code in rightmost

digit
ON: if no + code in rightmost digit, then (1) SS and valid digit,

(2) DS and nonzero digit
• CC settings:

CC Meaning

0 All source digits 0, or no digit selectors in pattern

1 Nonzero source digits, and SI is ON (result < 0)

2 Nonzero source digits, and SI is OFF (result > 0)

Notes

133

35Simple Examples of Editing

© I B M 2015System z Assembler LanguageChap. VIII, Sec. 30.4

1. A small number
MVC PgNum,PgNPat Copy pattern to result area
ED PgNum(4),PgNo Convert to characters
─ ─ ─

PgNo DC PL2′ 7 ′ Page number 007+
PgNum DS CL4 Edited result = C′ •••7 ′
PgNPat DC C′ ′ , 3 X′ 2 0 ′ Pattern = C′ ddd′

• A zero value converts to all blanks!

2. 32-bit binary integer; note SS before last DS
L 0,Num Get nonnegative binary number
CVD 0,WorkArea Convert to packed decimal
MVC LineX,Pat Move pattern to print line
ED LineX,WorkArea+2 Start edit with high─order digits
─ ─ ─

Num DC F′1234567890′ Number to be printed
WorkArea DS D 8─byte work area for CVD
Pat DC C′ ′ , 9 X′ 2 0 ′ , X′2120′ Pattern = C′ • dddddddddsd′
LineX DS CL12 Edited result here, C′••1234567890′

• Editing starts after 4 high-order zero digits; the SS ensures that a zero
value displays at least one digit

Notes

36Single-Field Editing

© I B M 2015System z Assembler LanguageChap. VIII, Sec. 30.5

• Inserting commas in large integer values (see Example 2 on slide 35)
ED LineX,WorkArea+2 Edit 11 decimal digits
─ ─ ─

Num DC F′1234567890′ Number to be printed
WorkArea DS 0D,XL8 Work area for CVD
Pat DC C′ ′ , 3 X′20206B20′ , X′2120′ C′ • ss,sss,sss,sds′ (X′ 6B′ is a comma)
LineX DS CL(LineX) Edited result: C′••1,234,567,890′

• Editing negative values (like a credit on a charge-card bill)
MVC LinB,Pat2 Move pattern to print line
ED LinB,Balance Edit to printable form
─ ─ ─

Balance DC P′ ─0012345′ Credit balance of $123.45
Pat2 DC C′ ′ , X′20206B2020214B2020′ , C′ CREDIT′ Pattern = C′ • dd,dds.dd•CREDIT′
PatX Equ * Used for defining length of Pat2
Line DC C′ Your account balance is′
LinB DS CL(PatX─Pat2) Space for edited result

− If the balance is -$123.45 (the bank owes you) the result is
Your•Account•Balance•is••••123.45•CREDIT

− If the balance is +$321.09 (you owe the bank) the result is
Your•Account•Balance•is••••321.09•••••••

Notes

134

37The EDMK Instruction

© I B M 2015System z Assembler LanguageChap. VIII, Sec. 30.6

• EDMK is identical to ED, except:

− If the SI is OFF when the first significant digit is zoned into the pattern, its
address is put in GR1

• Example: a “floating” currency symbol

MVC LPat,PayPat Move pattern to Line
EDMK LPat,PayAmt Edit and Mark result
BCTR 1,0 Decrement GR1 (move left one byte)
MVI 0(1),C′ $′ Put $ sign before first digit
─ ─ ─

PayAmt DC P′0098765′ Amount to print = $987.65
PayPat DC C′ ′ , X′20206B2020214B2020′ C′ • dd,dds.dd′
Line DC C′ Pay Exactly′ Precedes the ′ Amount:′ area
LPat DS CL(Line─PayPat) Result = C′ •••$987.65′

• If the first significant digit is forced by a SS, the SI will be ON and GR1
remains unchanged

Notes

38Editing Multiple Fields (*)

© I B M 2015System z Assembler LanguageChap. VIII, Sec. 30.7

• One execution of ED/EDMK can edit multiple fields

− A field separator (FS) (1) sets the SI OFF, and (2) is replaced by the FC

• Example: edit two packed decimal values

ED Pat2,PD2 Edit two packed decimal values
─ ─ ─

PD2 DC P′+024 ′ ,P′ ─135′ Two values
Pat2 DC X′402021204022202120′ C′ • dsdf•dsd′

− The result is C′ ••24••135′

• With EDMK, if more than one nonzero digit forces the SI ON, only the
address of the rightmost is placed in GR1

− The SI will then be OFF if that digit has a + code in the right digit

Notes

135

39Summary Comments on Editing (*)

© I B M 2015System z Assembler LanguageChap. VIII, Sec. 30.8

• These are complex but powerful instructions

Pattern
Character (PC)

Get
Source
Digit?

SI
Source
Digit

Result
Set
SI

Sign code in right
digit?

X′ 2 0 ′ (DS) Yes

1 Any ZD 1 If + , set SI OFF;
otherwise, leave it
unchanged

0 Nonzero ZD 1

0 Zero Fi l l Char 0

X′ 2 1 ′ (SS) Yes

1 Any ZD 1 If + , set SI OFF;
otherwise, leave it
unchanged

0 Nonzero ZD 1

0 Zero Fi l l Char 1

X′ 2 2 ′ (FS) No — — Fi l l Char 0
No source byte is
examined

Other (MC) No
0 — Fi l l Char 0 No source byte is

examined1 — MC 1

Fi l l Character
(FC)

No N/A — Fi l l Char 0 N/A

Notes

136

1Simple I/O Macros

© I B M 2015System z Assembler LanguageAppendix B

• We use some simple macro instructions for input, output, conversion,
and display

CONVERTI converts decimal characters in memory to 32- or 64-bit
binary integers in a general register

CONVERTO converts 32- or 64-bit binary integers in a general register
to decimal characters, or contents of a floating-point
register to hexadecimal characters, in memory

DUMPOUT displays the contents of storage in hexadecimal and
character formats

PRINTLIN sends a string of characters to a printer file

PRINTOUT displays the contents of registers and of named areas of
memory, and/or terminates execution

READCARD reads an 80-byte record from an input file to a specified
area of memory

• Each macro calls an entry point in an automatically generated control
section

Notes

2Notation and Terminology Conventions

© I B M 2015System z Assembler LanguageSec. B.1

• The macro descriptions use these terms:

<name> a symbol naming an area of memory addressable from
the macro

<number> a self-defining term (or a predefined absolute symbol)
with value limits specified by the macro

<d(b)> specifies an addressable base-displacement operand

<address> specifies a <name> or <d(b)>
<nfs> an optional name-field symbol on a macro

[item] [] indicates an optional item

... indicates that the preceding item may be repeated

• Referring to registers:

− Numbers 0-15 refer to 32-bit general registers 0-15

− Numbers 16-31 refer to 64-bit general registers 0-15

− Numbers 32-47 refer to Floating-Point registers 0-15

Notes

137

3The CONVERTI Macro Instruction

© I B M 2015System z Assembler LanguageSec. B.1.1

• CONVERTI is written

<nfs> CONVERTI <number>,<address>[,ERR=<address>][,STOP=<address>]

− The digits starting at the second operand <address> are converted to binary
in the general register designated by <number>
• The first non-blank character must be + , − , or a decimal digit; if not, GR1 is set to

the address of the invalid character

− ERR= specifies an address to receive control for an invalid <number> or a
too-large converted value

− STOP= specifies an address to receive control for an invalid character in the
input

− If either condition occurs and neither ERR= or STOP= is specified, the program
terminates with an error message.

• Example:

CONVERTI 3,Data c(GR3) = X′00000013′, c(GR1) = A(Data+3) (′ ? ′)
─ ─ ─

Data DC C′+019?′ Input string

Notes

4The CONVERTO Macro Instruction

© I B M 2015System z Assembler LanguageSec. B.1.2

• CONVERTO is written

<nfs> CONVERTO <number>,<address>

• The contents of the register specified by <number> (not the <number>
itself!) are converted to N characters in memory starting at <address>

0 ≤ <number> ≤ 15: N=12
16 ≤ <number> ≤ 31: N=21
32 ≤ <number> ≤ 47: N=20

• The first character of the result is always a blank

• If the value of <number> is not between 0 and 47, the macro is ignored

• Converted negative binary values are preceded with a − sign

• Examples (where • represents a blank character):

CONVERTO 4,GR4Val c(GR4Val) = •─2147483648
CONVERTO 22,GG6Val c(GG6Val) = •─9223372036854775808
CONVERTO 34,FR2Val c(FR2Val) = •X′ FEDCBA9876543210′

Notes

138

5The DUMPOUT Macro Instruction

© I B M 2015System z Assembler LanguageSec. B.1.3

• DUMPOUT prints a formatted display of memory (a “dump”)

<nfs> DUMPOUT <address>[,<address>]

− If only one operand is present, only one line is dumped

− If both operands are present, the dump is from the lower address to the
higher

• Each line starts on a word boundary and displays 32 bytes

− The first l ine contains the byte at the lower address

− The last line contains the byte at the higher address

• Example:

Dumpout A,B Dump,including bytes from A to B

− produces something like this:

 *** DUMPOUT REQUESTED AT ADDRESS 01A102, STATEMENT 797, CC=0
 01A000 1B1190EF F00C58F0 F01405EF 00F12802 0001A000 0001A204 F001A002 00000006 *....0..00....1........S.0.......*
 01A020 98EFE000 070090EF F03058F0 F03805EF 00F12802 0001A000 8001A22C 0001A026 *Q.......0..00....1........S.....*

Notes

6The PRINTLIN Macro Instruction

© I B M 2015System z Assembler LanguageSec. B.1.4

• PRINTLIN sends up to 121 characters to a print file

<nfs> PRINTLIN <address>[,<number>]

− The character string starts at <address>
− <number> is the number of characters (at most 121)

• If <number> is omitted, it is assumed to be 121

• The first character is used for vertical spacing (“carriage control”) and
is not printed:

− EBCDIC ′ ′ (blank) means single space
− EBCDIC ′ 0 ′ (zero) means double space
− EBCDIC ′ -′ (minus) means triple space
− EBCDIC ′ 1 ′ (one) means start at the top of a new page
− EBCDIC ′ + ′ (plus) means no spacing

• Example:

PrTtl PRINTLIN Title
─ ─ ─

Title DC CL121′ 1Title for Top Line of a Page′

Notes

139

7The PRINTOUT Macro Instruction

© I B M 2015System z Assembler LanguageSec. B.1.5

• PRINTOUT supports 3 types of operand: <name>, <number>, and *
<nfs> PRINTOUT [<name>,...][<number>,...]

<nfs> PRINTOUT *

− * terminates execution; it is treated as the last operand

− a <number> operand between 0 and 47 refers to a register; other values are
treated as an address, or ignored

− a <name> operand causes the named area to be printed; format and length
depend on operand attributes

• Examples:

PrintOut 1,19,32,* Print GR1, GG3, FPR0, terminate

• Produces output like this:

 *** PRINTOUT requested at Address 01A132, Statement 808, CC=0
 GPR 1 = X′0001A197′ = 106903
 GGR 3 = X′ FFFFFFFFFFFFFFFF′ = ─1
 FPR 0 = X′0000000000000000′
 *** Execution terminated by PRINTOUT * at Address 01A132

Notes

8The READCARD Macro Instruction

© I B M 2015System z Assembler LanguageSec. B.1.6

• READCARD reads 80-byte records into your program

<nfs> READCARD <address>[,<address>]

− The first operand specifies the location in your program for the record

− If no records remain (“end of fi le”, EOF)

1. If the second operand is present, control is returned to that location

2. If the second operand is omitted, the program is terminated with a message

 *** Execution terminated by Reader EOF

• Example:

GetARec READCARD MyRecord,EndFile
─ ─ ─

EndFile ─ ─ ─ Do something about no more records

Notes

140

9PRINTOUT and DUMPOUT Headers

© I B M 2015System z Assembler LanguageSec. B.1.7

• Previous examples (slides 5 and 7) have illustrated
DUMPOUT/PRINTOUT header lines:

*** PRINTOUT requested at Address xxxxxx, Statement sssss, CC=n
or

*** DUMPOUT requested at Address xxxxxx, Statement sssss, CC=n

− where sssss is the statement number of the macro

− where CC=n is the Condition Code at that point

• The header line can be suppressed by specifying an operand

Header=no

at any position in the operand list; mixed case is OK

• Examples:

DUMPOUT A,B,Header=NO
PRINTOUT 0,19,header=no,34,*

Notes

10Usage Notes

© I B M 2015System z Assembler LanguageSec. B.1.8

• All the macros must execute in 24-bit addressing mode, AMODE(24),
and reside below the 16MB “line”, RMODE(24)

• The instructions generated by the macros are self-modifying, as is the
generated “service” control section; programs using these macros are
not reenterable

• Most operands of the form <address>, <name>, and <number> are
resolved in S-type address constants, so addressability is required
when a macro is invoked

• Be careful not to reference areas outside your program

• At most 8 characters of <name> and <d(b)> operands are displayed by
PRINTOUT

Notes

141

11Sample Program

© I B M 2015System z Assembler LanguageSec. B.2

• This sample program and its listing and output are shown in the text
PRINT NOGEN SUPPRESS EXPANSIONS

 IOSAMP CSECT , SAMPLE PROGRAM
USING *,15 LOCAL BASE REGISTER
SR 1,1 CLEAR CARD COUNTER

 * NEXT STATEMENT FOR FLOW TRACING
PRINTOUT

 READ READCARD CARDOUT,EOF READ CARD UNTIL ENDFILE
LA 1,1(0,1) INCREMENT CARD COUNTER
PRINTOUT 1 PRINT THE COUNT REGISTER
PRINTLIN OUT,LINELEN PRINT A LINE
CONVERTI 2,CARDOUT CONVERT A NUMBER INTO GR2
CONVERTO 2,OUTDATA PUT IT IN PRINTABLE FORM
PRINTLIN OUTDATA,L′ OUTDATA PRINT THE VALUE
B READ GO BACK AND READ AGAIN

 EOF DUMPOUT IOSAMP,LAST DUMP EVERYTHING
XGR 3,3 SET GG3 TO 0
BCTGR 3,0 NOW SET GG3 TO ─1
PRINTOUT 1,19,32,* PRINT GR1, GG3, FPR0, TERMINATE

 OUT DC C′ 0 INPUT RECORD = ″ ′ FIRST PART OF LINE
 CARDOUT DC CL80′ ′ , C′ ″ ′ CARD IMAGE HERE
 LINELEN EQU *─OUT DEFINE LINE LENGTH
 OUTDATA DS CL12 CONVERTED CHARACTERS
 LAST EQU * LAST BYTE OF PROGRAM

END

Notes

142

