
High Level Assembler for z/OS & z/VM & z/VSE

Language Reference
Version 1 Release 6

SC26-4940-06

���

Note
Before using this information and the product it supports, be sure to read the general information under “Notices” on page
379.

This edition applies to IBM High Level Assembler for z/OS & z/VM & z/VSE, Release 6, Program Number
5696-234 and to any subsequent releases until otherwise indicated in new editions. Make sure that you are using the
correct edition for the level of the product.

Order publications through your IBM representative or the IBM branch office serving your locality.

IBM welcomes your comments. For information on how to send comments, see “How to send your comments to
IBM” on page xvii.

© Copyright IBM Corporation 1992, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures vii

Tables ix

About this document xi
Who should use this manual xi
Programming interface information xi
Organization of this manual xi
High Level Assembler documents xii

Documents xii
Collection kits xiii

Related publications xiii
Syntax notation xiii

How to send your comments to IBM xvii
If you have a technical problem xvii

Summary of changes xix

Chapter 1. Introduction 1
Language compatibility 1
Assembler language 2

Machine instructions. 2
Assembler instructions 2
Macro instructions 3

Assembler program 3
Basic functions. 3
Associated data 3
Controlling the assembly 3
Processing sequence 4

Relationship of assembler to operating system . . . 5
Coding made easier 6

Symbolic representation of program elements . . 6
Variety in data representation. 6
Controlling address assignment 6
Relocatability 6
Sectioning a program 6
Linkage between source modules 7
Program listings 7
Multiple source modules 7

Double-byte character set notation 7

Chapter 2. Coding and structure 9
Character set 9

Standard character set 9
Double-byte character set 10
Translation table 11

Assembler language coding conventions 11
Field boundaries. 12
Continuation lines 13
Blank lines 15
Comment statement format 15
Instruction statement format. 15

Assembler language structure 17

Overview of assembler language structure . . . 19
Machine instructions 20
Assembler instructions 21
Conditional assembly instructions 22
Macro instructions 23
Mnemonic tags 23

Terms, literals, and expressions 24
Terms 24
Literals 35
Expressions 38

Chapter 3. Program structures and
addressing 43
Object program structures 43
Source program structures 44

Source module 44
Sections, elements, and parts 45
Sections 46
Reference control sections 48
Classes (z/OS and CMS) 50
Parts (z/OS and CMS). 52
Location counter setting 52

Addressing 54
Addressing within source modules: establishing
addressability. 54
Base register instructions 56
Qualified addressing 56
Dependent addressing 57
Relative addressing 57
Literal pools 58
Establishing residence and addressing mode . . 58
Symbolic linkages 58
External symbol dictionary entries 61
Summary of source and object program
structures 62

Chapter 4. Machine instruction
statements 65
General instructions 65
Decimal instructions 65
Floating-point instructions 66
Control instructions 66
Input/output operations 66
Branching with extended mnemonic codes 67

Alternative mnemonics for some branch relative
instructions 69

Statement formats 70
Symbolic operation codes. 70
Operand entries 71

Registers 72
Addresses 73
Lengths. 75
Immediate data 76

Examples of coded machine instructions. 76
RI format 76

© Copyright IBM Corp. 1992, 2013 iii

RR format 78
RS format 78
RSI format. 79
RX format 80
SI format 81
SS format 81

Chapter 5. Assembler instruction
statements 83
64 bit addressing mode 84
*PROCESS statement 84
ACONTROL instruction 85
ADATA instruction 92
AINSERT instruction 92
ALIAS instruction 93
AMODE instruction 95
CATTR instruction (z/OS and CMS) 96
CCW and CCW0 instructions 99
CCW1 instruction 100
CEJECT instruction 101
CNOP instruction 102
COM instruction 104
COPY instruction 105
CSECT instruction 106
CXD instruction 108
DC instruction 109

Rules for DC operands 111
General information about constants. 111
Padding and truncation of values. 113
Subfield 1: Duplication Factor 114
Subfield 2: Type 115
Subfield 3: Type Extension 116
Subfield 4: Program type 117
Subfield 5: Modifier 118
Subfield 6: Nominal Value 121

DROP instruction 152
Labeled USING 152
Dependent USING 153

DS instruction 154
Bytes skipped for alignment 155
How to use the DS instruction. 155

DSECT instruction. 157
DXD instruction 159
EJECT instruction 160
END instruction 160
ENTRY instruction 162
EQU instruction 162

Using conditional assembly values 165
EXITCTL instruction 166
EXTRN instruction 167
ICTL instruction 168
ISEQ instruction 168
LOCTR instruction 169
LTORG instruction 171

Literal pool 172
Addressing considerations 172
Duplicate literals 173

MNOTE instruction 173
Remarks 174

OPSYN instruction 175
Redefining conditional assembly instructions 177

ORG instruction 177
POP instruction 180
PRINT instruction 181
Process statement 184
PUNCH instruction 184
PUSH instruction 185
REPRO instruction 186
RMODE instruction 187
RSECT instruction 188
SPACE instruction 189
START instruction 189
TITLE instruction 190

Deck ID in object records 191
Printing the heading 191
Printing the TITLE statement 191
Sample program using the TITLE instruction 191
Page ejects 192
Valid characters 192

USING instruction. 193
Base address 193
How to use the USING instruction 193
Base registers for absolute addresses. 194
Ordinary USING instruction 194
Labeled USING instruction 197
Dependent USING instruction 200

WXTRN instruction 202
XATTR instruction (z/OS and CMS). 203

Association of code and data areas (z/OS and
CMS) 205

Chapter 6. Introduction to macro
language 207
Using macros 207
Macro definition 207

Model statements 208
Processing statements 208
Comment statements 209

Macro instruction 209
Source and library macro definitions 210

Macro library 210
System macro instructions 210

Conditional assembly language 210

Chapter 7. How to specify macro
definitions. 213
Where to define a macro in a source module . . . 213
Format of a macro definition 214
Macro definition header and trailer 214

MACRO statement 214
MEND statement 214

Macro instruction prototype 215
Alternative formats for the prototype statement 216

Body of a macro definition 217
Model statements 217

Variable symbols as points of substitution . . . 217
Listing of generated fields 218
Rules for concatenation 218
Rules for model statement fields 220

Symbolic parameters 222
Positional parameters. 223

iv High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Keyword parameters 223
Combining positional and keyword parameters 223
Subscripted symbolic parameters 223

Processing statements 224
Conditional assembly instructions 224
Inner macro instructions. 224
Other conditional assembly instructions . . . 224
AEJECT instruction 225
AINSERT instruction 225
AREAD instruction 225
ASPACE instruction 227
COPY instruction 228
MEXIT instruction. 228

Comment statements 229
Ordinary comment statements. 229
Internal macro comment statements 229

System variable symbols 229
Scope and variability of system variable
symbols 230
&SYSADATA_DSN System Variable Symbol . . 231
&SYSADATA_MEMBER System Variable
Symbol 231
&SYSADATA_VOLUME System Variable
Symbol 232
&SYSASM System Variable Symbol 232
&SYSCLOCK System Variable Symbol 233
&SYSDATC System Variable Symbol 233
&SYSDATE System Variable Symbol. 234
&SYSECT System Variable Symbol 234
&SYSIN_DSN System Variable Symbol 235
&SYSIN_MEMBER System Variable Symbol . . 236
&SYSIN_VOLUME System Variable Symbol . . 237
&SYSJOB System Variable Symbol 238
&SYSLIB_DSN System Variable Symbol . . . 238
&SYSLIB_MEMBER System Variable Symbol 238
&SYSLIB_VOLUME System Variable Symbol 239
&SYSLIN_DSN System Variable Symbol . . . 239
&SYSLIN_MEMBER System Variable Symbol 240
&SYSLIN_VOLUME System Variable Symbol 241
&SYSLIST System Variable Symbol 241
&SYSLOC System Variable Symbol 243
&SYSMAC System Variable Symbol 243
&SYSM_HSEV System Variable Symbol . . . 244
&SYSM_SEV System Variable Symbol 244
&SYSNDX System Variable Symbol 245
&SYSNEST System Variable Symbol 247
&SYSOPT_DBCS System Variable Symbol . . . 248
&SYSOPT_OPTABLE System Variable Symbol 248
&SYSOPT_RENT System Variable Symbol . . . 248
&SYSOPT_XOBJECT System Variable Symbol 248
&SYSPARM System Variable Symbol 249
&SYSPRINT_DSN System Variable Symbol . . 249
&SYSPRINT_MEMBER System Variable Symbol 250
&SYSPRINT_VOLUME System Variable Symbol 251
&SYSPUNCH_DSN System Variable Symbol 251
&SYSPUNCH_MEMBER System Variable
Symbol 252
&SYSPUNCH_VOLUME System Variable
Symbol 253
&SYSSEQF System Variable Symbol 253
&SYSSTEP System Variable Symbol 254

&SYSSTMT System Variable Symbol. 254
&SYSSTYP System Variable Symbol 254
&SYSTEM_ID System Variable Symbol 255
&SYSTERM_DSN System Variable Symbol . . 255
&SYSTERM_MEMBER System Variable Symbol 256
&SYSTERM_VOLUME System Variable Symbol 256
&SYSTIME System Variable Symbol 257
&SYSVER System Variable Symbol 257

Chapter 8. How to write macro
instructions 259
Macro instruction format 259

Alternative formats for a macro instruction . . 260
Name entry 261
Operation entry 261
Operand entry 261

Sublists in operands 266
Multilevel sublists 268
Passing sublists to inner macro instructions . . 269

Values in operands 269
Omitted operands 269
Unquoted operands 269
Special characters 269

Nesting macro instruction definitions 272
Inner and outer macro instructions 273
Levels of macro call nesting 274

Recursion 274
General rules and restrictions 274
Passing values through nesting levels 275
System variable symbols in nested macros. . . 276

Chapter 9. How to write conditional
assembly instructions 279
Elements and functions 279
SET symbols 279

Subscripted SET symbols 280
Scope of SET symbols 280
Scope of symbolic parameters 280
SET symbol specifications 280
Subscripted SET symbol specification 283
Created SET symbols 284

Data attributes 284
Attributes of symbols and expressions 286
Type attribute (T') 289
Length attribute (L') 292
Scale attribute (S') 293
Integer attribute (I') 294
Count attribute (K') 295
Number attribute (N') 295
Defined attribute (D') 296
Operation code attribute (O') 297

Sequence symbols 298
Lookahead 299

Generating END statements 300
Lookahead restrictions 300
Sequence symbols 300

Open code 301
Conditional assembly instructions 302
Declaring SET symbols 302

GBLA, GBLB, and GBLC instructions 302

Contents v

LCLA, LCLB, and LCLC instructions 304
Assigning values to SET symbols 305

Introducing Built-In Functions. 305
SETA instruction 308
SETB instruction 321
SETC instruction 326
Extended SET statements 342
SETAF instruction 343
SETCF instruction 344

Branching 344
AIF instruction 344
AGO instruction 347
ACTR instruction 348
ANOP instruction 349

Chapter 10. MHELP instruction 351
MHELP options 351
MHELP operand mapping 352
Combining options 353

Appendix A. Assembler instructions 355

Appendix B. Summary of constants 359

Appendix C. Macro and conditional
assembly language summary 363

Appendix D. Standard character set
code table 375

Notices 379
Trademarks 380

Bibliography. 381

Index 383

vi High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Figures

1. Assembling and link-editing your assembler
language program. 1

2. Standard assembler coding format 11
3. Overview of assembler language structure 19
4. Machine instructions 20
5. Ordinary assembler instruction statements 21
6. Conditional assembly instructions 22
7. Macro instructions 23
8. Transition from assembler language statement

to object code 28
9. Differences between literals, constants, and

self-defining terms 36
10. Examples of valid expressions 39
11. Definitions of absolute and relocatable

expressions 40
12. Load module and Program Object structures 44
13. Use of multiple location counters 54
14. Extended mnemonic codes (part 1 of 5) 67
15. Extended mnemonic codes (part 2 of 5) 68
16. Extended mnemonic codes (part 3 of 5) 68
17. Extended mnemonic codes (part 4 of 5) 69
18. Extended mnemonic codes (part 5 of 5) 69
19. Format of addresses in object code 75
20. CNOP alignment 103
21. How the location counter works 107
22. Rounding mode values 141
23. Hexadecimal floating-point external formats 144
24. DC instruction syntax for floating point

constants 148
25. Sample code using the DSECT instruction

(Assembly-2). 159
26. Building a translate table. 180

27. Sample program using TITLE instruction 192
28. Program object with PSECTs, example 1 206
29. Parts of a macro definition 208
30. Format of a macro definition 214
31. Exposing the value of a local scope variable

to open code 230
32. Example of the behavior of the

&SYSM_HSEV and &SYSM_SEV variables . . 245
33. Positional operands 262
34. Relationship between keyword operands and

keyword parameters and their assigned
values 265

35. Combining positional and keyword
parameters 266

36. Sublists in operands 267
37. Editing inner macro definitions 272
38. Expanding nested macro definitions 273
39. Values in nested macro calls 274
40. Passing values through nesting levels 276
41. Undefined and unknown type attributes 290
42. Unknown type attribute for invalid symbol 290
43. Evaluation of length attribute references 293
44. Number attribute reference 296
45. Defining arithmetic (SETA) expressions 309
46. Defining logical expressions. 322
47. Defining character (SETC) expressions 327
48. Subscripted SETC symbols 328
49. Sample assembly using substring notation 330
50. Sample assembly using substring notation

with messages suppressed 331
51. MHELP control on &SYSNDX 353

© Copyright IBM Corp. 1992, 2013 vii

viii High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Tables

1. IBM High Level Assembler for z/OS & z/VM
& z/VSE documents xii

2. Standard character set 9
3. Double-byte character set (DBCS) 10
4. Examples using character set. 10
5. Summary of terms 24
6. Assignment of length attribute values to

symbols in name fields. 34
7. Defining external symbols. 61
8. Object program structure comparison 62
9. Alternative mnemonics for some branch

relative instructions 69
10. Assembler instructions 83
11. AMODE/RMODE combinations 96
12. AMODE/RMODE defaults 96
13. Channel command word, format 0 99
14. Channel command word, format 1 101
15. Valid CNOP values 103
16. Types of data constants 109
17. Length attribute value of symbol naming

constants 112
18. Alignment of constants 112
19. Type codes for constants 116
20. Type extension codes for constants 116
21. Specifying constant values 121
22. Binary constants 122
23. Character constants 124
24. Graphic constants 126
25. Hexadecimal constants 128
26. Fixed-point constants 129
27. Decimal constants 131
28. A and Y address constants 134
29. R address constants 135
30. S address constants 137
31. V address constants 138
32. Q offset constants 139
33. J length constants 140
34. Hexadecimal floating-point constants 141
35. LOCTR behavior with NOGOFF option 170
36. LOCTR behavior with GOFF option 171
37. Rules for concatenation 219
38. Contents of &SYSADATA_DSN on CMS 231
39. Contents of &SYSIN_DSN on CMS 236

40. Contents of &SYSIN_DSN on z/VSE 236
41. Contents of &SYSLIN_DSN on CMS 240
42. Contents of &SYSLIN_DSN on z/VSE 240
43. Contents of &SYSPRINT_DSN on CMS 249
44. Contents of &SYSPRINT_DSN on z/VSE 250
45. Contents of &SYSPUNCH_DSN on CMS 251
46. Contents of &SYSPUNCH_DSN on z/VSE 252
47. Contents of &SYSTERM_DSN on CMS 255
48. Relationship between subscripted parameters

and sublist entries 267
49. Multilevel sublists 268
50. Features of SET symbols and other types of

variable symbols 281
51. Data attributes 285
52. Attributes and related symbols. 287
53. Using attribute values. 287
54. Relationship of integer to length and scale

attributes 294
55. Restrictions on coding expressions in open

code 301
56. Assembler instructions 302
57. Summary of Built-In Functions and Operators 307
58. Variable symbols allowed as terms in

arithmetic expressions 309
59. Use of arithmetic expressions 311
60. Substring notation in conditional assembly

instructions 329
61. Use of character expressions 331
62. &SYSNDX Control Bits 352
63. Assembler instructions 355
64. Assembler statements 357
65. Summary of constants (part 1 of 2) 359
66. Summary of constants (part 2 of 2) 360
67. Macro language elements (part 1) 364
68. Macro language elements (part 2) 366
69. Conditional assembly expressions 368
70. Built-in functions 368
71. Attributes 368
72. Variable symbols 369
73. System variable symbols 370
74. Standard character set code table - from code

page 00037 375

© Copyright IBM Corp. 1992, 2013 ix

x High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

About this document

This manual describes the syntax of assembler language statements, and provides information about
writing source programs that are to be assembled by IBM High Level Assembler for z/OS & z/VM &
z/VSE, Licensed Program 5696-234, from here on referred to as “High Level Assembler”, or “the
assembler”. It is meant to be used with the HLASM Programmer's Guide.

Detailed definitions of machine instructions are not included in this manual. See “Bibliography” on page
381 for a list of manuals that provide this information.

Throughout this book, we use these indicators to identify platform-specific information:
v Prefix the text with platform-specific text (for example, “Under CMS...”)
v Add parenthetical qualifications (for example, “(CMS)”)
v A definition list, for example:

z/OS Informs you of information specific to z/OS®.

z/VM Informs you of information specific to z/VM®.

z/VSE Informs you of information specific to z/VSE®.

CMS is used in this manual to refer to Conversational Monitor System on z/VM.

Who should use this manual
HLASM Language Reference is for application programmers coding in the High Level Assembler language.
It is not intended to be used for tutorial purposes, but is for reference only. If you are interested in
learning more about assemblers, most libraries have tutorial books on the subject. It assumes that you are
familiar with the functional details of the Enterprise Systems Architecture, and the role of
machine-language instructions in program execution.

Programming interface information
This manual is intended to help the customer create application programs. This manual documents
General-Use Programming Interface and Associated Guidance Information provided by IBM High Level
Assembler for z/OS & z/VM & z/VSE.

General-use programming interfaces allow the customer to write programs that obtain the services of
IBM High Level Assembler for z/OS & z/VM & z/VSE.

Organization of this manual
This manual is organized as follows:

Assembler language structure and concepts

Chapter 1, “Introduction,” on page 1 describes the assembler language and how the assembler
processes assembler language source statements. It also describes the relationship between the
assembler and the operating system, and suggests ways to make the task of coding easier.
Chapter 2, “Coding and structure,” on page 9 describes the coding rules for and the structure of the
assembler language. It also describes the language elements in a program.
Chapter 3, “Program structures and addressing,” on page 43 describes the concepts of addressability
and symbolic addressing. It also describes control sections and the linkage between control sections.
Machine and assembler instruction statements

© Copyright IBM Corp. 1992, 2013 xi

Chapter 4, “Machine instruction statements,” on page 65 describes the machine instruction types and
their formats.
Chapter 5, “Assembler instruction statements,” on page 83 describes the assembler instructions in
alphabetical order.
Macro language

Chapter 6, “Introduction to macro language,” on page 207 describes the macro facility concepts
including macro definitions, macro instruction statements, source and library macro definitions, and
conditional assembly language.
Chapter 7, “How to specify macro definitions,” on page 213 describes the components of a macro
definition.
Chapter 8, “How to write macro instructions,” on page 259 describes how to call macro definitions
using macro instructions.
Chapter 9, “How to write conditional assembly instructions,” on page 279 describes the conditional
assembly language including SET symbols, sequence symbols, data attributes, branching, and the
conditional assembly instructions.
Chapter 10, “MHELP instruction,” on page 351 describes the MHELP instruction that you can use to
control a set of macro trace and dump facilities.
Appendixes

Appendix A, “Assembler instructions,” on page 355 summarizes the assembler instructions and
assembler statements, and the related name and operand entries.
Appendix B, “Summary of constants,” on page 359 summarizes the types of constants and related
information.
Appendix C, “Macro and conditional assembly language summary,” on page 363 summarizes the
macro language described in Part 3. This summary also includes a summary table of the system
variable symbols.
Appendix D, “Standard character set code table,” on page 375 shows the code table for the
assembler's standard character set.

High Level Assembler documents
High Level Assembler runs under z/OS, z/VM, and z/VSE. Its publications for the z/OS, z/VM, and
z/VSE operating systems are described in this section.

Documents
Here are the High Level Assembler documents. The table shows tasks, and which document can help you
with that particular task. Then there is a list showing each document and a summary of its contents.

Table 1. IBM High Level Assembler for z/OS & z/VM & z/VSE documents

Task Document Order Number

Installation and
customization

HLASM V1R6 Installation and Customization Guide SC26-3494

HLASM V1R6 Programmer's Guide SC26-4941

HLASM V1R6 Toolkit Feature Installation Guide GC26-8711

Application
Programming

HLASM V1R6 Programmer's Guide SC26-4941

HLASM V1R6 Language Reference SC26-4940

HLASM V1R6 Toolkit Feature User's Guide GC26-8710

HLASM V1R6 Toolkit Feature Interactive Debug Facility User's Guide GC26-8709

Diagnosis HLASM V1R6 Installation and Customization Guide SC26-3494

xii High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

HLASM Installation and Customization Guide
Contains the information you need to install and customize, and diagnose failures in, the High
Level Assembler product.

The diagnosis section of the book helps users determine if a correction for a similar failure has
been documented previously. For problems not documented previously, the book helps users to
prepare an APAR. This section is for users who suspect that High Level Assembler is not working
correctly because of some defect.

HLASM Language Reference
Presents the rules for writing assembler language source programs to be assembled using High
Level Assembler.

HLASM Programmer's Guide
Describes how to assemble, debug, and run High Level Assembler programs.

HLASM Toolkit Feature Installation and Customization Guide
Contains the information you need to install and customize, and diagnose failures in, the High
Level Assembler Toolkit Feature.

HLASM Toolkit Feature User's Guide
Describes how to use the High Level Assembler Toolkit Feature.

HLASM Toolkit Feature Debug Reference Summary
Contains a reference summary of the High Level Assembler Interactive Debug Facility.

HLASM Toolkit Feature Interactive Debug Facility User's Guide
Describes how to use the High Level Assembler Interactive Debug Facility.

Collection kits
The High Level Assembler publications are available in these collection kits:
v z/OS V1Rx and Software Products DVD Collection, SK3T-4271 (Book and PDF)
v z/OS V1Rx Information Center DVD, SK5T-7089
v z/VM Collection on DVD, SK5T-7054
v z/VM VxRy Information Center DVD, SK5T-7098
v z/VSE Collection, SK3T-8348

For more information about High Level Assembler, see the High Level Assembler Web site, at
http://www-306.ibm.com/software/awdtools/hlasm/

Related publications
See “Bibliography” on page 381 for a list of publications that supply information you might need while
you are using High Level Assembler.

Syntax notation
Throughout this book, syntax descriptions use this structure:
v Read the syntax diagrams from left to right, from top to bottom, following the path of the line.

The ��── symbol indicates the beginning of a statement.
The ───� symbol indicates that the statement syntax is continued on the next line.
The �─── symbol indicates that a statement is continued from the previous line.
The ──�� indicates the end of a statement.
Diagrams of syntactical units other than complete statements start with the �─── symbol and end with
the ───� symbol.

About this document xiii

v Keywords appear in uppercase letters (for example, ASPACE) or uppercase and lowercase (for
example, PATHFile). They must be spelled exactly as shown. Lowercase letters are optional (for
example, you could enter the PATHFile keyword as PATHF, PATHFI, PATHFIL, or PATHFILE).
Variables appear in all lowercase letters in a special typeface (for example, integer). They represent
user-supplied names or values.

v If punctuation marks, parentheses, or such symbols are shown, they must be entered as part of the
syntax.

v Required items appear on the horizontal line (the main path).

�� INSTRUCTION required item ��

v Optional items appear below the main path. If the item is optional and is the default, the item appears
above the main path.

�� INSTRUCTION
default item

optional item
��

v When you can choose from two or more items, they appear vertically in a stack.
If you must choose one of the items, one item of the stack appears on the main path.

�� INSTRUCTION required choice1
required choice2

��

If choosing one of the items is optional, the whole stack appears below the main path.

�� INSTRUCTION
optional choice1
optional choice2

��

v An arrow returning to the left above the main line indicates an item that can be repeated. When the
repeat arrow contains a separator character, such as a comma, you must separate items with the
separator character.

�� INSTRUCTION �

,

repeatable item ��

A repeat arrow above a stack indicates that you can make more than one choice from the stacked
items, or repeat a single choice.

xiv High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Format

The following example shows how the syntax is used.

�A� The item is optional, and can be coded or not.

�B� The INSTRUCTION key word must be specified and coded as shown.

�C� The item referred to by “fragment” is a required operand. Allowable choices for this operand are
given in the fragment of the syntax diagram shown below “fragment” at the bottom of the
diagram. The operand can also be repeated. That is, more than one choice can be specified, with
each choice separated by a comma.

�A� �B� �C�

��
optional item

INSTRUCTION �

,

fragment ��

fragment:

operand choice1
(1)

operand choice2
operand choice3

Notes:

1 operand choice2 and operand choice3 must not be specified together

About this document xv

xvi High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

How to send your comments to IBM

If you especially like or dislike anything about this book, feel free to send us your comments.

You can comment on what you regard as specific errors or omissions, and on the accuracy, organization,
subject matter, or completeness of this book. Please limit your comments to the information that is in this
book and to the way in which the information is presented. Speak to your IBM representative if you have
suggestions about the product itself.

When you send us comments, you grant to IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

You can get your comments to us quickly by sending an e-mail to idrcf@hursley.ibm.com. Alternatively,
you can mail your comments to:

User Technologies,
IBM United Kingdom Laboratories,
Mail Point 095, Hursley Park,
Winchester, Hampshire,
SO21 2JN, United Kingdom

Please ensure that you include the book title, order number, and edition date.

If you have a technical problem
Do not use the feedback methods listed above. Instead, do one of the following:
v Contact your IBM service representative
v Call IBM technical support
v Visit the IBM support web page

© Copyright IBM Corp. 1992, 2013 xvii

http://www.ibm.com/support/entry/portal/overview/software/other_software/high_level_assembler_and_toolkit_feature

xviii High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Summary of changes
Date of Publication

August 2013

Form of Publication
Seventh Edition, SC26-4940-HLASM Language Reference

Here is a list of the changes to HLASM that are explained in this document.

Changed Assembler instructions

v New QY-type and SY-type address constants provide resolution into long displacement.
v Support for three decimal floating-point data types, increasing instruction addressability and reducing

the need for additional instructions.

Unified Opcode table

v OPTABLE option
– The OPTABLE option is permitted on the *PROCESS statement.

v Mnemonic tagging

– Suffix tags for instruction mnemonics let you use identically named macro instructions and machine
instructions in the same source program.

© Copyright IBM Corp. 1992, 2013 xix

xx High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Chapter 1. Introduction

A computer can understand and interpret only machine language. Machine language is in binary form
and, thus, difficult to write. The assembler language is a symbolic programming language that you can
use to code instructions instead of coding in machine language.

Because the assembler language lets you use meaningful symbols made up of alphabetic and numeric
characters, instead of just the binary digits 0 and 1 used in machine language, you can make your coding
easier to read, understand, and change. The assembler must translate the symbolic assembler language
into machine language before the computer can run your program. The specific procedures followed to
do this vary according to the system you are using. However, the method is basically the same for all
systems:

Your program, written in the assembler language, becomes the source module that is input to the
assembler. The assembler processes your source module and produces an object module in machine
language (called object code). The object module can be used as input to be processed by the linker or the
binder. The linker or binder produces a load module (z/OS and CMS), or a phase (z/VSE), that can be
loaded later into the main storage of the computer. When your program is loaded, it can then be run.
Your source module and the object code produced are printed, along with other information, on a
program listing.

Language compatibility
The assembler language supported by High Level Assembler has functional extensions to the languages
supported by Assembler H Version 2 and DOS/VSE Assembler. High Level Assembler uses the same
language syntax, function, operation, and structure as Assembler H Version 2. Similarly, the functions
provided by the Assembler H Version 2 macro facility are all provided by High Level Assembler.

┌───────────────────┐
│ Your assembler │
│ language source ├─────┐
│ statements │ │
└───────────────────┘ │

↓
┌───────────┴───────────┐
│ HIGH LEVEL ASSEMBLER │
└─────────┬───┬─────────┘

│ │
│ │

┌──────────┐ │ │ ┌──────────────────┐
│ Messages │ │ │ │ Machine language │
│ and ├←───────────┘ └──────────→┤ version of your │
│ listings │ │ program │
│ . │ └─────────┬────────┘
│ . │ │
└────┬─────┘ │

↑ │
│ │
│ ┌─────────────────┐ │
│ │ BINDER ├←─────────────┘
│ └──────┬───┬──────┘
│ │ │
│ │ │ ┌───────────────────┐
└──────────────────┘ └──────────→┤ Executable module │

└───────────────────┘

Figure 1. Assembling and link-editing your assembler language program

© Copyright IBM Corp. 1992, 2013 1

Migration from Assembler H Version 2 or DOS/VSE Assembler to High Level Assembler requires an
analysis of existing assembler language programs to ensure that they do not contain:
v Macro instructions with names that conflict with High Level Assembler symbolic operation codes
v SET symbols with names that conflict with the names of High Level Assembler system variable

symbols
v Dependencies on the type attribute values of certain variable symbols or macro instruction operands

Except for these possible conflicts, and with the appropriate High Level Assembler option values, source
language source programs written for Assembler H Version 2 or DOS/VSE Assembler, that assemble
without warning or error diagnostic messages, should assemble correctly using High Level Assembler.

z/VSE An E-Deck refers to a macro source book of type E that can be used as the name of a macro
definition to process in a macro instruction. E-Decks are stored in edited format, and High Level
Assembler requires that library macros be stored in source statement format. A library input exit
can be used to analyze a macro definition, and, in the case of an E-Deck, call the z/VSE ESERV
program to change, the E-Deck definition, line by line, back into source format required by the
assembler, without modifying the original library file.

See the section titled Using the High Level Assembler Library Exit for Processing E-Decks in the z/VSE:
Guide to System Functions. This section describes how to set up the exit and how to use it.

Assembler language
The assembler language is the symbolic programming language that lies closest to the machine language
in form and content. The assembler language is useful when:
v You need to control your program closely, down to the byte and even the bit level.
v You must write subroutines for functions that are not provided by other symbolic programming

languages, such as COBOL, Fortran, or PL/I.

The assembler language is made up of statements that represent either instructions or comments. The
instruction statements are the working part of the language and are divided into the following three
groups:
v Machine instructions
v Assembler instructions
v Macro instructions

Machine instructions
A machine instruction is the symbolic representation of a machine language instruction of the following
instruction sets:
v IBM System/370
v IBM System/370 Extended Architecture (370-XA)
v Enterprise Systems Architecture/370 (ESA/370)
v Enterprise Systems Architecture/390 (ESA/390)
v z/Architecture®

It is called a machine instruction because the assembler translates it into the machine language code that
the computer can run. Machine instructions are described in Chapter 4, “Machine instruction statements,”
on page 65.

Assembler instructions
An assembler instruction is a request to the assembler to do certain operations during the assembly of a
source module; for example, defining data constants, reserving storage areas, and defining the end of the
source module. Except for the instructions that define constants, and the instruction used to generate
no-operation instructions for alignment, the assembler does not translate assembler instructions into

2 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

object code. The assembler instructions are described in Chapter 3, “Program structures and addressing,”
on page 43, Chapter 5, “Assembler instruction statements,” on page 83, and Chapter 9, “How to write
conditional assembly instructions,” on page 279.

Macro instructions
A macro instruction is a request to the assembler program to process a predefined sequence of
instructions called a macro definition. From this definition, the assembler generates machine and assembler
instructions, which it then processes as if they were part of the original input in the source module.

IBM supplies macro definitions for input/output, data management, and supervisor operations that you
can call for processing by coding the required macro instruction. (These IBM-supplied macro instructions
are described in the applicable Macro instructions manual.)

You can also prepare your own macro definitions, and call them by coding the corresponding macro
instructions. Rather than code all this sequence each time it is needed, you can create a macro instruction
to represent the sequence and then, each time the sequence is needed, code the macro instruction
statement. During assembly, the sequence of instructions represented by the macro instruction is inserted
into the source program.

A complete description of the macro facility, including the macro definition, the macro instruction, and
the conditional assembly language, is given in Chapter 6, “Introduction to macro language,” on page 207
through Chapter 10, “MHELP instruction,” on page 351.

Assembler program
The assembler program, also referred to as the assembler, processes the machine, assembler, and macro
instructions you have coded (source statements) in the assembler language, and produces an object
module in machine language.

Basic functions
Processing involves the translation of source statements into machine language, assignment of storage
locations to instructions and other elements of the program, and performance of auxiliary assembler
functions you have designated. The output of the assembler program is the object program, a machine
language translation of the source program. The assembler produces a printed listing of the source
statements and object program statements and additional information, such as error messages, that are
useful in analyzing the program. The object program is in the format required by the binder.

Associated data
The assembler can produce an associated data file that contains information about the source program
and the assembly environment. The ADATA information includes information such as:
v Data sets used by the assembler
v Program source statements
v Macros used by the assembler
v Program symbols
v Program object code
v Assembly error messages

Different subsets of this information are needed by various consumers, such as configuration managers,
debuggers, librarians, metrics collectors, and many more.

Controlling the assembly
You can control the way the assembler produces the output from an assembly, using assembler options
and assembler language instructions.

Chapter 1. Introduction 3

Assembler options are described in the chapter “Controlling Your Assembly with Options” in the HLASM
Programmer's Guide. A subset of assembler options can be specified in your source program using the
*PROCESS statement described in “*PROCESS statement” on page 84.

Assembler language instructions are assembler language source statements that cause the assembler to
perform a specific operation. Some assembler language instructions, such as the DC instruction, generate
object code. Assembler language instructions are categorized as follows:

Assembler Instructions
These include instructions for:
v Producing associated data
v Assigning base registers
v Defining data constants
v Controlling listing output
v Redefining operation codes
v Sectioning and linking programs
v Defining symbols

These instructions are described in Chapter 5, “Assembler instruction statements,” on page 83.

Macro Instructions
These instructions let you define macros for generating a sequence of assembler language
statements from a single instruction. These instructions are described in Chapter 6, “Introduction
to macro language,” on page 207 through Chapter 10, “MHELP instruction,” on page 351.

Conditional Assembly Instructions
These instructions let you perform general arithmetic and logical computations, and condition
tests that can vary the output generated by the assembler. These instructions are described under
“Conditional assembly instructions” on page 302.

Processing sequence
The assembler processes the machine and assembler language instructions at different times during its
processing sequence. You should be aware of the assembler's processing sequence in order to code your
program correctly.

The assembler processes most instructions twice, first during conditional assembly and, later, at assembly
time. Some processing is done only during conditional assembly.

Conditional assembly and macro instructions
The assembler processes conditional assembly instructions and macro processing instructions
during conditional assembly. During this processing the assembler evaluates arithmetic, logical,
and character conditional assembly expressions. Conditional assembly takes place before
assembly time.

The assembler processes the machine and ordinary assembler instructions generated from a
macro definition called by a macro instruction at assembly time.

Machine instructions
The assembler processes all machine instructions, and translates them into object code at
assembly time.

Assembler instructions
The assembler processes ordinary assembler instructions at assembly time. During this
processing:
v The assembler evaluates absolute and relocatable expressions (sometimes called assembly-time

expressions)
v Some instructions, such as ADATA, ALIAS, CATTR and XATTR (z/OS and CMS), DC, DS,

ENTRY, EXTRN, PUNCH, and REPRO, produce output for later processing by programs such
as the binder.

4 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

The assembler prints in a program listing all the information it produces at the various processing times
discussed above. The assembler also produces information for other processors. The binder uses such
information at link-edit time to combine object modules into load modules. At program fetch time, the
load module produced by the binder is loaded into virtual storage. Finally, at execution time, the
computer runs the load module.

Relationship of assembler to operating system
High Level Assembler operates under the z/OS operating system, the CMS component of the z/VM
operating system, the z/VSE operating system, and Linux for System z®. These operating systems
provide the assembler with services for:
v Assembling a source module
v Running the assembled object module as a program

In writing a source module, you must include instructions that request any required service functions
from the operating system.

z/OS provides the following services:
v For assembling the source module:

– A control program
– Sequential data sets to contain source code
– Libraries to contain source code and macro definitions
– Utilities

v For preparing for the execution of the assembler program as represented by the object module:
– A control program
– Storage allocation
– Input and output facilities
– Binder
– Loader

CMS provides the following services:
v For assembling the source module:

– An interactive control program
– Files to contain source code
– Libraries to contain source code and macro definitions
– Utilities

v For preparing for the execution of the assembler program as represented by the object modules:
– An interactive control program
– Storage allocation
– Input and output facilities
– Linker
– A loader

z/VSE provides the following services:
v For assembling the source module:

– A control program
– Sequential data sets to contain source code
– Libraries to contain source code and macro definitions
– Utilities

v For preparing for the execution of the assembler program as represented by the object module:
– A control program
– Storage allocation
– Input and output facilities
– Linker

Chapter 1. Introduction 5

Linux for System z provides the following services:
v For assembling the source module:

– An interactive control program
– Files to contain source code
– Utilities

v For preparing for the execution of the assembler program as represented by the object modules:
– An interactive control program
– Storage allocation
– Input and output facilities
– Linker
– A loader

Coding made easier
It can be difficult to write an assembler language program using only machine instructions. The
assembler provides additional functions that make this task easier. Here is a summary of these additional
functions:

Symbolic representation of program elements
Symbols greatly reduce programming effort and errors. You can define symbols to represent storage
addresses, displacements, constants, registers, and almost any element that makes up the assembler
language. These elements include operands, operand subfields, terms, and expressions. Symbols are
easier to remember and code than numbers; moreover, they are listed in a symbol cross reference table,
which is printed in the program listings. Thus, you can easily find a symbol when searching for an error
in your code. See page “Symbols” on page 25 for details about symbols, and how you can use them in
your program.

Variety in data representation
You can use decimal, binary, hexadecimal, or character representation of machine language binary values
in writing source statements. You select the representation best suited to the purpose. The assembler
converts your representations into the binary values required by the machine language.

Controlling address assignment
If you code the correct assembler instruction, the assembler computes the relative offset, or displacement
from a base address, of any symbolic addresses you specify in a machine instruction. It inserts this
displacement, along with the base register assigned by the assembler instruction, into the object code of
the machine instruction.

At execution time, the object code of address references must be in relative-immediate or
base-displacement form. The computer obtains the required address by adding the displacement to the
base address contained in the base register, or from the relative-immediate offset of the instruction.

Relocatability
The assembler produces an object module that is independent of the location it is initially assigned in
virtual storage. That is, it can be loaded into any suitable virtual storage area without affecting program
execution. This is made easier because most addresses are assembled in their base-displacement form.

Sectioning a program
You can divide a source module into one or more control sections. After assembly, you can include or
delete individual control sections from the resulting object module before you load it for execution.
Control sections can be loaded separately into storage areas that are not contiguous. A discussion of
sectioning is contained in “Source program structures” on page 44.

6 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Linkage between source modules
You can create symbolic linkages between separately assembled source modules. This lets you refer
symbolically from one source module to data and instructions defined in another source module. You can
also use symbolic addresses to branch between modules.

A discussion of sectioning and linking is contained in “Source program structures” on page 44.

Program listings
The assembler produces a listing of your source module, including any generated statements, and the
object code assembled from the source module. You can control the form and content of the listing using
assembler listing control instructions, assembler options, and user I/O exits. The listing control
instructions are described in Chapter 5, “Assembler instruction statements,” on page 83, and in
“Processing statements” on page 224. Assembler options and user I/O exits are discussed in the chapters
“Controlling Your Assembly with Options” and “Providing User Exits” in the HLASM Programmer's
Guide.

The assembler also prints messages about actual errors and warnings about potential errors in your
source module.

Multiple source modules
The assembler can assemble more than one source module in a single input stream, if the BATCH option
is specified. For more information about the BATCH option, see the section “BATCH” in the HLASM
Programmer's Guide.

An “input stream” may contain one or more “source modules”, and may also consist of one or more data
sets if the host operating system supports data set or file concatenation. A “source module” is a single
assembly.

Double-byte character set notation
Double-byte character set (DBCS) characters in terms, expressions, character strings, and comments are
delimited by shift-out and shift-in characters. In this manual, the shift-out delimiter is represented
pictorially by the < character, and the shift-in delimiter is represented pictorially by the > character. The
EBCDIC codes for the shift-out and shift-in delimiters are X'0E' and X'0F'.

The following figure summarizes the DBCS notation used throughout this manual.

Characters Represents

< Shift-out (SO)

> Shift-in (SI)

D1D2D3... Double-byte characters

DaDbDc... Double-byte characters

.A.B.C.'.&., EBCDIC characters in double-byte form: A, B, C, apostrophe, ampersand, and comma.
The dots separating the letters represent the hexadecimal value X'42'. A double-byte
character that contains the value of an EBCDIC ampersand or apostrophes in either byte
is not recognized as a delimiter when enclosed by SO and SI.

eeeeeee Single-byte (EBCDIC) characters

abcd... Single-byte (EBCDIC) characters

XXX Extended continuation indicator for macro-generated statements

+++ Alternative extended continuation indicator for macro-generated statements

Chapter 1. Introduction 7

8 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Chapter 2. Coding and structure

This chapter provides information about assembler language coding conventions and assembler language
structure.

Character set
High Level Assembler provides support for both standard single-byte characters and double-byte
characters.

Standard character set
The standard (default) character set used by High Level Assembler is a subset of the EBCDIC character
set. This subset consists of letters of the alphabet, national characters, the underscore character, digits, and
special characters. The complete set of characters that make up the standard assembler language character
set is shown in Table 2.

Table 2. Standard character set

Character Type Character Set

Alphabetic characters
a through z
A through Z
national characters @, $, and #
underscore character _

Digits 0 through 9

Special characters + - , = . * () ’ / &

space

For a description of the binary and hexadecimal representations of the characters that make up the
standard character set, see Appendix D, “Standard character set code table,” on page 375.

When you code terms and expressions (see “Terms, literals, and expressions” on page 24) in assembler
language statements, you can only use the set of characters described above. However, when you code
remarks, comments, or character strings between paired apostrophes, you can use any character in the
EBCDIC character set.

The term alphanumeric characters includes both alphabetic characters and digits, but not special characters.
Normally, you use strings of alphanumeric characters to represent terms, and special characters as:
v Arithmetic operators in expressions
v Data or field delimiters
v Indicators to the assembler for specific handling

Whenever a lowercase letter (a through z) is used, the assembler considers it to be identical to the
corresponding uppercase character (A through Z), except when it is used within a character string
enclosed in apostrophes, or within the positional and keyword operands of macro instructions.

Compatibility with Earlier Assemblers: You can specify the COMPAT(MACROCASE) assembler option to
instruct the assembler to maintain uppercase alphabetic character set compatibility with earlier assemblers
for unquoted macro operands. The assembler converts lowercase alphabetic characters (a through z) in
unquoted macro operands to uppercase alphabetic characters (A through Z).

© Copyright IBM Corp. 1992, 2013 9

Double-byte character set
In addition to the standard EBCDIC set of characters, High Level Assembler accepts double-byte
character set (DBCS) data. The double-byte character set consists of the following:

Table 3. Double-byte character set (DBCS)

Character or code Description

Double-byte space X'4040'

Double-byte characters Each double-byte character contains 2 bytes, each of which must be in the
range X'41' to X'FE'. The first byte of a double-byte character is known as
the ward byte. For example, the ward byte for the double-byte representation
of EBCDIC characters is X'42'.

Shift codes
Shift-out (SO) - X'0E'
Shift-in (SI) - X'0F'

Note:

1. SO and SI delimit DBCS data only when the DBCS assembler option is specified. The DBCS assembler option is
described in the section “DBCS” in the HLASM Programmer's Guide.

2. When the DBCS assembler option is specified, double-byte characters can be used anywhere that EBCDIC
characters enclosed by apostrophes can be used.

3. Regardless of the invocation option, double-byte characters can be used in remarks, comments, and the
statements processed by AREAD and REPRO statements.

Examples showing the use of EBCDIC characters and double-byte characters are given in Table 4. For a
description of the DBCS notation used in the examples, see “Double-byte character set notation” on page
7.

Table 4. Examples using character set

Characters Usage Example Constituting

Alphanumeric In ordinary symbols Label
FIELD#01
Save_Total
&EASY_TO_READ

Terms

In variable symbols &EASY_TO_READ

Digits As decimal
self-defining
terms

1
9

Terms

Special
Characters As operators

+ Addition NINE+FIVE Expressions

- Subtraction NINE-5 Expressions

* Multiplication 9*FIVE Expressions

/ Division TEN/3 Expressions

+ or - (Unary) +NINE -FIVE Terms¹

As delimiters

Spaces Between fields LABEL AR 3,4 Statement

Comma Between operands OPND1,OPND2 Operand field

Apostrophes Enclosing character strings ’STRING’ String

Attribute operator L’OPND1 Term

10 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Table 4. Examples using character set (continued)

Characters Usage Example Constituting

Parentheses Enclosing subfields or
subexpressions

MOVE MVC TO(80),FROM(A+B*(C-D)) Statement
expression

SO and SI Enclosing double-byte data C’<.A.B.C>abc’
G’<D1D2D3D4>’ Mixed string

Pure DBCS

As indicators for

Ampersand Variable symbol &VAR Term

Period Symbol qualifier QUAL.SYMBOL Term

Sequence symbol .SEQ (label)

Comment statement in
macro definition

.*THIS IS A COMMENT Statement

Concatenation &VAR.A Term

Bit-length specification DC CL.7’AB’ Operand

Decimal point DC F’1.7E4’ Operand

Asterisk Location counter reference *+72 Expression

Comment statement *THIS IS A COMMENT Operand

Equal sign Literal reference L 6,=F’2’ Operand

Keyword &KEY=D Keyword
parameter

Note:
1. If these are passed as macro arguments, they are treated as expressions, not terms. Expressions cannot be

substituted into SETA expressions.

Translation table
In addition to the standard EBCDIC set of characters, High Level Assembler can use a user-specified
translation table to convert the characters contained in character (C-type) data constants (DCs) and
literals. High Level Assembler provides a translation table to convert the EBCDIC character set to the
ASCII character set. You can supply a translation table using the TRANSLATE assembler option,
described in the section “TRANSLATE” in the HLASM Programmer's Guide.

Self-defining Terms: Self-defining terms are not translated when a translation table is used, except for
C-type character self-defining terms where the COMPAT(TRANSDT) assembler suboption in effect.

Assembler language coding conventions
Figure 2 shows the standard format used to code an assembler language statement.

│
│ 1 │ 2 │ 3 │ 4 │ 5 │ 6 │ 7 │ 8 │ 9 │ 10 │ ... │ 71 │ 72 │ 73 │ 74 │ 75 │ 76 │ ... │ 80 │
│ │ │ │ │
└──────────────────Statement Field──────────────────┴ │ ─┴─Identification-Sequence Field──┘

↓
Continuation-

Indicator Field

Figure 2. Standard assembler coding format

Chapter 2. Coding and structure 11

|
|

Field boundaries
Assembler language statements normally occupy one 80-character record, or line. For information about
statements that occupy more than 80 characters, see “Continuation lines” on page 13. Each line is divided
into three main fields:
v Statement field
v Continuation-indicator field
v Identification-sequence field

If it can be printed, any character coded into any column of a line, or otherwise entered as a position in a
source statement, is reproduced in the listing printed by the assembler. Whether it can be printed or not
depends on the printer.

Uppercase Printing: Use the FOLD assembler option to instruct the assembler to convert lowercase
alphabetic characters to uppercase alphabetic characters before they are printed.

Statement field
The instructions and comment statements must be written in the statement field. The statement field
starts in the begin column and ends in the end column. The continuation-indicator field always lies in the
column after the end column, unless the end column is column 80, in which case no continuation is
possible. The identification-sequence field normally lies in the field after the continuation-indicator field.
Any continuation lines needed must start in the continue column and end in the end column.

Blank lines are acceptable. For more information, see “Blank lines” on page 15.

The assembler assumes the following standard values for these columns:
v The begin column is column 1
v The end column is column 71
v The continue column is column 16

These standard values can be changed by using the Input Format Control (ICTL) assembler instruction.
The ICTL instruction can, for example, be used to reverse the order of the statement field and the
identification-sequence field by changing the standard begin, end, and continue columns. However, all
references to the begin, end, and continue columns in this manual refer to the standard values described
above.

Continuation-indicator field
The continuation-indicator field occupies the column after the end column. Therefore, the standard
position for this field is column 72. A non-space character in this column indicates that the current
statement is continued on the next line. This column must be a space character on the last (or only) line
of a statement. If this column is not a space, the assembler treats the statement that follows on the next
line as a continuation line of the current statement.

If the DBCS assembler option is specified, then:
v When an SI is placed in the end column of a continued line, and an SO is placed in the continue

column of the next line, the SI and SO are considered redundant and are removed from the statement
before statement analysis is done.

v An extended continuation-indicator provides the ability to extend the end column to the left on a
line-by-line basis, so that any alignment of double-byte data in a source statement can be supported.

v The double-byte delimiters SO and SI cannot be used as continuation-indicators.

Identification-sequence field
The identification-sequence field can contain identification characters or sequence numbers or both. If the
ISEQ instruction has been specified to check this field, the assembler verifies whether the source
statements are in the correct sequence.

12 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

The columns that are checked by the ISEQ function are not restricted to columns 73 through 80, or by the
boundaries determined by any ICTL instruction. The columns that are specified in the ISEQ instruction
can be anywhere on the input statement, including columns that are occupied by the statement field.

Continuation lines
To continue a statement on another line, follow these rules:
1. Enter a non-space character in the continuation-indicator field (column 72). This non-space character

must not be part of the statement coding. When more than one continuation line is needed, enter a
non-space character in column 72 of each line that is to be continued.

2. Continue the statement on the next line, starting in the continue column (column 16). Columns to the
left of the continue column must be spaces. Comment statements can be continued after column 16.

If an operand is continued after column 16, it is taken to be a comment. Also, if the continuation-
indicator field is filled in on one line and you try to start a new statement after column 16 on the next
line, this statement is taken as a comment belonging to the previous statement.

Specify the FLAG(CONT) assembler option to instruct the assembler to issue warning messages when it
suspects a continuation error in a macro call instruction. Refer to the FLAG option description in the
section “FLAG” in the HLASM Programmer's Guide for details about the situations that might be flagged
as continuation errors.

Unless it is one of the statement types listed in “Alternative statement format,” nine continuation lines
are allowed for a single assembler language statement.

Alternative statement format
The alternative statement format, which allows as many continuation lines as are needed, can be used for
the following instructions:
v AGO conditional assembly statement, see “Alternative format for AGO instruction” on page 348
v AIF conditional assembly statement, see “Alternative format for AIF instruction” on page 346
v GBLA, GBLB, and GBLC conditional assembly statements, see “Alternative format for GBLx

statements” on page 304
v LCLA, LCLB, and LCLC conditional assembly statements, see “Alternative format for LCLx

statements” on page 305
v Macro instruction statement, see “Alternative formats for a macro instruction” on page 260
v Prototype statement of a macro definition, see “Alternative formats for the prototype statement” on

page 216
v SETA, SETB, SETAF, SETCF, and SETC conditional assembly statements, see “Alternative statement

format” on page 343

Examples of the alternative statement format for each of these instructions are given with the description
of the individual instruction.

Continuation of double-byte data
No special considerations apply to continuation:
v Where double-byte data is created by a code-generation program, and
v There is no requirement for double-byte data to be readable on a device capable of presenting DBCS

characters

A double-byte character string can be continued at any point, and SO and SI must be balanced within a
field, but not within a statement line.

Where double-byte data is created by a workstation that has the capability of presenting DBCS characters,
such as the IBM 5550 multistation, or where readability of double-byte data in High Level Assembler
source input or listings is required, special features of the High Level Assembler language might be used.

Chapter 2. Coding and structure 13

When the DBCS assembler option is specified, High Level Assembler provides the flexibility to cater for
any combination of double-byte data and single-byte data. The special features provided are:
v Removal of redundant SI/SO at continuation points. When an SI is placed in the end column of a

continued line, and an SO is placed in the continue column of the next line, the SI and SO are
considered redundant and are removed from the statement before statement analysis.

v An extended continuation-indicator provides a flexible end column on a line-by-line basis to support
any alignment of double-byte data in a source statement. The end column of continued lines can be
shifted to the left by extending the continuation-indicator.

v To guard against accidental continuation caused by double-byte data ending in the
continuation-indicator column, SO and SI are not continuation indicators. If either falls in the
continuation-indicator column, this warning message is issued:
ASMA201W SO or SI in continuation column - no continuation
assumed

The use of these features is shown in “Examples.” The examples below show the use of these features.
Refer to “Double-byte character set notation” on page 7 for the notation used in the examples.

Source input considerations:

v Extended continuation-indicators can be used in any source statement, including macro statements and
statements included by the COPY instruction. This feature is intended for source lines containing
double-byte data, however it becomes available to all lines when the DBCS option is set.

v On a line with a non-space continuation-indicator, the end column is the first column to the left of the
continuation-indicator which has a value different from the continuation-indicator.

v When converting existing programs for assembly with the DBCS option, ensure that
continuation-indicators are different from the adjacent data in the end column.

v The extended continuation-indicators must not be extended into the continue column, otherwise the
extended continuation-indicators are treated as data, and the assembler issues the following error
message:
ASMA205E Extended continuation column must not extend into continue
column

v For SI and SO to be removed at continuation points, the SI must be in the end column, and the SO
must be in the continue column of the next line.

Examples:
Name Operation Operand Continuation

│
↓

DBCS1 DC C’<D1D2D3D4D5D6D7D8D9>XXXXXXXXXXXXXXXXXXXX
<DaDb>’

DBCS2 DC C’abcdefghijklmnopqrstuvwxyz0123456789XXXX
<DaDb>’

DBCS3 DC C’abcdefghijklmnopqrstuv<D1D2D3D4D5D6D7>XX
<DaDb>’

DBCS1
The DBCS1 constant contains 11 double-byte characters bracketed by SO and SI. The SI and SO at
the continuation point are not assembled into the operand. The assembled value of DBCS1 is:
<D1D2D3D4D5D6D7D8D9DaDb>

DBCS2
The DBCS2 constant contains an EBCDIC string which is followed by a double-byte string. Because
there is no space for any double-byte data on the first line, the end column is extended three
columns to the left and the double-byte data started on the next line. The assembled value of
DBCS2 is:
abcdefghijklmnopqrstuvwxyz0123456789<DaDb>

14 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

DBCS3
The DBCS3 constant contains 22 EBCDIC characters followed by nine double-byte characters.
Alignment of the double-byte data requires that the end column is extended one column to the
left. The SI and SO at the continuation point are not assembled into the operand. The assembled
value of DBCS3 is:
abcdefghijklmnopqrstuv<D1D2D3D4D5D6D7DaDb>

Source listing considerations:

v For source that does not contain substituted variable symbols, the listing exactly reflects the source
input.

v Double-byte data input from code-generation programs, that contain no substituted variables, are not
readable in the listing if the source input was not displayable on a device capable of presenting DBCS
characters.

v Refer to “Listing of generated fields containing double-byte data” on page 218 for details of extended
continuation and macro-generated statements.

Blank lines
Blank lines are accepted in source programs. In open code, each blank line is treated as equivalent to a
SPACE 1 statement. In the body of a macro definition, each blank line is treated as equivalent to an
ASPACE 1 statement.

Comment statement format
Comment statements are not assembled as part of the object module, but are only printed in the assembly
listing. You can write as many comment statements as you need, provided you follow these rules:
v Comment statements require an asterisk in the begin column. Internal macro definition comment

statements require a period in the begin column, followed by an asterisk. Internal macro comments are
accepted as comment statements in open code.

v Any characters of the EBCDIC character set, or double-byte character set can be used (see “Character
set” on page 9).

v Comment statements must lie within the statement field. If the comment extends into the
continuation-indicator field, the statement following the comment statement is considered a
continuation line of that comment statement.

v Comment statements must not appear between an instruction statement and its continuation lines.

Instruction statement format
Instruction statements must consist of one to four entries in the statement field. They are:
v A name entry
v An operation entry
v An operand entry
v A remarks entry

These entries must be separated by one or more spaces, and must be written in the order stated.

Statement coding rules
The following general rules apply to the coding of an instruction statement:
v The entries must be written in the following order: name, operation, operand, and remarks.
v The entries must be contained in the begin column (1) through the end column (71) of the first line

and, if needed, in the continue column (16) through the end column (71) of any continuation lines.
v The entries must be separated from each other by one or more spaces.
v If used, a name entry must start in the begin column.

Chapter 2. Coding and structure 15

v The name and operation entries, each followed by at least one space, must be contained in the first line
of an instruction statement.

v The operation entry must begin at least one column to the right of the begin column.

Statement example: The following example shows the use of name, operation, operand, and remarks
entries. The symbol COMP names a compare instruction, the operation entry (CR) is the mnemonic
operation code for a register-to-register compare operation, and the two operands (5,6) designate the two
general registers whose contents are to be compared. The remarks entry reminds readers that this
instruction compares NEW SUM to OLD.
COMP CR 5,6 NEW SUM TO OLD

Descriptions of the name, operation, operand, and remarks entries follow:

Name entry: The name entry is a symbol created by you to identify an instruction statement. A name
entry is generally optional. Except for two instances, the name entry, when provided, must be a valid
symbol at assembly time (after substituting variable symbols, if specified). For a discussion of the
exceptions to this rule, see “TITLE instruction” on page 190 and “Macro instruction format” on page 259.

The symbol must consist of 63 or fewer alphanumeric characters, the first of which must be alphabetic. It
must be entered with the first character appearing in the begin column. If the begin column is a space,
the assembler program assumes that no name has been entered. No spaces or double-byte data can
appear in the symbol.

Operation entry: The operation entry is the symbolic operation code specifying the machine, assembler,
or macro instruction operation. The following rules apply to the operation entry:
v An operation entry is mandatory, and it must appear on the same line as any name entry.
v For machine and assembler instructions, it must be a valid symbol at assembly time (after substitution

for variable symbols, if specified), consisting of 63 or fewer alphanumeric characters, the first which
must be alphabetic. Most standard symbolic operation codes are five characters or fewer. For a
description of machine instructions, refer to the z/Architecture Principles of Operation information. For a
summary of assembler instructions, see Appendix A, “Assembler instructions,” on page 355.
The standard set of codes can be changed by OPSYN instructions (see “OPSYN instruction” on page
175).

v For macro instructions, the operation entry can be any valid symbol.
v An operation entry cannot be continued on the next statement.

Operand entries: Operand entries contain zero or more operands that identify and describe data to be
acted upon by the instruction, by indicating such information as storage locations, masks, storage area
lengths, or types of data. The following rules apply to operands:
v One or more operands are typically required, depending on the instruction.
v Operands must be separated by commas. No spaces are allowed between the operands and the

commas that separate them.
v A space normally indicates the end of the operand entry, unless the operand is in apostrophes. This

applies to machine, assembler, and macro instructions.
v A space does not end the operand in some types of SET statement. Spaces that do not end operands

are discussed further at:
– “Arithmetic (SETA) expressions” on page 311
– “Logical (SETB) expressions” on page 323
– “Character (SETC) expressions” on page 328
There are two examples of operands containing spaces in Figure 6 on page 22; the last box in Row 3,
and the middle box in Row 4.

16 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

v The alternative statement format uses slightly different rules. For more information, see “Alternative
formats for a macro instruction” on page 260.

The following instruction is correctly coded:
LA R1,4+5 No space

The following instruction appears to be the same, but is not:
LA R1,4 + 5 Spaces included

In this example, the embedded space means that the operand finishes after “4”. There is no assembler
error, but the result is an LA R1,4, which is possibly not what you intended.

A space inside unquoted parentheses is an error, and leads to a diagnostic. The following instruction is
correctly coded:

DC CL(L’STRLEN)’ ’ Space within quotes

The following instruction, with an extra space, is not correct:
DC CL(L’STRLEN)’ ’ Space not within quotes

The following example shows a space enclosed in quotes, as part of a string. This space is properly
accounted for:

MVC AREA1,=C’This Area’ Space inside quotes

In quotes, spaces and parentheses can occur in any quantity and in any order:
LA R1,=C’This is OK (isn’’t it)’

Remarks entries: Remarks are used to describe the current instruction. The following rules apply to
remarks:
v Remarks are optional.
v They can contain any character from the EBCDIC character set, or the double-byte characters set.
v They can follow any operand entry.
v In statements in which an optional operand entry is omitted, but you want to code a comment,

indicate the absence of the operand by a comma preceded and followed by one or more spaces. For
example:

END , End of Program

Assembler language structure
This section describes the structure of the assembler language, including the statements that are allowed
in the language, and the elements that make up those statements.

“Statement coding rules” on page 15 describes the composition of an assembler language source
statement.

The figures in this section show the overall structure of the statements that represent the assembler
language instructions, and are not specifications for these instructions. The individual instructions, their
purposes, and their specifications are described in other sections of this manual.

Model statements, used to generate assembler language statements, are described in Chapter 7, “How to
specify macro definitions,” on page 213.

The remarks entry in a source statement is not processed by the assembler, but it is printed in the
assembler listing. For this reason, it is only shown in the overview of the assembler language structure in
Figure 3 on page 19, and not in the other figures.

Chapter 2. Coding and structure 17

The machine instruction statements are described in Figure 4 on page 20, discussed in Chapter 4,
“Machine instruction statements,” on page 65, and summarized in the z/Architecture Principles of Operation
information.

Assembler instruction statements are described in Figure 5 on page 21, discussed in Chapter 3, “Program
structures and addressing,” on page 43 and Chapter 5, “Assembler instruction statements,” on page 83,
and are summarized in Appendix A, “Assembler instructions,” on page 355.

Conditional assembly instruction statements and the macro processing statements (MACRO, MEND,
MEXIT, MNOTE, AREAD, ASPACE, and AEJECT) are described in Figure 6 on page 22. The conditional
assembly instructions are discussed in Chapter 9, “How to write conditional assembly instructions,” on
page 279, and macro processing instructions in Chapter 7, “How to specify macro definitions,” on page
213. Both types are summarized in Appendix A, “Assembler instructions,” on page 355.

Macro instruction statements are described in Figure 7 on page 23, and discussed in Chapter 8, “How to
write macro instructions,” on page 259.

18 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Overview of assembler language structure

┌─────────────────────────┐
│ │
│ Source module │
│ made up of │
│ source statements │
│ │
└────────────┬────────────┘

│
↓ Which can be
│

EITHER │ OR
┌──────────────────────────←─┴─→──────────────────────────┐
↓ ↓

┌────────────┴────────────┐ ┌────────────┴────────────┐
│ │ │ │
│ INSTRUCTION │ │ COMMENT │
│ STATEMENTS │ │ STATEMENTS │
│ │ │ │
└────────────┬────────────┘ └────────────┬────────────┘

│ │
↓ Which are of │
│ three main types │

┌─────────────────────┼─────────────────────┐ │
↓ ↓ ↓ │

┌───────┴───────┐ ┌───────┴───────┐ ┌───────┴───────┐ │
│ MACHINE │ │ ASSEMBLER │ │ MACRO │ │
│ Instructions │ │ Instructions │ │ Instructions │ │
└───────┬───────┘ └───────┬───────┘ └───────┬───────┘ │

↓ ↓ ↓ │
└─────────────────────┼─────────────────────┘ │

│ │
↓ Which are composed of │
│ from one to four fields │

┌─────────────────────┼─────────────────────┬─────────────────────┐ │
↓ ↓ ↓ ↓ │

┌───────┴───────┐ ┌───────┴───────┐ ┌───────┴───────┐ ┌───────┴───────┐ │
│ NAME │ │ OPERATION │ │ OPERAND │ │ REMARKS │ │
└───────┬───────┘ └───────┬───────┘ └───────┬───────┘ └───────┬───────┘ ↓

↓ ↓ │ ↓ │
┌───────┴───────┐ ┌───────┴───────┐ │ └───────────→─┤
│ No DBCS │ │ No DBCS │ ↓ Which, for machine │
└───────────────┘ └───────────────┘ │ instructions, is │

│ composed of │
┌───────┴───────┐ │
│ EXPRESSIONS │ │
└───────┬───────┘ │

│ │
↓ Which are │
│ composed of │

┌──────────┴──────────┐ ↓ Which are
↓ ↓ │ composed of

┌───────┴───────┐ ┌───────┴───────┐ ┌───────┴───────┐
│ TERMS │ │ Combination │ │ Any │
│ │ │ of terms │ │ Characters │
└───────┬───────┘ └───────┬───────┘ └───────┬───────┘

↓ ↓ ↓
└─────────────────────┼────────────────────────┘

│
↓ Which are
│ composed of

┌─────────┴─────────┐
│ EBCDIC and DBCS │
│ CHARACTERS │
└───────────────────┘

Figure 3. Overview of assembler language structure

Chapter 2. Coding and structure 19

Machine instructions

┌───────────────┐ ┌───────────────┐ ┌───────────────┐
│ │ │ │ │ │
│ NAME │ │ OPERATION │ │ OPERAND │
│ Field │ │ Field │ │ Field │
│ │ │ │ │ │
└───────┬───────┘ └───────┬───────┘ └───────┬───────┘

│ │ │
↓ Which ↓ Which ↓ Which
│ can be │ must be │ can be

┌───────┴───────┐ ┌───────┴───────┐ ┌───────┴───────┐
│ │ │ │ │ │
│ A Symbol¹ │ │ A symbolic │ │ Zero or more │
│ (or space) │ │ Operation │ │ arguments │
│ │ │ Code │ │ │
└───────────────┘ └───────────────┘ └───────┬───────┘

│
↓ Composed of one of

┌────────────────────────┬───────────┴────────────┐
↓ ↓ ↓

┌───────┴───────┐ ┌───────┴───────┐ ┌───────┴───────┐
│ │ │ │ │ │
│ │ │ │ │ Exp(Exp,Exp) │
│ Expression │ │ Exp(Exp) │ │ or │
│ │ │ │ │ Exp(,Exp) │
│ │ │ │ │ │
└───────┬───────┘ └───────────────┘ └───────────────┘

│
↓ Which can be one of

┌────────────┴───────────┐
↓ ↓

┌───────┴───────┐ ┌───────┴───────┐
│ │ │ │
│ │ │ Arithmetic │
│ Term │ │ combination │
│ │ │ of terms │
│ │ │ │
└───────┬───────┘ └───────────────┘

│
↓ Which can be any of
├────────────────────────┬────────────────────────┬────────────────────────┬────────────────────────┐
↓ ↓ ↓ ↓ ↓

┌───────┴───────┐ ┌───────┴───────┐ ┌───────┴───────┐ ┌───────┴───────┐ ┌───────┴───────┐
│ │ │ │ │ │ │ │ │ │
│ A Symbol │ │ Location │ │ Symbol │ │ A │ │ A Literal │
│ │ │ Counter │ │ Attribute │ │ Self-Defining │ │ │
│ │ │ Reference │ │ Reference │ │ Term │ │ │
│ (e.g. HERE) │ │ (i.e. *) │ │ (e.g. L’HERE) │ │ │ │ (e.g. =H’9’) │
└───────────────┘ └───────────────┘ └───────────────┘ └───────┬───────┘ └───────────────┘

│
↓ Which can be any of

┌────────────────────────┬────────────────────────┬────────────────────────┼────────────────────────┐
↓ ↓ ↓ ↓ ↓

┌───────┴───────┐ ┌───────┴───────┐ ┌───────┴───────┐ ┌───────┴───────┐ ┌───────┴───────┐
│ │ │ │ │ │ │ │ │ │
│ Decimal │ │ Hexadecimal │ │ Binary │ │ Character │ │ Graphic² │
│ │ │ │ │ │ │ │ │ │
│ (e.g. 9) │ │ (e.g. X’F9’) │ │ (e.g. B’111’) │ │ (e.g. C’JAN’) │ │ (e.g. G’←.A→’)│
│ │ │ │ │ │ │ │ │ │
└───────────────┘ └───────────────┘ └───────────────┘ └───────────────┘ └───────────────┘

¹ Can be an ordinary symbol, a variable symbol, or a sequence symbol
² With DBCS option only

Figure 4. Machine instructions

20 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Assembler instructions

┌───────────────┐ ┌───────────────┐ ┌───────────────┐
│ NAME │ │ OPERATION │ │ OPERAND │
│ Field │ │ Field │ │ Field │
└───────┬───────┘ └───────┬───────┘ └───────┬───────┘

│ │ │
↓ Which ↓ Which ↓ Which
│ can be │ must be │ can be

┌───────┴───────┐ ┌───────┴───────┐ ┌───────┴───────┐
│ A Symbol¹ │ │ A symbolic │ │ Zero or more │
│ (or space) │ │ Operation │ │ operands │
│ │ │ Code² │ │ │
└───────────────┘ └───────────────┘ └───────┬───────┘

│
│

┌───┴────────────────────────────┐
↓ ↓

┌──────────┴──────────┐ ┌──────────┴──────────┐
│ For Data Definition │ │ For all other │
│ (DC and DS │ │ ordinary Assembler │
│ Instructions) │ │ Instructions │
└──────────┬──────────┘ └──────────┬──────────┘

│ │
↓ Operands can be ↓ Operands
│ composed of one │ can be composed
│ to five subfields³ │ of³

┌────────────────┼──────────────┬───────────────┬────────────────┐ ┌───────────────┼────────────────┐
│ │ │ │ │ │ │ │

┌─────┴──────┐ ┌──────┴─────┐ ┌─────┴──────┐ ┌─────┴──────┐ ┌─────┴──────┐ │ │ │
│ │ │ │ │ │ │ │ │ │ │ │ │
│Duplication │ │ Type │ │ Type │ │ Modifiers │ │ Nominal │ │ │ │
│ factor │ │ │ │ Extension │ │ │ │ Value │ │ │ │
│ │ │ │ │ │ │ │ │ │ │ │ │
└──────┬─────┘ └──────┬─────┘ └─────┬──────┘ └─────┬──────┘ └─────┬──────┘ │ │ │

│ │ │ │ │ ↓ ↓ ↓
│ │ │ │ │ │ │ │
↓ ↓ ↓ ↓ ↓ ┌─────┴──────┐ ┌─────┴──────┐ ┌─────┴──────┐
│ ┌─────────────┘ │ │ │ │ Expression │ │ Character │ │ Symbolic │
│ │ ┌─────────────────────────┘ │ │ │ (e.g.*+14) │ │ String │ │ Option │
│ │ │ ┌─────────────────────────────────────┘ │ │ │ │ (e.g. ’XX’)│ │ (e.g. GEN) │
│ │ │ │ ┌──────┐ │ └────────────┘ └────────────┘ └────────────┘
│ │ │ │ │ │ │
↓ ↓ ↓ ↓ ↓ │ ↓

e.g. 10 E B L2 ’12’ │ │ One or more nominal values
└──┴──┴──┴───┴─────┘ │ ┌────────────────────────┬────────────┴─────────────┬──────────────────────────┐

↑ │ │ │ │
│ ↓ ↓ ↓ ↓

┌───┴───┴───────┐ ┌───────┴───────┐ ┌──────┴──────┐ ┌───────┴───────┐
│ ’Decimal │ │ (Expression) │ │ ’Character │ │ ’Graphic │
│ number’ │ │ │ │ string’ │ │ string’⁴ │
│ (e.g. ’12’) │ │ (e.g. (ADDR)) │ │ (e.g. ’ABC’)│ │ (e.g. ’<.A>’) │
└───────────────┘ └───────────────┘ └─────────────┘ └───────────────┘

¹ Can be an ordinary symbol, a variable symbol, or a sequence symbol
² Includes symbolic operation codes of macro definitions
³ Discussed more fully where individual instructions are described
⁴ With DBCS option only

Figure 5. Ordinary assembler instruction statements

Chapter 2. Coding and structure 21

Conditional assembly instructions

Macro instruction statements are described in Figure 7 on page 23.

┌───────────────┐ ┌───────────────┐ ┌───────────────┐
│ │ │ │ │ │
│ NAME │ │ OPERATION │ │ OPERAND │
│ Field │ │ Field │ │ Field │
│ │ │ │ │ │
│ │ │ │ │ │
└───────┬───────┘ └───────┬───────┘ └───────┬───────┘

│ │ │
↓ Which │ │
│ can be │ │

┌────────────┴────────────┐ ↓ Which ↓ Which
↓ ↓ │ must be │ can be

┌───────┴───────┐ ┌───────┴───────┐ ┌───────┴───────┐ ┌───────┴───────┐
│ │ │ │ │ │ │ │
│ Sequence │ │ Variable │ │ A symbolic │ │ Zero or more │
│ Symbol │ │ Symbol │ │ Operation │ │ operands │
│ or space │ │ │ │ Code │ │ │
│ (e.g. .SEQ) │ │ (e.g. &VAR) │ │ │ │ │
└───────────────┘ └───────────────┘ └───────────────┘ └───────┬───────┘

│
↓ Composed of

┌─────────────────────────┬─────────────────────────┬─────────────────────────┤
↓ ↓ ↓ ↓

┌───────┴───────┐ ┌───────┴───────┐ ┌───────┴───────┐ ┌───────┴───────┐
│ │ │ │ │ │ │ │
│ Sequence │ │ Variable │ │ Expression │ │ (Exp)seq─sym │
│ Symbol │ │ Symbol │ │ or │ │ (e.g. │
│ │ │ │ │ (Expression) │ │ (&A EQ 1).SEQ)│
│ │ │ │ │ │ │ │
└───────────────┘ └───────────────┘ └───────┬───────┘ └───────────────┘

│
↓ Which can be any
│ combination of
│ variable symbols
│ and other characters
│ that constitute an

┌─────────────────────────┼─────────────────────────┐
↓ ↓ ↓

┌───────┴───────┐ ┌───────┴───────┐ ┌───────┴───────┐
│ │ │ │ │ │
│ Arithmetic │ │ Logical │ │ Character │
│ Expression │ │ Expression │ │ Expression │
│ │ │ (e.g. │ │ │
│ (e.g. &A+1) │ │ (&B1 OR &B2)) │ │ (e.g. ’JAN&C’)│
└───────────────┘ └───────────────┘ └───────────────┘

Figure 6. Conditional assembly instructions

22 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Macro instructions

Mnemonic tags
With mnemonic tagging, you can add a “:ASM” or “:MAC” suffix to an operation code. The mnemonic
directs the assembler in this way:

:ASM The assembler searches for machine or assembler instructions only. Macros of the same name are
ignored. If the operation code is not found, then the search ends.

:MAC The assembler searches for macro instructions only. Machine and assembler instructions are
ignored. If the entry is not found in the current table, then a search for a definition of opcode is
done on SYSLIB (the normal search).

For example, say there is a machine code entry named AR. Then AR finds that entry (no change). AR:ASM
is the same; the assembler looks for a machine or assembler instruction. With AR:MAC, the assembler looks

Prototype ┌───────────────┐ ┌───────────────┐ ┌───────────────┐
Statement │ │ │ │ │ │

│ Symbolic │ │ Symbolic │ │ Zero or more │
│ Parameter │ │ Operation │ │ Symbolic │
│ │ │ Code │ │ Parameters │
│ │ │ │ │ │
└───────┬───────┘ └───────┬───────┘ └───────┬───────┘

│ │ │
↓ Which can be ↓ Must be the ↓ Which can be
│ │ same as │
│ │ │

─ ─
─ ─

│ │ │
Macro ┌───────┴───────┐ ┌───────┴───────┐ ┌───────┴───────┐
Instruction │ │ │ │ │ │
Statement │ NAME │ │ OPERATION │ │ OPERAND │

│ Field │ │ Field │ │ Field │
│ │ │ │ │ │
└───────┬───────┘ └───────────────┘ └───────┬───────┘

↓ ↓
│ ┌───────┴───────┐
│ │ │
│ │ Zero or more │
│ │ Operands │
│ │ │
│ │ │
│ └───────┬───────┘
│ │
↓ Which can be ↓ Which can be

┌─────────────────────┴─────────────────────┐ ┌──────────┴──────────┐
↓ ↓ ↓ ↓

┌───────┴───────┐ ┌───────┴───────┐ ┌───────┴───────┐ ┌───────┴───────┐
│ │ │ │ │ │ │ │
│ A Symbol │ │ Character │ │ Operands with │ │ Sublists with │
│ │ │ String │ │ one value │ │ one or more │
│ │ │ │ │ │ │ entries │
│ │ │ │ │ │ │ │
└───────┬───────┘ └───────┬───────┘ └───────┬───────┘ └───────┬───────┘

↓ ↓ ↓ ↓
│ │ │ ┌───────┴───────┐
│ │ │ │ │
│ │ │ │ Each entry │
│ │ │ │ can have a │
│ │ │ │ value │
│ │ │ │ │
│ │ │ └───────┬───────┘
│ ↓ ↓ ↓
│ └────────────────────────────┴──────────┬──────────┘
│ │
↓ Which can be ↓ Which can be
├─────────────────────┬─────────────────────┐ ┌──────────┴──────────┐
↓ ↓ ↓ ↓ ↓

┌───────┴───────┐ ┌───────┴───────┐ ┌───────┴───────┐ ┌───────┴───────┐ ┌───────┴───────┐
│ │ │ │ │ │ │ │ │ │
│ Ordinary │ │ Sequence │ │ Variable │ │ Character │ │ ’Character │
│ Symbol │ │ Symbol │ │ Symbol │ │ String │ │ String’ │
│ (or space) │ │ │ │ │ │ (excluding │ │ (including │
│ │ │ │ │ │ │ spaces and │ │ spaces) │
│ │ │ │ │ │ │ commas) │ │ │
│ │ │ │ │ │ │ │ │ │
└───────────────┘ └───────────────┘ └───────────────┘ └───────────────┘ └───────────────┘

Figure 7. Macro instructions

Chapter 2. Coding and structure 23

for a macro named AR. If it is not found in the internal table then the assembler searches on SYSLIB.
Assuming AR is found, the assembler adds a macro entry for AR to the table, and this entry is used for
this instruction.

Note: Library macros are added after any existing entry of the same name, while an inline macro is
added before any existing entry. This is done to preserve the current behavior when mnemonic tags are
not used.

Terms, literals, and expressions
The most basic element of the assembler language is the term. Terms can be used alone, or in combination
with other terms in expressions. This section describes the different types of terms used in the assembler
language, and how they can be used.

Terms
A term is the smallest element of the assembler language that represents a distinct and separate value. It
can, therefore, be used alone or in combination with other terms to form expressions. Terms are classified
as absolute or relocatable, depending on the effect of program relocation upon them. Program relocation is
the loading of the object program into storage locations other than those originally assigned by the
assembler. Terms have absolute or relocatable values that are assigned by the assembler or that are
inherent in the terms themselves.

A term is absolute if its value does not change upon program relocation. A term is relocatable if its value
changes by n if the origin of the control section in which it appears is relocated by n bytes.

Terms in parentheses
Terms in parentheses are reduced to a single value; thus the terms in parentheses, in effect, become a
single term.

You can use arithmetically combined terms, enclosed in parentheses, in combination with terms outside
the parentheses, as follows:
14+BETA-(GAMMA-LAMBDA)

When the assembler encounters terms in parentheses in combination with other terms, it first reduces the
combination of terms inside the parentheses to a single value, which can be absolute or relocatable,
depending on the combination of terms. This value is then used in reducing the rest of the combination
to another single value.

You can include terms in parentheses within a set of terms in parentheses:
A+B-(C+D-(E+F)+10)

The innermost set of terms in parentheses is evaluated first. Any number of levels of parentheses are
allowed. A level of parentheses is a left parenthesis and its corresponding right parenthesis. An arithmetic
combination of terms is evaluated as described in “Expressions” on page 38. Table 5 summarizes the
various types of terms, and gives a reference to the page number where the term is discussed and the
rules for using it are described.

Table 5. Summary of terms

Terms
Term can be
absolute

Term can be
relocatable

Value is
assigned by
assembler

Value is
inherent in term Page reference

Symbols X X X 25

Literals X X X 35

Self-defining terms X X 29

24 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Table 5. Summary of terms (continued)

Terms
Term can be
absolute

Term can be
relocatable

Value is
assigned by
assembler

Value is
inherent in term Page reference

Location counter
reference

X X 32

Symbol length attribute X X 33

Other data attributes¹ X X 35

Notes:
1. Other valid data attributes are scale and integer.

For more information about absolute and relocatable expressions, see “Absolute and relocatable
expressions” on page 41.

Symbols
You can use a symbol to represent storage locations or arbitrary values. If you write a symbol in the
name field of an instruction, you can then specify this symbol in the operands of other instructions and
thus refer to the former instruction symbolically. This symbol represents a relocatable address.

You can also assign an absolute value to a symbol by coding it in the name field of an EQU instruction
with an operand whose value is absolute. This lets you use this symbol in instruction operands to
represent:
v Registers
v Displacements in explicit addresses
v Immediate data
v Lengths
v Implicit addresses with absolute values

For details of these program elements, see “Operand entries” on page 71.

The advantages of symbolic over numeric representation are:
v Symbols are easier to remember and use than numeric values, thus reducing programming errors and

increasing programming efficiency.
v You can use meaningful symbols to describe the program elements they represent. For example, INPUT

can name a field that is to contain input data, or INDEX can name a register to be used for indexing.
v You can change the value of one symbol that is used in many instructions (through an EQU

instruction) more easily than you can change several numeric values in many instructions.
v If the symbols are relocatable, the assembler can calculate displacements and assign base registers for

you.
v Symbols are entered into a cross reference table that is printed in the Ordinary Symbol and Literal Cross

Reference section of the assembler listing. The cross reference helps you find a symbol in the source and
object section of the listing because it shows:
– The number of the statement that defines the symbol. A symbol is defined when it appears in the

name entry of a statement.
– The number of all the statements in which the symbol is used as an operand.

Symbol table: When the assembler processes your source statements for the first time, it assigns an
absolute or relocatable value to every symbol that appears in the name field of an instruction. The
assembler enters this value, which normally reflects the setting of the location counter, into the symbol
table. It also enters the attributes associated with the data represented by the symbol. The values of the
symbol and its attributes are available later when the assembler finds this symbol or attribute reference

Chapter 2. Coding and structure 25

used as a term in an operand or expression. See ““Symbol length attribute reference” on page 33” and
““Self-defining terms” on page 29” in this chapter for more details. The three types of symbols
recognized by the assembler are:
v Ordinary symbols
v Variable symbols
v Sequence symbols

Ordinary symbols: Ordinary symbols can be used in the name and operand fields of machine and
assembler instruction statements. There are two types of ordinary symbol, internal and external. Code
them to conform to these rules:
v The symbol must not consist of more than 63 alphanumeric characters. The first character must be an

alphabetic character. An alphabetic character is a letter from A through Z, or from a through z, or $, _, #,
or @. The other characters in the symbol can be alphabetic characters, digits, or a combination of the
two.
– The assembler does not distinguish between upper-case and lower-case letters used in symbols.
– If the GOFF option is not specified, external symbols must not consist of more than eight characters.
– No other special characters can be included in an ordinary symbol.
– No spaces are allowed in an ordinary symbol.
– No double-byte data is allowed in an ordinary symbol.

External symbols are placed in the External Symbol Dictionary of the object module, where they are
available to link editors and binders for linking with other separately translated programs. Internal
symbols are normally discarded at the end of the assembly, but might be placed in the SYSADATA file
(see “Input and output files” in the HLASM Programmer's Guide) for use by other programs such as
debuggers.

In the following sections, the term symbol refers to the ordinary symbol.

The following examples are valid ordinary symbols:
ORDSYM#435A HERE $OPEN
K4 #0123 X
B49467LITTLENAIL @33 _TOTAL_SAVED

Variable symbols: Variable symbols must begin with an & followed by an alphabetic character and,
optionally, up to 61 alphanumeric characters. Variable symbols can be used in macro processing and
conditional assembly instructions, and to provide substitution in machine and assembler instructions.
They allow different values to be assigned to one symbol. A complete discussion of variable symbols
appears in Chapter 7, “How to specify macro definitions,” on page 213.

The following examples are valid variable symbols:
&VARYINGSYMABC &@ME
&F346944 &A
&EASY_TO_READ

System variable symbol prefix: Do not begin a variable symbol with the characters &SYS, as these
characters are used to prefix System Variable Symbols. See “System variable symbols” on page 229 for a
list of the System Variable Symbols provided with High Level Assembler.

Sequence symbols: Sequence symbols consist of a period (.) followed by an alphabetic character, and
up to 61 additional alphanumeric characters. Sequence symbols can be used in macro processing and
conditional assembly instructions. They indicate the position of statements within the source program or
macro definition. They are used in AIF and AGO statements to vary the sequence in which statements are
processed by the assembler program. (See the complete discussion in Chapter 9, “How to write
conditional assembly instructions,” on page 279.)

26 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

The following examples are valid sequence symbols:
.BLABEL04 .#359
.BRANCHTOMEFIRST .A

Symbol definition: An ordinary symbol is defined in:
v The name entry in a machine or assembler instruction of the assembler language
v One of the operands of an EXTRN or WXTRN instruction

Ordinary symbols can also be defined in instructions generated from model statements during
conditional assembly.

In Figure 8 on page 28, the assembler assigns a value to the ordinary symbol in the name entry according
to the following rules:
1. The symbol is assigned a relocatable address value if the first byte of the storage field contains one of

the following:
v Any machine or assembler instruction, except the EQU or OPSYN instruction (see �1� in Figure 8

on page 28)
v A storage area defined by the DS instruction (see �2� in Figure 8 on page 28)
v Any constant defined by the DC instruction (see �3� in Figure 8 on page 28)
v A channel command word defined by the CCW, CCW0, or CCW1 instruction
The address value assigned is relocatable, because the object code assembled from these items is
relocatable. The relocatability of addresses is described in “Addresses” on page 73.

2. The symbol is assigned the value of the first or only expression specified in the operand of an EQU
instruction. This expression can have a relocatable (see �4� in Figure 8 on page 28) or absolute (see �5�
in Figure 8 on page 28) value, which is then assigned to the ordinary symbol.
The value of an ordinary absolute symbol must lie in the range -231 through +231-1. Relocatable
symbols have unsigned address values in the range 0 - 224-1, or 0 - 231-1 if the GOFF option is
specified.

Chapter 2. Coding and structure 27

Restrictions on symbols: A symbol must be defined only once in a source module with one or more
control sections, with the following exceptions:
v The symbol in the name field of a CSECT, RSECT, DSECT, or COM instruction can be the same as the

name of previous CSECT, RSECT, DSECT, or COM instruction. It identifies the resumption of the
control section specified by the name field.

v

z/VM and z/OS
The symbol in the name field of a CATTR instruction can be the same as the name of a
previous CATTR instruction. It identifies the resumption of the class specified by the name
field.

v The symbol in the name field of a LOCTR instruction can be the same as the name of a previous
START, CSECT, RSECT, DSECT, COM, or LOCTR instruction. It identifies the resumption of the
location counter specified by the name field.

v The symbol in the name field of a labeled USING instruction can be the same as the name of a
previous labeled USING instruction. It identifies the termination of the domain of the previous labeled
USING instruction with the specified name.

v A symbol can be used as an operand of a V-type constant and as an ordinary label, without
duplication, because the operand of a V-type constant does not define the symbol in the symbol table.

An ordinary symbol is not defined when:
v It is used in the name field of an OPSYN or TITLE instruction. It can, therefore, be used in the name

field of any other statement in a source module.

Assembler Language │ Address Value │ Object Code
Statements │ of Symbol │ in Hexadecimal

─────────────────────────┼─────────────────┼──────────────────────────────────
│ Relocatable │ ┌────── Address
│ │ ↓ of AREA
│ │ ┌──┬─┬─┬────┐

LOAD L 3,AREA �1� LOAD ──────────┼────→│58│3│0│xxxx│
│ │ └──┴─┴─┴────┘
│ │
│ │ ┌───────────┐

AREA DS F �2� AREA ──────────┼────→│xx x x xxxx│
│ ┌──────┼────→└───────────┘
│ │ │
│ │ │ ┌───────────┐

F200 DC F’200’ �3� F200 ──────────┼────→│00 0 0 00C8│
│ │ ┌──┼────→└───────────┘

─────────────────────────┼──────────┼───┼──┼───────────────────────────────────
FULL EQU AREA │ FULL ───┘ │ │

�4� │ │
TW00 EQU F200 │ TW00 ───────┘ │
─────────────────────────┼─────────────────┼───────────────────────────────────

│ Absolute │
│ │

R3 EQU 3 �5� R3=3 │ ┌────── Address
│ │ ↓ of FULL
│ │ ┌──┬─┬─┬────┐

L R3,FULL │ │ │58│3│0│xxxx│
│ │ ├──┼─┼─┼────┤

A R3,TW00 │ │ │5A│3│0│xxxx│
│ │ └──┴─┴─┴────┘
│ │ ↑ Address
│ │ └────── of TW00

Figure 8. Transition from assembler language statement to object code

28 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

v It is used as the operand of a V-type address constant.
v It is only used in the name field of a macro instruction and does not appear in the name field of a

macro-generated assembler statement. It can, therefore, be used in the name field of any other
statement in a source module.

v It is only used in the name field of an ALIAS instruction and does not appear in one of the following:
– The name field of a START, CSECT, RSECT, COM, or DXD instruction.
– The name field of a DSECT instruction and the nominal value of a Q-type address constant.
– The operand of an ENTRY, EXTRN, or WXTRN instruction.

Previously defined symbols: An ordinary symbol is previously defined if the statement that defines it is
processed before the statement in which the symbol appears in an operand.

An ordinary symbol must be defined by the time the END statement is reached, however, it need not be
previously defined when it is used as follows:
v In operand expressions of certain instructions such as CNOP instructions and some ORG instructions
v In modifier expressions of DC, DS, and DXD instructions
v In the first operand of an EQU instruction
v In Q-type constants

When using the forward-reference capability of the assembler, avoid the following types of errors:
v Circular definition of symbols, such as:

X EQU Y
Y EQU X

v Circular location-counter dependency, as in this example:
A DS (B-A)C
B LR 1,2

The first statement in this example cannot be resolved because the value of the duplication factor is
dependent on the location of B, which is, in turn, dependent upon the length and duplication factor of
A.

Literals can contain symbolic expressions in modifiers, but any ordinary symbols used must have been
previously defined.

Self-defining terms
A self-defining term lets you specify a value explicitly. With self-defining terms, you can also specify
decimal, binary, hexadecimal, or character data. If the DBCS assembler option is specified, you can
specify a graphic self-defining term that contains pure double-byte data, or include double-byte data in
character self-defining terms. These terms have absolute values and can be used as absolute terms in
expressions to represent bit configurations, absolute addresses, displacements, length or other modifiers,
or duplication factors.

Using self-defining terms: Self-defining terms represent machine language binary values and are
absolute terms. Their values do not change upon program relocation. Here are some examples of
self-defining terms and the binary values they represent:

Self-Defining Term Decimal Value Binary Value

15 15 1111

241 241 1111 0001

B’1111’ 15 1111

B’11110001’ 241 1111 0001

B’100000001’ 257 0001 0000 0001

Chapter 2. Coding and structure 29

Self-Defining Term Decimal Value Binary Value

X’F’ 15 1111

X’F1’ 241 1111 0001

X’101’ 257 0001 0000 0001

C’1’ 241 1111 0001

C’A’ 193 1100 0001

C’AB’ 49,602 1100 0001 1100 0010

G’<.A>’ 17,089 0100 0010 1100 0001

The assembler carries the values represented by self-defining terms to 4 bytes or 32 bits, the high-order
bit of which is the sign bit. (A '1' in the sign bit indicates a negative value; a '0' indicates a positive
value.)

The use of a self-defining term is distinct from the use of data constants or literals. When you use a
self-defining term in a machine instruction statement, its value is used to determine the binary value that
is assembled into the instruction. When a data constant is referred to or a literal is specified in the
operand of an instruction, its address is assembled into the instruction. Self-defining terms are always
right-aligned. Truncation or padding with zeros, if necessary, occurs on the left.

Decimal self-defining term: A decimal self-defining term is an unsigned decimal number written as a
sequence of decimal digits. High-order zeros can be used (for example, 007). Limitations on the value of
the term depend on its use. For example, a decimal term that designates a general register must have a
value 0 - 15. A decimal term that represents an address must not exceed the size of storage. In any case, a
decimal term must not exceed 2,147,483,647 (231-1). A decimal self-defining term is assembled as its binary
equivalent. Some examples of decimal self-defining terms are: 8, 147, 4092, and 00021.

Hexadecimal self-defining term: A hexadecimal self-defining term consists of hexadecimal digits
enclosed in apostrophes and preceded by the letter X; for example, X’C49’ and X’00FF00FF00’.

Each hexadecimal digit is assembled as its 4 bit binary equivalent. Thus, a hexadecimal term used to
represent an 8 bit mask consists of two hexadecimal digits. The maximum value of a hexadecimal term is
X'FFFFFFFF'; this allows a range of values -2,147,483,648 - 2,147,483,647.

The hexadecimal digits and their bit patterns are as follows:
0 - 0000 4 - 0100 8 - 1000 C - 1100
1 - 0001 5 - 0101 9 - 1001 D - 1101
2 - 0010 6 - 0110 A - 1010 E - 1110
3 - 0011 7 - 0111 B - 1011 F - 1111

When used as an absolute term in an expression, a hexadecimal self-defining term has a negative value if
the high-order bit is 1.

Binary self-defining term: A binary self-defining term is written as an unsigned sequence of 1s and 0s
enclosed in apostrophes and preceded by the letter B; for example, B’10001101’. A binary term can have
up to 32 bits, not counting leading zero bits. This allows a range of values from -2,147,483,648 through
2,147,483,647.

When used as an absolute term in an expression, a binary self-defining term has a negative value if the
term is 32 bits long and the high-order bit is 1.

Binary representation is used primarily in designating bit patterns of masks or in logical operations.

30 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

The following shows a binary term used as a mask in a Test Under Mask (TM) instruction. The contents
of GAMMA are to be tested, bit by bit, against the pattern of bits represented by the binary term.
ALPHA TM GAMMA,B’10101101’

Character self-defining term: A character self-defining term consists of 1-to-4 characters enclosed in
apostrophes, and must be preceded by the letter C. All letters, decimal digits, and special characters can
be used in a character self-defining term. In addition, any of the remaining EBCDIC characters can be
designated in a character self-defining term. Examples of character self-defining terms are:
C’/’
C’ ’ (space)
C’ABC’
C’13’

Because of the use of apostrophes in the assembler language and ampersands in the macro language as
syntactic characters, the following rule must be observed when using these characters in a character
self-defining term:

For each apostrophe or ampersand you want in a character self-defining term, two apostrophes or
ampersands must be written. For example, the character value A’# is written as ’A’’#’, while a single
apostrophe followed by a space and another apostrophe is written as ’’’ ’’’.

For C-type character self-defining terms, each character in the character sequence is assembled as its 8 bit
code equivalent (see Appendix D, “Standard character set code table,” on page 375). The two apostrophes
or ampersands that must be used to represent an apostrophe or ampersand within the character sequence
are assembled as an apostrophe or ampersand. Double-byte data can appear in a character self-defining
term, if the DBCS assembler option is specified. The assembled value includes the SO and SI delimiters.
Hence a character self-defining term containing double-byte data is limited to one double-byte character
delimited by SO and SI. For example, C’<.A>’.

Since the SO and SI are stored, the null double-byte character string, C’<>’, is also a valid character
self-defining term.

Note: The assembler does not support character self-defining terms of the form CU'x' because
self-defining terms are required by definition of the Assembler Language to have fixed values.

There are many EBCDIC code pages; some characters have different encodings in different code pages. To
be sure that your character constants and self-defining terms have the representations and value, use just
these 82 invariant characters:
v space
v decimal digits
v upper-case and lower-case letters A through Z
v these special characters:

+ < = > % & * " ’ () , _ - . / : ; ?

These characters have the same binary representation across all single-byte EBCDIC code pages. If you
use any other character, the Assembler uses its bit pattern as its value, so it might not display as the same
character in environments where a different code page is used by default.

Graphic self-defining term: If the DBCS assembler option is specified, a graphic self-defining term can
be specified. A graphic self-defining term consists of 1 or 2 double-byte characters delimited by SO and
SI, enclosed in apostrophes and preceded by the letter G. Any valid double-byte characters can be used.
Examples of graphic self-defining terms are:
G’<.A>’
G’<.A.B>’
G’<Da>’
G’<.A><.B>’

Chapter 2. Coding and structure 31

The SO and SI are not represented in the assembled value of the self-defining term, hence the assembled
value is pure double-byte data. A redundant SI/SO pair can be present between two double-byte
characters, as shown in the last of the above examples. However, if SO and SI are used without an
intervening double-byte character, this error is issued:
ASMA148E Self-defining term lacks ending quote or has bad character

Location counter
The assembler maintains a location counter to assign storage addresses to your program statements. It is
the assembler's equivalent of the execution-time instruction counter in the computer. You can refer to the
current value of the location counter at any place in a source module by specifying an asterisk (*) as a
term in an operand.

As the instructions and constants of a source module are being assembled, the location counter has a
value that indicates a location in the program. The assembler increments the location counter according to
the following:
1. After an instruction or constant has been assembled, the location counter indicates the next available

location.
2. Before assembling the current instruction or constant, the assembler checks the boundary alignment

required for it and adjusts the location counter, if necessary, to the correct boundary.
3. While the instruction or constant is being assembled, the location counter value does not change. It

indicates the location of the current data after boundary alignment and is the value assigned to the
symbol, if present, in the name field of the statement.

4. After assembling the instruction or constant, the assembler increments the location counter by the
length of the assembled data to indicate the next available location.

Here is an example of the application of these rules:
Location in Source
Hexadecimal Statements

000004 DONE DC CL3’ABC’
000007 BEFORE EQU *
000008 DURING DC F’200’
00000C AFTER EQU *
000010 NEXT DS D

You can specify multiple location counters for each control section in a source module; for more details
about the location counter setting in control sections, see “Location counter setting” on page 52.

Maximum location counter value: The assembler carries internal location counter values as 4 byte (31
bit unsigned) values. When you specify the NOGOFF assembler option, the assembler uses only the
low-order 3 bytes for the location counter, and prints only the low-order 3 bytes in the assembly source
and object code listing if the LIST(121) option is active. All 4 bytes are displayed if the LIST(133) option is
active. In this case the maximum valid location counter value is 224-1.

z/VM and z/OS
When you specify the GOFF assembler option, the assembler requires the LIST(133) option, and
uses the entire 4 byte value for the location counter and prints the 4 byte value in the assembly
listings. In this case the maximum valid location counter value is 231-1.

If the location counter exceeds its valid maximum value the assembler issues error message
ASMA039S Location counter error

Controlling the location counter value: You can control the setting of the location counter in a
particular control section by using the START or ORG instruction, described in Chapter 3, “Program

32 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

structures and addressing,” on page 43 and Chapter 5, “Assembler instruction statements,” on page 83.
The counter affected by either of these assembler instructions is the counter for the control section in
which they appear.

Location counter reference: You can refer to the current value of the location counter at any place in a
program by using an asterisk as a term in an operand. The asterisk is a relocatable term, specified
according to the following rules:
v The asterisk can be specified only in the operands of:

– Machine instructions
– DC and DS instructions
– EQU, ORG, and USING instructions

v It can also be specified in literal constants. See “Literals” on page 35. For example:
THERE L =3A(*)

generates three identical address constants, each with value A(THERE).
The value of the location counter reference (*) is the same as the value of the symbol THERE, the
current value of the location counter of the control section in which the asterisk (*) is specified as a
term. The asterisk has the same value as the address of the first byte of the instruction in which it appears.
For example:
HERE B *+8

where the value of * is the value of HERE.

For the value of the asterisk in address constants with duplication factors, see “Subfield 1: Duplication
Factor” on page 114 of “DC instruction” on page 109, and “Address constants—A and Y” on page 133.
For a discussion of location counter references in literals, see “Subfield 1: Duplication Factor” on page
114.

Symbol length attribute reference
The length attribute of a symbol can be used as a term. Reference to the attribute is made by coding L’
followed by the symbol, as in:
L’BETA

The length attribute of BETA is substituted for the term. When you specify a symbol length attribute
reference, you obtain the length of the instruction or data named by a symbol. You can use this reference
as a term in instruction operands to:
v Specify assembler-determined storage area lengths
v Cause the assembler to compute length specifications for you
v Build expressions to be evaluated by the assembler

The symbol length attribute reference must be specified according to the following rules:
v The format must be L’ immediately followed by a valid symbol (L’SYMBOL), an expression

(L’SYMBOL+SYMBOL2-SYMBOL7), or the location counter reference (L’*). If the operand is an expression, the
length attribute of its leftmost term is used.

v Symbols must be defined in the same source module in which the symbol length attribute reference is
specified.

v The symbol length attribute reference can be used in the operand of any instruction that requires an
absolute term. However, it cannot be used in the form L’* in any instruction or expression that
requires a previously defined symbol.

The value of the length attribute is normally the length in bytes of the storage area required by an
instruction, constant, or field represented by a symbol. The assembler stores the value of the length
attribute in the symbol table along with the address value assigned to the symbol.

Chapter 2. Coding and structure 33

When the assembler encounters a symbol length attribute reference, it substitutes the value of the
attribute from the symbol table entry for the symbol specified.

The assembler assigns the length attribute values to symbols in the name field of instructions as follows:
v For machine instructions (see �1� in Table 6), it assigns 2, 4, or 6, depending on the format of the

instruction.
v For the DC and DS instructions (see �2� in Table 6), it assigns either the implicitly or explicitly

specified length of the first or only operand. The length attribute is not affected by a duplication factor.
v For the EQU instruction, it assigns the length attribute value of the first or only term (see �3� in

Table 6) of the first expression in the first operand, unless a specific length attribute is supplied in a
second operand.
Note the length attribute values of the following terms in an EQU instruction:
– Self-defining terms (see �4� in Table 6)
– Location counter reference (see �5� in Table 6)
– L'* (see �6� in Table 6)

For assembler instructions such as DC, DS, and EQU, the length attribute of the location counter
reference (L'* — see �6� in Table 6) is equal to 1. For machine instructions, the length attribute of the
location counter reference (L'* — see �7� in Table 6) is equal to the length attribute of the instruction in
which the L'* appears.

Table 6. Assignment of length attribute values to symbols in name fields

Source Module Length Attribute Reference

Value of Symbol Length
Attribute At Assembly
Time

MACHA MVC TO,FROM
MACHB L 3,ADCON
MACHC LR 3,4

TO DS CL80
FROM DS CL240
ADCON DC A(OTHER)
CHAR DC C’YUKON’
DUPL DC 3F’200’

RELOC1 EQU TO �3�
RELOC2 EQU TO+80 �3�
RELOC3 EQU TO,44 �3�
ABSOL1 EQU FROM-TO �3�
ABSOL2 EQU ABSOL1 �3�

SDT1 EQU 102 �3�
SDT2 EQU X’FF’+A-B �3�
SDT3 EQU C’YUK’

ASTERISK EQU *+10 �3�

LOCTREF EQU L’* �3�
LENGTH1 DC A(L’*)

LENGTH2 MVC TO(L’*),FROM
LENGTH3 MVC TO(L’TO-20),FROM

L’MACHA
L’MACHB
L’MACHC

L’TO
L’FROM
L’ADCON
L’CHAR
L’DUPL

L’RELOC1
L’RELOC2
L’RELOC3
L’ABSOL1
L’ABSOL2

L’SDT1
L’SDT2
L’SDT3

L’ASTERISK

L’LOCTREF
L’*
L’LENGTH1

L’*
L’TO

6 �1�
4 �1�
2 �1�

80 �2�
240 �2�
4 �2�
5 �2�
4 �2�

80
80
44
240
240

1 �4�
1 �4�
1 �4�

1 �5�

1 �6�
1 �6�
4

6 �7�
80

Note: Instructions that contain length attribute references L'SDT1, L'SDT2, L'SDT3, L'ASTERISK, and L'LOCTREF as
shown in this figure might generate ASMA019W.

The following example shows how to use the length attribute to move a character constant into either the
high-order or low-order end of a storage field.

34 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

A1 DS CL8
B2 DC CL2’AB’
HIORD MVC A1(L’B2),B2
LOORD MVC A1+L’A1-L’B2(L’B2),B2

A1 names a storage field eight bytes in length and is assigned a length attribute of 8. B2 names a character
constant 2 bytes in length and is assigned a length attribute of 2. The statement named HIORD moves the
contents of B2 into the first 2 bytes of A1. The term L’B2 in parentheses provides the length specification
required by the instruction.

The statement named LOORD moves the contents of B2 into the rightmost 2 bytes of A1. The combination of
terms A1+L’A1-L’B2 adds the length of A1 to the beginning address of A1, and subtracts the length of B2
from this value. The result is the address of the seventh byte in field A1. The constant represented by B2 is
moved into A1 starting at this address. L’B2 in parentheses provides the length specification in both
instructions.

For ease in following the preceding example, the length attributes of A1 and B2 are specified explicitly in
the DS and DC statements that define them. However, keep in mind that the L'symbol term makes
coding such as this possible in situations where lengths are unknown. For example:
C3 DC C’This is too long a string to be worth counting’
STRING MVC BUF(L’C3),C3

Other attribute references
Other attributes describe the characteristics and structure of the data you define in a program; for
example, the kind of constant you specify or the number of characters you need to represent a value.
These other attributes are:
v Count (K')
v Defined (D')
v Integer (I')
v Number (N')
v Operation code (O')
v Scale (S')
v Type (T')

You can refer to the count (K'), defined (D'), number (N'), and operation code (O') attributes only in
conditional assembly instructions and expressions. For full details, see “Data attributes” on page 284.

Literals
You can use literals as operands in order to introduce data into your program. The literal is a special type
of relocatable term. It behaves like a symbol in that it represents data. However, it is a special kind of
term because it also is used to define the constant specified by the literal. This is convenient because:
v The data you enter as numbers for computation, addresses, or messages to be printed is visible in the

instruction in which the literal appears.
v You avoid the added effort of defining constants elsewhere in your source module and then using their

symbolic names in machine instruction operands.

The assembler assembles the data item specified in a literal into a literal pool (See “Literal pool” on page
38). It then assembles the address of this literal data item in the pool into the object code of the
instruction that contains the literal specification. Thus, the assembler saves you a programming step by
storing your literal data for you. The assembler also organizes literal pools efficiently, so that the literal
data is aligned on the correct boundary alignment and occupies a minimum amount of space.

Literals, constants, and self-defining terms
Literals, constants, and self-defining terms differ in three important ways:
v Where you can specify them in machine instructions, that is, whether they represent data or an address

of data

Chapter 2. Coding and structure 35

v Whether they have relocatable or absolute values
v What is assembled into the object code of the machine instruction in which they appear

Figure 9 shows examples of the differences between literals, constants, and self-defining terms.

General rules for using literals
You can specify a literal as either a complete operand in a machine instruction, or as part of an
expression in the operand of a machine instruction. A literal can also be specified as the name field on a
macro call instruction.

Because literals define read-only data, they must not be used in operands that represent the receiving field
of an instruction that modifies storage.

The assembler requires a description of the type of literal being specified as well as the literal itself. This
descriptive information assists the assembler in assembling the literal correctly. The descriptive portion of
the literal must indicate the format of the constant. It can also specify the length of the constant.

1. A literal with a relocatable address:

L 3,=F’33’ Register 3 set to 33. See note 1
L 3,F33 Register 3 set to 33. See note 2
.
.
.

F33 DC F’33’

2. A literal with a self-defining term and a symbol with an absolute value

MVC FLAG,=X’00’ FLAG set to X’00’. See note 1
MVI FLAG,X’00’ FLAG set to X’00’. See note 3
MVI FLAG,ZERO FLAG set to X’00’. See note 4
.
.
.

FLAG DS X
ZERO EQU X’00’

3. A symbol having an absolute address value specified by a self-defining term

LA 4,LOCORE Register 4 set to 1000. See note 4
LA 4,1000 Register 4 set to 1000. See note 3
.
.
.

LOCORE EQU 1000

Notes:

1. A literal both defines data and represents data. The address of the literal is assembled into the object code of the
instruction in which it is used. The constant specified by the literal is assembled into the object code, in the literal
pool.

2. A constant is represented by a symbol with a relocatable value. The address of a constant is assembled into the
object code.

3. A self-defining term has an absolute value. In this example, the absolute value of the self-defining term is
assembled into the object code.

4. A symbol with an absolute value does not represent the address of a constant, but represents either immediate
data or an absolute address. When a symbol with an absolute value represents immediate data, it is the absolute
value that is assembled into the object code.

Figure 9. Differences between literals, constants, and self-defining terms

36 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

The method of describing and specifying a constant as a literal is nearly identical to the method of
specifying it in a single operand of a DC assembler instruction. The only difference is that the literal must
start with an equal sign (=), which indicates to the assembler that a literal follows. The length of the
literal, including the equal sign, constant type and modifiers, delimiters, and nominal values is limited to
a maximum of 256 characters.

A literal can be coded as indicated here:
=10XL5’F3’

where the subfields are:
Duplication factor 10
Type X
Modifiers L5
Nominal value ’F3’

The following instruction shows one use of a literal:
GAMMA L 10,=F’274’

The statement GAMMA is a load instruction using a literal as the second operand. When assembled, the
second operand of the instruction refers to the relative address at which the value F’274’ is stored.

You cannot rely on the ordering of literals in the literal pool remaining the same. For this reason,
referring to a point that extends beyond the bounds of a literal is flagged with warning message
ASMA015W. Here is an example of such a reference:
BETA L 10,=F’274’+4

In general, literals can be used wherever a storage address is permitted as an operand, including with an
index register in instructions with the RX format. For example:
DELTA LH 5,=H’11,23,39,48,64’(6)

is equivalent to:
DELTA LH 5,LENGTHS(6)

.

.

.
LENGTHS DC H’11,23,39,48,64’

See “DC instruction” on page 109 for a description of how to specify the subfields in a literal.

Literals cannot be used in any assembler instruction where a previously defined symbol is required, but
length attribute references to previously defined literals are allowed. Literals are relocatable terms because
the address of the literal, rather than the literal-generated constant itself, is assembled in the statement
that references a literal. The assembler generates the literals, collects them, and places them in a specific
area of storage, as explained under “Literal pool” on page 38. Because the assembler determines the order
in which literals are placed in the literal pool, the effect of using two literals as paired relocatable terms
(see “Paired relocatable terms” on page 41) is unpredictable.

“Location counter reference” on page 33 describes how you can use the current location counter in a
literal.

The rules for determining whether two literals are identical are:
1. A literal which contains a location counter reference is not identical to any other literal.
2. Otherwise, two literals are identical (and are generated only once), if their source forms are identical.

Chapter 2. Coding and structure 37

Summary of literal rules:

1. S-type address constants can be used in literals.
2. Location counter references (*) can be used in address constants.
3. When a literal address constant contains *, each use of that literal is assigned a separate location in

the literal pool.
4. When a literal address constant contains *, the value used for * is the address of the (single)

instruction in which the literal is used.
When not in a literal, * in an address constant refers to the first byte of the constant.

5. When a literal address constant containing * also has a duplication factor, the value of * does not
change for each duplication, but remains equal to the address if the first byte of the instruction in
which the literal was used.
When not in a literal, if an address constant containing * is duplicated, the value of * is updated for
each duplication to refer to the address of that duplication.

6. When an S-type address constant is used in a literal, regardless of whether it contains *, the base
register that is used to compute the base and displacement that are parts of the S-type address
constant is determined by the USING statements that are in effect at the place that the literal is
assembled, not the USING statements in effect at the place where the literal is referenced in an
instruction. There are two different base-displacement calculations: one in the instruction referring to
the S-type address constant, and one in the S-type address constant to determine how to address the
object of the constant.

Contrast with immediate data: Do not confuse a literal with the immediate data. Immediate data is
assembled into the instruction.

Literal pool
The literals processed by the assembler are collected and placed in a special area called the literal pool.
You can control the positioning of the literal pool. Unless otherwise specified, the literal pool is placed at
the end of the first control section.

You can also specify that multiple literal pools be created. However, the assembler controls the sequence
in which literals are ordered within the pool. Further information about positioning literal pools is in
“LTORG instruction” on page 171.

Expressions
This section discusses the expressions used in coding operand entries for source statements. You can use
an expression to specify:
v An address
v An explicit length
v A modifier
v A duplication factor
v A complete operand

Expressions have absolute and relocatable values. Whether an expression is absolute or relocatable
depends on the value of the terms it contains. The assembler evaluates relocatable and absolute
expressions at assembly time. Figure 10 on page 39 shows examples of valid expressions.

In addition to expressions used in coding operand entries, there are three types of expression that you
can use only in conditional assembly instructions: arithmetic, logical, and character expressions. They are
evaluated during conditional assembly. For more information, see “Assigning values to SET symbols” on
page 305.

An expression is composed of a single term or an arithmetic combination of terms. The assembler reduces
multiterm expressions to single values. Thus, you do not have to compute these values yourself. Here are

38 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

examples of valid expressions:

Rules for coding expressions
The rules for coding an absolute or relocatable expression are:
v Unary (operating on one value) operators and binary (operating on two values) operators are allowed

in expressions.
v An expression can have one or more unary operators preceding any term in the expression or at the

beginning of the expression.
v An expression must not begin with a binary operator, nor can it contain two binary operators in

succession. When + and - are used as prefix operators, then they are unary, and not binary, operators.
v An expression starting with * is interpreted as a location counter reference, and not a multiplication

operator.
v An expression must not contain two terms in succession.
v No spaces are allowed between an operator and a term, nor between two successive operators.
v An expression can contain any number of unary and binary operators, and any number of levels of

parentheses.
v A single relocatable term is not allowed in a multiply or divide operation. Paired relocatable terms

have absolute values and can be multiplied and divided if they are enclosed in parentheses. See
“Paired relocatable terms” on page 41.

Figure 11 on page 40 shows the definitions of absolute and relocatable expressions.

* BETA*10
AREA1+X’2D’ B’101’
*+32 C’ABC’
N-25 29
FIELD+332 L’FIELD
FIELD LAMBDA+GAMMA
(EXIT-ENTRY+1)+GO TEN/TWO
ALPHA-BETA/(10+AREA*L’FIELD)-100 =F’1234’
=A(100,133,175,221)+8

Figure 10. Examples of valid expressions

Chapter 2. Coding and structure 39

Evaluation of expressions
A single-term expression, like 29 or BETA, has the value of the term involved. The assembler reduces a
multiterm expression, like 25*10+A/B or BETA+10, to a single value, as follows:
1. It evaluates each term.
2. It does arithmetic operations from left to right. However:

a. It does unary operations before binary operations.
b. It does binary operations of multiplication and division before the binary operations of addition

and subtraction.
3. In division, it gives an integer result; any fractional portion is dropped. Division by zero gives 0.
4. In parenthesized expressions, the assembler evaluates the innermost expressions first and then

considers them as terms in the next outer level of expressions. It continues this process until the
outermost expression is evaluated.

5. A term or expression's intermediate value and computed result must lie in the range of -231 through
+231-1.

┌───────────┐
│ │
│Absolute │
│Expression │
│ │
└─────┬─────┘

│
↓ Can be any of
├─────────────┬─────────────┬─────────────┬─────────────┬─────────────┬─────────────┬─────────────┬─────────────┐
│ │ │ │ │ │ │ │ │
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

┌─────┴─────┐ ┌─────┴─────┐ ┌─────┴─────┐ ┌─────┴─────┐ ┌─────┴─────┐ ┌─────┴─────┐ ┌─────┴─────┐ ┌─────┴─────┐ ┌─────┴─────┐
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│ Rel. Exp. │ │ Absolute │ │ Abs. Exp. │ │ Abs. Exp. │ │ Abs. Exp. │ │ Abs. Exp. │ │(Abs. Exp.)│ │ +Abs. Exp.│ │ -Abs. Exp.│
│ - │ │ Term │ │ + │ │ - │ │ * │ │ / │ │ │ │ ↑ │ │ ↑ │
│ Rel. Exp. │ │ │ │ Abs. Exp. │ │ Abs. Exp. │ │ Abs. Exp. │ │ Abs. Exp. │ │ │ │ │ │ │ │ │
└─────┬─────┘ └─────┬─────┘ └───────────┘ └───────────┘ └───────────┘ └───────────┘ └───────────┘ └─┼─────────┘ └─┼─────────┘

│ │ └──────┬──────┘
│ ↓ Can be any of │
│ ├─────────────┬─────────────┬─────────────┬─────────────┐ unary operators
│ │ │ │ │ │
│ ↓ ↓ ↓ ↓ ↓
│ ┌─────┴─────┐ ┌─────┴─────┐ ┌─────┴─────┐ ┌─────┴─────┐ ┌─────┴─────┐
│ │Absolute │ │ Self- │ │ Symbol │ │ Symbol │ │ Symbol │
│ │Valued │ │ Defining │ │ Length │ │ Integer │ │ Scale │
│ │Ordinary │ │ Term │ │ Attribute │ │ Attribute │ │ Attribute │
│ │Symbol │ │ │ │ │ │ │ │ │
│ └───────────┘ └───────────┘ └───────────┘ └───────────┘ └───────────┘
│
↓

┌─────┴─────┐
│ │
│Relocatable│
│Expression │
│ │
└─────┬─────┘

│
↓ Can be any of
├─────────────┬─────────────┬─────────────┬─────────────┬─────────────┐
│ │ │ │ │ │
↓ ↓ ↓ ↓ ↓ ↓

┌─────┴─────┐ ┌─────┴─────┐ ┌─────┴─────┐ ┌─────┴─────┐ ┌─────┴─────┐ ┌─────┴─────┐ Operators Allowed
│ │ │ │ │ │ │ │ │ │ │ │
│Relocatable│ │ Rel. Exp. │ │ Rel. Exp. │ │(Rel. Exp.)│ │+Rel. Exp. │ │-Rel. Exp. │ Unary: + Positive
│Term │ │ + │ │ - │ │ │ │↑ │ │↑ │ - Negative
│ │ │ Abs. Exp. │ │ Abs. Exp. │ │ │ ││ │ ││ │
└─────┬─────┘ └───────────┘ └───────────┘ └───────────┘ └┼──────────┘ └┼──────────┘ Binary: + Addition

│ │ │ - Subtraction
│ └──────┬──────┘ * Multiplication
↓ Can be any of │ / Division
├─────────────┐ unary operators
│ │
↓ ↓

┌─────┴─────┐ ┌─────┴─────┐
│Relocatable│ │ Location │ Rel. Exp. = Relocatable Expression
│Valued │ │ Counter │ Abs. Exp. = Absolute Expression
│Ordinary │ │ Reference │
│Symbol │ │ │
└───────────┘ └───────────┘

Figure 11. Definitions of absolute and relocatable expressions

40 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

The assembler evaluates paired relocatable terms at each level of expression nesting.

Absolute and relocatable expressions
An expression is absolute if its value is unaffected by program relocation. An expression is relocatable if its
value depends upon program relocation. The two types of expressions, absolute and relocatable, take on
these characteristics from the term or terms composing them. A description of the factors that determine
whether an expression is absolute or relocatable follows.

Absolute expression: An absolute expression is one whose value remains the same after program
relocation. The value of an absolute expression is called an absolute value.

An expression is absolute, and is reduced to a single absolute value if the expression:
1. Comprises a symbol with an absolute value, a self-defining term, or a symbol length attribute

reference, or any arithmetic combination of absolute terms.
The absolute terms can include Integer and Scale attributes, but not Type attributes.

2. Contains relocatable terms alone or in combination with absolute terms, and if all these relocatable
terms are paired.

Relocatability attribute: The relocatability attribute describes the attribute of a relocatable term. If two
terms are defined in the same control section, they are characterized as having the same relocatability
attribute.

If the terms are defined in different control sections, or have different relocatability attributes, the
expression is said to be “complex relocatable”.

The relocatability attribute is the same as the ESDID for external symbols, and the “Relocation ID” in the
listing.

Paired relocatable terms: An expression can be absolute even though it contains relocatable terms, if all
the relocatable terms are paired. The pairing of relocatable terms cancels the effect of relocation.

The assembler reduces paired terms to single absolute terms in the intermediate stages of evaluation. The
assembler considers relocatable terms as paired under the following conditions:
v The paired terms must have the same relocatability attribute.
v The paired terms must have opposite signs after all unary operators are resolved. In an expression, the

paired terms do not have to be contiguous (that is, other terms can come between the paired terms).

The following examples show absolute expressions. A is an absolute term; X and Y are relocatable terms
with the same relocatability:
A-Y+X
A
A*A
X-Y+A
(*+*)-(*+*)
-

A reference to the location counter must be paired with another relocatable term from the same control
section; that is, with the same relocatability. For example:
*-Y

Relocatable expression: A relocatable expression is one whose value changes by n if the origin of the
control section in which it appears is relocated n bytes.

A relocatable expression can be a single relocatable term. The assembler reduces a relocatable expression
to a single relocatable value if the expression:

Chapter 2. Coding and structure 41

1. Is composed of a single relocatable term, or
2. Contains relocatable terms, alone or in combination with absolute terms, and

a. All the relocatable terms but one are paired. The unpaired term gives the expression a relocatable
value; the paired relocatable terms and other absolute terms constitute increments or decrements
to the value of the unpaired term.

b. The relocatability attribute of the whole expression is that of the unpaired term.
c. The sign preceding the unpaired relocatable term must be positive, after all unary operators have

resolved.

The following examples show relocatable expressions. A is an absolute term, W and X are relocatable terms
with the same relocatability attribute, and Y is a relocatable term with a different relocatability attribute.
Y-32*A W-X+* =F’1234’ (literal)
* (reference to W-X+W Y

location counter) W-X+Y A*A+W-W+Y

Complex relocatable expressions: Complex relocatable expressions, unlike relocatable expressions, can
contain:
v Two or more unpaired relocatable terms
v An unpaired relocatable term preceded by a negative sign

Using the same symbols, here are examples of complex relocatable expressions:
W+X *+*
X-Y A-W+Y

Complex relocatable expressions are used in A-type and Y-type address constants to generate address
constant values. For more details, refer to ““Complex relocatable expressions” on page 133”, and
“Address constants—A and Y” on page 133. V-type and S-type constants cannot contain complex
relocatable expressions. You can assign a complex relocatable value to a symbol using the EQU
instruction, as described in “EQU instruction” on page 162.

42 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Chapter 3. Program structures and addressing

This chapter describes:
v How you use symbolic addresses to refer to data in your assembler language program.
v How you divide a large program into smaller parts and use symbolic addresses in one part to refer to

data in another part.

Object program structures
High Level Assembler supports two object-program models. The older “load module” model generally
involves one or more independently relocatable control sections combined into a single block of machine
language text, which is loaded into a single contiguous portion of memory. Addresses within this block of
text are resolved to locations within the block, or are left unresolved. Such programs are considered
one-dimensional structures. Examples include z/OS load modules, CMS modules, and z/VSE phases.

z/VM and z/OS
The second object-program model supports a two-dimensional structure called a program object.
The loaded program can consist of one or more contiguous blocks of machine language text
grouped in classes and placed in different portions of memory. Each contribution of machine
language text to a class is provided by an owning section, and the independently relocatable text
from a section that contributes to a class is an element. For certain types of class, an element can
contain parts. Unlike a control section, a program object section can specify more than one
independently relocatable block of text. Addresses within each class can be resolved to addresses
in the same or different classes. A class in a program object has behavior properties like those of a
load module.

Section names are specified with the CSECT, RSECT, and START statements, and class and part
names are specified with the CATTR statement. Additional attributes can be assigned to external
symbols with the XATTR statement.

The program object model can be created only when the GOFF option is specified. The “load module”
model can be created when either the NOGOFF or GOFF option is specified, but there are limitations on
source program statements if GOFF is specified.

Note: The term “section” is used in different senses for each object-program model. In the load module
model, a section is a control section. In the program object model, a section is a one-dimensional
cross-section of program object data containing contributions to one or more classes.

z/VM and z/OS
Note: Features supported by High Level Assembler when you specify the GOFF option might not
be supported by the system linker/binder or run-time environment where the assembled
program is processed. You should check the relevant product documentation before utilizing the
assembler's features.

The following figure illustrates the differences between the object-program models.

© Copyright IBM Corp. 1992, 2013 43

Source program structures
This part of the chapter explains how to subdivide a large program into smaller parts that are easier to
understand and maintain. It also explains how to divide these smaller parts such as one section or
element to contain executable instructions, and another to contain data constants and work areas.

You should consider two different subdivisions when writing an assembler language program:
v The source module
v The control section (load module model), or sections, elements, and parts (program object model)

You can divide a program into two or more source modules. Each source module is assembled into a
separate object module. The object modules can then be combined to form an executable program.

You can also divide a source module into two or more sections, or (in the program object model) into
sections containing multiple classes. Each section is assembled as part of the same object module. By
writing the correct linker control statements, you can select a complete object module or any individual
section of the object module to be linked and later loaded as an executable program.

Size of Program Components
If a source module becomes so large that its logic is not easily understood, divide it into smaller
modules. For some instructions, at most 4096 bytes can be addressed by one base register.
Long-displacement instructions allow you to address 1048576 bytes with one base register.

Communication between Program Components
You must be able to communicate between the components of your program; that is, be able to
refer to data in a different component or branch to an instruction in another component.

To communicate between two or more source modules, you must link them together with
applicable symbolic references.

To communicate between two or more sections or elements within a source module, you must
correctly establish the addressability of each to the others.

Source module
A source module is composed of source statements in the assembler language. You can include these
statements in the source module in two ways:
v You can enter them directly into the file that contains your source program.

┌─────────────┐ Class Class Class ─ ─ ─
│ │ ┌─────────┬─────────┬─────────┬ ─ ─ ─┐
│ Control │ │ │ │ part │ │
│ Section │ Section │ element │ element ├─────────┤ │
│ │ │ │ │ part │ │
├─────────────┤ ├─────────┼─────────┼─────────┼ ─ ─ ─┤
│ Control │ │ │ │ │ │
│ Section │ Section │ element │ element │ part │ │
├─────────────┤ │ │ │ │ │
: : ├─────────┼─────────┼─────────┼ ─ ─ ─┤
: : : : : : :
: : : : : : :
└─────────────┘ └─────────┴─────────┴─────────┴ ─ ─ ─┘

Load Module Model Program Object Model

Figure 12. Load module and Program Object structures

44 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

v You specify one or more COPY instructions among the source statements being entered. When High
Level Assembler encounters a COPY instruction, it replaces the COPY instruction with a predetermined
set of source statements from a library. These statements then become a part of the source module. See
“COPY instruction” on page 105 for more details.

Beginning of a source module
The first statement of a source module can be any assembler language statement, except MEXIT and
MEND. You can initiate the first control section of a source module by using the START instruction.
However, you can write some source statements before the beginning of the first control statement. See
“First section” on page 46 for more details.

End of a source module
The END instruction marks the end of a source module. However, you can code several END
instructions; conditional assembly processing can determine which of several coded or substituted END
instructions is to be processed. Also, specifying the BATCH option allows you to supply more than one
source module in a single input stream. When BATCH is specified, the assembler completes assembling a
source module when an END statement is encountered. If further statements are found in the input
stream, assembly of a new source module is begun. See “END instruction” on page 160 for more details,
and the section “BATCH” in the HLASM Programmer's Guide for information about the BATCH option.

Conditional Assembly: Conditional assembly processing can determine which of several coded or
substituted END instructions is to be processed.

Sections, elements, and parts
In the load module model, a control section is the smallest subdivision of a program that can be relocated
as a unit. The assembled control sections contain the object code for machine instructions, data constants,
and areas.

In the program object model, elements and parts are the smallest subdivisions of a program that can be
relocated as a unit. Sections allow grouping all element and part contributions under a single name. The
assembled sections, elements, and parts contain the object code for the machine instructions, data, and
areas.

Consider the concept of a control section at different processing times:

At coding time
You create a control section or an element or part when you write the instructions it contains. In
addition, you establish the addressability of each component within the source module, and
provide any symbolic linkages between components that lie in different source modules. You also
write the linker control statements to combine sections into a load module or program object, and
to provide an entry point address for the beginning of program execution.

At assembly time
High Level Assembler translates the source statements into object code. Each source module is
assembled into one object module. The contents of the object module are relocatable.

At linking time
As specified by linker or binder control statements, the linker or binder combines the object code
of one or more sections into one load module or program object. It also calculates the addresses
needed to accommodate common sections and external dummy sections from different object
modules. In addition, it calculates the space needed to accommodate external dummy sections.

You can specify the relocatable address of the starting point for program execution in a linker
control statement or request a starting address in the operand field of an assembler END
instruction.

Chapter 3. Program structures and addressing 45

At program fetch time
The control program loads the load module or program object into virtual storage. All the
relocatable addresses are converted to fixed locations in storage.

At execution time
The control program passes control to the loaded program now in virtual storage, and your
program is run.

Sections
In the load module model, control sections might generate machine language text containing instructions
and data, or define mappings of storage areas to be referenced at execution time. Control sections that
generate machine language text are called executable control sections, even though they might contain only
data. Control sections that create only mappings are called reference control sections.

z/VM and z/OS

In the program object model, sections can define classes containing elements. (Classes are described
in “Classes (z/OS and CMS)” on page 50.) Elements can contain machine language text or define
mappings, or both. Elements can in turn contain one or more parts, which are described at “Parts
(z/OS and CMS)” on page 52.

Elements containing machine language text are usually linked in a class comprising other
elements containing machine language text, and elements defining mappings are usually linked
in a class with other elements defining mappings.

The section name is used in binder operations to refer to its entire collection of elements and
parts, but a program object section is not the same as a load module control section. A section
name can be referenced as an external name only if defined as an entry point in an element
belonging to that section. (By default, the assembler generates an entry point in class B_TEXT with
the section's name. See “Classes (z/OS and CMS)” on page 50 for more information.)

The term “executable” is used to describe executable control sections in the load module model, or
elements in the program, or sections in the program object model, or elements in the program object
model.

You initiate an executable section by using the START, CSECT, or RSECT instruction, as described below:
v The START instruction can be used to initiate the first or only section of a source module. For more

information about the START instruction, see “START instruction” on page 189.
v The CSECT instruction can be used anywhere in a source module to initiate or continue a section. For

more information about the CSECT instruction, see “CSECT instruction” on page 106.
v Like the CSECT instruction, the RSECT instruction can be used anywhere in a source module to initiate

or continue a section. Unlike the CSECT instruction, however, the RSECT instruction causes the
assembler to check the coding in the section for possible violations of reenterability. For more
information about the RSECT instruction, see “RSECT instruction” on page 188.

A section can also be initiated as an unnamed section, or private code, without using the START, CSECT,
or RSECT instruction. For more information, see “Unnamed section” on page 47.

First section
Before you initiate the first section in your source module, you can code only certain instructions. The
following information lists those instructions that initiate the first section, and those instructions that can
precede the first section.

What must appear before the first section: The ICTL instruction, if specified, must be the first statement
in a source module.

46 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

*PROCESS statements must precede all other statements in a source module, except the ICTL instruction.
There is a limit of 10 *PROCESS statements allowed in a source module. Additional *PROCESS
statements are treated as assembler comment statements. See page “*PROCESS statement” on page 84 for
a description of the *PROCESS statement.

What can optionally appear before the first executable control section: The instructions or groups of
instructions that can optionally be specified before the first executable control section are:
v The following assembler instructions:

ACONTROL ADATA AINSERT ALIAS CEJECT COPY
DXD EJECT ENTRY EXITCTL EXTRN ISEQ
MACRO MEND MEXIT POP PRINT PUNCH
PUSH REPRO SPACE TITLE WXTRN XATTR

v Comment statements, including macro format comment statements
v Any statement which is part of an inline macro definition, between MACRO and MEND statements,

with the possible exception of *PROCESS and ICTL.
v Common control sections
v Dummy control sections
v Any conditional assembly instruction
v Macro instructions that do not generate statements that establish the first section

These instructions or groups of instructions belong to a source module, but are not considered part of an
executable section.

Instructions that establish the first section: Any instruction that affects the location counter, or uses its
current value, establishes the beginning of the first executable section. The instructions that establish the
first section include any machine instruction and the following assembler instructions:
CCW CCW0 CCW1 CNOP COM CSECT
CXD DC DS DSECT EQU LOCTR
LTORG ORG RSECT START USING

COM, CSECT, DSECT, RSECT, and START start a possibly named control section. The other statements
start an unnamed control section.

These instructions are always considered a part of the control section in which they appear.

The DSECT, COM, and DXD instructions initiate reference control sections and do not establish the first
executable section.

The statements copied into a source module by a COPY instruction determine whether it initiates the first
control section.

Any instructions copied by a COPY instruction, or generated by the processing of a macro instruction
before the first section, must belong to one of the groups of instructions shown above. Any other
instructions cause the assembler to establish the first section.

All the instructions or groups of instructions listed above can also appear as part of a section.

If you specify the PROFILE assembler option the assembler generates a COPY statement as the first
statement in the assembly after any ICTL or *PROCESS statements. The copy member should not contain
any ICTL or *PROCESS statements.

Unnamed section
The unnamed section is an executable section that can be initiated in one of the following two ways:
v By coding a START, CSECT, RSECT, or COM instruction without a name entry
v By coding any instruction, other than the START, CSECT, or RSECT instruction, that initiates the first

executable section

Chapter 3. Program structures and addressing 47

An unnamed control section is sometimes referred to as private code. Private code sections are sometimes
difficult to manage with other system components such as linkers and configuration management tools.
Avoiding their use is recommended. (Zero-length private code sections are sometimes ignored or
discarded by system linkers.)

All sections should be given names so they can be referred to symbolically:
v Within a source module
v In EXTRN and WXTRN instructions
v In linker control statements for section ordering and replacement, and for linkage between source

modules

Unnamed common control sections or dummy control sections can be defined if the name entry is
omitted from a COM or DSECT instruction.

If you include an AMODE or RMODE instruction in the assembly and leave the name field blank, you
must provide an unnamed control section.

Reference control sections
A reference control section is one you initiate by using the DSECT, COM, or DXD instruction, as follows:
v You can use the DSECT instruction to initiate or continue a dummy control section. For more

information about dummy sections, see “Dummy control sections.”
v You can use the COM instruction to initiate or continue a common control section. For more

information about common sections, see “Common control sections” on page 49.
v You can use the DXD instructions to define an external dummy section. For more information about

external dummy sections, see “External dummy sections” on page 49.

At assembly time, reference control sections are not assembled into object code. You can use a reference
control section either to reserve storage areas or to describe data to which you can refer from executable
control sections. These reference control sections are considered empty at assembly time, and the actual
binary data to which they refer is not available until execution time.

Dummy control sections
A dummy control section is a reference control section that describes the layout of data in a storage area
without reserving any virtual storage.

You might want to describe the format of an area whose storage location is not determined until the
program is run. You can do so by describing the format of the area in a dummy section, and using
symbols defined in the dummy section in the operands of machine instructions.

The DSECT instruction initiates a dummy control section or indicates its continuation. For more
information about the DSECT instruction, see “DSECT instruction” on page 157.

How to use a dummy control section: A dummy control section (dummy section) lets you write a
sequence of assembler language statements to describe the layout of data located elsewhere in your
source module. The assembler produces no object code for statements in a dummy control section, and it
reserves no storage in the object module for it. Rather, the dummy section provides a symbolic template
or mapping that is empty of data. However, the assembler assigns location values to the symbols you
define in a dummy section, relative to its beginning.

Therefore, to use a dummy section, you must:
v Have access to a storage area for the data
v Ensure that the locations of the symbols in the dummy section correspond to the locations of the data

being described

48 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

v Establish the addressability of the dummy section in combination with the storage area

You can then refer to the data symbolically by using the symbols defined in the dummy section.

Common control sections
A common control section is a reference control section that lets you reserve a storage area that can be used
by one or more source modules. One or more common sections can be defined in a source module.

The COM instruction initiates a common control section, or indicates its continuation. For more
information about the COM instruction, see “COM instruction” on page 104.

How to use a common control section: A common control section (common section) lets you describe a
common storage area in one or more source modules.

When the separately assembled object modules are linked as one program, the required storage space is
reserved for the common control section. Thus, two or more modules can share the common area.

Only the storage area is provided; the assembler does not assemble the source statements that make up a
common control section into object code. You must provide the data for the common area at execution
time.

The assembler assigns locations to the symbols you define in a common section relative to the beginning
of that common section. This lets you refer symbolically to the data that is placed in the common section
at execution time. If you want to refer to data in a common control section, you must establish the
addressability of the common control section in each source module that contains references to it. If you
code identical common sections in two or more source modules, you can communicate data symbolically
between these modules through this common section.

Communicating with modules in other languages: Some high-level languages such as COBOL, PL/I, C,
and Fortran use common control sections. This lets you communicate between assembler language
modules and modules written in those languages.

External dummy sections
An external dummy section is a reference control section that lets you describe storage areas for one or
more source modules, to be used as:
v Work areas for each source module
v Communication areas between two or more source modules

Note: External dummy sections are also called “pseudo-registers” in other contexts.

When the assembled object modules are linked and loaded, you can dynamically allocate the storage
required for all your external dummy sections at one time from one source module (for example, by
using the z/OS GETMAIN macro instruction). This is not only convenient, but it saves space and reduces
fragmentation of virtual storage.

Typical bind-time processing of external dummy sections involves “merging” the attributes of identically
named external dummy sections, retaining the longest length and strictest alignment among all
identically-named external dummy sections. In particular, the lengths of identically named external
dummy sections are not additive.

To generate and use the external dummy sections, you need to specify a combination of the following:
v DXD or DSECT instruction
v Q-type address constant
v CXD instruction

Chapter 3. Program structures and addressing 49

For more information about the DXD and CXD instructions, see “DXD instruction” on page 159 and
“CXD instruction” on page 108.

Note: The names of dummy external control sections might match the names of other external symbols
that are not names of dummy control sections, without conflict.

Generating an external dummy section: An external dummy section is generated when you specify a
DXD instruction, or when you specify a DSECT instruction whose name appears in a Q-type address
constant.

When a DSECT name is used as an operand of a Q-type address constant, that name becomes an external
symbol with type XD in the External Symbol Dictionary portion of the listing. The name must satisfy the
name-length requirements of the object file format specified in the assembler options.

Use the Q-type address constant to reserve storage for the offset to the external dummy section whose
name is specified in the operand. This offset is the distance in bytes from the beginning of the area
allocated for all the external dummy sections to the beginning of the external dummy section specified.
You can use this offset value to address the external dummy section.

Using external dummy sections: To use an external dummy section, you must do the following:
1. Identify and define the external dummy section. The assembler computes the length and alignment

required. The linker merges this definition with other definitions of the same name, assigning the
longest length and strictest alignment.

2. Provide a Q-type constant for each external dummy section defined.
3. Use the CXD instruction to reserve a fullword area into which the linker or loader inserts the total

length of all the external dummy sections that are specified in the source modules of your program.
The linker computes this length from the accumulated lengths of the individual external dummy
sections supplied by the assembler.

4. Allocate a storage area using this computed total length.
5. Load the address of the allocated area into a register.
6. Add to the address in the register the offset into the allocated area of the applicable external dummy

section. The linker inserts this offset into the area reserved by the associated Q-type address constant.
7. Establish the addressability of the external dummy section in combination with the portion of the

allocated area reserved for the external dummy section.

You can now refer symbolically to the locations in the external dummy section. The source statements in
an external dummy section are not assembled into object code. Thus, you must create the data described
by external dummy sections at execution time.

Note: During linking, external dummy sections might be arranged in any order. Do not assume any
ordering relationship among external dummy sections.

Classes (z/OS and CMS)
Each section's contributions to a program object are assigned to one or more classes, according to their
desired binding and loading properties. Class names are assigned either by default (see “Default class
assignments” on page 51) or explicitly. You define a class with the CATTR instruction, which must follow
the initiation of an executable section. The class name is provided in the name entry of the CATTR
instruction, and attributes of the class are provided by the operands of the first CATTR instruction
declaring the class. (See “CATTR instruction (z/OS and CMS)” on page 96 for further information.) The
element containing subsequent machine language text or storage definitions is defined by the
combination of the section and class names, as illustrated in Figure 12 on page 44.

For example, suppose you define two classes, CLASS_X and CLASS_Y:

50 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

SECT_A CSECT , Define section SECT_A
CLASS_X CATTR RMODE(ANY) Define class CLASS_X

- - - Statements for CLASS_X
CLASS_Y CATTR RMODE(24) Define class CLASS_Y

- - - Statements for CLASS_Y

The statements following the first CATTR instruction are assigned to an element defined by the section
name SECT_A and the class name CLASS_X. Similarly, the statements following the second CATTR
instruction are assigned to an element defined by the section name SECT_A and the class name CLASS_Y.
CLASS_Y is loaded below 16 Mb, and CLASS_X might be loaded anywhere below 2 Gb.

Class names are rarely referenced, because the attributes of the class, such as RMODE, are much more
important.

You can resume a class by providing additional CATTR statements with the class name in the name entry.
No attributes of the class can be specified after the first CATTR statement declaring the class.

Resuming a section causes subsequent text to be placed in the B_TEXT class if there is no intervening
CATTR statement defining or resuming a different class:
SECT_A CSECT , Define section SECT_A
CLASS_X CATTR RMODE(ANY) Define class CLASS_X

- - - Statements for CLASS_X
CLASS_Y CATTR RMODE(24) Define class CLASS_Y

- - - Statements for CLASS_Y
SECT_A CSECT , Resume section SECT_A

- - - Statements for class B_TEXT
CLASS_X CATTR , Resume class CLASS_X

- - - More statements for CLASS_X

Class binding and loading attributes
Each class is bound into a separately relocatable loadable segment, using one of two binding attributes.
v Classes containing parts use merge binding (described at “Parts (z/OS and CMS)” on page 52). Parts

are the smallest independently relocatable components of a merge class.
v Classes not containing parts use concatenation binding, in which elements, after suitable alignment, are

placed one after another. Zero-length elements are retained but take no space in the program object.
Elements are the smallest independently relocatable components of a concatenation class

Each class must have uniform binding and loading attributes. More than one class can have identical
attributes, and the binder can put such classes into one segment. The most usual class attributes are
RMODE, alignment, and Loadability; see “CATTR instruction (z/OS and CMS)” on page 96 for further
information.

Class loading attributes determine the load-time placement of segments in virtual storage. Loadable
segments are loaded as separately relocated non-contiguous entities at different origin addresses.

Default class assignments
High Level Assembler provides compatible behavior with “load module” model object files generated
when the NOGOFF option is active. When the GOFF option is specified, the assembler automatically
follows each CSECT, RSECT, and START statement by defining two classes: B_TEXT and B_PRV.
v B_TEXT contains the machine language text associated with the section name, and is assigned the

RMODE of the section name. The section name is assigned to an entry point at the origin of the class.
If a subsequent CATTR statement declares a class name before any other statements have defined
storage, the element defined by the section name and the B_TEXT class name is empty.

v B_PRV contains any external dummy sections defined by DXD instructions, or by DSECTs named in
Q-type address constants. If none are defined, the elements in this class are empty. (“PRV” is the
binder's term for a “Pseudo Register Vector”, the cumulative collection of external dummy sections.)

Chapter 3. Program structures and addressing 51

v High Level Assembler assigns the name of the section as an entry name at the initial byte of B_TEXT,
and assigns to it the AMODE of the section name.

These two classes are bound in the same way as ordinary control sections. Dummy external sections are
bound in the load module model. They can be used to generate a load module if certain restrictions are
satisfied.

You can declare other classes in addition to the defaults, but the resulting program object is not
convertible to a load module.

Parts (z/OS and CMS)
Parts are the smallest externally named and independently relocatable subdivisions of elements in a
merge class. A class containing parts can contain only parts, and a class containing anything other than
parts cannot contain any parts.

ENTRY statements cannot define an entry point in a part.

You define a part with the CATTR instruction, which must follow the initiation of an executable section.
The name of the class to which the part belongs is provided in the name entry of the CATTR instruction,
and the name of the part is specified as an operand. The first definition of a class name can also specify
the attributes of the class. (See “CATTR instruction (z/OS and CMS)” on page 96 for further information.)

For example, suppose you define two parts in a class:
SECT_B CSECT , Define section SECT_B
PClass CATTR Part(Part_R),RMODE(ANY) Define class PClass, part Part_R

- - - Statements included in Part_R
PClass CATTR Part(Part_S) Define part Part_S in class PClass

- - - Statements included in Part_S
PClass CATTR Part(Part_R) Resume class PClass and part Part_R

- - - More statements included in Part_R

These statements define a “merge” class PClass containing two parts, Part_R and Part_S. If other classes
or other object files declare parts with the same names in the same class, the binder merges their contents
to determine the final part definition in the program object.

You can provide additional statements for a part by specifying a CATTR statement with the class name in
the name entry and the part name specified as the operand. No other class attributes can be specified
following the first CATTR statement declaring the class.

Parts are automatically assigned a “merge” attribute, meaning that more than one identically named part
might appear in a class defined in other assemblies or compilations. The binder assigns the longest length
and strictest alignment of all such identically named parts, and merges the machine language text
contributions of each to form the final text belonging to that part. The order of text merging depends on
the sequence of parts processing by the binder.

Note: During linking, parts might be arranged in any order, depending on their priority attribute. Do not
assume any ordering relationship among parts.

Location counter setting
The assembler maintains a separate location counter for each section, element, and part. The location
counter setting for the first section starts at 0, except when an initial section is started with a START
instruction that specifies a nonzero location counter value. The location values assigned to the
instructions and other data in a section, element, or part are, therefore, relative to the location counter
setting at the beginning of that section, element, or part.

For executable sections, the location values that appear in the listings depend on the THREAD option:

52 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

v If you specify NOTHREAD, the location counter values for each section, element, or part restart at 0,
except possibly those associated with a first section initiated by a START instruction with a nonzero
address.

v If you specify THREAD, location counter values do not restart at 0 for each subsequent section,
element, or part. They continue, after suitable alignment, from the end of the previous section, element,
or part.

For reference control sections, the location values that appear in the listings always start from 0.

You can continue a control section, element, or part that has been discontinued and thus intersperse code
sequences from different control sections, elements, or parts. The location values that appear in the
listings for such discontiguous sequences are divided into segments that follow from the end of one
segment to the beginning of the subsequent segment.

The location values, listed for the next defined control section, element, or part, begin after the last
location value assigned to the preceding such item.

On z/VSE, or when you specify the NOGOFF assembler option on z/OS and CMS, the maximum value
of the location counter and the maximum length of a control section is 224-1, or X'FFFFFF' bytes. If
LIST(133) is in force, then the high-order byte is shown as zero.

z/VM and z/OS
When you specify the GOFF assembler option, the maximum value of the location counter and
the maximum length of an element or part is 231-1, or X'7FFFFFFF' bytes.

Location counter and length limits
The assembler also maintains a length counter for each individually relocatable component of the program:
executable and reference control sections, elements, and parts.

If any location counter overflows its maximum value, High Level Assembler issues the severe error
message:

ASMA039S Location counter error

and continues assembling with the location counter value “wrapping” around to zero.

The length of a section, element, or part cannot exceed the maximum allowed length described above. If
the length counter reaches this maximum value, it stays fixed at that value without an error condition or
error message. Exceeding the length counter causes overflow of the location counter, producing the
ASMA039S message.

The location counter setting is relative to the beginning of the location it represents, and the length
counter represents the cumulative length of the control section. This means that the length counter is
nearly always greater than the location counter, and can exceed its maximum value before the location
counter. Even if the location counter overflows, the length counter value might be correct, and
reassembling with the NOTHREAD option might avoid the location counter overflow condition.

Use of multiple location counters
High Level Assembler lets you use multiple location counters for each individual control section. Use the
LOCTR instruction (see “LOCTR instruction” on page 169) to assign different location counters to
different parts of a control section. The assembler then rearranges and assembles the coding together,
according to the different location counters you have specified:
v All coding using the first location counter is assembled together.
v Then the coding using the second location counter is assembled together.
v And so on, for futher location counters.

Chapter 3. Program structures and addressing 53

An example of the use of multiple location counters is shown in Figure 13. In the example, executable
instructions and data areas have been interspersed throughout the coding in their logical sequence. Each
group of instructions is preceded by a LOCTR instruction that identifies the location counter under which
it is to be assembled. The assembler rearranges the control section so that the executable instructions are
grouped together and the data areas are grouped together. Symbols are not resolved in the order they
appear in the source program, but in location counter sequence.

The interactions of the LOCTR instruction with sections, classes, and parts is described at “LOCTR
instruction” on page 169.

Addressing
This part of the chapter describes the techniques and introduces the instructions that let you use symbolic
addresses when referring to instructions and data. You can address code and data that is defined within
the same source module, or code and data that is defined in another source module. Symbolic addresses
are more meaningful and easier to use than the corresponding object code addresses required for machine
instructions. The assembler can convert the symbolic addresses you specify into their object code form.

The z/Architecture architecture has two ways of resolving addresses in your program, depending on the
machine instruction type:
v base displacement, where the address is computed by adding the displacement to the contents of a

base register.
v relative immediate, where the address is computed by adding 2 × the signed immediate operand field

to the instruction's address (refer to “RI format” on page 76 and “RSI format” on page 79).

Addressing within source modules: establishing addressability
You can use symbolic addresses in machine instructions and certain assembler instructions. This is much
easier than explicitly coding the addresses in the form required by the hardware. Symbolic addresses you
code in the instruction operands are implicit addresses, and addresses in which you specify the
base-displacement or intermediate form are explicit addresses.

The assembler converts your implicit addresses into the explicit addresses required for the assembled
object code of the machine instruction. However, for base-displacement operands, you must first establish
addressability, as described below.

SOURCE MODULE LINKED MODULE
(shown in source code format)

┌──────────────────────────────────┐ ┌──────────────────────────────────┐ ─┐
│ INST CSECT │ │ │ controlled │
│ LR 12,15 ├──────────────────→│ LR 12,15 │ by INST │
│ USING INST,12 ├──────────────────→│ USING INST,12 │ location │
│ . │ │ . │ counter │
│ . │┌─────────────────→│ TM CODE,X’03’ │ │
│ DATA LOCTR ││┌────────────────→│ BM NEWREC │ │
│ INPUTREC DS 0CL80 ├┼┼───────────┐ │ │ │
│ RECCODE DS CL1 ├┼┼─────────┐ │ │ │ │ control
│ . │││ │ │ │ │ ├── section
│ INST LOCTR │││ │ │ │ │ │ INST
│ TM CODE,X’03’ ├┘│ │ │ ├ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ── ─ ┤ │
│ BM NEWREC ├─┘ │ └────→│ INPUTREC DS 0CL80 │ controlled │
│ . │ └──────→│ RECCODE DS CL1 │ by DATA │
│ DATA LOCTR │ │ . │ location │
│ VAL1 DC F’56’ ├──────────────────→│ VAL1 DC F’56’ │ counter │
│ VAL2 DC F’84’ ├──────────────────→│ VAL2 DC F’84’ │ │
│ . │ │ . │ │
│ . │ ├──────────────────────────────────┤ ─┘
│ NEXT CSECT │ │ │ control
│ │ │ │ section
│ │ │ │ NEXT

Figure 13. Use of multiple location counters

54 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Base Address Definition: The term base address is used throughout this manual to mean the location
counter value within a control section, element, or part from which the assembler can compute
displacements to locations, or addresses. The base address need not always be the storage address of a
control section, element, or part when it is loaded into storage at execution time.

How to establish addressability
To establish the addressability of a control section, element, or part (see “Sections, elements, and parts”
on page 45), you must:
v Specify a base address from which the assembler can compute displacements to the addresses within

the control section, element, or part.
v Assign the base registers to contain the base addresses.
v Write the instructions that load the base registers with the base addresses.

The following example shows the base address at MYPROG, that is assigned by register 12. Register 12 is
loaded with the value in register 15. By convention, register 15 contains the storage address (set by the
operating system) of the control section (CSECT) when the program is loaded into storage at execution
time.
MYPROG CSECT The base address

USING MYPROG,12 Assign the base register
LR 12,15 Load the base address

Similarly, you can use a BASR or similar instruction to put the address of the following instruction into
register 12.

BASR 12,0
USING *,12

The USING instruction indicates that register 12 can be used as a base register containing that address.

During assembly, the implicit addresses you code are converted into their explicit base-displacement
form; then, they are assembled into the object code of the machine instructions in which they have been
coded.

During execution, the base address is loaded into the base register.

z/VM and z/OS

If you specify multiple classes, you must provide addressability for each element. For example,
suppose you define two classes that must reference positions in the other:
MYPROG CSECT ,
CLASS_A CATTR RMODE(24) Define class CLASS_A

BASR 12,0 Local base register
USING *,12 Addressability for this element
- - -
L 1,Addr_B Address of BDATA in CLASS_B
USING BDATA,1
- - -

ADATA DS F Data in CLASS_A
Addr_B DC A(BDATA)

- - -
CLASS_B CATTR RMODE(31) Define class CLASS_B

BASR 11,0 Local base register
USING *,11 Addressability for this element
- - -
L 2,Addr_A Address of ADATA in CLASS_A
USING ADATA,2
- - -

BDATA DS D Data in CLASS_B
Addr_A DC A(ADATA)

Chapter 3. Program structures and addressing 55

A class specifying the “deferred load” (DEFLOAD) attribute on its defining CATTR statement
cannot be referenced from other classes using A-type or V-type address constants. However,
A-type and V-type address constants can be used within a deferred-load class to refer to locations
within that class or within any default_load (LOAD) class.

The loading service for deferred-load classes provides the origin address of the deferred-load
segment containing the classes. You can then use Q-type address constants in other classes to
calculate the addresses of items in the loaded classes. For example:
MYPROG CSECT ,
CLASS_A CATTR RMODE(31)

BASR 12,0 Set base register
USING *,12 Addressability for this element
- - -

* Address of CLASS_B segment assumed to be returned in register 8
- - -
A 8,BDATAOff Add offset of BDATA in CLASS_B
USING BDATA,8
- - -

BDATAOff DC Q(BDATA) Offset of BDATA
- - -

CLASS_B CATTR DEFLOAD,RMODE(ANY) Define deferred-load class
- - -

BDATA DS F Data in deferred-load class

Parts must always be referenced from LOAD classes using Q-type address constants using the
techniques shown in this example, whether or not they reside in deferred load classes. This is
because parts are subject to reordering during binding. As noted above, parts can reference other
parts in the same class using A-type and V-type address constants.

Base register instructions
The USING and DROP assembler instructions enable you to use expressions representing implicit
addresses as operands of machine instruction statements, leaving the assignment of base registers and the
calculation of displacements to the assembler.

In order to use symbols in implicit addresses in the operand field of machine instruction statements, you
must:
v Code a USING instruction to assign one or more base registers to a base address or sequence of base

addresses
v Code machine instructions to load each base register with the base address

Having the assembler determine base registers and displacements relieves you of the need to separate
each address into an explicit displacement value and an explicit base register value. This feature of the
assembler eliminates a likely source of programming errors, thus reducing the time required to write and
test programs. You use the USING and DROP instructions to take advantage of this feature. For
information about how to use these instructions, see “USING instruction” on page 193 and “DROP
instruction” on page 152.

Qualified addressing
Qualified addressing lets you use the same symbol to refer to data in different storage locations. Qualified
symbols are ordinary symbols prefixed by a symbol qualifier and a period. A symbol qualifier is used to
specify which base register the assembler should use when converting an implicit address into its explicit
base-displacement form. Before you use a symbol qualifier, you must have previously defined it in the
name entry of a labeled USING instruction. For information about labeled USING instructions, see
“USING instruction” on page 193. When defined, you can use a symbol qualifier to qualify any symbol
that names a storage location within the range of the labeled USING. Qualified symbols can be used
anywhere a relocatable term can be used.

56 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

The following examples show the use of qualified symbols. SOURCE and TARGET are both symbol qualifiers
previously defined in two labeled USING instructions. X and Y are both symbols that name storage
locations within the range of both labeled USING instructions.

MVC TARGET.X,SOURCE.X
MVC TARGET.Y+5(3),SOURCE.Y+5
XC TARGET.X+10(L’X-10),TARGET.X+10
LA 2,SOURCE.Y

Dependent addressing
Dependent addressing lets you minimize the number of base registers required to refer to data by making
greater use of established addressability. For example, you might want to describe the format of a table of
data defined in your source module with a dummy control section (see “Dummy control sections” on
page 48). To refer to the data in the table using the symbols defined in the dummy section, you need to
establish the addressability of the dummy section. To do this you must:
v Code a USING instruction to assign one or more base registers to a base address.
v Code machine instructions to load each base register with the base address.

However, dependent addressing offers an alternative means of establishing addressability of the dummy
section.

Establish addressability of the control section in which the table is defined. Then you can establish
addressability of the dummy section by coding a USING statement which specifies the name of the
dummy section and the address of the table. When you refer to the symbols in the dummy section, the
assembler uses the already established addressability of the control section when converting the symbolic
addresses into their base-displacement form.

For example, suppose addressability has been established for a control section containing a data structure
that is mapped by a dummy control section:
DATAMAP DSECT , DSECT describing data structure
FIELD1 DS F
FIELD2 DS CL32
FIELD3 DS CL24

- - -
CODE CSECT , Program code

BASR 12,0 Set base register
USING *,12 Provide addressability
- - -
USING DATAMAP,REALDATA Map DSECT onto REALDATA
L 2,FIELD1 Register 12 is base register
LA 3,FIELD3 Address of DATA3
- - -

REALDATA DS 0F Data mapped by DATAMAP
DATA1 DC F’32’
DATA2 DC CL32’Actual Data’
DATA3 DC CL24’Additional Data’

Relative addressing
Relative addressing is the technique of addressing instructions and data areas by designating their location
in relation to the location counter or to some symbolic location. This type of addressing is always in
bytes—never in bits, words, or instructions. Thus, the expression *+4 specifies an address that is 4 bytes
greater than the current value of the location counter. In the sequence of instructions in the following
example, the location of the CR machine instruction can be expressed in two ways, ALPHA+2, or BETA-4,
because all the machine instructions in the example are for 2 byte instructions.
ALPHA LR 3,4

CR 4,6
BCR 1,14

BETA AR 2,3

Chapter 3. Program structures and addressing 57

Literal pools
Literals, collected into pools by the assembler, are assembled as part of the executable control section to
which the pools belong. If an LTORG instruction is specified at the end of each control section or
element, the literals specified for that section or element are assembled into the pool starting at the
LTORG instruction. If no LTORG instruction is specified, a literal pool containing all the literals used in
the whole source module is assembled at one of:
v The end of the first control section.
v The end of the B_TEXT class belonging to the first section.

This literal pool appears in the listings after the END instruction. For more information about the LTORG
instruction, see “LTORG instruction” on page 171.

Independently Addressed Segments: If any control section is divided into independently addressed
segments, an LTORG instruction should be specified at the end of each segment to create a separate
literal pool for that segment.

Establishing residence and addressing mode
The AMODE and RMODE instructions specify the addressing mode (AMODE) and the residence mode
(RMODE) to be associated with control sections in the object deck. You can specify AMODE for ENTRY,
EXTRN, and WXTRN instruction operands if the GOFF option is specified. If OBJ format is used, then
AMODE is not valid for ENTRY, EXTRN, or WXTRN instruction operands. AMODE and RMODE can be
specified for any CSECT or START operand with either OBJ or GOFF and without restriction on the
xMODE operands. These modes can be specified for these types of control sections:
v Control section (for example START, CSECT)
v Unnamed control section
v Common control section (COM instruction)

The assembler sets the AMODE and RMODE indicators in the ESD record for each applicable external
symbol in an assembly. The linker stores the AMODE and RMODE values in the bound program. They
are later used by the loader program that brings the load module into storage. The loader program uses
the RMODE value to determine where it loads the load module, and passes the AMODE value of the
executable program's main entry point to the operating system to establish the addressing mode.

z/VM and z/OS
When you specify the GOFF option:
v The RMODE value specified for a section is by default assigned to the B_TEXT class.
v The AMODE specified for the section is assigned to an entry point having the section name

and the location of the first byte of class B_TEXT.

If the source program defines additional classes, each class might be assigned its own RMODE,
and an entry point in any class might be assigned its own AMODE.

For more information about the AMODE and RMODE instructions, see “AMODE instruction” on page 95
and “RMODE instruction” on page 187.

Symbolic linkages
Symbols can be defined in one module and referred to in another, which results in symbolic linkages
between independently assembled program sections. These linkages can be made only if the assembler
can provide information about the linkage symbols to the linker, which resolves the linkage references at
link-edit time.

Establishing symbolic linkage
You must establish symbolic linkage between source modules so that you can refer to or branch to
symbolic locations defined in the control sections of external source modules. You do this by using
external symbol definitions, and external symbol references. To establish symbolic linkage with an
external source module, you must do the following:

58 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

v In the current source module, you must identify the symbols that are not defined in that source
module, if you want to use them in instruction operands. These symbols are called external symbols,
because they are defined in another (external) source module. You identify external symbols in the
EXTRN or WXTRN instruction, or the V-type address constant. For more information about the EXTRN
and WXTRN instructions, see “EXTRN instruction” on page 167 and “WXTRN instruction” on page
202.

v In the external source modules, you must identify the symbols that are defined in those source
modules, and that you refer to from the current source module. The two types of definitions that you
can use are control section names (defined by the CSECT, RSECT, and START instructions), and entry
symbols. Entry symbols are so called because they provide points of entry to a control section in a
source module. You identify entry symbols with the ENTRY instruction. For more information about
the ENTRY instruction, see “ENTRY instruction” on page 162.

v Your reference external symbols using one of these methods:
– Provide the A-type or V-type address constants needed by the assembler to reserve storage for the

addresses represented by the external symbols.
– Reference an external symbol in the same class in a relative branch instruction.

The assembler places information about entry and external symbols in the external symbol dictionary.
The linker uses this information to resolve the linkage addresses identified by the entry and external
symbols.

Referring to external data
Use the EXTRN instruction to identify the external symbol that represents data in an external source
module, if you want to refer to this data symbolically.

For example, you can identify the address of a data area as an external symbol and load the A-type
address constant specifying this symbol into a base register. Then, you use this base register when
establishing the addressability of a dummy section that describes this external data. You can now refer
symbolically to the data that the external area contains.

You must also identify, in the source module that contains the data area, the address of the data as an
entry symbol.

Branching to an external address
Use the V-type address constant to identify the external symbol that represents the address in an external
source module that you want to branch to.

For example, you can load into a register the V-type address constant that identifies the external symbol.
Using this register, you can then branch to the external address represented by the symbol.

If the symbol is the name entry of a START, CSECT, or RSECT instruction in the other source module,
and thus names an executable control section, it is automatically identified as an entry symbol. If the
symbol represents an address in the middle of a control section, you must identify it as an entry symbol
for the external source module.

You can also use a combination of an EXTRN instruction to identify, and an A-type address constant to
contain, the external branch address. However, the V-type address constant is more convenient because:
v You do not have to use an EXTRN instruction.
v The external symbol you specify, can be used in the name entry of any other statement in the same

source program.
v It works correctly even if the program is linked as an overlay module, so long as the reference is not to

a symbol in an exclusive segment. See z/OS MVS Program Management: User's Guide and Reference,
SA22-7643 for further information.

Chapter 3. Program structures and addressing 59

The following example shows how you use an A-type address constant to contain the address of an
external symbol that you identify in an EXTRN instruction. You cannot use the external symbol name
EXMOD1 in the name entry of any other statement in the source program.

.

.
L 15,EX_SYM Load address of external symbol
BASR 14,15 Branch to it
.
.

EX_SYM DC A(EXMOD1) Address of external symbol
EXTRN EXMOD1 Identify EXMOD1 as external symbol
.
.

The following example shows how you use the symbol EXMOD1 as both the name of an external symbol
and a name entry on another statement.

.

.
L 15,EX_SYM Load address of external symbol
BASR 14,15 Branch to it
.
.

EXMOD1 DS 0H Using EXMOD1 as a name entry
.
.

EX_SYM DC V(EXMOD1) Address of external symbol
.
.

If the external symbol that represents the address to which you want to branch is part of an
overlay-structured module, identify it with a V-type address constant. Do not use an EXTRN instruction
and an A-type address constant. You can use the supervisor CALL macro instruction to branch to the
address represented by the external symbol. The CALL macro instruction generates the necessary V-type
address constant.

z/VM and z/OS

You can branch to external symbols in the same class using relative branch instructions.
MYPROG CSECT , Define section MYPROG
CLASS_A CATTR RMODE(31) Define class CLASS_A

- - -
BRAS 14,ENTRYB Branch to external symbol
- - -

HISPROG CSECT , Define section HISPROG
CLASS_A CATTR RMODE(31) Define class CLASS_A

- - -
ENTRYB STM 14,12,12(13) Entry point referenced externally

- - -
END

You can also use a relative branch instruction to branch to an externally defined symbol:
MYPROG CSECT , Define section MYPROG
MYCLASS CATTR RMODE(31) Define class MYCLASS

EXTRN TARGET Declare external symbol TARGET
- - -
BRAS 14,TARGET Branch to external symbol
- - -
END

A separate source module must define the entry point TARGET in class MYCLASS.

60 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Establishing an external symbol alias
You can instruct the assembler to use an alias for an external symbol in place of the external symbol
itself, when it generates the object module. To do this you must code an ALIAS instruction which
specifies the external symbol and the alias you want the assembler to use. The external symbol must be
defined in a START, CSECT, RSECT, ENTRY, COM, DXD, external DSECT, EXTRN, or WXTRN
instruction, or in a V-type address constant.

The following example shows how you use the ALIAS instruction to specify an alias for the external
symbol EXMOD1.

.

.
L 15,EX_SYM Load address of external symbol
BASR 14,15 Branch to it
.
.

EXMOD1 DS 0H Using EXMOD1 as a name entry
.
.

EX_SYM DC V(EXMOD1) Address of external symbol
EXMOD1 ALIAS C’XMD1PGM’ XMD1PGM is the real external name

.

.

See “ALIAS instruction” on page 93 for information about the ALIAS instruction.

External symbol dictionary entries
For each section, class, part, entry, external symbol, and dummy external control section, the assembler
keeps a record of the following external symbol dictionary (ESD) information:
v Symbolic name, if one is specified
v Type code
v Individual identification number (ESDID)
v Starting address
v Length
v Owning ESDID, if any
v Symbol attributes
v Alias, if one is specified

Table 7 lists the assembler instructions that define control sections and dummy control sections, classes
and parts, or identify entry and external symbols, and tells their associated type codes. You can define up
to 65535 individual control sections and external symbols in a source module if the NOGOFF option is
specified, or up to 999999 external symbols if the GOFF option is specified.

Table 7. Defining external symbols

Name Entry Instruction
Coding Entered into External Symbol

Dictionary

NOGOFF option GOFF option

If present

If omitted

Instruction-
dependent

START, CSECT, or RSECT

START, CSECT, or RSECT

Any instruction that initiates
the unnamed section

SD

PC

PC

SD, ED, LD

SD,ED

SD

Chapter 3. Program structures and addressing 61

Table 7. Defining external symbols (continued)

Name Entry Instruction
Coding Entered into External Symbol

Dictionary

If present

If omitted

Optional

COM

COM

DSECT

CM

CM

None

SD,ED,CM

SD,ED

None

Mandatory

Mandatory

Mandatory

DXD or external DSECT

CATTR

CATTR PART(name)

XD

Not applicable

Not applicable

XD

ED

PD

Not applicable

Not applicable

Not applicable

Not applicable

ENTRY

EXTRN

DC (V-type address constant)

WXTRN

LD

ER

ER

WX

LD

ER

ER

WX

See the appendix “Object Deck Output” in the HLASM Programmer's Guide for details about the ESD
entries produced when you specify the NOGOFF assembler option.

z/VM and z/OS
Refer to z/OS MVS Program Management: Advanced Facilities, SA22-7644 for details about the ESD
entries produced when you specify the GOFF assembler option.

Summary of source and object program structures
The differences between the load module model and the program object model, and their interactions
with assembler language instructions, are summarized in the following table:

Table 8. Object program structure comparison

Property “Load Module” Model “Program Object” Model

Form of object program One-dimensional module Two-dimensional module

Smallest indivisible independently
relocatable component

Control section Element and part

Residence Mode Only one One per class

Addressing Mode Only one One per entry point

Compatibility Can be converted to program object Can be converted to load module
with limitations

Assembler Option NOGOFF or GOFF GOFF only

Assembler statements CSECT, RSECT, START CSECT, RSECT, START, CATTR,
XATTR

Assignable loadable-program
attributes

RMODE RMODE, alignment, load type

External symbol types SD/CM, LD, ER/WX, PR SD, ED, LD, ER/WX, PR, PD

External symbol maximum length 8 characters 256 characters

62 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Table 8. Object program structure comparison (continued)

Property “Load Module” Model “Program Object” Model

External symbol scope Module (WX), Library (ER) Section, Module, Library,
Import/Export

External symbol attributes AMode, RMode AMode, RMode, scope, PSect name,
linkage type, reference type, extended
attributes

Object module record types ESD, TXT, RLD, END, SYM HDR, ESD, TXT, RLD, END, LEN

Address constant types A, V, Q, CXD A, V, Q, J, R, CXD

Binding attributes Catenate (SD),Merge-like (CM,PR) Catenate (non-Merge classes), Merge
classes (Parts, Pseudo-Registers)

Text types Byte stream Byte stream, records (structured and
unstructured)

Maximum contiguous text length 16 MB 1 GB

Chapter 3. Program structures and addressing 63

64 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Chapter 4. Machine instruction statements

This chapter introduces a sample of the more common instruction formats and provides general rules for
coding them in their symbolic assembler language format.

For the complete specifications of machine instructions, their object code format, their coding
specifications, and their use of registers and virtual storage areas, see the applicable z/Architecture
Principles of Operation manual for your processor. If your program requires vector facility instructions, see
the applicable Vector Operations manual for the complete specifications of vector-facility instructions.

At assembly time, the assembler converts the symbolic assembler language representation of the machine
instructions to the corresponding object code. The computer processes this object code at execution time.
Thus, the functions described in this section can be called execution-time functions.

Also at assembly time, the assembler creates the object code of the data constants and reserves storage for
the areas you specify in your data definition assembler instructions, such as DC and DS (see Chapter 5,
“Assembler instruction statements,” on page 83). At execution time, the machine instructions can refer to
these constants and areas, but the constants themselves are not normally processed.

As defined in the z/Architecture Principles of Operation information. there are five categories of machine
instructions:
v General instructions
v Decimal instructions
v Floating-Point instructions
v Control instructions
v Input/Output operations

Each is discussed in the following sections.

General instructions
Use general instructions to manipulate data that resides in general registers or in storage, or that is
introduced from the instruction stream. General instructions include fixed-point, logical, and branching
instructions. In addition, they include unprivileged status-switching instructions. Some general
instructions operate on data that resides in the PSW or the TOD clock.

The general instructions treat data as four types: signed binary integers, unsigned binary integers,
unstructured logical data, and decimal data. Data is treated as decimal by the conversion, packing, and
unpacking instructions.

For further information, see “General Instructions” in the z/Architecture Principles of Operation information.

Decimal instructions
Use the decimal instructions when you want to do arithmetic and editing operations on data that has the
binary equivalent of decimal representation.

Decimal data is represented in either zoned or packed format. In the zoned format, the rightmost four bits
of a byte are called the numeric bits and normally consist of a code representing a decimal digit. The
leftmost four bits of a byte are called the zone bits, except for the rightmost byte of a decimal operand;
these bits are treated as a zone or a sign.

© Copyright IBM Corp. 1992, 2013 65

In the packed format, each byte contains two decimal digits, except for the rightmost byte, which contains
a sign to the right of a decimal digit.

Decimal instructions treat all numbers as integers. For example, 3.14, 31.4, and 314 are all processed as
314. You must keep track of the decimal point yourself. The integer and scale attributes discussed in
“Data attributes” on page 284 can help you do this.

Additional operations on decimal data are provided by several of the instructions in “General
Instructions” in the z/Architecture Principles of Operation information. Decimal operands always reside in
storage.

For further information, see “Decimal Instructions” in the applicable z/Architecture Principles of Operation
manual.

Floating-point instructions
Use floating-point instructions when you want to do arithmetic operations on data in the floating-point
representation. Thus, you do not have to keep track of the decimal point in your computations.
Floating-point instructions also let you do arithmetic operations on both large numbers and small
numbers, normally providing greater precision than fixed-point decimal instructions.

For further information, see “Floating-Point Instructions” in the z/Architecture Principles of Operation
information.

Control instructions
Control instructions include all privileged and semiprivileged machine instructions, except the
input/output instructions described in “Input/output operations.”

Privileged instructions are processed only when the processor is in the supervisor state. An attempt to
process an installed privileged instruction in the problem state generates a privileged-operation exception.

Semiprivileged instructions are those instructions that can be processed in the problem state when certain
authority requirements are met. An attempt to process an installed semiprivileged instruction in the
problem state when the authority requirements are not met generates a privileged-operation exception or
some other program-interruption condition depending on the particular requirement that is violated.

For further details, see “Control Instructions” in the z/Architecture Principles of Operation information.

Input/output operations
Use the input/output instructions (instead of the IBM-supplied system macro instructions) when you
want to control your input and output operations more closely.

The input or output instructions let you identify the channel or the device on which the input or output
operation is to be done. For information about how and when you can use these instructions, see the
applicable system manual.

For more information, see “Input/Output Operations” in the applicable z/Architecture Principles of
Operation manual and the applicable system manuals.

66 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Branching with extended mnemonic codes
Branch instructions let you specify an extended mnemonic code for the condition on which a branch is to
occur. Thus, you avoid having to specify the mask value, that represents the condition code, required by
the BC, BCR, and BRC machine instructions. The assembler translates the extended mnemonic code into
the mask value, and then assembles it into the object code of the BC, BCR, or BRC machine instruction.

The extended branch mnemonics for the BC instruction require a base register; the extended mnemonics
for the BCR and BRC instructions do not. The extended mnemonics for the BRC instruction begin with
the letter “J”, and are sometimes called “Jump” instructions, as indicated in Figure 14.

Some typical extended mnemonic codes are given in Figure 14. They can be used as operation codes for
branching instructions, replacing the BC, BCR, and BRC machine instruction codes (see �1� in Figure 14).
The first operand (see �2� in Figure 14) of the BC, BCR, and BRC instructions must not be present in the
operand field (see �3� in Figure 14) of the extended mnemonic branching instructions.

For the complete list of branch mnemonics, see the latest edition of z/Architecture Reference Summary
(SA22-7871).

Extended Code Meaning Format (Symbolic) Machine
Instruction Equivalent

──

�3� �4� �1�
│ ↓ │ ┌────�2�
│ ┌───────┐ ↓ ↓

B └─→D₂(X₂,B₂) ┐ Unconditional Branch RX BC 15,D₂(X₂,B₂)
BR R₂ ┘ RR BCR 15,R₂
J label Unconditional Jump RI BRC 15,label
NOP D₂(X₂,B₂) ┐ No Operation RX BC 0,D₂(X₂,B₂)
NOPR R₂ │ RR BCR 0,R₂
JNOP label ┘ RI BRC 0,label

Used After Compare Instructions

BH D₂(X₂,B₂) ┐ Branch on High RX BC 2,D₂(X₂,B₂)
BHR R₂ ┘ RR BCR 2,R₂
JH label Jump on High RI BRC 2,label
BL D₂(X₂,B₂) ┐ Branch on Low RX BC 4,D₂(X₂,B₂)
BLR R₂ ┘ RR BCR 4,R₂
JL label Jump on Low RI BRC 4,label
BE D₂(X₂,B₂) ┐ Branch on Equal RX BC 8,D₂(X₂,B₂)
BER R₂ ┘ RR BCR 8,R₂
JE label Jump on Equal RI BRC 8,label
BNH D₂(X₂,B₂) ┐ Branch on Not High RX BC 13,D₂(X₂,B₂)
BNHR R₂ ┘ RR BCR 13,R₂
JNH label Jump on Not High RI BRC 13,label
BNL D₂(X₂,B₂) ┐ Branch on Not Low RX BC 11,D₂(X₂,B₂)
BNLR R₂ ┘ RR BCR 11,R₂
JNL label Jump on Not Low RI BRC 11,label
BNE D₂(X₂,B₂) ┐ Branch on Not Equal RX BC 7,D₂(X₂,B₂)
BNER R₂ ┘ RR BCR 7,R₂
JNE label Jump on Not Equal RI BRC 7,label

Figure 14. Extended mnemonic codes (part 1 of 5)

Chapter 4. Machine instruction statements 67

Used After Arithmetic Instructions

BP D₂(X₂,B₂) ┐ Branch on Plus RX BC 2,D₂(X₂,B₂)
BPR R₂ ┘ RR BCR 2,R₂
JP label Jump on Plus RI BRC 2,label
BM D₂(X₂,B₂) ┐ Branch on Minus RX BC 4,D₂(X₂,B₂)
BMR R₂ ┘ RR BCR 4,R₂
JM label Jump on Minus RI BRC 4,label
BZ D₂(X₂,B₂) ┐ Branch on Zero RX BC 8,D₂(X₂,B₂)
BZR R₂ ┘ RR BCR 8,R₂
JZ label Jump on Zero RI BRC 8,label
BO D₂(X₂,B₂) ┐ Branch on Overflow RX BC 1,D₂(X₂,B₂)
BOR R₂ ┘ RR BCR 1,R₂
JO label Jump on Overflow RI BRC 1,label
BNP D₂(X₂,B₂) ┐ Branch on Not Plus RX BC 13,D₂(X₂,B₂)
BNPR R₂ ┘ RR BCR 13,R₂
JNP label Jump on Not Plus RI BRC 13,label
BNM D₂(X₂,B₂) ┐ Branch on Not Minus RX BC 11,D₂(X₂,B₂)
BNMR R₂ ┘ RR BCR 11,R₂
JNM label Jump on Not Minus RI BRC 11,label
BNZ D₂(X₂,B₂) ┐ Branch on Not Zero RX BC 7,D₂(X₂,B₂)
BNZR R₂ ┘ RR BCR 7,R₂
JNZ label Jump on Not Minus RI BRC 7,label
BNO D₂(X₂,B₂) ┐ Branch on No Overflow RX BC 14,D₂(X₂,B₂)
BNOR R₂ ┘ RR BCR 14,R₂
JNO label Jump on No Overflow RI BRC 14,label

Figure 15. Extended mnemonic codes (part 2 of 5)

Used After Test Under Mask Instructions

BO D₂(X₂,B₂) ┐ Branch if Ones RX BC 1,D₂(X₂,B₂)
BOR R₂ ┘ RR BCR 1,R₂
BM D₂(X₂,B₂) ┐ Branch if Mixed RX BC 4,D₂(X₂,B₂)
BMR R₂ ┘ RR BCR 4,R₂
BZ D₂(X₂,B₂) ┐ Branch if Zero RX BC 8,D₂(X₂,B₂)
BZR R₂ ┘ RR BCR 8,R₂
BNO D₂(X₂,B₂) ┐ Branch if Not Ones RX BC 14,D₂(X₂,B₂)
BNOR R₂ ┘ RR BCR 14,R₂
BNM D₂(X₂,B₂) ┐ Branch if Not Mixed RX BC 11,D₂(X₂,B₂)
BNMR R₂ ┘ RR BCR 11,R₂
BNZ D₂(X₂,B₂) ┐ Branch if Not Zero RX BC 7,D₂(X₂,B₂)
BNZR R₂ ┘ RR BCR 7,R₂

Branch Relative on Condition Long
BRUL label Unconditional Br Rel Long RIL BRCL 15,label

BRHL label Br Rel Long on High RIL BRCL 2,label
BRLL label Br Rel Long on Low RIL BRCL 4,label
BREL label Br Rel Long on Equal RIL BRCL 8,label
BRNHL label Br Rel Long on Not High RIL BRCL 13,label
BRNLL label Br Rel Long on Not Low RIL BRCL 11,label
BRNEL label Br Rel Long on Not Equal RIL BRCL 7,label

BRPL label Br Rel Long on Plus RIL BRCL 2,label
BRML label Br Rel Long on Minus RIL BRCL 4,label
BRZL label Br Rel Long on Zero RIL BRCL 8,label
BROL label Br Rel Long on Overflow RIL BRCL 1,label
BRNPL label Br Rel Long on Not Plus RIL BRCL 13,label
BRNML label Br Rel Long on Not Minus RIL BRCL 11,label
BRNZL label Br Rel Long on Not Zero RIL BRCL 7,label
BRNOL label Br Rel Long on Not Overflow RIL BRCL 14,label

Figure 16. Extended mnemonic codes (part 3 of 5)

68 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Alternative mnemonics for some branch relative instructions
For some branch relative statements, there are alternative mnemonics. These are:

Table 9. Alternative mnemonics for some branch relative instructions

Instruction Alternative Description

BRAS JAS Branch Relative and Save
BRASL JASL Branch Relative and Save Long
BRCT JCT Branch Relative on Count
BRCTG JCTG Branch Relative on Count
BRXH JXH Branch Relative on Index High
BRXHG JXHG Branch Relative on Index High
BRXLE JXLE Branch Rel. on Index Low or Equal

Branch Relative on Condition
BRO label Branch on Overflow RI BRC 1,label
BRP label Branch on Plus RI BRC 2,label
BRH label Branch on High RI BRC 2,label
BRL label Branch on Low RI BRC 4,label
BRM label Branch on Minus RI BRC 4,label
BRNE label Branch on Not Equal RI BRC 7,label
BRNZ label Branch on Not Minus RI BRC 7,label
BRE label Branch on Equal RI BRC 8,label
BRZ label Branch on Zero RI BRC 8,label
BRNL label Branch on Not Low RI BRC 11,label
BRNM label Branch on Not Minus RI BRC 11,label
BRNH label Branch on Not High RI BRC 13,label
BRNP label Branch on Not Plus RI BRC 13,label
BRNO label Branch on No Overflow RI BRC 14,label
BRU label Unconditional Branch RI BRC 15,label

Figure 17. Extended mnemonic codes (part 4 of 5)

Jump on Condition Long

JLU label Unconditional Jump Long RIL BRCL 15,label
JLNOP label No operation RIL BRCL 0,label

JLH label Jump Long on High RIL BRCL 2,label
JLL label Jump Long on Low RIL BRCL 4,label
JLE label Jump Long on Equal RIL BRCL 8,label
JLNH label Jump Long on Not High RIL BRCL 13,label
JLNL label Jump Long on Not Low RIL BRCL 11,label
JLNE label Jump Long on Not Equal RIL BRCL 7,label

JLP label Jump Long on Plus RIL BRCL 2,label
JLM label Jump Long on Minus RIL BRCL 4,label
JLZ label Jump Long on Zero RIL BRCL 8,label
JLO label Jump Long on Overflow RIL BRCL 1,label
JLNP label Jump Long on Not Plus RIL BRCL 13,label
JLNM label Jump Long on Not Minus RIL BRCL 11,label
JLNZ label Jump Long on Not Zero RIL BRCL 7,label
JLNO label Jump Long on Not Overflow RIL BRCL 14,label

Notes:

1. D₂=displacement, X₂=index register, B₂=base register, R₂=register containing branch address

2. The addresses represented are explicit address (see �4�). However, implicit addresses can also be used in this type
of instruction.

3. Avoid using BM, BNM, JM, and JNM after the TMH, TML,TMHH, TMHL, TMLH or TMLL instruction.

Figure 18. Extended mnemonic codes (part 5 of 5)

Chapter 4. Machine instruction statements 69

Table 9. Alternative mnemonics for some branch relative instructions (continued)

Instruction Alternative Description

BRXLG JXLEG Branch Rel. on Index Low or Equal

Statement formats
Machine instructions are assembled into 2, 4, or 6 bytes of object code according to the format of each
instruction. Machine instruction formats include the following (ordered by length attribute):

Length Attribute Basic Formats
2 RR
4 RI, RS, RSI, RX, SI
6 SS

See the z/Architecture Principles of Operation information. for complete details about machine instruction
formats. See also “Examples of coded machine instructions” on page 76.

When you code machine instructions, you use symbolic formats that correspond to the actual machine
language formats. Within each basic format, you can also code variations of the symbolic representation,
divided into groups according to the basic formats shown in “Examples of coded machine instructions”
on page 76.

The assembler converts only the operation code and the operand entries of the assembler language
statement into object code. The assembler assigns to a name entry symbol the value of the address of the
first byte of the assembled instruction. When you use this same symbol in the operand of an assembler
language statement, the assembler uses this address value in converting the symbolic operand into its
object code form. The length attribute assigned to the symbol depends on the basic machine language
format of the instruction in which the symbol appears as a name entry.

A remarks entry is not converted into object code.

An example of a typical assembler language statement follows:
LABEL L 4,256(5,10) LOAD INTO REG4

where:
LABEL Is the name entry
L Is the operation code mnemonic (converted to hex 58)
4 Is the register operand (converted to hex 4)
256(5,10)

Are the storage operand entries (converted to hex 5A100)
LOAD INTO REG4

Are remarks not converted into object code

The object code of the assembled instruction, in hexadecimal, is:
5845A100 (4 bytes in RX format)

Symbolic operation codes
You must specify an operation code for each machine instruction statement. The symbolic operation code,
or mnemonic code as it is also called, indicates the type of operation to be done; for example, A indicates
the addition operation. Refer to the z/Architecture Principles of Operation information for a complete list of
symbolic operation codes and the formats of the corresponding machine instructions.

70 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

The general format of the machine instruction operation code is:

Operation code format

�� VERB
MODIFIER DATA TYPE MACHINE FORMAT

��

Verb The verb must always be present. It typically consists of one or two characters and specifies the
operation to be done. The verb is underscored in the following examples:

A 3,AREA A indicates an add operation
MVC TO,FROM MV indicates a move operation

The other items in the operation code are not always present. They include the following (underscores
are used to indicate modifiers, data types, and machine formats in the following examples):

Modifier
Modifier, which further defines the operation:

AL 3,AREA L indicates a logical operation

Data Type
Type qualifier, which indicates the type of data used by the instruction in its operation:

CVB 3,BINAREA B indicates binary data

MVC TO,FROM C indicates character data

AE 2,FLTSHRT E indicates normalized short
floating-point data

AD 2,FLTLONG D indicates normalized long
floating-point data

Machine Format
Format qualifier, R indicating a register operand, or I indicating an immediate operand. For
example:

ADR 2,4 R indicates a register operand

MVI FIELD,X’A1’ I indicates an immediate operand
AHI 7,123

Operand entries
Specify one or more operands in each machine instruction statement to provide the data or the location
of the data upon which the machine operation is to be done. The operand entries consist of one or more
fields or subfields, depending on the format of the instruction being coded. They can specify a register,
an address, a length, or immediate data. You can omit length fields or subfields, which the assembler
computes for you from the other operand entries. You can code an operand entry either with symbols or
with self-defining terms.

The rules for coding operand entries are:
v A comma must separate operands.
v Parentheses must enclose subfields.
v A comma must separate subfields enclosed in parentheses.
v If a subfield is omitted because it is implicit in a symbolic address, the parentheses that enclosed the

subfield must be omitted.
v If two subfields are enclosed in parentheses and separated by commas, the following applies:

Chapter 4. Machine instruction statements 71

– If both subfields are omitted because they are implicit in a symbolic entry, the separating comma
and the parentheses that were needed must also be omitted.

– If the first subfield is omitted, the comma that separates it from the second subfield must be written,
as well as the enclosing parentheses.

– If the second subfield is omitted, the comma that separates it from the first subfield must be
omitted; however, the enclosing parentheses must be written.

v Spaces must not appear within the operand field, except as part of a character self-defining term, or in
the specification of a character literal.

Registers
You can specify a register in an operand for use as an arithmetic accumulator, a base register, an index
register, and as a general depository for data to which you want to refer repeatedly.

You must be careful when specifying a register whose contents have been affected by the execution of
another machine instruction, the control program, or an IBM-supplied system macro instruction.

For some machine instructions, you are limited in which registers you can specify in an operand.

The expressions used to specify registers must have absolute values; in general, registers 0 through 15 can
be specified for machine instructions. However, the following restrictions on register usage apply:
v The even-numbered registers must be specified for the following groups of instructions:

– The double-shift instructions
– Most multiply and divide instructions
– The move long and compare logical long instructions

v If the NOAFPR ACONTROL operand is specified, then only the floating-point registers (0, 2, 4, or 6)
can be specified for floating-point instructions.

v If the AFPR ACONTROL operand is specified, then one of the floating-point registers 0, 1, 4, 5, 8, 9, 12,
or 13 can be specified for the instructions that use extended floating-point data in pairs of registers,
such as AXR, SXR, LTXBR, and SQEBR.

v If the NOAFPR ACONTROL operand is specified, then either floating-point register 0 or 4 must be
specified for these instructions.

v For a processor with a vector facility, the even-numbered vector registers (0, 2, 4, 6, 8, 10, 12, 14) must
be specified in vector-facility instructions that are used to manipulate long floating-point data or 64 bit
signed binary data in vector registers.

The assembler checks the registers specified in the instruction statements of the above groups. If the
specified register does not comply with the stated restrictions, the assembler issues a diagnostic message
and does not assemble the instruction. Binary zeros are generated in place of the machine code.

Register usage by machine instructions
Registers that are not explicitly coded in symbolic assembler language representation of machine
instructions, but are nevertheless used by assembled machine instructions, are divided into two
categories:
v Base registers that are implicit in the symbolic addresses specified. (See “Addresses” on page 73.) The

registers can be identified by examining the object code or the USING instructions that assign base
registers for the source module.

v Registers that are used by machine instructions, but do not appear in assembled object code.
– For double shift and fullword multiply and divide instructions, the odd-numbered register, whose

number is one greater than the even-numbered register specified as the first operand.
– For Move Long and Compare Logical Long instructions, the odd-numbered registers, whose number

is one greater than even-numbered registers specified in the two operands.

72 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

– For Branch on Index High (BXH) and the Branch on Index Low or Equal (BXLE) instructions, if the
register specified for the second operand is an even-numbered register, the next higher
odd-numbered register is used to contain the value to be used for comparison.

– For Load Multiple (LM, LAM) and Store Multiple (STM, STAM) instructions, the registers that lie
between the registers specified in the first two operands.

– For extended-precision floating point instructions, the second register of the register pair.
– For Compare and Form Codeword (CFC) instruction, registers 1, 2, and 3 are used.
– For Translate and Test (TRT) instruction, registers 1 and 2 are used.
– For Update Tree (UPT) instruction, registers 0-5 are used.
– For Edit and Mark (EDMK) instruction, register 1 is used.
– For certain control instructions, one or more of registers 0-4 and register 14 are used. See “Control

Instructions” in the applicable z/Architecture Principles of Operation manual.
– For certain input and output instructions, either or both registers 1 and 2 are used. See

“Input/Output Instructions” in the applicable z/Architecture Principles of Operation manual.
– On a processor with a vector facility:

1. For instructions that manipulate long floating-point data in vector registers, the odd-numbered
vector registers, whose number is one greater than the even-numbered vector registers specified
in each operand.

2. For instructions that manipulate 64 bit signed binary data in vector registers, the odd-numbered
vector registers, whose number is one greater than the even-numbered vector registers specified
in each operand.

Register usage by system
The programming interface of the system control programs uses registers 0, 1, 13, 14, and 15.

Addresses
You can code a symbol in the name field of a machine instruction statement to represent the address of
that instruction. You can then refer to the symbol in the operands of other machine instruction
statements. The object code requires that addresses be assembled in a numeric relative-offset or
base-displacement format. This format lets you specify addresses that are relocatable or absolute.
Chapter 3, “Program structures and addressing,” on page 43 describes how you use symbolic addresses
to refer to data in your assembler language program.

Defining Symbolic Addresses: Define relocatable addresses by either using a symbol as the label in the
name field of an assembler language statement, or equating a symbol to a relocatable expression.

Define absolute addresses (or values) by equating a symbol to an absolute expression.

Referring to Addresses: You can refer to relocatable and absolute addresses in the operands of machine
instruction statements. (Such address references are also called addresses in this manual.) The two ways
of coding addresses are:
v Implicitly—in a form that the assembler must first convert into an explicit relative-offset or

base-displacement form before it can be assembled into object code.
v Explicitly—in a form that can be directly assembled into object code.

Implicit address
An implicit address is specified by coding one expression. The expression can be relocatable or absolute.
The assembler converts all implicit addresses into their relative-offset or base-displacement form before it
assembles them into object code. The assembler converts implicit addresses into explicit
base-displacement addresses only if a USING instruction has been specified, or for small absolute
expressions, where the address is resolved without a USING. The USING instruction assigns both a base
address, from which the assembler computes displacements, and a base register, which is assumed to

Chapter 4. Machine instruction statements 73

contain the base address. The base register must be loaded with the correct base address at execution
time. For more information, refer to “Addressing” on page 54.

Explicit address
An explicit address is specified by coding two absolute expressions as follows:
v The first is an absolute expression for the displacement, whose value must lie in the range 0 through

4095 (4095 is the maximum value that can be represented by the 12 binary bits available for the
displacement in the object code), or in the range -524,288 to 524,287 for long-displacement instructions.

v The second (enclosed in parentheses) is an absolute expression for the base register, whose value must
lie in the range 0 through 15.

An explicit base register designation must not accompany an implicit address. However, in RX-format
instructions, an index register can be coded with an implicit address as well as with an explicit address.
When two addresses are required, each address can be coded as an explicit address or as an implicit
address.

Relative address
A relative address is specified by coding one expression. The expression is relocatable or absolute. If a
relocatable expression is used, then the assembler converts the value to a signed number of halfwords
relative to the current location counter, and then uses that value in the object code. An absolute value can
be used for a relative address, but the assembler issues a warning message, as it uses the supplied value,
and this might cause unpredictable results.

Relocatability of addresses
If the value of an address expression changes when the assumed origin of the program is changed, and
changes by the same amount, then the address is “simply relocatable”. If the addressing expression does
not change when the assumed origin of the program is changed, then that address is “absolute”. If the
addressing expression changes by some other amount, the address is “complexly relocatable”.

Addresses in the relative-offset or base-displacement form are relocatable, because:
v Each relocatable address is assembled as a signed relative offset from the instruction, or as a

displacement from a base address and a base register.
v The base register contains the base address.
v If the object module assembled from your source module is relocated, only the contents of the base

register need reflect this relocation. This means that the location in virtual storage of your base has
changed, and that your base register must contain this new base address.

v Addresses in your program have been assembled as relative to the base address; therefore, the sum of
the displacement and the contents of the base register point to the correct address after relocation.

Absolute addresses are also assembled in the base-displacement form, but always indicate a fixed location
in virtual storage. This means that the contents of the base register must always be a fixed absolute
address value regardless of relocation.

Machine or object code format
Addresses assembled into the object code of machine instructions have the format given in Figure 19 on
page 75. Not all the instruction formats are shown in Figure 19 on page 75.

The addresses represented have a value that is the sum of a displacement (see �1� in Figure 19 on page
75) and the contents of a base register (see �2� in Figure 19 on page 75).

Index register: In RX-format instructions, the address represented has a value that is the sum of a
displacement, the contents of a base register, and the contents of an index register (see �3� in Figure 19 on
page 75).

74 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Lengths
You can specify the length field in an SS-format instruction. This lets you indicate explicitly the number
of bytes of data at a virtual storage location that is to be used by the instruction. However, you can omit
the length specification, because the assembler computes the number of bytes of data to be used from the
expression that represents the address of the data.

See page “SS format” on page 81 for more information about SS-format instructions.

Implicit Length
When a length subfield is omitted from an SS-format machine instruction, an implicit length is
assembled into the object code of the instruction. The implicit length is either of the following:
v For an implicit address, it is the length attribute of the first or only term in the expression

representing the implicit address.
v For an explicit address, it is the length attribute of the first or only term in the expression

representing the displacement.

Explicit Length
When a length subfield is specified in an SS-format machine instruction, the explicit length
always overrides the implicit length.

Format │ Coded or Symbolic │ Object Code
│ Representation of │ Representation
│ Explicit Address │ of Addresses

───────┼───────────────────┼──
│ │
│ │ │8 bits │4 │4 │4 │12 bits │4 │12 bits │
│ │ │Operation │bits │bits │bits │Displacement │bits │Displacement │
│ │ │Code │ │ │Base │ │ │ │
│ │ │ │ │ │Reg. │ │ │ │
│ │ ├───────────┼─────┼─────┼─────┼─────────────────┼─────┼─────────────────┤
│ │ │ │ │ │ �2� │ �1� │ │ │
│ │ │ │ │ │ ↓ │ ↓ │ │ │
│ │ ├ ─ ─ ─ ─ ─ ┼ ─ ─ ┼ ─ ─ ┼─────┼─────────────────┤ │ │

RS │ D₂(B₂) │ │OP CODE │ R₁ │ R₃ │ B₂ │ D₂ │ │ │
│ │ ├ ─ ─ ─ ─ ─ ┴ ─ ─ ┴ ─ ─ ┴─────┴─────────────────┤ │ │
│ │ │ ┌──�3� (Index Register) │ │ │
│ │ │ ↓ │ │ │
│ │ ├ ─ ─ ─ ─ ─ ┬ ─ ─ ┬ ─ ─ ┬─────┬─────────────────┤ │ │

RX │ D₂(X₂,B₂) │ │OP CODE │ R₁ │ X₂ │ B₂ │ D₂ │ │ │
│ │ ├ ─ ─ ─ ─ ─ ┴ ─ ─ ┴ ─ ─ ┴─────┴─────────────────┤ │ │
│ │ │ │ │ │
│ │ │ │ │ │
│ │ ├ ─ ─ ─ ─ ─ ┬ ─ ─ ─ ─ ─ ┬─────┬─────────────────┤ │ │

SI │ D₁(B₁) │ │OP CODE │ I₂ │ B₁ │ D₁ │ │ │
│ │ ├ ─ ─ ─ ─ ─ ┴ ─ ─ ─ ─ ─ ┴─────┴─────────────────┤ │ │
│ │ │ │ �2� │ �1� │
│ │ │ │ ↓ │ ↓ │
│ │ ├ ─ ─ ─ ─ ─ ┬ ─ ─ ─ ─ ─ ┬─────┬─────────────────┼─────┼─────────────────┤

SS │ D₁(,B₁),D₂(B₂) │ │OP CODE │ L │ B₁ │ D₁ │ B₂ │ D₂ │
│ │ ├ ─ ─ ─ ─ ─ ┴ ─ ─ ─ ─ ─ ┴─────┴─────────────────┴─────┴─────────────────┤

I₂ Represents an immediate value
L Represents a length
B₂, R₁, and R₃

Represent registers

Figure 19. Format of addresses in object code

Chapter 4. Machine instruction statements 75

An implicit or explicit length is the effective length. The length value assembled is always one less
than the effective length. If you want an assembled length value of 0, an explicit length of 0 or 1
can be specified.

In the SS-format instructions requiring one length value, the allowable range for explicit lengths
is 0 through 256. In the SS-format instructions requiring two length values, the allowable range
for explicit lengths is 0 through 16.

Immediate data
In addition to registers, numeric values, relative addresses, and lengths, some machine instruction
operands require immediate data. Such data is assembled directly into the object code of the machine
instructions. Use immediate data to specify the bit patterns for masks or other absolute values you need.

Specify immediate data only where it is required. Do not confuse it with address references to constants
and areas, or with any literals you specify as the operands of machine instructions.

Immediate data must be specified as absolute expressions whose range of values depends on the machine
instruction for which the data is required. The immediate data is assembled into its binary representation.

Examples of coded machine instructions
The examples that follow are grouped according to machine instruction format. They show the various
ways in which you can code the operands of machine instructions. Both symbolic and numeric
representation of fields and subfields are shown in the examples. Therefore, assume that all symbols used
are defined elsewhere in the same source module.

The object code assembled from at least one coded statement per group is also included. A complete
summary of machine instruction formats with the coded assembler language variants can be found in the
z/Architecture Principles of Operation, SA22-7832 (and also in the z/Architecture Reference Summary,
SA22-7871). These two documents provide the definitive reference to machine instruction formats.

The examples that follow show the various instruction formats.

RI format
The operand fields of RI-format instructions designate a register and an immediate operand, with the
following exception:
v In BRC branching instructions, a 4 bit branching mask with a value 0 - 15 replaces the register

designation.

Symbols used to represent registers (such as REG1 in the example) are assumed to be equated to absolute
values 0 - 15. The 16 bit immediate operand has two different interpretations, depending on whether the
instruction is a branching instruction or not.

There are two types of non-branching RI-format instructions.
v For most, the immediate value is treated as a signed binary integer (-32768 - +32767). This value can be

specified by any absolute expression.
┌────────┬────┬────┬─────────────────┐
│Op Code │ R₁ │OpCd│ I₂ │
└────────┴────┴────┴─────────────────┘
0 8 12 16 31

v For logical instructions such as TMH, the immediate field is a 16 bit mask.
┌────────┬────┬────┬─────────────────┐
│Op Code │ M₁ │OpCd│ I₂ │
└────────┴────┴────┴─────────────────┘
0 8 12 16 31

76 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Examples:
ALPHA1 AHI REG1,2000
ALPHA2 MHI 3,1234
BETA1 TMH 7,X’8001’

When assembled, the object code for the instruction labeled BETA1, in hexadecimal, is
A7708001

where:
A7.0 Is the operation code
7 Is register R₁
8001 Is the immediate data I2

For branching RI-format instructions, the immediate value is treated as a signed binary integer
representing the number of halfwords to branch relative to the current location.

The branch target can be specified as a relocatable expression, in which case the assembler performs some
checking, and calculates the immediate value.

The branch target can also be specified as an absolute value, in which case the assembler issues a
warning before it assembles the instruction.

Examples:
ALPHA1 BRAS 1,BETA1
ALPHA2 BRC 3,ALPHA1
BETA1 BRCT 7,ALPHA1

When assembled, the object code for the instruction labeled BETA1, in hexadecimal, is
A776FFFC

where:
A7.6 Is the operation code
7 Is register R₁
FFFC Is the immediate data I2; a value of -4 decimal

If the GOFF assembler option is active, then it is possible to specify the target address as one or more
external symbols (with or without offsets).

If an offset is specified it can be specified as an absolute or relocatable expression. If the offset is specified
as a relocatable expression, the assembler performs some checking and calculates the immediate value. If
the offset is an absolute expression the assembler issues warning message ASMA056W.

Examples:
ALPHA1 BRAS 14,A-B+C+10 where A, B and C are external symbols
ALPHA2 BRASL 14,A-B+C+10
BETA1 BRC 15,A-B+C+10

When assembled, the object code for the instruction labeled BETA1, in hexadecimal, is
A7F40005

where:
A7.4 is the operation code
F is the condition code
0005 is the immediate data I2; a value of 5 decimal.

In addition GOFF Relocation Dictionary Data Items are generated for the external symbols A, B, and C.

Chapter 4. Machine instruction statements 77

RR format
The operand fields of RR-format instructions designate two registers, with the following exceptions:
v In BCR branching instructions, when a 4 bit branching mask replaces the first register specification (see

8 in the instruction labeled GAMMA1 in the examples).
v In SVC instructions, where an immediate value (0 - 255) replaces both registers (see 200 in the

instruction labeled DELTA1 in the examples).
┌────────┬────┬────┐
│Op Code │ R₁ │ R₂ │
└────────┴────┴────┘
0 8 12 15

Symbols used to represent registers in RR-format instructions (see INDEX and REG2 in the instruction
labeled ALPHA2 in the examples) are assumed to be equated to absolute values 0 - 15.

Symbols used to represent immediate values in SVC instructions (see TEN in the instruction labeled
DELTA2 in the examples) are assumed to be equated to absolute values 0 - 255.

Examples:
ALPHA1 LR 1,2
ALPHA2 LR INDEX,REG2
GAMMA1 BCR 8,12
DELTA1 SVC 200
DELTA2 SVC TEN

When assembled, the object code of the instruction labeled ALPHA1, in hexadecimal, is:
1812

where:
18 Is the operation code
1 Is register R₁
2 Is register R₂

RS format
The operand fields of RS-format instructions designate two registers, and a virtual storage address (coded
as an implicit address or an explicit address).
┌────────┬────┬────┬────┬────────────┐
│Op Code │ R₁ │ R₃ │ B₂ │ D₂ │
└────────┴────┴────┴────┴────────────┘
0 8 12 16 20 31

In the Insert Characters under Mask (ICM) and the Store Characters under Mask (STCM) instructions, a 4
bit mask (see X’E’ and MASK in the instructions labeled DELTA1 and DELTA2 in the examples), with a value
0 - 15, replaces the second register specifications.
┌────────┬────┬────┬────┬────────────┐
│Op Code │ R₁ │ M₃ │ B₂ │ D₂ │
└────────┴────┴────┴────┴────────────┘
0 8 12 16 20 31

Symbols used to represent registers (see REG4, REG6, and BASE in the instruction labeled ALPHA2 in the
examples) are assumed to be equated to absolute values 0 - 15.

Symbols used to represent implicit addresses (see AREA and IMPLICIT in the instructions labeled BETA1 and
DELTA2 in the examples) can be either relocatable or absolute.

Symbols used to represent displacements (see DISPL in the instruction labeled BETA2 in the examples) in
explicit addresses are assumed to be equated to absolute values 0 - 4095.

78 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Many other instruction formats are supported by the High Level Assembler. For complete information see
the latest editions of z/Architecture Principles of Operation, SA22-7832 and the z/Architecture Reference
Summary, SA22-7871.

Examples:
ALPHA1 LM 4,6,20(12)
ALPHA2 LM REG4,REG6,20(BASE)
BETA1 STM 4,6,AREA
BETA2 STM 4,6,DISPL(BASE)
GAMMA1 SLL 2,15
DELTA1 ICM 3,X’E’,1024(10)
DELTA2 ICM REG3,MASK,IMPLICIT

When assembled, the object code for the instruction labeled ALPHA1, in hexadecimal, is:
9846C014

where:
98 Is the operation code
4 Is register R₁
6 Is register R₃
C Is base register B₁
014 Is displacement D₁ from base register B₁

When assembled, the object code for the instruction labeled DELTA1, in hexadecimal, is:
BF3EA400

where:
BF Is the operation code
3 Is register R₁
E Is mask M₃
A Is base register B₁
400 Is displacement D₁ from base register B₁

RSI format
The operand fields of RSI-format instructions designate two registers and a 16 bit immediate operand.
┌────────┬────┬────┬─────────────────┐
│Op Code │ R₁ │ R₃ │ I₂ │
└────────┴────┴────┴─────────────────┘
0 8 12 16 31

Symbols used to represent registers (see REG1 in the examples) are assumed to be equated to absolute
values 0 - 15.

The immediate value is treated as a signed binary integer representing the number of halfwords to
branch relative to the current location.

The branch target can be specified as a label in which case the assembler calculates the immediate value
and performs some checking of the value.

The branch target can also be specified as an absolute value in which case the assembler issues a warning
before it assembles the instruction.

Examples:
ALPHA1 BRXH REG1,REG3,BETA1
BETA1 BRXLE 1,2,ALPHA1

Chapter 4. Machine instruction statements 79

When assembled, the object code for the instruction labeled ALPHA1, in hexadecimal, is
84130002

where:
84 Is the operation code
1 Is register REG1
3 Is register REG3
0002 Is the immediate data I2

RX format
The operand fields of RX-format instructions designate one or two registers, including an index register,
and a virtual storage address (coded as an implicit address or an explicit address), with the following
exception:

In BC branching instructions, a 4 bit branching mask (see 7 and TEN in the instructions labeled
LAMBDAn in the examples) with a value 0 - 15, replaces the first register specification.

┌────────┬────┬────┬────┬────────────┐
│Op Code │ R₁ │ X₂ │ B₂ │ D₂ │
└────────┴────┴────┴────┴────────────┘
0 8 12 16 20 31

Symbols used to represent registers (see REG1, INDEX, and BASE in the ALPHA2 instruction in the examples)
are assumed to be equated to absolute values 0 - 15.

Symbols used to represent implicit addresses (see IMPLICIT in the instructions labeled GAMMAn in the
examples) can be either relocatable or absolute.

Symbols used to represent displacements (see DISPL in the instructions labeled BETA2 and LAMBDA1 in the
examples) in explicit addresses are assumed to be equated to absolute values between 0 and 4095.

Examples:
ALPHA1 L 1,200(4,10)
ALPHA2 L REG1,200(INDEX,BASE)
BETA1 L 2,200(,10)
BETA2 L REG2,DISPL(,BASE)
GAMMA1 L 3,IMPLICIT
GAMMA2 L 3,IMPLICIT(INDEX)
DELTA1 L 4,=F’33’
LAMBDA1 BC 7,DISPL(,BASE)
LAMBDA2 BC TEN,ADDRESS

When assembled, the object code for the instruction labeled ALPHA1, in hexadecimal, is:
5814A0C8

where:
58 Is the operation code
1 Is register R₁
4 Is index register X₂
A Is base register B₂
0C8 Is displacement D₂ from base register B₂

When assembled, the object code for the instruction labeled GAMMA1, in hexadecimal, is:
5824xyyy

where:
58 Is the operation code

80 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

2 Is register R₁
4 Is the index register X₂
x Is base register B₂
yyy Is displacement D₂ from base register B₂

SI format
The operand fields of SI-format instructions designate immediate data and a virtual storage address.
┌────────┬─────────┬────┬────────────┐
│Op Code │ I₂ │ B₁ │ D₁ │
└────────┴─────────┴────┴────────────┘
0 8 16 20 31

Symbols used to represent immediate data (see HEX40 and TEN in the instructions labeled ALPHA2 and
BETA1 in the examples) are assumed to be equated to absolute values 0 - 255.

Symbols used to represent implicit addresses (see IMPLICIT and KEY in the instructions labeled BETA1 and
BETA2) can be either relocatable or absolute.

Symbols used to represent displacements (see DISPL40 in the instruction labeled ALPHA2 in the examples)
in explicit addresses are assumed to be equated to absolute values 0 - 4095.

Examples:
ALPHA1 CLI 40(9),X’40’
ALPHA2 CLI DISPL40(NINE),HEX40
BETA1 CLI IMPLICIT,TEN
BETA2 CLI KEY,C’E’

When assembled, the object code for the instruction labeled ALPHA1, in hexadecimal, is:
95409028

where
95 Is the operation code.
40 Is the immediate data.
9 Is the base register.
028 Is the displacement from the base register

SS format
The operand fields and subfields of SS-format instructions designate two virtual storage addresses (coded
as implicit addresses or explicit addresses) and, optionally, the explicit data lengths you want to include.
However, in the Shift and Round Decimal (SRP) instruction, a 4 bit immediate data field (see the operand
3 in the example of an SRP instruction), with a value 0 - 9, is specified as a third operand.
┌────────┬─────────┬────┬───/────┬────┬────/────┐
│Op Code │ L │ B₁ │ D₁ │ B₂ │ D₂ │
└────────┴─────────┴────┴───/────┴────┴────/────┘
0 8 16 20 32 36 47

┌────────┬────┬────┬────┬───/────┬────┬────/────┐
│Op Code │ L₁ │ L₂ │ B₁ │ D₁ │ B₂ │ D₂ │
└────────┴────┴────┴────┴───/────┴────┴────/────┘
0 8 12 16 20 32 36 47

┌────────┬────┬────┬────┬───/────┬────┬────/────┐
│Op Code │ L₁ │ I₃ │ B₁ │ D₁ │ B₂ │ D₂ │
└────────┴────┴────┴────┴───/────┴────┴────/────┘
0 8 12 16 20 32 36 47

┌────────┬────┬────┬────┬───/────┬────┬────/────┐
│Op Code │ R₁ │ R₃ │ B₁ │ D₁ │ B₂ │ D₂ │

Chapter 4. Machine instruction statements 81

└────────┴────┴────┴────┴───/────┴────┴────/────┘
0 8 12 16 20 32 36 47

┌────────┬────┬────┬────┬───/────┬────┬────/────┐
│Op Code │ R₁ │ R₃ │ B₂ │ D₂ │ B₄ │ D₄ │
└────────┴────┴────┴────┴───/────┴────┴────/────┘
0 8 12 16 20 32 36 47

Symbols used to represent base registers (see BASE8 and BASE7 in the instruction labeled ALPHA2 in the
examples) in explicit addresses are assumed to be equated to absolute values 0 - 15.

Symbols used to represent explicit lengths (see NINE and SIX in the instruction labeled ALPHA2 in the
examples) are assumed to be equated to absolute values 0 - 256 for SS-format instructions with one
length specification, and 0 - 16 for SS-format instructions with two length specifications.

Symbols used to represent implicit addresses (see FIELD1 and FIELD2 in the instruction labeled ALPHA3,
and FIELD1,X’8’ in the SRP instructions in the examples) can be either relocatable or absolute.

Symbols used to represent displacements (see DISP40 and DISP30 in the instruction labeled ALPHA5 in the
examples) in explicit addresses are assumed to be equated to absolute values 0 - 4095.

See page “Lengths” on page 75 for more information about the lengths of SS-format instructions.

Examples:
ALPHA1 AP 40(9,8),30(6,7)
ALPHA2 AP 40(NINE,BASE8),30(SIX,BASE7)
ALPHA3 AP FIELD1,FIELD2
ALPHA4 AP AREA(9),AREA2(6)
ALPHA5 AP DISP40(,8),DISP30(,7)
BETA1 MVC 0(80,8),0(7)
BETA2 MVC DISP0(,8),DISP0(7)
BETA3 MVC TO,FROM

SRP FIELD1,X’8’,3

When assembled, the object code for the instruction labeled ALPHA1, in hexadecimal, is:
FA858028701E

where:
FA Is the operation code.
8 Is length L₁
5 Is length L₂
8 Is base register B₁
028 Is displacement D₁ from base register B₁
7 Is base register B₂
01E Is displacement D₂ from base register B₂

When assembled, the object code for the instruction labeled BETA1, in hexadecimal, is:
D24F80007000

where:
D2 Is the operation code
4F Is length L
8 Is base register B₁
000 Is displacement D₁ from base register B₁
7 Is base register B₂
000 Is displacement D₂ from base register B₂

82 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Chapter 5. Assembler instruction statements

This chapter describes, in detail, the syntax and usage rules of each assembler instruction. There is also
information about assembly instructions on “Conditional assembly instructions” on page 224. The
following table lists the assembler instructions by type, and provides the number of the page where the
instruction is described.

Table 10. Assembler instructions

Type of Instruction Instruction Page No.

Program Control AINSERT 92

CNOP 102

COPY 105

END 160

EXITCTL 166

ICTL 168

ISEQ 168

LTORG 171

ORG 177

POP 180

PUNCH 184

PUSH 185

REPRO 186

Listing Control CEJECT 101

EJECT 160

PRINT 181

SPACE 189

TITLE 190

Operation Code Definition OPSYN 175

© Copyright IBM Corp. 1992, 2013 83

Table 10. Assembler instructions (continued)

Type of Instruction Instruction Page No.

Program Section and Linking ALIAS 93

AMODE 95

CATTR (z/OS and CMS) 96

COM 104

CSECT 106

CXD 108

DSECT 157

DXD 159

ENTRY 162

EXTRN 167

LOCTR 169

RMODE 187

RSECT 188

START 189

WXTRN 202

XATTR (z/OS and CMS) 203

Base Register DROP 152

USING 193

Data Definition CCW 99

CCW0 99

CCW1 100

DC 109

DS 154

Symbol Definition EQU 162

Associated Data ADATA 92

Assembler Options *PROCESS 84

ACONTROL 85

64 bit addressing mode
Some instructions have an operand or operands that pertain to 64 bit addressing mode (for example, 64
for AMODE). This operand is accepted and processed by the assembler. However, other operating system
components and utility programs might not be able to accept and process information related to this
operand.

*PROCESS statement
Process (*PROCESS) statements specify assembler options in an assembler source program. You can
include them in the primary input data set or provide them from a SOURCE user exit.

To ensure that certain assembler options cannot be changed for a given source file, put the OVERRIDE
keyword as the first and only keyword on the process statement, followed by a list of options. This
means that default and invocation options cannot override the specified options.

84 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

You can specify up to 10 process statements in each source program. Except for the ICTL instruction,
process statements must be the first statements in your source program. If you include process statements
anywhere else in your source program the assembler treats them as comments.

A process statement has a special coding format, unlike any other assembler instruction, although it is
affected by the column settings of the ICTL instruction. You must code the characters *PROCESS starting in
the begin column of the source statement, followed by one or more spaces. You can code as many
assembler options that can fit in the remaining columns up to, and including the end column of the
source statement. Options scanning on a *PROCESS record ends at the first space not enclosed in
apostrophes.

You cannot continue a process statement on to the next source record.

�� *PROCESS �

�

,

assembler option
,

OVERRIDE(assembler option)

��

assembler_option
Is any assembler option.

These options are not accepted from a process statement
ADATA LANGUAGE SYSPARM
ASA LINECOUNT TERM
DECK LIST TRANSLATE
EXIT OBJECT XOBJECT
GOFF SIZE

If the option is specified on a process override statement and differs from the option in effect at the time
of processing the statement, the assembler issues a warning message.

When the assembler detects an error in a process statement, it produces an error message in the High
Level Assembler Option Summary section of the assembler listing. If the installation default option PESTOP
is set then the assembler stops after it finishes processing any remaining process statements.

The assembler lists the options from process statements in the High Level Assembler Option Summary
section of the assembler listing. The process statements are also shown as comment lines in the Source and
Object section of the assembler listing.

ACONTROL instruction
The ACONTROL instruction can change these HLASM options and controls within a program:
v AFPR

Note: The AFPR option is not available as an assembler option at invocation of the assembler. It can
only be used on ACONTROL instructions.

v COMPAT
v FLAG (except the RECORD/NORECORD and the PUSH/NOPUSH suboptions)
v LIBMAC
v RA2
v TYPECHECK

Chapter 5. Assembler instruction statements 85

|

The selections which can be specified are documented here for completeness.

��
sequence_symbol

ACONTROL �

,

selection ��

sequence_symbol
Is a sequence symbol.

selection
Is one or more selections from the following options.

Because ACONTROL changes existing values, there are no default values for the ACONTROL instruction.

�� AFPR
NOAFPR

��

AFPR
Instructs the assembler that the additional floating point registers 1, 3, 5, and 7 through 15 can be
specified in the program.

Note: The assembler starts with AFPR enabled.

NOAFPR
Instructs the assembler that no additional floating point registers, that is, only floating point registers
0, 2, 4, and 6 can be specified in the program.

86 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

��

�

NOCOMPAT
,

COMPAT (keyword)

��

keyword:

CASE
NOCASE
LITTYPE
NOLITTYPE
MACROCASE
NOMACROCASE
SYSLIST
NOSYSLIST
NOTRANSDT

TRANSDT

COMPAT(CASE), abbreviation CPAT(CASE)
Instructs the assembler to maintain uppercase alphabetic character set compatibility with earlier
assemblers.

COMPAT(NOCASE), abbreviation CPAT(NOCASE)
Instructs the assembler to allow mixed case alphabetic character set.

COMPAT(LITTYPE), abbreviation CPAT(LIT)
Instructs the assembler to return 'U' as the type attribute for all literals.

COMPAT(NOLITTYPE), abbreviation CPAT(NOLIT)
Instructs the assembler to return the correct type attribute for literals.

COMPAT(MACROCASE), abbreviation CPAT(MC)
Instructs the assembler to convert internally lowercase alphabetic characters in unquoted macro
operands to uppercase alphabetic characters prior to macro expansion. (The source statement is
unchanged).

COMPAT(NOMACROCASE), abbreviation CPAT(NOMC)
Instructs the assembler not to convert lowercase alphabetic characters (a through z) in unquoted
macro operands.

COMPAT(SYSLIST), abbreviation CPAT(SYSL)
Instructs the assembler to treat sublists in SETC symbols as compatible with earlier assemblers.

COMPAT(NOSYSLIST), abbreviation CPAT(NOSYSL)
Instructs the assembler not to treat sublists in SETC symbols as character strings, when passed to a
macro definition in an operand of a macro instruction.

COMPAT(TRANSDT),abbreviation CPAT(TRS)
Instructs the assembler to extend use of the translation table, as specified by the TRANSLATE
assembler option, to any C-type character Self-Defining Terms.

COMPAT(NOTRANSDT),abbreviation CPAT(NOTRS)
Instructs the assembler not to translate any C-type character Self-Defining Terms.

NOCOMPAT, abbreviation NOCPAT
Instructs the assembler to:
v Allow lowercase alphabetic characters in all language elements.

Chapter 5. Assembler instruction statements 87

||

|
|
|

|
|

v Treat sublists in SETC symbols as sublists when passed to a macro definition in the operand of a
macro instruction.

v Return the correct type attribute for literals.

�� �

,

FLAG(integer)
ALIGN
NOALIGN
CONT
NOCONT
EXLITW
NOEXLITW
IMPLEN
NOIMPLEN
PAGE0
NOPAGE0
SUBSTR
NOSUBSTR
USING0
NOUSING0

��

integer
Specifies that error diagnostic messages with this or a higher severity code are printed in the source
and object section of the assembly listing.

FLAG(ALIGN), abbreviation FLAG(AL)
instructs the assembler to issue diagnostic message ASMA033I, ASMA212W, or ASMA213W when an
inconsistency is detected between the operation code and the alignment of addresses in machine
instructions.

FLAG(NOALIGN), abbreviation FLAG(NOAL)
instructs the assembler not to issue diagnostic message ASMA033I, ASMA212W, or ASMA213W when an
inconsistency is detected between the operation code and the alignment of addresses in machine
instructions.

FLAG(CONT)
specifies that the assembler is to issue diagnostic messages ASMA430W through ASMA433W when an
inconsistent continuation is encountered in a statement.

FLAG(NOCONT)
specifies that the assembler is not to issue diagnostic messages ASMA430W through ASMA433W when an
inconsistent continuation is encountered in a statement.

FLAG(EXLITW)
instructs the assembler to issue diagnostic warning ASMA016W when a literal is specified as the
object of an EX instruction.

FLAG(NOEXLITW)
instructs the assembler to suppress diagnostic warning message ASMA016W when a literal is
specified as the object of an EX instruction.

FLAG(IMPLEN)
instructs the assembler to issue diagnostic message ASMA169I when an explicit length subfield is
omitted from an SS-format machine instruction.

88 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

FLAG(NOIMPLEN)
instructs the assembler not to issue diagnostic message ASMA169I when an explicit length subfield is
omitted from an SS-format machine instruction.

FLAG(PAGE0)
instructs the assembler to issue diagnostic message ASMA309W when an operand is resolved to a
baseless address and a base and displacement is expected.

FLAG(NOPAGE0)
instructs the assembler not to issue diagnostic message ASMA309W when an operand is resolved to a
baseless address and a base and displacement is expected.

FLAG(SUBSTR), abbreviation FLAG(SUB)
instructs the assembler to issue warning diagnostic message ASMA094I when the second subscript
value of the substring notation indexes past the end of the character expression.

FLAG(NOSUBSTR), abbreviation FLAG(NOSUB)
instructs the assembler not to issue warning diagnostic message ASMA094I when the second subscript
value of the substring notation indexes past the end of the character expression.

FLAG(USING0), abbreviation FLAG(US0)
instructs the assembler to issue diagnostic warning message ASMA306W for a USING that is coincident
with or overlaps the implied USING 0,0, when the USING(WARN) suboption includes the condition
numbers 1 and 4.

FLAG(NOUSING0), abbreviation FLAG(NOUS0)
instructs the assembler to suppress diagnostic warning message ASMA306W

�� NOLIBMAC
LIBMAC

��

LIBMAC, abbreviation LMAC
Specifies that, for each macro, macro definition statements read from a macro library are to be
embedded in the input source program immediately preceding the first invocation of that macro.

NOLIBMAC, abbreviation NOLMAC
Specifies that macro definition statements read from a macro library are not to be included in the
input source program.

��
,NOLIST

OPTABLE(DOS)
ESA ,LIST
XA
370
YOP
ZOP
ZS3
ZS4
ZS5
ZS6

��

Chapter 5. Assembler instruction statements 89

||

OPTABLE
Lets you switch to a different opcode table. This table is then used to resolve any opcodes after the
ACONTROL statement.

DOS
Instructs the assembler to load and use the DOS operation code table. The DOS operation code is
designed specifically for assembling programs previously assembled using the DOS/VSE
assembler. The operation code table contains the System/370 machine instructions, excluding
those with a vector facility.

ESA
Instructs the assembler to load and use the operation code table that contains the ESA/370 and
ESA/390 architecture machine instructions, including those with a vector facility. Equivalent to
MACHINE(S390E).

UNI
Instructs the assembler to load and use the operation code table that contains the System/370 and
System/390 architecture machine instructions, including those with a vector facility, and
Z/Architecture machine instructions.

XA Instructs the assembler to load and use the operation code table that contains the System/370
extended architecture machine instructions, including those with a vector facility. Equivalent to
MACHINE(S370XA).

370
Instructs the assembler to load and use the operation code table that contains the System/370
machine instructions, including those with a vector facility. Equivalent to MACHINE(S370).

YOP
Same as OPTABLE(ZOP) but with the addition of the long displacement facility. Equivalent to
MACHINE(ZSERIES-2).

ZOP
Instructs the assembler to load and use the operation code table that contains the symbolic
operation codes for the machine instructions specific to Z/Architecture systems. Equivalent to
MACHINE(ZSERIES).

ZS3
Same as OPTABLE(YOP) but with the addition of support for the z9-109 instructions. Equivalent
to MACHINE(ZSERIES-3).

ZS4
Same as OPTABLE(ZS3) but with the addition of support for the z10 instructions. Equivalent to
MACHINE(ZSERIES-4).

ZS5
Same as OPTABLE(ZS4) but with the addition of support for the z196 instructions. Equivalent to
MACHINE(ZSERIES-5).

ZS6
Same as OPTABLE(ZS5) but with the addition of support for the zEnterprise EC12 (zEC12)
instructions. Equivalent to MACHINE(ZSERIES-6).

LIST
Instructs the assembler to produce the Operation Code Table Contents section in the listing.
Equivalent to MACHINE(LIST).

NOLIST
Instructs the assembler not to produce the Operation Code Table Contents section in the listing.
Equivalent to MACHINE(NOLIST).

90 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

|
|
|

|
|
|

Note: Any macros fetched from SYSLIB receive the current optable setting. If a switch is made to a
different table, then any previously resolved macros might be fetched again. Conversely if a switch is
made back to a previously used table then any macros that were fetched earlier are available again.

�� NORA2
RA2

��

RA2
Instructs the assembler to suppress error diagnostic message ASMA066W when 2 byte relocatable
address constants are defined in the source

NORA2
Instructs the assembler to issue error diagnostic message ASMA066W when 2 byte relocatable address
constants are defined in the source

��

�

NOTYPECHECK
,

MAGNITUDE (1)
TYPECHECK()

NOMAGNITUDE
REGISTER

NOREGISTER

��

Notes:

1 Choose at least one option.

TYPECHECK(MAGNITUDE)
Specifies that the assembler performs magnitude validation of signed immediate-data fields of
machine instruction operands.

TYPECHECK(NOMAGNITUDE)
Specifies that the assembler not perform magnitude validation of signed immediate-data fields of
machine instruction operands.

TYPECHECK(REGISTER)
Specifies that the assembler performs type checking of register fields of machine instruction operands.

TYPECHECK(NOREGISTER)
Specifies that the assembler not perform type checking of register fields of machine instruction
operands.

NOTYPECHECK
Specifies that the assembler not perform any type checking of machine instruction operands.

For further details of the TYPECHECK option, refer to the appendix “TYPECHECK Assembler Option” in
the HLASM Programmer's Guide.

Chapter 5. Assembler instruction statements 91

ADATA instruction
The ADATA instruction writes records to the associated data file.

��
sequence_symbol

ADATA value1,value2,value3,value4,character_string ��

sequence_symbol
Is a sequence symbol.

value1-value4
Up to four values can be specified, separated by commas. If a value is omitted, the field written to
the associated data file contains binary zeros. You must code a comma in the operand for each
omitted value. If specified, value1 through value4 must be a decimal self-defining term with a value in
the range -231 to +231-1.

character_string
Is a character string up to 255 bytes long, enclosed in single quotes. If omitted, the length of the user
data field in the associated data file is set to zero.

Notes:

1. All operands can be omitted to produce a record containing binary zeros in all fields except the user
data field.

2. The record written to the associated data file is described in the section “User-Supplied Information
Record X'0070'” in the HLASM Programmer's Guide.

3. If you do not specify the ADATA assembler option, or the GOFF(ADATA) or the XOBJECT(ADATA)
assembler option (z/OS or CMS), the assembler only checks the syntax of an ADATA instruction, and
prints it in the assembler listing.

4. The assembler writes associated data records to the SYSADATA (z/OS or CMS), or the SYSADAT
(z/VSE) file if the ADATA assembler option has been specified.

AINSERT instruction
The AINSERT instruction inserts records into the input stream. These records are queued in an internal
buffer until the macro generator has completed expanding the current outermost macro instruction. At
that point the internal buffer queue provides the next record or records. An operand controls the
sequence of the records within the internal buffer queue.

Note: You can place inserted records at either end of the buffer queue, the records are removed only
from the front of the buffer queue.

��
sequence_symbol

AINSERT 'record' ,BACK
,FRONT

��

sequence_symbol
Is a sequence symbol.

record
Is the record stored in the internal buffer. It can be any characters enclosed in apostrophes.

92 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

The rules that apply to this character string are:
v Variable symbols are allowed.
v The string can be up to 80 characters in length. If the string is longer than 80 characters, only the

first 80 characters are used, the rest of the string is ignored.

BACK
The record is placed at the back of the internal buffer.

FRONT
The record is placed at the front of the internal buffer.

Notes:

1. The ICTL instruction does not affect the format of the stored records. The assembler processes these
records according to the standard begin, end, and continue columns.

2. The assembler does not check the sequence field of the stored records, even when the ISEQ
instruction is active.

3. Continuation is ignored for the last record in the AINSERT buffer but is active for all other records.

Example:

In this example, the variable &FIRST receives the operand of the AINSERT statement created at .B.
&SECOND receives the operand of the AINSERT statement created at .D. The operand of the AINSERT
statements at .A and .C are in the internal buffer in the sequence .A followed by .C and are the next
statements processed when the macro generator has finished processing.

ALIAS instruction
The ALIAS instruction specifies alternate names for the external symbols that identify control sections,
entry points, and external references. The instruction has nothing to do with the link-time aliases in
libraries.

�� symbol ALIAS alias_string ��

symbol
Is an external symbol that is represented by one of the following:
v An ordinary symbol

MACRO
MAC1
.

.A AINSERT ’INSERT RECORD NUMBER ONE’,FRONT Insert record into the input stream

.B AINSERT ’INSERT RECORD NUMBER TWO’,FRONT Insert record at the top of the input stream

.C AINSERT ’INSERT RECORD NUMBER THREE’,BACK Insert record at the bottom of the input stream
.
.
.

&FIRST AREAD Retrieve record TWO from the top of the input stream
.

.D AINSERT ’INSERT RECORD NUMBER FOUR’,FRONT Insert record at the top of the input stream
.

&SECOND AREAD Retrieve record FOUR from the top of the input stream
.
MEND
CSECT
.
MAC1
.
END

Chapter 5. Assembler instruction statements 93

v A variable symbol that has been assigned a character string with a value that is valid for an
ordinary symbol

alias_string
Is the alternate name for the external symbol, represented by one of the following:
v A character constant in the form C'aaaaaaaa', where aaaaaaaa is a string of characters each of which

has a hexadecimal value of X'42' - X'FE'.
v A hexadecimal constant in the form X'xxxxxxxx', where xxxxxxxx is a string of hexadecimal digits,

each pair of which is in the range X'42' - X'FE'.

The ordinary symbol denoted by symbol must also appear in one of the following in this assembly:
v The name entry field of a START, CSECT, RSECT, COM, or DXD instruction
v The name entry field of a DSECT instruction and the nominal value of a Q-type offset constant
v The operand of an ENTRY, EXTRN, or WXTRN instruction
v The nominal value of a V-type address constant

Note: All external symbols identified by EXTRN, WXTRN, ENTRY and V-cons statements must belong to
an owning section definition.

The assembler uses the string denoted by alias_string to replace the external symbol denoted by symbol in
the external symbol dictionary records in the object module. Because the change is made only in the
external symbol dictionary, references to the ALIASed symbol in the source program must use the
original symbol. If the string is shorter than eight characters, or 16 hexadecimal digits, it is padded on the
right with EBCDIC spaces (X'40'). If the string is longer than eight characters, it is truncated. Some
programs that process object modules do not support external symbols longer than 8 characters.

z/VM and z/OS
If the extended object format is being generated (GOFF assembler option), the alias_string can be
up to 256 characters, or 512 hexadecimal digits.

The following examples are of the ALIAS instruction, and show both formats of the alternate name
denoted by alias_string.
EXTSYM1 ALIAS C’lower1’
EXTSYM2 ALIAS X’9396A68599F2’

The alias_string must not match any external symbol, regardless of case. References to an ALIASed
symbol must be made using the original name; the original symbol is changed only in the external
symbol dictionary. For example, you write

EXTRN EXTSYM1

to refer to the external symbol 'lower1'.

Aliased names are not checked against ALIASes for possible duplicates or conflicts.

94 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

AMODE instruction
The AMODE instruction specifies the addressing mode associated with control sections in the object deck.

��
name

AMODE 24
31
64
ANY
ANY31
ANY64

��

name
Is the name field that associates the addressing mode with a control section, or, if GOFF is specified,
an ENTRY symbol or EXTRN symbol. If GOFF is specified, AMODE can also associate an addressing
mode with an entry name. If there is a symbol in the name field, it must also appear in the name
field of a START, CSECT, RSECT, or COM instruction. If GOFF is specified, the symbol can also
appear as the operand of an ENTRY, EXTRN, or WXTRN instruction, in this assembly. If the name
field is space-filled, there must be an unnamed control section in this assembly. If the name field
contains a sequence symbol (see “Symbols” on page 25 for details), it is treated as a blank name field.

z/VM and z/OS
If the extended object format is being generated (GOFF assembler option), name is a
relocatable symbol that names an entry point specified on an ENTRY instruction, or on an
external symbol specified on an EXTRN instruction.

24
Specifies that 24 bit addressing mode is to be associated with a control section, or entry point.

31
Specifies that 31 bit addressing mode is to be associated with a control section, or entry point.

64
Specifies that 64 bit addressing mode is to be associated with a control section, or entry point (see “64
bit addressing mode” on page 84).

ANY
The same as ANY31.

ANY31
The control section or entry point is not sensitive to whether it is entered in AMODE 24 or AMODE
31.

ANY64
The control section or entry point is not sensitive to whether it is entered in AMODE 24, AMODE 31,
or AMODE 64.

Any field of this instruction can be generated by a macro, or by substitution in open code.

If symbol denotes an ordinary symbol, the ordinary symbol associates the addressing mode with an
external symbol. The ordinary symbol must also appear in the name field of a START, CSECT, RSECT, or
COM instruction or, if GOFF is specified, the operand of an ENTRY, EXTRN, or WXTRN instruction, in
this assembly.

If symbol is not specified, or if name is a sequence symbol, there must be an unnamed control section in
this assembly.

Chapter 5. Assembler instruction statements 95

Notes:

1. AMODE can be specified anywhere in the assembly. It does not initiate an unnamed control section.
2. AMODE is permitted on external labels (EXTRNs) and Entry labels for both GOFF formats and Parts

for GOFF formats.
3. An assembly can have multiple AMODE instructions; however, two AMODE instructions cannot have

the same name field.
4. The valid and invalid combinations of AMODE and RMODE are shown in the following table.

Combinations involving AMODE 64 and RMODE 64 are subject to the support outlined in “64 bit
addressing mode” on page 84.

Table 11. AMODE/RMODE combinations

RMODE 24 RMODE 31 RMODE 64

AMODE 24 OK invalid invalid

AMODE 31 OK OK invalid

AMODE ANY|ANY31 OK OK invalid

AMODE 64|ANY64 OK OK OK

5. AMODE or RMODE can only be specified for an unnamed control section by specifying a sequence
symbol or a space in the name field.

6. The defaults used when there is no mode or one MODE is specified are shown in the following table.
Combinations involving AMODE 64 and RMODE 64 are subject to the support outlined in “64 bit
addressing mode” on page 84.

Table 12. AMODE/RMODE defaults

Specified Default

Neither AMODE 24, RMODE 24

AMODE 24 RMODE 24

AMODE 31 RMODE 24

AMODE ANY|ANY31 RMODE 24

RMODE 24 AMODE 24

RMODE 31 (was ANY) AMODE 31

AMODE 64 RMODE 31

AMODE ANY64 RMODE 31

RMODE 64 AMODE 64

CATTR instruction (z/OS and CMS)
The CATTR instruction establishes a program object external class name, and assigns binder attributes for
the class. This instruction is valid only when you specify the GOFF or XOBJECT assembler option.

�� class_name CATTR �

,

attribute ��

96 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

class_name
Is a valid program object external class name. The class name must follow the rules for naming
external symbols, except that:
v Class names are restricted to a maximum of 16 characters
v Class names with an underscore (_) in the second character are reserved for IBM use; for example

B_TEXT. If you use a class name of this format, it might conflict with an IBM-defined binder class.

attribute
Is one or more binder attributes that are assigned to the text in this class:

ALIGN(n)
Aligns the text on a 2n boundary. n is an integer with value 0, 1, 2, 3, 4, or 12. If not specified,
then the SECTALGN option value (8 is the default, corresponding to ALIGN(3)) is used (see the
section “SECTALGN” in the HLASM Programmer's Guide for more information).

Note: Execution-time support of the desired alignment depends on its being respected by other
operating system components such as linkers and loaders.

EXECUTABLE
The text can be branched to or executed—it is instructions, not data.

DEFLOAD
The text is not loaded when the program object is brought into storage, but is probably requested,
and therefore partially loaded, for fast access.

MOVABLE
The text can be moved, and is reenterable (that is, it is free of location-dependent data such as
address constants, and executes normally if moved to a properly aligned boundary).

NOLOAD
The text for this class is not loaded when the program object is brought into storage. An external
dummy section is an example of a class which is defined in the source program but not loaded.

NOTEXECUTABLE
The text cannot be branched to or executed (that is, it is data, not instructions).

NOTREUS
The text is marked not reusable.

PART(part-name)
Identifies or continues the part with the name part-name. The part-name can be up to 63 characters
in length. An invalid part-name is ignored and diagnostic message 'ASMA062E Illegal operand
format xxxxxx' is issued.

Binding attributes assigned to the class are also assigned to the part. Both the class and the part
are assigned to Name Space 3 and are assigned the merge attribute.

Text within a part cannot contain an entry point. If an entry point is found within the part it is
ignored and diagnostic message 'ASMA048E Entry error - xxxxxxxx' is issued.

The following rules apply to the validation of the PART attribute on the CATTR instruction:
v If the PART attribute has not been specified on the first CATTR statement for the class, but is

specified on subsequent CATTR statements for the class, the attribute is ignored and diagnostic
message ASMA191W is issued.

v If the PART attribute has been specified on the first CATTR statement for the class, but is not
specified on subsequent CATTR statements for the class, the diagnostic message ASMA155S is
issued.

v Multiple parts can be defined within a class.

PRIORITY(nnnnn)
The binding priority to be attached to this part. The value must be specified as an unsigned

Chapter 5. Assembler instruction statements 97

decimal number and must lie between 0 and 231-1. An invalid priority is ignored and diagnostic
message 'ASMA062E Illegal operand format xxxxxx' is issued.

The PRIORITY attribute can be specified on the first CATTR instruction for the part. If the
PRIORITY attribute is specified on second or subsequent CATTR instructions for the part it is
ignored and the diagnostic message ASMA191W is issued.

The PRIORITY attribute is ignored if there is no PART attribute on the CATTR instruction and the
diagnostic message 'ASMA062E Illegal operand format xxxxxx' is issued.

READONLY
The text is storage-protected.

REFR
The text is marked refreshable.

REMOVABLE
The content of this class can be discarded from the program object at bind time if the user
specifies an appropriate binder option. This might help reduce the size of the program object.

RENT
The text is marked reenterable.

REUS
The text is marked reusable.

RMODE(24)
The text has a residence mode of 24.

RMODE(31)
The text has a residence mode of 31.

RMODE(ANY)
The text can be placed in any addressable storage.

These attributes are accepted by the assembler and encoded in the GOFF object file, but some are not
processed by the binder.

Refer to the z/OS MVS Program Management: User's Guide and Reference, SA22-7643 for details about
the binder attributes.

Default Attributes: When you do not specify attributes on the CATTR instruction the defaults are:
ALIGN(3),EXECUTABLE,NOTREUS,RMODE(24) The LOAD attribute is the default if DEFLOAD or
NOLOAD are not specified.

Where to Use the CATTR Instruction: Use the CATTR instruction anywhere in a source module after any
ICTL or *PROCESS statements. The CATTR instruction must be preceded by a START, CSECT, or RSECT
statement, otherwise the assembler issues diagnostic message ASMA190E.

A section can contain any number of classes. Any machine language instructions or data appearing after
a CATTR instruction are components of the element defined by the section and class names. An element
is a separately relocatable component of the resulting program object, and is typically bound with other
elements having the same attributes.

If several CATTR instructions within a source module have the same class name, the first occurrence
establishes the class and its attributes, and the rest indicate the continuation of the text for the class. If
you specify attributes on subsequent CATTR instructions having the same class name as a previous
CATTR instruction, the assembler ignores the attributes and issues diagnostic message ASMA191W.

If you specify conflicting attributes on the same instruction, the assembler uses the last one specified. In
the following example, the assembler uses RMODE(ANY):

98 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

MYCLASS CATTR RMODE(24),RMODE(ANY)

Syntax Checking Only: If you code a CATTR instruction but do not specify the GOFF or XOBJECT
option, the assembler checks the syntax of the instruction statement and does not process the attributes.

CCW and CCW0 instructions
The CCW and CCW0 instructions define and generate an 8 byte, format-0 channel command word for
input/output operations. A format-0 channel command word allows a 24 bit data address. The CCW and
CCW0 instructions have identical functions. If a control section has not been established, CCW and
CCW0 initiate an unnamed (private) control section.

��
symbol

CCW
CCW0

command_code,data_address,flags,data_count ��

symbol
Is one of the following:
v An ordinary symbol
v A variable symbol that has been assigned a character string with a value that is valid for an

ordinary symbol
v A sequence symbol

command_code
Is an absolute expression that specifies the command code. This expression's value is right-aligned in
byte 0 of the generated channel command word.

data_address
Is a relocatable or absolute expression that specifies the address of the data to operate upon. This
value is treated as a 3 byte, A-type address constant. The value of this expression is right-aligned in
bytes 1 to 3 of the generated channel command word.

flags
Is an absolute expression that specifies the flags for bits 32 to 39, and is right-aligned, of the
generated channel command word. The value of this expression is right-aligned in byte 4 of the
generated channel command word. Byte 5 is set to zero by the assembler.

data_count
Is an absolute expression that specifies the byte count or length of data. The value of this expression
is right-aligned in bytes 6 and 7 of the generated channel command word.

The generated channel command word is aligned at a doubleword boundary. Any skipped bytes are set
to zero.

The internal machine format of a channel command word is shown in Table 13.

Table 13. Channel command word, format 0

Byte Bits Usage

0 0-7 Command code

1-3 8-31 Address of data to operate upon

4 32-39 Flags

38-39 Must be specified as zeros

5 40-47 Set to zeros by assembler

Chapter 5. Assembler instruction statements 99

Table 13. Channel command word, format 0 (continued)

Byte Bits Usage

6-7 48-63 Byte count or length of data

If symbol is an ordinary symbol or a variable symbol that has been assigned an ordinary symbol, the
ordinary symbol is assigned the value of the address of the first byte of the generated channel command
word. The length attribute value of the symbol is 8.

Here is an example of a channel program:
LocRcd CCW X’47’,LocData,X’48’,L’LocData Locate record

CCW0 X’06’,MyData,X’40’,MyBlkSize Read Data
CCW0 X’06’,MyData+MyBlkSize,0,80 Read Data

LocData DC XL16’0’ Locate Record data, set at run time

z/OS Using EXCP or EXCPVR access methods: If you use the EXCP or EXCPVR access method, you
must use CCW or CCW0, because EXCP and EXCPVR do not support 31-bit data addresses in
channel command words.

Specifying RMODE: Use RMODE 24 with CCW or CCW0 if you wish to ensure that valid data addresses
are generated. If you use RMODE ANY with CCW or CCW0, an invalid data address in the channel
command word can result at execution time. If your program has an RMODE value other than 24, you
might choose to code 0 or an absolute expression for the data addresses. When your program runs, it can
copy the channel program to 24-bit storage for execution and set or relocate the address fields.

CCW1 instruction
The CCW1 instruction defines and generates an 8 byte format-1 channel command word for
input/output operations. A format-1 channel command word allows 31 bit data addresses. A format-0
channel command word generated by a CCW or CCW0 instruction allows only a 24 bit data address. If a
control section has not been established, CCW1 initiates an unnamed (private) control section.

��
symbol

CCW1 command_code,data_address,flags,data_count ��

symbol
Is one of the following:
v An ordinary symbol
v A variable symbol that has been assigned a character string with a value that is valid for an

ordinary symbol
v A sequence symbol

command_code
Is an absolute expression that specifies the command code. This expression's value is right-aligned in
byte 0 of the generated channel command word.

data_address
Is a relocatable or absolute expression that specifies the address of the data to operate upon. This
value is treated as a 4 byte, A-type address constant. The value of this expression is right-aligned in
bytes 4 to 7 of the generated channel command word.

100 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

flags
Is an absolute expression that specifies the flags for bits 8 to 15 of the generated channel command
word. The value of this expression is right-aligned in byte 1 of the generated channel command
word.

data_count
Is an absolute expression that specifies the byte count or length of data. The value of this expression
is right-aligned in bytes 2 and 3 of the generated channel command word.

The generated channel command word is aligned at a doubleword boundary. Any skipped bytes are set
to zero.

The internal machine format of a channel command word is shown in Table 14.

Table 14. Channel command word, format 1

Byte Bits Usage

0 0-7 Command code

1 8-15 Flags

2-3 16-31 Count

4 32 Must be zero

4-7 33-63 Data address

The expression for the data address should be such that the address is 0 - 231-1, after possible relocation.
This is the case if the expression refers to a location within one of the control sections that are link-edited
together. An expression such as *-1000000000 yields an acceptable value only when the value of the
location counter (*) is 1000000000 or higher at assembly time.

If symbol is an ordinary symbol or a variable symbol that has been assigned an ordinary symbol, the
ordinary symbol is assigned the value of the address of the first byte of the generated channel command
word. The length attribute value of the symbol is 8.

Here is an example of a CCW1 statement:
A CCW1 X’0C’,BUF1,X’00’,L’BUF1

The object code generated (in hexadecimal) for the above examples is:
0C 00 yyyy xxxxxxxx

where yyyy is the length of BUF1 and xxxxxxxx is the address of BUF1. BUF1 can reside anywhere in virtual
storage.

CEJECT instruction
The CEJECT instruction conditionally stops the printing of the assembler listing on the current page, and
continues the printing on the next page.

��
sequence_symbol

CEJECT
number_of_lines

��

sequence_symbol
Is a sequence symbol.

Chapter 5. Assembler instruction statements 101

number_of_lines
Is an absolute value that specifies the minimum number of lines that must be remaining on the
current page to prevent a page eject. If the number of lines remaining on the current page is less than
the value specified by number_of_lines, the next line of the assembler listing is printed at the top of a
new page.

You can use any absolute expression to specify number_of_lines.

If number of lines is omitted, the CEJECT instruction behaves as an EJECT instruction.

If zero, a page is ejected unless the current line is at the top of a page.

If the line before the CEJECT statement appears at the bottom of a page, the CEJECT statement has no
effect. A CEJECT instruction without an operand immediately following another CEJECT instruction or
an EJECT instruction is ignored.

Notes:

1. The CEJECT statement itself is not printed in the listing unless a variable symbol is specified as a
point of substitution in the statement, in which case the statement is printed before substitution
occurs.

2. The PRINT DATA and PRINT NODATA instructions can alter the effect of the CEJECT instruction,
depending on the number of assembler listing lines that are required to print the generated object
code for each instruction.

CNOP instruction
The CNOP instruction aligns any instruction or other data on a specific halfword boundary. This ensures
an unbroken flow of executable instructions, since the CNOP instruction generates no-operation
instructions to fill the bytes skipped to achieve specified alignment. If a control section has not been
established, CNOP initiates an unnamed (private) control section.

��
symbol

CNOP byte,boundary ��

symbol
Is one of the following:
v An ordinary symbol
v A variable symbol that has been assigned a character string with a value that is valid for an

ordinary symbol
v A sequence symbol

The name is assigned to the next halfword aligned location. If there is a single byte before that
location, it is skipped for alignment. Zero or more NOP(R)s might be generated at or after that
location.

byte
Is an absolute expression that specifies at which even-numbered byte in a fullword, doubleword, or
quadword the location counter is set. The value of the expression must be 0 to boundary-2.

boundary
Is an absolute expression that specifies the byte specified by boundary is in a fullword, doubleword, or
quadword. A value of 4 indicates the byte is in a fullword, a value of 8 indicates the byte is in a
doubleword, and a value of 16 indicates the byte is in a quadword.

102 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Table 15 shows valid pairs of byte and word.

Table 15. Valid CNOP values

Values Specify

0,4 Beginning of a word

2,4 Middle of a word

0,8 Beginning of a doubleword

2,8 Second halfword of a doubleword

4,8 Middle (third halfword) of a doubleword

6,8 Fourth halfword of a doubleword

0,16 Beginning of a quadword

2,16 Second halfword of a quadword

4,16 Third halfword of a quadword

6,16 Fourth halfword of a quadword

8,16 Fifth halfword of a quadword

10,16 Sixth halfword of a quadword

12,16 Seventh halfword of a quadword

14,16 Eighth halfword of a quadword

Figure 20 shows the position in a doubleword that each of these pairs specifies. Both 0,4 and 2,4 specify
two locations in a doubleword.

Use the CNOP instruction, for example, when you code the linkage to a subroutine, and you want to
pass parameters to the subroutine in fields immediately following the branch and link instructions. These
parameters—for example, channel command words—can require alignment on a specific boundary. The
subroutine can then address the parameters you pass through the register with the return address, as in
the following example:

CNOP 6,8
LINK BALR 2,10

CCW 1,DATADR,X’48’,X’50’

Assume that the location counter is aligned at a doubleword boundary. Then the CNOP instruction
causes the following no-operations to be generated, thus aligning the BALR instruction at the last
halfword in a doubleword as follows:

BCR 0,0
BC 0,X’700’
BALR 2,10

LINK CCW 1,DATADR,X’48’,X’50’

┌───┐
│ Quadword │
├──┬──┤
│ Doubleword │ Doubleword │
├─────────────────────────────────┬──────────────────────────────────┼─────────────────────────────────┬──────────────────────────────────┤
│ Fullword │ Fullword │ Fullword │ Fullword │
├───────────────┬─────────────────┼────────────────┬─────────────────┼───────────────┬─────────────────┼────────────────┬─────────────────┤
│ Halfword │ Halfword │ Halfword │ Halfword │ Halfword │ Halfword │ Halfword │ Halfword │
├───────┬───────┼────────┬────────┼────────┬───────┼────────┬────────┼───────┬───────┼────────┬────────┼────────┬───────┼────────┬────────┤
│ Byte │ Byte │ Byte │ Byte │ Byte │ Byte │ Byte │ Byte │ Byte │ Byte │ Byte │ Byte │ Byte │ Byte │ Byte │ Byte │
├───────┴───────┴────────┴────────┴────────┴───────┴────────┴────────┼───────┴───────┴────────┴────────┴────────┴───────┴────────┴────────┤
│0,4 2,4 0,4 2,4 0,4 2,4 0,4 2,4 │
│0,8 2,8 4,8 6,8 0,8 2,8 4,8 6,8 │
│0,16 2,16 4,16 6,16 8,16 10,16 12,16 14,16 │
└───┘

Figure 20. CNOP alignment

Chapter 5. Assembler instruction statements 103

After the BALR instruction is generated, the location counter is at a doubleword boundary, thus ensuring
that the CCW instruction immediately follows the branch and link instruction.

The CNOP instruction forces the alignment of the location counter to a halfword, fullword, doubleword,
or quadword boundary. It does not affect the location counter if the counter is already correctly aligned.
If the specified alignment requires the location counter to be incremented, no-operation instructions are
generated to fill the skipped bytes. Any single byte skipped to achieve alignment to the first no-operation
instruction is filled with zeros, even if the preceding byte contains no machine language object code. A
length attribute reference to the name of a CNOP instruction is always invalid. Message ASMA042E is
issued, and a default value of 1 is assigned.

COM instruction
The COM instruction identifies the beginning or continuation of a common control section.

��
symbol

COM ��

symbol
Is one of the following:
v An ordinary symbol
v A variable symbol that has been assigned a character string with a value that is valid for an

ordinary symbol
v A sequence symbol

The COM instruction can be used anywhere in a source module after the ICTL instruction.

If symbol denotes an ordinary symbol, the ordinary symbol identifies the common control section. If
several COM instructions within a source module have the same symbol in the name field, the first
occurrence initiates the common section and the rest indicate the continuation of the common section.
The ordinary symbol denoted by symbol represents the address of the first byte in the common section,
and has a length attribute value of 1.

If symbol is not specified, or if name is a sequence symbol, the COM instruction initiates, or indicates the
continuation of, the unnamed common section.

See “CSECT instruction” on page 106 for a discussion on the interaction between COM and the GOFF
assembler option.

The location counter for a common section is always set to an initial value of 0. However, when an
interrupted common control section is continued using the COM instruction, the location counter last
specified in that control section is continued.

If a common section with the same name (or unnamed) is specified in two or more source modules, the
amount of storage reserved for this common section is equal to that required by the longest common
section specified.

The source statements that follow a COM instruction belong to the common section identified by that
COM instruction.

Note:

104 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

1. The assembler language statements that appear in a common control section are not assembled into
object code.

2. When establishing the addressability of a common section, the symbol in the name field of the COM
instruction, or any symbol defined in the common section, can be specified in a USING instruction.

3. An AMODE cannot be assigned to a common section.

In the following example, addressability to the common area of storage is established relative to the
named statement XYZ.

.

.
L 1,=A(XYZ)
USING XYZ,1
MVC PDQ(16),=4C’ABCD’
.
.
COM

XYZ DS 16F
PDQ DS 16C

.

.

A common control section can include any assembler language instructions, but no object code is
generated by the assembly of instructions or constants appearing in a common control section. Data can
only be placed in a common control section through execution of the program.

If the common storage is assigned in the same manner by each independent assembly, reference to a
location in common by any assembly results in the same location being referenced.

COPY instruction
Use the COPY instruction to obtain source statements from a source language library and include them in
the program being assembled. You can thus avoid writing the same, often-used sequence of code over
and over.

��
sequence_symbol

COPY member ��

sequence_symbol
Is a sequence symbol.

member
Is an ordinary symbol that identifies a source language library member to be copied from either a
system macro library or a user macro library. In open code, it can also be a variable symbol that has
been assigned a valid ordinary symbol.

The source statements that are copied into a source module:
v Are inserted immediately after the COPY instruction.
v Are inserted and processed according to the standard instruction statement coding format, even if an

ICTL instruction has been specified.
v Must not contain either an ICTL or ISEQ instruction.
v Can contain other COPY statements. There are no restrictions on the number of levels of nested copy

instructions. However, the COPY nesting must not be recursive. For example, assume that the source
program contains the statement:

Chapter 5. Assembler instruction statements 105

COPY A

and library member A contains the statement:
COPY B

In this case, the library member B must not contain a COPY A or COPY B statement.
v Can contain macro definitions. Note, however, that if a source macro definition is copied into a source

module, both the MACRO and MEND statements that delimit the definition must be contained in the
same level of copied code.

v The scope of any sequence symbols defined by the statements within the COPY member are the same
as that of the COPY statement itself. That is, if the COPY statement appears in open code then any
sequence symbols defined by statements within the member also have open code scope. Take care to
define symbols only once, because COPYing the same member more than once can cause looping due
to backward AGO or AIF branches in the source file.

Notes:

1. The COPY instruction can also be used to copy statements into source macro definitions.
2. The rules that govern the occurrence of assembler language statements in a source module also

govern the statements copied into the source module.
3. Whenever the assembler processes a COPY statement, whether it is in open code or in a macro

definition, the assembler attempts to read the source language library member specified in the COPY
statement. This means that all source language library members specified by COPY statements in a
source program, including those specified in macro definitions, must be available during the assembly.
The HLASM Programmer's Guide describes how to specify the libraries when you run the assembler,
in these sections:
v CMS: “Specifying macro and copy code libraries: SYSLIB”
v z/OS: “Specifying macro and copy code libraries: SYSLIB”
v z/VSE: “Specifying macro and copy code libraries: LIBDEF job control statement”

4. If an END instruction is encountered in a member during COPY processing, the assembly is ended.
Any remaining statements in the COPY member are discarded.

CSECT instruction
The CSECT instruction initiates an executable control section or indicates the continuation of an
executable control section.

��
symbol

CSECT ��

symbol
Is one of the following:
v An ordinary symbol
v A variable symbol that has been assigned a character string with a value that is valid for an

ordinary symbol
v A sequence symbol

The CSECT instruction can be used anywhere in a source module after any ICTL or *PROCESS
statements. If it is used to initiate the first executable control section, it must not be preceded by any
instruction that affects the location counter and thus causes a control section to be initiated.

106 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

If symbol denotes an ordinary symbol, the ordinary symbol identifies the control section. If several CSECT
instructions within a source module have the same symbol in the name field, the first occurrence initiates
the control section and the rest indicate the continuation of the control section. The ordinary symbol
denoted by symbol represents the address of the first byte in the control section, and has a length attribute
value of 1.

If symbol is not specified, or if name is a sequence symbol, the CSECT instruction initiates, or indicates the
continuation of the unnamed control section.

If the first control section is initiated by a START instruction, the CSECT instruction which continues the
section must have the same name as the START instruction.

z/VM and z/OS
When the GOFF option is not specified a control section is initiated or resumed by the CSECT,
RSECT, and COM statements. Any machine language text created by statements that follow such
control section declarations belongs to the control section, and is manipulated during program
linking and binding as an indivisible unit.

When the GOFF option is specified, the behavior of CSECT, RSECT, and COM statements is
different. By default, the assembler creates a definition of a text class named B_TEXT, to which
subsequent machine language text belongs if no other classes are declared. If you specify other
class names using the CATTR statement, machine language text following such CATTR
statements belongs to that class.

The combination of a section name and a class name defines an element, which is the indivisible
unit manipulated during linking and binding. All elements with the same section name are
“owned” by that section, and binding actions (such as section replacement) act on all elements
owned by a section.

When the GOFF option is specified, and if no CATTR statements are present, then all machine
language text is placed in the default class B_TEXT. The behavior of the elements in the bound
module is essentially the same as the behavior of control sections when the OBJECT option is
specified. However, if additional classes are declared, a section name can best be thought of as a
“handle” by which elements within declared classes are owned.

The beginning of a control section is aligned on a boundary determined by the SECTALGN option.
However, when an interrupted control section is continued using the CSECT instruction, the location
counter last specified in that control section is continued. Consider the coding in Figure 21:

The source statements following a CSECT instruction that either initiate or indicate the continuation of a
control section are assembled into the object code of the control section identified by that CSECT
instruction.

ALPHA START ┐ ┌───────────────────────┐
BALR 12,0 ├───────────────────────────→│ ALPHA │
USING │ ┌────────────────────────→│ │

. │ │ │ │

. ┘ │ │ │
NEWCSECT CSECT ┐ │ ├ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┤

. ├──┼────────────────────────→│ NEWCSECT │

. │ │ │ │

. ┘ │ │ │
ALPHA CSECT ┐ │ │ │

. ├──┘ │ │

. │ │ │

. ┘ │ │

Figure 21. How the location counter works

Chapter 5. Assembler instruction statements 107

The end of a control section or portion of a control section is marked by:
v Any instruction that defines a new or continued control section
v The END instruction

The CSECT instruction can interact with any LOCTR instructions that are present. For more information
about this interaction, see “LOCTR instruction” on page 169.

CXD instruction
The CXD instruction reserves a fullword area in storage. The linker or loader inserts into this area the
total length of all external dummy sections specified in the source modules that are assembled and linked
into one program. If a control section has not previously been established, CXD initiates an unnamed
(private) control section.

��
symbol

CXD ��

symbol
Is one of the following:
v An ordinary symbol
v A variable symbol that has been assigned a character string with a value that is valid for an

ordinary symbol
v A sequence symbol

The linker or loader inserts into the fullword-aligned fullword area reserved by the CXD instruction the
total length of storage required for all the external dummy sections specified in a program. If the GOFF
assembler option is specified, CXD returns the length of the B_PRV class. If symbol denotes an ordinary
symbol, the ordinary symbol represents the address of the fullword area. The ordinary symbol denoted
by symbol has a length attribute value of 4.

These examples show how external dummy sections can be used:

ROUTINE A
ALPHA DXD 2DL8
BETA DXD 4FL4
OMEGA CXD

.

.
DC Q(ALPHA)
DC Q(BETA)
.
.

ROUTINE B
GAMMA DXD 5D
DELTA DXD 10F
ZETA DXD XL22

.

.
DC Q(GAMMA)
DC Q(DELTA)
DC Q(ZETA)
.
.

108 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

ROUTINE C
EPSILON DXD 4H
ZETA DXD 4F

.

.
DC Q(EPSILON,ZETA)
.
.

Each of the three routines is requesting an amount of work area. Routine A wants 2 doublewords and 4
fullwords; Routine B wants 5 doublewords, 10 fullwords, and 22 bytes; Routine C wants 4 halfwords and
4 fullwords. During program linking, identically named dummy sections are combined, retaining their
strictest alignment and longest length. For example, Routines B and C both request storage named ZETA:
the resulting allocation is 22 bytes on a fullword boundary. When program linking is complete, the sum
of these individual dummy external section lengths is placed in the location of the CXD instruction
labeled OMEGA. Routine A can then allocate the amount of storage that is specified in the CXD location,
and each dummy external section's offset within the allocated storage is found in the Q-type offset
constant referencing its name. Q-type offset constants are described at “Offset constant—Q” on page 139.

DC instruction
You specify the DC instruction to define the data constants you need for program execution. The DC
instruction causes the assembler to generate the binary representation of the data constant you specify
into a particular location in the assembled source module; this is done at assembly time.

The DC instruction's name — Define Constant — is misleading: DC simply creates initial data in an area
of the program. The contents of that area might be modified during program execution, so the original
data is not truly “constant”. If you want to declare values that are more likely to behave like constants,
use literals (“Literals” on page 35); the assembler attempts to detect and diagnose instructions that might
change the contents of a field defined by a literal. If a control section has not been established previously,
DC initiates an unnamed (private) control section.

The DC instruction can generate the following types of constants:

Table 16. Types of data constants

Type of Constant Function Example

Address Defines address mainly for the
use of fixed-point and other
instructions

L 5,ADCON
ADCON DC A(SOMWHERE)

Binary Defines bit patterns FLAG DC B’00010000’

Character Defines character strings or
messages

CHAR DC C’string of characters’

Decimal Used by decimal instructions ZAP AREA,PCON
PCON DC P’100’
AREA DS PL3

Fixed-point Used by the fixed-point and
other instructions

L 3,FCON
FCON DC F’100’

Floating-point Used by floating-point
instructions

LE 2,ECON
ECON DC E’100.50’

Graphic Defines character strings or
messages that contain pure
double-byte data

DBCS DC G’<.D.B.C.S. .S.T.R.I.N.G>’

Hexadecimal Defines large bit patterns PATTERN DC X’FF00FF00’

Zoned Defines numeric characters ZONEVVAL DC Z’-123’

Chapter 5. Assembler instruction statements 109

��
symbol

DC �

,

operand ��

symbol
Is one of the following:
v An ordinary symbol
v A variable symbol that has been assigned a character string with a value that is valid for an

ordinary symbol
v A sequence symbol

If symbol denotes an ordinary symbol, the ordinary symbol represents the address of the first byte of
the assembled constant. If several operands are specified, the first constant defined is addressable by
the ordinary symbol. The other constants can be reached by relative addressing.

operands
An operand of six subfields. The first five subfields describe the constant. The sixth subfield provides
the nominal values for the constants.

A DC operand has this format:

��
duplication_factor

type
type_extension program_type modifier

�

� nominal_value ��

duplication_factor
Causes the nominal_value to be generated the number of times indicated by this factor. See “Subfield
1: Duplication Factor” on page 114.

type
Further determines the type of constant the nominal_value represents. See “Subfield 2: Type” on page
115.

type_extension
Determines some of the characteristics of the constant. See “Subfield 3: Type Extension” on page 116.

program_type
assign a programmer determined 32 bit value to the symbol naming the DC instruction, if a symbol
was present. See “Subfield 4: Program type” on page 117.

modifier
Describes the length, the scaling, and the exponent of the nominal_value. See “Subfield 5: Modifier” on
page 118.

nominal_value
Defines the value of the constant. See “Subfield 6: Nominal Value” on page 121.

For example, in:

110 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

10EBP(7)L2’12’

the six subfields are:
v Duplication factor is 10
v Type is E
v Type extension is B
v Program type is P(7)
v Modifier is L2
v Nominal value is 12

If all subfields are specified, the order given above is required. The first, third, fourth, and fifth
subfields can be omitted, but the second and sixth must be specified in that order.

Rules for DC operands
1. The type subfield and the nominal value must always be specified unless the duplication factor is

zero. If the duplication factor is zero, only the type must be specified.
2. The duplication factor, type extension, program type, and modifier subfields are optional.
3. When multiple operands are specified, they can be of different types.
4. When multiple nominal values are specified in the sixth subfield, they must be separated by commas

and be of the same type. Multiple nominal values are not allowed for character or graphic constants,
because a comma is part of the nominal value of the constant; it is not possible to specify multiple
nominal values.

5. The descriptive subfields, apart from the program type, apply to all the nominal values. The program
type applies to only the symbol naming the DC instruction, if a symbol was present. Separate
constants are generated for each separate operand and nominal value specified.

6. No spaces are allowed:
v Between subfields
v Between multiple operands

General information about constants
Constants defined by the DC instruction are assembled into an object module at the location at which the
instruction is specified. However, the type of constant being defined, and the presence or absence of a
length modifier, determines whether the constant is to be aligned on a particular storage boundary or not
(see “Alignment of constants”).

Symbolic Addresses of Constants: The value of the symbol that names the DC instruction is the address
of the first byte (after alignment) of the first or only constant.

Length attribute value of symbols naming constants
The length attribute value assigned to the symbols in the name field of the constants is equal to one of:
v The implicit length (see “Implicit Length” in Table 17 on page 112) of the constant when no explicit

length is specified in the operand of the constant.
v The explicit length (see “Value of Length Attribute” in Table 17 on page 112) of the constant.

If more than one operand is present, the length attribute value of the symbol is the length in bytes of the
first constant specified, according to its implicit or explicit length.

Alignment of constants
The assembler aligns constants on different boundaries according to the following:
v On boundaries implicit to the type of constant (see “Implicit Boundary Alignment” in Table 18 on page

112) when no length is specified.
v On byte boundaries (see “Boundary Alignment” in Table 18 on page 112) when an explicit length is

specified.

Chapter 5. Assembler instruction statements 111

Bytes that are skipped to align a constant at the correct boundary are not considered part of the constant.
They are filled with binary zeros.

Notes:

1. The automatic alignment of constants and areas does not occur if the NOALIGN assembler option has
been specified.

2. Alignment can be forced to any boundary by a preceding DS or DC instruction with a zero
duplication factor. This occurs whether or not the ALIGN option is set.

Table 17. Length attribute value of symbol naming constants

Type of
constant

Implicit
Length Examples

Value of Length
Attribute¹

B as needed DC B’10010000’ 1

C

CU

as needed

as needed

DC C’ABC’
DC CL8’WOW’
DC CU’ABC’
DC CUL4’XX’

3
8
6
4

G as needed DC G’<DaDb>’
DC GL8’<DaDb>’

4
8

X as needed DC X’COFFEE’
DC XL2’FFEE’

3
2

H
F
FD

2
4
8

DC H’32’
DC FL3’32’
DC FD’32’

2
3
8

P

Z

as needed

as needed

DC P’123’
DC PL4’123’
DC Z’123’
DC ZL10’123’

2
4
3
10

E
D
L
LQ

4
8
16
16

DC E’565.40’
DC DL6’565.40’
DC LL12’565.40’
DC LQ’565.40’

4
6
12
16

Y
A
AD

2
4
8

DC Y(HERE)
DC AL1(THERE)
DC AD(WHERE)

2
1
8

S
V
VD
J
JD
Q
QD
RD

2
4
8
4
4
8
4
8

DC S(THERE)
DC VL3(OTHER)
DC VD(BIGOTHER)
DC J(CLASS)
DC JD(LARGECLASS)
DC QL1(LITTLE)
DC QD(BIGLITTLE)
DC R(APSECT)
DC RD(BPSECT)

2
3
8
4
8
1
8
4
8

Note:
1. Depends on whether an explicit length is specified in the constant.

Table 18. Alignment of constants

Type of
constant

Implicit
Boundary
Alignment Examples

Boundary
Alignment¹

B byte DC B’1011’ byte

112 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Table 18. Alignment of constants (continued)

Type of
constant

Implicit
Boundary
Alignment Examples

Boundary
Alignment¹

C
CU

byte
byte

DC C’Character string’
DC CU’Character string’

byte
byte

G byte DC G’<.D.B.C.S .S.T.R.I.N.G> byte

X byte DC X’20202021202020’ byte

H

F

FD

halfword

fullword

doubleword

DC H’25’
DC HL3’25’
DC F’225’
DC FL7’225’
DC FD’225’

halfword
byte
fullword
byte
doubleword

P
Z

byte
byte

DC P’2934’
DC Z’1235’
DC ZL2’1235’

byte
byte
byte

E

D

L
LQ

fullword

doubleword

doubleword
quadword

DC E’1.25’
DC EL5’1.25’
DC 8D’95’
DC 8DL7’95’
DC L’2.57E65’
DC LQ’0.1’

fullword
byte
doubleword
byte
doubleword
quadword

Y
A
AD
S

V

VD
J
JD
Q
QD
R
RD

halfword
fullword
doubleword
halfword

fullword

doubleword
fullword
doubleword
fullword
doubleword
fullword
doubleword

DC Y(HERE)
DC AL1(THERE)
DC AD(WHERE)
DC S(LABEL)
DC SL2(LABEL)
DC V(EXTERNAL)
DC VL3(EXTERNAL)
DC VD(BIGOTHER)
DC J(CLASS)
DC JD(LARGECLASS)
DC QL1(DUMMY)
DC QD(BIGDUMMY)
DC R(APSECT)
DC RD(BPSECT)

halfword
byte
doubleword
halfword
byte
fullword
byte
doubleword
fullword
doubleword
byte
doubleword
fullword
doubleword

Note:
1. Depends on whether an explicit length is specified in the constant.

Padding and truncation of values
The nominal values specified for constants are assembled into storage. The amount of space available for
the nominal value of a constant is determined:
v By the explicit length specified in the length modifier, or
v If no explicit length is specified, by the implicit length according to the type of constant defined (see

Appendix B, “Summary of constants,” on page 359).

The padding and truncation rules apply to single nominal values.

Padding
If more space is specified than is needed to accommodate the binary representation of the nominal value,
the extra space is padded:

Chapter 5. Assembler instruction statements 113

v With binary zeros on the left for the binary (B), hexadecimal (X), fixed-point (H,F), packed decimal (P),
and all address (A,Y,S,V,J,Q,R) constants having relocatable arguments.

v With sign extension for constants having constant arguments that support sign extension of the
nominal value (H, F, Y, A), as described in Table 26 on page 129.

v With ASCII spaces on the right (X'20') for CA-type character constants.
v With EBCDIC zeros on the left (X'F0') for the zoned decimal (Z) constants.
v With EBCDIC spaces on the right (X'40') for the character (C and CE-type) constants.
v With EBCDIC spaces on the right (X'40') for the Unicode character (CU) constant prior to translation.
v With double-byte spaces on the right (X'4040') for the graphic (G) constants.

Notes:

1. In floating-point constants (E,D,L), the fraction is extended to occupy the extra space available.
2. Padding is on the left for all constants except the character constant and the graphic constant.

Truncation
If less space is available than is needed to accommodate the nominal value, the nominal value is
truncated and part of the constant is lost. Truncation of the nominal value is:
v On the left for the binary (B), hexadecimal (X), fixed-point (H and F), and decimal (P and Z)
v On the right for the character (C) constant, the Unicode character (CU) constant, and the graphic (G)

constant
v On the left for absolute or relocatable address (A and Y), the external address (V), offset (Q), length (J)

and PSECT address (R) constants. The actual value stored and any possible truncation is dependent on
the values inserted by the linker/binder and the length of the constant.

Notes:

1. If significant bits are lost in the truncation of fixed-point constants, error diagnostic message ASMA072E
Data item too large is issued.

2. Floating-point constants (E, D, L) are not truncated. They are rounded to fit the space available—see
Figure 22 on page 141 for rounding modes.

3. The above rules for padding and truncation also apply when using the bit-length modifier (see
“Subfield 5: Modifier” on page 118).

4. Double-byte data in C-type constants cannot be truncated because truncation creates incorrect
double-byte data. Error ASMA208E Truncation into double-byte data is not permitted is issued if
such truncation is attempted.

5. Truncation of double-byte data in CU-type and G-type constants is permitted because the length
modifier restrictions (see “Subfield 5: Modifier” on page 118) ensure that incorrect double-byte data
cannot be created by truncation. However, truncating bit-length constants might create incorrect
double-byte data.

Subfield 1: Duplication Factor
The syntax for coding the duplication factor is shown in the subfield format operands in “DC instruction”
on page 109.

You can omit the duplication factor. If specified, it causes the nominal value or multiple nominal values
specified in a constant to be generated the number of times indicated by the factor. It is applied after the
nominal value or values are assembled into the constant. Symbols used in subfield 1 need not be
previously defined. This does not apply to literals.

The duplication factor can be specified by an unsigned decimal self-defining term or by an absolute
expression enclosed in parentheses.

The factor must have a positive value or be equal to zero.

114 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Notes:

1. A duplication factor of zero is permitted, except for literals, with the following results:
v No value is assembled.
v Alignment is forced according to the type of constant specified, if no length attribute is present (see

“Alignment of constants” on page 111).
v The length attribute of the symbol naming the constant is established according to the implicitly or

explicitly specified length.
When the duplication factor is zero, the nominal value can be omitted. The alignment is forced, even
if the NOALIGN option is specified.
When the duplication factor is zero for a literal, the assembler issues message ASMA067S Illegal
duplication factor.

2. If duplication is specified for an address constant whose nominal value contains a location counter
reference, the value of the location counter reference is incremented by the length of the constant
before each duplication is done (see “Address constants—A and Y” on page 133). If the duplication
factor is zero, the value of the location counter reference is not incremented by the length of each
constant that was generated for a non-zero duplication factor. Thus, in the following two statements,
the first generates an ASMA072E error message for "Data item too large", but the second does not:
A DC 0Y(0,32768-(*-A))
B DC Y(0,32768-(*-B))

However, if duplication is specified for an address-type literal constant containing a location counter
reference, the value of the location counter reference is not incremented by the length of the literal
before each duplication is done. The value of the location counter reference is the location of the first
byte of the literal in the literal pool, and is the same for each duplication.
The location counter value is that of the instruction in which the literal appears for A-type constants,
but for S-type constants it is the location where the literal appears.
When a bit-length constant of type A, B, F, H, P, X, Y, or Z is specified with a duplication factor:
v Each nominal value is right-aligned in the specified field.
v Each nominal value is padded on the left with zeros or sign bits, according to the type.

If unfilled bits remain after each constant is generated, any remaining bits in the last byte are filled
with zero bits. That is, padding within a constant is different from filling after a group of constants.

3. If a bit-length constant is specified with a duplication factor, each nominal value is right-aligned in
the specified field and padded on the left with zeros or sign bits, according to the type. If unfilled bits
remain after each constant is generated, any remaining bits in the last byte are filled with zero bits.
Thus, padding within a constant is different from padding after a group of constants.

4. The maximum value for the duplication factor is 224-1, or X'FFFFFF' for OBJ object files, 232-1, or
X'7FFFFFFF' for GOFF object files. If the maximum value for the duplication factor is exceeded, the
assembler issues a message. Possibilities include ASMA067S Illegal duplication factor and ASMA068S
Length error.

Subfield 2: Type
The syntax for coding the type is shown in the subfield format operands in “DC instruction” on page 109.

You must specify the type subfield. From the type specification, the assembler determines how to
interpret the constant and translate it into the correct format. The type is specified by a single-letter code
as shown in Table 19 on page 116, the type extension as shown in Table 20 on page 116.

Further information about these constants is provided in the discussion of the constants themselves under
“Subfield 6: Nominal Value” on page 121.

Chapter 5. Assembler instruction statements 115

Table 19. Type codes for constants

Code Constant Type Machine Format

C Character 8 bit code for each character

G Graphic 16 bit code for each character

X Hexadecimal 4 bit code for each hexadecimal digit

B Binary Binary format

F Fixed-point Signed, fixed-point binary format; normally a fullword

H Fixed-point Signed, fixed-point binary format; normally a halfword

E Floating-point Short floating-point format; normally a fullword

D Floating-point Long floating-point format; normally a doubleword

L Floating-point Extended floating-point format; normally two doublewords

P Decimal Packed decimal format

Z Decimal Zoned decimal format

A Address Value of address; normally a fullword

Y Address Value of address; normally a halfword

S Address Base register and displacement value; a halfword

V Address Space reserved for external symbol addresses; normally a fullword

J Address Space reserved for length of class or DXD; normally a fullword

Q Address Space reserved for external dummy section offset

R Address Space reserved for PSECT addresses; normally a fullword

The type, with an optional type extension specification, indicates to the assembler:
1. How to assemble the nominal values specified in subfield 6; that is, which binary representation or

machine format the object code of the constant must have.
2. At what boundary the assembler aligns the constant, if no length modifier is present.
3. How much storage the constant occupies, according to the implicit length of the constant, if no

explicit length modifier is present (for details, see “Padding and truncation of values” on page 113).

Subfield 3: Type Extension
The syntax for coding the type extension is shown in the subfield format operands in “DC instruction” on
page 109.

You can omit the type extension subfield. If specified, the assembler, using this field with the type
subfield, determines how to interpret the constant and translate it into the correct format. The type
extension is specified by a single-letter code as shown in Table 20.

Table 20. Type extension codes for constants

Type Type Extension Description

C A ASCII character constant

E EBCDIC character constant

U Unicode UTF-16 character constant

E H Hexadecimal floating-point constant

B Binary floating-point constant

D Decimal floating-point constant

D H Hexadecimal floating-point constant

116 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Table 20. Type extension codes for constants (continued)

Type Type Extension Description

B Binary floating-point constant

D Decimal floating-point constant

L H Hexadecimal floating-point constant

B Binary floating-point constant

D Decimal floating-point constant

Q Hexadecimal floating-point, quadword alignment

F D Doubleword fixed-point constant

A D Doubleword address constant

V D Doubleword address constant

J D Doubleword address constant

Q D Doubleword address constant

Q Y 20 bit address constant (GOFF only)

R D Doubleword address constant

S Y 20 bit address constant

The type extension specification, with the type subfield, indicates to the assembler:
1. How to assemble the nominal values specified in subfield 6; that is, which binary representation or

machine format the object code of the constant must have.
2. At what boundary the assembler aligns the constant, if no length modifier is present.
3. How much storage the constant occupies, according to the implicit length of the constant, if no

explicit length modifier is present (for details, see “Padding and truncation of values” on page 113).

Subfield 4: Program type
The syntax for coding the program type is shown in the subfield format operands in “DC instruction” on
page 109.

You can omit the program type subfield. If specified, the assembler assigns the value to the symbol
naming the DC instruction, if a symbol was present. It can be specified as a decimal, character, hex, or
binary self-defining term and is stored as a 32 bit value. The value is not used in any way by the
assembler, and can be queried by using the SYSATTRP built-in function.

The program type is specified within a P prefixed set of parenthesis - P(). For example:
Prog1 DC CP(7)’Perth’ Program type is 7
Prog2 DC 3XP(C’APC’)’FF’ Program type is C’APC’

Symbols used in subfield 4 need not be previously defined, except in literals. For example:
PV EQU 240

LA 1,=FP(PV)’99’ Literal
SYM DC FP(Rate5)’35.92’
Rate5 EQU 5

All expressions in program type must be evaluatable when the DC is processed.

If program type is omitted, the assembler assigns a null to the program type, and querying the value
using the SYSATTRP built-in function returns a null value.

Chapter 5. Assembler instruction statements 117

If there are multiple operands and the first has no P-type, but one of the subsequent operands does have
a P-type, then the program type is assigned from the first operand specifying a program type value. For
example:
alabel dc fp(1)’1’,hp(33)’32760’

results in a program type of 33 being assigned to alabel.

Subfield 5: Modifier
The syntax for coding the modifier is shown in the subfield format operands in “DC instruction” on page
109.

You can omit the modifier subfield. Modifiers describe the length in bits or bytes you want for a constant
(in contrast to an implied length), and the scaling and exponent for the constant.

The three modifiers are:
v The length modifier (L), that explicitly defines the length in bytes you want for a constant. For

example:
LENGTH DC XL10’FF’

v The scale modifier (S), that is only used with the fixed-point or floating-point constants (for details, see
“Scale modifier” on page 120). For example:
SCALE DC FS8’35.92’

v The exponent modifier (E), that is only used with fixed-point or floating-point constants, and indicates
the power of 10 by which the constant is to be multiplied before conversion to its internal binary
format. For example:
EXPON DC EE3’3.414’

If multiple modifiers are used, they must appear in this sequence: length, scale, and exponent. For
example:
ALL3 DC DL7S3E50’2.7182’

Symbols used in subfield 5 need not be previously defined, except in literals. For example:
SYM DC FS(X)’35.92’
X EQU 7

Length modifier
The length modifier indicates the number of bytes of storage into which the constant is to be assembled.
It is written as Ln, where n is either a decimal self-defining term or an absolute expression enclosed by
parentheses. It must have a positive value.

When the length modifier is specified:
v Its value determines the number of bytes of storage allocated to a constant. It therefore determines

whether the nominal value of a constant must be padded or truncated to fit into the space allocated
(see “Padding and truncation of values” on page 113).

v No boundary alignment, according to constant type, is provided (see “Alignment of constants” on page
111).

v Its value must not exceed the maximum length allowed for the various types of constant defined.
v The length modifier must not truncate double-byte data in a C-type constant, except for bit-length

modifiers.
v The length modifier must be a multiple of 2 in a G-type or CU-type constant.

When no length is specified, for character and graphic constants (C and G), hexadecimal constants (X),
binary constants (B), and decimal constants (P and Z), the whole constant is assembled into its implicit
length.

118 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Bit-length modifier: The length modifier can be specified to indicate the number of bits into which a
constant is to be assembled. The bit-length modifier is written as L.n where n is either a decimal
self-defining term, or an absolute expression enclosed in parentheses. It must have a positive value. Such
a modifier is sometimes called a “bit-length” modifier, to distinguish it from a “byte-length” modifier.
You cannot combine byte-length and bit-length modifiers. For example, a 12 bit field must be written
L.12, not L1.4.

The value of n is 1 - the number of bits (a multiple of 8) that are required to make up the maximum
number of bytes allowed in the type of constant being defined. The bit-length modifier can never be used
with the CU-, G-, S-, V-, R-, J- and Q-type constants, and cannot be used with the A-type or Y-type
constant if the operand is simply or complexly relocatable.

When only one operand and one nominal value are specified in a DC instruction, the following rules
apply:
1. The bit-length modifier allocates a field into which a constant is to be assembled. The field starts at a

byte boundary and can run over one or more byte boundaries, if the bit length is greater than 8.
If the field does not end at a byte boundary and if the bit length is not a multiple of 8, the remainder
of the last byte is filled with binary zeros. For example, DC FL.12’-1’ generates X’FFF0’.

2. The nominal value of the constant is assembled into the field:
a. Starting at the high-order end for the C-, E-, D-, and L-type constants
b. Starting at the low-order end for the remaining types of constants that support a bit-length

modifier
3. The nominal value is padded or truncated to fit the field (see “Padding and truncation of values” on

page 113).
“padding” is not the same as “filling”. In padding, the designated bit field is completed according to
the rules for the constant type. Filling is always binary zeros placed at the right end of an incomplete
byte.
C-type character constants are padded with EBCDIC spaces (hexadecimal X'40', and CA-type
character constants are padded with ASCII spaces (hexadecimal X'20'). Other constant types are
padded either by sign extension or with zeros, according to the type of the constant.

The length attribute value of the symbol naming a DC instruction with a specified bit length is equal to
the minimum number of integral bytes needed to contain the bit length specified for the constant.
Consider the following example:
TRUNCF DC FL.12’276’

L’TRUNCF is equal to 2. Thus, a reference to TRUNCF addresses both the 2 bytes that are assembled.

When more than one operand is specified in a DC instruction, or more than one nominal value in a DC
operand, the above rules about bit-length modifiers also apply, except:
1. The first field allocated starts at a byte boundary, but the succeeding fields start at the next available

bit. For example, BL1 DC FL.12’-1,1000’ generates X’FFF3E8’.
2. After all the constants have been assembled into their respective fields, the bits remaining to make up

the last byte are filled with zeros. For example, BL2 DC FL.12’-1,1000,-2’ generates X’FFF3E8FFE0’

If duplication is specified, filling with zeros occurs once at the end of all the fields occupied by the
duplicated constants. For example, BL3 DC 3FL.12’-2’ generates X’FFEFFEFFE0’.

3. The length attribute value of the symbol naming the DC instruction is equal to the number of integral
bytes needed to contain the bit length specified for the first constant to be assembled. For example,
the symbols BL1, BL2, and BL3 in the preceding examples each have length attribute 2.

For double-byte data in C-type constants: If bit-lengths are specified, with a duplication factor greater
than 1, and a bit-length which is not a multiple of 8, then the double-byte data is no longer valid for
devices capable of presenting DBCS characters. No error message is issued.

Chapter 5. Assembler instruction statements 119

Storage requirement for constants: The total amount of storage required to assemble a DC instruction is
the sum of:
1. The requirements for the individual DC operands specified in the instruction. The requirement of a

DC operand is the product of:
v The sum of the lengths (implicit or explicit) of each nominal value
v The duplication factor, if specified

2. The number of bytes skipped for the boundary alignment between different operands; such skipped
bytes are filled with binary zeros.

Scale modifier
The scale modifier specifies the amount of internal scaling that you want for:
v Binary digits for fixed-point constants (H, F)
v Hexadecimal digits for floating-point constants (E, D, L)

The scale modifier can be used only with the above types of constants. It cannot be used with EB, DB,
and LB floating point constants.

The range for each type of constant is:
Fixed-point constant H

-187 to +346
Fixed-point constant F

-187 to +346
Floating-point constant E, EH

0 to 14
Floating-point constant D, DH

0 to 14
Floating-point constant L, LH

0 to 28

The scale modifier is written as Sn, where n is either a decimal self-defining term, or an absolute
expression enclosed in parentheses. Both forms of the modifier's value n can be preceded by a sign; if no
sign is present, a plus sign is assumed.

Scale modifier for fixed-point constants: The scale modifier for fixed-point constants specifies the
power of two by which the fixed-point constant must be multiplied after its nominal value has been
converted to its binary representation, but before it is assembled in its final scaled form. Scaling causes the
binary point to move from its assumed fixed position at the right of the rightmost bit position.

Notes:

1. When the scale modifier has a positive value, it indicates the number of binary positions occupied by
the fractional portion of the binary number.

2. When the scale modifier has a negative value, it indicates the number of binary positions deleted
from the integer portion of the binary number.

3. When low-order positions are lost because of scaling (or lack of scaling), rounding occurs in the
leftmost bit of the lost portion. The rounding is reflected in the rightmost position saved.

Scale modifier for hexadecimal floating-point constants: The scale modifier for hexadecimal
floating-point constants must have a positive value. It specifies the number of hexadecimal positions that
the fractional portion of the binary representation of a floating-point constant is shifted to the right. The
hexadecimal point is assumed to be fixed at the left of the leftmost position in the fractional field. When
scaling is specified, it causes an unnormalized hexadecimal fraction to be assembled (unnormalized
means that the leftmost positions of the fraction contain hexadecimal zeros). The magnitude of the
constant is retained, because the exponent in the characteristic portion of the constant is adjusted upward
accordingly. When non-zero hexadecimal positions are lost, rounding occurs in the leftmost hexadecimal
position of the lost portion. The rounding is reflected in the rightmost position saved.

120 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Exponent modifier
The exponent modifier specifies the power of 10 by which the nominal value of a constant is to be
multiplied before it is converted to its internal binary representation. It can only be used with the
fixed-point (H and F) and floating-point (E, D, and L) constants. The exponent modifier is written as En,
where n can be either a decimal self-defining term, or an absolute expression enclosed in parentheses.

The decimal self-defining term or the expression can be preceded by a sign. If no sign is present, a plus
sign is assumed. The range for the exponent modifier is -85 to +75. If a type extension is used to define a
floating-point constant, the exponent modifier can be in the range -231 to 231-1. If the nominal value
cannot be represented exactly, a warning message is issued.

Notes:

1. Do not confuse the exponent modifier with the exponent that can be specified in the nominal value
subfield of fixed-point and floating-point constants.
The exponent modifier affects each nominal value specified in the operand, whereas the exponent
written as part of the nominal value subfield only affects the nominal value it follows. If both types of
exponent are specified in a DC operand, their values are added together before the nominal value is
converted to binary form. However, this sum must lie within the permissible range of -85 to +75,
unless a type extension is specified.

2. The value of the constant, after any exponents have been applied, must be contained in the implicitly
or explicitly specified length of the constant to be assembled.

Subfield 6: Nominal Value
The syntax for coding the nominal value is shown in the subfield format operands in “DC instruction” on
page 109.

You must specify the nominal value subfield unless a duplication value of zero is specified. It defines the
value of the constant (or constants) described and affected by the subfields that precede it. It is this value
that is assembled into the internal binary representation of the constant. Table 21 shows the formats for
specifying constants.

Table 21. Specifying constant values

Constant
Type

Single
Nominal Value

Multiple
Nominal Value Page No.

C 'value' not allowed 123

G '<.v.a.l.u.e>' not allowed 126

B
X
H
F
P
Z
E
D
L

'value' 'value,value,...value'
122
127
128
128
131
131
141, 145
141, 145
141, 145

A
Y
S
V
R

(value) (value,value,...value)
132
132
132
132
132

Q (value) (value,value,...value) 139

Chapter 5. Assembler instruction statements 121

Table 21. Specifying constant values (continued)

Constant
Type

Single
Nominal Value

Multiple
Nominal Value Page No.

J (value) (value,value,...value) 140

As the above list shows:
v A data constant value (any type except A, Y, S, Q, J, R, and V) is enclosed by apostrophes.
v An address constant value (type A, Y, S, V, R) or an offset constant (type Q) or a length constant (type

J) is enclosed by parentheses.
v To specify two or more values in the subfield, the values must be separated by commas, and the whole

sequence of values must be enclosed by the correct delimiters; that is, apostrophes or parentheses.
v Multiple values are not permitted for character constants.

Spaces are allowed and ignored in nominal values for the quoted constant types (BDEFHLPXZ). Spaces
are significant for C and G constant types.

How nominal values are specified and interpreted by the assembler is explained in each of the
subsections that follow. There is a subsection for each of the following types of constant:

Binary
Character
Graphic
Hexadecimal
Fixed-Point
Decimal
Packed Decimal
Zoned Decimal
Address
Floating-Point

Literal constants are described in “Literal constants” on page 151.

Binary constant—B
The binary constant specifies the precise bit pattern assembled into storage. Each binary constant is
assembled into the integral number of bytes (see �1� in Table 22) required to contain the bits specified,
unless a bit-length modifier is specified.

The following example shows the coding used to designate a binary constant. BCON has a length attribute
of 1.
BCON DC B’11011101’
BTRUNC DC BL1’100100011’
BPAD DC BL1’101’
BFOUR DC B’1111 0100 1111 0100’

BTRUNC assembles with the leftmost bit truncated, as follows:
00100011

BPAD assembles with five zeros as padding, as follows:
00000101

Table 22. Binary constants

Subfield Value Example Result

1. Duplication factor Allowed

122 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Table 22. Binary constants (continued)

Subfield Value Example Result

2. Type B

3. Type Extension Not Allowed

4. Program type Allowed

5. Modifiers

Implicit length:
(length modifier
not present)

As needed
B DC B’10101111’
C DC B’101’

L’B = 1 �1�
L’C = 1 �1�

Alignment: Byte

Range for length: 1 to 256
(byte length)

.1 to .2048
(bit length)

Range for scale: Not allowed

Range for exponent: Not allowed

6. Nominal value
Represented by: Binary digits

(0 or 1)

Enclosed by: Apostrophes

Exponent allowed: No

Number of values
per operand:

Multiple

Padding: With zeros at left

Truncation of
assembled value:

At left

Character constant—C
The character constant specifies character strings, such as error messages, identifiers, or other text, that
the assembler converts into binary representations. If no type extension is provided, then the constant
might be changed, depending on the value of the TRANSLATE option. If the type extension of “E” is
provided, then the representation is also EBCDIC, but it cannot be changed by the TRANSLATE option.
For information about type extension “A” see “ASCII data in character constants” on page 125, and for
information about type extension “U” see “Unicode UTF-16 data from character constants” on page 125.

Any of the 256 characters from the EBCDIC character set can be designated in a character constant. Each
character specified in the nominal value subfield is assembled into one byte (see �1� in Table 23 on page
124). For more information, see the discussion about the 82 invariant characters in “Character
self-defining term” on page 31.

A null nominal value is permitted if a length is specified. For example:
DC CL3’’

is assembled as three EBCDIC spaces with object code X'404040', whereas
DC CAL3’’

is assembled as three ASCII spaces with object code X'202020'.

Chapter 5. Assembler instruction statements 123

Multiple nominal values are not allowed because a comma in the nominal value is considered a valid
character (see �2� in Table 23) and is assembled into its binary (EBCDIC) representation (see Appendix D,
“Standard character set code table,” on page 375). For example:

DC C’A,B’

is assembled as A,B with object code X'C16BC2'.

Give special consideration to representing apostrophes and ampersands as characters. Each apostrophe or
ampersand you want as a character in the constant must be represented by a pair of apostrophes or
ampersands. Each pair of apostrophes is assembled as one apostrophe, and each pair of ampersands is
assembled as one ampersand (see �3� in Table 23).

Table 23. Character constants

Subfield Value Example Result

1. Duplication factor Allowed

2. Type C

3. Type Extension U
A
E

U DC CU’UNICODE’
A DC CA’ASCII’
E DC CE’EBCDIC’

L’U = 14
L’A = 5
L’E = 6

4. Program type Allowed

5. Modifiers

Implicit length:
(length modifier

not present)

Evaluate as an even
number, if Type
Extension of U is
specified

C DC C’LENGTH’ L’C = 6 �1�

Alignment: Byte

Range for length: 1 to 256
(byte length)

Must be a multiple
of 2 when the
Type Extension is U

.1 to .2048
(bit length)
(Not permitted
if Type Extension
of U is specified.)

Range for scale: Not allowed

Range for exponent: Not allowed

6. Nominal value
Represented by: Characters

(all 256 eight bit
combinations)

DC C’A’’B’
DC CU’AA’
DC CA’AB’

Object code
X’C17DC2’ �3�
X’00410041’
X’4142’

Enclosed by: Apostrophes

Exponent allowed: No (is interpreted as
character data)

Number of values
per operand:

One DC C’A,B’ Object code
X’C16BC2’�2�

Padding: With spaces at right (X'40'
EBCDIC, X'20' ASCII)

124 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Table 23. Character constants (continued)

Subfield Value Example Result

Truncation of
assembled value:

At right

In the following example, the length attribute of FIELD is 12:
FIELD DC C’TOTAL IS 110’

However, in this next example, the length attribute is 15, and three spaces appear in storage to the right
of the zero:
FIELD DC CL15’TOTAL IS 110’

In the next example, the length attribute of FIELD is 12, although 13 characters appear in the operand. The
two ampersands are paired, and so count as only one byte.
FIELD DC C’TOTAL IS &&10’

In the next example, a length of 4 has been specified, but there are five characters in the constant.
FIELD DC 3CL4’ABCDE’

The generated constant is:
ABCDABCDABCD

The same constant can be specified as a literal.
MVC AREA(12),=3CL4’ABCDE’

On the other hand, if the length modifier is specified as 6 instead of 4, the generated constant is:
ABCDE ABCDE ABCDE (with one trailing space)

ASCII data in character constants: For Character ASCII (CA) constants the character string is converted
to ASCII (code page 819), assuming that the characters in the nominal value are represented in code page
37. Any paired occurrences of ampersands and apostrophes are converted to a single occurrence of such a
character prior to conversion. The assembler then maps each EBCDIC character into its ASCII equivalent.
This constant is not modified by the TRANSLATE option.

Unicode UTF-16 data from character constants: For Character Unicode (CU) constants the value is
converted to Unicode UTF-16 using the code page identified by the CODEPAGE assembler option. Any
paired occurrences of ampersands and apostrophes are converted to a single occurrence of such a
character prior to conversion. If necessary the value is padded with EBCDIC spaces on the right (X'40').
The assembler then maps each EBCDIC character into its 2 byte Unicode UTF-16 equivalent.

For example:
UA DC CU’UTF-16’ object code X’ 005500540046002D00310036’
UB DC CUL4’L’ object code X’ 004C0020’
UC DC CUL2’XYZ’ object code X’ 0058’

Double-byte data in character constants: When the DBCS assembler option is specified, double-byte
data can be used in a character constant. The start of double-byte data is delimited by SO, and the end by
SI. All characters between SO and SI must be valid double-byte characters. No single-byte meaning is
drawn from the double-byte data. Hence, special characters such as the apostrophe and ampersand are
not recognized between SO and SI. The SO and SI are included in the assembled representation of a
character constant containing double-byte data.

If a duplication factor is used, SI/SO pairs at the duplication points are not removed. For example, the
statement:

Chapter 5. Assembler instruction statements 125

DBCS DC 3C’<D1>’

results in the assembled character string value of:
<D1><D1><D1>

Null double-byte data (SO followed immediately by SI) is acceptable and is assembled into the constant
value.

The following examples of character constants contain double-byte data:
DBCS0 DC C’<>’
DBCS1 DC C’<.D.B.C.S>’
DBCS2 DC C’abc<.A.B.C>’
DBCS3 DC C’abc<.A.B.C>def’

The length attribute includes the SO and SI. For example, the length attribute of DBCS0 is 2, and the
length attribute of DBCS2 is 11. No truncation of double-byte character strings within C-type constants is
allowed, since incorrect double-byte data is created.

It is possible to generate invalid DBCS data in these situations:
v You specify a bit-length modifier that causes truncation of the DBCS data or the shift-out and shift-in

characters.
v You specify the TRANSLATE option.

Graphic constant—G
When the DBCS assembler option is specified, the graphic (G-type) constant is supported. This constant
type allows the assembly of pure double-byte data. The graphic constant differs from a character constant
containing only double-byte data in that the SO and SI delimiting the start and end of double-byte data
are not present in the assembled value of the graphic constant. Because SO and SI are not assembled, if a
duplication factor is used, no redundant SI/SO characters are created. For example, the statement:
DBCS DC 3G’<D1>’

results in the assembled character string value of:
D1D1D1

Examples of graphic constants are:
DBCS1 DC G’<.A.B.C>’
DBCS2 DC GL10’<.A.B.C>’
DBCS3 DC GL4’<.A.B.C>’

Because the length attribute does not include the SO and SI, the length attribute of DBCS1 is 6. The length
modifier of 10 for DBCS2 causes padding of 2 double-byte spaces at the right of the nominal value. The
length modifier of 4 for DBCS3 causes truncation after the first 2 double-byte characters. The length
attribute of a graphic constant must be a multiple of 2.

Type attribute of G-type constant: Do not confuse the G-type constant character with the type (data)
attribute of a graphic constant. The type attribute of a graphic constant is @, not G. See the general
discussion about data attributes in “Data attributes” on page 284, and “Type attribute (T')” on page 289.

Table 24. Graphic constants

Subfield Value Example Result

1. Duplication factor Allowed DC 3G’<.A>’
Object code
X'42C142C142C1'

2. Type G

126 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Table 24. Graphic constants (continued)

Subfield Value Example Result

3. Type Extension Not allowed

4. Program type Allowed

5. Modifiers
Implicit length:
(length modifier
not present)

As needed(twice the
number of DBCS
characters)

GC DC G’<.A.B>’
L'GC = 4

Alignment: Byte

Range for length: 2 to 256, must be multiple
of 2(byte length)bit length
not allowed

6. Nominal value
Represented by: DBCS characters

delimited by SO
and SI

DC G’<.&.’>’
DC G’<.A><.B>’

Object code
X'4250427D'
X'42C142C2'

Enclosed by: Apostrophes

Number of values
per operand:

One
DC G’<.A.,.B>’ Object code

X'42C1426B42C2'

Padding: With DBCS spaces at
right (X'4040') DC GL6’<.A>’ Object code

X'42C140404040'

Truncation of
assembled value:

At right
DC GL2’<.A.B>’ Object code

X'42C1'

Hexadecimal constant—X
Hexadecimal constants generate large bit patterns more conveniently than binary constants. Also, the
hexadecimal values you specify in a source module let you compare them directly with the hexadecimal
values generated for the object code and address locations printed in the program listing.

Each hexadecimal digit (see �1� in Table 25 on page 128) specified in the nominal value subfield is
assembled into four bits (their binary patterns can be found in “Self-defining terms” on page 29). The
implicit length in bytes of a hexadecimal constant is then half the number of hexadecimal digits specified
(assuming that a high-order hexadecimal zero is added to an odd number of digits). See �2� and �3� in
Table 25 on page 128.

An 8-digit hexadecimal constant provides a convenient way to set the bit pattern of a full binary word.
The constant in the following example sets the first and third bytes of a word with all 1 bits.

DS 0F
TEST DC X’FF00FF00’

The DS instruction sets the location counter to a fullword boundary. (See “DS instruction” on page 154.)

The next example uses a hexadecimal constant as a literal and inserts a byte of all 1 bits into the
rightmost 8 bits of register 5.

IC 5,=X’FF’

Chapter 5. Assembler instruction statements 127

In the following example, the digit A is dropped, because 5 hexadecimal digits are specified for a length
of 2 bytes:
ALPHACON DC 3XL2’A6F4E’ Generates 6F4E 3 times

The resulting constant is 6F4E, which occupies the specified 2 bytes. It is duplicated three times, as
requested by the duplication factor. If it is specified as:
ALPHACON DC 3X’A6F4E’ Generates 0A6F4E 3 times

the resulting constant has a hexadecimal zero in the leftmost position.
0A6F4E0A6F4E0A6F4E

Table 25. Hexadecimal constants

Subfield Value Example Result

1. Duplication factor Allowed

2. Type X

3. Type Extension Not allowed

4. Program type Allowed

5. Modifiers
Implicit length:
(length modifier
not present)

As needed
X DC X’FF00A2’
Y DC X’F00A2’

L’X = 3 �2�
L’Y = 3 �2�

Alignment: Byte

Range for length: 1 to 256
(byte length)

.1 to .2048
(bit length)

Range for scale: Not allowed

Range for exponent: Not allowed

6. Nominal value
Represented by: Hexadecimal

digits
(0 to 9 and
A to F)

DC X’1F’
DC X’91F’

Object code
X’1F’ �1�
X’091F’ �3�

Enclosed by: Apostrophes

Exponent allowed: No

Number of values
per operand:

Multiple

Padding: With zeros at left

Truncation of
assembled value:

At left

Fixed-point constants—F and H
Fixed-point constants let you introduce data that is in a form suitable for the arithmetic operations of the
binary fixed-point machine instructions. The constants you define can also be automatically aligned to the
correct doubleword, fullword, or halfword boundary for the instructions that refer to addresses on these
boundaries (unless the NOALIGN option has been specified; see “General information about constants”
on page 111). You can do algebraic operations using this type of constant because they can have positive
or negative values.

128 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

A fixed-point constant is written as a decimal number, which can be followed by a decimal exponent. The
format of the constant is as follows:
1. The nominal value can be a signed or unsigned (see �1� in Table 26) integer, fraction, or mixed

number (see �2� Table 26) followed by a signed exponent (see �3� in Table 26). If a sign is not
specified for either the number or exponent, + is assumed. To generate unsigned data, precede the
numeric value with the letter U; signs are not allowed.

2. The exponent must lie within the permissible range (see �4� in Table 26). If an exponent modifier is
also specified, the algebraic sum (see �5� in Table 26) of the exponent and the exponent modifier must
lie within the permissible range.

Here are some examples of the range of values that can be assembled into fixed-point constants:

Length Range of signed values that can be assembled Range of unsigned values that can be assembled
8 -263 to 263-1 0 to 264-1
4 -231 to 231-1 0 to 232-1
2 -215 to 215-1 0 to 216-1
1 -27 to 27-1 0 to 28-1

The range of values depends on the implicitly or explicitly specified length (if scaling is disregarded). If
the value specified for a particular constant does not lie within the allowable range for a given length, the
constant is not assembled, but flagged as an error.

A fixed-point constant is assembled as follows:
1. The specified number, multiplied by any exponents, is converted to a binary number.
2. Scaling is done, if specified. If a scale modifier is not provided, the fractional portion of the number is

lost.
3. The binary value is rounded, if necessary. The resulting number does not differ from the exact

number specified by more than one in the least significant bit position at the right.
4. A negative number is carried in two's-complement form.
5. Duplication is applied after the constant has been assembled.

The example statement generates 3 fullwords of data. The location attribute of CONWRD is the address of
the first byte of the first word, and the length attribute is 4, the implied length for a fullword fixed-point
constant. The expression CONWRD+4 can be used to address the second constant (second word) in the field.
CONWRD DC 3F’658474’

Table 26. Fixed-point constants

Subfield Value Example Result

1. Duplication factor Allowed

2. Type F and H

3. Type Extension D permitted with type F

4. Program type Allowed

5. Modifiers
Implicit length:
(length modifier
not present)

Doubleword: 8 bytes
Fullword: 4 bytes
Halfword: 2 bytes

Alignment:
(Length modifier
not present)

Doubleword,
fullword,
or halfword

Chapter 5. Assembler instruction statements 129

Table 26. Fixed-point constants (continued)

Subfield Value Example Result

Range for length: 1 to 8
(byte length)

.1 to .64
(bit length)

Range for scale: F: -187 to +346
H: -187 to +346

Range for exponent: -85 to +75 �4� DC HE+75’2E-73’ �5� value=2x10²

6. Nominal value
Represented by: Decimal

digits
(0 to 9)

Doubleword
DC FD’-200’ �1�
DC FD’U7890123456’

Fullword
DC FS4’2.25’ �2�
DC FS4’U2.25’

Halfword:
DC H’+200’
DC HS4’.25’
DC H’U200’
DC HS4’U0.25’

Enclosed by: Apostrophes

Exponent allowed: Yes Doubleword:
DC FD’2E6’
DC FD’U2E6’

Fullword:
DC F’2E6’ �3�
DC F’U2E6’

Halfword:
DC H’2E+1’
DC H’U2E+1’

Number of values
per operand:

Multiple

Padding: With sign bits at left

Truncation of
assembled value:

At left
(error message
issued)

In the following example, the DC statement generates a 2 byte field containing a negative constant.
Scaling has been specified in order to reserve 6 bits for the fractional portion of the constant.
HALFCON DC HS6’-25.46’

In the following example, the constant (3.50) is multiplied by 10 to the power -2 before being converted
to its binary format. The scale modifier reserves 12 bits for the fractional portion.
FULLCON DC HS12’3.50E-2’

The same constant can be specified as a literal:
AH 7,=HS12’3.50E-2’

130 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

The final example specifies three constants. The scale modifier requests 4 bits for the fractional portion of
each constant. The 4 bits are provided whether or not the fraction exists.
THREECON DC FS4’-10,25.3,U268435455’

Remember that commas separate operands. For readability, use spaces instead, as shown in this example:
TWOCONS DC F’123,445’ Two constants
ONECON DC F’123 456’ One constant

Decimal constants—P and Z
The decimal constants let you introduce data in a form suitable for operations on decimal data. The
packed decimal constants (P-type) are used for processing by the decimal instructions. The zoned decimal
constants (Z-type) are in the form (EBCDIC representation) you can use as a print image, except for the
digit in the rightmost byte.

The nominal value can be a signed (plus is assumed if the number is unsigned) decimal number. A
decimal point can be written anywhere in the number, or it can be omitted. The placement of a decimal
point in the definition does not affect the assembly of the constant in any way, because the decimal point
is not assembled into the constant. It it only affects the integer and scaling attributes of the symbol that
names the constant.

The specified digits are assumed to constitute an integer (see �1� in Table 27). You can determine correct
decimal point alignment either by defining data so that the point is aligned or by selecting machine
instructions that operate on the data correctly (that is, shift it for purposes of decimal point alignment).

Decimal constants are assembled as follows:

Packed decimal constants: Each digit is converted into its 4 bit binary coded decimal equivalent (see
�2� in Table 27). The sign indicator (see �3� in Table 27) is assembled into the rightmost 4 bits of the
constant.

Zoned decimal constants: Each digit is converted into its 8 bit EBCDIC representation (see �4� in
Table 27). The sign indicator (see �5� in Table 27) replaces the first four bits of the low-order byte of the
constant.

Here are the range of values that can be assembled into a decimal constant:

Type of decimal constant Range of values that can be specified

Packed 1031-1 to -1031

Zoned 1016-1 to -1016

For both packed and zoned decimals, a plus sign is translated into the hexadecimal digit C, a minus sign
into the digit D. The packed decimal constants (P-type) are used for processing by the decimal
instructions.

If, in a constant with an implicit length, an even number of packed decimal digits is specified, one digit
is left unpaired because the rightmost digit is paired with the sign. Therefore, in the leftmost byte, the
leftmost four bits are set to zeros and the rightmost four bits contain the unpaired (first) digit.

Table 27. Decimal constants

Subfield Value Example Result

1. Duplication factor Allowed

2. Type P and Z

3. Type Extension Not allowed

Chapter 5. Assembler instruction statements 131

Table 27. Decimal constants (continued)

Subfield Value Example Result

4. Program type Allowed

5. Modifiers
Implicit length:
(length modifier
not present)

As needed
Packed:
P DC P’+593’

Zoned:
Z DC Z’-593’

L'P = 2

L'Z= 3

Alignment: Byte

Range for length: 1 to 16
(byte length)

.1 to .128
(bit length)

Range for scale: Not allowed

Range for exponent: Not allowed

6. Nominal value
Represented by: Decimal

digits
(0 to 9)

Packed:
DC P’5.5’ �1�
DC P’55’ �1�
DC P’+555’ �2�
DC P’-777’
Zoned:
DC Z’-555’ �4�

Object code
X'055C'
X'055C'
X'555C' �3�
X'777D' �3�

Object code
X'F5F5D5' �5�

Enclosed by: Apostrophes

Exponent allowed: No

Number of values
per operand:

Multiple

Padding: Packed:
with binary
zeros at left

Zoned:
with EBCDIC
zeros (X'F0')
at left

Truncation of
assembled value:

At left

In the following example, the DC statement specifies both packed and zoned decimal constants. The
length modifier applies to each constant in the first operand (that is, to each packed decimal constant). A
literal cannot specify both operands.
DECIMALS DC PL8’+25.8,-3874,+2.3’,Z’+80,-3.72’

The last example shows the use of a packed decimal literal.
UNPK OUTAREA,=PL2’+25’

Address constants
An address constant is an absolute or relocatable expression, such as a storage address, that is translated
into a constant. Address constants can be used for initializing base registers to facilitate the addressing of
storage. Furthermore, they provide a means of communicating between control sections of a multisection

132 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

program. However, storage addressing and control section communication also depends on the USING
assembler instruction and the loading of registers. See “USING instruction” on page 193.

The nominal value of an address constant, unlike other types of constants, is enclosed in parentheses. If
two or more address constants are specified in an operand, they are separated by commas, and the whole
sequence is enclosed by parentheses. There are seven types of address constants: A, Y, S, R, Q, J, and V. A
relocatable address constant cannot be specified with bit lengths.

Complex relocatable expressions: A complex relocatable expression can only specify an A- or Y-type
address constant. These expressions contain two or more unpaired relocatable terms, or two or more
negative relocatable terms in addition to any absolute or paired relocatable terms. A complex relocatable
expression might consist of external symbols and designate an address in an independent assembly that
is to be linked and loaded with the assembly containing the address constant.

The following example shows how, and why, a complex relocatable expression might be used for an A or
Y address constant:

EXTRN X
B DC A(X-*) Offset from B to X

Address constants—A and Y: The following sections describe how the different types of address
constants are assembled from expressions that normally represent storage addresses, and how the
constants are used for addressing within and between source modules.

In the A-type and Y-type address constants, you can specify any of the three following types of
assembly-time expressions whose values the assembler then computes and assembles into object code.
Use this expression computation as follows:
v Relocatable expressions for addressing
v Absolute expressions for addressing and value computation
v Complex relocatable expressions to relate addresses in different source modules

Literals, which are relocatable forms, are not allowed as operands, but length, scale, and integer attribute
references to literals are allowed.

Here are some examples:
DC A(L’=F’1.23’)
DC A(I’=F’3.45’)
DC A(S’=FS6’7.89)

Notes:

1. No bit-length modifier (see �1� in Table 28 on page 134) is allowed when a relocatable or complex
relocatable expression (see �2� in Table 28 on page 134) is specified. The only explicit lengths that can
be specified with relocatable or complex relocatable address constants are:
v 2-8 bytes for AD-type constants
v 2, 3, or 4 bytes for A-type constants
v 2 bytes for Y-type constants

The linkage editor or binder or loader you use determines which lengths are supported. Please see the
appropriate product manual for more information.
For absolute operands, you can specify byte or bit lengths:
v Byte lengths 1 through 8, or bit lengths .1 through .128, for A-type constants
v Byte lengths 1 or 2, or bit lengths .1 through .16, for Y-type constants

2. The value of the location counter reference (*) when specified in an address constant varies from
constant to constant, if any of the following, or a combination of the following, are specified:
v Multiple operands
v Multiple nominal values (see �3� in Table 28 on page 134)

Chapter 5. Assembler instruction statements 133

v A duplication factor (see �4� in Table 28)
The location counter is incremented with the length of the previously assembled constant.

3. When the location counter reference occurs in a literal address constant, the value of the location
counter is the address of the first byte of the instruction.
The behavior of location counter references in A-type address constants is different from that in S-type
address constants (“Address constant—S” on page 136).

Table 28. A and Y address constants

Subfield Value Example Result

1. Duplication factor Allowed A DC 5AL1(*-A) �4� Object code
X'0001020304'

2. Type A and Y

3. Type Extension D permitted for A type only

4. Program type Allowed

5. Modifiers
Implicit length:
(length modifier
not present)

A-type: 4 bytes
AD-type: 8 bytes
Y-type: 2 bytes

Alignment:
(Length modifier
not present)

A-type: fullword
AD-type: doubleword
Y-type: halfword

Range for length: A-type:
2 to 4 �1�
(byte length)
AD-type:
1 to 8
(byte length)

Y-type:
2 only
(byte length)

Range for scale: Not allowed

Range for exponent: Not allowed

6. Nominal value
Represented by: Absolute,

relocatable,
or complex
relocatable
expressions �2�

A-type:
DC A(ABSOL+10)

Y-type:
DC Y(RELOC+32)

A DC Y(*-A,*+4) �3� values=0,A+6

Enclosed by: Parentheses

Exponent allowed: No

Number of values
per operand:

Multiple

Padding: If an absolute term is
present, by sign extension.
Otherwise, with zeros at left.

Truncation of
assembled value:

At left

134 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Take care when using Y-type address constants and 2 byte A-type address constants for relocatable
addresses, as they can only address a maximum of 65,536 bytes of storage. Using these types of address
constants for relocatable addresses results in message ASMA066W being issued unless the assembler
option RA2 is specified.

Here is how the A-type and Y-type address constants are processed:
v If the nominal value is an absolute expression, it is computed to its 32 bit value> it is then truncated or

sign-extended on the left to fit the implicit or explicit length of the constant.
v If the nominal value is a relocatable or complex relocatable expression, it is not completely evaluated

until linkage edit time. The relocated address values are then placed in the fields set aside for them at
assembly time by the A-type and Y-type constants.

In the following examples, the field generated from the statement named ACON contains four constants,
each of which occupies 4 bytes. The statement containing the LM instruction shows the same set of
constants specified as literals (that is, address constant literals).
ACON DC A(108,LOP,END-STRT,*+4096)

LM 4,7,=A(108,LOP,END-STRT,*+4096)

A location counter reference (*) appears in the fourth constant (*+4096). The value of the location counter
is the address of the first byte of the fourth constant. When the location counter reference occurs in a
literal, as in the LM instruction, the value of the location counter is the address of the first byte of the
instruction.

Note: It is important to remember that expression evaluation for address constants is restricted to using
32 bit internal arithmetic. The result is then sign-extended to the length of the constant. This means that
certain expressions in AD-type constants might not yield expected results, especially if the resulting value
is negative.

PSECT reference—R: The R-type constant reserves storage for the address of the PSECT of symbol1 as
specified in the associated XATTR statement (“XATTR instruction (z/OS and CMS)” on page 203). It is
the caller's responsibility to establish the definition of the R-type address constant referencing the called
routine's PSECT, and to pass that address to the called routine. This constant is only available if the
GOFF option is specified.

Note: If a program is to be reentrant, R-type address constants must not appear in shared (read-only)
text. They should be in the caller's PSECT, and be provided to the called routine using an appropriate
convention. That is, R-type address constants referring to PSECTs should themselves reside in PSECTs. If
not, there can be only a single instantiation of the PSECT work area, and the program cannot be
reentrant.

Table 29. R address constants

Subfield Value Example Result

1. Duplication factor Allowed

2. Type R

3. Type Extension D

4. Program type Allowed

5. Modifiers
Implicit length:
(length modifier
not present)

R-type: 4 bytes
RD-type: 8 bytes

Alignment:
(Length modifier
not present)

R-type: Fullword
RD-type: Doubleword

Chapter 5. Assembler instruction statements 135

Table 29. R address constants (continued)

Subfield Value Example Result

Range for length: R-type: 3 or 4 only
RD-type: 3, 4, or 8
(no bit length)

Range for scale: Not allowed

Range for exponent: Not allowed

6. Nominal value
Represented by: An ordinary symbol DC R(PSECT1)

Enclosed by: Parentheses

Exponent allowed: No

Number of values
per operand:

Multiple

Padding: With zeros at left

Truncation of
assembled value:

Not applicable

Address constant—S: Use the S-type address constant to assemble an explicit address in
base-displacement form. You can specify the explicit address yourself or let the assembler compute it
from an implicit address, using the current base register and address in its computation.

The nominal values can be specified in two ways:
1. As one absolute or relocatable expression (see�1� in Table 30 on page 137) representing an implicit

address.
2. As two absolute expressions (see �2� in Table 30 on page 137) the first of which represents the

displacement and the second, enclosed in parentheses, represents the base register.

The address value represented by the expression in �1� in Table 30 on page 137, is converted by the
assembler into the correct base register and displacement value. An S-type constant is assembled as a
halfword and aligned on a halfword boundary. An SY-type constant is assembled as 3 bytes and aligned
on a halfword boundary. The leftmost four bits of the assembled constant represent the base register
designation; the remaining 12 bits (S-type) or 20 bits (SY-type), the displacement value.

Notes:

1. The value of the location counter (*) when specified in an S-type address constant varies from
constant to constant if one or more the following is specified:
v Multiple operands
v Multiple nominal values
v A duplication factor

In each case the location counter is incremented with the length of the previously assembled constant,
except when multiple S-type address constants are specified in a literal. In a literal, the same location
counter value is used for each of the multiple values.

2. If a length modifier is used, only 2 bytes for an S-type constant, or only 3 bytes for an SY-type
constant, can be specified.

3. S-type address constants can be specified as literals. The USING instructions used to resolve them are
those in effect at the place where the literal pool is assembled, and not where the literal is used.

4. The location counter value used in the literal is the value at the point where the literal is used, not
where it is defined.
For example:

136 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

USING *,15
DC 2S(*) generates F000F002
LA 1,=2S(*) generated constants are F004F004

This behavior is different from that in A-type address constants and Y-type address constants.

Table 30. S address constants

Subfield Value Example Result

1. Duplication factor Allowed

2. Type S

3. Type Extension Y

4. Program type Allowed

5. Modifiers
Implicit length:
(length modifier
not present)

2 bytes (S-type)
3 bytes (SY-type)

Alignment:
(Length modifier
not present)

Halfword

Range for length: 2 (S) or 3(SY) only (no
bit length)

Range for scale: Not allowed

Range for exponent: Not allowed

6. Nominal value Base Disp

Represented by: Absolute or
relocatable
expression �1�

DC S(RELOC)
DC S(1024)

X
0

YYY
400

Two absolute
expressions �2�

DC S(512(12))
DC SY(-2(3))

C
3

200
FFEFF

Enclosed by: Parentheses

Exponent allowed: No

Number of values
per operand:

Multiple

Padding: Not applicable

Truncation of
assembled value:

Not applicable

Address constant—V: The V-type constant reserves storage for the address of a location in a control
section that is defined in another source module. Use the V-type address constant only to branch to an
external address, because link-time processing might cause the branch to be indirect (for example, an
assisted linkage in an overlay module). That is, the resolved address in a V-type address constant might
not contain the address of the referenced symbol. In contrast, to refer to external data, use an A-type
address constant whose nominal value specifies an external symbol identified by an EXTRN instruction.

Because you specify a symbol in a V-type address constant, the assembler assumes that it is an external
symbol. A value of zero is assembled into the space reserved for the V-type constant; the correct relocated
value of the address is inserted into this space by the linkage editor before your object program is loaded.

Chapter 5. Assembler instruction statements 137

The symbol specified (see �1� in Table 31) in the nominal value subfield does not constitute a definition
of the symbol for the source module in which the V-type address constant appears.

The symbol specified in a V-type constant must not represent external data in an overlay program.

Table 31. V address constants

Subfield Value Example Result

1. Duplication factor Allowed

2. Type V

3. Type Extension D

4. Program type Allowed

5. Modifiers
Implicit length:
(length modifier
not present)

V-type: 4 bytes
VD-type: 8 bytes

VL4(ExtSym)

Alignment:
(Length modifier
not present)

V-type: Fullword
VD-type: Doubleword

Range for length:
V-type: 4 or 3 only
VD-type: 3, 4, or 8
(no bit length)

Range for scale: Not allowed

Range for exponent: Not allowed

6. Nominal value
Represented by: A single external

symbol
DC V(MODA) �1�
DC V(EXTADR) �1�

Enclosed by: Parentheses

Exponent allowed: No

Number of values
per operand:

Multiple

Padding: None

Truncation of
assembled value:

Not applicable

In the following example, 12 bytes are reserved, because there are three symbols. The value of each
assembled constant is zero until the program is link-edited.
VCONST DC V(SORT,MERGE,CALC)

z/OS only: To specify a list of conditional external symbols to be resolved by the Binder, the following
syntax is used:
VCONST DC V(FUNCA:FUNCB:FUNCC)

138 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

|
|

|

The Binder will attempt to resolve the external reference to FUNCA. If FUNCA is not available, the
Binder attempts to resolve the reference to FUNCB. If FUNCB is not available, FUNCC. Finally, if FUNCC
is not available, the external references are flagged as unresolved.

Offset and length constants
This section describes the offset constant (“Offset constant—Q”) and length constant (“Length
constant—J” on page 140).

Offset constant—Q: Use this constant to reserve storage for the offset into a storage area of an external
dummy section, or the offset to a part or label in a class. The offset is entered into this space by the
binder. The binder inserts the offset into a QY-type constant in 20 bit signed long-displacement format.
When the offset is added to the address of an overall block of storage set aside for external dummy
sections, it addresses the applicable section.

For a description of the use of the Q-type offset constant in combination with an external dummy section,
see “External dummy sections” on page 49. See also Table 32 for details.

In the following example, to access the external dummy section named VALUE, the value of the constant
labeled A is added to the base address of the block of storage allocated for external dummy sections.
A DC Q(VALUE)

The DXD, DSECT, or part names referenced in the Q-type offset constant need not be previously defined.

Table 32. Q offset constants

Subfield Value Example Result

1. Duplication factor Allowed

2. Type Q

3. Type Extension D, Y

4. Program type Allowed

5. Modifiers
Implicit length:
(length modifier
not present)

Q-type: 4 bytes
QD-type: 8 bytes
QY-type: 3 bytes

Q(DXDEXT)

Alignment:
(Length modifier
not present)

Q-type: Fullword
QD-type: Quadword
QY-type: Halfword

Range for length:
Q-type: 1-4 bytes
QD-type: 1-8 bytes
QY-type: 3 bytes only
(no bit length)

QL2(DXDEXT)

Range for scale: Not allowed

Range for exponent: Not allowed

6. Nominal value
Represented by: A DXD, DSECT, or part

name (an
external symbol)

DC Q(DUMMYEXT)
DC Q(DXDEXT)

Enclosed by: Parentheses

Exponent allowed: No

Chapter 5. Assembler instruction statements 139

|
|
|

Table 32. Q offset constants (continued)

Subfield Value Example Result

Number of values
per operand:

Multiple

Padding: None

Truncation of
assembled value:

Not applicable

Length constant—J: Use this constant to reserve storage for the length of a DXD, class, or DSECT. The
assembler fills the field with binary zeros, and the length is entered into this space by the linker. This
constant is only available if the GOFF option is specified.

In the following example, the value at A is the length of CLASS.
A DC J(CLASS)

The DXD or DSECT names referenced in the J-type length constant need not be previously defined.

Table 33. J length constants

Subfield Value Example Result

1. Duplication factor Allowed

2. Type J

3. Type Extension D

4. Program type Allowed

5. Modifiers
Implicit length:
(length modifier
not present)

J-type: 4 bytes
JD-type: 8 bytes

Alignment:
(Length modifier
not present)

J-type: Fullword
JD-type: Doubleword

Range for length: J-type: 2 to 4 bytes,
or 8

JD-type: 2 to 4 bytes,
or 8

(no bit length)

Range for scale: Not allowed

Range for exponent: Not allowed

6. Nominal value
Represented by: A single DXD, class,

or DSECT name
DC J(CLASS)

Enclosed by: Parentheses

Exponent allowed: No

Number of values
per operand:

Multiple

Padding: None.

Truncation of
assembled value:

At left

140 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Hexadecimal floating-point constants—E, EH, D, DH, L, LH, LQ
Floating-point constants let you introduce data that is in the form suitable for the operations of the
floating-point feature instructions. These constants have the following advantages over fixed-point
constants:
v You do not have to consider the fractional portion of a value you specify, nor worry about the position

of the decimal point when algebraic operations are to be done.
v You can specify both much larger and much smaller values.
v You retain greater processing precision; that is, your values are carried in more significant figures.

The nominal value can be a signed (see �1� in Table 34) integer, fraction, or mixed number (see �2�
Table 34) followed by a signed exponent (see �3� in Table 34). If a sign is not specified for either the
number or exponent, a plus sign is assumed.

If you specify the 'H' type extension you can also specify a rounding mode that is used when the
nominal value is converted from decimal to its hexadecimal form. The syntax for nominal values
(including the binary floating-point constants) is shown in Figure 24 on page 148. The valid rounding
mode values are:
See �4� in Table 34.

The exponent must lie within the permissible range. If an exponent modifier is also specified, the
algebraic sum of the exponent and the exponent modifier must lie within the permissible range.

Table 34. Hexadecimal floating-point constants

Subfield Value Example

1. Duplication factor Allowed

2. Type E, D, and L

3. Type Extension Omitted or H or Q

4. Program type Allowed

5. Modifiers
Implicit length:
(length modifier
not present)

E-type: 4 bytes
D-type: 8 bytes
L-type: 16 bytes

Alignment:
(Length modifier
not present)

E-type: Fullword
D-type: Doubleword
L-type: Doubleword
LQ-type: Quadword

1 Round by adding one in the first lost bit position
4 Unbiased round to nearest, with tie-breaking rule
5 Round towards zero (that is, truncate)
6 Round up towards the maximum positive value
7 Round down towards the minimum negative value

Figure 22. Rounding mode values

Chapter 5. Assembler instruction statements 141

Table 34. Hexadecimal floating-point constants (continued)

Subfield Value Example

Range for length: E-type:
1 to 8 (byte length)
.1 to .64 (bit length)
EH-type:
.12 to .64 (bit length)

D-type:
1 to 8 (byte length)
.1 to .64 (bit length)
DH-type:
.12 to .64 (bit length)

L-type:
1 to 16 (byte length)
.1 to .128 (bit length)
LH-type:
.12 to .128 (bit length)
LQ-type:
.12 to .128 (bit length)

Range for scale: E-type: 0 to 5
D-type: 0 to 13
L-type: 0 to 27

Range for exponent: -85 to +75

6. Nominal value
Represented by: Decimal digits E-type:

DC E’+525’ �1�
DC E’5.25’ �2�

D-type:
DC D’-525’ �1�
DC D’+.001’ �2�

L-type:
DC L’525’
DC L’3.414’ �2�

Enclosed by: Apostrophes

Exponent allowed: Yes E-type:
DC E’1E+60’ �3�

D-type:
DC D’-2.5E10’ �3�

L-type:
DC L’3.712E-3’ �3�

Rounding mode
allowed if
type extension
specified:

Yes (see Figure 22 on page 141
for values)

E-type:
DC EH’1E+60R1’ �4�

D-type:
DC DH’-2.5E10R4’ �4�

L-type:
DC LH’3.712E-3R5’ �4�

Number of values
per operand:

Multiple

142 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Table 34. Hexadecimal floating-point constants (continued)

Subfield Value Example

Padding: Correct fraction is extended
to the right and rounded

Truncation of
assembled value:

Only if rounding mode 5;
rounded otherwise.

The format of the constant is shown in Figure 23 on page 144.

The value of the constant is represented by two parts:
v An exponent portion (see �1� in Figure 23 on page 144), followed by
v A fractional portion (see �2� in Figure 23 on page 144)

A sign bit (see �3� in Figure 23 on page 144) indicates whether a positive or negative number has been
specified. The number specified must first be converted into a hexadecimal fraction before it can be
assembled into the correct internal format. The quantity expressed is the product of the fraction (see �4�
in Figure 23 on page 144) and the number 16 raised to a power (see �5� in Figure 23 on page 144).
Figure 23 on page 144 shows the external format of the three types of floating-point constants.

Here is the range of values that can be assembled into hexadecimal floating-point constants:

Type of
Constant

Range of Magnitude (M) of Values
(Positive and Negative)

E 16-65 ≤ M ≤ (1-16-6) x 1663

D 16-65 ≤ M ≤ (1-16-14) x 1663

L 16-65 ≤ M ≤ (1-16-28) x 1663

E, D, L 5.4 x 10-79 ≤ M ≤ 7.2 x 1075 (approximate)

If the value specified for a particular constant does not lie within these ranges, the assembled value then
depends on these factors:
v With type extension H, overflows assemble to the largest magnitude for the specified type, underflows

denormalize the value or return zero, depending on the value and rounding mode.
v Without type extension H, certain combinations of exponents (modifier and nominal value) might

produce invalid results (message ASMA071E). If the exponent is too large it is ignored, and the
nominal value of the constant preceding the exponent is assembled instead.

Chapter 5. Assembler instruction statements 143

Representation of hexadecimal floating point: The assembler assembles a floating-point constant into
its binary representation as follows: The specified number, multiplied by any exponents, is converted to
the required two-part format. The value is translated into:
v A fractional portion represented by hexadecimal digits and the sign indicator. The fraction is then

entered into the leftmost part of the fraction field of the constant (after rounding).
v An exponent portion represented by the excess-64 binary notation, which is then entered into the

characteristic field of the constant.

Type │ Called │ Format
─────┼────────────┼──
E │ Short │ �1� 7 bit Characteristic �2� 24 bit Fraction
EH │ Floating- │ �3� + ┌──────────┴──────────┐ ┌────────────┴────────────┐

│ Point │ │ ┌───┬─────────────────────┐ ┌───────────/ /───────────┐
│ Number │ └→ └───┴─────────────────────┘ └───────────/ /───────────┘
│ │ -
│ │ Bits 0 1 7 8 31
│ │
│ │
│ │

D │ Long │ 7 bit Characteristic 56 bit Fraction
DH │ Floating- │ + ┌──────────┴──────────┐ ┌────────────┴────────────┐

│ Point │ ┌───┬─────────────────────┐ ┌───────────/ /───────────┐
│ Number │ └───┴─────────────────────┘ └───────────/ /───────────┘
│ │ -
│ │ Bits 0 1 7 8 63
│ │
│ │
│ │
│ │ High-order 56 bits

L │ Extended │ 7 bit Characteristic of 112 bit Fraction
LH │ Floating- │ + ┌──────────┴──────────┐ ┌────────────┴────────────┐
LQ │ Point │ ┌───┬─────────────────────┐ ┌───────────/ /───────────┐

│ Number │ └───┴─────────────────────┘ └───────────/ /───────────┘───┐
│ │ - │
│ │ Bits 0 1 7 8 63 │
│ │ │
│ │ ┌─────────────────────────────┘
│ │ │
│ │ │ Low-order 56 bits
│ │ 7 bit Characteristic ↓ of 112 bit Fraction
│ │ + ┌──────────┴──────────┐ ┌────────────┴────────────┐
│ │ ┌───┬─────────────────────┐ ┌───────────/ /───────────┐
│ │ └───┴─────────────────────┘ └───────────/ /───────────┘
│ │ - ↑
│ │ Bits 0 1 │ 7 8 63
│ │ │
│ │ Set in second half
│ │ of L-type constant

Characteristic │ Hexadecimal Fraction
──────────────────┼──────────────────────────────────

│ �4�
│ a b c

�5� 16E X [─── + ─── + ─── + ...]
│ 16 16² 16³
│

where a,b,c ... are hexadecimal digits, and E is an exponent that has a positive or negative value indicated by the
characteristic

Figure 23. Hexadecimal floating-point external formats

144 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

The excess-64 binary notation is obtained by adding +64 to the value of the exponent (-64 - +63) to yield
the characteristic (0 - 127).

Notes:

1. The L-type floating-point constant resembles two contiguous D-type constants. The sign of the second
doubleword is assumed to be the same as the sign of the first.
The characteristic for the second doubleword is equal to the characteristic for the first minus 14 (the
number of hexadecimal digits in the fractional portion of the first doubleword). No indication is given
if the characteristic of the second doubleword is zero.
The L-type and LH-type floating-point constants are doubleword aligned. The LQ-type is quadword
aligned. A DC 0LQ forces the alignment to a quadword boundary.

2. If scaling has been specified, hexadecimal zeros are added to the left of the normalized fraction
(causing it to become unnormalized), and the exponent in the characteristic field is adjusted
accordingly. (For further details on scaling, see “Subfield 5: Modifier” on page 118.)

3. The fraction is rounded according to the implied or explicit length of the constant. The resulting
number does not differ from the exact value specified by more than one in the last place.

Note: You can control rounding by using the 'H' type extension and specifying the rounding mode.
4. Negative fractions are carried in true representation, not in the two's-complement form.
5. Duplication is applied after the constant has been assembled.
6. An implied length of 4 bytes is assumed for a short (E) constant and eight bytes for a long (D)

constant. An implied length of 16 bytes is assumed for an extended (L) constant. The constant is
aligned at the correct word (E) or doubleword (D and L) boundary if a length is not specified.
However, any length up to and including eight bytes (E and D) or 16 bytes (L) can be specified by a
length modifier. In this case, no boundary alignment occurs.

7. Signed zero values are correctly generated for type extensions H and B. Without a type extension,
zero values of either sign are assembled with positive sign.

Any of the following statements can be used to specify 46.415 as a positive, fullword, floating-point
constant; the last is a machine instruction statement with a literal operand. Each of the last two constants
contains an exponent modifier.

DC E’46.415’
DC E’46415E-3’
DC E’+464.15E-1’
DC E’+.46415E+2’
DC EE2’.46415’
AE 6,=EE2’.46415’

The following generates 3 doubleword floating-point constants.
FLOAT DC DE(+4)’+46,-3.729,+473’

Binary floating-point constants—EB, DB, LB
Binary floating-point numbers are represented in three formats: short, long, or extended.
v The short format is 4 bytes with a sign of 1 bit, an exponent of 8 bits and a fraction of 23 bits.
v The long format is 8 bytes with a sign of 1 bit, an exponent of 11 bits and a fraction of 52 bits.
v The extended format is 16 bytes with a sign of 1 bit, an exponent of 15 bits and a fraction of 112 bits.

There are five classes of binary floating-point data, including numeric and related nonnumeric entities.
Each data item consists of a sign, an exponent, and a significand. The exponent is biased such that all
exponents are nonnegative unsigned numbers, and the minimum biased exponent is zero. The significand
consists of an explicit fraction and an implicit unit bit to the left of the binary point. The sign bit is zero
for plus and one for minus values.

Chapter 5. Assembler instruction statements 145

All finite nonzero numbers within the range permitted by a given format are normalized and have a
unique representation. There are no unnormalized numbers, which might allow multiple representations
for the same value, and there are no unnormalized arithmetic operations. Tiny numbers of a magnitude
below the minimum normalized number in a given format are represented as denormalized numbers,
because they imply a leading zero bit, but those values are also represented uniquely.

The classes are:
1. Zeros have a biased exponent of zero, a zero fraction and a sign. The implied unit bit is zero.
2. Denormalized numbers have a biased exponent of zero and a nonzero fraction. The implied unit bit is

zero.
The smallest denormalized numbers have approximate magnitudes 1.4 10**-45 (short format), 4.94
10**-324 (long format) and 6.5 10**-4966 (extended format).

3. Normalized numbers have a biased exponent greater than zero but less than all ones. The implied unit
bit is one and the fraction can have any value. The largest normalized numbers have approximate
magnitudes 3.4 10**38 (short format), 1.8 10**308 (long format), and 1.2 10**4932 (extended format).
The smallest normalized numbers have approximate magnitudes 1.18 10**-38 (short format), 2.23
10**-308 (long format), and 3.4 10**-4392 (extended format).

4. An infinity is represented by a biased exponent of all ones and a zero fraction.
5. A NaN (Not-a-Number) entity is represented by a biased exponent of all ones and a nonzero fraction.

NaNs are produced in place of a numeric result after an invalid operation when there is no
interruption. NaNs can also be used by the program to flag special operands, such as the contents of
an uninitialized storage area. There are two types of NaNs, signaling and quiet. A signaling NaN
(SNaN) is distinguished from the corresponding quiet NaN (QNaN) by the leftmost fraction bit: zero
for the SNaN and one for QNaN. A special QNaN is supplied as the default result for an
invalid-operation condition; it has a plus sign and a leftmost fraction bit of one, with the remaining
fraction bits being set to zeros. Normally, QNaNs are just propagated during computations, so that
they remain visible at the end. An SNaN operand causes an invalid operation exception.

Decimal floating-point constants—ED, DD, LD
Decimal floating-point numbers are represented in three formats: short, long, or extended.
v Short: 1 sign bit, 11 combination field bits, 20 significand continuation field bits
v Long: 1 sign bit, 13 combination field bits, 50 significand continuation field bits
v Extended: 1 sign bit, 17 combination field bits, 110 significand continuation field bits

There are four classes of decimal floating-point data, including numeric and related nonnumeric entities.
Each data item consists of a sign, an exponent, and a significand. The exponent is biased such that all
exponents are nonnegative unsigned numbers, and the minimum biased exponent is zero. The significand
consists of an explicit fraction and an implicit unit bit to the left of the decimal point. The sign bit is zero
for plus and one for minus values.

The classes are:
1. Zeros have a biased exponent of zero, a zero fraction and a sign. The implied unit bit is zero.
2. Numbers have a biased exponent greater than zero but less than all ones. The largest numbers have

approximate values 1097 (short format), 10385 (long format), and 101145 (extended format). The smallest
numbers have approximate values 10-101 (short format), 10-398 (long format), and 10-6176 (extended
format).

3. An infinity is represented if the first 5 bits of the combination field are 11110 (binary).
4. A NaN (Not-a-Number) is represented if the first 5 bits of the combination field are 11111 (binary). If

the following bit is 1, the NaN is a Signaling NaN; otherwise it is a Quiet NaN.

The rounding modes used for decimal floating point are:

R8 Decimal floating point equivalent of binary floating point R4 (round-half-even)

146 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

R9 Decimal floating point equivalent of binary floating point R5 (truncate; round towards zero)

R10 Decimal floating point equivalent of binary floating point R6 (-> +<inf>; ceiling)

R11 Decimal floating point equivalent of binary floating point R7 (-> -<inf>; floor)

R12 Decimal floating point equivalent of binary floating point R1 (round-half-up)

R13 Round-half-down (no binary floating point equivalent)

R14 Round-up (away-from-zero, no binary floating point equivalent)

R15 Decimal floating point: round-for-reround, or 'prepare for shorter precision'.

Syntax of binary, decimal, and hexadecimal floating-point constants
The syntax for coding binary, decimal, and hexadecimal floating-point constants is:

Chapter 5. Assembler instruction statements 147

dup_factor
Causes the constant to be generated the number of times indicated by the factor.

type
Indicates that the constant is short, long, or extended floating point.

�� DC
dup_factor

E
D B
L H

D
LQ

program_type modifier

�

,

nominal_value ��

nominal_value (no type extension):

+
' value '

- exponent

nominal_value (type extension B):

+ R4
' value '

- exponent R 1
5
6
7

nominal_value (type extension H):

+ R1
' value '

- exponent R 4
5
6
7

nominal_value (type extension D):

+ R8
' value '

- exponent R 9
10
11
12
13
14
15

Figure 24. DC instruction syntax for floating point constants

148 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

type extension
The type of conversion required to assemble the constant. Valid values are:

null Hexadecimal floating-point constant which is converted using the conversion logic of
rounding mode 1 and slightly less precise algorithms

B Binary floating-point constant which is converted allowing all rounding modes

D Decimal floating-point constant which is converted allowing all rounding modes

H Hexadecimal floating-point constant which is converted allowing all rounding modes

Q For extended-precision hexadecimal constants of type L, the Q-type extension requests
alignment on a quadword boundary.

program_type
Assign a programmer determined 32 bit value to the symbol naming the DC instruction, if a symbol
was present.

modifier
Describes the length, the scaling, and the exponent of the nominal_value. The minimum length of the
'H' hexadecimal constant is 12 bits. The minimum length in bits of the binary constant is:

9 Short floating-point constant

12 Long floating-point constant

16 Extended floating-point constant

This minimum length allows for the sign, exponent, the implied unit bit which is considered to be
one for normalized numbers and zero for zeros and denormalized numbers.

The exponent modifier can be in the range from -231 to 231-1 if either B or H is specified as a type
extension. The only valid length modifiers for decimal floating point constants are 4 bytes (short
format), 8 bytes (long format), and 16 bytes (extended format).

nominal_value
Defines the value of the constant and can include the integer, fraction, or mixed number followed by
an optional signed exponent and an optional explicit rounding mode.

The assembler imposes no limits on the exponent values that can be specified. The BFP architecture
limits the actual values that can be represented; a warning message is issued whenever a specified
value cannot be represented exactly.

The rounding mode identifies the rounding required when defining a floating-point constant. The
valid values are those displayed in Figure 22 on page 141.

Note: As binary floating-point does not support scaling, the scale modifier is ignored and a warning
message issued if the scaling modifier is specified when defining a binary floating-point constant. The H
type extension causes HLASM to use a different conversion algorithm for hexadecimal floating-point
data. The results are correctly rounded for all values. Without the H type extension, some rare values are
in error by one unit in the last place.

Conversion to binary floating-point

For decimal to binary floating-point conversion, the assembler conforms to ANSI/IEEE Std 754-1985,
IEEE Standard for Binary Floating-Point Arithmetic, dated August 12, 1985, with the following
differences: exception status flags are not provided and traps are not supported.

Conversion of values within the represented range is correctly rounded.

Conversion of values outside the represented range is as follows. If the resultant value before rounding is
larger in magnitude than MAX (the maximum allowed value) as represented in the specified length, then,

Chapter 5. Assembler instruction statements 149

depending on the rounding mode, either MAX or infinity is generated, along with a warning message. If
the resultant nonzero value is less than Dmin (the minimum allowed value) as represented in the
specified length, then, depending on the rounding mode, either Dmin or zero is generated, along with a
warning message.

Floating-point special values
For special values, the syntax of the DC statement is:

�� DC
dup_factor

E B
D H
L D

LQ

program_type
�

� �

,

nominal_value
length_modifier

��

nominal_value (type extension B and D):

'
+

-
(SNAN)
(QNAN)
(NAN)
(INF)
(MAX)
(MIN)
(DMIN)

'

nominal_value (type extension H):

+
' (MAX) '

- (MIN)
(DMIN)

dup_factor
Causes the constant to be generated the number of times indicated by the factor.

type
Indicates that the constant is short, long, or extended floating point.

type extension
The type of conversion required to assemble the constant.

program_type
Assign a programmer determined 32 bit value to the symbol naming the DC instruction, if a symbol
was present.

length_modifier
Describes the length in bytes or bits into which the constant is to be assembled. For binary
floating-point constants (type extension B), the minimum length in bits for INF and NAN is:

150 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

11 Short floating-point constant

14 Long floating-point constant

18 Extended floating-point constant

This minimum length allows for the sign, exponent and two fraction bits.

No length modifiers other than 4, 8, and 16 are allowed for decimal (type extension D) floating-point
constants.

nominal_value
Defines the special value to be generated.

Notes:

1. The nominal value can be in mixed case.
2. SNAN assembles with an exponent of ones and 01 in the high-order fraction bits with the remainder

of the fraction containing zeros.
3. QNAN assembles with an exponent of ones and 11 in the high-order fraction bits with the remainder

of the fraction containing zeros.
4. NAN assembles with an exponent of one and 10 in the high-order fraction bits with the remainder of

the fraction containing zeros.
5. MIN assembles as a normalized minimum value, that is an exponent of one and a fraction of zeros for

binary constants, and a fraction with a leading hexadecimal digit 1 followed by zeros for hexadecimal
constants.

6. DMIN assembles as a denormalized minimum value with an exponent of zeros and a fraction of all
zeros except for a low-order bit of one.

7. INF assembles with an exponent of ones and a fraction of zeros.
8. MAX assembles with a fraction of all ones and an exponent of all ones for hexadecimal constants, and

an exponent of all ones except for the low bit for binary constants.

Literal constants
Literal constants let you define and refer to data directly in machine instruction operands. You do not
need to define a constant separately in another part of your source module. The differences between a
literal, a data constant, and a self-defining term are described in “Literals” on page 35.

A literal constant is specified in the same way as the operand of a DC instruction. The general rules for
the operand subfields of a DC instruction also apply to the subfield of a literal constant. Moreover, the
rules that apply to the individual types of constants apply to literal constants as well.

However, literal constants differ from DC operands in the following ways:
v Literals must be preceded by an equal sign.
v Multiple operands are not allowed.
v The duplication factor must not be zero.
v Symbols used in the duplication factor or length modifier must be previously defined. Scale and

Exponent modifiers do not need pre-definition.
v If an address-type literal constant specifies a duplication factor greater than one and a nominal value

containing the location counter reference, the value of the location counter reference is not incremented,
but remains the same for each duplication.

v The assembler groups literals together by size. If you use a literal constant, the alignment of the
constant can be different from that for an explicit constant. See “Literal pool” on page 38.

Chapter 5. Assembler instruction statements 151

DROP instruction
The DROP instruction ends the domain of a USING instruction. This:
v Frees base registers previously assigned by the USING instruction for other programming purposes
v Ensures that the assembler uses the base register you want in a particular coding situation, for

example, when two USING ranges overlap or coincide
v If a control section has not been established, DROP initiates an unnamed (private) control section

��
sequence_symbol

DROP

�

,

base_register
label

��

sequence_symbol
Is a sequence symbol.

base_register
Is an absolute expression whose value represents one of the general registers 0 through 15. The
expression in base_register indicates a general register, previously specified in the operand of an
ordinary USING statement, that is no longer to be used for base addressing.

label
Is one of the following:
v An ordinary symbol
v A variable symbol that has been assigned a character string with a value that is valid for an

ordinary symbol

The ordinary symbol denoted by label must be a symbol previously used in the name field of a
labeled USING statement or a labeled dependent USING statement.

If base_register or label are not specified in the operand of a DROP instruction, all active base registers
assigned by ordinary, labeled, and labeled dependent USING instructions are dropped.

After a DROP instruction:
v The assembler does not use the register or registers specified in the DROP instruction as base registers.

A register made unavailable as a base register by a DROP instruction can be reassigned as a base
register by a subsequent USING instruction.

v The label or labels specified in the DROP instruction are no longer available as symbol qualifiers. A
label made unavailable as a symbol qualifier by a DROP instruction can be reassigned as a symbol
qualifier by a subsequent labeled USING instruction.

The following statements, for example, stop the assembler using registers 7 and 11 as base registers, and
the label FIRST as a symbol qualifier:

DROP 7,11
DROP FIRST

Labeled USING
You cannot end the domain of a labeled USING instruction by coding a DROP instruction that specifies
the same registers as were specified in the labeled USING instruction. If you want to end the domain of a
labeled USING instruction, you must code a DROP instruction with an operand that specifies the label of
the labeled USING instruction.

152 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Dependent USING
To end the domain of a dependent USING instruction, you must end the domain of the corresponding
ordinary USING instruction. In the following example, the DROP instruction prevents the assembler from
using register 12 as a base register. The DROP instruction causes the assembler to end the domain of the
ordinary USING instruction and the domains of the two dependent USING instructions. The storage
areas represented by INREC and OUTREC are both within the range of the ordinary USING instruction
(register 12).

USING *,12
USING RECMAP,INREC
USING RECMAP,OUTREC
.
.
DROP 12
.
.

INREC DS CL156
OUTREC DS CL156

To end the domain of a labeled dependent USING instruction, you can code a DROP instruction with the
USING label in the operand. The following example shows this:

USING *,12
PRIOR USING RECMAP,INREC
POST USING RECMAP,OUTREC

.

.
DROP PRIOR,POST
.
.

INREC DS CL156
OUTREC DS CL156

In the above example, the DROP instruction makes the labels PRIOR and POST unavailable as symbol
qualifiers.

When a labeled dependent USING domain is dropped, none of any subordinate USING domains are
dropped. In the following example the labeled dependent USING BLBL1 is not dropped, even though it is
dependent on the USING ALBL2 that is dropped:

USING DSECTA,14
ALBL1 USING DSECTA,14

USING DSECTB,ALBL1.A
.
.

ALBL2 USING DSECTA,ALBL1.A
.

BLBL1 USING DSECTA,ALBL2.A+4
.
DROP ALBL2
.

DSECTA DSECT
A DS A
DSECTB DSECT
B DS A

A DROP instruction is not needed:
v If the base address is being changed by a new ordinary USING instruction, and the same base register

is assigned. However, the new base address must be loaded into the base register by an appropriate
sequence of instructions.

v If the base address is being changed by a new labeled USING instruction or a new labeled dependent
USING instruction, and the same USING label is assigned. The correct base address must be loaded
into the base register specified in the USING instruction by an appropriate sequence of instructions.

Chapter 5. Assembler instruction statements 153

v At the end of a source module

DS instruction
The DS instruction:
v Reserves areas of storage
v Provides labels for these areas
v Uses these areas by referring to the symbols defined as labels
v If a control section has not previously been established, DS initiates an unnamed (private) control

section

��
symbol

DS �

,

operand ��

symbol
Is one of the following:
v An ordinary symbol
v A variable symbol that has been assigned a character string with a value that is valid for an

ordinary symbol
v A sequence symbol

If symbol denotes an ordinary symbol, the ordinary symbol represents the address of the first byte of
the storage area reserved. If several operands are specified, the first storage area defined is
addressable by the ordinary symbol. The other storage areas can be reached by relative addressing.

operand
Is an operand of six subfields. The first five subfields describe the attributes of the symbol. The sixth
subfield provides the nominal values that determine the implicit lengths; however no constants are
generated.

A DS operand has this format:

��
duplication_factor

type
type_extension program_type modifier

�

� nominal_value ��

The format of the DS operand is identical to that of the DC operand; exactly the same subfields are used
and are written in exactly the same sequence as they are in the DC operand. For more information about
the subfields of the DC instruction, see “DC instruction” on page 109.

Unlike the DC instruction, the DS instruction causes no data to be assembled. Therefore, you do not have
to specify the nominal value (sixth subfield) of a DS instruction operand. The DS instruction is the best
way of symbolically defining storage for work areas, input and output buffers, and so on.

Although the formats are identical, there are two differences in the specification of subfields. They are:

154 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

v The nominal value subfield is optional in a DS operand, but it is mandatory in a DC operand. If a
nominal value is specified in a DS operand, it must be valid.

v The maximum length that can be specified for the character (C) and hexadecimal (X) type areas is
65,535 bytes rather than 256 bytes for the same DC operands. The maximum length for the graphic (G)
type is 65,534 bytes.

If symbol denotes an ordinary symbol, the ordinary symbol, as with the DC instruction:
v Has an address value of the first byte of the area reserved, after any boundary alignment is done
v Has a length attribute value, depending on the implicit or explicit length of the type of area reserved

If the DS instruction is specified with more than one operand or more than one nominal value in the
operand, the label addresses the area reserved for the field that corresponds to the first nominal value of
the first operand. The length attribute value is equal to the length explicitly specified or implicit in the
first operand.

Bytes skipped for alignment
Unlike the DC instruction, bytes skipped for alignment are not set to zero. Also, nothing is assembled
into the storage area reserved by a DS instruction. No assumption should be made as to the contents of
the skipped bytes or the reserved area.

The size of a storage area that can be reserved by a DS instruction is limited only by the size of virtual
storage or by the maximum value of the location counter, whichever is smaller.

How to use the DS instruction
Use the DS instruction to:
v Reserve storage
v Force alignment of the location counter so that the data that follows is on a particular storage

boundary
v Name fields in a storage area.

To reserve storage
If you want to take advantage of automatic boundary alignment (if the ALIGN option is specified) and
implicit length calculation, do not supply a length modifier in your operand specifications. Instead,
specify a type subfield that corresponds to the type of area you need for your instructions.

Using a length modifier can give you the advantage of explicitly specifying the length attribute value
assigned to the label naming the area reserved. However, your areas are not aligned automatically
according to their type. If you omit the nominal value in the operand, use a length modifier for the
binary (B), character (C), graphic (G), hexadecimal (X), and decimal (P and Z) type areas. If you do not,
their labels are given a length attribute value of 1 (2 for G and CU type).

When you need to reserve large areas, you can use a duplication factor. However, in this case, you can
only refer to the first area by its label. You can also use the character (C) and hexadecimal (X) field types
to specify large areas using the length modifier. Duplication has no effect on implicit length.

Although the nominal value is optional for a DS instruction, you can put it to good use by letting the
assembler compute the length for areas of the B, C, G, X, and decimal (P or Z) type areas. You achieve
this by specifying the general format of the nominal value that is placed in the area at execution time.

If a nominal value and no length modifier are specified for a Unicode character string, the length of the
storage reserved is derived by multiplying by two the number of characters specified in the nominal
value (after pairing).

Chapter 5. Assembler instruction statements 155

To force alignment
Use the DS instruction to align the instruction or data that follows, on a specific boundary. You can align
the location counter to a doubleword, a fullword, or a halfword boundary by using the correct constant
type (for example, D, F, or H) and a duplication factor of zero. No space is reserved for such an
instruction, yet the data that follows is aligned on the correct boundary. For example, the following
statements set the location counter to the next doubleword boundary and reserve storage space for a 128
byte field (whose first byte is on a doubleword boundary).

DS 0D
AREA DS CL128

Alignment is forced whether or not the ALIGN assembler option is set.

To name fields within an area
Using a duplication factor of zero in a DS instruction also provides a label for an area of storage without
reserving the area. Use DS or DC instructions to reserve storage for, and assign labels to, fields within the
area. These fields can then be addressed symbolically. (Another way of accomplishing this is described in
“DSECT instruction” on page 157.) The whole area is addressable by its label. In addition, the symbolic
label has the length attribute value of the whole area. Within the area, each field is addressable by its
label.

For example, assume that 80-character records are to be read into an area for processing and that each
record has the following format:
Positions 5-10

Payroll Number
Positions 11-30

Employee Name
Positions 31-36

Date
Positions 47-54

Gross Wages
Positions 55-62

Withholding Tax

The following example shows how DS instructions might be used to assign a name to the record area,
then define the fields of the area and allocate storage for them. The first statement names the whole area
by defining the symbol RDAREA; this statement gives RDAREA a length attribute of 80 bytes, but does not
reserve any storage. Similarly, the fifth statement names a 6 byte area by defining the symbol DATE; the
three subsequent statements define the fields of DATE and allocate storage for them. The second, ninth,
and last statements are used for spacing purposes and, therefore, are not named.
RDAREA DS 0CL80

DS CL4
PAYNO DS CL6
NAME DS CL20
DATE DS 0CL6
DAY DS CL2
MONTH DS CL2
YEAR DS CL2

DS CL10
GROSS DS CL8
FEDTAX DS CL8

DS CL18

Here are some more examples of DS statements:
ONE DS CL80 One 80 byte field, length attribute of 80
TWO DS 80C Eighty 1 byte fields, length attribute of 1
THREE DS 6F 6 fullwords, length attribute of 4
FOUR DS D 1 doubleword, length attribute of 8

156 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

FIVE DS 4H 4 halfwords, length attribute of 2
SIX DS GL80 One 80 byte field, length attribute of 80
SEVEN DS 80G Eighty 2 byte fields, length attribute of 2

To define four 10 byte fields and one 100 byte field, the respective DS statements might be as follows:
FIELD DS 4CL10
AREA DS CL100

Although FIELD might have been specified as one 40 byte field, the preceding definition has the
advantage of providing FIELD with a length attribute of 10. This is pertinent when using FIELD as an SS
machine instruction operand.

DSECT instruction
The DSECT instruction identifies the beginning or continuation of a dummy control section. One or more
dummy sections can be defined in a source module.

��
symbol

DSECT ��

symbol
Is one of the following:
v An ordinary symbol
v A variable symbol that has been assigned a character string with a value that is valid for an

ordinary symbol
v A sequence symbol

The DSECT instruction can be used anywhere in a source module after the ICTL instruction.

If symbol denotes an ordinary symbol, the ordinary symbol identifies the dummy section. If several
DSECT instructions within a source module have the same symbol in the name field, the first occurrence
initiates the dummy section and the rest indicate the continuation of the dummy section. The ordinary
symbol denoted by symbol represents the address of the first byte in the dummy section, and has a length
attribute value of 1.

If symbol is not specified, or if name is a sequence symbol, the DSECT instruction initiates or indicates the
continuation of the unnamed control section.

The location counter for a dummy section is always set to an initial value of 0. However, when an
interrupted dummy control section is continued using the DSECT instruction, the location counter last
specified in that control section is continued.

The source statements that follow a DSECT instruction belong to the dummy section identified by that
DSECT instruction.

Notes:

1. The assembler language statements that appear in a dummy section are not assembled into object
code.

2. When establishing the addressability of a dummy section, the symbol in the name field of the DSECT
instruction, or any symbol defined in the dummy section can be specified in a USING instruction.

Chapter 5. Assembler instruction statements 157

3. A symbol defined in a dummy section can be specified in an address constant only if the symbol is
paired with another symbol from the same dummy section, and if the symbols have opposite signs.

To effect references to the storage area defined by a dummy section, do the following:
v Provide one of:

– An ordinary or labeled USING statement that specifies:
- A general register that the assembler can use as a base register for the dummy section.
- A value from the dummy section that the assembler can assume is contained by the register.

– A dependent or labeled dependent USING statement that specifies:
- A supporting base address (for which there is a corresponding ordinary USING statement) that

lets the assembler determine a base register and displacement for the dummy section.
- A value from the dummy section that the assembler can assume is the same as the supporting

base address.
v Ensure that the base register is loaded with one of:

– The actual address of the storage area if an ordinary USING statement or a labeled USING
statement was specified.

– The base address specified in the corresponding ordinary USING statement if a dependent or
labeled dependent USING statement was specified.

The values assigned to symbols defined in a dummy section are relative to the initial statement of the
section. Thus, all machine instructions that refer to names defined in the dummy section refer, at
execution time, to storage locations relative to the address loaded into the register.

Figure 25 on page 159 shows an example of how to code the DSECT instruction. The sample code is
referred to as “Assembly-2”.

Assume that two independent assemblies (Assembly-1 and Assembly-2) have been loaded and are to be
run as a single overall program. Assembly-1 is a routine that
1. Places a record in an area of storage
2. Places the address of the storage area in general register 3
3. Branches to Assembly-2 to process the record

The storage area from Assembly-1 is identified in Assembly-2 by the dummy control section (DSECT)
named INAREA. Parts of the storage area that you want to work with are named INCODE, OUTPUTA, and
OUTPUTB. The statement USING INAREA,3 assigns general register 3 as the base register for the INAREA
DSECT. General register 3 contains the address of the storage area. The symbols in the DSECT are
defined relative to the beginning of the DSECT. This means that the address values they represent are, at
the time of program execution, the actual storage locations of the storage area that general register 3
addresses.

158 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

DXD instruction
The DXD instruction identifies and defines an external dummy section.

�� symbol DXD
duplication_factor

type
type_extension modifier

�

�

�

,

nominal_value

��

symbol
Is an external symbol which is one of the following:
v An ordinary symbol
v A variable symbol that has been assigned a character string with a value that is valid for an

ordinary symbol

duplication_factor
Is the duplication factor subfield equivalent to the duplication factor subfield of the DS instruction.

type
Is the type subfield equivalent to the type subfield of the DS instruction.

type_extension
Is the type extension subfield equivalent to the type extension subfield of the DS instruction.

modifiers
Is the modifiers subfield equivalent to the modifiers subfield of the DS instruction.

nominal_value
Is the nominal-value subfield equivalent to the nominal-value subfield of the DS instruction. The
nominal value is optional. If specified, it is not generated.

ASEMBLY2 CSECT
USING *,15
USING INAREA,3
CLI INCODE,C’A’
BE ATYPE
MVC OUTPUTA,DATA_B
MVC OUTPUTB,DATA_A
B FINISH

ATYPE DS 0H
MVC OUTPUTA,DATA_A
MVC OUTPUTB,DATA_B

FINISH BR 14
DATA_A DC CL8’ADATA’
DATA_B DC CL8’BDATA’
INAREA DSECT
INCODE DS CL1
OUTPUTA DS CL8
OUTPUTB DS CL8

END

Figure 25. Sample code using the DSECT instruction (Assembly-2)

Chapter 5. Assembler instruction statements 159

The DXD instruction can be used anywhere in a source module, after the ICTL instruction.

In order to reference the storage defined by the external dummy section, the ordinary symbol denoted by
symbol must appear in the operand of a Q-type constant. This symbol represents the address of the first
byte of the external dummy section defined, and has a length attribute value of 1.

The subfields in the operand field (duplication factor, type, type extension, modifier, and nominal value)
are specified in the same way as in a DS instruction. The assembler computes the amount of storage and
the alignment required for an external dummy section from the area specified in the operand field. For
more information about how to specify the subfields, see “DS instruction” on page 154.

For example:
A DXD CL20 20 bytes, byte alignment
B DXD 3F,XL4 20 bytes, fullword alignment
C DXD LQ 16 bytes, quadword alignment

The linker uses the information provided by the assembler to compute the total length of storage
required for all external dummy sections specified in a program.

Notes:

1. The DSECT instruction also defines an external dummy section, but only if the symbol in the name
field appears in a Q-type offset constant in the same source module. Otherwise, a DSECT instruction
defines a dummy section.

2. If two or more external dummy sections for different source modules have the same name, the linker
uses the most restrictive alignment, and the largest section to compute the total length.

EJECT instruction
The EJECT instruction stops the printing of the assembler listing on the current page, and continues the
printing on the next page.

��
sequence_symbol

EJECT ��

sequence_symbol
Is a sequence symbol.

The EJECT instruction causes the next line of the assembler listing to be printed at the top of a new page.
If the line before the EJECT statement appears at the bottom of a page, the EJECT statement has no effect.

An EJECT instruction immediately following another EJECT instruction is ignored. A TITLE instruction
immediately following an EJECT instruction causes the title to change but no additional page eject is
performed. (The TITLE instruction normally forces a page eject.)

The EJECT instruction statement itself is not printed in the listing.

END instruction
Use the END instruction to end the assembly of a program. You can also supply an address in the
operand field to which control can be transferred after the program is loaded. The END instruction must
always be the last statement in the source program.

160 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

��
sequence_symbol

END
expression ,language

��

sequence_symbol
Is a sequence symbol.

expression
Specifies the point to which control can be transferred when loading of the object program completes.
If the GOFF option is in effect this parameter is ignored. This point is normally the address of the
first executable instruction in the program, as shown in the following sequence:
NAME CSECT
AREA DS 50F
BEGIN BALR 2,0

USING *,2
.
.
.
END BEGIN

If specified, expression can be generated by substitution into variable symbols. It must not be a literal.
It must also satisfy one of these conditions:
v It is a simply relocatable expression representing an address in the source module delimited by the

END instruction.
v If it contains an external symbol, the external symbol must be the only term in the expression, or

the remaining terms in the expression must reduce to zero.

language
A marker for use by language translators that produce assembly code. The operand has three
suboperands. The values in the operand are copied into the END record in the object deck if the
NOGOFF option is specified, or in a B_IDRL record if the GOFF option is specified.

The syntax of the operand is
(char10,char4,char5)

where all three suboperands and the commas and parentheses are required.

char10 is a one to ten character code. It is intended to be a language translator identifier. char4 must
be exactly four characters long. It is intended to be a version and release code. char5 must be exactly
five characters long, and should be a date in the format “YYDDD”. It is intended to be the compile
date. For example:

END ENTRYPT,(MYCOMPILER,0101,00273)

Notes:

1. If the END instruction is omitted, one is generated by the assembler, and message ASMA140W END
record missing is issued.

2. Refer to the text in “Generating END statements” on page 300 about lookahead processing, and the
effect it has on generated END statements.

3. If the END statement is not the last statement in the input stream, and the BATCH option has been
specified, the assembler initiates assembly of a new source module when the current assembly is
completed. (For more information about the BATCH option, see the section “BATCH” in the HLASM
Programmer's Guide)

Chapter 5. Assembler instruction statements 161

ENTRY instruction
The ENTRY instruction identifies symbols defined in this source module as “external” so that they can be
referred to by another source module. These symbols are entry symbols.

��
sequence_symbol

ENTRY �

,

entry_point ��

sequence_symbol
Is a sequence symbol.

entry_point
Is a relocatable symbol that:
v Is a valid symbol
v Is defined in an executable control section
v Is not defined in a dummy control section, a common control section, or an external control section

Up to 65535 individual control sections, external symbols, and external dummy sections can be defined in
a source module. However, the practical maximum number depends on the amount of table storage
available to the program that links the object module.

The assembler lists each entry symbol of a source module in an external symbol dictionary, along with
entries for external symbols, common control sections, parts, and external control sections.

A symbol used as the name entry of a START or CSECT instruction is also automatically considered an
entry symbol, and does not have to be identified by an ENTRY instruction.

A symbol identified by an ENTRY instruction should not also be declared by an EXTRN instruction, but
it can be referenced in the nominal value of a V-type address constant in the same source module.

The length attribute value of entry symbols is the same as the length attribute value of the symbol at its
point of definition.

EQU instruction
The EQU instruction assigns absolute or relocatable values to symbols. Use it to:
v Assign single absolute values to symbols.
v Assign the values of previously defined symbols or expressions to new symbols, thus letting you use

different mnemonics for different purposes.
v Compute expressions whose values are unknown at coding time or difficult to calculate. The value of

the expressions is then assigned to a symbol.
v Assign length and type attributes to symbols, either implicitly or explicitly.
v Assign program type and assembler type values to symbols.

EQU also assigns attributes. It takes the value, relocation, and length attributes of the operand and
assigns them to the name field symbol, and sets the integer and scale attributes to zero. The type
attributes of an absolute expression is always 'U', and its length attribute is always 1 (unless the second
and third operands are specified.

162 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

When there is a symbol naming a complex relocatable expression, or a complex relocatable expression is
eventually “reduced” to an absolute or simply relocatable expression, the first symbol is used for attribute
assignment.

The program type is always null, and the assembler type is always null, except when the appropriate
operand is specified.

�� symbol EQU expression_1
(1)

,
expression_2

,
expression_3

,
expression_4

�

� ,
expression_5

��

Notes:

1 Use commas as placeholders when there is an expression following

symbol
Is one of the following:
v An ordinary symbol
v A variable symbol that has been assigned a character string with a value that is valid for an

ordinary symbol

expression_1
Represents a value and attributes that the assembler assigns to the symbol in the name field.
expression_1 can have any value allowed for an assembly expression: absolute (including negative),
relocatable, or complexly relocatable. The assembler carries this value as a signed 4 byte (32 bit)
number; all 4 bytes are printed in the program listings opposite the symbol. Implicitly, the relocation
and length attributes are also assigned for certain types of expressions.

Any symbols used in expression_1 need not be previously defined. However, if any symbol is not
previously defined, the value of expression_1 is not assigned to the symbol in the name field until
assembly time and therefore cannot be used during conditional assembly (see “Using conditional
assembly values” on page 165).

If expression_1 is a complexly relocatable expression, the whole expression, rather than its value, is
assigned to the symbol. During the evaluation of any expression that includes a complexly relocatable
symbol, that symbol is replaced by its own defining expression. Consider the following example, in
which A1 and A2 are defined in one control section, and B1 and B2 in another:
X EQU A1+B1
Y EQU X-A2-B2

The first EQU statement assigns a complexly relocatable expression (A1+B1) to X. During the
evaluation of the expression in the second EQU statement, X is replaced by its defining relocatable
expression (A1+B1). The assembler evaluates the resulting expression (A1+B1-A2-B2) and assigns an
absolute value to Y, because the relocatable terms in the expression are paired. The expression must
not contain literals.

expression_2
Represents a value that the assembler assigns as a length attribute value to the symbol in the name
field. It is optional, but, if specified, must be an absolute value in the range 0 to 65,535. This value
overrides the normal length attribute value implicitly assigned from expression_1. For example:
A DS CL121 Define a print line buffer
ACC Equ A,1 Define first character, length 1

Chapter 5. Assembler instruction statements 163

The symbol ACC has the same location value as A, but length attribute 1.

All symbols appearing in expression_2 must have been previously defined, and all expressions in
expression_2 must be evaluatable when the EQU statement is processed. For example, the second
operand in the statements defining the symbol X cannot be evaluated when the last statement has
been processed, because the value of the symbol X is unknown until the symbol A has been defined.
Z DS XL(L’A) Z DS XL(A)
Y DS XL7 Y DS XL7
X EQU Z,*-Z X EQU Z,*-Z
A DS XL5 A EQU 5

If expression_2 is omitted, the assembler assigns a length attribute value to the symbol in the name
field according to the length attribute value of the leftmost (or only) term of expression_1, as follows:
1. If the leftmost term of expression_1 is a location counter reference (*), a self-defining term, or a

symbol length attribute value reference, the length attribute is 1. This also applies if the leftmost
term is a symbol that is equated to any of these values.

2. If the leftmost term of expression_1 is a symbol that is used in the name field of a DC or DS
instruction, the length attribute value is equal to the implicit or explicit length of the first (or only)
constant specified in the DC or DS operand field.

3. If the leftmost term is a symbol that is used in the name field of a machine instruction, the length
attribute value is equal to the length of the assembled instruction.

4. Symbols that name assembler instructions, except the DC, DS, CCW, CCW0, and CCW1
instructions, have a length attribute value of 1. Symbols that name a CCW, CCW0, or CCW1
instruction have a length attribute value of 8.

5. The length attribute value described in cases 2, 3, and 4 above is the assembly-time value of the
attribute.

For more information about the length attribute value, see “Symbol length attribute reference” on
page 33.

For example:
X DS CL80 X has length attribute 80
Y EQU X,40 Y has length attribute 40

expression_3
Represents a value that the assembler assigns as a type attribute value to the symbol in the name field.
It is optional, but, if specified, it must be an absolute value in the range 0 to 255.

All symbols appearing in expression_3 must have been previously defined, and all expressions in
expression_3 must be evaluatable when the EQU statement is processed.

If expression_3 is omitted, the assembler assigns a type attribute value of U to the symbol, which
means the symbol in the name field has an undefined (or unknown or unassigned) type attribute. See
the general discussion about data attributes in “Data attributes” on page 284, and “Type attribute
(T')” on page 289.

For example:
A DS D A has type attribute D
B EQU A,,C’X’ B has type attribute X

expression_4
Represents a value (any absolute expression) that the assembler assigns as a program type value to the
symbol in the name field. It is optional. It can be specified as a decimal, character, hex, or binary
self-defining term and is stored as a 4 byte (32 bit) number; all 4 bytes are printed in the program
listings opposite the symbol. The value is not used in any way by the assembler, and can be queried
by using the SYSATTRP built-in function.

All symbols appearing in expression_4 must have been previously defined, and all expressions in
expression_4 must be evaluatable when the EQU statement is processed.

164 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

If expression_4 is omitted, the assembler assigns a null to the program type, and querying the value
using the SYSATTRP built-in function returns a null value.

expression_5
Represents 2 to 4 characters that the assembler assigns as an assembler type value to the symbol in the
name field. It is optional. It is stored as a 4 byte string; all 4 bytes are printed in the program listings
opposite the symbol. The value is used by the assembler when type-checking has been activated, and
can be queried by using the SYSATTRA built-in function.

Valid values for this operand are:
AR Register - Access
CR Register - Control
CR32 Register - Control 32 bit
CR64 Register - Control 64 bit
FPR Register - Floating-Point
GR Register - General
GR32 Register - General 32 bit
GR64 Register - General 64 bit

If expression_5 is omitted, the assembler assigns a null value to the assembler type, and querying the
value using the SYSATTRA built-in function returns a null value.

The EQU instruction can be used anywhere in a source module after the ICTL instruction. Note, however,
that the EQU instruction initiates an unnamed control section (private code) if it is specified before the
first control section.

Using conditional assembly values
The following rules describe when you can use the value, length attribute value, or type attribute value
of an equated symbol in conditional assembly statements:
v If you want to use the value of the symbol in conditional assembly statements, then:

– The EQU statement that defines the symbol must be processed by the assembler before the
conditional assembly statement that refers to the symbol.

– The symbol in the name field of the EQU statement must be an ordinary symbol.
– Expression_1 must be an absolute expression, and must contain only self-defining terms or

previously defined symbols.
v If only expression_1 is specified:

– The assembler assigns a type attribute value of U.
– If the EQU statement that defines the symbol is processed by the assembler before the conditional

assembly statement that refers to the symbol, the assembler assigns the length attribute of
expression_1. Otherwise, the assembler assigns a length attribute value 1.

You can use these values in conditional assembly statements, although references to the length attribute
might be flagged.

v If you specify expression_2 or expression_3 and you want to use the explicit attribute value during
conditional assembly processing, then:
– The symbol in the name field must be an ordinary symbol.
– The expression must contain only self-defining terms.

Chapter 5. Assembler instruction statements 165

EXITCTL instruction
The EXITCTL instruction sets or modifies the contents of the four signed fullword exit-control parameters
that the assembler maintains for each type of exit.

��
sequence_symbol

EXITCTL �
(1)

exit_type ,
control_value

��

Notes:

1 From one to four values to be supplied.

sequence_symbol
Is a sequence symbol.

exit_type
Identifies the type of exit to which this EXITCTL instruction applies. Exit_type must have one of the
following values:
SOURCE

Sets the exit-control parameters for the user-supplied exit module specified in the INEXIT
suboption of the EXIT assembler option.

LIBRARY
Sets the exit-control parameters for the user-supplied exit module specified in the LIBEXIT
suboption of the EXIT assembler option.

LISTING
Sets the exit-control parameters for the user-supplied exit module specified in the PRTEXIT
suboption of the EXIT assembler option.

PUNCH
Sets the exit-control parameters for the user-supplied exit module specified in the OBJEXIT
suboption of the EXIT assembler option when it is called to process the object module records
generated when the DECK assembler option is specified.

OBJECT (z/OS and CMS)
Sets the exit-control parameters for the user-supplied exit module specified in the OBJEXIT
suboption of the EXIT assembler option when it is called to process the object module records
generated when the OBJECT or GOFF assembler option is specified.

ADATA
Sets the exit-control parameters for the user-supplied exit module specified in the ADEXIT
suboption of the EXIT assembler option.

TERM Sets the exit-control parameters for the user-supplied exit module specified in the TRMEXIT
suboption of the EXIT assembler option.

control_value
Is the value to which the corresponding exit-control parameter should be set. For each exit type, the
assembler maintains four exit-control parameters known as EXITCTL_1, EXITCTL_2, EXITCTL_3, and
EXITCTL_4. Therefore, up to four values can be specified. Which exit-control parameter is set is
determined by the position of the value in the operand of the instruction. You must code a comma in
the operand for each omitted value. If specified, control_value must be either:
v A decimal self-defining term with a value in the range -231 to +231-1.
v An expression in the form *±n, where * is the current value of the corresponding exit-control

parameter to which n, a decimal self-defining term, is added or from which n is subtracted. The
value of the result of adding n to or subtracting n from the current exit-control parameter value
must be in the range -231 to +231-1.

166 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

If control_value is omitted, the corresponding exit-control parameter retains its current value.

The following example shows how to set the exit-control parameters EXITCTL_1 and EXITCTL_3 for the
LISTING exit without affecting the contents of the other exit-control parameters:

EXITCTL LISTING,256,,*+128

See the section “EXITCTLn” in the HLASM Programmer's Guide for information about how EXITCTL
values are passed to each type of exit.

The assembler initializes all exit-control parameters to binary zeros.

EXTRN instruction
The EXTRN instruction identifies “external” symbols referred to in this source module but defined in
another source module. These symbols are external symbols.

��
sequence_symbol

EXTRN �

�

,

external_symbol
,

PART(external_symbol)

��

sequence_symbol
Is a sequence symbol.

external_symbol
Is a relocatable symbol that:
v Is a valid symbol
v Is not used as the name entry of a source statement in the source module in which it is defined

PART(external_symbol)
external_symbol is a relocatable symbol as described above, that also:
v Is a reference to a part as defined on the CATTR instruction.

Up to 65535 individual control sections, external symbols, and external dummy sections can be defined in
a source module. However, the practical maximum number depends on the amount of table storage
available during link-editing.

The assembler lists each external symbol identified in a source module in the external symbol dictionary,
along with entries for entry symbols, common control sections, parts, and external control sections.

A symbol identified by an EXTRN instruction should not also be declared by an ENTRY instruction.

External symbols have a length attribute of 1. See also “WXTRN instruction” on page 202.

Chapter 5. Assembler instruction statements 167

ICTL instruction
The ICTL instruction changes the begin, end, and continue columns that establish the coding format of
the assembler language source statements.

�� ICTL begin
,end

,continue

��

begin
Specifies the begin column of the source statement. It must be a decimal self-defining term with value
1 - 40.

end
Specifies the end column of the source statement. When end is specified it must be a decimal
self-defining term with 41 - 80. It must be not less than begin +5, and must be greater than continue. If
end is not specified, it is assumed to be 71.

continue
Specifies the continue column of the source statement. When specified, continue must be a decimal
self-defining term within the range of 2 to 40, and it must be greater than begin. If continue is not
specified, or if column 80 is specified as the end column, the assembler assumes that continuation
lines are not allowed.

Default
1,71,16

Use the ICTL instruction only once, at the beginning of a source program. If no ICTL statement is used in
the source program, the assembler assumes that 1, 71, and 16 are the begin, end, and continue columns.

With the ICTL instruction, you can, for example, increase the number of columns to be used for the
identification or sequence checking of your source statements. By changing the begin column, you can
even create a field before the begin column to contain identification or sequence numbers. For example,
the following instruction designates the begin column as 9 and the end column as 80. Since the end
column is specified as 80, no continuation records are recognized.

ICTL 9,80

COPY Instruction: The ICTL instruction does not affect the format of statements brought in by a COPY
instruction or generated from a library macro definition. The assembler processes these statements
according to the standard begin, end, and continue columns described in “Field boundaries” on page 12.

ISEQ instruction
The ISEQ instruction forces the assembler to check if the statements in a source module are in sequential
order. In the ISEQ instruction, you specify the columns between which the assembler is to check for
sequence numbers.

��
sequence_symbol

ISEQ
left,right

��

168 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

sequence_symbol
Is a sequence symbol.

left
Specifies the first column of the field to be sequence-checked. If specified, left must be a decimal
self-defining term with value 1 - 80.

right
Specifies the rightmost column of the field to be sequence checked. If specified, right must be a
decimal self-defining term with value 1 - 80, and must be greater than or equal to left.

If left and right are omitted, sequence checking is ended. Sequence checking can be restarted with another
ISEQ statement. An ISEQ statement that is used to end sequence checking is itself sequence-checked.

The assembler begins sequence checking with the first statement line following the ISEQ instruction. The
assembler also checks continuation lines.

Sequence numbers on adjacent statements or lines are compared according to the 8 bit internal EBCDIC
collating sequence. When the sequence number on one line is not greater than the sequence number on
the preceding line, a sequence error is flagged, and a warning message is issued, but the assembly is not
ended.

If the sequence field in the preceding line is spaces, the assembler uses the last preceding line with a
non-space sequence field to make its comparison.

The assembler checks only those statements that are specified in the coding of a source module. This
includes any COPY instruction statement or macro instruction. The assembler does not check:
v Statements inserted by a COPY instruction
v Statements generated from model statements inside macro definitions or from model statements in

open code (statement generation is discussed in detail in Chapter 7, “How to specify macro
definitions,” on page 213)

v Statements in library macro definitions

LOCTR instruction
The LOCTR instruction specifies multiple location counters within a control section. The assembler
assigns consecutive addresses to the segments of code using one location counter before it assigns
addresses to segments of coding using the next location counter.

�� symbol LOCTR ��

symbol
Is one of the following:
v An ordinary symbol
v A variable symbol that has been assigned a character string with a value that is valid for an

ordinary symbol

By using the LOCTR instruction, you can code your control section in a logical order. For example, you
can code work areas and data constants within the section of code, using them without having to branch
around them:

Chapter 5. Assembler instruction statements 169

A CSECT , See note 1
LR 12,15
USING A,12
.

B LOCTR , See note 2
.

C LOCTR ,
.

B LOCTR , See note 3
.

A LOCTR , See note 4
.

DUM DSECT , See note 1
C LOCTR , See note 5

.
END

LOCTRs are ordered by their definition order. So in the previous example, the ordering is A, B, and C.
When there are statements in LOCTR groups, the code is generated using currently active USINGs and
then moved to the final location.

Notes:

1. The first location counter of a section, class, or part is defined by the name of the START, CSECT,
DSECT, RSECT, CATTR, or COM instruction defining the section.

2. The LOCTR instruction defines a location counter.
3. The LOCTR continues a previously defined location counter. A location counter remains in use until it

is interrupted by a LOCTR, CSECT, DSECT, RSECT, or COM instruction.
4. A LOCTR instruction with the same name as a control section continues the first location counter of

that section. However, an unnamed LOCTR cannot be used to continue an unnamed (private code)
control section.

5. A LOCTR instruction with the same name as a LOCTR instruction in a previous control section causes
that control section to be continued using the location counter specified, even though the LOCTR
instruction might follow the definition (or resumption) of a different section.

6. To continue a location counter in an unnamed section, a named location counter must first be
specified for the section by a LOCTR in the unnamed section.

A control section cannot have the same name as a previous LOCTR instruction. A LOCTR instruction
placed before the first control section definition initiates an unnamed control section before the LOCTR
instruction is processed.

The length attribute of a LOCTR name is 1.

LOCTR instructions do not force alignment; code assembled under a location counter other than the first
location counter of a control section is assembled starting at the next available byte after the previous
segment.

A LOCTR name can be referenced as an ordinary symbol. If the LOCTR name does not match a section
name, its value is the location counter value assigned to its first appearance, and it might have arbitrary
alignment and other attributes. If the LOCTR name is also a control section name, the value assigned is
that of the origin of the control section. So a LOCTR with the same name as the CSECT resumes the first
location counter within the CSECT. A CSECT instruction resumes the last location counter used.

Table 35. LOCTR behavior with NOGOFF option

LOCTR name Effect

Section Resumes assembling with the first location counter of that section

170 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Table 35. LOCTR behavior with NOGOFF option (continued)

LOCTR name Effect

Other v If the LOCTR name was previously declared, resumes assembling with the location counter of
that LOCTR group

v If the LOCTR name was not previously declared, begins processing a new LOCTR group of
statements to be assembled following the most recently processed section or LOCTR group

Table 36. LOCTR behavior with GOFF option

LOCTR name Effect

Section Resumes assembling with the first location counter of the element in the B_TEXT class of that
section

Class Not allowed

Part Resumes assembling with the first location counter of the part

Other v If the LOCTR name was previously declared, resumes assembling with the location counter of
that LOCTR group

v If the LOCTR name was not previously declared, begins processing statements in a new LOCTR
group to be assembled following the most recently processed class, part, or LOCTR group.

LTORG instruction
Use the LTORG instruction so that the assembler can collect and assemble literals into a literal pool. A
literal pool contains the literals you specify in a source module either after the preceding LTORG
instruction, or after the beginning of the source module.

If a control section has not been established, LTORG initiates an unnamed (private) control section.

��
symbol

LTORG ��

symbol
Is one of the following:
v An ordinary symbol
v A variable symbol that has been assigned a character string with a value that is valid for an

ordinary symbol
v A sequence symbol

If symbol is an ordinary symbol or a variable symbol that has been assigned an ordinary symbol, the
ordinary symbol is assigned the value of the address of the first byte of the literal pool. This symbol is
aligned on a boundary specified by the SECTALGN option, and has a length attribute of 1. If bytes are
skipped after the end of a literal pool to achieve alignment for the next instruction, constant, or area, the
bytes are not filled with zeros. If the literal pool does not reside in a DSECT, and includes any items that
require quadword alignment, and the SECTALGN value defaults to 8, the assemble of the literal causes
the issue of an ASMA500E message.

The assembler ignores the borders between control sections when it collects literals into pools. Therefore,
you must be careful to include the literal pools in the control sections to which they belong (for details,
see “Addressing considerations” on page 172).

The creation of a literal pool gives the following advantages:

Chapter 5. Assembler instruction statements 171

|
|
|

v Automatic organization of the literal data into sections that are correctly aligned and arranged so that
minimal space is wasted in the literal pool.

v Assembling of duplicate data into the same area.
v Because all literals are cross-referenced, you can find the literal constant in the pool into which it has

been assembled.

Literal pool
A literal pool is created under the following conditions:
v Immediately after an LTORG instruction.
v If no LTORG instruction is specified, and no LOCTRs are used in the first control section, a literal pool

generated after the END statement is created at the end of the first control section, and appears in the
listing after the END statement.

v If no LTORG instruction is specified, and LOCTRs are used in the first control section, a literal pool
generated after the END statement is created at the end of the most recent LOCTR segment of the first
section, and appears in the listing after the END statement.

v To force the literal pool to the end of the control section when using LOCTRs, you must resume the
last LOCTR of the CSECT before the LTORG statement (or before the END statement if no LTORG
statement is specified).

Each literal pool has five segments into which the literals are stored (a) in the order that the literals are
specified, and (b) according to their assembled lengths, which, for each literal, is the total explicit or
implied length:
v The first segment contains all literal constants whose assembled lengths are a multiple of 16.
v The second segment contains those whose assembled lengths are a multiple of 8, but not of 16.
v The third segment contains those whose assembled lengths are a multiple of 4, but not a multiple of 8.
v The fourth segment contains those whose assembled lengths are even, but not a multiple of 4.
v The fifth segment contains all the remaining literal constants whose assembled lengths are odd.

Since each literal pool is aligned on a SECTALGN alignment, this guarantees that all literals in the second
segment are doubleword aligned; in the third segment, fullword aligned; and, in the fourth, halfword
aligned. The minimum value of SECALGN is doubleword, so quadword alignment is not guaranteed. No
space is wasted except, possibly, at the origin of the pool, and in aligning to the start of the statement
following the literal pool.

Literals from the following statements are in the pool, in the segments indicated by the parenthesized
numbers:
FIRST START 0

.
MVC TO,=3F’9’ (3)
AD 2,=D’7’ (2)
IC 2,=XL1’8’ (5)
MVC MTH,=CL3’JAN’ (5)
LM 4,5,=2F’1,2’ (2)
AH 5,=H’33’ (4)
L 2,=A(ADDR) (3)
MVC FIVES,=XL16’05’ (1)

Addressing considerations
If you specify literals in source modules with multiple control sections, then:
v Write an LTORG instruction at the end of each control section, so that all the literals specified in the

section are assembled into the one literal pool for that section. If a control section is divided and
interspersed among other control sections, write an LTORG instruction at the end of each segment of
the interspersed control section.

172 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

v When establishing the addressability of each control section, make sure that:
– All the literal pool for that section is also addressable, by including it within a USING range.
– The literal specifications are within the corresponding USING domain.

The USING range and domain are described in “USING instruction” on page 193.

All the literals specified after the last LTORG instruction, or, if no LTORG instruction is specified, all the
literals in a source module are assembled into a literal pool at the end of the first control section. You
must then make this literal pool addressable, along with the addresses in the first control section. This
literal pool is printed in the program listing after the END instruction.

Duplicate literals
If you specify duplicate literals within the part of the source module that is controlled by an LTORG
instruction, only one literal constant is assembled into the pertinent literal pool. This also applies to
literals assembled into the literal pool at the end of the first or only control section of a source module
that contains no LTORG instructions.

Literals are duplicates only if their specifications are identical, not if the object code assembled happens
to be identical.

When two literals specifying identical A-type, Y-type or S-type address constants contain a reference to
the value of the location counter (*), both literals are assembled into the literal pool. This is because the
value of the location counter might be different in the two literals. Even if the location counter value is
the same for both, they are still both assembled into the literal pool.

The following examples show how the assembler stores pairs of literals, if the placement of each pair is
controlled by the same LTORG statement.
=X’F0’ Both are
=C’0’ stored

=XL3’0’ Both are
=HL3’0’ stored

=A(*+4) Both are
=A(*+4) stored

=X’FFFF’ Identical,
=X’FFFF’ only one copy is stored

MNOTE instruction
The MNOTE instruction generates your own error messages or displays intermediate values of variable
symbols computed during conditional assembly.

The MNOTE instruction can be used inside macro definitions or in open code, and its operation code can
be created by substitution. The MNOTE instruction causes the generation of a message that is given a
statement number in the printed listing.

��
sequence_symbol

MNOTE message
severity,
*,
,

��

Chapter 5. Assembler instruction statements 173

sequence_symbol
Is a sequence symbol.

severity
Is a severity code. The severity operand can be any decimal self-defining term, or a SETA variable
symbol. The term must have a value in the range 0 through 255. The severity code is used to
determine the return code issued by the assembler when it returns control to the operating system.
The severity can also change the value of the system variable symbols &SYSM_HSEV and
&SYSM_SEV (see “&SYSM_HSEV System Variable Symbol” on page 244 and “&SYSM_SEV System
Variable Symbol” on page 244).

message
Is the message text. It can be any combination of characters enclosed in apostrophes. The rules that
apply to this character string are as follows:
v Variable symbols are allowed. The apostrophes that enclose the message can be generated from

variable symbols.
v Two ampersands or two apostrophes are needed to generate an ampersand or an apostrophe. If

variable symbols have ampersands or apostrophes as values, the values must be coded as two
ampersands or two apostrophes.

v If the number of characters in the character string plus the rest of the MNOTE operand exceeds
1024 bytes the assembler issues diagnostic message
ASMA062E Illegal operand format

Note: The maximum length of the second operand is three less than the maximum supported
length of SETC character string.

v Double-byte data is permissible in the operand field when the DBCS assembler option is specified.
The double-byte data must be valid.

v The DBCS ampersand and apostrophe are not recognized as delimiters.
v A double-byte character that contains the value of an EBCDIC ampersand or apostrophe in either

byte is not recognized as a delimiter when enclosed by SO and SI.

Remarks
Any remarks for the MNOTE instruction statement must be separated by one or more spaces from the
apostrophe that ends the message.

If severity is provided, or severity is omitted but the comma separating it from message is present, the
message is treated as an error message; otherwise the message is treated as comments. The rules for
specifying the contents of severity are:
v The severity code can be specified as any arithmetic expression allowed in the operand field of a SETA

instruction. The expression must have a value in the range 0 through 255.
Example:

MNOTE 2,’ERROR IN SYNTAX’

The generated result is:
2,ERROR IN SYNTAX

v If the severity code is omitted, but the comma separating it from the message is present, the assembler
assigns a default value of 1 as the severity code.
Example:

MNOTE ,’ERROR, SEV 1’

The generated result is:
,ERROR, SEV 1

v An asterisk in the severity code subfield causes the message and the asterisk to be generated as a
comment statement.

174 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Example:
MNOTE *,’NO ERROR’

The generated result is:
*,NO ERROR

Here is an example taken from a CICS® macro:
MNOTE 8,’FIELD IS DEFINED OUTSIDE OF THE SIZE OPERAND’
MNOTE *,’PARAMETERS SPECIFIED IN THE DFHMDI MACRO,’
MNOTE *,’MACRO REQUEST IS IGNORED.’

A further advantage of this approach is that only one severity 8 error is seen instead of three.
v If the severity code subfield is omitted, including the comma separating it from the message, the

assembler generates the message as a comment statement.
Example:

MNOTE ’NO ERROR’

The generated result is:
NO ERROR

Notes:

1. An MNOTE instruction causes a message to be printed, if the current PRINT option is ON, even if the
PRINT NOGEN option is specified.

2. The statement number of the message generated from an MNOTE instruction with a severity code is
listed among any other error messages for the current source module. However, the message is
printed only if the severity code specified is greater than or equal to the severity code nnn specified in
the FLAG(nnn) assembler option.

3. The statement number of the comments generated from an MNOTE instruction without a severity
code is not listed among other error messages.

OPSYN instruction
The OPSYN instruction defines or deletes symbolic operation codes.

The OPSYN instruction has two formats. The first format defines a new operation code to represent an
existing operation code, or to redefine an existing operation code for:
v Machine and extended mnemonic branch instructions
v Assembler instructions, including conditional assembly instructions
v Macro instructions

Define operation code

�� symbol
operation_code_1

OPSYN operation_code_2 ��

If operation_code_2 has been previously defined as both a machine instruction and as a macro, both are
copied to the definition of operation_code_1.

The second format deletes an existing operation code for:
v Machine and extended mnemonic branch instructions
v Assembler instructions, including conditional assembly instructions
v Macro instructions

Chapter 5. Assembler instruction statements 175

Delete operation code

�� operation_code_1 OPSYN ��

symbol
Is one of the following:
v An ordinary symbol that is not the same as an existing operation code
v A variable symbol that has been assigned a character string with a value that is valid for an

ordinary symbol and is not the same as an existing operation code

operation_code_1
Is one of the following:
v An operation code described in this chapter, or any machine instruction (such as those described in

Chapter 4, “Machine instruction statements,” on page 65), or Chapter 9, “How to write conditional
assembly instructions,” on page 279

v The operation code defined by a previous OPSYN instruction
v The name of a previously defined macro.

operation_code_2
Is one of these:
v An operation code described in this chapter, or any machine instruction (such as those described in

Chapter 4, “Machine instruction statements,” on page 65), or Chapter 9, “How to write conditional
assembly instructions,” on page 279

v The operation code defined by a previous OPSYN instruction
v The name of a previously defined macro.

In the first format, the OPSYN instruction assigns the properties of the operation code denoted by
operation_code_2 to the ordinary symbol denoted by symbol or the operation code denoted by
operation_code_1.

In the second format, the OPSYN instruction causes the operation code specified in operation_code_1 to
lose its properties as an operation code.

The OPSYN instruction can be coded anywhere in the program to redefine an operation code, following
an ICTL instruction, if any.

The symbol in the name field can represent a valid operation code. It loses its current properties as if it
had been defined in an OPSYN instruction with a space-filled operand field. In the following example, L
and LR both possess the properties of the LR machine instruction operation code:
L OPSYN LR

When the same symbol appears in the name field of two OPSYN instructions, the latest definition takes
precedence. In this example, STORE now represents the STH machine operation:
STORE OPSYN ST
STORE OPSYN STH

Note: OPSYN is not processed during lookahead mode (see “Lookahead” on page 299). Therefore it
cannot be used during lookahead to replace an opcode that must be processed during lookahead, such as
COPY. For example, assuming AFTER is defined in COPYBOOK, the following code gives an ASMA042E
error (Length attribute of symbol is unavailable):

176 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

AIF (L’AFTER LT 2).BEYOND
OPCOPY OPSYN COPY OPSYN not processed during look ahead

OPCOPY COPYBOOK OPCOPY fails
.BEYOND ANOP ,

Redefining conditional assembly instructions
A redefinition of a conditional assembly instruction only comes into effect in macro definitions occurring
after the OPSYN instruction. The original definition is always used when a macro instruction calls a
macro that was defined and edited before the OPSYN instruction.

An OPSYN instruction that redefines the operation code of an assembler or machine instruction
generated from a macro instruction is, however, effective immediately, even if the definition of the macro
was made prior to the OPSYN instruction. Consider the following example:

MACRO Macro header
MAC ... Macro prototype
AIF ...
MVC ...
.
MEND Macro trailer
.

AIF OPSYN AGO Assign AGO properties to AIF
MVC OPSYN MVI Assign MVI properties to MVC

.
MAC ... Macro call

(AIF interpreted as AIF instruct-
ion; generated AIFs not printed)

+ MVC ... Interpreted as MVI instruction
.
. Open code started at this point
AIF ... Interpreted as AGO instruction
MVC ... Interpreted as MVI instruction

In this example, AIF and MVC instructions are used in a macro definition. AIF is a conditional assembly
instruction, and MVC is a machine instruction. OPSYN instructions are used to assign the properties of
AGO to AIF and to assign the properties of MVI to MVC. In subsequent calls of the macro MAC, AIF is
still defined, and used, as an AIF operation, but the generated MVC is treated as an MVI operation. In
open code following the macro call, the operations of both instructions are derived from their new
definitions assigned by the OPSYN instructions. If the macro is redefined (by another macro definition),
the new definitions of AIF and MVC (that is, AGO and MVI) are used for further generations.

ORG instruction
The ORG instruction alters the setting of the location counter and thus controls the structure of the
current control section. This redefines portions of a control section.

If a control section has not been previously established, ORG initiates an unnamed (private) control
section.

��
symbol

ORG
expression

, boundary
,offset

, offset

��

symbol
Is one of the following:

Chapter 5. Assembler instruction statements 177

v An ordinary symbol
v A variable symbol that has been assigned a character string with a value that is valid for an

ordinary symbol
v A sequence symbol

If symbol denotes an ordinary symbol, the ordinary symbol is defined with the value that the location
counter had before the ORG statement is processed.

expression
Is a relocatable expression, the value of which is used to set the location counter. If expression is
omitted, the location counter is set to the next available location for the current control section.

boundary
Is an absolute expression that must be a number that is a power of 2 with a range from 2 (halfword)
to 4096 (page). If boundary exceeds the SECTALGN value, message ASMA500E is issued. This
message is not issued if the section being processed is a Reference Control Section (DSECT, DXD, or
COM).

boundary must be a predefined absolute expression whose value is known at the time the ORG
statement is processed.

If the boundary operand is greater than 16, the GOFF option must be specified in addition to the
SECTALGN option.

offset
Any absolute expression

If boundary or offset are provided, then the resultant location counter is calculated by rounding the
expression up to the next higher boundary and then adding the offset value.

ORG emits no “fill” bytes for bytes skipped in any direction.

In general, symbols used in expression need not have been previously defined. However, the relocatable
component of expression (that is, the unpaired relocatable term) must have been previously defined in the
same control section in which the ORG statement appears, or be equated to a previously defined value.

A length attribute reference to the name of an ORG instruction is always invalid. Message ASMS042E is
issued, and a default value of 1 is assigned.

An ORG statement cannot be used to specify a location below the beginning of the control section in
which it appears. For example, the following statement is not correct if it appears less than 500 bytes
from the beginning of the current control section.

ORG *-500

This is because the expression specified is negative, and sets the location counter to a value larger than
the assembler can process. The location counter wraps around (the location counter is discussed in detail in
“Location counter” on page 32).

If you specify multiple location counters with the LOCTR instruction, the ORG instruction can alter only
the location counter in use when the instruction appears. Thus, you cannot control the structure of the
whole control section using ORG, but only the part that is controlled by the current location counter.

An ORG statement cannot be used to change sections or LOCTR segments. For example:
AA CSECT
X DS D
Y DS F
BB CSECT

ORG Y

178 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

is invalid, because the section containing the ORG statement (BB) is not the same as the section in AA in
which the ORG operand expression Y is defined.

With the ORG statement, you can give two instructions the same location counter values. In such a case,
the second instruction does not always eliminate the effects of the first instruction. Consider the following
example:
ADDR DC A(ADDR)

ORG *-4
B DC C’BETA’

In this example, the value of B (’BETA’) is destroyed by the relocation of ADDR during linkage editing.

The following example shows some examples of ORG using the boundary and offset operands:
origin csect

ds 235x Define 235 bytes
org origin,,3 Move location counter back to start + 3
org *,8 Align on 8 byte boundary
org *,8,-2 Align to 8 byte boundary -2 bytes

translate dc cl256’ ’ Define aligned translate table
org translate+c’a’
dc c’ABCDEFGHI’
org translate+c’j’
dc c’JKLMNOPQR’
org translate+c’s’
dc c’STUVWXYZ’
org translate+c’A’
dc c’ABCDEFGHI’
org translate+c’J’
dc c’JKLMNOPQR’
org translate+c’S’
dc c’STUVWXYZ’
org ,
end

Using Figure 26 on page 180 as an example, to build a translate table (for example, to convert EBCDIC
character code into some other internal code):
1. Define the table (see �1� in Figure 26 on page 180) as being filled with zeros.
2. Use the ORG instruction to alter the location counter so that its counter value indicates a specific

location (see �2� in Figure 26 on page 180) within the table.
3. Redefine the data (see �3� in Figure 26 on page 180) to be assembled into that location.
4. After repeating the first three steps (see �4� in Figure 26 on page 180) until your translate table is

complete, use an ORG instruction with a null operand field to alter the location counter. The counter
value then indicates the next available location (see �5� in Figure 26 on page 180) in the current
control section (after the end of the translate table).

Both the assembled object code for the whole table filled with zeros, and the object code for the portions
of the table you redefined, are printed in the program listings. However, the data defined later is loaded
over the previously defined zeros and becomes part of your object program, instead of the zeros.

That is, the ORG instruction can cause the location counter to be set to any part of a control section, even
the middle of an instruction, into which you can assemble data. It can also cause the location counter to
be set to the next available location so that your program can be assembled sequentially.

Chapter 5. Assembler instruction statements 179

POP instruction
The POP instruction restores the PRINT, USING, or ACONTROL status saved by the most recent PUSH
instruction.

��
sequence_symbol

POP �

,
(1)

PRINT
USING
ACONTROL

,NOPRINT
��

Notes:

1 Each keyword from this group can be selected only once.

Source Module │ Object Code
───┼────────────────────────

│
FIRST START 0 │

. │

. │
�1� TABLE DC XL256’0’ │ TABLE (in Hex)
�2� ORG TABLE+0 │ +0 ┌────┐

┌ DC C’0’ �3� │ │ F0 │
│ DC C’1’ │ │ F1 │
│ . │ │ . │
│ . │ │ . │
│ ORG TABLE+13 │ +13 │ . │
│ DC C’D’ │ │ C4 │
│ DC C’E’ │ │ C5 │
│ . │ │ . │
│ . │ │ . │

�4� ─┤ ORG TABLE+C’D’ │ │ . │
│ DC AL1(13) │ +196 │ 13 │
│ DC AL1(14) │ │ 14 │
│ . │ │ . │
│ . │ │ . │
│ ORG TABLE+C’0’ │ +240 │ . │
│ DC AL1(0) │ │ 00 │
│ DC AL1(1) │ │ 01 │
│ . │ │ │
└ . │ +255 └────┘

ORG │
�5� GOON DS 0H │
↑ . │
TABLE+256 . │

TR INPUT,TABLE │
. │
. │

INPUT DS CL20 │
. │
. │
END │

Figure 26. Building a translate table

180 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

sequence_symbol
Is a sequence symbol.

PRINT
Instructs the assembler to restore the PRINT status to the status saved by the most recent PUSH
instruction.

USING
Instructs the assembler to restore the USING status to the status saved by the most recent PUSH
instruction.

ACONTROL
Instructs the assembler to restore the ACONTROL status to the status saved by the most recent PUSH
instruction.

NOPRINT
Instructs the assembler to suppress the printing of the POP statement in which it is specified.

The POP instruction causes the status of the current PRINT, USING or ACONTROL instruction to be
overridden by the PRINT, USING or ACONTROL status saved by the last PUSH instruction. For
example:

PRINT GEN Printed macro generated code
DCMAC X,27 Call macro to generate DC

+ DC X’27’ ... Generated statement
PUSH PRINT Save PRINT status
PRINT NOGEN Suppress macro generated code
DCMAC X,33 Call macro to generate DC
POP PRINT Restore PRINT status
DCMAC X,42 Call macro to generate DC

+ DC X’42’ ... Generated statement

PRINT instruction
The PRINT instruction controls the amount of detail printed in the listing of programs.

��
sequence_symbol

PRINT �

,

operand ��

sequence_symbol
Is a sequence symbol.

operand
Is an operand from one of the groups of operands described below. If a null operand is supplied, it is
accepted by the assembler with no effect on the other operands specified. The operands are listed in
hierarchic order. The effect, if any, of one operand on other operands is also described.

��
ON

OFF
��

Chapter 5. Assembler instruction statements 181

ON
Instructs the assembler to print, or resume printing, the source and object section of the assembler
listing.

OFF
Instructs the assembler to stop printing the source and object section of the assembler listing. A
subsequent PRINT ON instruction resumes printing.

When this operand is specified the printing actions requested by the GEN, DATA, MCALL, and
MSOURCE operands do not apply.

��
GEN

NOGEN
��

GEN
Instructs the assembler to print all statements generated by the processing of a macro. This operand
does not apply if PRINT OFF has been specified.

NOGEN
Instructs the assembler not to print statements generated by conditional assembly or the processing of
a macro. This applies to all levels of macro nesting; no generated code is displayed while PRINT
NOGEN is in effect. If this operand is specified, the DATA operand does not apply to constants that
are generated during macro processing. Also, if this operand is specified, the MSOURCE operand
does not apply. When the PRINT NOGEN instruction is in effect, the assembler prints one of the
following on the same line as the macro call or model statement:
v The object code for the first instruction generated. The object code includes the data that is shown

under the ADDR1 and ADDR2 columns of the assembler listing.
v The first eight bytes of generated data from a DC instruction

When the assembler forces alignment of an instruction or data constant, it generates zeros in the
object code and prints the generated object code in the listing. When you use the PRINT NOGEN
instruction the generated zeros are not printed.

Note: If the next line to print after macro call or model statement is a diagnostic message, the object
code or generated data is not shown in the assembler listing.

The MNOTE instruction always causes a message to be printed.

��
NODATA

DATA
��

NODATA
Instructs the assembler to print only the first eight bytes of the object code of constants. This operand
does not apply if PRINT OFF has been specified. If PRINT NOGEN has been specified, this operand
does not apply to constants generated during macro processing.

182 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

DATA
Instructs the assembler to print the object code of all constants in full. This operand does not apply if
PRINT OFF has been specified. If PRINT NOGEN has been specified, this operand does not apply to
constants generated during macro processing.

��
NOMCALL

MCALL
��

NOMCALL
Instructs the assembler to suppress the printing of nested macro call instructions.

MCALL
Instructs the assembler to print nested macro call instructions, including the name of the macro
definition to be processed and the operands and values passed to the macro definition. The assembler
only prints the operands and comments up to the size of its internal processing buffer. If this size is
exceeded the macro call instruction is truncated, and the characters ... MORE are added to the end of
the printed macro call. This does not affect the processing of the macro call.

This operand does not apply if either PRINT OFF or PRINT NOGEN has been specified.

��
MSOURCE

NOMSOURCE
��

MSOURCE
Instructs the assembler to print the source statements generated during macro processing, as well as
the assembled addresses and generated object code of the statements. This operand does not apply if
either PRINT OFF or PRINT NOGEN has been specified.

NOMSOURCE
Instructs the assembler to suppress the printing of source statements generated during macro
processing, without suppressing the printing of the assembled addresses and generated object code of
the statements. This operand does not apply if either PRINT OFF or PRINT NOGEN has been
specified.

��
UHEAD

NOUHEAD
��

UHEAD
Instructs the assembler to print a summary of active USINGs following the TITLE line on each page
of the source and object program section of the assembler listing. This operand does not apply if PRINT
OFF has been specified.

Chapter 5. Assembler instruction statements 183

NOUHEAD
Instructs the assembler not to print a summary of active USINGs.

��
NOPRINT

��

NOPRINT
Instructs the assembler to suppress the printing of the PRINT statement in which it is specified. The
NOPRINT operand must only be specified with one or more other operands.

The PRINT instruction can be specified any number of times in a source module, but only those operands
specified in the instruction change the current print status.

PRINT options can be generated by macro processing during conditional assembly. However, at assembly
time, all options are in force until the assembler encounters a new and opposite option in a PRINT
instruction.

The PUSH and POP instructions, described in “PUSH instruction” on page 185 and “POP instruction” on
page 180, also influence the PRINT options by saving and restoring the PRINT status.

You can override the effect of the operands of the PRINT instruction by using the PCONTROL assembler
option. For more information about this option, see the section “PCONTROL” in the HLASM
Programmer's Guide.

Unless the NOPRINT operand is specified, or the assembler listing is suppressed by the NOLIST
assembler option, the PRINT instruction itself is printed.

Process statement
The process statement is described under “*PROCESS statement” on page 84.

PUNCH instruction
The PUNCH instruction creates a record containing a source or other statement, or an object record, to be
written to the object file.

��
sequence_symbol

PUNCH string ��

sequence_symbol
Is a sequence symbol.

string
Is a character string of up to 80 characters, enclosed in apostrophes. All 256 characters in the EBCDIC
character set are allowed in the character string. Variable symbols are also allowed.

Double-byte data is permissible in the operand field when the DBCS assembler option is specified.
However, the following rules apply to double-byte data:
v The DBCS ampersand and the apostrophe are not recognized as delimiters.

184 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

v A double-byte character that contains the value of an EBCDIC ampersand or an apostrophe in
either byte is not recognized as a delimiter when enclosed by SO and SI.

The position of each character specified in the PUNCH statement corresponds to a column in the
record to be punched. However, the following rules apply to ampersands and apostrophes:
v A single ampersand initiates an attempt to identify a variable symbol and to substitute its current

value.
v A pair of ampersands is punched as one ampersand.
v A pair of apostrophes is punched as one apostrophe.
v An unpaired apostrophe followed by one or more spaces ends the string of characters punched. If

a non-space character follows an unpaired apostrophe, an error message is issued and nothing is
punched.

Only the characters punched, including spaces, count toward the maximum of 80 allowed.

The PUNCH instruction causes the data in its operand to be punched (copied) into a record. One
PUNCH instruction produces one record, but as many PUNCH instructions as necessary can be used.

You can code PUNCH statements in:
v A source module to produce control statements for the linker. The linker uses these control statements

to process the object module.
v Macro definitions to produce, for example, source statements in other computer languages or for other

processing phases.

The assembler writes the record produced by a PUNCH statement when it writes the object deck. The
ordering of this record in the object deck is determined by the order in which the PUNCH statement is
processed by the assembler. The record appears after any object deck records produced by previous
statements, and before any other object deck records produced by subsequent statements.

The PUNCH instruction statement can appear anywhere in a source module. If a PUNCH instruction
occurs before the first control section, the resultant record punched precedes all other records in the object
deck.

The record punched as a result of a PUNCH instruction is not a logical part of the object deck, even
though it can be physically interspersed in the object deck.

Notes:

1. The identification and sequence number field generated as part of other object deck records is not
generated for the record punched by the PUNCH instruction.

2. If the NODECK and NOOBJECT assembler options are specified, no records are punched for the
PUNCH instruction.

3. Do not use the PUNCH instruction if the GOFF option is specified, as the resulting file might be
unusable.

PUSH instruction
The PUSH instruction saves the current PRINT, USING, or ACONTROL status in push-down storage on a
last-in, first-out basis. You restore this PRINT, USING, or ACONTROL status later, also on a last-in,
first-out basis, by using a POP instruction.

Chapter 5. Assembler instruction statements 185

��
sequence_symbol

PUSH �

,
(1)

PRINT
USING
ACONTROL

,NOPRINT
��

Notes:

1 Each keyword from this group can be selected only once.

sequence_symbol
Is a sequence symbol.

PRINT
Instructs the assembler to save the PRINT status in a push-down stack.

USING
Instructs the assembler to save the USING status in a push-down stack.

ACONTROL
Instructs the assembler to save the ACONTROL status in a push-down stack.

NOPRINT
Instructs the assembler to suppress the printing of the PUSH statement in which it is specified.

The PUSH instruction only causes the status of the current PRINT, USING, or ACONTROL instructions to
be saved. The PUSH instruction does not:
v Change the status of the current PRINT or ACONTROL instructions
v Imply a DROP instruction, or change the status of the current USING instructions

REPRO instruction
The REPRO instruction causes the data specified in the record that follows to be copied unchanged into
the object file.

��
sequence_symbol

REPRO ��

sequence_symbol
Is a sequence symbol.

The REPRO instruction can appear anywhere in a source module. One REPRO instruction produces one
punched record, but as many REPRO instructions as necessary can be used. Records are created as the
object file is being created, so records might be interspersed among object code. These records are part of
the object file, but are not intended to contain normal object code or symbols.

The statement to be reproduced can contain any of the 256 characters in the EBCDIC character set,
including spaces, ampersands, and apostrophes. Unlike the PUNCH instruction, the REPRO instruction
does not allow values to be substituted into variable symbols before the record is punched.

Notes:

1. The identification and sequence numbers generated as part of other object deck records are not
generated for records punched by the REPRO instruction.

186 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

2. The sequence and continuation fields of the record to be REPROed are not checked, even if the ISEQ
instruction was specified.

3. If the NODECK and NOOBJECT assembler options are specified, no records are punched for the
REPRO instruction, or for the object deck of the assembly.

4. Since the text of the line following a REPRO statement is not validated or changed in any way, it can
contain double-byte data, but this data is not validated.

5. Do not use the REPRO instruction if the GOFF option is specified, as the resulting file might be
unusable.

RMODE instruction
The RMODE instruction specifies the residence mode to be associated with control sections in the object
deck.

��
name

RMODE 24
31
64
ANY

��

name
Is the name field that associates the residence mode with a control section. If there is a symbol in the
name field, it must also appear in the name field of a START, CSECT, RSECT, or COM instruction in
this assembly. If the name field is space-filled, there must be an unnamed control section in this
assembly. If the name field contains a sequence symbol (see “Symbols” on page 25 for details), it is
treated as a blank name field.

24
Specifies that a residence mode of 24 is to be associated with the control section; that is, the control
section must be resident below 16 MB.

31 Specifies that a residence mode of either 24 or 31 is to be associated with the control section; that is,
the control section can be resident above or below 16 MB.

64
Specifies that a residence mode of 64 is to be associated with the control section (see “64 bit
addressing mode” on page 84).

ANY
Is understood to mean RMODE 31.

Any field of this instruction can be generated by a macro, or by substitution in open code.

Notes:

1. RMODE can be specified anywhere in the assembly. It does not initiate an unnamed control section.
2. An assembly can have multiple RMODE instructions; however, two RMODE instructions cannot have

the same name field.
3. The valid and invalid combinations of AMODE and RMODE are shown in Table 11 on page 96.

Combinations involving AMODE 64 and RMODE 64 are subject to the support outlined in “64 bit
addressing mode” on page 84.

4. AMODE or RMODE cannot be specified for an unnamed common control section.
5. The defaults used when zero or one MODE is specified are shown in Table 12 on page 96.

Combinations involving AMODE 64 and RMODE 64 are subject to the support outlined in “64 bit
addressing mode” on page 84.

Chapter 5. Assembler instruction statements 187

RSECT instruction
The RSECT instruction initiates a read-only executable control section or indicates the continuation of a
read-only executable control section.

��
symbol

RSECT ��

symbol
Is one of the following:
v An ordinary symbol
v A variable symbol that has been assigned a character string with a value that is valid for an

ordinary symbol
v A sequence symbol

When an executable control section is initiated by the RSECT instruction, the assembler automatically
checks the control section for possible coding violations of program reenterability, regardless of the
setting of the RENT assembler option. As the assembler cannot check program logic, the checking is not
exhaustive. Non-reentrant code is diagnosed by a warning message.

The RSECT instruction can be used anywhere in a source module after the ICTL instruction. If it is used
to initiate the first executable control section, it must not be preceded by any instruction that affects the
location counter and thus causes the first control section to be initiated.

If symbol denotes an ordinary symbol, the ordinary symbol identifies the control section. If several RSECT
instructions within a source module have the same symbol in the name field, the first occurrence initiates
the control section and the rest indicate the continuation of the control section. The ordinary symbol
denoted by symbol represents the address of the first byte in the control section, and has a length attribute
value of 1.

If symbol is not specified, or if name is a sequence symbol, the RSECT instruction initiates or indicates the
continuation of the unnamed control section.

See “CSECT instruction” on page 106 for a discussion on the interaction between RSECT and the GOFF
assembler option.

The beginning of a control section is aligned on a boundary determined by the SECTALGN option.
However, when an interrupted control section is continued using the RSECT instruction, the location
counter last specified in that control section is continued.

The source statements following an RSECT instruction that either initiate or indicate the continuation of a
control section are assembled into the object code of the control section identified by that RSECT
instruction.

Notes:

1. The assembler indicates that a control section is read-only by setting the read-only attribute in the
object module.

2. The end of a control section or portion of a control section is marked by (a) any instruction that
defines a new or continued control section, or (b) the END instruction.

188 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

SPACE instruction
The SPACE instruction inserts one or more blank lines in the listing of a source module, thus separating
sections of code on the listing page.

��
sequence_symbol

SPACE
number_of_lines

��

sequence_symbol
Is a sequence symbol.

number_of_lines
Is an absolute expression that specifies the number of lines to be left blank. You can use any absolute
expression to specify number_of_lines. If number_of_lines is omitted, one line is left blank. If
number_of_lines has a value greater than the number of lines remaining on the listing page, the
instruction has the same effect as an EJECT statement.

The SPACE statement itself is not printed in the listing unless a variable symbol is specified as a point of
substitution in the statement, in which case the statement is printed before substitution occurs. A blank
line is equivalent to a SPACE 1 statement.

START instruction
The START instruction can be used to initiate the first or only executable control section of a source
module, and optionally to set an initial location counter value.

��
symbol

START
expression

��

symbol
Is one of the following:
v An ordinary symbol
v A variable symbol that has been assigned a character string with a value that is valid for an

ordinary symbol
v A sequence symbol

expression
Is an absolute expression, the value of which the assembler uses to set the location counter to an
initial value for the source module.

Any symbols referenced in expression must have been previously defined.

The START instruction must be the first instruction of the first executable control section of a source
module. It must not be preceded by any instruction that affects the location counter for an executable
control section (that is, not a reference section such as COM, DXD, or DSECT), and thus causes the first
executable control section to be initiated.

Use the START instruction to initiate the first or only control section of a source module, because it:
v Determines exactly where the first control section is to begin, thus avoiding the accidental initiation of

the first control section by some other instruction.

Chapter 5. Assembler instruction statements 189

v Gives a symbolic name to the first control section, which can then be distinguished from the other
control sections listed in the external symbol dictionary.

v Specifies the initial setting of the location counter for the first or only control section.

If symbol denotes an ordinary symbol, the ordinary symbol identifies the first control section. It must be
used in the name field of any CSECT instruction that indicates the continuation of the first control
section. The ordinary symbol denoted by symbol represents the address of the first byte in the control
section, and has a length attribute value of 1.

If symbol is not specified, or if name is a sequence symbol, the START instruction initiates an unnamed
control section.

The assembler uses the value expression in the operand field, if specified, to set the location counter to an
initial value for the source module. All control sections are aligned on the boundary specified by the
SECTALGN option. Therefore, if the value specified in expression is not divisible by the SECTALGN
value, the assembler sets the initial value of the location counter to the next higher required boundary. If
expression is omitted, the assembler sets the initial value to 0.

The source statements that follow the START instruction are assembled into the first control section. If a
CSECT instruction indicates the continuation of the first control section, the source statements that follow
this CSECT instruction are also assembled into the first control section.

Any instruction that defines a new or continued control section marks the end of the preceding control
section. The END instruction marks the end of the control section in effect.

TITLE instruction
The TITLE instruction:
v Provides headings for each page of the source and object section of the assembler listing. If the first

statement in your source program is an ICTL instruction or a *PROCESS statement then the title is not
printed on the first page of the Source and Object section, because each of these instructions must
precede all other instructions.

v Identifies the assembly output records of your object modules. You can specify up to 8 identification
characters that the assembler includes as a deck ID in all object records, beginning at byte 73. If the
deck ID is less than eight characters, the assembler puts sequence numbers in the remaining bytes up
to byte 80.

��
name

TITLE title_string ��

name
You can specify name only once in the source module. It is one of the following:
v A string of printable characters
v A variable symbol that has been assigned a string of printable characters
v A combination of the above
v A sequence symbol

Except when the name is a sequence symbol, the assembler uses the first eight characters you specify,
and discards the remaining characters without warning.

190 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

title_string
Is a string of 1 to 100 characters enclosed in apostrophes

If two or more TITLE instructions are together, the title provided by the last instruction is printed as the
heading.

Deck ID in object records
When you specify the name, and it is not a sequence symbol, it has a special significance. The assembler
uses the name value to generate the deck ID in object records. The deck ID is placed in the object records
starting at byte 73. It is not generated for records produced by the PUNCH and REPRO instructions. The
name value does not need to be on the first TITLE instruction.

The name value is not defined as a symbol, so it can be used in the name entry of any other statement in
the same source module, provided it is a valid ordinary symbol.

GOFF Assembler Option (z/OS and CMS): When you specify the GOFF assembler option the deck ID is
not generated.

Printing the heading
The character string denoted by title_string is printed as a heading at the top of each page of the source
and object section of the assembler listing. The heading is printed beginning on the page in the listing that
follows the page on which the TITLE instruction is specified. A new heading is printed each time a new
TITLE instruction occurs in the source module. If the TITLE instruction is the first instruction in the
source module the heading is printed on the first page of the listing.

When a TITLE instruction immediately follows an EJECT instruction, the assembler changes the title but
does not perform an additional page-eject.

Printing the TITLE statement
The TITLE statement is printed in the listing when you specify a variable symbol in the name, or in the
title_string, in which case the statement is printed before substitution occurs.

Sample program using the TITLE instruction
The following example shows three TITLE instructions:
PGM1 TITLE ’The First Heading’
PGM1 CSECT

USING PGM1,12 Assign the base register
TITLE ’The Next Heading’
LR 12,15 Load the base address

&VARSYM SETC ’Value from Variable Symbol’
TITLE ’The &VARSYM’
BR 14 Return
END

After the program is assembled, the characters PGM1 are placed in bytes 73 to 76 of all object records, and
the heading appears at the top of each page in the listing as shown in Figure 27 on page 192. The TITLE
instruction at statement 7 is printed because it contains a variable symbol.

Chapter 5. Assembler instruction statements 191

Page ejects
Each inline TITLE statement causes the listing to be advanced to a new page before the heading is
printed unless it is preceded immediately by one of the following:
v A CEJECT instruction
v An EJECT instruction
v A SPACE instruction that positions the current print line at the start of a new page
v A TITLE instruction

If the TITLE statement appears in a macro or contains a variable symbol and PRINT NOGEN is specified,
the listing is not advanced to a new page.

Valid characters
Any printable character specified appears in the heading, including spaces. Double-byte data can be used
when the DBCS assembler option is specified. The double-byte data must be valid. Variable symbols are
allowed. However, the following rules apply to ampersands and apostrophes:
v The DBCS ampersand and apostrophe are not recognized as delimiters.
v A double-byte character that contains the value of an EBCDIC ampersand or apostrophe in either byte

is not recognized as a delimiter when enclosed by SO and SI.
v A single ampersand initiates an attempt to identify a variable symbol and to substitute its current

value.
v A pair of ampersands is printed as one ampersand.
v A pair of apostrophes is printed as one apostrophe.
v An unpaired apostrophe followed by one or more spaces ends the string of characters printed. If a

non-space character follows an unpaired apostrophe, the assembler issues an error message and prints
no heading.

Only the characters printed in the heading count toward the maximum of 100 characters allowed. If the
count of characters to be printed exceeds 100, the heading that is printed is truncated and error
diagnostic message
ASMA062E Illegal operand format

is issued.

PGM1 The First Heading Page 3
Active Usings: None
Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R6.0 2008/07/11 17.48

000000 00000 00004 2 PGM1 CSECT LRM00020
R:C 00000 3 USING PGM1,12 Assign the base register

PGM1 The Next Heading Page 4
Active Usings: PGM1,R12
Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R6.0 2008/07/11 17.48

000000 18CF 5 LR 12,15 Load the base address
6 &VARSYM SETC ’Value from Variable Symbol’
7 TITLE ’The &VARSYM’

PGM1 The Value from Variable Symbol Page 5
Active Usings: PGM1,R12
Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R6.0 2008/07/11 17.48

000002 07FE 8 BR 14 Return
9 END LRM00090

Figure 27. Sample program using TITLE instruction

192 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

USING instruction
The USING instruction specifies a base address and range and assigns one or more base registers. If you
also load the base register with the base address, you have established addressability in a control section.
If a control section has not been established, USING initiates an unnamed (private) control section.

To use the USING instruction correctly, you should know:
v Which locations in a control section are made addressable by the USING instruction
v Where in a source module you can use implicit addresses in instruction operands to refer to these

addressable locations

Base address
The term base address is used throughout this manual to mean the location counter value within a control
section from which the assembler can compute displacements to locations, or addresses, within the control
section. Do not confuse this with the storage address of a control section when it is loaded into storage at
execution time.

The USING instruction has three formats:
v The first format specifies a base address, an optional range, and one or more base registers. This format

of the USING instruction is called an ordinary USING instruction, and is described under “Ordinary
USING instruction” on page 194.

v The second format specifies a base address, an optional range, one or more base registers, and a
USING label which can be used as a symbol qualifier. This format of the USING instruction is called a
labeled USING instruction, and is described under “Labeled USING instruction” on page 197.

v The third format specifies a base address, an optional range, and a relocatable expression instead of
one or more base registers. This format of a USING instruction is called a dependent USING instruction,
and is described under “Dependent USING instruction” on page 200. If a USING label is also specified,
this format of the USING instruction is called a labeled dependent USING instruction.

Note: The assembler identifies and warns about statements where the implied alignment of an operand
does not match the requirements of the instruction. However, if the base for a USING is not aligned on
the required boundary, the assembler cannot diagnose a problem. For example:
DS1 DSECT

DS H
REGPAIR DS 2ADL8 Halfword alignment
DS2 DSECT
REGPAIR_ALIGN DS 2ADL8 Doubleword alignment

CSECT
...
USING DS1,R1 Ordinary USING
USING DS2,REGPAIR Dependent USING
STPQ R0,REGPAIR REGPAIR is not a quadword
STPQ R0,REGPAIR_ALIGN But REGPAIR_ALIGN is

The first STPQ instruction is diagnosed as an alignment error. The second STPQ instruction is not, even
though the same storage location is implied by the code.

You must take care to ensure base addresses match the alignment requirements of storage mapped by a
USING. For a description of the alignment requirements of instructions, see the relevant z/Architecture
Principles of Operation.

How to use the USING instruction
Specify the USING instruction so that:
v All the required implicit addresses in each control section lie within a USING range.
v All the references for these addresses lie within the corresponding USING domain.

Chapter 5. Assembler instruction statements 193

You could, therefore, place all ordinary USING instructions at the beginning of the control section and
specify a base address in each USING instruction that lies at the beginning of each control section.

For Executable Control Sections: To establish the addressability of an executable control section defined
by a START or CSECT instruction, specify a base address and assign a base register in the USING
instruction. At execution time, the base register must be loaded with the correct base address.

If a control section requires addressability to more than 4096 bytes, you must assign more than one base
register, or make implicit references using only instructions supporting 20 bit displacements (“long
displacements”). This establishes the addressability of the entire control section with one USING
instruction.

For Reference Control Sections: A dummy section is a reference control section defined by the DSECT
instructions. To establish the addressability of a dummy section, specify the address of the first byte of
the dummy section as the base address, so that all its addresses lie within the pertinent USING range.
The address you load into the base register must be the address of the storage area being described by
the dummy section. However, if all references to fields within the DSECT are made with instructions
supporting long displacements, the base address need not be the first byte of the dummy section.

When you refer to symbolic addresses in the dummy section, the assembler computes displacements
accordingly. However, at execution time, the assembled addresses refer to the location of real data in the
storage area.

Base registers for absolute addresses
Absolute addresses used in a source module must also be made addressable. Absolute addresses require
a base register other than the base register assigned to relocatable addresses (as described above).

However, the assembler does not need a USING instruction to convert absolute implicit addresses in the
range 0 through 4095 to their explicit form. The assembler uses register 0 as a base register.
Displacements are computed from the base address 0, because the assembler assumes that a base or index
of 0 implies that a zero quantity is to be used in forming the address, regardless of the contents of
register 0. The USING domain for this automatic base register assignment is the entire source module.

If a register is specified with base address zero, the assembler uses it in preference to the default use of
register zero. For example:

USING 3,0
LA 7,5

generates the instruction X'41703005'; in the absence of the USING statement, the generated instruction is
X'41700005'.

For absolute implicit addresses greater than 4095 and in the absence of long-displacement instructions, a
USING instruction must be specified according to the following:
v With a base address representing an absolute expression
v With a base register that has not been assigned by a USING instruction in which a relocatable base

address is specified

This base register must be loaded with the base address specified.

Ordinary USING instruction
The ordinary USING instruction format specifies a base address and one or more base registers.

194 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Ordinary USING

��
sequence_symbol

USING base
(base)

,end

� ,base_register ��

sequence_symbol
Is a sequence symbol.

base
Specifies a base address, which can be a relocatable or an absolute expression. The value of the
expression is 0 - 231-1.

end
Specifies the end address, which can be a relocatable or an absolute expression. The value of the
expression is 0 - 231-1. The end address can exceed the (base address + default range) without error.
The end address must be greater than the base and must have the same relocatability attribute.

The resolvable range of a USING with an 'end' operand is
base,MIN(4095,end-1)

Thus USING base,reg is equivalent to USING (base,base+4096),reg.

base_register
Is an absolute expression whose value represents general registers 0 through 15.

The default range is 4096 per base register.

The assembler assumes that the base register denoted by the first base_register operand contains the base
address base at execution time. If present, the subsequent base_register operands represent registers that
the assembler assumes contain the address values base+4096, base+8192, and so on.

For example:
USING BASE,9,10,11

has the logical equivalent of:
USING BASE,9
USING BASE+4096,10
USING BASE+8192,11

In another example, the following statement:
USING *,12,13

tells the assembler to assume that the current value of the location counter is in general register 12 at
execution time, and that the current value of the location counter, incremented by 4096, is in general
register 13 at execution time.

Computing displacement
If you change the value in a base register being used, and want the assembler to compute displacements
from this value, you must tell the assembler the new value with another USING statement. In the
following sequence, the assembler first assumes that the value of ALPHA is in register 9. The second
statement then causes the assembler to assume that ALPHA+1000 is the value in register 9.

Chapter 5. Assembler instruction statements 195

USING ALPHA,9
.
.
USING ALPHA+1000,9

Using General Register Zero
You can refer to the first 4096 bytes of storage using general register 0, subject to the following
conditions:
v The value of operand base must be either absolute or relocatable zero.
v Register 0 must be specified as the first base_register operand.

The assembler assumes that register 0 contains zero. Therefore, regardless of the value of operand base, it
calculates displacements as if operand base were absolute or relocatable zero. The assembler also assumes
that subsequent registers specified in the same USING statement contain 4096, 8192, and so on.

If register 0 is used as a base register, the referenced control section (or dummy section) is not relocatable,
despite the fact that operand base might be relocatable. The control section can be made relocatable by:
v Replacing register 0 in the USING statement
v Loading the new register with a relocatable value
v Reassembling the program

Range of an ordinary USING instruction
The range of an ordinary USING instruction (called the “ordinary USING range”, or the “USING range”)
is the 4096 bytes beginning at the base address specified in the USING instruction, or the range as
specified by the range end, whichever is the lesser. For long-displacement instructions, the range is the
addresses between (base_address-524288) and (base_address+524287). Addresses that lie within the USING
range can be converted from their implicit to their explicit base-displacement form using the designated
base registers; those outside the USING range cannot be converted.

The USING range does not depend upon the position of the USING instruction in the source module;
rather, it depends upon the location of the base address specified in the USING instruction.

The USING range is the range of addresses in a control section that is associated with the base register
specified in the USING instruction. If the USING instruction assigns more than one base register, the
composite USING range is the union of the USING ranges that applies if the base registers were specified
in separate USING instructions.

USING ranges need not be contiguous. For example, you can specify
USING X,4
USING X+6000,5

and implicit addresses with values X+4096 - X+5999 are not addressable by instructions with unsigned 12
bit displacements.

Two USING ranges coincide when the same base address is specified in two different USING
instructions, even though the base registers used are different. When two USING ranges coincide, the
assembler uses the higher-numbered register for assembling the addresses within the common USING
range. In effect, the domain of the USING instruction that specifies the lower-numbered register is ended
by the other USING instruction. If the domain of the USING instruction that specifies the higher-number
register is terminated, the domain of the other USING instruction is resumed.

Two USING ranges overlap when the base address of one USING instruction lies within the range of
another USING instruction. You can use the WARN suboption of the USING assembler option to find out
if you have any overlapping USING ranges. When an overlap occurs the assembler issues a diagnostic
message. However, the assembler does allow an overlap of one byte in USING ranges so that you do not
receive a diagnostic message if you code the following statements:

196 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

PSTART CSECT
LR R12,R15
LA R11,4095(,R12)
USING PSTART,R12
USING PSTART+4095,R11

In the above example, the second USING instruction begins the base address of the second base register
(R11) in the 4096th byte of the first base register (R12) USING range. If you do not want the USING
ranges to overlap, you can code the following statements:
PSTART CSECT

LR R12,R15
LA R11,4095(,R12)
LA R11,1(,R11)
USING PSTART,R12
USING PSTART+4096,R11

When two ranges overlap, the assembler computes displacements from the base address that gives the
smallest non-negative displacement; or if no non-negative displacement can be found, for
long-displacement instructions, the base register giving the smallest negative displacement; it uses the
corresponding base register when it assembles the addresses within the range overlap. This applies only
to implicit addresses that appear after the second USING instruction.

LOCTR does not affect the USING domain.

Domain of an ordinary USING instruction
The domain of an ordinary USING instruction (called the “ordinary USING domain”, or the “USING
domain”) begins where the USING instruction appears in a source module. It continues until the end of a
source module, except when:
v A subsequent DROP instruction specifies the same base register or registers assigned by a preceding

USING instruction.
v A subsequent USING instruction specifies the same register or registers assigned by a preceding

USING instruction.

The assembler converts implicit address references into their explicit form when the following conditions
are met:
v The address reference appears in the domain of a USING instruction.
v The addresses referred to lie within the range of some USING instruction.

The assembler does not convert implicit address references that are outside the USING domain. The
USING domain depends on the position of the USING instruction in the source module after conditional
assembly, if any, has been done.

Labeled USING instruction
The labeled USING instruction specifies a base address, one or more base registers, and a USING label
which can be used as a symbol qualifier.

Labeled USING

�� label USING base
(base)

,end

� ,base_register ��

Chapter 5. Assembler instruction statements 197

label
Is one of the following:
v An ordinary symbol
v A variable symbol that has been assigned a character string with a value that is valid for an

ordinary symbol

base
Specifies a base address, which can be a relocatable or an absolute expression. The value of the
expression must lie between 0 and 231-1.

end
Specifies the end address, which can be a relocatable or an absolute expression. The value of the
expression must lie between 0 and 231-1. The end address can exceed the (base address + default
range) without error. The end address must be greater than the base and must have the same
relocatability attributes.

base_register
Is an absolute expression whose value represents general registers 0 through 15.

The default range is 4096 per base register.

The essential difference between a labeled USING instruction and an ordinary USING instruction is the
label placed on the USING statement. To indicate to the assembler that the USING established with the
label is to provide resolution of base and displacement for a symbol, the label must be used to qualify the
symbol. Qualifying a symbol consists of preceding the symbol with the label on the USING followed by a
period. The only symbols resolved by the labeled USING are those symbols qualified with the label. This
label cannot be used for any other purpose in the program, except possibly as a label on other USING
instructions.

The following examples show how labeled USINGs are used:
PRIOR USING IHADCB,R10
NEXT USING IHADCB,R2

MVC PRIOR.DCBLRECL,NEXT.DCBLRECL

The same code without labeled USINGs can be written like this:
USING IHADCB,R10
MVC DCBLRECL,DCBLRECL-IHADCB(R2)

In the following example, a new element, NEW, is inserted into a doubly linked list between two existing
elements LEFT and RIGHT, where the links are stored as pointers LPTR and RPTR:
LEFT USING ELEMENT,R3
RIGHT USING ELEMENT,R6
NEW USING ELEMENT,R1

.

.
MVC NEW.RPTR,LEFT.RPTR Move previous Right pointer
MVC NEW.LPTR,RIGHT.LPTR Move previous Left pointer
ST R1,LEFT.RPTR Chain new element from Left
ST R1,RIGHT.LPTR Chain new element from Right
.
.

ELEMENT DSECT
LPTR DS A Link to left element
RPTR DS A Link to right element

.

.

Range of a labeled USING instruction
The range of a labeled USING instruction (called the labeled USING range) is the 4096 bytes beginning at
the base address specified in the labeled USING instruction, or the range as specified by the range end,

198 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

whichever is the lesser. Addresses that lie within the labeled USING range can be converted from their
implicit form (qualified symbols) to their explicit form; those outside the USING range cannot be
converted.

Like the ordinary USING range, the labeled USING range is the range of addresses in a control section
that is associated with the base register specified in the labeled USING instruction. If the labeled USING
instruction assigns more than one base register, the composite labeled USING range is the product of the
number of registers specified in the labeled USING instruction and 4096 bytes. The composite labeled
USING range begins at the base address specified in the labeled USING instruction. Unlike the ordinary
USING range, however, you cannot specify separate labeled USING instructions to establish the same
labeled USING range. For example,
IN USING BASE,10,11

specifies a range of 8192 bytes beginning at BASE, but
IN USING BASE,10
IN USING BASE+4096,11

specifies a single labeled USING range of 4096 bytes beginning at BASE+4096.

You can specify the same base address in any number of labeled USING instructions. You can also
specify the same base address in an ordinary USING and a labeled USING. However, unlike ordinary
USING instructions that have the same base address, if you specify the same base address in an ordinary
USING instruction and a labeled USING instruction, High Level Assembler does not treat the USING
ranges as coinciding. When you specify an unqualified symbol in an assembler instruction, the base
register specified in the ordinary USING is used by the assembler to resolve the address into
base-displacement form. Here is an example of coexistent ordinary USINGs and labeled USINGs:

USING IHADCB,R10
SAMPLE USING IHADCB,R2

MVC DCBLRECL,SAMPLE.DCBLRECL

In this MVC instruction, the (unqualified) first operand is resolved with the ordinary USING, and the
(qualified) second operand is resolved with the labeled USING.

Domain of a labeled USING instruction
The domain of a labeled USING instruction (called the labeled USING domain) begins where the USING
instruction appears in a source module. It continues to the end of the source module, except when:
v A subsequent DROP instruction specifies the label used in the preceding labeled USING instruction.
v A subsequent USING instruction specifies the same label used in the preceding labeled USING

instruction. The second specification of the label causes the assembler to end the domain of the prior
USING with the same label.

You can specify the same base register or registers in any number of labeled USING instructions.
However, unlike ordinary USING instructions, as long as all the labeled USINGs have unique labels, the
assembler considers the domains of all the labeled USINGs to be active and their labels eligible to be
used as symbol qualifiers. With ordinary USINGs, when you specify the same base register in a
subsequent USING instruction, the domain of the prior USING is ended.

The assembler converts implicit address references into their explicit form using the base register or
registers specified in a labeled USING instruction when the following conditions are met:
v The address reference appears in the domain of the labeled USING instruction.
v The address reference takes the form of a qualified symbol and the qualifier is the label of the labeled

USING instruction.
v The address lies within the range of the labeled USING instruction.

Chapter 5. Assembler instruction statements 199

Dependent USING instruction
The dependent USING instruction format specifies a base address and a relocatable expression instead of
one or more base registers. If a USING label is also specified, this format USING instruction is called a
labeled dependent USING instruction.

Dependent USING

�� USING base ,address
label (base)
sequence_symbol ,end

��

label
Is one of the following:
v An ordinary symbol
v A variable symbol that has been assigned a character string with a value that is valid for an

ordinary symbol

sequence_symbol
Is a sequence symbol.

base
Specifies a base address, which must be a relocatable expression. The value of the expression must lie
between 0 and 231-1.

address
Is a simply relocatable expression that represents an implicit address within the range of an active
USING instruction. The range of an active USING is considered to be that which is valid for
generating 12 bit or 20 bit displacements.

end
Specifies the end address, which can be a relocatable or an absolute expression. The value of the
expression must lie between 0 and 231-1. The end address can exceed the (base address + default
range) without error. The end address must be greater than the base and must have the same
relocatability attributes.

The implicit address denoted by address specifies the address where base is to be based, and is known as
the supporting base address. As address is a relocatable expression, it distinguishes a dependent USING from
an ordinary USING. The assembler converts the implicit address denoted by address into its explicit
base-displacement form. It then assigns the base register from this explicit address as the base register for
base. The assembler assumes that the base register contains the base address base minus the displacement
determined in the explicit address. The assembler also assumes that address is appropriately aligned for
the code based on base. Warnings are not issued for potential alignment problems in the dependent
USING address.

A dependent USING depends on the presence of one or more corresponding labeled or ordinary USINGs
being in effect to resolve the symbolic expressions in the range of the dependent USING.

The following example shows the use of an unlabeled dependent USING:
EXAMPLE CSECT

USING EXAMPLE,R10,R11 Ordinary USING
.
.
USING IHADCB,DCBUT2 Unlabeled dependent USING

200 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

LH R0,DCBBLKSI Uses R10 or R11 for BASE
.
.

DCBUT2 DCB DDNAME=SYSUT2,...

The following example shows the use of two labeled dependent USINGs:
EXAMPLE CSECT

USING EXAMPLE,R10,R11 Ordinary USING
.
.

DCB1 USING IHADCB,DCBUT1 Labeled dependent USING
DCB2 USING IHADCB,DCBUT2 Labeled dependent USING

MVC DCB2.DCBBLKSI,DCB1.DCBBLKSI Uses R10 or R11 for BASE
.
.

DCBUT1 DCB DDNAME=SYSUT1,...
DCBUT2 DCB DDNAME=SYSUT2,...

Range of a dependent USING instruction
The range of a dependent USING instruction (called the dependent USING range) is either the range as
specified by the range end, or the range of the corresponding USING minus the offset of address within
that range, whichever is the lesser. If the corresponding labeled or ordinary USING assigns more than
one base register, the maximum dependent USING range is the composite USING range of the labeled or
ordinary USING.

If the dependent USING instruction specifies a supporting base address that is within the range of more
than one ordinary USING, the assembler determines which base register to use during base-displacement
resolution as follows:
v The assembler computes displacements from the ordinary USING base address that gives the smallest

displacement, and uses the corresponding base register.
v If more than one ordinary USING gives the smallest displacement, the assembler uses the

higher-numbered register for assembling addresses within the coinciding USING ranges.

Domain of a dependent USING instruction
The domain of a dependent USING instruction (called the dependent USING domain) begins where the
dependent USING appears in the source module and continues until the end of the source module,
except when:
v You end the domain of the corresponding ordinary USING by specifying the base register or registers

from the ordinary USING instruction in a subsequent DROP instruction.
v You end the domain of the corresponding ordinary USING by specifying the same base register or

registers from the ordinary USING instruction in a subsequent ordinary USING instruction.
v You end the domain of a labeled dependent USING by specifying the label of the labeled dependent

USING in the operand of a subsequent DROP instruction.
v You end the domain of a labeled dependent USING by specifying the label of the labeled dependent

USING in the operand of a subsequent labeled USING instruction.

When a labeled dependent USING domain is dropped, none of any subordinate USING domains are
dropped. In the following example the labeled dependent USING BLBL1 is not dropped, even though it
appears to be dependent on the USING ALBL2 that is being dropped:
ALBL1 USING DSECTA,14

USING DSECTB,ALBL1.A
.
.

ALBL2 USING DSECTA,ALBL1.A
.

BLBL1 USING DSECTA,ALBL2.A
.
DROP ALBL2

Chapter 5. Assembler instruction statements 201

.
DSECTA DSECT
A DS A
DSECTB DSECT
B DS A

A dependent USING is not dependent on another dependent USING. It is dependent on the ordinary or
labeled USING that is finally used to resolve the address. For example, the USING at BLBL1 is dependent
on the ALBL1 USING.

Remember that all dependent USINGs must eventually be based on an ordinary or labeled USING that
provides the base register used for base-displacement resolutions.

WXTRN instruction
The WXTRN statement identifies “weak external” symbols referred to in a source module but defined in
another source module. The WXTRN instruction differs from the EXTRN instruction (see “EXTRN
instruction” on page 167) as follows:
v The EXTRN instruction causes the linker to automatically search libraries (if automatic library call is in

effect) to find the module that contains the external symbols that you identify in its operand field. If
the module is found, linkage addresses are resolved; the module is then linked to your module, which
contains the EXTRN instruction.

v The WXTRN instruction suppresses automatic search of libraries. The linker only resolves the linkage
addresses if the external symbols that you identify in the WXTRN operand field are defined in one of
these ways:
– In a module that is linked and loaded along with the object module assembled from your source

module.
– In a module brought in from a library because of the presence of an EXTRN instruction in another

module linked and loaded with yours.

��
sequence_symbol

WXTRN �

�

,

external_symbol
,

PART(external_symbol)

��

sequence_symbol
Is a sequence symbol.

external_symbol
Is a relocatable symbol that is not:
v Used as the name entry of a source statement in the source module in which it is defined

PART(external_symbol)
external_symbol is a relocatable symbol as described above, that also:
v Is a reference to a part as defined on the CATTR instruction.

The external symbols identified by a WXTRN instruction have the same properties as the external
symbols identified by the EXTRN instruction. However, the type code assigned to these external symbols
differs.

202 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

V-Type Address Constant: If a symbol, specified in a V-type address constant, is also identified by a
WXTRN instruction, it is assigned the same ESD type code as the symbol in the WXTRN instruction, and
is treated by the linkage editor as a weak external symbol.

If an external symbol is identified by both an EXTRN and WXTRN instruction in the same source
module, the first declaration takes precedence, and subsequent declarations are flagged with diagnostic
messages.

XATTR instruction (z/OS and CMS)
The XATTR instruction enables attributes to be assigned to an external symbol. This instruction is only
valid when you specify the GOFF assembler option.

�� symbol XATTR �

,

attribute ��

symbol
Is a symbol which has been declared implicitly or explicitly as an external symbol. Further, if the
PSECT attribute is specified, must be an RSECT, CSECT, or START name or an ENTRY name (where
the entry is in one of the preceding types of section)

attribute
Is one or more attributes from the group of attributes described below. The assembler sets the
appropriate attribute flags in the GOFF External Symbol Directory record.

Notes:

1. If more than one value is specified for a given attribute, no diagnostic is issued and only the last
value is used.

2. All attributes of an external symbol must be specified in a single XATTR statement (which can be
continued).

ATTRIBUTES

�� ATTRIBUTES(label) ��

ATTRIBUTES(label), abbreviation ATTR(label)
Is a symbol (internal or external) known in the declaring program. It names the location of the
extended attribute information to be associated with symbol.

Instructs the assembler to place the ESDID and offset of the label in the GOFF External Symbol
Dictionary record.

Chapter 5. Assembler instruction statements 203

LINKAGE

�� LINKAGE(OS)
XPLINK

��

LINKAGE(OS), abbreviation LINK(OS)
Instructs the assembler to set the “Linkage Type” attribute to standard OS linkage.

LINKAGE(XPLINK), abbreviation LINK(XPLINK)
Instructs the assembler to set the “Linkage Type” attribute to indicate “Extra Performance Linkage”.

PSECT

�� PSECT(name) ��

PSECT (name)
Identifies the private read-write “section” or PSECT associated with name by its being an internal or
external symbol belonging to an element in the class to which the PSECT belongs. The name is one of:
v An ENTRY name, where the entry is in the same section (CSECT or RSECT) as name, but in a

different class. For reentrant code, the PSECT is normally a non-shared class, so a separate CATTR
statement is needed to declare that class and its attributes.

v An internal label within the PSECT.

REFERENCE

�� �

,
(1)

REFERENCE(DIRECT)
INDIRECT

(1)
DATA
CODE

��

Notes:

1 Select no more than one option from each group.

REFERENCE(DIRECT), abbreviation REF(DIRECT)
Instructs the assembler to reset (clear) the “Indirect Reference” attribute.

REFERENCE(INDIRECT), abbreviation REF(INDIRECT)
Instructs the assembler to assign the “Indirect Reference” attribute.

REFERENCE(CODE), abbreviation REF(CODE)
Instructs the assembler to set the Executable attribute.

REFERENCE(DATA), abbreviation REF(DATA)
Instructs the assembler to set the Not Executable attribute.

204 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

SCOPE

�� SCOPE(SECTION)
MODULE
LIBRARY
IMPORT
EXPORT

��

SCOPE(SECTION), abbreviation SCOPE(S)
Instructs the assembler to set the binding scope to “Section”.

SCOPE(MODULE), abbreviation SCOPE(M)
Instructs the assembler to set the binding scope to “Module”.

SCOPE(LIBRARY), abbreviation SCOPE(L)
Instructs the assembler to set the binding scope to “Library”.

SCOPE(IMPORT), abbreviation SCOPE(X)
Instructs the assembler to set the binding scope to “Export-Import” (see note following this list).

SCOPE(EXPORT), abbreviation SCOPE(X)
Instructs the assembler to set the binding scope to “Export-Import”.

This statement indicates only that the name field symbol has the specified scope. A symbol having
SCOPE(X) has IMPORT status only if declared in an EXTRN statement, and has EXPORT status only if
declared explicitly in an ENTRY statement, or declared implicitly as an entry on a CSECT or RSECT
statement.

The SCOPE(IMPORT) or SCOPE(EXPORT) attribute is required for using Dynamic Link Libraries under
the Language Environment®. For details, refer to z/OS Language Environment Programming Guide
(SA22-7561).

Association of code and data areas (z/OS and CMS)
To provide support for application program reentrancy and dynamic binding, the assembler provides a
way to associate read-only code and read-write data areas. This is done by defining and accessing
“associated data areas” called PSECTs. A PSECT (Private or Prototype Control Section) when instantiated
becomes the non-shared working storage for an invocation of a shared reentrant program.

In the Program Object model, a PSECT is an element within the same section as the element containing
the shared code to which it belongs. The two classes defining these elements have attributes appropriate
to their respective uses.

Typically, V-type and R-type address constants are used to provide code and data-area addressability for
a reentrant program using PSECTs.

Figure 28 on page 206 shows an example of two sections A and B, each with a PSECT. When the program
object AB containing A and B is instantiated, a single copy of the reentrant CODE class is loaded into
read-only storage, and a copy of the PSECT class belonging to AB is loaded into read-write storage. The
invoker of A provides the address for the PSECT of A, so that A can address its own read-write data. A
later instantiation of AB loads only a new copy of the PSECT class.

Chapter 5. Assembler instruction statements 205

When a program in the CODE class of section A calls a program in the CODE class of section B, a linkage
convention might require loading the entry address of B into general register 15 and the address of B's
PSECT into general register 0. For example:

L 15,=V(B) B’s entry point address
L 0,=R(B) B’s PSECT address (from A’s PSECT)
BASR 14,15 Linkage to B

Further information about linkage conventions for referencing Dynamic Link Libraries (DLLs) under the
Language Environment can be found in z/OS Language Environment Programming Guide (SA22-7561).

CODE Class PSECT Class
┌────────────┐ ┌─────────────┐
│A ─ ─ ─ │ │ (A’s PSECT) │

Section A │ │ │ │
│ │ ┌──┼─ DC R(B) │

┌──┼─ DC V(B) │ │ │ │
│ │ │ │ │ │
│ │ │ │ ├─────────────┤
│ ├────────────┤ └─→│ (B’s PSECT) │
└─→│B ─ ─ ─ │ │ │

Section B │ │ │ │
│ │ │ │
└────────────┘ └─────────────┘

←────── Program Object AB ───────→

Figure 28. Program object with PSECTs, example 1

206 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Chapter 6. Introduction to macro language

This chapter introduces the basic macro concept: what you can use the macro facility for, how you can
prepare your own macro definitions, and how you call these macro definitions for processing by the
assembler.

Macro language is an extension of assembler language. It provides a convenient way to generate a
sequence of assembler language statements many times in one or more programs. A macro definition is
written only once; thereafter, a single statement, a macro instruction statement, is written each time you
want to generate the sequence of statements. This simplifies the coding of programs, reduces the chance
of programming errors, and ensures that standard sequences of statements are used to accomplish the
functions you want.

In addition, conditional assembly lets you code statements that are assembled or not, depending upon
conditions evaluated at conditional assembly time. These conditions are generally tests of values which
can be defined, set, changed, and tested during assembly. Conditional assembly statements can be used
within macro definitions or in open code.

Using macros
The main use of macros is to insert assembler language statements into a source program.

You call a named sequence of statements (the macro definition) by using a macro instruction, or macro call.
The assembler replaces the macro call by the statements from the macro definition and inserts them into
the source module at the point of call. The process of inserting the text of the macro definition is called
macro generation or macro expansion. Macro generation occurs during conditional assembly.

The expanded stream of code then becomes the input for processing at assembly time; that is, the time at
which the assembler translates the machine instructions into object code.

Macro definition
A macro definition is a named sequence of statements you can call with a macro instruction. When it is
called, the assembler processes and normally generates assembler language statements from the definition
into the source module. The statements generated can be:
v Copied directly from the definition
v Modified by parameter values and other values in variable symbols before generation
v Manipulated by internal macro processing to change the sequence in which they are generated

You can define your own macro definitions in which any combination of these three processes can occur.
Some macro definitions, like some of those used for system generation, do not generate assembler
language statements, but do only internal processing.

A macro definition provides the assembler with:
v The name of the macro
v The parameters used in the macro
v The sequence of statements the assembler generates when the macro instruction appears in the source

program.

Every macro definition consists of a macro definition header statement (MACRO), a macro instruction
prototype statement, one or more assembler language statements, and a macro definition trailer statement

© Copyright IBM Corp. 1992, 2013 207

(MEND), as shown in Figure 29.

v The macro definition header and trailer statements (MACRO and MEND) indicate to the assembler the
beginning and end of a macro definition (see �1� in Figure 29).

v The macro instruction prototype statement names the macro (see �2� in Figure 29), and declares its
parameters (see �3� in Figure 29). In the operand field of the macro instruction, you can assign values
(see�4� in Figure 29) to the parameters declared for the called macro definition.

v The body of a macro definition (see �5� in Figure 29) contains the statements that are generated when
you call the macro. These statements are called model statements; they are normally interspersed with
conditional assembly statements or other processing statements.

Model statements
You can write machine instruction statements and assembler instruction statements as model statements.
During macro generation, the assembler copies them exactly as they are written. You can also use
variable symbols as points of substitution in a model statement. The assembler enters values in place of
these points of substitution each time the macro is called.

The three types of variable symbols in the assembler language are:
v Symbolic parameters, declared in the prototype statement
v System variable symbols
v SET symbols, which are part of the conditional assembly language

The assembler processes the generated statements, with or without value substitution, at assembly time.

Processing statements
Processing statements are processed during conditional assembly, when macros are expanded, but they
are not themselves generated for further processing at assembly time. The processing statements are:
v AEJECT instructions
v AREAD instructions
v ASPACE instructions
v Conditional assembly instructions
v Inner macro calls
v MEXIT instructions
v MNOTE instructions

┌──────────────────────────────→ MACRO
│ ┌──┐
│ Prototype │ &LABEL MACID &PARAM1,&PARAM2 │
│ │ └─┬─┘ └──────┬──────┘ │
│ │ �2� �3� │
│ ┌ ├──┤
│ │ │ │

�1� │ │ │
│ │ │ │
│ �5�─┤ │ Body of macro │
│ │ │ │
│ │ │ │
│ │ │ │
│ └ └──┘
└──────────────────────────────→ MEND

�4�
┌───────┴───────┐

Macro instruction MACID OPERAND1,OPERAND2

Figure 29. Parts of a macro definition

208 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

The AEJECT and ASPACE instructions let you control the listing of your macro definition. Use the
AEJECT instruction to stop printing the listing on the current page and continue printing on the next.
Use the ASPACE instruction to insert blank lines in the listing. The AEJECT instruction is described in
“AEJECT instruction” on page 225. The ASPACE instruction is described in “ASPACE instruction” on
page 227.

The AREAD instruction assigns a character string value, of a statement that is placed immediately after a
macro instruction, to a SETC symbol. The AREAD instruction is described in “AREAD instruction” on
page 225.

Conditional assembly instructions, inner macro calls, and macro processing instructions are described in
detail in the following chapters.

The MNOTE instruction generates an error message with an error condition code attached, or generates
comments in which you can display the results of a conditional assembly computation. The MNOTE
instruction is described in “MNOTE instruction” on page 173.

The MEND statement delimits the contents of a macro definition, and also provides an exit from the
definition. The MEND instruction is described in “MEND statement” on page 214.

The MEXIT instruction tells the assembler to stop processing a macro definition, and provides an exit
from the macro definition at a point before the MEND statement. The MEXIT instruction is described in
“MEXIT instruction” on page 228.

Comment statements
One type of comment statement describes conditional assembly operations and is not generated. The
other type describes assembly-time operations and is, therefore, generated. For a description of the two
types of comment statements, see “Comment statements” on page 229.

Macro instruction
A macro instruction is a source program statement that you code to tell the assembler to process a
particular macro definition. The assembler generates a sequence of assembler language statements for
each occurrence of the same macro instruction. The generated statements are then processed as any other
assembler language statement.

The macro instruction provides the assembler with:
v The name of the macro definition to be processed.
v The information or values to be passed to the macro definition. The assembler uses the information

either in processing the macro definition or for substituting values into a model statement in the
definition.

The output from a macro definition, called by a macro instruction, can be:
v A sequence of statements generated from the model statements of the macro for further processing at

assembly time.
v Values assigned to global SET symbols. These values can be used in other macro definitions and in

open code.

You can call a macro definition by specifying a macro instruction anywhere in a source module. You can
also call a macro definition from within another macro definition. This type of call is an inner macro call;
it is said to be nested in the macro definition.

Chapter 6. Introduction to macro language 209

Source and library macro definitions
You can include a macro definition in a source module. This type of definition is called a source macro
definition, or, sometimes, an in-line macro definition.

You can also insert a macro definition into a system or user library by using the applicable utility
program. This type of definition is called a library macro definition. The IBM-supplied macro definitions are
examples of library macro definitions.

You can call a source macro definition only from the source module in which it is included. You can call
a library macro definition from any source module if the library containing the macro definition is
available to the assembler.

Syntax errors in processing statements are handled differently for source macro definitions and library
macro definitions. In source macro definitions, error messages are listed following the statements in error.
In library macros, however, error messages cannot be associated with the statement in error, because the
statements in library macro definitions are not included in the assembly listing. Therefore, the error
messages are listed directly following the first call of that macro.

Because of the difficulty of finding syntax errors in library macros, run and “debug” a macro definition
as a source macro before placing it in a macro library. Alternatively, use the LIBMAC assembler option to
have the assembler automatically include the source statements of the library macro in your source
module. For more information about the LIBMAC option, see the section “LIBMAC” in the HLASM
Programmer's Guide.

Macro library
The same macro definition can be made available to more than one source program by placing the macro
definition in the macro library. The macro library is a collection of macro definitions that can be used by
all the assembler language programs in an installation. When a macro definition has been placed in the
macro library, it can be called by coding its corresponding macro instruction in a source program. Macro
definitions must be in a macro library with a member name that is the same as the macro name. The
procedure for placing macro definitions in the macro library is described in the applicable utilities
manual.

The DOS/VSE assembler requires library macro definitions to be placed in the macro library in a special
edited format. High Level Assembler does not require this. Library macro definitions must be placed in
the macro library in source statement format. If you wish to use edited macros in z/VSE you can provide
a LIBRARY exit to read the edited macros and convert them into source statement format. A library exit
is supplied with z/VSE and is described in z/VSE: Guide to System Functions.

System macro instructions
The macro instructions that correspond to macro definitions prepared by IBM are called system macro
instructions. System macro instructions are described in the applicable operating system manuals that
describe macro instructions for supervisor services and data management.

Conditional assembly language
The conditional assembly language is a programming language with most of the features that
characterize a programming language. For example, it provides:
v Variables
v Data attributes
v Expression computation
v Assignment instructions
v Labels for branching
v Branching instructions

210 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

v Substring operators that select characters from a string

Use the conditional assembly language in a macro definition to receive input from a calling macro
instruction. You can produce output from the conditional assembly language by using the MNOTE
instruction.

Use the functions of the conditional assembly language to select statements for generation, to determine
their order of generation, and to do computations that affect the content of the generated statements.

The conditional assembly language is described in Chapter 9, “How to write conditional assembly
instructions,” on page 279.

Chapter 6. Introduction to macro language 211

212 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Chapter 7. How to specify macro definitions

A macro definition is a set of statements that defines the name, the format, and the conditions for
generating a sequence of assembler language statements. The macro definition can then be called by a
macro instruction to process the statements. See page “Macro instruction” on page 209 for a description
of the macro instruction. To define a macro you must:
v Give it a name
v Declare any parameters to be used
v Write the statements it contains
v Establish its boundaries with a macro definition header statement (MACRO) and a macro definition

trailer statement (MEND)

Except for conditional assembly instructions, this chapter describes all the statements that can be used to
specify macro definitions. Conditional assembly instructions are described in Chapter 9, “How to write
conditional assembly instructions,” on page 279.

Where to define a macro in a source module
Macro definitions can appear anywhere in a source module. They remain in effect for the rest of your
source module, or until another macro definition defining a macro with the same operation code is
encountered, or until an OPSYN statement deletes its definition. Thus, you can redefine a macro at any
point in your program. The new definition is used for all subsequent calls to the macro in the program.

This type of macro definition is called a source macro definition, or, sometimes, an in-line macro definition. A
macro definition can also reside in a system library; this type of macro is called a library macro definition.
Either type can be called from the source module by the applicable macro instruction.

Macro definitions can also appear inside other macro definitions. There is no limit to the levels of macro
definitions permitted.

The assembler does not process inner macro definitions until it finds the definition during the processing
of a macro instruction calling the outer macro. The following example shows an inner macro definition:

Example:
MACRO Macro header for outer macro
OUTER &A,&C= Macro prototype
AIF (’&C’ EQ ’’).A
MACRO Macro header for inner macro
INNER Macro prototype
.
.
MEND Macro trailer for inner macro

.A ANOP
.
MEND Macro trailer for outer macro

The assembler does not process the macro definition for INNER until OUTER is called with a value for &C
other than a null string.

Open Code: Open code is that part of a source module that lies outside of any source macro definition. At
coding time, it is important to distinguish between source statements that lie in open code, and those that
lie inside macro definitions.

© Copyright IBM Corp. 1992, 2013 213

Format of a macro definition
The general format of a macro definition is shown in Figure 30. The four parts are described in detail in
the following sections.

Macro definition header and trailer
You must establish the boundaries of a macro definition by coding:
v A macro definition header statement as the first statement of the macro definition (a MACRO

statement)
v A macro definition trailer statement as the last statement of the macro definition (a MEND statement)

The instructions used to define the boundaries of a macro instruction are described in the following
sections.

MACRO statement
Use the MACRO statement to indicate the beginning of a macro definition. It must be the first
non-comment statement in every macro definition. Library macro definitions can have ordinary or
internal macro comments before the MACRO statement.

�� MACRO ��

The MACRO statement must not have a name entry or an operand entry.

MEND statement
Use the MEND statement to indicate the end of a macro definition. It also provides an exit when it is
processed during macro expansion. It can appear only once within a macro definition and must be the
last statement in every macro definition.

��
sequence_symbol

MEND ��

┌───┐
│ ┌───┐ │
│ │ MACRO Header statement │ │
│ └───┘ │
│ ┌───┐ │
│ │ ANYNAME Prototype statement│ │
│ └───┘ │
│ ┌───┐ │
│ │ │ │
│ │ Body of macro │ │
│ │ │ │
│ └───┘ │
│ ┌───┐ │
│ │ MEND Trailer statement │ │
│ └───┘ │
└───┘

Figure 30. Format of a macro definition

214 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

sequence_symbol
Is a sequence symbol.

See “MEXIT instruction” on page 228 for details on exiting from a macro before the MEND statement.

Macro instruction prototype
The macro instruction prototype statement (from here on called the “prototype statement”) specifies the
mnemonic operation code and the format of all macro instructions that you use to call the macro
definition.

The prototype statement must be the second non-comment statement in every macro definition. Both
ordinary comment statements and internal comment statements are allowed between the macro definition
header and the macro prototype. Such comment statements are listed only with the macro definition.

��
name_entry

operation_field

�

,

symbolic_parameter

��

name_entry
Is a variable symbol.

You can write this parameter, like the symbolic parameter, as the name entry of a macro prototype
statement. You can then assign a value to this parameter from the name entry in the calling macro
instruction.

If this parameter also appears in the body of a macro, it is given the value assigned to the parameter
in the name field of the corresponding macro instruction.

operation_field
Is an ordinary symbol.

The symbol in the operation field of the prototype statement establishes the name by which a macro
definition must be called. This name becomes the operation code required in any macro instruction
that calls the macro.

Any operation code can be specified in the prototype operation field. If the entry is the same as an
assembler or a machine operation code, the new definition overrides the previous use of the symbol.
The same is true if the specified operation code has been defined earlier in the program as a macro,
in the operation code of a library macro, or defined in an OPSYN instruction as equivalent to another
operation code.

Macros that are defined inline can use any ordinary symbol, up to 63 characters in length, for the
operation field. However, operating system rules might prevent some of these macros from being
stored as member names in a library.

The assembler requires that the library member name and macro name are the same; otherwise error
diagnostic message ASMA126S Library macro name incorrect is issued.

symbolic_parameter
The symbolic parameters are used in the macro definition to represent the operands of the
corresponding macro instruction. A description of symbolic parameters appears under “Symbolic
parameters” on page 222.

Chapter 7. How to specify macro definitions 215

The operand field in a prototype statement lets you specify positional or keyword parameters. These
parameters represent the values you can pass from the calling macro instruction to the statements
within the body of a macro definition.

The operand field of the macro prototype statement must contain 0 to 32000 symbolic parameters
separated by commas. They can be positional parameters or keyword parameters, or both.

If no parameters are specified in the operand field and if the absence of the operand entry is
indicated by a comma preceded and followed by one or more spaces, remarks are allowed.

Here is an example of a prototype statement:
&NAME MOVE &TO,&FROM

Alternative formats for the prototype statement
The prototype statement can be specified in one of the following three ways:
v The normal way, with all the symbolic parameters preceding any remarks
v An alternative way, allowing remarks for each parameter
v A combination of the first two ways

The continuation rules for macro instructions are different from those for machine or assembler
instruction statements. This difference is important for those who write macros that override a
machine/assembler mnemonic.

The following examples show the normal statement format (&NAME1), the alternative statement format
(&NAME2), and a combination of both statement formats (&NAME3):

Opera-
Name tion Operand Comment Cont.

&NAME1 OP1 &OPERAND1,&OPERAND2,&OPERAND3 This is the normal X
statement format

&NAME2 OP2 &OPERAND1, This is the alter- X
&OPERAND2 native statement format

&NAME3 OP3 &OPERAND1, This is a combination X
&OPERAND2,&OPERAND3, of both X
&OPERAND4

Notes:

1. Any number of continuation lines is allowed. However, each continuation line must be indicated by a
non-space character in the column after the end column on the preceding line.

2. For each continuation line, the operand field entries (symbolic parameters) must begin in the continue
column; otherwise, the whole line and any lines that follow are considered to contain remarks.
No error diagnostic message is issued to indicate that operands are treated as remarks in this
situation. However, the FLAG(CONT) assembler option can be specified so that the assembler
issues warning messages if it suspects an error in a continuation line.

3. The standard value for the continue column is 16 and the standard value for the end column is 71.
4. A comma is required after each parameter except the last. If you code excess commas between

parameters, they are considered null positional parameters. No error diagnostic message is issued.
5. One or more spaces is required between the operand and the remarks.
6. If the DBCS assembler option is specified, the continuation features outlined in “Continuation of

double-byte data” on page 13 apply to continuation in the macro language. Extended continuation is
useful if a macro keyword parameter contains double-byte data.

216 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Body of a macro definition
The body of a macro definition contains the sequence of statements that constitutes the working part of a
macro. You can specify:
v Model statements to be generated
v Processing statements that, for example, can alter the content and sequence of the statements generated

or issue error messages
v Comment statements, some that are generated and others that are not
v Conditional assembly instructions to compute results to be displayed in the message created by the

MNOTE instruction, without causing any assembler language statements to be generated

The statements in the body of a macro definition must appear between the macro prototype statement
and the MEND statement of the definition. The body of a macro definition can be empty, that is, contain
no statements.

Nesting Macros: You can include macro definitions in the body of a macro definition.

Model statements
Model statements are statements from which assembler language statements are generated during
conditional assembly. They let you determine the form of the statements to be generated. By specifying
variable symbols as points of substitution in a model statement, you can vary the contents of the
statements generated from that model statement. You can also substitute values into model statements in
open code.

A model statement consists of one or more fields, separated by one or more spaces, in columns 1 to 71.
The fields are called the name, operation, operand, and remarks fields.

Each field or subfield can consist of:
v An ordinary character string composed of alphanumeric and special characters
v A variable symbol as a point of substitution, except in remarks fields and comment statements
v Any combination of ordinary character strings and variable symbols to form a concatenated string

The statements generated from model statements during conditional assembly must be valid machine or
assembler instructions, but must not be conditional assembly instructions. They must follow the coding
rules described in “Rules for model statement fields” on page 220 or they are flagged as errors at
assembly time.

Examples:
LABEL L 3,AREA
LABEL2 L 3,20(4,5)
&LABEL L 3,&AREA
FIELD&A L 3,AREA&C

Variable symbols as points of substitution
Values can be substituted for variable symbols that appear in the name, operation, and operand fields of
model statements; thus, variable symbols represent points of substitution. The three main types of
variable symbol are:
v Symbolic parameters (positional or keyword)
v System variable symbols (see “System variable symbols” on page 229)
v SET symbols (global-scope or local-scope SETA, SETB, or SETC symbols)

Examples:

Chapter 7. How to specify macro definitions 217

&PARAM(3)
&SYSLIST(1,3)
&SYSLIST(2)
&SETA(10)
&SETC(15)

Symbols That Can Be Subscripted: Symbolic parameters, SET symbols, and the system variable symbols
&SYSLIST and &SYSMAC, can all be subscripted. All remaining system variable symbols contain only
one value.

Listing of generated fields
The different fields in a macro-generated statement or a statement generated in open code appear in the
listing in the same column as they are coded in the model statement, with the following exceptions:
v If the substituted value in the name or operation field is too large for the space available, the next field

is moved to the right with one space separating the fields.
v If the substituted value in the operand field causes the remarks field to be displaced, the remarks field

is written on the next line, starting in the column where it is coded in the model statement.
v If the substituted value in the operation field of a macro-generated statement contains leading spaces,

the spaces are ignored.
v If the substituted value in the operation field of a model statement in open code contains leading

spaces, the spaces are used to move the field to the right.
v If the substituted value in the operand field contains leading spaces, the spaces are used to move the

field to the right.
v If the substituted value contains trailing spaces, the spaces are ignored.

Listing of generated fields containing double-byte data
If the DBCS assembler option is specified, then the following differences apply:
v Any continuation indicators present in the model statement are discarded.
v Double-byte data that must be split at a continuation point is always readable on a device capable of

presenting DBCS characters—SI and SO are inserted at the break point, and the break-point always
occurs between double-byte characters.

v The continuation indicator is extended to the left, if necessary, to fill space that cannot be filled with
double-byte data because of alignment and delimiter considerations. The maximum number of columns
filled is 3.

v If continuation is required and the character to the left of the continuation indicator is X, then + is used
as the continuation indicator so as to clearly distinguish the position of the end column. This applies to
any generated field, regardless of its contents, to prevent ambiguity.

v Redundant SI/SO pairs can be present in a field after substitution. If they occur at a continuation
point, the assembler does not distinguish them from SI and SO inserted in the listing by the assembler
to preserve readability. Refer to the generated object code to resolve this ambiguity. For more
information, see Table 37 on page 219.

Rules for concatenation
If a symbolic parameter in a model statement is immediately preceded or followed by other characters or
another symbolic parameter, the characters that correspond to the symbolic parameter are combined in
the generated statement with the other characters, or with the characters that correspond to the other
symbolic parameter. This process is called concatenation.

When variable symbols are concatenated to ordinary character strings, the following rules apply to the
use of the concatenation character (a period). The concatenation character is mandatory when:

�1� An alphanumeric character follows a variable symbol.

�2� A left parenthesis that does not enclose a subscript follows a variable symbol.

218 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

�3�—�4�
A period (.) is to be generated. Two periods must be specified in the concatenated string
following a variable symbol.

The concatenation character is not required when:

�5� An ordinary character string precedes a variable symbol.

�6� A special character, except a left parenthesis or a period, is to follow a variable symbol.

�7� A variable symbol follows another variable symbol.

�8� A variable symbol is used with a subscript. The concatenation character must not be used
between a variable symbol and its subscript; otherwise, the characters are considered a
concatenated string and not a subscripted variable symbol.

Table 37 gives the rules for concatenating variable symbols to ordinary character strings. The highlighted
numbers correspond to the numbers in the mandatory and not required lists.

Table 37. Rules for concatenation

Concatenated String

Values to be Substituted

Generated ResultVariable Symbol Value

&FIELD.A �1�
&FIELDA

&FIELD&FIELDA AREASUM AREAASUM

&DISP.(&BASE)¹
↑ ↑
�2� �6�

&DISP&BASE 10010 100(10)

DC D’&INT..&FRACT’¹
↑
�3�

DC D’&INT&FRACT’
↑
�7�

&INT&FRACT 9988 DC D’99.88’
↑

�4�

DC D’9988’

FIELD&A �5� &A A FIELDA

&A+&B*3-D
↑ ↑
└──┴── �6�

&A&B AB A+B*3-D

&SYM(&SUBSCR)
↑
�8�

&SUBSCR&SYM(10) 10ENTRY ENTRY

Notes:

1. The concatenation character is not generated.

Concatenation of fields containing double-byte data
If the DBCS assembler option is specified, then the following additional rules apply:
v Because ampersand is not recognized in double-byte data, variable symbols must not be present in

double-byte data.
v The concatenation character is mandatory when double-byte data is to follow a variable symbol.
v The assembler checks for redundant SI and SO at concatenation points. If the byte to the left of the join

is SI and the byte to the right of the join is SO, then the SI/SO pair is considered redundant and is
removed.

Chapter 7. How to specify macro definitions 219

Note: The rules for redundant SI and SO are different for variable substitution and listing display,
which are described at “Listing of generated fields containing double-byte data” on page 218.

The following example shows these rules:
&SYMBOL SETC ’<DcDd>’
DBCS DC C’<DaDb>&SYMBOL.<.&.S.Y.M.B.O.L>’

The SI/SO pairs between double-byte characters Db and Dc, and Dd and .&, are removed. The variable
symbol &SYMBOL is recognized between the double-byte strings but not in the double-byte strings. The
result after concatenation is:
DBCS DC C’<DaDbDcDd.&.S.Y.M.B.O.L>’

Rules for model statement fields
The fields that can be specified in model statements are the same fields that can be specified in an
ordinary assembler language statement. They are the name, operation, operand, and remarks fields. You
can also specify a continuation-indicator field, an identification-sequence field, and, in source macro
definitions, a field before the begin column if the correct ICTL instruction has been specified. Character
strings in the last three fields (in the standard format only, columns 72 through 80) are generated exactly
as they appear in the model statement, and no values are substituted for variable symbols.

Model statements must have an entry in the operation field, and, in most cases, an entry in the operand
field in order to generate valid assembler language instructions.

Name field
The entries allowed in the name field of a model statement, before generation, are:
v Space
v An ordinary symbol
v A sequence symbol
v A variable symbol
v Any combination of variable symbols, or system variable symbols such as &SYSNDX, and other

character strings concatenated together

The generated result must be spaces (if valid) or a character string that represents a valid assembler or
machine instruction name field. Double-byte data is not valid in an assembler or machine instruction
name field and must not be generated.

Variable symbols must not be used to generate comment statement indicators (* or .*).

Notes:

1. You cannot reference an ordinary symbol defined in the name field of a model statement until the
macro definition containing the model statement has been called, and the model statement has been
generated.

2. Restrictions on the name entry of assembler language instructions are further specified where each
individual assembler language instruction is described in this manual.

Operation field
The entries allowed in the operation field of a model statement, before generation, are given in the
following list:
v An ordinary symbol that represents the operation code for:

– Any machine instruction
– A macro instruction
– MNOTE instruction
– A variable symbol
– A combination of variable strings concatenated together
– All assembler instructions, except ICTL and conditional assembly instructions

220 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

The following rules apply to the operation field of a model statement:
v Operation code ICTL is not allowed inside a macro definition.
v The MACRO and MEND statements are not allowed in model statements; they are used only for

delimiting macro definitions.
v If the REPRO operation code is specified in a model statement, no substitution is done for the variable

symbols in the record following the REPRO statement.
v Variable symbols can be used alone or as part of a concatenated string to generate operation codes for:

– Any machine instruction
– Any assembler instruction, except COPY, ICTL, ISEQ, REPRO, and MEXIT
The generated operation code must not be an operation code for these instructions, either directly, or
from copies created by use of OPSYN:
– A conditional assembly instruction, such as LCLx, GBLx, SETx, AIF, and AGO
– The following assembler instructions: COPY, ICTL, ISEQ, MACRO, MEND, MEXIT, and REPRO

v Double-byte data is not valid in the operation field.

Operand field
The entries allowed in the operand field of a model statement, before generation, are:
v Spaces (if valid)
v An ordinary symbol
v A character string, combining alphanumeric and special characters (but not variable symbols)
v A variable symbol
v A combination of variable symbols and other character strings concatenated together
v If the DBCS assembler option is specified, character strings that are enclosed in apostrophes can

contain double-byte data.

The allowable results of generation are spaces (if valid) and a character string that represents a valid
assembler, machine instruction, or macro instruction operand field.

Variable symbols: Variable symbols must not be used in the operand field of an ICTL or ISEQ
instruction. A variable symbol must not be used in the operand field of a COPY instruction that is inside
a macro definition.

Remarks field
The remarks field of a model statement can contain any combination of characters. No substitution is
done for variable symbols appearing in the remarks field.

Using spaces
One or more spaces are used to separate the fields in a model statement from each other. Spaces cannot
be generated inside a field in order to delimit another field. However, spaces in a combined
operand-remarks field can be generated to separate these two fields. Note that if the generated operand
field is part of a macro instruction, the entire string (including spaces) is passed as an operand.
MACRO
&PARMTAG PARMCMD
&PARMOPC SETC ’LA 1,=C’’PARAMETER HEADER>>>’’ PARAMETER HEADER’ .* GENERATE LA INSTRUCTION USING R1
&PARMTAG &PARMOPC MEND

Executing this macro would generate the following:
PARMLIST PARMCMD
+PARMLIST LA 1,=C’PARAMETER HEADER>>>’ PARAMETER HEADER

Also notice how this correct example contains a remark field encoded within the operand as permitted by
the rules governing the use of spaces.

Chapter 7. How to specify macro definitions 221

|
|
|
|
|

|
|
|
|

|

|
|

|
|

Both examples also supply a number of spaces in the operand field in a character literal string. This is
valid since a literal string does not cross field boundaries.

Symbolic parameters
Symbolic parameters let you receive values into the body of a macro definition from the calling macro
instruction. You declare these parameters in the macro prototype statement. They can serve as points of
substitution in the body of the macro definition and are replaced by the values assigned to them by the
calling macro instruction.

By using symbolic parameters with meaningful names, you can indicate the purpose for which the
parameters (or substituted values) are used.

Symbolic parameters must be valid variable symbols. A symbolic parameter consists of an ampersand
followed by an alphabetic character and from 0 to 61 alphanumeric characters.

Here are valid symbolic parameters:
&READER &LOOP2
&A23456 &N
&X4F2 &$4

Here are invalid symbolic parameters:
CARDAREA first character is not an ampersand
&256B first character after ampersand is not alphabetic
&BCD%34 contains a special character other than initial ampersand
&IN AREA contains a special character [space] other than initial ampersand

Symbolic parameters have a local scope; that is, the name and value they are assigned only applies to the
macro definition in which they have been declared.

The value of the parameter remains constant throughout the processing of the containing macro
definition during each call of that definition.

Notes:

1. Symbolic parameters must not have multiple definitions or be identical to any other variable symbols
within the given local scope. This applies to the system variable symbols described in “System
variable symbols” on page 229, and to local-scope and global-scope SET symbols described in “SET
symbols” on page 279.

2. Do not begin symbolic parameters with &SYS, these characters are used for system variable symbols
provided with High Level Assembler.

The two kinds of symbolic parameters are:
v Positional parameters
v Keyword parameters

Each positional or keyword parameter used in the body of a macro definition must be declared in the
prototype statement.

Here is an example of a macro definition with symbolic parameters.
MACRO Header

&NAME MOVE &TO,&FROM Prototype
&NAME ST 2,SAVE Model

L 2,&FROM Model
ST 2,&TO Model
L 2,SAVE Model
MEND Trailer

222 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

|
|

Here is a macro instruction that calls this macro. The characters HERE, FIELDA, and FIELDB of the MOVE
macro instruction correspond to the symbolic parameters &NAME, &TO, and &FROM, of the MOVE prototype
statement.
HERE MOVE FIELDA,FIELDB

If the macro instruction is used in a source program, these assembler language statements are generated:
HERE ST 2,SAVE

L 2,FIELDB
ST 2,FIELDA
L 2,SAVE

Positional parameters
Use a positional parameter in a macro definition if you want to change the value of the parameter each
time you call the macro definition. This is because it is easier to supply the value for a positional
parameter than for a keyword parameter. You only have to write the value you want the corresponding
argument to have in the correct position in the operand of the calling macro instruction. However, if you
need a many parameters, use keyword parameters. The keywords make it easier to keep track of the
individual values you must specify at each call by reminding you which parameters are being given
values.

See “Positional operands” on page 262 for details of how to write macro definitions with positional
parameters.

Keyword parameters
Use a keyword parameter in a macro definition for a value that changes infrequently, or if you have
many parameters. The keyword, repeated in the operand, reminds you which parameter is being given a
value and for which purpose the parameter is being used. By specifying a standard default value to be
assigned to the keyword parameter, you can omit the corresponding keyword argument operand in the
calling macro instruction. You can specify the corresponding keyword operands in any order in the
calling macro instruction.

See “Keyword operands” on page 263 for details of how to write macro definitions with keyword
parameters.

Combining positional and keyword parameters
By using positional and keyword parameters in a prototype statement, you combine the benefits of both.
You can use positional parameters in a macro definition for passing values that change frequently, and
keyword parameters for passing values that do not change often.

Positional and keyword parameters can be mixed freely in the macro prototype statement.

See “Combining positional and keyword operands” on page 265 for details of how to write macro
definitions using combined positional and keyword parameters.

Subscripted symbolic parameters
Subscripted symbolic parameters must be coded in the format:
&PARAM(subscript)

where &PARAM is a variable symbol and subscript is an arithmetic expression. The subscript can be any
arithmetic expression allowed in the operand field of a SETA instruction (arithmetic expressions are
discussed in “SETA instruction” on page 308). The arithmetic expression can contain subscripted variable
symbols. Subscripts can be nested to any level if the total length of an individual operand does not
exceed 1024 characters.

Chapter 7. How to specify macro definitions 223

The value of the subscript must be greater than or equal to one. The subscript indicates the position of
the entry in the sublist that is specified as the value of the subscripted parameter (sublists as values in
macro instruction operands are fully described in “Sublists in operands” on page 266).

Processing statements
This section provides information about these processing statements:
v “Conditional assembly instructions”
v “Inner macro instructions”
v “Other conditional assembly instructions”
v “AEJECT instruction” on page 225
v “AINSERT instruction” on page 225
v “AREAD instruction” on page 225
v “ASPACE instruction” on page 227
v “COPY instruction” on page 228
v “MEXIT instruction” on page 228

Conditional assembly instructions
Conditional assembly instructions let you determine at conditional assembly time the content of the
generated statements and the sequence in which they are generated. Here are the instructions and their
functions:

Conditional Assembly Operation Done

GBLA, GBLB, GBLCLCLA, LCLB, LCLC Declaration of variable symbols (global-scope and local-scope SET
symbols) and setting of default initial values

SETA, SETB, SETC Assignment of values to variable symbols (SET symbols)

SETAF, SETCF External function assignment of values to variable symbols (SET
symbols)

ACTR Setting loop counter

AGO Unconditional branch

AIF Conditional branch (based on logical test)

ANOP Pass control to next sequential instruction (no operation)

Conditional assembly instructions can be used both inside macro definitions and in open code. They are
described in Chapter 9, “How to write conditional assembly instructions,” on page 279.

Inner macro instructions
Macro instructions can be nested inside macro definitions, allowing you to call other macros from within
your own definition.

Other conditional assembly instructions
Several additional instructions can help you write your macro definitions. Here are the instructions and
their functions:

Inner Macro Instruction Operation Done

AEJECT Skip to next page

AINSERT Insert statement into input stream

224 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Inner Macro Instruction Operation Done

AREAD Assign an arbitrary character string to a variable symbol (SETC
symbol)

ASPACE Insert one or more blank lines in listing

COPY Copy the source statements from a source language library
member.

MEXIT Exit from the macro definition

AEJECT instruction
Use the AEJECT instruction to stop the printing of the assembler listing of your macro definition on the
current page, and continue the printing on the next page.

��
sequence_symbol

AEJECT ��

sequence_symbol
Is a sequence symbol.

The AEJECT instruction causes the next line of the assembly listing of your macro definition to be printed
at the top of a new page. If the line before the AEJECT statement appears at the bottom of a page, the
AEJECT statement has no effect. An AEJECT instruction immediately following another AEJECT
instruction causes a blank page in the listing of the macro definition.

Notes:

1. The AEJECT instruction can only be used inside a macro definition.
2. The AEJECT instruction itself is not printed in the listing.
3. The AEJECT instruction does not affect the listing of statements generated when the macro is called.

AINSERT instruction
The AINSERT instruction, inside macro definitions, harnesses the power of macros to generate source
statements, for instance, using variable substitution. Generated statements are queued in a special buffer
and read after the macro generator finishes.

The specifications for the AINSERT instruction, which can also be used in open code, are described in
“AINSERT instruction” on page 92.

AREAD instruction
The AREAD instruction assigns an arbitrary character string value to a SETC symbol.

The AREAD instruction has two formats. The first format lets you assign to a SETC symbol the character
string value of a statement that is placed immediately after a macro instruction.

The AREAD instruction can only be used inside macro definitions.

Chapter 7. How to specify macro definitions 225

Assign character string value

�� SETC_symbol AREAD
NOPRINT
NOSTMT

��

The second format of the AREAD instruction assigns to a SETC symbol a character string containing the
local time.

Assign local time

�� SETC_symbol AREAD CLOCKB
CLOCKD

��

SETC_symbol
Is a SETC symbol. See “SETC instruction” on page 326.

NOSTMT
Specifies that the statement to be read by the AREAD instruction is printed in the assembly listing,
but not given any statement number.

NOPRINT
specifies that the statement does not appear in the listing, and no statement number is assigned to it.

CLOCKB
Assigns an 8-character string to SETC_symbol containing the local time in hundredths of a second
since midnight.

CLOCKD
Assigns an 8-character string to SETC_symbol containing the local time in the format HHMMSSTH,
where HH is a value 00 - 23, MM and SS each have a value 00 - 59, and TH has a value 00 - 99.

Assign character string value
The first format of AREAD functions in much the same way as symbolic parameters, but instead of
providing your input to macro processing as part of the macro instruction, you can supply full input
records from either the AINSERT buffer (if any are present), or from the records in the primary input
stream that follow immediately after the macro instruction. Any number of successive records can be read
into the macro for processing. If no records remain, a null value is assigned, but no diagnostic message is
issued.

SETC_symbol can be subscripted. When the assembler encounters a Format-1 AREAD statement during
the processing of a macro instruction, it reads the source record following the macro instruction and
assigns an 80-character string to the SETC symbol in the name field. For nested macros, it reads the
record following the outermost macro instruction.

If no operand is specified, the record to be read by AREAD is printed in the listing and assigned a
statement number. The AREAD action is indicated in the listing by a minus sign between the statement
number and the first character of the record.

226 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Repeated AREAD instruction statements read successive records. In the following example, the input
record starting with INRECORD1 is read by the first AREAD statement, and assigned to the SETC symbol
&VAL. The input record starting with INRECORD2 is read by the second AREAD statement, and assigned to
the SETC symbol &VAL1.

Example:
MACRO
MAC1
.

&VAL AREAD
.

&VAL1 AREAD
.
MEND
CSECT
.
MAC1

INRECORD1 THIS IS THE STATEMENT TO BE PROCESSED FIRST
INRECORD2 THIS IS THE NEXT STATEMENT

.
END

The records read by the AREAD instruction can be in code brought in with the COPY instruction, if the
macro instruction employing the AREAD appears in the COPY member. Otherwise the COPY instruction
may be read as an ordinary text line.

If no more records exist in the code brought in by the COPY instruction, subsequent records are read
from the AINSERT buffer or the primary input stream.

Assign local time of day
The second format of AREAD functions in much the same way as a SETC instruction, but instead of
supplying the value you want assigned to the SETC symbol as a character string in the operand of the
AREAD instruction, the value is provided by the operating system in the form of an 8-character string
containing the local time. A Format-2 AREAD instruction does not cause the assembler to read the
statement following the macro instruction.

Example:
MACRO
MAC2
.

&VAL AREAD CLOCKB
DC C’&VAL’

&VAL1 AREAD CLOCKD
DC C’&VAL1’
.
MEND

When this macro definition is called, these statements are generated:
MAC2

+ DC C’03251400’
+ DC C’09015400’

ASPACE instruction
Use the ASPACE instruction to insert one or more blank lines in the listing of a macro definition in your
source module, thus separating sections of macro definition code on the listing page.

Chapter 7. How to specify macro definitions 227

|
|
|

��
sequence_symbol

ASPACE
number_of_lines

��

sequence_symbol
Is a sequence symbol.

number_of_lines
Is a non-negative decimal integer that specifies the number of lines to be left blank. If number_of_lines
is omitted, one line is left blank. If number_of_lines has a value greater than the number of lines
remaining on the listing page, the instruction has the same effect as an AEJECT statement.

Notes:

1. The ASPACE instruction can only be used inside a macro definition.
2. The ASPACE instruction itself is not printed in the listing.
3. The ASPACE instruction does not affect the listing of statements generated when the macro is called.

COPY instruction
The COPY instruction, inside macro definitions, lets you copy into the macro definition any sequence of
statements allowed in the body of a macro definition. These statements become part of the body of the
macro before macro processing takes place. You can also use the COPY instruction to copy complete
macro definitions into a source module.

The specifications for the COPY instruction, which can also be used in open code, are described in
“COPY instruction” on page 105.

MEXIT instruction
The MEXIT instruction provides an exit for the assembler from any point in the body of a macro
definition. The MEND instruction provides an exit only from the end of a macro definition (see “MEND
statement” on page 214 for details).

The MEXIT instruction statement can be used only inside macro definitions.

��
sequence_symbol

MEXIT ��

sequence_symbol
Is a sequence symbol.

The MEXIT instruction causes the assembler to exit from a macro definition to the next sequential
instruction after the macro instruction that calls the definition. (This also applies to nested macro
instructions, which are described in “Nesting macro instruction definitions” on page 272.)

For example, the following macro definition contains an MEXIT statement:
MACRO
EXITS
DC C’A’
DC C’B’
DC C’C’
MEXIT

228 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

DC C’D’
DC C’E’
DC C’F’
MEND

When this macro definition is called, these statements are generated:
EXITS

+ DC C’A’
+ DC C’B’
+ DC C’C’

Comment statements
Two types of comment statements can be used within a macro definition:
v Ordinary comment statements
v Internal macro comment statements

Ordinary comment statements
Ordinary comment statements let you make descriptive remarks about the generated output from a
macro definition. Ordinary comment statements can be used in macro definitions and in open code.

An ordinary comment statement consists of an asterisk in the begin column, followed by any character
string. The comment statement is used by the assembler to generate an assembler language comment
statement, just as other model statements are used by the assembler to generate assembler statements. No
variable symbol substitution is done.

Internal macro comment statements
You can also write internal macro comments in the body of a macro definition to describe the operations
done during conditional assembly when the macro is processed.

An internal macro comment statement consists of a period in the begin column, followed by an asterisk,
followed by any character string. No values are substituted for any variable symbols that are specified in
internal macro comment statements.

Internal macro comment statements can appear anywhere in a macro definition.

Notes:
1. Internal macro comments are not generated.
2. The comment character string can contain double-byte data.
3. Internal macro comment statements can be used in open code, however, they are processed as ordinary

comment statements.

System variable symbols
System variable symbols are a special class of variable symbols, starting with the characters &SYS. Their
values are set by the assembler according to specific rules. You cannot declare them in local-scope SET
symbols or global-scope SET symbols, nor use them as symbolic parameters in macro prototype
statements. You can use these symbols as points of substitution in model statements and conditional
assembly instructions.

All system variable symbols are subject to the same rules of concatenation and substitution as other
variable symbols.

A description of each system variable symbols begins with “&SYSADATA_DSN System Variable Symbol”
on page 231.

Chapter 7. How to specify macro definitions 229

Do not prefix your SET symbols with the character sequence &SYS. The assembler uses this sequence
as a prefix to all system variable symbol names, and using them for other SET symbol names might
cause future conflicts.

Scope and variability of system variable symbols
Global Scope

Some system variable symbols have values that are established at the beginning of an assembly
and are available both in open code and from within macros. These symbols have global scope.
Most system variable symbols with global scope have fixed values, although there are some
whose value can change within a single macro expansion. The global-scope system variables
symbols with variable values are &SYSSTMT, &SYSM_HSEV, and &SYSM_SEV.

Local Scope
Some system variable symbols have values that are available only from within a macro
expansion. These system variables have local scope. Since the value of system variable symbols
with local scope is established at the beginning of a macro expansion and remains unchanged
throughout the expansion, they are designated as having constant values, even though they
might have different values in a later expansion of the same macro, or within inner macros.

Over half of the system variable symbols have local scope and therefore are not available in open
code.

Uses, values, and properties
System variable symbols have many uses, including:

1 macro
2 getlocalsys
3 .* Define globals for values of interest
4 Gblc &clock,&location,&dsname,&nest
5 Gbla &nesta
6 .* now update the globals from within the macro
7 &clock setc ’&sysclock’
8 &location setc ’&sysloc’
9 &dsname setc ’&sysin_dsn’
10 &nest setc ’&sysnest’
11 &nesta seta &sysnest
12 mend

000000 00000 00020 14 r csect
15 *
16 * define globals in opencode
17 *
18 Gblc &clock,&location,&dsname,&nest
19 Gbla &nesta
20 *
21 * invoke macro to update the global values
22 *
23 getlocalsys
24 *
25 * now use the updated values
26 *
27 dc c’&clock’

000000 F2F0F0F460F0F660 + dc c’2008-07-11 17:48:42.914829’
28 dc c’&nest’

00001A F1 + dc c’1’
29 dc f’&nesta’

00001B 00
00001C 00000001 + dc f’1’
000000 31 end r

Figure 31. Exposing the value of a local scope variable to open code

230 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

v Helping to control conditional assemblies
v Capturing environmental data for inclusion in the generated object code
v Providing program debugging data

Refer to Appendix C, “Macro and conditional assembly language summary,” on page 363 for a
summary of the values and properties that can be assigned to system variable symbols.

&SYSADATA_DSN System Variable Symbol
Use &SYSADATA_DSN in a macro definition to obtain the name of the data set to which the assembler is
writing the associated data.

The local-scope system variable symbol &SYSADATA_DSN is assigned a read-only value each time a
macro definition is called.

z/OS

When the assembler runs on the z/OS operating systems, the value of the character string
assigned to &SYSADATA_DSN is always the value stored in the JFCB for SYSADATA. If
SYSADATA is allocated to DUMMY, or a NULLFILE, the value in &SYSADATA_DSN is NULLFILE.

For example, &SYSADATA_DSN might be assigned a value such as:
IBMAPC.SYSADATA

z/VM

When the assembler runs on the CMS component of the z/VM operating systems, the value of
the character string assigned to &SYSADATA_DSN is determined as follows:

Table 38. Contents of &SYSADATA_DSN on CMS

SYSADATA Allocated To: Contents of &SYSADATA_DSN:

CMS file The 8-character file name, the 8-character file type, and
the 2-character file mode of the file, each separated by a
space

Dummy file (no physical I/O) DUMMY

Labeled tape file The data set name of the tape file

Unlabeled tape file TAPn, where n is a value from 0 to 9, or A to F.

For example, &SYSADATA_DSN might be assigned a value such as:
SAMPLE SYSADATA A1

z/VSE

The value of the character string assigned to &SYSADATA_DSN is the file ID from the SYSADAT
dlbl.

For example, &SYSADATA_DSN might be assigned a value such as:
MYDATA

Notes:

1. The value of the type attribute of &SYSADATA_DSN (T'&SYSADATA_DSN) is always U.
2. The value of the count attribute of &SYSADATA_DSN (K'&SYSADATA_DSN) is equal to the number

of characters assigned as a value to &SYSADATA_DSN. In the previous CMS example, the count
attribute of &SYSADATA_DSN is 20.

&SYSADATA_MEMBER System Variable Symbol
z/VSE The value of &SYSADATA_MEMBER is always null. The value of the type attribute is O, and the

value of the count attribute is 0.

Chapter 7. How to specify macro definitions 231

z/VM and z/OS
You can use &SYSADATA_MEMBER in a macro definition to obtain the name of the data set
member to which the assembler is writing the associated data.

The local-scope system variable symbol &SYSADATA_MEMBER is assigned a read-only value
each time a macro definition is called.

If the data set to which the assembler is writing the associated data is not a z/OS partitioned
data set, &SYSADATA_MEMBER is assigned a null character string.

Notes:

1. The value of the type attribute of &SYSADATA_MEMBER (T'&SYSADATA_MEMBER) is U, unless
&SYSADATA_MEMBER is assigned a null character string, in which case the value of the type
attribute is O.

2. The value of the count attribute of &SYSADATA_MEMBER (K'&SYSADATA_MEMBER) is equal to
the number of characters assigned as a value to &SYSADATA_MEMBER. If &SYSADATA_MEMBER is
assigned a null character string, the value of the count attribute is 0.

&SYSADATA_VOLUME System Variable Symbol
Use &SYSADATA_VOLUME in a macro definition to obtain the volume identifier of the first volume
containing the data set to which the assembler is writing the associated data.

The local-scope system variable symbol &SYSADATA_VOLUME is assigned a read-only value each time
a macro definition is called.

z/VM If the assembler runs on the CMS component of the z/VM operating system, and the associated
data is being written to a Shared File System CMS file, &SYSADATA_VOLUME is assigned the
value “** SFS”.

If the volume on which the data set resides is not labeled, &SYSADATA_VOLUME is assigned a null
character string.

Notes:

1. The value of the type attribute of &SYSADATA_VOLUME (T'&SYSADATA_VOLUME) is U, unless
&SYSADATA_VOLUME is assigned a null character string, in which case the value of the type
attribute is O.

2. The value of the count attribute of &SYSADATA_VOLUME (K'&SYSADATA_VOLUME) is equal to
the number of characters assigned as a value to &SYSADATA_VOLUME. If &SYSADATA_VOLUME
is assigned a null character string, the value of the count attribute is 0. The maximum length of this
system variable symbol is 6.

&SYSASM System Variable Symbol
Use &SYSASM to obtain the name of the assembler being used to assemble your source module.
&SYSASM has a global scope. For example, when IBM High Level Assembler for z/OS & z/VM &
z/VSE is used, &SYSASM has the value:
HIGH LEVEL ASSEMBLER

Notes:

1. The value of the type attribute of &SYSASM (T'&SYSASM) is always U.
2. The value of the count attribute (K'&SYSASM) is the number of characters assigned. In the example,

the count attribute of &SYSASM is 20.

232 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

&SYSCLOCK System Variable Symbol
Use &SYSCLOCK to obtain the TOD clock date and time at which the macro was generated, based on
Universal Time (GMT).

The local-scope system variable symbol &SYSCLOCK is assigned a read-only value each time a macro
definition is called.

The value of &SYSCLOCK is a 26-character string in the format:
YYYY-MM-DD HH:MM:SS.mmmmmm

where:

YYYY Is a four-digit field that gives the year, including the century. It has a value 0000 - 9999.

MM Is a two-digit field that gives the month of the year. It has a value 01 - 12.

DD Is a two-digit field that gives the day of the month. It has a value 01 - 31.

HH Is a two-digit field that gives the hour of the day. It has a value 00 - 23.

MM Is a two-digit field that gives the minute of the hour. It has a value 00 - 59.

SS Is a two-digit field that gives the second of the minute. It has a value 00 - 59.

mmmmmm
Is a six-digit field that gives the microseconds within the seconds. It has a value 000000 - 999999.

Example:
2001-06-08 17:36:03 043284

Notes:

1. The value of the type attribute of &SYSCLOCK (T'&SYSCLOCK) is always U.
2. The value of the count attribute (K'&SYSCLOCK) is always 26.

&SYSDATC System Variable Symbol
Use &SYSDATC to obtain the date, including the century, on which your source module is assembled.
&SYSDATC has a global scope.

The value of &SYSDATC is an 8-character string in the format:
YYYYMMDD

where:

YYYY Is four-digit field that gives the year, including the century. It has a value 0000 - 9999.

MM Is two-digit field that gives the month of the year. It has a value 01 - 12.

DD Is two-digit field that gives the day of the month. It has a value 01 - 31.

Example:
20000328

Notes:

1. The date corresponds to the date printed in the page heading of listings and remains constant for
each assembly.

2. The value of the type attribute of &SYSDATC (T'&SYSDATC) is always N.
3. The value of the count attribute (K'&SYSDATC) is always 8.

Chapter 7. How to specify macro definitions 233

&SYSDATE System Variable Symbol
Use &SYSDATE to obtain the date, in standard format, on which your source module is assembled.
&SYSDATE has a global scope.

The value of &SYSDATE is an 8-character string in the format:
MM/DD/YY

where:

MM Is a two-digit field that gives the month of the year. It has a value 01 - 12.

DD Is a two-digit field that gives the day of the month. It has a value 01 - 31. It is separated from
MM by a slash.

YY Is a two-digit field that gives the year of the century. It has a value 00 - 99. It is separated from
DD by a slash.

Example:
07/11/08

Notes:

1. The date corresponds to the date printed in the page heading of listings and remains constant for
each assembly.

2. The value of the type attribute of &SYSDATE (T'&SYSDATE) is always U.
3. The value of the count attribute (K'&SYSDATE) is always 8.

&SYSECT System Variable Symbol
Use &SYSECT in a macro definition to generate the name of the current control section. The current
control section is the control section in which the macro instruction that calls the definition appears. You
cannot use &SYSECT in open code.

The local-scope system variable symbol &SYSECT is assigned a read-only value each time a macro
definition is called.

The value assigned is the symbol that represents the name of the current control section from which the
macro definition is called. Note that it is the control section in effect when the macro is called. A control
section that has been initiated or continued by substitution does not affect the value of &SYSECT for the
expansion of the current macro. However, it might affect &SYSECT for a subsequent macro call. Nested
macros cause the assembler to assign a value to &SYSECT that depends on the control section in force
inside the outer macro when the inner macro is called.

Notes:

1. The control section whose name is assigned to &SYSECT can be defined by a program sectioning
statement. This can be a START, CSECT, RSECT, DSECT, or COM statement.

2. The value of the type attribute of &SYSECT (T'&SYSECT) is always U.
3. The value of the count attribute (K'&SYSECT) is equal to the number of characters assigned as a value

to &SYSECT.
4. Throughout the use of a macro definition, the value of &SYSECT is considered a constant,

independent of any program sectioning statements or inner macro instructions in that definition.

The next example shows these rules:
MACRO
INNER &INCSECT

&INCSECT CSECT Statement 1
DC A(&SYSECT) Statement 2

234 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

MEND

MACRO
OUTER1

CSOUT1 CSECT Statement 3
DS 100C
INNER INA Statement 4
INNER INB Statement 5
DC A(&SYSECT) Statement 6
MEND

MACRO
OUTER2
DC A(&SYSECT) Statement 7
MEND

MAINPROG CSECT Statement 8

DS 200C
OUTER1 Statement 9
OUTER2 Statement 10

Generated Program

MAINPROG CSECT

DS 200C
CSOUT1 CSECT

DS 100C
INA CSECT

DC A(CSOUT1)
INB CSECT

DC A(INA)
DC A(MAINPROG)
DC A(INB)

In this example:
v Statement 8 is the last program sectioning statement processed before statement 9 is processed.

Therefore, &SYSECT is assigned the value MAINPROG for macro instruction OUTER1 in statement 9.
MAINPROG is substituted for &SYSECT when it appears in statement 6.

v Statement 3 is the program sectioning statement processed before statement 4 is processed. Therefore,
&SYSECT is assigned the value CSOUT1 for macro instruction INNER in statement 4. CSOUT1 is substituted
for &SYSECT when it appears in statement 2.

v Statement 1 is used to generate a CSECT statement for statement 4. This is the last program sectioning
statement that appears before statement 5. Therefore, &SYSECT is assigned the value INA for macro
instruction INNER in statement 5. INA is substituted for &SYSECT when it appears in statement 2.

v Statement 1 is used to generate a CSECT statement for statement 5. This is the last program sectioning
statement that appears before statement 10. Therefore, &SYSECT is assigned the value INB for macro
instruction OUTER2 in statement 10. INB is substituted for &SYSECT when it appears in statement 7.

&SYSIN_DSN System Variable Symbol
Use &SYSIN_DSN in a macro definition to obtain the name of the data set from which the assembler is
reading the source module.

The local system variable symbol &SYSIN_DSN is assigned a read-only value each time a macro
definition is called.

z/OS If concatenated data sets are used to provide the source module, &SYSIN_DSN has a value equal
to the data set name of the data set that contains the open code source line of the macro call
statement, irrespective of the nesting depth of the macro line containing the &SYSIN_DSN
reference.

Chapter 7. How to specify macro definitions 235

When the assembler runs on the z/OS operating systems, the value of the character string
assigned to &SYSIN_DSN is always the value stored in the JFCB for SYSIN.

z/VM When the assembler runs on the CMS component of the z/VM operating systems, the value of
the character string assigned to &SYSIN_DSN is determined as follows:

Table 39. Contents of &SYSIN_DSN on CMS

SYSIN Allocated To: Contents of &SYSIN_DSN:

CMS file The 8-character file name, the 8-character file type, and
the 2-character file mode of the file, each separated by a
space

Reader READER

Terminal TERMINAL

Labeled tape file The data set name of the tape file

Unlabeled tape file TAPn, where n is a value from 0 to 9, or A to F.

z/VSE When the assembler runs on the z/VSE operating system, the value of the character string
assigned to &SYSIN_DSN is determined as follows:

Table 40. Contents of &SYSIN_DSN on z/VSE

SYSIPT Assigned To: Contents of &SYSIN_DSN:

Job stream (SYSIPT) SYSIPT

Disk The file-id

Labeled tape file The file ID of the tape file

Unlabeled tape file SYSIPT

Examples:

On z/OS, &SYSIN_DSN might be assigned a value such as:
IBMAPC.ASSEMBLE.SOURCE

On CMS, &SYSIN_DSN might be assigned a value such as:
SAMPLE ASSEMBLE A1

Notes:

1. If the SOURCE user exit provides the data set information then the value in &SYSIN_DSN is the
value extracted from the Exit-Specific Information block described in the section “Exit-Specific
Information Block” in the HLASM Programmer's Guide.

2. The value of the type attribute of &SYSIN_DSN (T'&SYSIN_DSN) is always U.
3. The value of the count attribute of &SYSIN_DSN (K'&SYSIN_DSN) is equal to the number of

characters assigned as a value to &SYSIN_DSN. In the previous CMS example, the count attribute of
&SYSIN_DSN is 20.

4. Throughout the use of a macro definition, the value of &SYSIN_DSN is considered a constant.

&SYSIN_MEMBER System Variable Symbol
z/VSE The value of &SYSIN_MEMBER is always null.

The value of the type attribute is O, and the value of the count attribute is 0.

zVM z/OS

236 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

You can use &SYSIN_MEMBER in a macro definition to obtain the name of the data set member
from which the assembler is reading the source module. If concatenated data sets are used to
provide the source module, &SYSIN_MEMBER has a value equal to the name of the data set
member that contains the macro instruction that calls the definition.

The local-scope system variable symbol &SYSIN_MEMBER is assigned a read-only value each
time a macro definition is called.

If the data set from which the assembler is reading the source module is not a z/OS partitioned
data set or a CMS MACLIB, &SYSIN_MEMBER is assigned a null character string.

Notes:

1. If the SOURCE user exit provides the data set information then the value in &SYSIN_MEMBER is the
value extracted from the Exit-Specific Information block described in the section “Exit-Specific
Information Block” in the HLASM Programmer's Guide.

2. The value of the type attribute of &SYSIN_MEMBER (T'&SYSIN_MEMBER) is U, unless
&SYSIN_MEMBER is assigned a null character string, in which case the value of the type attribute is
O.

3. The value of the count attribute of &SYSIN_MEMBER (K'&SYSIN_MEMBER) is equal to the number
of characters assigned as a value to &SYSIN_MEMBER. If &SYSIN_MEMBER is assigned a null
character string, the value of the count attribute is 0.

4. Throughout the use of a macro definition, the value of &SYSIN_MEMBER is considered a constant.

&SYSIN_VOLUME System Variable Symbol
Use &SYSIN_VOLUME in a macro definition to obtain the volume identifier of the first volume
containing the data set from which the assembler is reading the source module.

z/VM and z/OS
If concatenated data sets are used to provide the source module, &SYSIN_VOLUME has a value
equal to the volume identifier of the first volume containing the data set that contains the macro
call instruction.

The local-scope system variable symbol &SYSIN_VOLUME is assigned a read-only value each time a
macro definition is called.

z/VM If the assembler runs on the CMS component of the z/VM operating system, and the source
module is being read from a Shared File System CMS file, &SYSIN_VOLUME is assigned the
value “** SFS”.

If the volume on which the input data set resides is not labeled, &SYSIN_VOLUME is assigned a null
character string.

Notes:

1. If the SOURCE user exit provides the data set information then the value in &SYSIN_VOLUME is the
value extracted from the Exit-Specific Information block described in the section “Exit-Specific
Information Block” in the HLASM Programmer's Guide.

2. The value of the type attribute of &SYSIN_VOLUME (T'&SYSIN_VOLUME) is U, unless
&SYSIN_VOLUME is assigned a null character string, in which case the value of the type attribute is
O.

3. The value of the count attribute of &SYSIN_VOLUME (K'&SYSIN_VOLUME) is equal to the number
of characters assigned as a value to &SYSIN_VOLUME. If &SYSIN_VOLUME is assigned a null
character string, the value of the count attribute is 0. The maximum length of this system variable
symbol is 6.

4. Throughout the use of a macro definition, the value of &SYSIN_VOLUME is considered a constant.

Chapter 7. How to specify macro definitions 237

&SYSJOB System Variable Symbol
Use &SYSJOB to obtain the job name of the assembly job used to assemble your source module. &SYSJOB
has a global scope.

When the assembler runs on the CMS component of the VM operating systems, &SYSJOB is assigned a
value of (NOJOB).

Notes:

1. The value of the type attribute of &SYSJOB (T'&SYSJOB) is always U.
2. The value of the count attribute (K'&SYSJOB) is the number of characters assigned.

&SYSLIB_DSN System Variable Symbol
Use &SYSLIB_DSN in a macro definition to obtain name of the data set from which the assembler read
the macro definition statements. If the macro definition is a source macro definition, &SYSLIB_DSN is
assigned the same value as &SYSIN_DSN.

The local-scope system variable symbol &SYSLIB_DSN is assigned a read-only value each time a macro
definition is called.

When the assembler runs on the z/OS operating systems, the value of the character string assigned to
&SYSLIB_DSN is always the value stored in the JFCB for SYSLIB.

When the assembler runs on the CMS component of the VM operating systems, and the macro definition
is a library macro definition, &SYSLIB_DSN is assigned the file name, file type, and file mode of the data
set.

z/VSE When the macro definition is a library macro definition, &SYSLIB_DSN is assigned the library
name and sublibrary name of the z/VSE Librarian file.

Examples

Under z/OS, &SYSLIB_DSN might be assigned a value such as:
SYS1.MACLIB

Under CMS, &SYSLIB_DSN might be assigned a value such as:
DMSGPI MACLIB S2

Under z/VSE, &SYSLIB_DSN might be assigned a value such as:
IJSYSRS.SYSLIB

Notes:

1. If the LIBRARY user exit provides the data set information then the value in &SYSLIB_DSN is the
value extracted from the Exit-Specific Information block described in the section “Exit-Specific
Information Block” in the HLASM Programmer's Guide.

2. The value of the type attribute of &SYSLIB_DSN (T'&SYSLIB_DSN) is always U.
3. The value of the count attribute of &SYSLIB_DSN (K'&SYSLIB_DSN) is equal to the number of

characters assigned as a value to &SYSLIB_DSN.
4. Throughout the use of a macro definition, the value of &SYSLIB_DSN is considered a constant.

&SYSLIB_MEMBER System Variable Symbol
Use &SYSLIB_MEMBER in a macro definition to obtain the name of the data set member from which the
assembler read the macro definition statements. If the macro definition is a source macro definition,
&SYSLIB_MEMBER is assigned the same value as &SYSIN_MEMBER.

238 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

The local-scope system variable symbol &SYSLIB_MEMBER is assigned a read-only value each time a
macro definition is called.

Notes:

1. If the LIBRARY user exit provides the data set information then the value in &SYSLIB_MEMBER is
the value extracted from the Exit-Specific Information block described in the section “Exit-Specific
Information Block” in the HLASM Programmer's Guide.

2. The value of the type attribute of &SYSLIB_MEMBER (T'&SYSLIB_MEMBER) is U, unless
&SYSLIB_MEMBER is assigned a null character string, in which case the value of the type attribute is
O.

3. The value of the count attribute of &SYSLIB_MEMBER (K'&SYSLIB_MEMBER) is equal to the number
of characters assigned as a value to &SYSLIB_MEMBER. If &SYSLIB_MEMBER is assigned a null
character string, the value of the count attribute is 0.

4. Throughout the use of a macro definition, the value of &SYSLIB_MEMBER is considered a constant.

&SYSLIB_VOLUME System Variable Symbol
Use &SYSLIB_VOLUME in a macro definition to obtain the volume identifier of the volume containing
the data set from which the assembler read the macro definition statements. If the macro definition is a
source macro definition, &SYSLIB_VOLUME is assigned the same value as &SYSIN_VOLUME.

The local-scope system variable symbol &SYSLIB_VOLUME is assigned a read-only value each time a
macro definition is called.

If the assembler runs on the CMS component of the VM operating system, and the source module is
being read from a Shared File System CMS file, &SYSLIB_VOLUME is assigned the value ** SFS.

Notes:

1. If the LIBRARY user exit provides the data set information then the value in &SYSLIB_VOLUME is
the value extracted from the Exit-Specific Information block described in the section “Exit-Specific
Information Block” in the HLASM Programmer's Guide.

2. The value of the type attribute of &SYSLIB_VOLUME (T'&SYSLIB_VOLUME) is U, unless
&SYSLIB_VOLUME is assigned a null character string, in which case the value of the type attribute is
O.

3. The value of the count attribute of &SYSLIB_VOLUME (K'&SYSLIB_VOLUME) is equal to the number
of characters assigned as a value to &SYSLIB_VOLUME. If &SYSLIB_VOLUME is assigned a null
character string, the value of the count attribute is 0. The maximum length of this system variable
symbol is 6.

4. Throughout the use of a macro definition, the value of &SYSLIB_VOLUME is considered a constant.

&SYSLIN_DSN System Variable Symbol
Use &SYSLIN_DSN in a macro definition to obtain the name of the data set to which the assembler is
writing the object records when assembler option OBJECT, GOFF, or XOBJECT is specified.

The local-scope system variable symbol &SYSLIN_DSN is assigned a read-only value each time a macro
definition is called.

z/OS The value of the character string assigned to &SYSLIN_DSN is always the value stored in the
JFCB for SYSLIN. If SYSLIN is allocated to DUMMY, or a NULLFILE, the value in
&SYSLIN_DSN is “NULLFILE”.

z/VM The value of the character string assigned to &SYSLIN_DSN is determined as follows:

Chapter 7. How to specify macro definitions 239

Table 41. Contents of &SYSLIN_DSN on CMS

SYSLIN Allocated To: Contents of &SYSLIN_DSN:

CMS file The 8-character file name, the 8-character file type, and
the 2-character file mode of the file, each separated by a
space

Dummy file (no physical I/O) DUMMY

Punch PUNCH

Labeled tape file The data set name of the tape file

Unlabeled tape file TAPn, where n is a value from 0 to 9, or A to F.

z/VSE

The value of the character string assigned to &SYSLIN_DSN is determined as follows:

Table 42. Contents of &SYSLIN_DSN on z/VSE

SYSLNK Assigned To: Contents of &SYSLIN_DSN:

Disk file The file-id

Labeled tape file The file ID of the tape file

Unlabeled tape file SYSLNK

Examples:

On z/OS, &SYSLIN_DSN might be assigned a value such as:
IBMAPC.OBJ

On CMS, &SYSLIN_DSN might be assigned a value such as:
SAMPLE TEXT A1

Notes:

1. If the OBJECT user exit provides the data set information then the value in &SYSLIN_DSN is the
value extracted from the Exit-Specific Information block described in the section “Exit-Specific
Information Block” in the HLASM Programmer's Guide.

2. The value of the type attribute of &SYSLIN_DSN (T'&SYSLIN_DSN) is always U.
3. The value of the count attribute of &SYSLIN_DSN (K'&SYSLIN_DSN) is equal to the number of

characters assigned as a value to &SYSLIN_DSN.

&SYSLIN_MEMBER System Variable Symbol
z/VSE The value of &SYSLIN_MEMBER is always null.

The value of the type attribute is O, and the value of the count attribute is 0.

z/VM and z/OS
You can use &SYSLIN_MEMBER in a macro definition to obtain the name of the data set member
to which the assembler is writing the object module when the assembler option OBJECT, GOFF,
or XOBJECT is specified.

The local-scope system variable symbol &SYSLIN_MEMBER is assigned a read-only value each
time a macro definition is called.

If the library to which the assembler is writing the object records is not a z/OS partitioned data
set, &SYSLIN_MEMBER is assigned a null character string.

240 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Notes:

1. If the OBJECT user exit provides the data set information then the value in &SYSLIN_MEMBER is the
value extracted from the Exit-Specific Information block described in the section “Exit-Specific
Information Block” in the HLASM Programmer's Guide.

2. The value of the type attribute of &SYSLIN_MEMBER (T'&SYSLIN_MEMBER) is U, unless
&SYSLIN_MEMBER is assigned a null character string, in which case the value of the type attribute is
O.

3. The value of the count attribute of &SYSLIN_MEMBER (K'&SYSLIN_MEMBER) is equal to the
number of characters assigned as a value to &SYSLIN_MEMBER. If &SYSLIN_MEMBER is assigned a
null character string, the value of the count attribute is 0.

&SYSLIN_VOLUME System Variable Symbol
Use &SYSLIN_VOLUME in a macro definition to obtain the volume identifier of the object data set. The
volume identifier is of the first volume containing the data set. &SYSLIN_VOLUME is only assigned a
value when you specify the OBJECT, GOFF, or XOBJECT assembler option.

The local-scope system variable symbol &SYSLIN_VOLUME is assigned a read-only value each time a
macro definition is called.

If the assembler runs on the CMS component of the VM operating system, and the assembler listing is
being written to a Shared File System CMS file, &SYSLIN_VOLUME is assigned the value ** SFS.

If the volume on which the data set resides is not labeled, &SYSLIN_VOLUME is assigned a null
character string.

Notes:

1. If the OBJECT user exit provides the data set information then the value in &SYSLIN_VOLUME is the
value extracted from the Exit-Specific Information block described in the section “Exit-Specific
Information Block” in the HLASM Programmer's Guide.

2. The value of the type attribute of &SYSLIN_VOLUME (T'&SYSLIN_VOLUME) is U, unless
&SYSLIN_VOLUME is assigned a null character string, in which case the value of the type attribute is
O.

3. The value of the count attribute of &SYSLIN_VOLUME (K'&SYSLIN_VOLUME) is equal to the
number of characters assigned as a value to &SYSLIN_VOLUME. If &SYSLIN_VOLUME is assigned a
null character string, the value of the count attribute is 0. The maximum length of this system variable
symbol is 6.

&SYSLIST System Variable Symbol
Use &SYSLIST instead of a positional parameter inside a macro definition; for example, as a point of
substitution. By varying the subscripts attached to &SYSLIST, you can refer to any sublist entry in a
macro call operand, or any positional operands in a macro call. You can also refer to positional operands
for which no corresponding positional parameter is specified in the macro prototype statement.

The local-scope system variable symbol &SYSLIST is assigned a read-only value each time a macro
definition is called.

&SYSLIST refers to the complete list of positional operands specified in a macro instruction. &SYSLIST
does not refer to keyword operands. However, &SYSLIST cannot be specified as &SYSLIST without a
subscript. One of the two following forms must be used for references or as a point of substitution:
1. &SYSLIST(n) can be used to refer to the n-th positional operand
2. If the n-th operand is a sublist, then &SYSLIST(n,m) can be used to refer to the m-th operand in the

sublist.

Chapter 7. How to specify macro definitions 241

3. When referring to multilevel (nested) sublists in operands of macro instructions, refer to elements of
inner sublists by using the applicable number of subscripts for &SYSLIST.

The subscripts n and m can be any arithmetic expression allowed in the operand of a SETA instruction
(See “SETA instruction” on page 308). The subscript n must be greater than or equal to 0. The subscript m
and any additional subscripts after m must be greater than or equal to 1.

The examples show the values assigned to &SYSLIST according to the value of its subscripts n and m.
Macro instruction:

NAME MACALL ONE,TWO,(3,(4,5,6),,8),,TEN,()

Use Within a
Macro Definition: Value See note:
--------------------- ------------ ---------
&SYSLIST(2) TWO
&SYSLIST(3,1) 3
&SYSLIST(3,2,2) 5

&SYSLIST(4) Null 1

&SYSLIST(12) Null 1
&SYSLIST(3,3) Null 2

&SYSLIST(3,5) Null 2

&SYSLIST(2,1) TWO 3
&SYSLIST(2,2) Null

&SYSLIST(0) NAME 4
&SYSLIST(3) (3,(4,5,6),,8)
&SYSLIST(11) ()
&SYSLIST(11,1) Null 2

Note:

1. If the position indicated by n refers to an omitted operand, or refers to an entry past the end of the
list of positional operands specified, the null character string is substituted for &SYSLIST(n).

2. If the position (in a sublist) indicated by the second subscript, m, refers to an omitted entry, or refers
past the end of the list of entries specified in the sublist referred to by the first subscript n, the null
character string is substituted for &SYSLIST(n,m).

3. If the n-th positional operand is not a sublist, &SYSLIST(n,1) refers to the operand. However,
&SYSLIST(n,m), where m is greater than 1, causes the null character string to be substituted.

4. If the value of subscript n is 0, then &SYSLIST(n) is assigned the value specified in the name field of
the macro instruction, except when it is a sequence symbol.

Attribute references can be made to the previously described forms of &SYSLIST. The attributes are the
attributes inherent in the positional operands or sublist entries to which you refer. However, the number
attribute of &SYSLIST (N'&SYSLIST) is different from the number attribute described in “Data attributes”
on page 284. One of two forms can be used for the number attribute:
v To indicate the number of positional operands specified in a call, use the form N'&SYSLIST.
v To indicate the number of sublist entries that have been specified in a positional operand, use the form

N'&SYSLIST(n).
v To indicate the number of entries in nested sublists, specify the appropriate set of subscripts need to

reference the selected sublist.

Notes:

1. N'&SYSLIST includes any positional operands that are omitted. Positional operands are omitted by
coding a comma where an operand is expected.

242 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

2. N'&SYSLIST(n) includes those sublist entries specifically omitted by specifying the comma that
normally follows the entry.

3. If the operand indicated by n is not a sublist, N'&SYSLIST(n) is 1. If it is omitted, N'&SYSLIST(n) is 0.

The COMPAT(SYSLIST) assembler option instructs the assembler to treat sublists in macro instruction
operands as character strings, not sublists. See the section “COMPAT” in the HLASM Programmer's Guide
for a description of the COMPAT(SYSLIST) assembler option.

Examples of sublists:
Macro Instruction N’&SYSLIST

MACLST 1,2,3,4 4
MACLST A,B,,D,E 5
MACLST ,A,B,C,D 5
MACLST (A,B,C),(D,E,F) 2
MACLST 0
MACLST KEY1=A,KEY2=B 0
MACLST A,B,KEY1=C 2

N’&SYSLIST(2)

MACSUB A,(1,2,3,4,5),B 5
MACSUB A,(1,,3,,5),B 5
MACSUB A,(,2,3,4,5),B 5
MACSUB A,B,C 1
MACSUB A,,C 0
MACSUB A,(),C 1
MACSUB A,KEY=(A,B,C) 0
MACSUB 0

&SYSLOC System Variable Symbol
Use &SYSLOC in a macro definition to generate the name of the location counter in effect. If you have
not coded a LOCTR instruction between the macro instruction and the preceding START, CSECT, RSECT,
DSECT, or COM instruction, the value of &SYSLOC is the same as the value of &SYSECT.

The assembler assigns to the system variable symbol &SYSLOC a local read-only value each time a macro
definition containing it is called. The value assigned is the symbol representing the name of the location
counter in use at the point where the macro is called.

&SYSLOC can only be used in macro definitions; it has local scope.

Notes:

1. The value of the type attribute of &SYSLOC (T'&SYSLOC) is always U.
2. The value of the count attribute (K'&SYSLOC) is equal to the number of characters assigned as a

value to &SYSLOC.
3. Throughout the use of a macro definition, the value of &SYSLOC is considered a constant.

&SYSMAC System Variable Symbol
By varying the subscripts attached to the &SYSMAC you can refer to the name of any of the macros
called between open code and the current nesting level, that is, &SYSMAC(&SYSNEST) returns 'OPEN
CODE'. Valid subscripts are 0 to &SYSNEST. If &SYSMAC is used with a subscript greater than
&SYSNEST, a null character string is returned.

&SYSMAC with no subscript is treated as &SYSMAC(0) and so provides the name of the macro being
expanded. This is not considered to be an error and so no message is issued.

Chapter 7. How to specify macro definitions 243

The local-scope system variable symbol &SYSMAC is assigned a read-only value each time a macro
definition is called.

Notes:

1. The value of the type attribute of &SYSMAC (T'&SYSMAC(n)) is U, unless &SYSMAC(n) is assigned a
null character string, in which case the value of the type attribute is O.

2. The value of the count attribute (K'&SYSMAC(n)) is equal to the number of characters assigned as a
value to &SYSMAC(n).

&SYSM_HSEV System Variable Symbol
Use &SYSM_HSEV to get the highest MNOTE severity so far for the assembly.

The global-scope system variable symbol &SYSM_HSEV is assigned a read-only value. The assembler
compares this value with the severity of MNOTE assembler instructions as they are encountered and, if
lower, updates it with the higher value.

Notes:

1. The value of the variable symbol is supplied as three numeric characters, not as an arithmetic (binary)
value.

2. The value of the type attribute of &SYSM_SEV (T'&SYSM_SEV) is always N.
3. The value of the count attribute (K'&SYSM_SEV) is always 3.
4. The value of &SYSM_HSEV is unreliable if any MNOTE is incorrectly coded such that a diagnostic

message is generated for the MNOTE statement. The cause of the diagnostic message must be
corrected.

In Figure 32 on page 245 the &SYSM_HSEV variable is updated immediately when an MNOTE is issued
with a higher severity.

&SYSM_SEV System Variable Symbol
Use &SYSM_SEV to get the highest MNOTE severity code for the macro most recently called directly
from this level.

The global-scope system variable symbol &SYSM_SEV is assigned a read-only value. The assembler
assigns a value of zero when a macro is called and when a macro returns (MEND or MEXIT), the highest
severity of all MNOTE assembler instructions executed in the called macro is used to update the variable.

Notes:

1. The value of the variable symbol is supplied as three numeric characters, not as an arithmetic (binary)
value.

2. The value of the type attribute of &SYSM_SEV (T'&SYSM_SEV) is always N.
3. The value of the count attribute (K'&SYSM_SEV) is always 3.
4. The value of &SYSM_SEV is unreliable if any MNOTE is incorrectly coded such that a diagnostic

message is generated for the MNOTE statement. The cause of the diagnostic message must be
corrected.

In Figure 32 on page 245 the &SYSM_SEV variable has a value of 0 until INNER returns. The OUTER
macro uses &SYSM_SEV to determine which statements to generate, and in this case issues an MNOTE
to pass the severity back to the open code.

244 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

&SYSNDX System Variable Symbol
For each macro invocation, a new value of &SYSNDX is assigned. The previous value is incremented by
1. Thus, you can attach &SYSNDX to the end of a symbol inside a macro definition to generate a unique
suffix for that symbol each time you call the definition. Although an apparently identical symbol is to be
generated by two or more calls to the same definition, the suffix provided by &SYSNDX produces two or
more unique symbols. For example, the symbol ABC&SYSNDX might generate ABC0001 on one
invocation of a macro, and ABC0002 on the next invocation. Thus you avoid an error being flagged for
multiply defined symbols.

The local-scope system variable symbol &SYSNDX is assigned a read-only value each time a macro
definition is called from a source module.

The value assigned to &SYSNDX is a number from 1 to 9999999. For the numbers 0001 through 9999,
four digits are generated. For the numbers 10000 through 9999999, the value is generated with no zeros to
the left. The value 0001 is assigned to the first macro called by a program, and is incremented by one for
each subsequent macro call (including nested macro calls).

The maximum value for &SYSNDX can be controlled by the MHELP instruction described under 351.

Notes:

1 MACRO
2 OUTER &SEV
3 DC A(&SYSM_HSEV,&SYSM_SEV) outer 1
4 MNOTE &SEV,’OUTER - parm severity=&SEV’
5 DC A(&SYSM_HSEV,&SYSM_SEV) outer 2
6 INNER
7 DC A(&SYSM_HSEV,&SYSM_SEV) outer 3
8 AIF (’&SEV’ GT ’&SYSM_SEV’).MN
9 MNOTE &SYSM_SEV,’OUTER - returned severity=&SYSM_SEV’
10 .MN ANOP
11 DC A(&SYSM_HSEV,&SYSM_SEV) outer 4
12 MEND
13 MACRO
14 INNER
15 DC A(&SYSM_HSEV,&SYSM_SEV) inner 1
16 MNOTE 8,’INNER’
17 DC A(&SYSM_HSEV,&SYSM_SEV) inner 2
18 MEND

000000 00000 00040 19 E_G CSECT
20 *,OPEN CODE an mnote comment - sev=0
21 DC A(&SYSM_HSEV,&SYSM_SEV) open_code

000000 0000000000000000 + DC A(000,000) open_code
22 OUTER 4

000008 0000000000000000 23+ DC A(000,000) outer 1
** ASMA254I *** MNOTE *** 24+ 4,OUTER - parm severity=4
000010 0000000400000000 25+ DC A(004,000) outer 2
000018 0000000400000000 26+ DC A(004,000) inner 1
** ASMA254I *** MNOTE *** 27+ 8,INNER
000020 0000000800000000 28+ DC A(008,000) inner 2
000028 0000000800000008 29+ DC A(008,008) outer 3
** ASMA254I *** MNOTE *** 30+ 008,OUTER - returned severity=008
000030 0000000800000008 31+ DC A(008,008) outer 4

32 *,OPEN CODE an mnote comment - sev=0
33 DC A(&SYSM_HSEV,&SYSM_SEV) open_code

000038 0000000800000008 + DC A(008,008) open_code
34 END

Figure 32. Example of the behavior of the &SYSM_HSEV and &SYSM_SEV variables

Chapter 7. How to specify macro definitions 245

1. &SYSNDX does not generate a valid symbol, and it must:
v Follow the alphabetic character to which it is concatenated
v Be concatenated to a symbol containing 59 characters or fewer

2. The value of the type attribute of &SYSNDX (T'&SYSNDX) is always N.
3. The value of the count attribute (K'&SYSNDX) is equal to the number of digits generated. If a symbol

generated by one macro is to be referenced by code generated by another macro, the two macros must
provide means for communicating the necessary information. Their respective values of &SYSNDX
cannot be guaranteed to differ by any fixed amount.

The example that follows shows the use of &SYSNDX, and a way to communicate local &SYSNDX values
among macro instructions. It is assumed that the first macro instruction processed, OUTER1, is the 106th
macro instruction processed by the assembler.

MACRO
INNER1
GBLC &NDXNUM

A&SYSNDX SR 2,5 Statement 1
CR 2,5
BE B&NDXNUM Statement 2
B A&SYSNDX Statement 3
MEND

MACRO
&NAME OUTER1

GBLC &NDXNUM
&NDXNUM SETC ’&SYSNDX’ Statement 4
&NAME SR 2,4

AR 2,6
INNER1 Statement 5

B&SYSNDX S 2,=F’1000’ Statement 6
MEND

ALPHA OUTER1 Statement 7
BETA OUTER1 Statement 8

ALPHA SR 2,4

AR 2,6
A0107 SR 2,5

CR 2,5
BE B0106
B A0107

B0106 S 2,=F’1000’
BETA SR 2,4

AR 2,6
A0109 SR 2,5

CR 2,5
BE B0108
B A0109

B0108 S 2,=F’1000’

Statement 7 is the 106th macro instruction processed. Therefore, &SYSNDX is assigned the number 0106
for that macro instruction. The number 0106 is substituted for &SYSNDX when it is used in statements 4
and 6. Statement 4 is used to assign the character value 0106 to the SETC symbol &NDXNUM Statement 6 is
used to create the unique name B0106.

Statement 5 is the 107th macro instruction processed. Therefore, &SYSNDX is assigned the number 0107
for that macro instruction. The number 0107 is substituted for &SYSNDX when it is used in statements 1
and 3. The number 0106 is substituted for the global-scope SETC symbol &NDXNUM in statement 2.

Statement 8 is the 108th macro instruction processed. Therefore, each occurrence of &SYSNDX is replaced
by the number 0108. For example, statement 6 is used to create the unique name B0108.

246 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

When statement 5 is used to process the 108th macro instruction, statement 5 becomes the 109th macro
instruction processed. Therefore, each occurrence of &SYSNDX is replaced by the number 0109. For
example, statement 1 is used to create the unique name A0109.

&SYSNEST System Variable Symbol
Use &SYSNEST to obtain the current macro instruction nesting level.

The local-scope system variable symbol &SYSNEST is assigned a read-only value each time a macro
definition is called from a source module.

The value assigned to &SYSNEST is a number from 1 to 99999999. No leading zeros are generated as part
of the number. When a macro is called from open code, the value assigned to &SYSNEST is the number
1. Each time a macro definition is called by an inner macro instruction, the value assigned to &SYSNEXT
is incremented by 1. Each time an inner macro exits, the value is decremented by 1.

Notes:

1. The value of the type attribute of &SYSNEST (T'&SYSNEST) is always N.
2. The value of the count attribute (K'&SYSNEST) is equal to the number of digits assigned.

The following example shows the values assigned to &SYSNEST:
MACRO
OUTER
DC A(&SYSNEST) Statement 1
INNER1 Statement 2
INNER2 Statement 3
MEND

MACRO
INNER1
DC A(&SYSNEST) Statement 4
INNER2 Statement 5
MEND

MACRO
INNER2
DC A(&SYSNEST) Statement 6
MEND

--
OUTER Statement 7

+ DC A(1)
+ DC A(2)
+ DC A(3)
+ DC A(2)

Statement 7 is in open code. It calls the macro OUTER. &SYSNEST is assigned a value of 1 which is
substituted in statement 1.

Statement 2, within the macro definition of OUTER, calls macro INNER1. The value assigned to &SYSNEST
is incremented by 1. The value 2 is substituted for &SYSNEST in statement 4.

Statement 5, within the macro definition of INNER1, calls macro INNER2. The value assigned to &SYSNEST
is incremented by 1. The value 3 is substituted for &SYSNEST in statement 6.

When the macro INNER2 exits, the value assigned to &SYSNEST is decremented by 1. The value of
&SYNEST is 2.

When the macro INNER1 exits, the value assigned to &SYSNEST is decremented by 1. The value of
&SYSNEST is 1.

Chapter 7. How to specify macro definitions 247

Statement 3, within the macro definition of OUTER, calls macro INNER2. The value assigned to &SYSNEST
is incremented by 1. The value 2 is substituted for &SYSNEST in statement 6.

&SYSOPT_DBCS System Variable Symbol
You can use &SYSOPT_DBCS to determine if the DBCS assembler option was supplied for the assembly
of your source module. &SYSOPT_DBCS is a Boolean system variable symbol, and has a global scope.

If the DBCS assembler option was specified, &SYSOPT_DBCS is assigned a value of 1. If the DBCS
assembler option was not specified, &SYSOPT_DBCS is assigned a value of 0.

For more information about the DBCS assembler option, see the section “DBCS” in the HLASM
Programmer's Guide.

Notes:

1. The value of the type attribute of &SYSOPT_DBCS (T'&SYSOPT_DBCS) is always N.
2. The value of the count attribute (K'&SYSOPT_DBCS) is always 1.

&SYSOPT_OPTABLE System Variable Symbol
Use &SYSOPT_OPTABLE to determine the value that was specified for the OPTABLE assembler option.
&SYSOPT_OPTABLE has a global scope.

The value that was specified for the OPTABLE assembler option indicates which operation code table was
specified by the OPTABLE or MACHINE option.

For more information about the OPTABLE assembler option, see the section “OPTABLE” in the HLASM
Programmer's Guide).

Notes:

1. The value of the type attribute of &SYSOPT_OPTABLE (T'&SYSOPT_OPTABLE) is always U.
2. The value of the count attribute (K'&SYSOPT_OPTABLE) is the number of characters assigned.

&SYSOPT_RENT System Variable Symbol
Use &SYSOPT_RENT to determine if the RENT assembler option was specified for the assembly of your
source module. The RENT option instructs the assembler to check for possible coding violations of
program reenterability. &SYSOPT_RENT is a Boolean system variable symbol, and has a global scope.

If the RENT assembler option was specified, &SYSOPT_RENT is assigned a value of 1. If the RENT
assembler option was not specified, &SYSOPT_RENT is assigned a value of 0.

For more information about the RENT assembler option, see the section “RENT” in the HLASM
Programmer's Guide.

Notes:

1. The value of the type attribute of &SYSOPT_RENT (T'&SYSOPT_RENT) is always N.
2. The value of the count attribute (K'&SYSOPT_RENT) is always 1.

&SYSOPT_XOBJECT System Variable Symbol
The &SYSOPT_XOBJECT system variable is set to 1 if GOFF or XOBJECT is specified, otherwise it is set
to 0.

&SYSOPT_XOBJECT is a Boolean system variable symbol with global scope.

248 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Notes:

1. The value of the type attribute of &SYSOPT_XOBJECT (T'&SYSOPT_XOBJECT) is always N.
2. The value of the count attribute (K'&SYSOPT_XOBJECT) is always 1.

&SYSPARM System Variable Symbol
The &SYSPARM system variable is assigned a read-only value from the assembler option SYSPARM. It is
treated as a global-scope SETC symbol in a source module except that its value cannot be changed. (See
the chapter “Controlling Your Assembly with Options” in the HLASM Programmer's Guide for information
about assembler options.)

Notes:

1. The largest value that &SYSPARM can hold is 1024 characters. However, if the PARM field of the
EXEC statement is used to specify its value, the PARM field restrictions reduce its maximum possible
length.

2. No values are substituted for variable symbols in the specified value, however, on z/OS and z/VSE,
you must use double ampersands to represent a single ampersand.

3. On z/OS and z/VSE, you must use two apostrophes to represent an apostrophes, because the entire
EXEC PARM field is enclosed in apostrophes.

4. If the SYSPARM assembler option is not specified, &SYSPARM is assigned the default value that was
specified when the assembler was installed on your system.
If a default value for SYSPARM was not specified when the assembler was installed on your system,
&SYSPARM is assigned a value of the null character string.

5. The value of the type attribute of &SYSPARM (T'&SYSPARM) is U, unless &SYSPARM is assigned a
null value, in which case the value of the type attribute is O.

6. The value of the count attribute (K'&SYSPARM) is the number of characters assigned as a value to
&SYSPARM. If &SYSPARM is assigned a null character string, the value of the count attribute is 0.

7. If the SYSPARM option is passed to the assembler through the ASMAOPT file (CMS and z/OS) or
Librarian member (z/VSE) and the option contains embedded spaces, it must be enclosed in quotes.

&SYSPRINT_DSN System Variable Symbol
Use &SYSPRINT_DSN in a macro definition to obtain the name of the data set to which the assembler
writes the assembler listing.

The local-scope system variable symbol &SYSPRINT_DSN is assigned a read-only value each time a
macro definition is called.

When the assembler runs on the z/OS operating systems, the value of the character string assigned to
&SYSPRINT_DSN is always the value stored in the JFCB for SYSPRINT. If SYSPRINT is allocated to
DUMMY, or a NULLFILE, the value in &SYSPRINT_DSN is NULLFILE.

When the assembler runs on the CMS component of the VM operating systems, the value of the character
string assigned to &SYSPRINT_DSN is determined as follows:

Table 43. Contents of &SYSPRINT_DSN on CMS

SYSPRINT Allocated To: Contents of &SYSPRINT_DSN:

CMS file The 8-character file name, the 8-character file type, and
the 2-character file mode of the file, each separated by a
space

Dummy file (no physical I/O) DUMMY

Printer PRINTER

Labeled tape file The data set name of the tape file

Chapter 7. How to specify macro definitions 249

Table 43. Contents of &SYSPRINT_DSN on CMS (continued)

SYSPRINT Allocated To: Contents of &SYSPRINT_DSN:

Unlabeled tape file TAPn, where n is a value from 0 to 9, or A to F.

Terminal TERMINAL

When the assembler runs on z/VSE, the value of the character string assigned to &SYSPRINT_DSN is
determined as follows:

Table 44. Contents of &SYSPRINT_DSN on z/VSE

SYSLST Assigned To: Contents of &SYSPRINT_DSN:

Disk file (not for dynamic partitions) The file-id

Printer SYSLST

Labeled tape file The file ID of the tape file

Unlabeled tape file SYSLST

Examples:

On z/OS, &SYSPRINT_DSN might be assigned a value such as:
IBMAPC.IBMAPCA.JOB06734.D0000102.?

On CMS, &SYSPRINT_DSN might be assigned a value such as:
SAMPLE LISTING A1

Notes:

1. If the LISTING user exit provides the listing data set information then the value in &SYSPRINT_DSN
is the value extracted from the Exit-Specific Information block described in the section “Exit-Specific
Information Block” in the HLASM Programmer's Guide.

2. The value of the type attribute of &SYSPRINT_DSN (T'&SYSPRINT_DSN) is always U.
3. The value of the count attribute of &SYSPRINT_DSN (K'&SYSPRINT_DSN) is equal to the number of

characters assigned as a value to &SYSPRINT_DSN.

&SYSPRINT_MEMBER System Variable Symbol
z/VSE The value of &SYSPRINT_MEMBER is always null.

The value of the type attribute is O, and the value of the count attribute is 0.

z/VM and z/OS
You can use &SYSPRINT_MEMBER in a macro definition to obtain the name of the data set
member to which the assembler is writing the assembler listing.

The local-scope system variable symbol &SYSPRINT_MEMBER is assigned a read-only value each
time a macro definition is called.

If the data set to which the assembler is writing the assembler listing is not a z/OS partitioned
data set, &SYSPRINT_MEMBER is assigned a null character string.

Notes:

1. If the LISTING user exit provides the listing data set information then the value in
&SYSPRINT_MEMBER is the value extracted from the Exit-Specific Information block described in the
section “Exit-Specific Information Block” in the HLASM Programmer's Guide.

250 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

2. The value of the type attribute of &SYSPRINT_MEMBER (T'&SYSPRINT_MEMBER) is U, unless
&SYSPRINT_MEMBER is assigned a null character string, in which case the value of the type
attribute is O.

3. The value of the count attribute of &SYSPRINT_MEMBER (K'&SYSPRINT_MEMBER) is equal to the
number of characters assigned as a value to &SYSPRINT_MEMBER. If &SYSPRINT_MEMBER is
assigned a null character string, the value of the count attribute is 0.

&SYSPRINT_VOLUME System Variable Symbol
Use &SYSPRINT_VOLUME in a macro definition to obtain the volume identifier of the first volume
containing the data set to which the assembler writes the assembler listing.

The local-scope system variable symbol &SYSPRINT_VOLUME is assigned a read-only value each time a
macro definition is called.

If the assembler runs on the CMS component of the VM operating system, and the assembler listing
writes to a Shared File System CMS file, &SYSPRINT_VOLUME is assigned the value ** SFS.

If the volume on which the data set resides is not labeled, &SYSPRINT_VOLUME is assigned a null
character string.

Notes:

1. If the LISTING user exit provides the listing data set information then the value in
&SYSPRINT_VOLUME is the value extracted from the Exit-Specific Information block described in the
section “Exit-Specific Information Block” in the HLASM Programmer's Guide.

2. The value of the type attribute of &SYSPRINT_VOLUME (T'&SYSPRINT_VOLUME) is U, unless
&SYSPRINT_VOLUME is assigned a null character string, in which case the value of the type
attribute is O.

3. The value of the count attribute of &SYSPRINT_VOLUME (K'&SYSPRINT_VOLUME) is equal to the
number of characters assigned as a value to &SYSPRINT_VOLUME. If &SYSPRINT_VOLUME is
assigned a null character string, the value of the count attribute is 0. The maximum length of this
system variable symbol is 6.

&SYSPUNCH_DSN System Variable Symbol
Use &SYSPUNCH_DSN in a macro definition to obtain the name of the data set to which the assembler
is writing the object records when assembler option DECK is specified.

The local-scope system variable symbol &SYSPUNCH_DSN is assigned a read-only value each time a
macro definition is called.

When the assembler runs on the z/OS operating systems, the value of the character string assigned to
&SYSPUNCH_DSN is always the value stored in the JFCB for SYSPUNCH. If SYSPUNCH is allocated to
DUMMY, or a NULLFILE, the value in &SYSPUNCH_DSN is NULLFILE.

When the assembler runs on the CMS component of the VM operating systems, the value of the character
string assigned to &SYSPUNCH_DSN is determined as follows:

Table 45. Contents of &SYSPUNCH_DSN on CMS

SYSPUNCH Allocated To: Contents of &SYSPUNCH_DSN:

CMS file The 8-character file name, the 8-character file type, and
the 2-character file mode of the file, each separated by a
space

Dummy file (no physical I/O) DUMMY

Punch PUNCH

Chapter 7. How to specify macro definitions 251

Table 45. Contents of &SYSPUNCH_DSN on CMS (continued)

SYSPUNCH Allocated To: Contents of &SYSPUNCH_DSN:

Labeled tape file The data set name of the tape file

Unlabeled tape file TAPn, where n is a value from 0 to 9, or A to F.

On z/VSE, the value of the character string assigned to &SYSPUNCH_DSN is determined as follows:

Table 46. Contents of &SYSPUNCH_DSN on z/VSE

SYSPCH Assigned To: Contents of &SYSPUNCH_DSN:

Disk file The file-id

Punch SYSPCH

Labeled tape file The file ID of the tape file

Unlabeled tape file SYSPCH

Examples:

On z/OS, &SYSPUNCH_DSN might be assigned a value such as:
IBMAPC.IBMAPCA.JOB06734.D0000103.?

On CMS, &SYSPUNCH_DSN might be assigned a value such as:
PUNCH

Notes:

1. If the PUNCH user exit provides the punch data set information then the value in &SYSPUNCH_DSN
is the value extracted from the Exit-Specific Information block described in the section “Exit-Specific
Information Block” in the HLASM Programmer's Guide.

2. The value of the type attribute of &SYSPUNCH_DSN (T'&SYSPUNCH_DSN) is always U.
3. The value of the count attribute of &SYSPUNCH_DSN (K'&SYSPUNCH_DSN) is equal to the number

of characters assigned as a value to &SYSPUNCH_DSN.

&SYSPUNCH_MEMBER System Variable Symbol
z/VSE The value of &SYSPUNCH_MEMBER is always null.

The value of the type attribute is O, and the value of the count attribute is 0.

z/VM and z/OS
You can use &SYSPUNCH_MEMBER in a macro definition to obtain the name of the data set
member to which the assembler is writing the object records when the assembler option DECK is
specified.

The local system variable symbol &SYSPUNCH_MEMBER is assigned a read-only value each
time a macro definition is called.

If the data set to which the assembler is writing the object records is not a z/OS partitioned data
set, &SYSPUNCH_MEMBER is assigned a null character string.

Notes:

1. If the PUNCH user exit provides the punch data set information then the value in
&SYSPUNCH_MEMBER is the value extracted from the Exit-Specific Information block described in
the section “Exit-Specific Information Block” in the HLASM Programmer's Guide.

252 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

2. The value of the type attribute of &SYSPUNCH_MEMBER (T'&SYSPUNCH_MEMBER) is U, unless
&SYSPUNCH_MEMBER is assigned a null character string, in which case the value of the type
attribute is O.

3. The value of the count attribute of &SYSPUNCH_MEMBER (K'&SYSPUNCH_MEMBER) is equal to
the number of characters assigned as a value to &SYSPUNCH_MEMBER. If &SYSPUNCH_MEMBER
is assigned a null character string, the value of the count attribute is 0.

&SYSPUNCH_VOLUME System Variable Symbol
Use &SYSPUNCH_VOLUME in a macro definition to obtain the volume identifier of the object data set.
The volume identifier is of the first volume containing the data set. &SYSPUNCH_VOLUME is only
assigned a value when you specify the DECK assembler option.

The local-scope system variable symbol &SYSPUNCH_VOLUME is assigned a read-only value each time
a macro definition is called.

If the assembler runs on the CMS component of the VM operating system, and the object records are
being written to a Shared File System CMS file, &SYSPUNCH_VOLUME is assigned the value ** SFS.

If the volume on which the data set resides is not labeled, &SYSPUNCH_VOLUME is assigned a null
character string.

Notes:

1. If the PUNCH user exit provides the punch data set information then the value in
&SYSPUNCH_VOLUME is the value extracted from the Exit-Specific Information block described in
the section “Exit-Specific Information Block” in the HLASM Programmer's Guide.

2. The value of the type attribute of &SYSPUNCH_VOLUME (T'&SYSPUNCH_VOLUME) is U, unless
&SYSPUNCH_VOLUME is assigned a null character string, in which case the value of the type
attribute is O.

3. The value of the count attribute of &SYSPUNCH_VOLUME (K'&SYSPUNCH_VOLUME) is equal to
the number of characters assigned as a value to &SYSPUNCH_VOLUME. If &SYSPUNCH_VOLUME
is assigned a null character string, the value of the count attribute is 0. The maximum length of this
system variable symbol is 6.

&SYSSEQF System Variable Symbol
Use &SYSSEQF in a macro definition to obtain the value of the identification-sequence field of the macro
instruction in open code that caused, directly or indirectly, the macro to be called.

The local-scope system variable symbol &SYSSEQF is assigned a read-only value each time a macro
definition is called from a source module.

The value assigned to &SYSSEQF is determined as follows:
1. If no ICTL instruction has been specified and sequence checking is not active, the contents of columns

73 to 80 inclusive of the source statement are assigned to &SYSSEQF.
2. If an ICTL instruction has been specified, but sequence checking is not active, the contents of the

columns of the source statement to the right of the continuation-indicator column are assigned to
&SYSSEQF. If the end column or the continuation-indicator column is 80, &SYSSEQF is assigned a
null character string.

3. If an ISEQ instruction with operands has been specified to start sequence checking, the contents of
columns specified in the ISEQ instruction operand are assigned to &SYSSEQF.

4. If an ISEQ instruction without an operand has been specified to end sequence checking, steps (1) and
(2) are used to determine the value assigned to &SYSSEQF.

Notes:

Chapter 7. How to specify macro definitions 253

1. The value of the type attribute of &SYSSEQF (T'&SYSSEQF) is U, unless &SYSSEQF is assigned a null
character string, in which case the value of the type attribute is O.

2. The value of the count attribute of &SYSSEQF (K'&SYSSEQF) is equal to the number of characters
assigned as a value to &SYSSEQF. If &SYSSEQF is assigned a null character string, the value of the
count attribute is 0.

3. Throughout the use of a macro definition, the value of &SYSSEQF is considered a constant.

&SYSSTEP System Variable Symbol
Use &SYSSTEP to obtain the step name of the job step used to assemble your source module. &SYSSTEP
has a global scope.

On CMS and z/VSE the value of &SYSSTEP is always (NOSTEP).

Notes:

1. The value of the type attribute of &SYSSTEP (T'&SYSSTEP) is always U.
2. The value of the count attribute (K'&SYSSTEP) is the number of characters assigned.

&SYSSTMT System Variable Symbol
Use &SYSSTMT to obtain the next statement number that is assigned to a statement by the assembler.
&SYSSTMT has a global scope.

The value assigned to &SYSSTMT is an 8-character string, padded on the left with leading zero (X'F0')
characters. The following example shows the value assigned to &SYSSTMT. It assumes that the DC
statement is in open code, and is the 23rd statement in the source module.
23 DC C’&SYSSTMT’

+ DC C’00000024’

Notes:
1. The value of the type attribute of &SYSSTMT (T'&SYSSTMT) is always N.
2. The value of the count attribute of &SYSSTMT (K'&SYSSTMT) is always 8.

&SYSSTYP System Variable Symbol
Use &SYSSTYP in a macro definition to generate the type of the current control section. The current
control section is the control section in which the macro instruction that calls the definition appears.

The local-scope system variable symbol &SYSSTYP is assigned a read-only value each time a macro
definition is called.

The value assigned is the symbol that represents the type of the current control section in effect when the
macro is called. A control section that has been initiated or continued by substitution does not affect the
value of &SYSSTYP for the expansion of the current macro. However, it does affect &SYSSTYP for a
subsequent macro call. Nested macros cause the assembler to assign a value to &SYSSTYP that depends
on the control section in force inside the calling macro when the inner macro is called.

The control section whose type is assigned to &SYSSTYP can be defined by a program sectioning
statement. This can be a START, CSECT, RSECT, DSECT, or COM statement, or, for the first control
section, any instruction described in “First section” on page 46. Depending upon the instruction used to
initiate the current control section, the value assigned to &SYSSTYP is either CSECT, RSECT, DSECT, or
COM. If the current control section is unnamed, or is an executable control section initiated by other than
a START, CSECT, or RSECT instruction, then the value assigned to &SYSSTYP is CSECT.

If a control section has not been initiated, &SYSSTYP is assigned a null character string.

254 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Notes:

1. The value of the type attribute of &SYSSTYP (T'&SYSSTYP) is U, unless &SYSSTYP is assigned a null
character string, in which case the value of the type attribute is O.

2. The value of the count attribute of &SYSSTYP (K'&SYSSTYP) is equal to the number of characters
assigned as a value to &SYSSTYP. If &SYSSTYP is assigned a null character string, the value of the
count attribute is 0.

3. Throughout the use of a macro definition, the value of &SYSSTYP is considered a constant.

&SYSTEM_ID System Variable Symbol
Use &SYSTEM_ID to obtain the name and release of the operating system under which your source
module is being assembled. &SYSTEM_ID has a global scope.

For example, on z/OS, &SYSTEM_ID might contain one of the following:
z/OS 01.04.00
z/OS 01.05.00
... and so on

on CMS, &SYSTEM_ID might contain one of the following:
CMS 18
CMS 19
... and so on

on z/VSE, &SYSTEM_ID might contain one of the following:
VSE/AF 6.6.0
... and so on

Notes:

1. The value of the type attribute of &SYSTEM_ID (T'&SYSTEM_ID) is always U.
2. The value of the count attribute (K'&SYSTEM_ID) is the number of characters assigned.

&SYSTERM_DSN System Variable Symbol
Use &SYSTERM_DSN in a macro definition to obtain the name of the data set to which the assembler is
writing the terminal records.

The local-scope system variable symbol &SYSTERM_DSN is assigned a read-only value each time a
macro definition is called.

When the assembler runs on the z/OS operating systems, the value of the character string assigned to
&SYSTERM_DSN is always the value stored in the JFCB for SYSTERM. If SYSTERM is allocated to
DUMMY, or a NULLFILE, the value in &SYSTERM_DSN is NULLFILE.

When the assembler runs on the CMS component of the z/VM operating systems, the value of the
character string assigned to &SYSTERM_DSN is determined as follows:

Table 47. Contents of &SYSTERM_DSN on CMS

SYSTERM Allocated To: Contents of &SYSTERM_DSN:

CMS file The 8-character file name, the 8-character file type, and
the 2-character file mode of the file, each separated by a
space

Dummy file (no physical I/O) DUMMY

Printer PRINTER

Labeled tape file The data set name of the tape file

Chapter 7. How to specify macro definitions 255

Table 47. Contents of &SYSTERM_DSN on CMS (continued)

SYSTERM Allocated To: Contents of &SYSTERM_DSN:

Unlabeled tape file TAPn, where n is a value from 0 to 9, or A to F.

Terminal TERMINAL

On z/VSE, the value of the character string assigned to &SYSTERM_DSN is always SYSLOG.

Examples:

On z/OS, &SYSTERM_DSN might be assigned a value such as:
IBMAPC.IBMAPCA.JOB06734.D0000104.?

On CMS, &SYSTERM_DSN might be assigned a value such as:
TERMINAL

Notes:

1. If the TERM user exit provides the terminal data set information then the value in &SYSTERM_DSN
is the value extracted from the Exit-Specific Information block described in the section “Exit-Specific
Information Block” in the HLASM Programmer's Guide.

2. The value of the type attribute of &SYSTERM_DSN (T'&SYSTERM_DSN) is always U.
3. The value of the count attribute of &SYSTERM_DSN (K'&SYSTERM_DSN) is equal to the number of

characters assigned as a value to &SYSTERM_DSN.

&SYSTERM_MEMBER System Variable Symbol
z/VSE The value of &SYSTERM_MEMBER is always null.

The value of the type attribute is O, and the value of the count attribute is 0.

z/VM and z/OS
You can use &SYSTERM_MEMBER in a macro definition to obtain the name of the data set
member to which the assembler is writing the terminal records.

The local-scope system variable symbol &SYSTERM_MEMBER is assigned a read-only value each
time a macro definition is called.

If the data set to which the assembler is writing the terminal records is not a z/OS partitioned
data set, &SYSTERM_MEMBER is assigned a null character string.

Notes:

1. If the TERM user exit provides the terminal data set information then the value in
&SYSTERM_MEMBER is the value extracted from the Exit-Specific Information block described in the
section “Exit-Specific Information Block” in the HLASM Programmer's Guide.

2. The value of the type attribute of &SYSTERM_MEMBER (T'&SYSTERM_MEMBER) is U, unless
&SYSTERM_MEMBER is assigned a null character string, in which case the value of the type attribute
is O.

3. The value of the count attribute of &SYSTERM_MEMBER (K'&SYSTERM_MEMBER) is equal to the
number of characters assigned as a value to &SYSTERM_MEMBER. If &SYSTERM_MEMBER is
assigned a null character string, the value of the count attribute is 0.

&SYSTERM_VOLUME System Variable Symbol
z/VSE The value of &SYSTERM_VOLUME is always null.

The value of the type attribute is U, and the value of the count attribute is 0.

256 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

z/VM and z/OS
You can use &SYSTERM_VOLUME in a macro definition to obtain the volume identifier of the
first volume containing the data set to which the assembler is writing the terminal records.

The local-scope system variable symbol &SYSTERM_VOLUME is assigned a read-only value each
time a macro definition is called.

If the assembler runs on the CMS component of the z/VM operating system, and the terminal
records are being written to a Shared File System CMS file, &SYSTERM_VOLUME is assigned the
value “** SFS”.

If the volume on which the data set resides is not labeled, &SYSTERM_VOLUME is assigned a
null character string.

Notes:

1. If the TERM user exit provides the terminal data set information then the value in
&SYSTERM_VOLUME is the value extracted from the Exit-Specific Information block described in the
section “Exit-Specific Information Block” in the HLASM Programmer's Guide.

2. The value of the type attribute of &SYSTERM_VOLUME (T'&SYSTERM_VOLUME) is U, unless
&SYSTERM_VOLUME is assigned a null character string, in which case the value of the type attribute
is O.

3. The value of the count attribute of &SYSTERM_VOLUME (K'&SYSTERM_VOLUME) is equal to the
number of characters assigned as a value to &SYSTERM_VOLUME. If &SYSTERM_VOLUME is
assigned a null character string, the value of the count attribute is 0. The maximum length of this
system variable symbol is 6.

&SYSTIME System Variable Symbol
Use &SYSTIME to obtain the time at which your source module is assembled. It has local scope, but can
be used in open code. It is assigned a read-only value.

The value of &SYSTIME is a 5-character string in the format:
HH.MM

where:

HH Is two-digit field that gives the hour of the day. It has a value 00 - 23.

MM Is two-digit field that gives the minute of the hour. It has a value 00 - 59. It is separated from HH
by a period.

Example:
09.45

Notes:

1. The time corresponds to the time printed in the page heading of listings and remains constant for
each assembly.

2. The value of the type attribute of &SYSTIME (T'&SYSTIME) is always U.
3. The value of the count attribute (K'&SYSTIME) is always 5.

&SYSVER System Variable Symbol
Use &SYSVER to obtain the version, release, and modification level of the assembler being used to
assemble your source module. &SYSVER has a global scope. For example, when High Level Assembler 6
is used, &SYSVER has the value “1.6.0”.

Notes:

Chapter 7. How to specify macro definitions 257

1. The value of the type attribute of &SYSVER (T'&SYSVER) is always U.
2. The value of the count attribute (K'&SYSVER) is the number of characters assigned. In the example

where the value of &SYSVER is “1.6.0”, the count attribute of &SYSVER is 5.

258 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Chapter 8. How to write macro instructions

This chapter describes macro instructions; where you can use them and how you specify them.

The first section, “Macro instruction format” describes the macro instruction format, including details on
the name, operation, and operand entries, and what is generated as a result of a macro instruction.

“Sublists in operands” on page 266 describes how you can use sublists to specify several values in an
operand entry.

“Values in operands” on page 269 describes the values you can specify in an operand entry when you
call a macro definition.

“Nesting macro instruction definitions” on page 272 describes how you can use nested macro call
instructions to call macros from within a macro.

What is a Macro Instruction: The macro instruction provides the assembler with:
v The name of the macro definition to process
v The information or values to pass to the macro definition

This information is the input to a macro definition. The assembler uses the information either in
processing the macro definition, or for substituting values into model statements in the definition.

The output from a macro definition can be:
v A sequence of statements generated from the model statements of the macro for further processing at

assembly time.
v Values assigned to global-scope SET symbols. These values can be used in other macro definitions and

in open code (see “SET symbols” on page 279).

Where Macro Instructions Can Appear: A macro instruction can be written anywhere in your program,
provided the assembler can find the macro definition. The macro definition can be found either in a
macro library, or in the source program before the macro instruction, or be provided by a LIBRARY user
exit. However, the statements generated from the called macro definition must be valid assembler
language instructions and allowed where the calling macro instruction appears.

Macro instruction format

��
name_entry
sequence_symbol

operation_code

�

,

operand

��

name_entry
Is a special positional operand that can be used to pass a value into the called macro definition. For a
detailed description of what form name_entry can take, see “Name entry” on page 261.

© Copyright IBM Corp. 1992, 2013 259

sequence_symbol
Is a sequence symbol. If a sequence symbol is coded in the name entry of a macro instruction, the
value of the symbol is not passed to the called macro definition and therefore cannot be used as a
value for substitution in the macro definition.

operation_code
Is the symbolic operation code which identifies the macro definition that you want the assembler to
process. For more information, see “Operation entry” on page 261.

operand
The positional operands or keyword operands that you use to pass values into the called macro
definition. For more information, see “Operand entry” on page 261.

If no operands are specified in the operand field, and if the absence of the operand entry is indicated by
a comma preceded and followed by one or more spaces, remarks are allowed.

The entries in the name, operation, and operand fields correspond to entries in the prototype statement of
the called macro definition (see “Macro instruction prototype” on page 215).

Alternative formats for a macro instruction
A macro instruction can be specified in one of the three following ways:
v The normal way, with the operands preceding any remarks
v The alternative way, allowing remarks for each operand
v A combination of the first two ways

The alternative statement format is not available for machine instructions.

The following example shows the normal statement format (NAME1), the alternative statement format
(NAME2), and a combination of both statement formats (NAME3).

Opera-
Name tion Operand Comment Cont.

NAME1 OP1 OPERAND1,OPERAND2,OPERAND3 This is the normal X
statement format

NAME2 OP2 OPERAND1, This is the alter- X
OPERAND2 native statement format

NAME3 OP3 OPERAND1, This is a combination X
OPERAND2,OPERAND3 of both

Notes:

1. Any number of continuation lines are allowed. However, each continuation line must be indicated by
a non-space character in the column after the end column of the previous statement line (see
“Continuation lines” on page 13).

2. If the DBCS assembler option is specified, the continuation features outlined in “Continuation of
double-byte data” on page 13 apply to continuation in the macro language. Extended continuation
might be useful if a macro operand contains double-byte data.

3. Operands on continuation lines must begin in the continue column (column 16), or the assembler
assumes that the current line and any lines that follow contain remarks.
If any entries are made in the columns before the continue column in continuation lines, the
assembler issues an error message and the whole statement is not processed.

4. One or more spaces must separate the operand from the remarks.
5. A comma after an operand indicates more operands follow.
6. The last operand requires no comma following it, but using a comma does not cause an error.

260 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

7. You do not need to use the same format when you code a macro instruction as you use when you
code the corresponding macro prototype statement.

8. Continued comments for a macro with an operand list that terminates in a null operand are
recognized provided each continued comment begins in the same or later column as the preceding
line's comment.

Name entry
Use the name entry of a macro instruction to:
v Pass a value into a macro definition through the name entry declared in the macro definition
v Provide a conditional assembly label (see “Sequence symbols” on page 298) so that you can branch to

the macro instruction during conditional assembly if you want the called macro definition expanded.

The name entry of a macro instruction can be:
v Space
v An ordinary symbol, such as HERE

v A variable symbol, such as &A.

v Any combination of variable symbols and other character strings concatenated together, such as
HERE.&A

v Any character string allowed in a macro instruction operand, such as ’Now is the hour’ or STRING00,
excluding sublist entries and certain attribute references (see “Values in operands” on page 269)

v A sequence symbol, which is not passed to the macro definition, such as .SEQ

Operation entry
The operation entry is the symbolic name of the operation code that identifies a macro definition to
process.

The operation entry must be a valid symbol, and must be identical to the operation field in the prototype
statement of the macro definition.

The assembler searches for source macro definitions before library macro definitions. If you have a source
macro definition that has the same name as a library macro definition, the assembler only processes the
source macro definition.

You can use a variable symbol as a macro instruction. For example if MAC1 has been defined as a macro,
you can use the following statements to call it:
&CALL SETC ’MAC1’

&CALL

You cannot use a variable symbol as a macro instruction that passes operands to the macro. The second
statement in the following example generates an error:
&CALL SETC ’MAC1 OPERAND1=VALUE’

&CALL

You must specify operand entries after the variable symbol, as shown in the following example:
&CALL SETC ’MAC1’

&CALL OPERAND1=VALUE

Operand entry
Use the operand entry of a macro instruction to pass values into the called macro definition. These values
can be passed through:
v The symbolic parameters you have specified in the macro prototype.

Chapter 8. How to write macro instructions 261

v The system variable symbol &SYSLIST if it is specified in the body of the macro definition (see
“&SYSLIST System Variable Symbol” on page 241).

The two types of operands allowed in a macro instruction are positional and keyword operands. You can
specify a sublist with multiple values in both types of operands. Special rules for the various values you
can specify in operands are given in the following subsections.

Positional operands
You can use a positional operand to pass a value into a macro definition through the corresponding
positional parameter declared for the definition. Declare a positional parameter in a macro definition
when you want to change the value passed at every call to that macro definition.

You can also use a positional operand to pass a value to the system variable symbol &SYSLIST. If
&SYSLIST, with the applicable subscripts, is specified in a macro definition, you do not need to declare
positional parameters in the prototype statement of the macro definition. You can thus use &SYSLIST to
refer to any positional operand. This allows you to vary the number of operands you specify each time
you call the same macro definition.

The positional operands of a macro instruction must be specified in the same order as the positional
parameters declared in the called macro definition.

Each positional operand constitutes a character string. This character string is the value passed through a
positional parameter into a macro definition.

The specification for each positional parameter in the prototype statement definition must be a valid
variable symbol. Values are assigned (see �1�) to the positional operands by the corresponding positional
arguments see �2� below) specified in the macro instruction that calls the macro definition.

Notes:

1. An omitted operand has a null character value.
2. Each positional operand can be up to1024 characters long.
3. If the DBCS assembler option is specified, the positional operand can be a string containing

double-byte data. The string does not need to be quoted.

Here are examples of macro instructions with positional operands:

Source Module
┌──┐

Macro │ MACRO │
Definition ├──┤

│ POSPAR &POS1,&POS2,&POS3 │
│ . ↑ ↑ ↑ │
│ . │ │ │ │
│ MEND │ │ │ │
├──────────────────────────┼─────┼─────┼─────────┤
│ . │ │ │ │
│ . �1� �1� �1� │
│ START │ │ │ │
│ . │ ┌──┘ ┌───┘ │
│ . │ │ │ │

Macro │ POSPAR ONE,TWO,THREE �2� │
Instruction │ . │

│ . │
│ END │
└──┘

Figure 33. Positional operands

262 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

MACCALL VALUE,9,8
MACCALL &A,’QUOTED STRING’
MACCALL EXPR+2,,SYMBOL
MACCALL (A,B,C,D,E),(1,2,3,4)
MACCALL &A,’<.S.T.R.I.N.G>’

The following list shows what happens when the number of positional operands in the macro instruction
is equal to or differs from the number of positional parameters declared in the prototype statement of the
called macro definition:

Equal Valid, if operands are correctly specified.

Greater than
Meaningless, unless &SYSLIST is specified in definition to refer to excess operands.

Less than
Omitted operands give null character values to corresponding parameters (or &SYSLIST
specification).

Keyword operands
You can use a keyword operand to pass a value through a keyword parameter into a macro definition.
The values you specify in keyword operands override the default values assigned to the keyword
parameters. Set the default value to a value you use frequently. Thus, you avoid having to write this
value every time you code the calling macro instruction.

When you need to change the default value, you must use the corresponding keyword operand in the
macro instruction. The keyword can indicate the purpose for which the passed value is used.

Any keyword operand specified in a macro instruction must correspond to a keyword parameter in the
macro definition called. However, keyword operands do not have to be specified in any particular order.

The general specifications for symbolic parameters also apply to keyword operands. The actual operand
keyword must be a valid variable symbol. A null character string can be specified as the standard value
of a keyword operand, and is generated if the corresponding keyword operand is omitted.

A keyword operand must be coded in this format:
KEYWORD=VALUE

where:
KEYWORD

Has up to 62 characters without an ampersand.
VALUE

Can be up to 1024 characters.

The corresponding keyword parameter in the called macro definition is specified as:
&KEYWORD=DEFAULT

If a keyword operand is specified, its value overrides the default value specified for the corresponding
keyword parameter.

If the DBCS assembler option is specified, the keyword operand can be a string containing double-byte
data. The string does not need to be quoted.

If the value of a keyword operand is a literal, two equal signs must be specified.

The following examples of macro instructions have keyword operands:

Chapter 8. How to write macro instructions 263

MACKEY KEYWORD=(A,B,C,D,E)
MACKEY KEY1=1,KEY2=2,KEY3=3
MACKEY KEY3=2000,KEY1=0,KEYWORD=HALLO
MACKEY KEYWORD=’<.S.T.R.I.N.G>’
MACKEY KEYWORD==C’STRING’

To summarize the relationship of keyword operands to keyword parameters:
v The keyword of the operand corresponds (see �1� in Figure 34 on page 265) to a keyword parameter.

The value in the operand overrides the default value of the parameter.
v If the keyword operand is not specified (see �2� in Figure 34 on page 265), the default value of the

parameter is used.
v If the keyword of the operand does not correspond (see�3� in Figure 34 on page 265) to any keyword

parameter, the assembler issues an error message, but the macro is generated using the default values
of the other parameters.

v The default value specified for a keyword parameter can be the null character string (see �4� in
Figure 34 on page 265). The null character string is a character string with a length of zero; it is not a
space, because a space occupies one character position.

264 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Combining positional and keyword operands
You can use positional and keyword operands in the same macro instruction. Use a positional operand
for a value that you change often, and a keyword operand for a value that you change infrequently.

Positional and keyword parameters can be mixed freely in the macro prototype statement (see �1� in
Figure 35 on page 266). The same applies to the positional and keyword operands of the macro
instruction (see �2� in Figure 35 on page 266). Note, however, that the order in which the positional
parameters appear (see �3� in Figure 35 on page 266) determines the order in which the positional
operands must appear. Interspersed keyword parameters and operands (see �4� in Figure 35 on page 266)
do not affect this order.

┌─ �4� Null character string
│ is default value

MACRO ↓
MACCORR &KEY1=DEFAULT,&KEY2=,&KEY3=123
.
.
DC C’&KEY1&KEY2&KEY3’
.
.
MEND

──
───────
OPEN START 0

.

. �1� �1� �1�
MACCOOR KEY1=OVERRIDE,KEY2=0,KEY3=456
. │ │ │
. ┌────┘ ┌──────────┘ │
. ↓ ↓ │

+ DC C’OVERRIDE0456’ │
. ↑ │
. └────────────────┘
.
MACCOOR �2�
. ┌──── KEY2 has null character
. │ string as default
. ↓

+ DC C’DEFAULT123’
.
.
. �3�
MACCOOR KEY4=SYMBOL,KEY2=0

ASMA017W ** WARNING ** Undefined keyword parameter . . .
.
.
.

+ DC C’DEFAULT0123’
.
.
.
MACCOOR KEY1=,KEY3=456
. ┌──────────────────── • KEY1 parameter has null
. │ character string value
. ↓ • KEY2 has null character

+ DC C’456’ string as default
END

Figure 34. Relationship between keyword operands and keyword parameters and their assigned values

Chapter 8. How to write macro instructions 265

&SYSLIST(n): The system variable symbol &SYSLIST(n) refers only to the positional operands in a macro
instruction.

Sublists in operands
You can use a sublist in a positional or keyword operand to specify several values. A sublist is a character
string that consists of one or more entries separated by commas and enclosed in parentheses.

If the COMPAT(SYSLIST) assembler option is not specified, a variable symbol that has been assigned a
character string that consists of one or more entries separated by commas and enclosed in parentheses is
also treated as a sublist. However, if the COMPAT(SYSLIST) assembler option is specified, a sublist
assigned to a variable symbol is treated as a character string, not as a sublist.

A variable symbol is not treated as a sublist if the parentheses are not present. The following example
shows two calls to macro MAC1. In the first call, the value of the operand in variable &VAR1 is treated as a
sublist. In the second call, the value of the operand is treated as a character string, not a sublist, because
the variable &VAR2 does not include parentheses.
&VAR1 SETC ’(1,2)’

MAC1 KEY=&VAR1
&VAR2 SETC ’1,2’

MAC1 KEY=(&VAR2)

To refer to an entry of a sublist code, use:
v The corresponding symbolic parameter with an applicable subscript.
v The system variable symbol &SYSLIST with applicable subscripts, the first of which refers to the

positional operand, and the second to the sublist entry in the operand. &SYSLIST can refer only to
sublists in positional operands.

Figure 36 on page 267 shows that the value specified in a positional or keyword operand can be a sublist.

A symbolic parameter can refer to the whole sublist (see�1� in Figure 36 on page 267), or to an individual
entry of the sublist. To refer to an individual entry, the symbolic parameter (see �2� in Figure 36 on page
267) must have a subscript whose value indicates the position (see �3� in Figure 36 on page 267) of the
entry in the sublist. The subscript must have a value greater than or equal to 1.

�4�
┌─────────┴─────────┐

MACRO ↓ ↓
�1� MIX &P1,&KEY1=A,&P2,&P3,&P4,&KEY2=,&P5

. ¹ ² ³ ⁴ ⁵ �3�

.

.
MEND

───
START 0
.
.
. ₁ ₂ ₃ ₄ ₅ �3�

�2� MIX KEY1=B,ONE,TWO,THREE,KEY2=33,FOUR,FIVE
. ↑ ↑
. └─────────┬──────────┘
. �4�
END

Figure 35. Combining positional and keyword parameters

266 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

A sublist, including the enclosing parentheses, must not contain more than 1024 characters. It consists of
one or more entries separated by commas and enclosed in parentheses; for example, (A,B,C,D,E). () is a
valid sublist with the null character string as the only entry.

Table 48 shows the relationship between subscripted parameters and sublist entries if:
v A sublist entry is omitted (see �1� in Table 48).
v The subscript refers past the end of the sublist (see�2� in Table 48).
v The value of the operand is not a sublist (see �3� in Table 48).
v The parameter is not subscripted (see �4� in Table 48).

&SYSLIST(n,m): The system variable symbol, &SYSLIST(n,m), can also refer to sublist entries, but only if
the sublist is specified in a positional operand.

Table 48. Relationship between subscripted parameters and sublist entries

Parameter

Sublist specified in
corresponding operand
or as default value
of a keyword parameter

Value generated or used in
computation

�1� &PARM1(3) (1,2,,4) Null character string

�2� &PARM1(5) (1,2,3,4) Null character string

MACRO
SUBLISTS &P1,&P2,&KEY=(F0,F,0)
. ↑ Refers to default value
. ┌───�3�──┘ in keyword operand
. │

&KEY(1) DC &KEY(2)’&KEY(3)’
.
. ┌────────────�3� Refers to value in

&P1(1) DC &P1(2)’&P1(3)’ │ positional operand
. �2� │
. │
DC A&P2 │
. │ │
. └───────────────�1� │
MEND │ │

──────────────────────────────────┼──────┼───────────────────────────────
OPEN START 0 │ │

. ↓ │

. ┌─────┐ │
SUBLISTS (H20,H,200),(A,B,C) │
. ↑ │
. └──────────────┘
.

+F0 DC F’0’
.
.

+H20 DC H’200’
.
.

+ DC A(A,B,C)
.
.
END

Figure 36. Sublists in operands

Chapter 8. How to write macro instructions 267

Table 48. Relationship between subscripted parameters and sublist entries (continued)

Parameter

Sublist specified in
corresponding operand
or as default value
of a keyword parameter

Value generated or used in
computation

&PARM1�3�
&PARM1(1)

&PARM1(2)

A
A
A

A
A
Null character string

�4� &PARM1
&PARM1(1)�2�

&PARM1(2)

&PARM1
&PARM1(1)
&PARM1(2)

(A)¹
(A)¹
(A)¹

()¹
()¹
()¹

(A)
A
Null character string

()
Null character string
Null character string

&PARM1(2)

&PARM1(1)

(A, ,C,D)²

()²

Nothing³

Nothing³

&PARM1
&PARM2(3)
&SYSLIST(2,3)

A,(1,2,3,4)⁴
A,(1,2,3,4)⁴
A,(1,2,3,4)⁴

A
3
3

Notes:

1. Considered a sublist.

2. The space indicates the end of the operand field.

3. Produces error diagnostic message ASMA088E Unbalanced parentheses in macro call operand.

4. Positional operands.

Multilevel sublists
You can specify multilevel sublists (sublists within sublists) in macro operands. The depth of this nesting
is limited only by the constraint that the total operand length must not exceed 1024 characters. Inner
elements of the sublists are referenced using additional subscripts on symbolic parameters or on
&SYSLIST.

N'&SYSLIST(n) gives the number of operands in the indicated n-th level sublist. The number attribute
(N') and a parameter name with an n-element subscript array gives the number of operands in the
indicated (n+1)-th operand sublist. Table 49 shows the value of selected elements if &P is the first
positional parameter, and the value assigned to it in a macro instruction is (A,(B,(C)),D).

Table 49. Multilevel sublists

Selected Elementsfrom &P Selected Elementsfrom &SYSLIST Value ofSelected Element

&P
&P(1)
&P(2)
&P(2,1)
&P(2,2)
&P(2,2,1)
&P(2,2,2)
N'&P(2,2)
N'&P(2)
N'&P(3)
N'&P

&SYSLIST(1)
&SYSLIST(1,1)
&SYSLIST(1,2)
&SYSLIST(1,2,1)
&SYSLIST(1,2,2)
&SYSLIST(1,2,2,1)
&SYSLIST(1,2,2,2)
N'&SYSLIST(1,2,2)
N'&SYSLIST(1,2)
N'&SYSLIST(1,3)
N'&SYSLIST(1)

(A,(B,(C)),D)
A
(B,(C))
B
(C)
C
null
1
2
1
3

268 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Passing sublists to inner macro instructions
You can pass a suboperand of an outer macro instruction sublist as a sublist to an inner macro
instruction. However, if you specify the COMPAT(SYSLIST) assembler option, a sublist assigned to a
variable symbol is treated as a character string, not as a sublist.

Values in operands
You can use a macro instruction operand to pass a value into the called macro definition. The two types
of value you can pass are:
v Explicit values or the actual character strings you specify in the operand
v Implicit values, or the attributes inherent in the data represented by the explicit values

The explicit value specified in a macro instruction operand is a character string that can contain zero or
more variable symbols.

The character string must not be greater than 1024 characters after substitution of values for any variable
symbols. This includes a character string that constitutes a sublist.

The character string values in the operands, including sublist entries, are assigned to the corresponding
parameters declared in the prototype statement of the called macro definition. A sublist entry is assigned
to the corresponding subscripted parameter.

Omitted operands
When a keyword operand is omitted, the default value specified for the corresponding keyword
parameter is the value assigned to the parameter. When a positional operand or sublist entry is omitted,
the null character string is assigned to the parameter.

Notes:

1. Spaces appearing between commas (without surrounding apostrophes) do not signify an omitted
positional operand or an omitted sublist entry; they indicate the end of the operand field.

2. Adjacent commas indicate omission of positional operands; no comma is needed to indicate omission
of the last or only positional operand.

The following example shows a macro instruction preceded by its corresponding prototype statement.
The macro instruction operands that correspond to the third and sixth operands of the prototype
statement are omitted in this example.

EXAMPLE &A,&B,&C,&D,&E,&F macro prototype
EXAMPLE 17,*+4,,AREA,FIELD(6) macro instruction

Unquoted operands
The assembler normally retains the case of unquoted macro operands. However, to maintain uppercase
alphabetic character set compatibility with earlier assemblers, High Level Assembler provides the
COMPAT(MACROCASE) assembler option. When you specify this option, the assembler internally
converts lowercase alphabetic characters (a through z) in unquoted macro instruction operands to
uppercase alphabetic characters (A though Z), before macro expansion begins.

Special characters
Any of the 256 characters of the EBCDIC character set can appear in the value of a macro instruction
operand (or sublist entry). However, the following characters require special consideration:

Chapter 8. How to write macro instructions 269

Ampersands
A single ampersand indicates the presence of a variable symbol. The assembler substitutes the value of
the variable symbol into the character string specified in a macro instruction operand. The resultant string
is then the value passed into the macro definition. If the variable symbol is undefined, an error message
is issued.

Double ampersands must be specified if a single ampersand is to be passed to the macro definition.

Examples:
&VAR
&A+&B+3+&C*10
’&MESSAGE’
&®ISTER

Apostrophes
An apostrophe is used:
v To indicate the beginning and end of a quoted string
v In a length, type, integer, opcode, or scale attribute reference notation that is not within a quoted string

Examples:
’QUOTED STRING’
L’SYMBOL
T’SYMBOL

Shift-out (SO) and shift-in (SI)
If the DBCS assembler option is specified, then SO (X'0E') and SI (X'0F') are recognized as shift codes. SO
and SI delimit the start and end of double-byte data.

Quoted strings and character strings
A “quoted string” is any sequence of characters that begins and ends with an apostrophe (compare with
conditional assembly character expressions described in “Character (SETC) expressions” on page 328).

To include one or more apostrophes or substituted apostrophes within the string (inside the delimiting
apostrophes) two apostrophes must be specified for each apostrophe.

A “character string” is a sequence of characters that is not delimited with apostrophes.

Quoted strings can contain double-byte data, if the DBCS assembler option is specified. The double-byte
data must be bracketed by the SO and SI delimiters. Only valid double-byte data is recognized between
the SO and SI. The SI must be in any odd-numbered byte position after the SO. If the end of the operand
is reached before SI is found, then error ASMA203E Unbalanced double-byte delimiters is issued.

Macro instruction operands can have values that include one or more quoted strings. Each quoted string
can be separated from the following quoted string by one or more characters, and each must contain an
even number of apostrophes.

Examples:
’’
’L’’SYMBOL’
’QUOTE1’AND’QUOTE2’
A’B’C

Attribute reference notation
You can specify an attribute reference notation as a macro instruction operand value. The attribute
reference notation must be preceded by a space or any other special character except the ampersand and
the apostrophe. See “Data attributes” on page 284 for details about data attributes, and the format of
attribute references.

270 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Examples:
MAC1 L’SYMBOL,10+L’AREA*L’FIELD
MAC1 I’PACKED-S’PACKED

Parentheses
In macro instruction operand values, there must be an equal number of left and right parentheses. They
must be paired, that is, each left parenthesis needs a following right parenthesis at the same level of
nesting. An unpaired (single) left or right parenthesis can appear only in a quoted string.

Examples:
(PAIRED-PARENTHESES)
()
(A(B)C)D(E)
(IN’(’STRING)

Spaces
One or more spaces outside a quoted string indicates the end of the operands of a macro instruction. If
this is not your intention, place the spaces inside quoted strings.

Example:
’SPACES ALLOWED’

Commas
A comma outside a quoted string indicates the end of an operand value or sublist entry. Commas that do
not delimit values can appear inside quoted strings or paired parentheses that do not enclose sublists.

Examples:
A,B,C,D
(1,2)3’5,6’

Equal signs
An equal sign can appear in the value of a macro instruction operand or sublist entry:
v As the first character
v Inside quoted strings
v Between paired parentheses
v In a keyword operand
v In a positional operand, provided the parameter does not resemble a keyword operand

Examples:
=H’201’
A’=’B
C(A=B)
2X=B
KEY=A=B

The assembler issues a warning message for a positional operand containing an equal sign, if the operand
resembles a keyword operand. Thus, if we assume that this is the prototype of a macro definition:

MAC1 &F

then this macro instruction generates a warning message:
MAC1 K=L (K appears to be a valid keyword)

while this macro instruction does not:
MAC1 2+2=4 (2+2 is not a valid keyword)

Chapter 8. How to write macro instructions 271

Periods
A period (.) can be used in the value of an operand or sublist entry. It is passed as a period. However, if
it is used immediately after a variable symbol, it becomes a concatenation character. Two periods are
required if one is to be passed as a character.

Examples:
3.4
&A.1
&A..1

Nesting macro instruction definitions
A nested macro instruction definition is a macro instruction definition you can specify as a set of model
statements in the body of an enclosing macro definition. This lets you create a macro definition by
expanding the outer macro that contains the nested definition.

All nested inner macro definitions are effectively “black boxes”: there is no visibility to the outermost
macro definition of any variable symbol or sequence symbol within any of the nested macro definitions.
This means that you cannot use an enclosing macro definition to tailor or parameterize the contents of a
nested inner macro definition.

High Level Assembler allows both inner macro instructions and inner macro definitions. The inner macro
definition is not edited until the outer macro is generated as the result of a macro instruction calling it,
and then only if the inner macro definition is encountered during the generation of the outer macro. If
the outer macro is not called, or if the inner macro is not encountered in the generation of the outer
macro, the inner macro definition is never edited. Figure 37 shows the editing of inner macro definitions.

┌─────────────┐
│ MACRO │
│ MAC1 ├─────────────────────────────────────┐
│ • │ │
└─────────────┘ │
┌─────────────┐ │
│ MACRO │ │
│ MAC2 ├──────────────────┐ │
│ • │ │ │
└─────────────┘ │ │
┌─────────────┐ │ │
│ MACRO │ │ │
│ MAC3 │ │ │
│ • │ Edited when │ Edited when │ Edited when
│ • ├── MAC2 is called ├── MAC1 is called ├── definition first
│ • │ and generated │ and generated │ encountered
│ • │ │ │
│ MEND │ │ │
└─────────────┘ │ │
┌─────────────┐ │ │
│ • ├──────────────────┘ │
│ MEND │ │
└─────────────┘ │
┌─────────────┐ │
│ • ├─────────────────────────────────────┘
│ MEND │
└─────────────┘

Figure 37. Editing inner macro definitions

272 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

First MAC1 is edited, and MAC2 and MAC3 are not. When MAC1 is called, MAC2 is edited (unless its definition is
bypassed by an AIF or AGO branch); when MAC2 is called, MAC3 is edited. No macro can be called until it
has been edited.

There is no limit to the number of nestings allowed for inner macro definitions.

The lack of parameterization can be overcome in some cases by using the AINSERT statement. This lets
you generate a macro definition from within another macro generation. A simple example is shown at
“Where to define a macro in a source module” on page 213. In Figure 38, macro ainsert_test_macro
generates the macro mac1 using a combination of AINSERT and AREAD instructions. The mac1 macro is
then called with a list of seven parameters.

Inner and outer macro instructions
Any macro instruction you write in the open code of a source module is an outer macro instruction or call.
Any macro instruction that appears within a macro definition is an inner macro instruction or call.

1 macro
2 &name ainsert_test_macro
3 ainsert ’ Macro’,back
4 ainsert ’ mac1’,back
5 ainsert ’Blah blah blah’,front
6 &aread aread
7 &aread setc ’&aread’(1,10)
8 ainsert ’&&n seta n’’&&syslist ’,back
9 ainsert ’ dc a(&&n)’,back
10 ainsert ’ dc c’’&aread’’ ’,back
11 ainsert ’ mend’,back
12 mend
13 *
14 testains csect 0
15 *
16 ainsert_test_macro
17+ ainsert ’ Macro’,back
18+ ainsert ’ mac1’,back
19+ ainsert ’Blah blah blah’,front
20-Blah blah blah
21+ ainsert ’&&n seta n’’&&syslist ’,back
22+ ainsert ’ dc a(&&n)’,back
23+ ainsert ’ dc c’’Blah blah ’’ ’,back
24+ ainsert ’ mend’,back
25> Macro
26> mac1
27>&n seta n’&syslist
28> dc a(&n)
29> dc c’Blah blah ’
30> mend
31 *
32 mac1 a,b,c,d,e,f,g
33+ dc a(7)
34+ dc c’Blah blah ’
35 *
36 end

Figure 38. Expanding nested macro definitions

Chapter 8. How to write macro instructions 273

Levels of macro call nesting
The code generated by a macro definition called by an inner macro call is nested inside the code
generated by the macro definition that contains the inner macro call. In the macro definition called by an
inner macro call, you can include a macro call to another macro definition. Thus, you can nest macro calls
at different levels.

The &SYSNEST system variable indicates how many levels you called. It has the value 1 in an outer
macro, and is incremented by one at a macro call.

Recursion
You can also call a macro definition recursively; that is, you can write macro instructions inside macro
definitions that are calls to the containing definition. This is how you define macros to process recursive
functions.

General rules and restrictions
Macro instruction statements can be written inside macro definitions. Values are substituted in the same
way as they are for the model statements of the containing macro definition. The assembler processes the
called macro definition, passing to it the operand values (after substitution) from the inner macro
instruction. In addition to the operand values described in “Values in operands” on page 269, nested
macro calls can specify values that include:
v Any of the symbolic parameters (see �1� in Figure 39) specified in the prototype statement of the

containing macro definition
v Any SET symbols (see �2� in Figure 39) declared in the containing macro definition
v Any of the system variable symbols, such as &SYSDATE or &SYSTIME, (see �3� in Figure 39).

┌──────────── Parameters
│

MACRO ┌────────┴────────┐
OUTERMAC &P1,&P2,&KEY1=VALUE Prototype
. │
. �1�
. │
LCLC &C──────────────→�2�
. │ │
. │ │

&C SETC ’ABC’ │ │
. │ │
. ↓ ↓
INNERMAC &P1,&KEY1,&C Inner macro call
. └─────┬────┘
. └─────────────── Operands
.
MEND

───
MACRO
OUT Prototype
.
.
. �3� �3� �3�
IN &SYSLIST(3),&SYSECT,A&SYSDNX Inner macro call
.
.
MEND

Figure 39. Values in nested macro calls

274 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

The number of nesting levels permitted depends on the complexity and size of the macros at the different
levels; that is, the number of operands specified, the number of local-scope and global-scope SET symbols
declared, and the number of sequence symbols used.

When the assembler processes a macro exit instruction, either MEXIT or MEND, it selects the next
statement to process depending on the level of nesting. If the macro exit instruction is from an inner
macro, the assembler processes the next statement after the statement that called the outer macro. The
next statement in open code might come from the AINSERT buffer. If the macro exit instruction is from
an outer macro, the assembler processes the next statement in open code, after the statement that called
the outer macro.

Passing values through nesting levels
The value contained in an outer macro instruction operand can be passed through one or more levels of
nesting (see Figure 40 on page 276). However, the value specified (see �1� in Figure 40 on page 276) in
the inner macro instruction operand must be identical to the corresponding symbolic parameter (see �2�
in Figure 40 on page 276) declared in the prototype of the containing macro definition.

Thus, a sublist can be passed (see �3� in Figure 40 on page 276) and referred to (see �4� in Figure 40 on
page 276) as a sublist in the macro definition called by the inner macro call. Also, any symbol (see �5� in
Figure 40 on page 276) that is passed carries its attribute values through the nesting levels.

If inner macro calls at each level are specified with symbolic parameters as operand values, values can be
passed from open code through several levels of macro nesting.

COMPAT(SYSLIST) Assembler Option: If the COMPAT(SYSLIST) assembler option is specified, and a
symbolic parameter is only a part of the value specified in an inner macro instruction operand, only the
character string value given to the parameter by an outer call is passed through the nesting level. Inner
sublist entries are, therefore, not available for reference in the inner macro.

Chapter 8. How to write macro instructions 275

System variable symbols in nested macros
The fixed global-scope system variable symbols (see “System variable symbols” on page 229) are not
affected by the nesting of macros. The variable global-scope system variable symbols have values which
might change during the expansion of a macro definition. The following system variable is influenced by
nested macros:

&SYSM_SEV
Provides the highest MNOTE severity code from the nested macro most recently called.

The local system variable symbols are given read-only values each time a macro definition is called.

�2�
MACRO ┌────┴────┐
OUTER &P1,&P2,&P3
.
.
.
INNER &P1,&P2,&P3
. └────┬────┘
. �1�
.
MEND

MACRO
INNER &Q,&R,&S
.
. ┐
L 3,&Q(1) │
A 3,&Q(2) ├ �4�
ST 3,&Q(3) │
. ┘
.
MVC &R,&S
.
.
MEND

──
START 0
. �5�
. ┌──┴──┐
OUTER (AREA,F200,SUM),TO,FROM¹
. └──────┬──────┘
. �3�
.

+ L 3,AREA
+ A 2,F200
+ ST 3,SUM

.

.
+ MVC TO,FROM

.

.
END

Note:

1. The following inner macro call statement is generated, but not listed unless the PCONTROL(MCALL) option is
specified, or the assembler instruction ACONTROL MCALL is active:

INNER (AREA,F200,SUM),TO,FROM

Figure 40. Passing values through nesting levels

276 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

The following system variable symbols can be affected by the position of a macro instruction in code or
the operand value specified in the macro instruction:

&SYSCLOCK
The assembler assigns &SYSCLOCK the constant string value representing the TOD clock value
at the time at which a macro call is made. The time portion of this value is precise to the
microsecond. For any inner macro call, the value assigned to &SYSCLOCK differs from that of its
parent.

&SYSECT
The assembler gives &SYSECT the character string value of the name of the control section in use
at the point at which a macro call is made. For a macro definition called by an inner macro call,
the assembler assigns to &SYSECT the name of the control section in effect in the macro
definition that contains the inner macro call, at the time the inner macro is called.

If no control section is generated within a macro definition, the value assigned to &SYSECT does
not change. It is the same for the next level of macro definition called by an inner macro
instruction.

&SYSLIB_DSN, &SYSLIB_MEMBER, &SYSLIB_VOLUME
The assembler assigns the character string value of the &SYSLIB system variable symbols at the
point at which a macro is called. For an inner macro call whose definition is from a library
member, these values might differ, if this is the first time this macro is invoked.

&SYSLIST
If &SYSLIST is specified in a macro definition called by an inner macro instruction, &SYSLIST
refers to the positional operands of the inner macro instruction.

&SYSLOC
The assembler gives &SYSLOC the character string value of the name of the location counter in
use at the point at which a macro is called. For a macro definition called by an inner macro call,
the assembler assigns to &SYSLOC the name of the location counter in effect in the macro
definition that contains the inner macro call. If no LOCTR or control section is generated within a
macro definition, the value assigned to &SYSLOC does not change. It is the same for the next
level of macro definition called by an inner macro instruction.

&SYSNDX
The assembler increments &SYSNDX by one each time it encounters a macro call. It retains the
incremented value throughout the expansion of the macro definition called, that is, within the
local scope of the nesting level.

&SYSNEST
The assembler increments &SYSNEST by one each time it encounters a nested macro instruction.
It retains the incremented value within the local scope of the macro definition called by the inner
macro instruction. Subsequent nested macro instructions cause &SYSNEST to be incremented by
1. When the assembler exits from a nested macro it decreases the value in &SYSNEST by 1.

&SYSSEQF
The assembler assigns &SYSSEQF the character string value of the identification-field of the
outer-most macro instruction statement. The value of &SYSSEQF remains constant throughout the
expansion of the called macro definition and all macro definitions called from within the outer
macro.

&SYSSTYP
The assembler gives &SYSSTYP the character string value of the type of the control section in use
at the point at which a macro is called. For a macro definition called by an inner macro call, the
assembler assigns to &SYSSTYP the type of the control section in effect in the macro definition
that contains the inner macro call, at the time the inner macro is called.

Chapter 8. How to write macro instructions 277

If no control section is generated within a macro definition, the value assigned to &SYSSTYP does
not change. It is the same for the next level of macro definition called by an inner macro
instruction.

278 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Chapter 9. How to write conditional assembly instructions

This chapter describes the conditional assembly language. With the conditional assembly language, you
can carry out general arithmetic and logical computations, and many of the other functions you can carry
out with any other programming language. Also, by writing conditional assembly instructions in
combination with other assembler language statements, you can:
v Select sequences of these source statements, called model statements, from which machine and assembler

instructions are generated
v Vary the contents of these model statements during generation

The assembler processes the instructions and expressions of the conditional assembly language during
conditional assembly processing. Then, at assembly time, it processes the generated instructions.
Conditional assembly instructions, however, are not processed after conditional assembly processing is
completed.

The conditional assembly language is more versatile when you use it to interact with symbolic
parameters and the system variable symbols inside a macro definition. However, you can also use the
conditional assembly language in open code; that is, code that is not within a macro definition.

Elements and functions
The elements of the conditional assembly language are:
v SET symbols that represent data. See “SET symbols.”
v Attributes that represent different characteristics of symbols. See “Data attributes” on page 284.
v Sequence symbols that act as labels for branching to statements during conditional assembly

processing. See “Sequence symbols” on page 298.

The functions of the conditional assembly language are:
v Declaring SET symbols as variables for use locally and globally in macro definitions and open code.

See “Declaring SET symbols” on page 302.
v Assigning values to the declared SET symbols. See “Assigning values to SET symbols” on page 305.
v Selecting characters from strings for substitution in, and concatenation to, other strings; or for

inspection in condition tests. See “Substring notation” on page 328.
v Branching and exiting from conditional assembly loops. See “Branching” on page 344.

The conditional assembly language can also be used in open code with few restrictions. See “Open code”
on page 301.

The conditional assembly language provides instructions for evaluating conditional assembly expressions
used as values for substitution, as subscripts for variable symbols, and as condition tests for branching.
See “Conditional assembly instructions” on page 302 for details about the syntax and usage rules of each
instruction.

SET symbols
SET symbols are variable symbols that provide you with arithmetic, binary, or character data, and whose
values you can vary during conditional assembly processing.

Use SET symbols as:
v Terms in conditional assembly expressions

© Copyright IBM Corp. 1992, 2013 279

v Counters, switches, and character strings
v Subscripts for variable symbols
v Values for substitution

Thus, SET symbols let you control your conditional assembly logic, and to generate many different
statements from the same model statement.

Subscripted SET symbols
You can use a SET symbol to represent a one-dimensional array of many values. You can then refer to
any one of the values of this array by subscripting the SET symbol. For more information, see
“Subscripted SET symbol specification” on page 283.

Scope of SET symbols
The scope of a SET symbol is that part of a program for which the SET symbol has been declared. Local
SET symbols need not be declared by explicit declarations. The assembler considers any undeclared
variable symbol found in the name field of a SETx instruction as a local SET symbol.

If you declare a SET symbol to have a local scope, you can use it only in the statements that are part of
either:
v The same macro definition, or
v Open code

If you declare a SET symbol to have a global scope, you can use it in the statements that are part of any
one of:
v The same macro definition
v A different macro definition
v Open code

You must, however, declare the SET symbol as global for each part of the program (a macro definition or
open code) in which you use it.

You can change the value assigned to a SET symbol without affecting the scope of this symbol.

Scope of symbolic parameters
A symbolic parameter has a local scope. You can use it only in the statements that are part of the macro
definition for which the parameter is declared. You declare a symbolic parameter in the prototype
statement of a macro definition.

The scope of system variable symbols is described in Table 50 on page 281.

SET symbol specifications
SET symbols can be used in model statements, from which assembler language statements are generated,
and in conditional assembly instructions. The three types of SET symbols are: SETA, SETB, and SETC. A
SET symbol must be a valid variable symbol.

The rules for creating a SET symbol are:
v The first character must be an ampersand (&)
v The second character must be an alphabetic character
v The remaining characters must be 0 to 61 alphanumeric
v Do not set the first four characters to &SYS, which is used for system variable symbols

Examples:

280 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

&ARITHMETICVALUE439
&BOOLEAN
&C
&EASY_TO_READ

Local SET symbols need not be declared by explicit declarations. The assembler considers any undeclared
variable symbol found in the name field of a SETx instruction as a local SET symbol, and implicitly
declares it to have the type specified by the SETx instruction. The instruction that declares a SET symbol
determines its scope and type.

The features of SET symbols and other types of variable symbols are compared in Table 50.

Table 50. Features of SET symbols and other types of variable symbols

Features
SETA, SETB,
SETC symbols

Symbolic
Parameters

System Variable
Symbols

Can be used in:
Open code

Macro definitions

Yes

Yes

No

Yes

&SYSASM
&SYSDATC
&SYSDATE
&SYSJOB
&SYSM_HSEV
&SYSM_SEV
&SYSOPT_DBCS
&SYSOPT_OPTABLE
&SYSOPT_RENT
&SYSOPT_XOBJECT
&SYSPARM
&SYSSTEP
&SYSSTMT
&SYSTEM_ID
&SYSTIME
&SYSVER

All

Chapter 9. How to write conditional assembly instructions 281

Table 50. Features of SET symbols and other types of variable symbols (continued)

Features
SETA, SETB,
SETC symbols

Symbolic
Parameters

System Variable
Symbols

Scope:
Local

Global

Yes

Yes

Yes

No

&SYSADATA_DSN
&SYSADATA_MEMBER
&SYSADATA_VOLUME
&SYSCLOCK
&SYSECT
&SYSIN_DSN
&SYSIN_MEMBER
&SYSIN_VOLUME
&SYSLIB_DSN
&SYSLIB_MEMBER
&SYSLIB_VOLUME
&SYSLIN_DSN
&SYSLIN_MEMBER
&SYSLIN_VOLUME
&SYSLIST
&SYSLOC
&SYSMAC
&SYSNDX
&SYSNEST
&SYSPRINT_DSN
&SYSPRINT_MEMBER
&SYSPRINT_VOLUME
&SYSPUNCH_DSN
&SYSPUNCH_MEMBER
&SYSPUNCH_VOLUME
&SYSSEQF
&SYSTERM_DSN
&SYSTERM_MEMBER
&SYSTERM_VOLUME

&SYSASM
&SYSDATC
&SYSDATE
&SYSJOB
&SYSM_HSEV
&SYSM_SEV
&SYSOPT_DBCS
&SYSOPT_OPTABLE
&SYSOPT_RENT
&SYSOPT_XOBJECT
&SYSPARM
&SYSSTEP
&SYSSTMT
&SYSTEM_ID
&SYSTIME
&SYSVER

Values can be
changed within
scope of symbol

Yes¹
No, read only
value²

No, read only
value²

282 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Table 50. Features of SET symbols and other types of variable symbols (continued)

Features
SETA, SETB,
SETC symbols

Symbolic
Parameters

System Variable
Symbols

Notes:

1. The value assigned to a SET symbol can be changed by using the SETA, SETAF, SETB, SETC, or SETCF
instruction within the declared or implied scope of the SET symbol.

2. A symbolic parameter and the system variable symbols (except for &SYSSTMT, &SYSM_HSEV, and &SYSM_SEV)
are assigned values that remain fixed throughout their scope. Wherever a SET symbol appears in a statement, the
assembler replaces the symbol's current value with the value assigned to it.

SET symbols can be used in the name, operation, and operand fields of macro instructions. The value
thus passed through the name field symbolic parameter into a macro definition is considered as a
character string and is generated as such. If the COMPAT(SYSLIST) assembler option is specified, the
value passed through an operand field symbolic into a macro definition is also considered a character
string and is generated as such. However, if the COMPAT(SYSLIST) assembler option is not specified,
SET symbols can be used to pass sublists into a macro definition.

Subscripted SET symbol specification
Here is the format of a subscripted SET symbol:

�� &symbol(subscript) ��

&symbol
Is a variable symbol.

subscript
Is an arithmetic expression with a value greater than or equal to 1.

Example:
&ARRAY(20)

The subscript can be any arithmetic expression allowed in the operand field of a SETA instruction (see
“Arithmetic (SETA) expressions” on page 311).

The subscript refers to one of the many positions in an array of values identified by the SET symbol.

A subscripted SET symbol can be used anywhere an unsubscripted SET symbol is allowed. However,
subscripted SET symbols must be declared as subscripted by a previous local or global declaration
instruction, or implicitly as a local subscripted SET symbol in a SETx instruction of the desired type.

The dimension (the maximum value of the subscript) of a subscripted SET symbol is not determined by
the explicit or implicit declaration of the symbol. The dimension specified can be exceeded in later SETx
instructions. Note, however, that increasing the dimension of a subscripted SET symbol also increases the
storage required. For example, referencing only &ARRAY(1000000) still causes the preceding 999999
elements to be allocated. You can determine the maximum subscript using the N' attribute (see “Number
attribute (N')” on page 295).

The subscript can be a subscripted SET symbol.

Chapter 9. How to write conditional assembly instructions 283

Created SET symbols
The assembler can create SET symbols during conditional assembly processing from other variable
symbols and character strings. A SET symbol thus created has the form &(e), where e represents one or
more of these:
v Variable symbols, optionally subscripted
v Strings of alphanumeric characters
v Other created SET symbols

After substitution and concatenation, e must consist of a string of up to 62 alphanumeric characters, the
first of which is alphabetic. The assembler considers the preceding ampersand and this string as the name
of a SET variable. If this created SET symbol has the same name as an existing SET symbol, they are
treated as identical. If this created SET symbol does not have the name of any existing SET symbol, the
usual rules for assigning type and scope apply.

You can use created SET symbols wherever ordinary SET symbols are permitted, including declarations.
A created SET symbol must not match the name of a system variable symbol, nor the name of a symbolic
parameter in a macro prototype statement. You can also nest created SET symbols in other created SET
symbols.

Consider the following example:
&ABC(1) SETC ’MKT’,’27’,’$5’

Let &(e) equal &(&ABC(&I)QUA&I).
&I &ABC(&I) Created SET Symbol Comment

1 MKT &MKTQUA1 Valid
2 27 &27QUA2 Invalid: character after ’&’ not alphabetic
3 $5 &$5QUA3 Valid
4 &QUA4 Valid

The name of a created SET symbol cannot match the name of a system variable symbol or of a symbolic
parameter in a macro definition.

The created SET symbol can be thought of as a form of indirect addressing. With nested created SET
symbols, you can perform this kind of indirect addressing to any level.

In another sense, created SET symbols offer an associative storage facility. For example, a symbol table of
numeric attributes can be referred to by an expression of the form &(&SYM)(&I) to yield the Ith attribute
of the symbol name in &SYM. As this example indicates, created SET symbols can be declared and used as
arrays of dimensioned variables.

Created SET symbols also enable you to achieve some of the effect of multiple-dimensioned arrays by
creating a separate name for each element of the array. For example, a 3-dimensional array of the form
&X(&I,&J,&K) might be addressed as &(X&I.$&J.$&K), where &I, &J, and &K typically have numeric
values. Thus, &X(2,3,4) is represented by &X2$3$4. The $ separators guarantee that &X(2,33,55) and
&X(23,35,5) are unique:
&X(2,33,55) becomes &X2$33$55
&X(23,35,5) becomes &X23$35$5

Data attributes
The data, such as instructions, constants, and areas, that you define in a source module, can be described
by its:
v Type, which distinguishes a property of a named object or macro argument, for example, fixed-point

constants from floating-point constants, or machine instructions from macro instructions

284 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

v Length, which gives the number of bytes occupied by the object code of the named data
v Scaling, which shows the number of positions occupied by the fractional portion of named fixed-point,

floating-point, and decimal constants in their object code form
v Integer, which shows the number of positions occupied by the integer portion of named fixed-point

and decimal constants in their object code form
v Count, which gives the number of characters that are required to represent the named data, such as a

macro instruction operand, as a character string
v Number, which gives the number of sublist entries in a macro instruction operand
v Defined, which determines whether a symbol has been defined prior to the point where the attribute

reference is coded
v Operation Code, which shows if an operation code, such as a macro definition or machine instruction,

is defined prior to the point where the attribute reference is coded

These characteristics are called the attributes of the symbols naming the data. The assembler assigns
attribute values to the ordinary symbols and variable symbols that represent the data.

Specifying attributes in conditional assembly instructions allows you to control conditional assembly
logic, which, in turn, can control the sequence and contents of the statements generated from model
statements. The specific purpose for which you use an attribute depends on the kind of attribute being
considered. Here are the attributes and their main uses:

Table 51. Data attributes

Attribute Purpose Main Uses

Type Gives a letter that identifies type of data
represented

v In tests to distinguish between
different data types

v For value substitution
v In macros to discover missing

operands

Length Gives number of bytes that data occupies in
storage

v For substitution into length fields
v For computation of storage

requirements

Scaling Refers to the position of the decimal point in
fixed-point, floating-point, and decimal constants

v For testing and regulating the
position of decimal points

v For substitution into a scale
modifier

Integer Is a function of the length and scale attributes of
decimal, fixed-point, and floating-point constants

v To keep track of significant digits
(integers)

Count Gives the number of characters required to
represent data

v For scanning and decomposing
character strings

v As indexes in substring notation

Number¹ Gives the number of sublist entries in a macro
instruction operand sublist, or the maximum
subscript of a dimensioned SET symbol to which a
value has been assigned.

v For scanning sublists
v As a counter to test for end of

sublist
v For testing array limits

Defined Shows whether the symbol referenced has been
defined prior to the attribute reference

v To avoid defining a symbol again if
the symbol referenced has been
previously defined

Operation Code Shows whether a given operation code has been
defined prior to the attribute reference

v To avoid assembling a macro or
instruction if it does not exist.

Chapter 9. How to write conditional assembly instructions 285

Table 51. Data attributes (continued)

Attribute Purpose Main Uses

Notes:

1. The number attribute of &SYSLIST(n) and &SYSLIST(n,m) is described in “&SYSLIST System Variable Symbol” on
page 241.

Attribute reference

�� attribute_notation' ordinary_symbol
variable_symbol
literal
character_string

��

attribute_notation'
Is the attribute whose value you want, followed by a apostrophe. Valid attribute letters are “D”, “O”,
“N”, “S”, “K”, “I”, “L”, and “T”.

ordinary_symbol
Is an ordinary symbol that represents the data that possesses the attribute. An ordinary symbol
cannot be specified with the operation code attribute.

variable_symbol
Is a variable symbol that represents the data that possesses the attribute.

literal
Is a literal that represents the data that possesses the attribute. A literal cannot be specified with the
operation code attribute or count attribute.

character_string
Is a character string that represents the operation code in the operation code attribute.

Examples:
T’SYMBOL
L’&VAR
K’&PARAM
O’MVC
S’=P’975.32’

The assembler substitutes the value of the attribute for the attribute reference.

Reference to the count (K'), defined (D'), number (N'), operation code (O'), and type (T') attributes can be
used only in conditional assembly instructions or within macro definitions. The length (L'), integer (I'),
and scale (S') attribute references can be in conditional assembly instructions, machine instructions,
assembler instructions, and the operands of macro instructions.

Attributes of symbols and expressions
Table 52 on page 287 shows attribute references (in the columns) and types of symbols (in the rows). Each
intersection shows whether (“Yes”) or not (“No”) you can validly apply the attribute reference to that
symbol type, or (for SET symbols) to the value of the symbol.

286 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Table 52. Attributes and related symbols

Symbols
Specified

Type
T'

Length
L'

Scale
S'

Integer
I'

Count
K'

Number
N'

Defined
D'

Operation
Code
O'

In open code:
Ordinary
symbols

System variable
symbols with
global scope

Literals in
macro
instruction
operands

Yes

Yes

Yes

Yes

No

Yes

Yes

No

Yes

Yes

No

Yes

No

Yes

No

No

Yes

No

Yes

No

Yes

No

No

No

In macro
definitions:

Ordinary
symbols

Symbolic
parameters

System variable
symbols:

&SYSLIST

All others

Literals in
macro instruction
operands

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

Yes

Yes

Yes

Yes

No

Yes

Yes

Yes

Yes

No

Yes

No

Yes

Yes

Yes

No

No

Yes

Yes

Yes

No

Yes

Yes

Yes

No

Yes

No

Yes

No

No

No

The values of attribute references can be used in ordinary and conditional assembly expressions, as
shown in Table 53.

Table 53. Using attribute values

Symbols
Specified

Type
T'

Length
L'

Scale
S'

Integer
I'

Count
K'

Number
N'

Defined
D'

Operation
Code
O'

In open code:
SET symbols

SETB¹,
SETC

SETA,
SETB²

SETA,
SETB²

SETA,
SETB²

SETA,
SETB²

SETA,
SETB²

SETA,
SETB²

SETB¹,
SETC

In ordinary
assembly:

No Yes Yes Yes No No No No

In macro
definitions:

SET symbols

SETB¹,
SETC

SETA,
SETB²

SETA,
SETB²

SETA,
SETB²

SETA,
SETB²

SETA,
SETB²

SETA,
SETB²

SETB¹,
SETC

Chapter 9. How to write conditional assembly instructions 287

Table 53. Using attribute values (continued)

Symbols
Specified

Type
T'

Length
L'

Scale
S'

Integer
I'

Count
K'

Number
N'

Defined
D'

Operation
Code
O'

Notes:

1. Only in character relations.

2. Only in arithmetic relations.

The value of an attribute for an ordinary symbol specified in an attribute reference comes from the item
named by the symbol. The symbol must appear in the name field of an assembler or machine instruction,
or in the operand field of an EXTRN or WXTRN instruction.

The value of an attribute reference to an expression is the value of that attribute reference to its leftmost
term.

Notes:

1. You cannot refer to the names of instructions generated by conditional assembly substitution or macro
generation until the instruction is generated.

2. If you use a symbol qualifier to qualify an ordinary symbol in an attribute reference, the qualifier is
ignored.

The value of an attribute for a variable symbol specified in an attribute reference comes from the value
substituted for the variable symbol as follows:

SET Symbols and System Variable Symbols
For SET symbols and all system variable symbols other than &SYSLIST, the attribute values come
from the current value of these symbols.

Symbolic Parameters and &SYSLIST
For symbolic parameters and the system variable symbol, &SYSLIST, the values of the count and
number attributes come from the operands of macro instructions. The name field entry of the call
is an “operand”, and is referenced as &SYSLIST(0). The values of the type, length, scale, and
integer attributes, however, come from the values represented by the macro instruction operands,
as follows:
1. If the operand is a sublist, the entire sublist and each entry of the sublist can possess

attributes. The whole sublist has the same attributes as those of the first suboperand in the
sublist (except for the count attribute, which can be different, and the number attribute which
is relevant only for the whole sublist).

2. If the first character or characters of the operand (or sublist entry) constitute an ordinary
symbol, and this symbol is followed by either an arithmetic operator (+, -, *, or /), a left
parenthesis, a comma, or a space, then the value of the attributes for the operand are the same
as for the ordinary symbol.

3. If the operand (or sublist entry) is a character string other than a sublist or the character
string described in the previous point, the type attribute is undefined (U) and the length,
scale, and integer attributes are invalid.

Because the count (K'), number (N'), and defined (D') attribute references are allowed only in
conditional assembly instructions, their values are available only during conditional assembly
processing. They are not available at ordinary assembly time.

The system variable symbol &SYSLIST, with a valid subscript, can be used in an attribute
reference to refer to a macro instruction operand, and, in turn, to an ordinary symbol. Thus, any
of the attribute values for macro instruction operands and ordinary symbols in the following
subsections can also be substituted for an attribute reference containing &SYSLIST (see
“&SYSLIST System Variable Symbol” on page 241).

288 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Type attribute (T')
The type attribute has a value of a single alphabetic character that shows the type of data represented by:
v An ordinary symbol
v A macro instruction operand
v A SET symbol
v A literal
v A system variable symbol

The type attribute can change during an assembly. The lookahead search might assign one attribute,
whereas the symbol table at the end of the assembly might display another.

The type attribute reference can be used in the operand field of a SETC instruction or as one of the
values used for comparison in the operand field of a SETB or AIF instruction.

The type attribute can also be specified outside conditional assembly instructions. Then, the type attribute
value is not used for conditional assembly processing, but is used as a value at assembly time.

The following letters are used for the type attribute of data represented by ordinary symbols and outer
macro instruction operands that are symbols that name DC or DS statements.
A A-, J-type address constant, implied length, aligned (also CXD instruction label)
B Binary constant
C Character constant
D Long floating-point constant, implicit length, aligned
E Short floating-point constant, implicit length, aligned
F Fullword fixed-point constant, implicit length, aligned
G Fixed-point constant, explicit length
H Halfword fixed-point constant, implicit length, aligned
K Floating-point constant, explicit length
L Extended floating-point constant, implicit length, aligned
P Packed decimal constant
Q Q-type address constant, implicit length, aligned
R A-, S-, Q-, J-, R-, V-, or Y-type address constant, explicit length
S S-type address constant, implicit length, aligned
V R-, V-type address constant, implicit length, aligned
X Hexadecimal constant
Y Y-type address constant, implicit length, aligned
Z Zoned decimal constant
@ Graphic (G) constant

When a literal is specified as the name field on a macro call instruction, and if the literal has previously
been used in a machine instruction, the type attribute of the literal is the same as for data represented by
ordinary symbols or outer macro instructions operands.

The following letters are used for the type attribute of data represented by ordinary symbols (and outer
macro instruction operands that are symbols) that name statements other than DC or DS statements, or
that appear in the operand field of an EXTRN or WXTRN statement:
I Machine instruction
J Control section name
M The name field on a macro instruction, when the name field is:

v A valid symbol not previously defined
v A valid literal not previously defined

T Identified as an external symbol by EXTRN instruction
W CCW, CCW0, or CCW1 instruction
$ Identified as an external symbol by WXTRN instruction

Chapter 9. How to write conditional assembly instructions 289

The following letter is used for the type attribute of data represented by inner and outer macro
instruction operands only:
O Omitted operand (has a value of a null character string). Such an operand need not be a null

string: a macro operand such as (,,) has a null first suboperand.

The following attribute is used for the type attribute of the value of variable symbols:
N The value is numeric

The following letter is used for symbols or macro instruction operands that cannot be assigned any of the
above letters:

U Undefined, unknown, or unassigned

The common use of the U type attribute is to describe a valid symbol that has not been assigned
any of the type attribute values described above. If the assembler is not able to determine what
the named symbol represents, it also assigns the U type attribute. Thus, the U type attribute can
mean undefined, or unknown, or unassigned at the time of the reference. Consider the following
macro definition:
Name Operation Operand

macro
MAC1 &op1,&op2

&A setc T’&op1
&B setc T’&op2

DC C’&A’ DC containing type attribute for op1
DC C’&B’ DC containing type attribute for op2
mend

When the macro MAC1 is called in Figure 41, neither of the operands has previously been defined,
however GOOD_SYMBOL is a valid symbol name, whereas ?BAD_SYMBOL? is not a valid symbol name.
The type attribute for both operands is U, meaning GOOD_SYMBOL is undefined, and ?BAD_SYMBOL? is
unknown.
When the macro MAC1 is called in Figure 42, GOOD_SYMBOL is a valid symbol name, and has been

defined in the DC instruction at statement 12. ?BAD_SYMBOL? is a not valid symbol name, and the
assembler issues an error message at statement 13. The type attribute for GOOD_SYMBOL is C,
meaning that the symbol represents a character constant. The type attribute for ?BAD_SYMBOL? is U,
meaning that the type is unknown.

000000 00000 00004 8 a csect
9 mac1 GOOD_SYMBOL,?BAD_SYMBOL?

000000 E4 10+ DC C’U’ DC containing type attribute for op1
000001 E4 11+ DC C’U’ DC containing type attribute for op2

12 end

Figure 41. Undefined and unknown type attributes

000000 00000 00006 8 a csect
9 mac1 GOOD_SYMBOL,?BAD_SYMBOL?

000000 C3 10+ DC C’C’ DC containing type attribute for op1
000001 E4 11+ DC C’U’ DC containing type attribute for op2
000002 A9 12 GOOD_SYMBOL dc cl1’z’
000003 A9 13 ?BAD_SYMBOL? dc cl1’z’
** ASMA147E Symbol too long, or first character not a letter - ?BAD_SYMBOL?

14 end

Figure 42. Unknown type attribute for invalid symbol

290 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

The type attribute value U, meaning undefined, unknown, or unassigned, is assigned to the
following:
v Ordinary symbols used as labels:

– For the LTORG instruction
– For the EQU instruction without a third operand
– For DC and DS statements that contain variable symbols, for example, U1 DC &X’1’

– That are defined more than once, even though only one instance of the label is generated
due to conditional assembly statements. A lookahead scan for attributes of a symbol might
encounter more than one occurrence of a symbol, in which case the assembler cannot yet tell
which statements will be generated. In such cases, type attribute U is assigned. At a later
time, when the symbol has been generated, its type attribute is changed to the correct value
for the type of statement it names.

v SETC variable symbols that have a value other than a null character string or the name of an
instruction that can be referred to be a type attribute reference

v System variable symbols except:
– &SYSDATC, &SYSM_HSEV, &SYSM_SEV, &SYSNDX, &SYSNEST, &SYSOPT_DBCS,

&SYSOPT_RENT, &SYSOPT_XOBJECT, and &SYSSTMT, which always have a type attribute
value of N

– Some other character type system variable symbols can be assigned the value of a null
string, in which case they have a type attribute value of O

v Macro instruction operands that specify a literal that is not a duplicate of a literal used in a
machine instruction

v Inner macro instruction operands that are ordinary symbols

Notes:

1. Ordinary symbols used in the name field of an EQU instruction have the type attribute value U.
However, the third operand of an EQU instruction can be used explicitly to assign a type attribute
value to the symbol in the name field.

2. The type attribute of a sublist is set to the same value as the type attribute of the first element of the
sublist.

3. High Level Assembler and earlier assemblers treat the type attribute differently:
v Because High Level Assembler allows attribute references to statements generated through

substitution, certain cases in which a type attribute of U (undefined, unknown, or unassigned) or M
(macro name field) is given under the DOS/VSE Assembler, might give a valid type attribute under
High Level Assembler. If the value of the SETC symbol is equal to the name of an instruction that
can be referred to by the type attribute, High Level Assembler lets you use the type attribute with a
SETC symbol.

v Because High Level Assembler allows attribute references to literals, certain cases in which a type
attribute of U (undefined, unknown, or unassigned) is given by Assembler F and Assembler H for a
macro operand that specifies a literal, might give a valid type attribute under High Level
Assembler. If the literal specified in the macro instruction operand is a duplicate of a literal
specified in open code, or previously generated by conditional assembly processing or macro
generation, High Level Assembler gives a type attribute that shows the type of data specified in the
literal. The COMPAT(LITTYPE) option causes High Level Assembler to behave like Assembler H,
always giving a type attribute of U for the T' literal.

v When a type attribute reference is made outside conditional assembly instructions, its value is
treated as a character self-defining term. For example, if the symbol A is defined in this statement:
A DC A(*)

then the symbol A has type attribute 'A' in conditional assembly instructions. However, if this
statement is followed by

Chapter 9. How to write conditional assembly instructions 291

DC A(T’A) Generates X’000000C1’

the generated data is the same as if you had written
DC A(C’A’) Generates X’000000C1’

Length attribute (L')
The length attribute has a numeric value equal to the number of bytes occupied by the data that is
named by the symbol specified in the attribute reference.

Evaluation of length attribute references for conditional assembly statements is handled differently from
references in ordinary assembly.

In conditional assembly statements, the operand of a length attribute reference must be either an ordinary
symbol whose length attribute is either known, or can be determined in lookahead mode (Figure 43 on
page 293); or it must be a variable symbol whose value is that of an ordinary symbol satisfying the same
rules.

In ordinary assembly statements, the operand of a length attribute reference can be a character-valued
conditional assembly expression whose value is that of an ordinary symbol.

Here is an example to clarify this distinction:
&B SETC ’B’
AB DC C’A&B’ Valid in ordinary assembly
LAB DC AL1(L’A&B) Valid in ordinary assembly
&N SETA L’A&B Invalid in conditional assembly
&T1 SETB (L’A&B EQ 2) Invalid in conditional assembly
&T2 SETB (2 EQ L’A&B) Invalid in conditional assembly

The two SETB statements receive different diagnostic messages, because the errors are detected during
different parts of the assembler's analysis of the SETB expressions.

In conditional assembly statements, the operand of a length attribute reference must be an ordinary or
variable symbol, and not a character expression.

The length attribute can also be specified outside conditional assembly instructions. Then, the length
attribute value is not available for conditional assembly processing, but is used as a value at assembly
time.

Figure 43 on page 293 is an example showing the evaluation of the length attribute for an assembler
instruction in statement 1 and for a conditional assembly instruction in statement 8.

292 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

In statement 2 the length of CSYM has not been established because the definition of CSYM in statement 1 is
not complete. The reference to the length attribute results in a length of 1 and error message ASMA042E.
However, statement 5 shows that the type attribute is assigned, and statement 7 shows that the defined
attribute is assigned. In comparison, the length attribute for symbol CSYM2 is available immediately, as it
was retrieved indirectly using the conditional assembly instruction in statement 8.

During conditional assembly, an ordinary symbol used in the name field of an EQU instruction has a
length attribute value that depends on the order of the symbol's definition and the reference to its length
attribute.
v If the first operand of the EQU instruction is a self-defining term, the length attribute value is 1.
v If the first operand of the EQU instruction is a symbol whose value and length attribute are defined,

the length attribute value is that of the symbol in the first operand.
v If the first operand of the EQU instruction is a defined symbol and the EQU instruction specifies a

length value in the second operand, the length attribute value is that of the second operand.

At assembly time, the symbol has the same length attribute value as the first term of the expression in
the first operand of the EQU instruction. However, the second operand of an EQU instruction can be
used to assign a length attribute value to the symbol in the name field. This second operand cannot be a
forward reference to another EQU instruction.

Notes:

1. The length attribute reference, when used in conditional assembly processing, can be specified only in
arithmetic expressions.

2. When used in conditional assembly processing, a length attribute reference to a symbol with the type
attribute value of M, N, O, T, U, or $ is flagged. The length attribute for the symbol has the default
value of 1.

Scale attribute (S')
The scale attribute can be used only when referring to fixed-point, floating-point, or decimal constants.
The following table shows the numeric value assigned to the scale attribute:

000000 E740 1 CSYM DC CL(L’ZLOOKAHEAD)’X’ Length resolved later
2 &LEN SETA L’CSYM

** ASMA042E Length attribute of symbol is unavailable; default=1
3 DC C’&LEN ’ REAL LENGTH NOT AVAILABLE

000002 F140 + DC C’1 ’ REAL LENGTH NOT AVAILABLE
4 &TYP SETC T’CSYM
5 DC C’&TYP ’ TYPE IS KNOWN

000004 C340 + DC C’C ’ TYPE IS KNOWN
6 &DEF SETA D’CSYM
7 DC C’&DEF ’ SYMBOL IS DEFINED

000006 F140 + DC C’1 ’ SYMBOL IS DEFINED
8 &LEN SETA L’zlookahead Length resolved immediately
9 CSYM2 DC CL(&len)’X’

000008 E740 +CSYM2 DC CL(2)’X’
10 &LEN SETA L’CSYM2
11 DC C’&LEN ’ REAL LENGTH NOW AVAILABLE

00000A F240 + DC C’2 ’ REAL LENGTH NOW AVAILABLE
00000C 0001 12 ZLOOKAHEAD DC H’1’

13 END

Figure 43. Evaluation of length attribute references

Chapter 9. How to write conditional assembly instructions 293

Constant
Types
Allowed

Type of DC or DS
Allowed

Value of Scale
Attribute Assigned

Fixed-Point H and F Equal to the value of the scale modifier (-187
through +346)

Floating Point D, E, and L Equal to the value of the scale modifier(0 through 14
— D, E)(0 through 28 — L)

Decimal P and Z Equal to the number of decimal digits specified to
the right of the decimal point(0 through 31 — P)(0
through 16 — Z)

The scale attribute can also be specified outside conditional assembly instructions. Then, the scale
attribute value is not used for conditional assembly processing, but is used as a value at assembly time.

Notes:

1. The scale attribute reference can be used only in arithmetic expressions.
2. When no scale attribute value can be determined, the reference is flagged and the scale attribute is 1.
3. If the value of the SETC symbol is equal to the name of an instruction that can validly define the scale

attribute, the assembler lets you use the scale attribute with a SETC symbol.
4. Binary floating-point constants return an attribute of 0.
5. Decimal floating-point constants return an attribute of 0.
6. The scale attribute reference can only be used in arithmetic expressions in conditional assembly

instructions, and in absolute and relocatable expressions in assembler and machine instructions.

Integer attribute (I')
The integer attribute has a numeric value that depends on the length and scale attribute values of the
data being referred to by the attribute reference. The formulas relating the integer attribute to the length
and scale attributes are given in Table 54.

The integer attribute can also be specified outside conditional assembly instructions. Then, the integer
attribute value is not used for conditional assembly processing, but is used as a value at assembly time.

Notes:

1. The integer attribute reference can be used only in arithmetic expressions.
2. When no integer attribute value can be determined, the reference is flagged and the integer attribute

is 1.
3. If the value of the SETC symbol is equal to the name of an instruction that can validly define the

integer attribute, the assembler lets you use the integer attribute with a SETC symbol.
4. Binary floating-point constants return an attribute of 0.
5. Decimal floating-point constants return an attribute of 0.
6. The integer attribute reference can only be used in arithmetic expressions in conditional assembly

instructions, and in absolute and relocatable expressions in assembler and machine instructions.

Table 54. Relationship of integer to length and scale attributes

Constant Type
Formula Relating Integer to
Length and Scale Attributes Examples

Values of the Integer
Attribute

Fixed-point(H and F) I’ = 8*L’-S’-1 HALFCON DC HS6’-25.93’

ONECON DC FS8’100.3E-2’

I’ = 8*2-6-1
= 9

I’ = 8*4-8-1
= 23

294 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Table 54. Relationship of integer to length and scale attributes (continued)

Constant Type
Formula Relating Integer to
Length and Scale Attributes Examples

Values of the Integer
Attribute

Floating-point
(D, E, and L)

L-type only

when L’ ≤ 8
I’ = 2*(L’-1)-S’

when L’ > 8
I’ = 2*(L’-1)-S’-2

SHORT DC ES2’46.415’

LONG DC DS5’-3.729’

EXTEND DC LS10’5.312’

I’ = 2*(4-1)-2
= 4

I’ = 2*(8-1)-5
= 9

I’ = 2*(16-1)-10-2
= 18

Decimal¹
Packed (P)

Zoned (Z)

I’ = 2*L’-S’-1

I’ = L’-S’

PACK DC P’+3.513’

ZONE DC Z’3.513’

I’ = 2*3-3-1
= 2

I’ = 4-3
= 1

Note:

1. The value of the integer attribute is equal to the number of digits to the left of the assumed decimal point after
the constant is assembled, and the value of the scale attribute is equal to the number of digits to the right of the
assumed decimal point.

Count attribute (K')
The count attribute applies only to macro instruction operands, to SET symbols, and to the system
variable symbols. It has a numeric value equal to the number of characters:
v That constitute the macro instruction operand, or
v That are required to represent as a character string the current value of the SET symbol or the system

variable symbol.

Notes:

1. The count attribute reference can be used only in arithmetic expressions.
2. The count attribute of an omitted macro instruction operand has a value of 0.
3. Doubled quotes ('') in quoted character strings count as one character. Doubled ampersands (&&) in

quoted character strings count as two characters. For more information about character pairs see
“Evaluation of character expressions” on page 338.

4. These pairing rules mean that the length attribute of a character variable substituted into a character
constant might be different from the count attribute of the substituted variable.

5. The count attribute differs from the Number (N') attribute, described below.

Number attribute (N')
The number attribute applies to the operands of macro instructions and subscripted SET symbols.

When applied to a macro operand, the number attribute is a numeric value equal to the number of
sublist entries.

When applied to a subscripted SET symbol, the number attribute is equal to the highest element to which
a value has been assigned in a SETx instruction. Consider the example in Figure 44 on page 296.

Chapter 9. How to write conditional assembly instructions 295

N’&op1 is equal to 3 because there are three subscripts in the macro operand in statement 11: 1, (3), and
(4).

N’&SETSUB is equal to 8 because &SETSUB(8), assigned the value 70 in statement 4, is the highest
referenced element of the &SETSUB array entries.

Notes:

1. The number attribute reference can be used only in arithmetic expressions.
2. N'&SYSLIST refers to the number of positional operands in a macro instruction, and N'&SYSLIST(n)

refers to the number of sublist entries in the n-th operand.
3. For positional macro parameters, either explicitly named or implicitly named as &SYSLIST(n):

a. If the first character of an operand is a left parenthesis, count the number of unquoted and
unnested commas between it and the next matching right parenthesis. That number plus one is
the number attribute of the operand.

b. If there is no initial left parenthesis, the number attribute is one.
4. For all other system variable symbols, the number attribute value is always one. This is also true for

&SYSMAC. The range of the subscript for &SYSMAC is 0 - &SYSNEST.
5. N' is always zero for unsubscripted set symbols. The number attribute (N'), when used with a macro

instruction operand, examines its list structure, not the number of characters in the operand. (The
number of characters is determined by the count (K') attribute.)

Defined attribute (D')
The defined attribute shows whether the ordinary symbol or literal referenced has been defined prior to
the attribute reference. A symbol is defined if it has been encountered in the operand field of an EXTRN
or WXTRN statement, or in the name field of any other statement except a TITLE statement or a macro
instruction. A literal is defined if it has been encountered in the operand field of a machine instruction.
The value of the defined attribute is an arithmetic value that can be assigned to a SETA symbol, and is
equal to 1 if the symbol has been defined, or 0 if the symbol has not been defined.

The defined attribute can reference:
v Ordinary symbols not constructed by substitution
v Macro instruction operands
v SETC symbols whose value is an ordinary symbol
v System variable symbols whose value is an ordinary symbol
v Literals

Here is an example of how you can use the defined attribute:

1 macro
2 MAC1 &op1
3 lcla &SETSUB(100)
4 &SETSUB(5) seta 20,,,70
5 &B seta N’&SETSUB
6 &C seta N’&op1
7 DC C’Highest referenced element of SETSUB = &B’
8 DC C’Number of sublist entries in OP1 = &C’
9 mend

000000 00000 0004C 10 a csect
11 MAC1 (1,(3),(4))

000000 C889878885A2A340 12+ DC C’Highest referenced element of SETSUB = 8’
000028 D5A4948285994096 13+ DC C’Number of sublist entries in OP1 = 3’

14 end

Figure 44. Number attribute reference

296 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Name Operation Operand

AIF (D’A).AROUND
A LA 1,4
.AROUND ANOP

In this example, assuming there has been no previous definition of the symbol A, the statement labeled A
is assembled, since the conditional-assembly branch around it is not taken. However, if by an AGO or
AIF conditional-assembly branch the same statement is processed again, the statement at A is not
assembled:
Name Operation Operand

.UP AIF (D’A).AROUND
A LA 1,4
.AROUND ANOP

.

.
AGO .UP

You can save assembly time using the defined attribute which avoids lookahead mode (see “Lookahead”
on page 299 for more information). You can use the defined attribute in your program to prevent the
assembler from making this time-consuming forward scan. This attribute reference can be used in the
operand field of a SETA instruction or as one of the values in the operand field of a SETB or AIF
instruction.

Notes:

1. D' applied to a SETA or SETB symbol, or to a system variable symbol, is an error.
2. D' applied to a SETC symbol or symbolic parameter is valid only if the value of the SETC symbol or

symbolic parameter is a valid ordinary symbol or literal.

Operation code attribute (O')
The operation code attribute shows whether a given operation code has been defined prior to the
attribute reference. The operation code can be represented by a character string or by a variable symbol
containing a character string. The variable must be set using a SETC assembler instruction prior to being
referenced by the operation code (O') attribute.

The operation code attribute has a value of a single alphabetic character that shows the type of operation
represented.

This attribute reference can be used in the operand field of the SETC instruction or as one of the values
used in the operand field of a SETB or AIF instruction.

The following letters are used for the value of the operation code attribute:
A Assembler operation code
E Extended mnemonic operation code
M Macro definition
O Machine operation code
S Macro definition found in library
U Undefined, unknown, unassigned, or deleted operation code

Notes:

1. The operation code (O') attribute can only be used in a conditional assembly statement.
2. The assembler does not enter lookahead mode to resolve the operation code type, therefore only

operation codes defined at the time the attribute is referenced return an operation code type value
other than U.

Chapter 9. How to write conditional assembly instructions 297

3. When the operation code is not an assembler instruction or a machine instruction, and the operation
code is not a previously defined macro, then all libraries in the library data set definition list are
searched. This might have an adverse impact on the performance of the assembly, depending on the
number of libraries assigned in the assembly job and the number of times the operation code attribute
is used.

Examples:
Name Operation Operand

&A SETC O’MVC

&A contains the letter O, because MVC is a machine operation code:
Name Operation Operand

&A SETC ’DROP’
&B SETC O’&A

&B contains the letter A, because DROP is an assembler operation code.

The following example checks to see if the macro MAC1 is defined. If not, the MAC1 macro instruction is
bypassed. This prevents the assembly from failing when the macro is not available.
Name Operation Operand

&CHECKIT SETC O’MAC1
AIF (’&CHECKIT’ EQ ’U’).NOMAC
MAC1

.NOMAC ANOP
.

Redefined Operation Codes: If an operation code is redefined using the OPSYN instruction then the value
returned by a subsequent operation code attribute reference represents the new operation code. If the
operation code is deleted using the OPSYN instruction then the value returned is U.

Sequence symbols
You can use a sequence symbol in the name field of a statement to branch to that statement during
conditional assembly processing, thus altering the sequence in which the assembler processes your
conditional assembly and macro instructions. You can select the model statements from which the
assembler generates assembler language statements for processing at assembly time.

A sequence symbol consists of a period (.) followed by an alphabetic character, followed by 0 to 61
alphanumeric characters.

Examples:
.BRANCHING_LABEL#1
.A

Sequence symbols can be specified in the name field of assembler language statements and model
statements; however, sequence symbols must not be used as name entries in the following assembler
instructions:
ALIAS EQU OPSYN SETC
AREAD ICTL SETA SETAF
CATTR LOCTR SETB SETCF
DXD

Also, sequence symbols cannot be used as name entries in macro prototype instructions, or in any
instruction that already contains an ordinary or a variable symbol in the name field.

298 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Sequence symbols can be specified in the operand field of an AIF or AGO instruction to branch to a
statement with the same sequence symbol as a label.

Scope: A sequence symbol has a local scope. Thus, if a sequence symbol is used in an AIF or an AGO
instruction, the sequence symbol must be defined as a label in the same part of the program in
which the AIF or AGO instruction appears; that is, in the same macro definition or in open code.

Symbolic Parameters:
If a sequence symbol appears in the name field of a macro instruction, and the corresponding
prototype statement contains a symbolic parameter in the name field, the sequence symbol does
not replace the symbolic parameter wherever it is used in the macro definition. The value of the
symbolic parameter is a null character string.

Example:
MACRO

&NAME MOVE &TO,&FROM Statement 1
&NAME ST 2,SAVEAREA Statement 2

L 2,&FROM
ST 2,&TO
L 2,SAVEAREA
MEND

--
.SYM MOVE FIELDA,FIELDB Statement 3
--
+ ST 2,SAVEAREA Statement 4
+ L 2,FIELDB
+ ST 2,FIELDA
+ L 2,SAVEAREA

The symbolic parameter &NAME is used in the name field of the prototype statement (Statement 1)
and the first model statement (Statement 2). In the macro instruction (Statement 3), a sequence
symbol (.SYM) corresponds to the symbolic parameter &NAME. &NAME is not replaced by .SYM and,
therefore, the generated statement (Statement 4) does not contain an entry in the name field.

Lookahead
Symbol attributes are established in either definition mode or lookahead mode.

Definition mode occurs whenever a previously undefined symbol is encountered in the name field of a
statement, or in the operand field of an EXTRN or WXTRN statement during open code processing.
Symbols within a macro definition are defined when the macro is expanded.

Lookahead mode is entered:
v When the assembler processes a conditional assembly instruction and encounters an attribute reference

(other than D' and O') to an ordinary symbol that is not yet defined.
v When the assembler encounters a forward AGO or AIF branch in open code to a sequence symbol that

is not yet defined.

Lookahead is a sequential, statement-by-statement, forward scan over the source text.

If the attribute reference is made in a macro, forward scan begins with the first source statement
following the outermost macro instruction. During lookahead the assembler:
v Bypasses macro definition and generation
v Does not generate object text
v Does not perform open-code variable substitution
v Ignores AIF and AGO branch instructions
v Ignores the record following a REPRO statement
v Establishes interim data attributes for undefined symbols it encounters in operand fields of

instructions. The data attributes are replaced when a symbol is encountered in definition mode.

Chapter 9. How to write conditional assembly instructions 299

Lookahead mode ends when the desired symbol or sequence symbol is found, or when the END
statement or end of file is reached. All statements read by lookahead are saved on an internal file, and
are fully processed when the lookahead scan ends.

If a COPY instruction is encountered during lookahead, it is fully processed at that time, the assembler
copies the statements from the library, scans them, and saves them on the lookahead file. When
lookahead mode has ended any COPY instructions saved to the lookahead file are ignored, as the
statements from the copy member have already been read and saved to the lookahead file.

If a variable symbol is used for the member name of a COPY that is expanded during lookahead, the
value of the variable symbol at the time the COPY is expanded is used.

For purposes of attribute definition, a symbol is considered partially defined if it depends in any way
upon a symbol not yet defined. For example, if the symbol is defined by a forward EQU that is not yet
resolved, that symbol is assigned a type attribute of U.

In this case it is possible that, by the end of the assembly, the type attribute has changed to some other
value.

Generating END statements
Because no variable symbol substitution is carried out during lookahead, consider the following effects of
using macro, AINSERT or open code substitution to generate END statements that separate source
modules assembled in one job step (BATCH assembler option). If a symbol is undefined within a module,
lookahead might read statements past the point where the END statement is to be generated. Lookahead
stops when:
1. It finds the symbol
2. It finds an END statement
3. It reaches the end of the source input data set

In the first two cases, the assembler begins the next module at the statement after lookahead stopped,
which might be after the point where you wanted to generate the END statement.

Lookahead restrictions
The assembler analyzes the statements it processes during lookahead, only to establish attributes of
symbols in their name fields.

Variable symbols are not replaced. Modifier expressions are evaluated only if all symbols involved were
defined prior to lookahead. Possible multiple or inconsistent definition of the same symbol is not
diagnosed during lookahead because conditional assembly might eliminate one (or more) of the
definitions.

Lookahead does not check undefined operation codes against library macro names. If the name field
contains an ordinary symbol and the operation code cannot be matched with one in the current operation
code table, then the ordinary symbol is assigned the type attribute of M. If the operation code contains
special characters or is a variable symbol, a type attribute of U is assumed. This can be wrong if the
undefined operation code is later substituted with a known operation code or is later defined by OPSYN.
OPSYN statements are not processed; thus, labels are treated in accordance with the operation code
definitions in effect at the time of entry to lookahead.

Sequence symbols
The conditional assembly instructions AGO and AIF in open code control the sequence in which source
statements are processed. Using these instructions it is possible to branch back to a sequence symbol label
and reuse previously processed statements. Due to operating system restrictions, the primary input
source can only be read sequentially, and cannot be reread. Whenever a sequence symbol in the name
field is encountered in open code, the assembler must assume that all subsequent statements might need

300 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

to be processed more than once. The assembler uses the lookahead file to save the statement containing
the sequence symbol label and all subsequent statements as they are read and processed. Any subsequent
AGO or AIF to a previously encountered sequence symbol is resolved to an offset into the lookahead file
and input continues from that point.

Open code
Conditional assembly instructions in open code let you:
v Select, during conditional assembly, statements or groups of statements from the open code portion of

a source module according to a predetermined set of conditions. The assembler further processes the
selected statements at assembly time.

v Pass local variable information from open code through parameters into macro definitions.
v Control the computation in and generation of macro definitions using global SET symbols.
v Substitute values into the model statements in the open code of a source module and control the

sequence of their generation.

All the conditional assembly elements and instructions can be specified in open code.

The specifications for the conditional assembly language described in this chapter also apply in open
code. However, the following restrictions apply:

To Attributes In Open Code:
For ordinary symbols, only references to the type, length, scale, integer, defined, and operation
code attributes are allowed.

References to the number attribute have no meaning in open code, because &SYSLIST is not
allowed in open code, and symbolic parameters have no meaning in open code.

To Conditional Assembly Expressions:
Table 55 shows the restrictions for different expression types.

Table 55. Restrictions on coding expressions in open code

Expression Must not contain

Arithmetic
(SETA)

v &SYSLIST
v Symbolic parameters
v Any attribute references to symbolic parameters, or system variable symbols with local

scope

Character
(SETC)

v System variables with local scope
v Attribute references to system variables with local scope
v Symbolic parameters

Logical
(SETB)

v Arithmetic expressions with the items listed above
v Character expressions with the items listed above

Chapter 9. How to write conditional assembly instructions 301

Conditional assembly instructions
The remainder of this chapter describes, in detail, the syntax and rules for use of each conditional
assembler instruction. The following table lists the conditional assembler instructions by type, and
provides the page number where the instruction is described in detail.

Table 56. Assembler instructions

Type of Instruction Instruction Page No.

Establishing SET symbols GBLA 302

GBLB 302

GBLC 302

LCLA 304

LCLB 304

LCLC 304

SETA 308

SETB 321

SETC 326

Branching ACTR 348

AGO 347

AIF 344

ANOP 349

External Function Calling SETAF 343

SETCF 344

Declaring SET symbols
You must declare a global SET symbol before you can use it. The assembler assigns an initial value to a
global SET symbol at its first point of declaration.

Local SET symbols need not be declared explicitly with LCLA, LCLB, or LCLC statements. The assembler
considers any undeclared variable symbol found in the name field of a SETA, SETB, SETC, SETAF, or
SETCF statement to be a local SET symbol. It is given the initial value specified in the operand field. If
the symbol in the name field is subscripted, it is declared as a subscripted SET symbol.

GBLA, GBLB, and GBLC instructions
Use the GBLA, GBLB, and GBLC instructions to declare the global SETA, SETB, and SETC symbols you
need. The SETA, SETB, and SETC symbols are assigned the initial values of 0, 0, and null character string.

��
sequence_symbol

GBLA
GBLB
GBLC

�

,

variable_symbol ��

sequence_symbol
Is a sequence symbol.

302 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

variable_symbol
Is a variable symbol, with or without the leading ampersand (&).

These instructions can be used anywhere in the body of a macro definition or in the open code portion of
a source module.

Any variable symbols declared in the operand field have a global scope. They can be used as SET
symbols anywhere after the pertinent GBLA, GBLB, or GBLC instructions. However, they can be used
only within those parts of a program in which they have been declared as global SET symbols; that is, in
any macro definition and in open code.

The assembler assigns an initial value to the SET symbol only when it processes the first GBLA, GBLB, or
GBLC instruction in which the symbol appears. Later GBLA, GBLB, or GBLC instructions do not reassign
an initial value to the SET symbol.

Multiple GBLx statements can declare the same variable symbol so long as only one declaration for a
given symbol is encountered during the expansion of a macro.

The following rules apply to the global SET variable symbol:
v Within a macro definition, it must not be the same as any symbolic parameter declared in the

prototype statement.
v It must not be the same as any local variable symbol declared within the same local scope.
v The same variable symbol must not be declared or used as two different types of global SET symbol;

for example, as a SETA or SETB symbol.
v Do not begin a global SET symbol with &SYS, because these characters are used for system variable

symbols.
v If the variable symbol is the same as the character value, the assembler considers the variable symbol

to be an implicitly defined local SETC symbol which is given a null character string value. For
example: &C6 SETC ’&C6’ , assigns the value ’’ to &C6.

Subscripted global SET symbols
A global subscripted SET symbol is declared by the GBLA, GBLB, or GBLC instruction.

��
sequence_symbol

GBLA
GBLB
GBLC

�

,

variable_symbol(dimension) ��

sequence_symbol
Is a sequence symbol.

variable_symbol
Is a variable symbol, with or without the leading ampersand (&).

dimension
Is the dimension of the array. It must be an unsigned, decimal, self-defining term greater than zero.

Example:
GBLA &GA(25),&GA1(15)

There is no limit on the maximum subscript allowed, except that each subscripted variable is allocated
storage, so the maximum subscript can be limited by the amount of storage available. Also, the limit

Chapter 9. How to write conditional assembly instructions 303

|
|
|

specified in the global declaration (GBLx) can be exceeded. The dimension shows the number of SET
variables associated with the subscripted SET symbol. The assembler assigns an initial value to every
variable in the array thus declared.

Notes:

1. Global arrays are assigned initial values only by the first global declaration processed, in which a
global subscripted SET symbol appears.

2. A subscripted global SET symbol can be used only if the declaration has a subscript, which represents
a dimension; an unsubscripted global SET symbol can be used only if the declaration had no
subscript, except for a number attribute reference to the name of a dimensioned SET symbol.

Alternative format for GBLx statements
The assembler permits the alternative statement format for GBLx instructions:

Cont.

GBLA &GLOBAL_SYMBOL_FOR_DC_GEN, X
&LOOP_CONTRL_A, X
&VALUE_PASSED_TO_FIDO, X
&VALUE_RETURNED_FROM_FIDO

LCLA, LCLB, and LCLC instructions
Use the LCLA, LCLB, and LCLC instructions to declare the local SETA, SETB, and SETC symbols you
need. The SETA, SETB, and SETC symbols are assigned the initial values of 0, 0, and null character string.

��
sequence_symbol

LCLA
LCLB
LCLC

�

,

variable_symbol ��

sequence_symbol
Is a sequence symbol.

variable_symbol
Is a variable symbol, with or without the leading ampersand (&).

These instructions can be used anywhere in the body of a macro definition or in the open code portion of
a source module.

Any variable symbols declared in the operand field have a local scope. They can be used as SET symbols
anywhere after the pertinent LCLA, LCLB, or LCLC instructions, but only within the declared local
scope. Multiple LCLx statements can declare the same variable symbol so long as only one declaration for
a given symbol is encountered during the expansion of a macro.

The following rules apply to a local SET variable symbol:
v Within a macro definition, it must not be the same as any symbolic parameter declared in the

prototype statement.
v It must not be the same as any global variable symbol declared within the same local scope.
v The same variable symbol must not be declared or used as two different types of SET symbols; for

example, as a SETA and a SETB symbol, within the same local scope.
v Do not begin a local SET symbol with &SYS, because these characters are used for system variable

symbols.

304 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Subscripted local SET symbols
A local subscripted SET symbol is declared by the LCLA, LCLB, or LCLC instruction.

��
sequence_symbol

LCLA
LCLB
LCLC

�

,

variable_symbol(dimension) ��

sequence_symbol
Is a sequence symbol.

variable_symbol
Is a variable symbol, with or without the leading ampersand (&).

dimension
Is the dimension of the array. It must be an unsigned, decimal, self-defining term greater than zero.

Example:
LCLB &B(10)

There is no limit to SET symbol dimensioning other than storage availability. The limit specified in the
explicit (LCLx) or implicit (SETx) declaration can also be exceeded by later SETx statements. The
dimension shows the number of SET variables associated with the subscripted SET symbol. The
assembler assigns an initial value to every variable in the array thus declared.

Subscripted local SET symbol: A subscripted local SET symbol can be used only if the declaration has a
subscript, which represents a dimension; an unsubscripted local SET symbol can be used only if the
declaration had no subscript, except for a number attribute reference to the dimensioned SET symbol.

Alternative format for LCLx statements
The assembler permits an alternative statement format for LCLx instructions:

Cont.

LCLA &LOCAL_SYMBOL_FOR_DC_GEN, X
&COUNTER_FOR_INNER_LOOP, X
&COUNTER_FOR_OUTER_LOOP, X
&COUNTER_FOR_TRAILING_LOOP

Assigning values to SET symbols
You can assign values to SET symbols by using the SETA, SETB, SETC, SETAF, and SETCF instructions
(SETx). You can also use these instructions to implicitly define local SET symbols. Local SET symbols
need not be declared explicitly with LCLA, LCLB, or LCLC statements. The assembler considers any
undeclared variable symbol found in the name field of a SETx statement to be a local SET symbol. It is
given the initial value specified in the operand field of SETA, SETB, and SETC instructions, and the value
returned from the external function specified in the operand of SETAF and SETCF instructions. If the
symbol in the name field is subscripted, it is declared as a subscripted SET symbol.

Spaces do not terminate the operand field when used in logical expressions and in built-in functions. For
more information, see “Logical (SETB) expressions” on page 323.

Introducing Built-In Functions
The assembler provides built-in functions for the SETA, SETB, and SETC expressions.

Chapter 9. How to write conditional assembly instructions 305

Each function returns one value - an arithmetic value for SETA, a binary bit for SETB, and a character
string for SETC.

There are two different forms of invocation for the built-in functions:
v The logical-expression format encloses the function and operands in parentheses. In the unary format,

the function is followed by the one operand. In the binary format, the function is placed between the
two operands. For both unary and binary formats, the function is separated from the operand or
operands by spaces.

Logical-expression unary format

�� (built-in_function operand) ��

Logical-expression binary format

�� (operand built-in_function operand) ��

(A OR B) and (&J SLL 2) are examples of binary logical-expression format functions, and (NOT C) and
(SIGNED &J) are examples of unary logical-expression format functions.

v The function-invocation format has the function first, followed by one or more operands in
parentheses.

Function-invocation format

��

�

built-in_function(operand)

, operand

��

FIND(’abcde’,’d’) is an example of a function-invocation format. (The equivalent logical-expression
format is (’abcde’ FIND ’d’).)
Spaces are not allowed between the arguments of functions in function-invocation format.

In either format, the operand is an expression of the type expected by the built-in function. (The particular
details of the number of operands and the operand type are provided with the information for each
built-in function.)

Conditional-assembly functions do not always behave like functions in traditional high-level languages.
The results of a function might not be automatically converted to the type expected in the invoking
expression, and nested invocations might not produce expected results. In general, it is safest to invoke
only one conditional assembly function in a SET expression or AIF statement.

Some functions are available in one format, some are available in both. Table 57 on page 307, which
provides a summary of all the built-in functions, shows the forms in which a function is available.

306 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Because some function names such as AND and OR are used both as arithmetic operators and as logical
connectives, their use might appear to be ambiguous. For example, the function (1 AND 2) in an
arithmetic expression is interpreted as the logical AND of the two 32 bit SETA expressions 1 and 2,
resulting in zero. In a logical expression, the two nonzero operands are converted to 1 (meaning "true")
and the result is 1. Similarly, the function (1 XOR 2) in an arithmetic expression has value 3, while in a
logical expression it has value 0.

To avoid ambiguities, such function names are interpreted as arithmetic operators in SETA statements,
and as logical operators in SETB and AIF statements.

Table 57. Summary of Built-In Functions and Operators

Function Type L-E¹ F-I² Result³ Operands³ Page

A2B Representation conversion U C A 331

A2C Representation conversion U C A 331

A2D Representation conversion U C A 331

A2X Representation conversion U C A 331

AND Logical U A A 311

AND Logical U B B 323

AND NOT Logical U B B 323

B2A Representation conversion U A C 311

B2C⁴ Representation conversion U C C 331

B2D Representation conversion U C C 331

B2X⁴ Representation conversion U C C 331

BYTE Representation conversion U U C A 331

C2A Representation conversion U A C 311

C2B⁴ Representation conversion U C C 331

C2D Representation conversion U C C 331

C2X⁴ Representation conversion U C C 331

D2A Representation conversion U A C 311

D2B Representation conversion U C C 331

D2C Representation conversion U C C 331

D2X Representation conversion U C C 331

DCLEN String manipulation U A C 311

DCVAL String manipulation U C C 331

DEQUOTE String manipulation U C C 331

DOUBLE String manipulation U U C C 331

FIND String scanning U U A C 311

INDEX String scanning U U A C 311

ISBIN Validity checking U B C 311

ISDEC Validity checking U B C 311

ISHEX Validity checking U B C 311

ISSYM Validity checking U B C 311

LOWER String manipulation U U C C 331

NOT Logical U U A A 311

NOT Logical U B B 323

Chapter 9. How to write conditional assembly instructions 307

Table 57. Summary of Built-In Functions and Operators (continued)

Function Type L-E¹ F-I² Result³ Operands³ Page

OR Logical U A A 311

OR Logical U B B 323

OR NOT Logical U B B 323

SIGNED Representation conversion U U C A 331

SLA Shift U A A 311

SLL Shift U A A 311

SRA Shift U A A 311

SRL Shift U A A 311

SYSATTRA Information retrieval U C C 331

SYSATTRP Information retrieval U C C 331

UPPER String manipulation U U C C 331

X2A Representation conversion U A C 311

X2B⁴ Representation conversion U C C 331

X2C⁴ Representation conversion U C C 331

X2D Representation conversion U C C 331

XOR Logical U A A 311

XOR Logical U B B 323

XOR NOT Logical U B B 323

Notes:

1. If a U is in this column, the function is available in the “logical-expression” format.

2. If a U is in this column, the function is available in the “function-invocation” format.

3. Possible values in these columns are:
A Arithmetic
B Binary
C Character

4. For these functions, the maximum length of the operand (and output) is the maximum string length that the
assembler supports, currently 1024.

SETA instruction
The SETA instruction assigns an arithmetic value to a SETA symbol. You can specify a single value or an
arithmetic expression from which the assembler computes the value to assign.

You can change the values assigned to an arithmetic or SETA symbol. This lets you use SETA symbols as
counters, indexes, or for other repeated computations that require varying values.

�� variable_symbol SETA expression ��

variable_symbol
Is a variable symbol.

A global variable symbol in the name field must have been previously declared as a SETA symbol in
a GBLA instruction. Local SETA symbols need not be declared in an LCLA instruction. The assembler

308 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

considers any undeclared variable symbol found in the name field of a SETA instruction as a local
SET symbol. The variable symbol is assigned a type attribute value of N.

expression
Is an arithmetic expression evaluated as a signed 32 bit arithmetic value that is assigned to the SETA
symbol in the name field. The minimum and maximum allowable values of the expression are -231

and +231-1.

Figure 45 defines an arithmetic expression.

Table 58 shows the variable symbols that are allowed as terms in an arithmetic expression.

Table 58. Variable symbols allowed as terms in arithmetic expressions

Variable symbol Restrictions Example Valid value

SETA None --- ---

SETB None --- ---

SETC Value must evaluate to an
unsigned binary, hexadecimal,
or decimal self-defining term

123 123

┌───────────┐
│ │
│Arithmetic │
│Expression │
│ │
└─────┬─────┘

│
↓ Can be any of

├────────────┬───────────┬────────────────────┬──────────┐
↓ ↓ ↓ ↓ ↓

┌─────┴─────┐ ┌────┴────┐ ┌────┴──────────────┐ ┌───┴────┐ ───┴────┐
│Arithmetic │ │ (Arith. │ │ Arithmetic-Valued │ │+Arith. │ │-Arith. │
│Term │ │ Exp.) │ │ Built-in Function │ │↑ Exp. │ │↑ Exp. │
└─────┬─────┘ └─────────┘ └───────────────────┘ └┼───────┘ └┼───────┘

│ └────┬─────┘
↓ Can be any of │
├─────────────┬─────────────┬─────────────┐ unary operators
↓ ↓ ↓ ↓

┌─────┴─────┐ ┌─────┴─────┐ ┌─────┴─────┐ ┌─────┴─────┐
│ │ │Predefined │ │ Self- │ │ │
│ Variable │ │Absolute │ │ Defining │ │ Attribute │
│ Symbol │ │Ordinary │ │ Term │ │ Reference │
│ │ │Symbol │ │ │ │ │ Operators Allowed
└───────────┘ └───────────┘ └───────────┘ └─────┬─────┘

│ Unary: + Positive
│ - Negative
│ Can
↓ only be Binary: + Addition

┌─────┴─────┐ - Subtraction
│ Length │ * Multiplication
│ Scale │ / Division
│ Integer │
│ Count │

Arith. Exp. = Arithmetic Expression │ Number │
│ Defined │
└───────────┘

Figure 45. Defining arithmetic (SETA) expressions

Chapter 9. How to write conditional assembly instructions 309

Table 58. Variable symbols allowed as terms in arithmetic expressions (continued)

Variable symbol Restrictions Example Valid value

Symbolic parameters Value must be a self-defining
term

&PARAM

&SUBLIST(3)

X’A1’

C’Z’

&SYSLIST(n)

&SYSLIST(n,m)

Corresponding operand or
sublist entry must be a
self-defining term

&SYSLIST(3)

&SYSLIST(3,2)

24

B’101’

&SYSDATC
&SYSM_HSEV
&SYSM_SEV
&SYSNDX
&SYSNEST
&SYSOPT_DBCS
&SYSOPT_RENT
&SYSOPT_XOBJECT
&SYSSTMT

None --- ---

The following example shows a SETA statement with a valid self-defining term in its operand field:
&ASYM1 SETA C’D’ &ASYM1 has value 196 (C’D’)

The second statement in the following example is valid because in the two positions in the SETA operand
where a term is required (either side of the + sign), the assembler finds a valid self-defining term:
&CSYM2 SETC ’C’’A’’’ &CSYM2 has value C’A’
&ASYM3 SETA &CSYM2+&CSYM2 &ASYM3 has value 386 (C’A’ + C’A’)

If the variable symbol is the same as the character value, the assembler considers the variable symbol to
be an implicitly defined local SETA symbol, which is given a value of zero. For example:
&ASYM2 SETA &ASYM2

&ASYM2 has a value 0.

A SET statement is not rescanned by the assembler to see if substitutions might affect the originally
determined syntax. The original syntax of the self-defining term must be correct. Therefore the assembler
does not construct a self-defining term in a SETA statement. The third statement of the next example
shows this:
&CSYM3 SETC ’3’ &CSYM has value 3 (C’3’)
&ASYM3 SETA &CSYM3 &ASYM has value 3
&ASYM4 SETA C’&ASYM3’ Invalid self-defining term

In this example C'&ASYM3' is not a valid term.

Subscripted SETA symbols
The SETA symbol in the name field can be subscripted. If the same SETA symbol has not been previously
declared in a GBLA or LCLA instruction with an allowable dimension, or has not been implicitly declared
in a SETA instruction as a scalar (unsubscripted) variable symbol, then the symbol is implicitly declared
as a local SETA array variable.

The assembler assigns the value of the expression in the operand field to the position in the declared
array given by the value of the subscript. The subscript expression must not be 0 or have a negative
value.

310 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

|
|

|

|

Arithmetic (SETA) expressions
Table 59 shows how arithmetic expressions can be used.

Table 59. Use of arithmetic expressions

Used in Used as Example

SETA instruction Operand &A1 SETA &A1+2

AIF or SETB instruction Term in arithmetic
relation

AIF (&A*10 GT 30).A

Subscripted SET symbols Subscript &ASYM(&A+10-&C)

Substring notation Subscript ’STRING’(&A*2,&A-1)

Sublist notation Subscript
Given sublist (A,B,C,D)
named &PARAM,
if &A=1 then &PARAM(&A+1)=B

&SYSLIST Subscript &SYSLIST(&M+1,&N-2)
&SYSLIST(N’&SYSLIST)

SETC instruction Character string in
operand Given &C SETC ’5-10*&A’ �1�

if &A=10 then
&C=5-10*10 �2�
Given &D SETC ’5-10*&A’ �1�
if &A=-10 then
&D=5-10*10�3�

Built-in functions Operand &VAR SETA (NOT &OP1) &VAR SETA BYTE(64)

When an arithmetic expression is used in the operand field of a SETC instruction (see �1� in Table 59),
the assembler assigns the character value representing the arithmetic expression to the SETC symbol, after
substituting values (see �2� in Table 59) into any variable symbols. It does not evaluate the arithmetic
expression. The mathematical sign (+ or -) is not included in the substituted value of a variable symbol
(see �3� in Table 59), and any insignificant leading zeros are removed.

Here are the built-in functions for arithmetic (SETA) expressions:

AND

Format: Logical-expression
Operands: Arithmetic

Output: (aexpr1 AND aexpr2) provides an arithmetic result where each bit position in the result
is set to 1 if the corresponding bit positions in both operands contain 1, otherwise, the result bit is
set to 0.

Example

After the following statements &VAR contains the arithmetic value +2.
Name Operation Operand

&OP1 SETA 10
&OP2 SETA 2
&VAR SETA (&OP1 AND &OP2)

B2A

Format: Function-invocation
Operands: Character

Chapter 9. How to write conditional assembly instructions 311

Output: B2A(’bitstring’) converts a character string argument containing ’0’ and ’1’ characters
to an arithmetic value.
v Fewer than 32 characters are padded internally on the left with ’0’ characters to a length of 32

characters.
v Error conditions are detected if the argument contains invalid characters, or if the argument

length exceeds 32 characters, generating the message ASMA214E.
v Null argument strings return zero.

The result of the B2A function is the same as
&value SETA B’bitstring’

except that null strings are allowed by B2A but not by SETA.

Examples
B2A(’’) has value 0
B2A(’0000000101’) has value 5
B2A(’11111111111111111111111111111110’) has value -2

C2A

Format: Function-invocation
Operands: Character

Output: C2A(’charstring’) converts a character string of zero to four characters to a binary
arithmetic value having the same bit pattern.
v Fewer than four characters are padded internally on the left with EBCDIC null characters to a

length of four characters.
v An error condition is detected if the argument length exceeds 4 characters, generating the

message ASMA214E.
v Null argument strings return zero.

The result of C2A is the same as is obtained from
&value SETA C’charstring’

except that C2A gives a zero result for null strings, and does not pair apostrophes or ampersands
before conversion.

Example
C2A(’’) has value 0
C2A(’+’) has value 78
C2A(’1’) has value 241
C2A(’0000’) has value -252645136

D2A

Format: Function-invocation
Operands: Character

Output: D2A(’decstring’) converts a character string argument containing an optional leading
plus or minus sign followed by decimal digits to an arithmetic value. Error conditions are
detected if:
v The argument contains invalid characters.
v No digits are present following a sign.
v The argument length exceeds 11 characters.
v The resulting value is too large.

Null argument strings return zero.

The result of the D2A function is the same as
&value SETA decstring

312 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

except that SETA does not allow leading plus or minus signs.

Examples
D2A(’’) indicates an error condition
D2A(’000’) has value 0
D2A(’10’) has value 10
D2A(’+100’) has value 100
D2A(’-5’) has value -5

DCLEN

Format: Function-invocation
Operands: Character

Output: DCLEN(’cexpr’) returns the length of its argument string after pairs of apostrophes and
ampersands have been internally replaced by single occurrences. No change is made to the
argument. Such pairing occurs only once; that is, three successive occurrences of an apostrophe or
ampersand result in two occurrences, not one.

Examples
DCLEN(’’) has value 0 (null string)
DCLEN(’’’’) has value 1 (argument is a single apostrophe)
DCLEN(’’’’’’) has value 1 (argument is two apostrophes)
DCLEN(’&&’) has value 1 (argument is two ampersands)
DCLEN(’a’’’’b’) has value 3 (DCVAL string is "a’b")
DCLEN(’a’’’’b&&c’) has value 5 (DCVAL string is "a’b&c")
DCLEN(’&&&&’.’’’’’’’’) has value 4 (DCVAL string is "&&''")

Note: DCLEN is like DCVAL, except that DCLEN returns only the length of the result, not the
paired string.

FIND

Format: Logical-expression, function-invocation
Operands: Character

Output: (’string1’ FIND ’string2’) or FIND(’string1’,’string2’) finds the first match of any
character from operand2 within operand1. The value returned by FIND indicates the position where
the match occurs. FIND returns 0 if no match occurs or if either operand is a null string.

Examples

After the following statements &VAR contains the arithmetic value 3.
Name Operation Operand

&OP1 SETC ’abcdef’
&OP2 SETC ’cde’
&VAR SETA (’&OP1’ FIND ’&OP2’)

In the above example the character c in &OP2 is the first character found in &OP1. Consider the
following example where the character c, in &OP1, has been replaced with the character g.
Name Operation Operand

&OP1 SETC ’abcdef’
&OP2 SETC ’gde’
&VAR SETA (’&OP1’ FIND ’&OP2’)

&VAR contains the arithmetic value 4. The character d in &OP2 is the first character found in &OP1.

In the following example, the ordering of the characters in the second operand is changed to egd.

Chapter 9. How to write conditional assembly instructions 313

|

|

Name Operation Operand

&OP1 SETC ’abcdef’
&OP2 SETC ’egd’
&VAR SETA FIND(’&OP1’,’&OP2’)

&VAR still contains the arithmetic value 4. Because FIND is looking for a single character from the
character string, the order of the characters in the second operand string is irrelevant.

INDEX

Format: Logical-expression, function-invocation
Operands: Character

Output: INDEX(’cexpr1’,’cexpr2’) or (’cexpr1’ INDEX ’cexpr2’) locates the first occurrence of
the second argument within the first argument, and returns the position of the match. A zero
value is returned if:
v Either argument is null
v No match is found
v The second argument is longer than the first

Examples
INDEX(’ABC’,’B’) has value 2
INDEX(’ABC’,’D’) has value 0

ISBIN

Format: Function-invocation
Operands: Character

Output: ISBIN(’cexpr’) determines the validity of cexpr, a string of 1 to 32 characters, as the
nominal value of a binary self-defining term usable in a SETA expression. If valid, ISBIN returns
1; otherwise, it returns zero. The argument string must not be null.

Example
ISBIN(’10101’) returns 1
ISBIN(’101010101010101010101010101010101’) returns 0 (excess digits)
ISBIN(’12121’) returns 0 (non-binary digits)
ISBIN(’’) indicates an error condition

ISDEC

Format: Function-invocation
Operands: Character

Output: ISDEC(’cexpr’) determines the validity of cexpr, a string of 1 to 10 characters, as the
nominal value of a decimal self-defining term usable in a SETA expression. If valid, ISDEC
returns 1; otherwise, it returns zero. The argument string must be null.

Example
ISDEC(’12345678’) returns 1
ISDEC(’+25’) returns 0 (non-decimal character)
ISDEC(’2147483648’) returns 0 (value too large)
ISDEC(’00000000005’) returns 0 (too many characters)
ISDEC(’’) indicates an error condition

ISHEX

Format: Function-invocation
Operands: Character

314 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Output: ISHEX(’cexpr’) determines the validity of cexpr, a string of 1-8 characters, as the
nominal value of a hexadecimal self-defining term usable in a SETA expression. If valid, ISHEX
returns 1; otherwise, it returns zero. The argument string mmust not be null.

Example
ISHEX(’ab34CD9F’) returns 1
ISHEX(’abcdEFGH’) returns 0 (non-hexadecimal digits)
ISHEX(’123456789’) returns 0 (too many characters)
ISHEX(’’) indicates an error condition

ISSYM

Format: Function-invocation
Operands: Character

Output: ISSYM(’cexpr’) determines the validity of cexpr, a string of 1 to 63 characters, for use as
an ordinary symbol. If valid, ISSYM returns 1; otherwise, it returns zero. The argument string
must not be null.

Examples
ISSYM(’Abcd_1234’) returns 1
ISSYM(’_Abcd1234’) returns 1
ISSYM(’##@$_’) returns 1
ISSYM(’1234_Abcd’) returns 0 (invalid initial character)
ISSYM(’’) indicates an error condition

NOT

Format: Logical-expression
Operands: Arithmetic

Output: (NOT aexp) provides the ones complement of the value contained or evaluated in the
operand.

Example

After the following statements &VAR contains the arithmetic value -11.
Name Operation Operand

&OP1 SETA 10
&VAR SETA (NOT &OP1)

OR

Format: Logical-expression
Operands: Arithmetic

Output: Each bit position in the result is set to 1 if the corresponding bit positions in one or both
operands contains a 1, otherwise the result bit is set to 0.

Example

After the following statements &VAR contains the arithmetic value +10.
Name Operation Operand

&OP1 SETA 10
&OP2 SETA 2
&VAR SETA (&OP1 OR &OP2)

SLA

Chapter 9. How to write conditional assembly instructions 315

Format: Logical-expression
Operands: Arithmetic

Output: The 31 bit numeric part of the signed first operand is shifted left the number of bits
specified in the rightmost six bits of the second operand. The sign of the first operand remains
unchanged. Zeros are used to fill the vacated bit positions on the right.

Example

After the following statements &VAR contains the arithmetic value +8.
Name Operation Operand

&OP1 SETA 2
&OP2 SETA 2
&VAR SETA (&OP1 SLA &OP2)

SLL

Format: Logical-expression
Operands: Arithmetic

Output: (aexp1 SLL aexp2) shifts the 32 bit first operand left the number of bits specified in the
rightmost six bits of the second operand. Bits shifted out of bit position 0 are lost. Zeros are used
to fill the vacated bit positions on the right.

Example

After the following statements &VAR contains the arithmetic value +40.
Name Operation Operand

&OP1 SETA 10
&OP2 SETA 2
&VAR SETA (&OP1 SLL &OP2)

SRA

Format: Logical-expression
Operands: Arithmetic

Output: The 31 bit numeric part of the signed first operand is shifted right the number of bits
specified in the rightmost six bits of the second operand. The sign of the first operand remains
unchanged. Bits shifted out of bit position 31 are lost. Bits equal to the sign are used to fill the
vacated bit positions on the left.

Examples

After the following statements &VAR contains the arithmetic value +2.
Name Operation Operand

&OP1 SETA 10
&OP2 SETA 2
&VAR SETA (&OP1 SRA &OP2)

After the following statements &VAR contains the arithmetic value -1.
Name Operation Operand

&OP1 SETA -344
&OP2 SETA 40
&VAR SETA (&OP1 SRA &OP2)

316 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Compare this result with the result in the second example under SRL below.

SRL

Format: Logical-expression
Operands: Arithmetic

Output: The 32 bit first operand is shifted right the number of bits specified in the rightmost six
bits of the second operand. Bits shifted out of bit position 31 are lost. Zeros are used to fill the
vacated bit positions on the left.

Examples

After the following statements &VAR contains the arithmetic value +2.
Name Operation Operand

&OP1 SETA 10
&OP2 SETA 2
&VAR SETA (&OP1 SRL &OP2)

After the following statements &VAR contains the arithmetic value 0.
Name Operation Operand

&OP1 SETA -344
&OP2 SETA 40
&VAR SETA (&OP1 SRL &OP2)

X2A

Format: Function-invocation
Operands: Character

Output: X2A(’hexstring’) converts a character string argument containing hexadecimal digits to
an arithmetic value.
v If the character string contains fewer than eight characters, it is padded internally on the left

with ’0’ characters.
v Error conditions are detected if the argument contains invalid characters, or if the argument

length exceeds eight characters, generating the message ASMA214E.
v Null argument strings return zero.

The result of the X2A function is the same as
&value SETA X’hexstring’

except that null strings are allowed by X2A but not by SETA.

Examples
X2A(’00000101’) has value 257
X2A(’C1’) has value 193
X2A(’’) has value 0
X2A(’FFFFFFF0’) has value -16

XOR

Format: Logical-expression
Operands: Arithmetic

Output: Each bit position in the result is set to 1 if the corresponding bit positions in the two
operands are unlike, otherwise the result bit is set to 0.

Example After the following statements &VAR contains the arithmetic value +8.

Chapter 9. How to write conditional assembly instructions 317

Name Operation Operand

&OP1 SETA 10
&OP2 SETA 2
&VAR SETA (&OP1 XOR &OP2)

Rules for coding arithmetic expressions: Here is a summary of coding rules for arithmetic expressions:
1. Unary (operating on one value) operators and binary (operating on two values) operators are

allowed in arithmetic expressions.
2. An arithmetic expression can have one or more unary operators preceding any term in the

expression or at the beginning of the expression. The unary operators are + (positive) and -
(negative).

3. The binary operators that can be used to combine the terms of an expression are + (addition), -
(subtraction), * (multiplication), and / (division).

4. An arithmetic expression must not begin with a binary operator, and it must not contain two binary
operators in succession.

5. An arithmetic-valued function is a term.
6. An arithmetic expression must not contain two terms in succession.
7. An arithmetic expression must not contain a decimal point. For example, 123.456 is not a valid

arithmetic term, but 123 is.
8. An arithmetic expression must not contain spaces between an operator and a term, nor between two

successive operators except for built-in functions using the “logical-expression format” described at
“Logical (SETB) expressions” on page 323.

9. Ordinary symbols specified in arithmetic expressions must be defined before the arithmetic
expression is encountered, and must have an absolute value.

10. An arithmetic expression can contain up to 24 unary and binary operators, and is limited to 255
levels of parentheses. The parentheses required for sublist notation, substring notation, and subscript
notation count toward this limit.
An arithmetic expression must not contain two terms in succession; however, any term can be
preceded by up to 24 unary operators. +&A*-&B is a valid operand for a SETA instruction. The
expression &FIELD+- is invalid because it has no final term.

Evaluation of arithmetic expressions: The assembler evaluates arithmetic expressions during conditional
assembly processing as follows:
1. It evaluates each arithmetic term.
2. It carries out arithmetic operations from left to right. However,

a. It carries out unary operations before binary operations.
b. It carries out the binary operations of multiplication and division before the binary operations of

addition and subtraction.
c. It carries out the binary operations of addition and subtraction before the bitwise logical

operations.
d. It carries out the bitwise logical operations before shift operations.

3. In division, it gives an integer result; any fractional portion is dropped. Division by zero gives a 0
result.

4. In parenthesized arithmetic expressions, the assembler evaluates the innermost expressions first, and
then considers them as arithmetic terms in the next outer level of expressions. It continues this
process until the outermost expression is evaluated.

5. The computed result, including intermediate values, must lie in the range -231 through +231-1. (If the
value -231 is substituted in a SETC expression, its magnitude, 2147483648, is invalid if substituted in a
SETA expression.)

318 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

SETC variables in arithmetic expressions: The assembler permits a SETC variable to be used as a term
in an arithmetic expression if the character string value of the variable is a self-defining term. The value
represented by the string is assigned to the arithmetic term. A null string is treated as zero.

Examples:
LCLC &C(5)

&C(1) SETC ’B’’101’’’
&C(2) SETC ’C’’A’’’
&C(3) SETC ’23’
&A SETA &C(1)+&C(2)-&C(3)

In evaluating the arithmetic expression in the fifth statement, the first term, &C(1), is assigned the binary
value 101 (decimal 5). To that is added the value represented by the EBCDIC character A (hexadecimal C1,
which corresponds to decimal 193). Then the value represented by the third term &C(3) is subtracted, and
the value of &A becomes 5+193-23=175.

This feature lets you associate numeric values with EBCDIC or hexadecimal characters to be used in such
applications as indexing, code conversion, translation, and sorting.

Assume that &X is a character string with the value ABC.
&I SETC ’C’’’.’&X’(1,1).’’’’
&VAL SETA &TRANS(&I)

The first statement sets &I to C’A’. The second statement extracts the 193rd element of &TRANS (C’A’ =
X’C1’ = 193).

The following code converts a hexadecimal value in &H into a decimal value in &VAL:

&X SETC ’X’’&H’’’
&VAL SETA &X

The following code converts the double-byte character Da into a decimal value in &VAL. &VAL can then be
used to find an alternative code in a subscripted SETC variable:
&DA SETC ’G’’<Da>’’’
&VAL SETA &DA

Although you can use a predefined absolute symbol as an operand in a SETA expression, you cannot
substitute a SETC variable whose value is the same as the symbol. For example:
ABS EQU 5
&ABS SETA ABS &ABS has value 5
&CABS SETC ’ABS’ &CABS has value ’ABS’
&ABS SETA &CABS invalid usage

DBCS assembler option: The G-type self-defining term is valid only if the DBCS assembler option is
specified.

Using SETA symbols
The arithmetic value assigned to a SETA symbol is substituted for the SETA symbol when it is used in an
arithmetic expression. If the SETA symbol is not used in an arithmetic expression, the arithmetic value is
converted to a character string containing its absolute value, with leading zeros removed. If the value is
0, it is converted to a single 0.

Example:
MACRO

&NAME MOVE &TO,&FROM
LCLA &A,&B,&C,&D

&A SETA 10 Statement 1
&B SETA 12 Statement 2
&C SETA &A-&B Statement 3

Chapter 9. How to write conditional assembly instructions 319

&D SETA &A+&C Statement 4
&NAME ST 2,SAVEAREA

L 2,&FROM&C Statement 5
ST 2,&TO&D Statement 6
L 2,SAVEAREA
MEND

HERE MOVE FIELDA,FIELDB

+HERE ST 2,SAVEAREA
+ L 2,FIELDB2
+ ST 2,FIELDA8
+ L 2,SAVEAREA

Statements 1 and 2 assign the arithmetic values +10 and +12 to the SETA symbols &A and &B. Therefore,
statement 3 assigns the SETA symbol &C the arithmetic value -2. When &C is used in statement 5, the
arithmetic value -2 is converted to the character 2. When &C is used in statement 4, however, the
arithmetic value -2 is used. Therefore, &D is assigned the arithmetic value +8. When &D is used in
statement 6, the arithmetic value +8 is converted to the character 8.

The following example shows how the value assigned to a SETA symbol can be changed in a macro
definition.

MACRO
&NAME MOVE &TO,&FROM

LCLA &A
&A SETA 5 Statement 1
&NAME ST 2,SAVEAREA

L 2,&FROM&A Statement 2
&A SETA 8 Statement 3

ST 2,&TO&A Statement 4
L 2,SAVEAREA
MEND

HERE MOVE FIELDA,FIELDB

+HERE ST 2,SAVEAREA
+ L 2,FIELDB5
+ ST 2,FIELDA8
+ L 2,SAVEAREA

Statement 1 assigns the arithmetic value +5 to SETA symbol &A. In statement 2, &A is converted to the
character 5. Statement 3 assigns the arithmetic value +8 to &A. In statement 4, therefore, &A is converted to
the character 8, instead of 5.

A SETA symbol can be used with a symbolic parameter to refer to an operand in an operand sublist. If a
SETA symbol is used for this purpose, it must have been assigned a positive value.

Any expression that can be used in the operand field of a SETA instruction can be used to refer to an
operand in an operand sublist. Sublists are described in “Sublists in operands” on page 266.

The following macro definition adds the last operand in an operand sublist to the first operand in an
operand sublist and stores the result at the first operand. A sample macro instruction and generated
statements follow the macro definition.

MACRO
ADDX &NUMBER,® Statement 1
LCLA &LAST

&LAST SETA N’&NUMBER Statement 2
L ®,&NUMBER(1)
A ®,&NUMBER(&LAST) Statement 3
ST ®,&NUMBER(1)
MEND

320 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

ADDX (A,B,C,D,E),3 Statement 4

+ L 3,A
+ A 3,E
+ ST 3,A

&NUMBER is the first symbolic parameter in the operand field of the prototype statement (statement 1). The
corresponding characters (A,B,C,D,E) of the macro instruction (statement 4) are a sublist. Statement 2
assigns to &LAST the arithmetic value +5, which is equal to the number of operands in the sublist.
Therefore, in statement 3, &NUMBER(&LAST) is replaced by the fifth operand of the sublist.

SETB instruction
Use the SETB instruction to assign a bit value to a SETB symbol. You can assign the bit values, 0 or 1, to
a SETB symbol directly and use it as a switch.

If you specify a logical (Boolean) expression in the operand field, the assembler evaluates this expression
to determine whether it is true or false, and then assigns the value 1 or 0 to the SETB symbol. You can
use this computed value in condition tests or for substitution.

�� variable_symbol SETB binary_value ��

variable_symbol
Is a variable symbol.

A global variable symbol in the name field must have been previously declared as a SETB symbol in
a GBLB instruction. Local SETB symbols need not be declared in an LCLB instruction. The assembler
considers any undeclared variable symbol found in the name field of a SETB instruction as a local
SET symbol. The variable symbol is assigned a type attribute value of N.

binary_value
Is a binary bit value specified as:
v A binary digit (0 or 1)
v A binary value enclosed in parentheses

An arithmetic value enclosed in parentheses is allowed. This value can be represented by:
– An unsigned self-defining term
– A SETA symbol
– A previously defined ordinary symbol with an absolute value
– An attribute reference other than the type attribute reference.

If the value is 0, the assembler assigns a value of 0 to the symbol in the name field. If the value is
not 0, the assembler assigns a value of 1.

v A logical expression enclosed in parentheses
A logical expression is evaluated to determine if it is true or false; the SETB symbol in the name
field is then assigned the binary value 1 or 0, corresponding to true (1) or false (0). The assembler
assigns the explicitly specified binary value (0 or 1) or the computed logical value (0 or 1) to the
SETB symbol in the name field.

Chapter 9. How to write conditional assembly instructions 321

Rules for Coding Logical Expressions: The following is a summary of coding rules for logical expressions:
v A logical expression must not contain two logical terms in succession.
v A logical expression can contain two logical operators in succession; however, the only allowed

combinations are OR NOT, XOR NOT and AND NOT. The two operators must be separated from each
other by one or more spaces.

v Any logical term, relation, or inner logical expression can be optionally enclosed in parentheses.
v The relational and logical operators must be immediately preceded and followed by at least one space,

except when written (NOT bexpr).

┌───────────┐
│ │
│Logical¹ │
│Expression │
│ │
└─────┬─────┘

│
↓ Can be any of
├─────────────┬───┐ Logical Operators Allowed
↓ ↓ ↓

┌─────┴─────┐ ┌─────┴─────┬───────────┬───────────┐ ┌───────────┬─────┴─────┐ OR Intersection
│ │ │ │ OR │ │ │ │ │ AND Union
│ Logical² │ │Logical² │ OR NOT │ Logical │ │ NOT │Logical² │ NOT Negation
│ Term │ │Expression │ AND │ Term │ │ │Expression │ XOR Exclusive OR
│ │ │ │ AND NOT │ │ │ │ │
│ │ │ │ XOR │ │ │ │ │
│ │ │ │ XOR NOT │ │ │ │ │
└─────┬─────┘ └───────────┴───────────┴───────────┘ └───────────┴───────────┘

│
↓ Can be any of
├─────────────┬─────────────┬─────────────┬─────────────┬─────────────┬─────────────┐
↓ ↓ ↓ ↓ ↓ ↓ ↓

┌─────┴─────┐ ┌─────┴─────┐ ┌─────┴─────┐ ┌─────┴─────┐ ┌─────┴─────┐ ┌─────┴─────┐ ┌─────┴─────┐
│ │ │ SETB² │ │ │ │ │ │ │ │ Predefined│ │ │
│ Logical² │ │ Variable │ │Arithmetic²│ │ 0² │ │ 1² │ │ Absolute │ │ Logical² │
│ Relation │ │ Symbol │ │Value │ │ │ │ │ │ Ordinary │ │ Function │
│ │ │ │ │ │ │ │ │ │ │ Symbol │ │ │
└─────┬─────┘ └───────────┘ └───────────┘ └───────────┘ └───────────┘ └───────────┘ └───────────┘

│
↓ Can be any of
├───┐
↓ ↓

┌─────┴─────┐ ┌─────┴─────┐
│ │ │ │
│Arithmetic │ │ Character │
│Relation │ │ Relation │
│ │ │ │
└─────┬─────┘ └─────┬─────┘

│ │ Relational Operators Allowed
↓ Which is ↓ Which is

┌─────┴─────┬───────────┬───────────┐ ┌─────┴─────┬───────────┬───────────┐ EQ Equal
│ │ EQ, NE │ │ │ │ EQ, NE │ │ NE Not equal
│Arithmetic │ LE, LT │Arithmetic │ │ Character³│ LE, LT │ Character³│ LE Less than or equal
│Comparand │ GE, GT │Comparand │ │ Comparand │ GE, GT │ Comparand │ LT Less than
│ │ │ │ │ │ │ │ GE Greater than or equal
└─────┬─────┴───────────┴───────────┘ └─────┬─────┴───────────┴───────────┘ GT Greater than

│ │
↓ Which can be ↓ Can be any of
│ ├─────────────┬─────────────┬──────────────────┐
│ ↓ ↓ ↓ ↓

┌─────┴─────┐ ┌─────┴─────┐ ┌─────┴─────┐ ┌─────┴──────────┐ ┌─────┴─────┐
│ │ │ │ │ │ │ Type Attribute │ │Character │
│Arithmetic │ │Character │ │ Substring │ │ or Operation │ │Exp. and │
│Expression │ │Expression │ │ Notation │ │ Code │ │Substring │
│ │ │ │ │ │ │ Reference⁴ │ │Notation │
└───────────┘ └───────────┘ └───────────┘ └────────────────┘ └───────────┘

Notes:

1. Outermost expression must be enclosed in parentheses in SETB and AIF instructions.

2. Optional parentheses around terms and expressions at this level.

3. Must be in the range 0 through 1024 characters.

4. Must stand alone and not be enclosed in apostrophes.

Figure 46. Defining logical expressions

322 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

|

|

|
|
|

|

|
|

v A logical expression can begin with the logical unary operator NOT.
v A logical expression can contain up to 18 logical operators. The relational and other operators used by

the arithmetic and character expressions in relations do not count toward this total.
v Up to 255 levels of nested parentheses are allowed.
v Absolute ordinary symbols specified in logical expressions must be defined before the logical

expression is encountered.
v The assembler determines the type of a logical relation by the first comparand. If the first comparand

is a character expression that begins with an apostrophe, then the logical relation is a character relation,
otherwise the assembler treats it as an arithmetic relation.

Subscripted SETB symbols
The SETB symbol in the name field can be subscripted. If the same SETB symbol has not been previously
declared in a GBLB or LCLB instruction with an allowable dimension, and has not been implicitly
declared in a SETB instruction as a scalar (unscripted)variable symbol, then the symbol is implicitly
declared as a local SETB array variable.

The assembler assigns the binary value explicitly specified, or implicit in the logical expression present in
the operand field, to the position in the declared array given by the value of the subscript. The subscript
expression must not be 0 or have a negative value.

Logical (SETB) expressions
You can use a logical expression to assign a binary value to a SETB symbol. You can also use a logical
expression to represent the condition test in an AIF instruction. This use lets you code a logical
expression whose value (0 or 1) varies according to the values substituted into the expression and thus
determine whether or not a branch is to be taken.

Figure 46 on page 322 defines a logical expression.

Logical expressions contain unquoted spaces that do not terminate the operand field. This is called
“logical-expression format”, and such expressions are always enclosed in parentheses.

A logical expression can consist of a logical expression and a logical term separated by a logical operator
delimited by spaces. The logical operators are:

AND

Format: Logical-expression
Operands: Binary

Output: (bexpr1 AND bexpr2) has value 1, if each logical expression evaluates to 1, otherwise the
value is 0.

Example

After the following statements &VAR contains the arithmetic value 0.
Name Operation Operand

&OP1 SETB 1
&OP2 SETB 0
&VAR SETB (&OP1 AND &OP2)

AND NOT

Format: Logical-expression
Operands: Binary

Chapter 9. How to write conditional assembly instructions 323

|

|
|

|

|
|

|
|
|

Output: The value of the second logical term is inverted, and the expression is evaluated as
though the AND operator was specified.

Example

(1 AND NOT 0) is equivalent to (1 AND 1).

NOT

Format:
Logical-expression
Operands: Binary

Output: NOT(bexp) inverts the value of the logical expression.

OR

Format: Logical-expression
Operands: Binary

Output: (bexp1 OR bexp2) returns a value of 1, if either of the logical expressions contain or
evaluate to 1. If they both contain or evaluate to 0 then the value is 0.

OR NOT

Format: Logical-expression
Operands: Binary

Output: (bexp1 OR NOT bexp2) inverts the value of the second logical term, and the expression is
evaluated as though the OR operator was specified. For example, (1 OR NOT 1) is equivalent to
(1 OR 0).

XOR

Format: Logical-expression
Operands: Binary

Output: (bexp1 XOR bexp2) evaluates to 1 if the logical expressions contain or evaluate to
opposite bit values. If they both contain or evaluate to the same bit value, the result is 0.

XOR NOT

Format: Logical-expression
Operands: Binary

Output: (bexp1 XOR NOT bexp2) inverts the second logical term, and the expression is evaluated
as though the XOR operator was specified.

Example (1 XOR NOT 1) is equivalent to (1 XOR 0).

Relational operators: Relational operators provide the means for comparing two items. A relational
operator plus the items form a relation. An arithmetic relation is two arithmetic expressions separated by
a relational operator, and a character relation is two character strings (for example, a character expression
and a type attribute reference) separated by a relational operator.

The relational operators are:
EQ Equal
NE Not equal
LE Less than or equal

324 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

LT Less than
GE Greater than or equal
GT Greater than

Evaluation of logical expressions: The assembler evaluates logical expressions as follows:
1. It evaluates each logical term, which is given a binary value of 0 or 1.
2. If the logical term is an arithmetic or character relation, the assembler evaluates:

a. The arithmetic or character expressions specified as values for comparison in these relations
b. The arithmetic or character relation
c. The logical term, which is the result of the relation. If the relation is true, the logical term it

represents is given a value of 1; if the relation is false, the term is given a value of 0.
The two comparands in a character relation are compared, character by character, according to binary
(EBCDIC) representation of the characters. If two comparands in a relation have character values of
unequal length, the assembler always takes the shorter character value to be less.
Character comparisons are recognized by the presence of an opening apostrophe in the first operand.
For example, if a character comparison involves a character function and a character constant, the
constant must be written first, as in

AIF (’A’ eq UPPER(’a’)).Okay

3. The assembler carries out logical operations from left to right. However,
a. It carries out logical NOTs before logical ANDs, ORs, and XORs
b. It carries out logical ANDs before logical ORs and XORs
c. It carries out logical ORs before logical XORs

4. In parenthesized logical expressions, the assembler evaluates the innermost expressions first, and then
considers them as logical terms in the next outer level of expressions. It continues this process until it
evaluates the outermost expression.

Using SETB symbols: The logical value assigned to a SETB symbol is used for the SETB symbol
appearing in the operand field of an AIF instruction or another SETB instruction.

If a SETB symbol is used in the operand field of a SETA instruction, or in arithmetic relations in the
operand fields of AIF and SETB instructions, the binary values 1 (true) and 0 (false) are converted to the
arithmetic values 1 and 0.

If a SETB symbol is used in the operand field of a SETC instruction, in character relations in the operand
fields of AIF and SETB instructions, or in any other statement, the binary values 1 (true) and 0 (false), are
converted to the character values ’1’ and ’0’.

The following example illustrates these rules. It assumes that (L’&TO EQ 4) is true, and (S’&TO EQ 0) is
false.

MACRO
&NAME MOVE &TO,&FROM

LCLA &A1
LCLB &B1,&B2
LCLC &C1

&B1 SETB (L’&TO EQ 4) Statement 1
&B2 SETB (S’&TO EQ 0) Statement 2
&A1 SETA &B1 Statement 3
&C1 SETC ’&B2’ Statement 4

ST 2,SAVEAREA
L 2,&FROM&A1
ST 2,&TO&C1
L 2,SAVEAREA
MEND

HERE MOVE FIELDA,FIELDB

Chapter 9. How to write conditional assembly instructions 325

+HERE ST 2,SAVEAREA
+ L 2,FIELDB1
+ ST 2,FIELDA0
+ L 2,SAVEAREA

Because the operand field of statement 1 is true, &B1 is assigned the binary value 1. Therefore, the
arithmetic value +1 is substituted for &B1 in statement 3. Because the operand field of statement 2 is false,
&B2 is assigned the binary value 0. Therefore, the character value 0 is substituted for &B2 in statement 4.

SETC instruction
The SETC instruction assigns a character value to a SETC symbol. You can assign whole character strings,
or concatenate several smaller strings together. The assembler assigns the composite string to your SETC
symbol. You can also assign parts of a character string to a SETC symbol by using the substring notation;
see “Substring notation” on page 328.

A character string consists of any combination of characters enclosed in apostrophes. Variable symbols are
allowed. The assembler substitutes the representation of their values as character strings into the
character expression before evaluating the expression. Up to 1024 characters are allowed in a character
expression.

You can change the character value assigned to a SETC symbol. This lets you use the same SETC symbol
with different values for character comparisons in several places, or for substituting different values into
the same model statement.

�� variable_symbol SETC character_value ��

variable symbol
Is a variable symbol.

A global variable symbol in the name field must have been previously declared as a SETC symbol in
a GBLC instruction. Local SETC symbols need not be declared in an LCLC instruction. The assembler
considers any undeclared variable symbol found in the name field of a SETC instruction as a local
SET symbol. The variable symbol is assigned a type attribute value of U.

character_value
Is a character value specified by:
v An operation code attribute reference
v A type attribute reference
v A character expression

The assembler assigns the character string value represented in the operand field to the SETC symbol in
the name field. The string length must be in the range 0 (null character string) through 1024 characters.

When a SETA or SETB symbol is specified in a character expression, the unsigned decimal value of the
symbol (with leading zeros removed) is the character value given to the symbol.

A duplication factor can precede a character expression or substring notation. The duplication factor can
be any non-negative arithmetic expression allowed in the operand of a SETA instruction. For example:
&C1 SETC (3)’ABC’

assigns the value ’ABCABCABC’ to &C1.

A zero duplication factor results in a null (zero-length) string.

326 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Notes:

1. The assembler evaluates the represented character string (in particular, the substring; see “Substring
notation” on page 328) before applying the duplication factor. The resulting character string is then
assigned to the SETC symbol in the name field. For example:
&C2 SETC ’ABC’.(3)’ABCDEF’(4,3)

assigns the value ’ABCDEFDEFDEF’ to &C2.
2. If the character string contains double-byte data, then redundant SI/SO pairs are not removed on

duplication. For example:
&C3 SETC (3)’<.A.B>’

assigns the value ’<.A.B><.A.B><.A.B>’ to &C3.
3. To duplicate double-byte data, without including redundant SI/SO pairs, use the substring notation.

For example:
&C4 SETC (3)’<.A.B>’(2,4)

assigns the value ’.A.B.A.B.A.B’ to &C4.
4. To duplicate the arithmetic value of a previously defined ordinary symbol with an absolute value,

first assign the arithmetic value to a SETA symbol. For example:
A EQU 123
&A1 SETA A
&C5 SETC (3)’&A1’

assigns the value ’123123123’ to &C5.

Note:

1. The attribute reference term must not be preceded by a duplication factor.

┌───────────┐
│ │
│Character │
│Expression │
│ │
└─────┬─────┘

│
↓ Can be any of
├─────────────┬─────────────┬──────────────────────┐
↓ ↓ ↓ ↓

┌─────┴─────┐ ┌─────┴──────┐ ┌────┴──────────────┐ ┌─────┴────────┬────────────┐
│ │ │ │ │ │ │ │ │
│ Character │ │ CharExpr │ │ Character-Valued │ │ (Duplication │ CharExpr │
│ Value │ │ . ←──┐ │ │ Built-In Function │ │ Factor) │ │
│ │ │ CharExpr │ │ │ │ │ │ │
└─────┬─────┘ └──────────┼─┘ └───────────────────┘ └──────────────┴────────────┘

│ │
│ └── Period (.) = Concatenation Character
↓ Can be any of
├─────────────┬─────────────┬─────────────┐
↓ ↓ ↓ ↓

┌─────┴─────┐ ┌─────┴─────┐ ┌─────┴─────┐ ┌─────┴─────┐
│ Substring │ │ Variable │ │ Self- │ │ Attribute¹│
│ │ │ Symbol │ │ Defining │ │ Reference │
│ │ │ │ │ Term │ │ │
│ │ │ │ │ │ │ T’ or O’ │
└───────────┘ └───────────┘ └───────────┘ └───────────┘

Figure 47. Defining character (SETC) expressions

Chapter 9. How to write conditional assembly instructions 327

Subscripted SETC symbols
The SETC symbol (see �1� in Figure 48) in the name field can be subscripted. If the same SETC symbol
has not been previously declared in a GBLC or LCLC instruction with an allowable dimension (see �2� in
Figure 48), or has been implicitly declared in a SETC instruction as a scalar (unscripted) variable symbol,
then the symbol is implicitly declared as a local SETC array variable.

The assembler assigns the character value represented in the operand field to the position in the declared
array (see �3� in Figure 48) given by the value of the subscript. The subscript expression must not be 0 or
have a negative value.

Character (SETC) expressions
The main purpose of a character expression is to assign a character value to a SETC symbol. You can then
use the SETC symbol to substitute the character string into a model statement.

You can also use a character expression as a value for comparison in condition tests and logical
expressions. Also, a character expression provides the string from which characters can be selected by the
substring notation.

Substitution of one or more character values into a character expression lets you use the character
expression wherever you need to vary values for substitution or to control loops.

An attribute reference must be the only term in a character expression.

Substring notation: The substring notation lets you refer to one or more characters within a character
string. You can, therefore, either select characters from the string and use them for substitution or testing,
or scan through a complete string, inspecting each character. By concatenating substrings with other
substrings or character strings, you can rearrange and build your own strings.

The substring notation can be used only in conditional assembly instructions. Table 60 on page 329 shows
how to use the substring notation.

LCLC &C1,&C2
LCLC &SUBSCRC(20)

&D(4) SETC ’XYZ’
. ↑

┌─── �1� . └─── �2�↓
.

&SUBSCRC(10) SETC ’ABCDE’
. │
. │
. │

────────────────────────┼──
�3�─────┐

&SUBSCRC Array: │
↓

┌─────┬─────┬─────┬────/ /────┬─────┬─────┬─────┬────/ /────┬─────┐
│ │ │ │ │ABCDE│ │ │ │ │
└─────┴─────┴─────┴────/ /────┴─────┴─────┴─────┴────/ /────┴─────┘↑

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
1 2 3 4 10 11 12 13 20

Figure 48. Subscripted SETC symbols

328 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Table 60. Substring notation in conditional assembly instructions

Used in Used as Example

Value
assigned to
SETC Symbol

SETC
instruction
operand

Operand

Part of
operand

&C1 SETC ’ABC’(1,3)

&C2 SETC ’&C1’(1,2).’DEF’
ABC

ABDEF

AIF or SETB
instruction
operand (logical
expression)

Character value
in comparand
of character
relation

AIF (’&STRING’(1,4) EQ ’AREA’).SEQ
&B SETB (’&STRING’(1,4).’9’ EQ ’FULL9’)

The substring notation must be specified as follows:
’CHARACTER STRING’(e1,e2)

where the CHARACTER STRING is a character expression from which the substring is to be extracted. The
first subscript (e1) shows the position of the first character that is to be extracted from the character
string. The second subscript (e2) shows the number of characters to be extracted from the character string,
starting with the character indicated by the first subscript. Thus, the second subscript specifies the length
of the resulting substring.

The second subscript value of the substring notation can be specified as an asterisk (*), to indicate that all
the characters beginning at the position of the first expression are used. The extracted string is equal to
the length of the character expression, less the number of characters before the starting character.

The character string must be a valid character expression with a length, n, in the range 1 through 1024
characters. The length of the resulting substring must be in the range 0 through 1024.

The subscripts, e1 and e2, must be arithmetic expressions.

When you use subscripted variable symbols in combination with substring notation, take care to
distinguish variable subscripts from substring-operation subscripts.

LCLC &DVAR(10),&SVAR,&C(10)
&C(1) SETC ’&DVAR(5)’ Select 5th element of &DVAR
&C(2) SETC ’&SVAR’(1,3) Select substring of &SVAR
&C(3) SETC ’&DVAR(5)’(1,3) Select substring of &DVAR(5)
&C(4) SETC ’&SYSLIST(1,3)’(1,3) Select substring of &SYSLIST(1,3)

Evaluation of substrings: The following examples show how the assembler processes substrings
depending on the value of the elements n, e1, and e2.
v In the usual case, the assembler generates a correct substring of the specified length:

Value of Variable Character Value
Notation Symbol of Substring

’ABCDE’(1,5) ABCDE
’ABCDE’(2,3) BCD
’ABCDE’(2,*) BCDE
’ABCDE’(4,*) DE
’&C’(3,3) ABCDE CDE
’&PARAM’(3,3) ((A+3)*10) A+3

v When e1 has a zero or negative value, the assembler generates a null string and issues error message
ASMA093E.

Chapter 9. How to write conditional assembly instructions 329

Character Value
Notation of Substring

’ABCDE’(0,5) null character string
’ABCDE’(0,*) null character string

v When the value of e1 exceeds n, the assembler generates a null string and issues error message
ASMA092E.

Value of Variable Character Value
Notation Symbol of Substring

’ABCDE’(7,3) null character string
’ABCDE’(6,*) null character string

v When e2 has a value less than one, the assembler generates the null character string. If e2 is negative,
the assembler also issues error message ASMA095W.

Value of Variable Character Value
Notation Symbol of Substring

’ABCDE’(4,0) null character string
’ABCDE’(3,-2) null character string

v When e2 indexes past the end of the character expression (that is, e1+e2 is greater than n+1), the
assembler issues warning message ASMA094I, and generates a substring that includes only the
characters up to the end of the character expression specified.

Value of Variable Character Value
Notation Symbol of Substring

’ABCDE’(3,5) CDE

Figure 49 shows the results of an assembly of SETC instructions with different substring notations.

You can suppress the ASMA094I message by specifying the FLAG(NOSUBSTR) option or by setting the
ACONTROL FLAG(NOSUBSTR) value. When this is done, the listing changes (Figure 50 on page 331).

Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R6.0 2008/07/11 17.48
8 &STRING SETC ’STRING’ 00008000
9 &SUBSTR1 SETC ’&STRING’(0,4) 00009000

** ASMA093E Substring expression 1 less than 1; default=null - OPENC
10 &SUBSTR2 SETC ’&STRING’(7,4) 00010000

** ASMA092E Substring expression 1 points past string end; default=null - OPENC
11 &SUBSTR3 SETC ’&STRING’(3,0) 00011000
12 &SUBSTR4 SETC ’&STRING’(3,-2) 00012000

** ASMA095W Substring expression 2 less than 0; default=null - OPENC
13 &SUBSTR5 SETC ’&STRING’(3,4) 00013000
14 &SUBSTR6 SETC ’&STRING’(3,5) 00014000

** ASMA094I Substring goes past string end; default=remainder
15 END 00015000

Figure 49. Sample assembly using substring notation

330 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Character (SETC) expressions can be used only in conditional assembly instructions. Table 61 shows
examples of using character expressions.

Table 61. Use of character expressions

Used in Used as Example

SETC instruction Operand &C SETC ’STRING0’

AIF or SETB instruction Character string in
character relation

AIF (’&C’ EQ ’STRING1’).B

Substring notation First part of notation ’SELECT’(2,5) returns ’ELECT’

Built-in functions Operand &VAR SETC (LOWER ’&twenty.&six’)
&AB SETA A2B(’10’)

Character-valued built-in functions: Character-valued built-in functions have arithmetic-only operands,
character-only operands, or both arithmetic and character operands. Each type is described in a separate
section. The maximum string length of any SETC variable is 1024 bytes. If this length is exceeded, the
string value is truncated, and message ASMA091E is generated.

The following discussion uses these special notations:

n The EBCDIC character containing all 0 bits.

f The EBCDIC character containing all 1 bits.

Here are the SETC built-in functions:

A2B

Format: Function-invocation
Operands: Arithmetic

Output: A2B(aexpr) converts the value of its arithmetic argument to a string of 32 zero (’0’) and
one (’1’) characters. The value of aexpr must be representable as a 32 bit binary integer. If the
aexpr argument is negative, the result contains 32 characters, the first of which is ’1’.

Examples
A2B(0) has value ’00000000000000000000000000000000’
A2B(5) has value ’00000000000000000000000000000101’
A2B(1022) has value ’00000000000000000000001111111110’
A2B(-7) has value ’11111111111111111111111111111001’
A2B(2345678901) indicates an error (value too large)

A2C

Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R6.0 2008/07/11 17.48
7 ACONTROL FLAG(NOSUBSTR)
8 &STRING SETC ’STRING’ 00008000
9 &SUBSTR1 SETC ’&STRING’(0,4) 00009000

** ASMA093E Substring expression 1 less than 1; default=null - OPENC
10 &SUBSTR2 SETC ’&STRING’(7,4) 00010000

** ASMA092E Substring expression 1 points past string end; default=null - OPENC
11 &SUBSTR3 SETC ’&STRING’(3,0) 00011000
12 &SUBSTR4 SETC ’&STRING’(3,-2) 00012000

** ASMA095W Substring expression 2 less than 0; default=null - OPENC
13 &SUBSTR5 SETC ’&STRING’(3,4) 00013000
14 &SUBSTR6 SETC ’&STRING’(3,5) 00014000
15 END 00015000

Figure 50. Sample assembly using substring notation with messages suppressed

Chapter 9. How to write conditional assembly instructions 331

Format: Function-invocation
Operands: Arithmetic

Output: A2C(aexpr) converts the value of its arithmetic argument to a string of four characters
whose bit pattern is the same as the argument's.

Examples
A2C(0) has value ’nnnn’ (4 EBCDIC nulls)
A2C(241) has value ’nnn1’
A2C(20046) has value ’nn++’
A2C(-252645136) has value ’0000’

A2D

Format: Function-invocation
Operands: Arithmetic

Output: A2D(aexpr) converts the value of its arithmetic argument to a string of decimal digits
preceded by a plus or minus sign.

Note: The A2D function is like the SIGNED function, except that A2D always provides an initial
sign character.

Examples
A2D(0) has value ’+0’
A2D(241) has value ’+241’
A2D(16448) has value ’+16448’
A2D(-3) has value ’-3’

A2X

Format: Function-invocation
Operands: Arithmetic

Output: A2X(aexpr) converts the value of its arithmetic argument to a string of eight hexadecimal
characters.

Examples
A2X(0) has value ’00000000’
A2X(10) has value ’0000000A’
A2X(257) has value ’00000101’
A2X(1022) has value ’000003FE’
A2X(-7) has value ’FFFFFFF9’

B2C

Format: Function-invocation
Operands: Character

Output: B2C(’bitstring’) converts the bit-string character argument to characters representing
the same bit pattern. Null arguments return a null string.

If needed, the argument string is padded internally on the left with zeros so that its length is a
multiple of eight.

The operand must contain only ones and zeros. Any other value causes the message ASMA214E to
be generated.

Examples

332 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

B2C(’11110011’) has value ’3’
B2C(’101110011110001’) has value ’*1’
B2C(’0’) has value ’n’ (EBCDIC null character)
B2C(’00010010001’) has value ’nj’
B2C(’000000000’) has value ’nn’ (two EBCDIC nulls)
B2C(’’) has value ’’ (null string)

B2D

Format: Function-invocation
Operands: Character

Output: B2D(’bitstring’) converts a bit-string argument of at most 32 ’0’ and ’1’ characters to
one to ten decimal characters preceded by a plus or minus sign, representing the value of the
argument. Null arguments return ’+0’.

Examples
B2D(’’) has value ’+0’
B2D(’00010010001’) has value ’+145’
B2D(’11110001’) has value ’+241’
B2D(’01111111111111111111111111111111’) has value ’+2147483647’
B2D(’11111111111111111111111111110001’) has value ’-15’

B2X

Format: Function-invocation
Operands: Character

Output: B2X(’bitstring’) converts the bit-string argument to hexadecimal characters
representing the same bit pattern. Null arguments return a null string.

If needed, the argument string is padded internally on the left with zeros so that its length is a
multiple of four.

The operand must contain only ones and zeros. Any other value causes the message ASMA214E to
be generated.

Examples
B2X(’’) has value ’’ (null string)
B2X(’00000’) has value ’00’
B2X(’0000010010001’) has value ’0091’
B2X(’11110001’) has value ’F1’
B2X(’1111110001’) has value ’3F1’

BYTE

Format: Logical-expression, function-invocation
Operands: Arithmetic

Output: BYTE(aexpr) or (BYTE aexpr) returns a one-character EBCDIC character expression in
which the binary value of the character is specified by the arithmetic argument. The argument
must have a value 0 - 255.

This function might be used to introduce characters which are not on the keyboard.

Examples
BYTE(0) has value ’n’ (EBCDIC null character)
BYTE(97) has value ’/’
BYTE(129) has value ’a’

C2B

Chapter 9. How to write conditional assembly instructions 333

Format: Function-invocation
Operands: Character

Output: C2B(’charstring’) converts the character argument to a string of ’0’ and ’1’ characters
representing the same bit pattern. Null arguments return a null string.

If the result is not too long, the length of the result is eight times the length of the ’charstring’
argument.

Examples
C2B(’’) has value ’’
C2B(’n’) has value ’00000000’
C2B(’ ’) has value ’01000000’
C2B(’1’) has value ’11110001’
C2B(’1234’) has value ’11110001111100101111001111110100’

C2D

Format: Function-invocation
Operands: Character

Output: C2D(’charstring’) converts a character-string argument of at most four characters to one
to ten decimal characters preceded by a plus or minus sign, representing the numeric value of the
argument. Null arguments return ’+0’.

Examples
C2D(’’) has value ’+0’
C2D(’nj’) has value ’+145’
C2D(’1’) has value ’+241’
C2D(’0000’) has value ’-252645136

C2X

Format: Function-invocation
Operands: Character

Output: C2X(’charstring’) converts the character-string argument to hexadecimal characters
representing the same bit pattern. Null arguments return a null string.

If the result is not too long, the length of the result is two times the length of the ’charstring’
argument.

Examples
C2X(’’) has value ’’
C2X(’n’) has value ’00’
C2X(’1’) has value ’F1’
C2X(’a’) has value ’81’
C2X(’1234567R’) has value ’F1F2F3F4F5F6F7D9’

D2B

Format: Function-invocation
Operands: Character

Output: D2B(’decstring’) converts an argument string of optionally signed decimal characters to
a string of 32 ’0’ and ’1’ characters representing a bit string with the same binary value. The
value of decstring must be representable as a 32 bit binary integer. A null argument string
returns a null string.

Examples

334 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

D2B(’’) has value ’’
D2B(’0’) has value ’00000000000000000000000000000000’
D2B(’+5’) has value ’00000000000000000000000000000101’
D2B(’1022’) has value ’00000000000000000000001111111110’
D2B(’-7’) has value ’11111111111111111111111111111001’

D2C

Format: Function-invocation
Operands: Character

Output: D2C(’decstring’) converts an argument string of optionally signed decimal characters to
a string of four characters whose byte values represent the same binary value. The value of
decstring must be representable as a 32 bit binary integer. The argument string must not be null.

Examples
D2C(’’) indicates an error
D2C(’0’) has value ’nnnn’ (4 EBCDIC null bytes)
D2C(’126’) has value ’nnn=’
D2C(’247’) has value ’nnn7’
D2C(’23793’) has value ’nn*1’
D2C(’-7’) has value ’fff9’ (f=byte of all 1 bits)

D2X

Format: Function-invocation
Operands: Character

Output: D2X(’decstring’) converts an argument string of optionally signed decimal characters to
a string of eight hexadecimal characters whose digits represent the same hexadecimal value. The
value of decstring must be representable as a 32 bit binary integer. The argument string must not
be null.

Examples
D2X(’’) indicates an error
D2X(’0’) has value ’00000000’
D2X(’+5’) has value ’00000005’
D2X(’255’) has value ’000000FF’
D2X(’01022’) has value ’000003FE’
D2X(’-7’) has value ’FFFFFFF9’
DSX(’2345678901’) causes an error condition (value too large)

DCVAL

Format: Function-invocation
Operands: Character

Output: DCVAL(’cexpr’) performs a single scan of the argument string to find successive pairs of
apostrophes and ampersands, and returns a string value in which each such pair has been
replaced by a single occurrence. This pairing action occurs only once; that is, three successive
occurrences of an apostrophe or ampersand result in two occurrences, not one. A null argument is
returned unchanged.

DCVAL is like DCLEN, except that DCLEN returns only the length of the result, not the paired
string.

Examples
DCVAL(’’) has value "" (null string)
DCVAL(’’’’) has value "’" (single apostrophe)
DCVAL(’&&’) has value "&" (single ampersand)
DCVAL(’a’’’’b’) has value "a’b"

Chapter 9. How to write conditional assembly instructions 335

DCVAL(’a’’’’b&&c’) has value "a’b&c"
.* Suppose &C has value "&&&&'’''" (4 ampersands, 4 apostrophes)
&X SETC DCVAL('&C') &X has value "&&''" (2 of each)

DEQUOTE

Format: Function-invocation
Operands: Character

Output: DEQUOTE(’cexpr’) removes a single occurrence of an apostrophe from each end of the
argument string, if any are present. A null argument is returned unchanged.

Examples
&C SETC DEQUOTE(’charstring’) &C has value "charstring"
&C SETC DEQUOTE(’’) &C is a null string
&C SETC DEQUOTE(’a’) &C has value "a"
&ARG SETC ’’’a’’’ &ARG has value "’a’"
&C SETC DEQUOTE(’&ARG’) &C has value "a"
&C SETC DEQUOTE(’a’’b’) &C has value "a’b"
&ARG SETC ’’’’’’ &ARG has value "’’"
&C SETC DEQUOTE(’&ARG’) &C has value "" (null string)

DOUBLE

Format: Logical-expression, function-invocation
Operands: Character

Output: DOUBLE(’cexpr’) or (DOUBLE ’cexpr’) converts each occurrence of an apostrophe or
ampersand character in the argument string to a pair of apostrophes and ampersands. In this
form, the string is suitable for substitution into statements such as DC and MNOTE. Null
arguments return a null string. An error condition is detected if the resulting string is too long.

Examples

Suppose the SETC variable &C contains the characters "&&’’&" (two apostrophes, three
ampersands):
DOUBLE(’&C’) has value "&&&&’’’’&&"

LOWER

Format: Logical-expression, function-invocation
Operands: Character

Output: LOWER(’cexpr’) or (LOWER ’cexpr’) converts the alphabetic characters A-Z in the
argument to lowercase, a-z. Null arguments return a null string.

Examples
LOWER(’aBcDefG’) has value ’abcdefg’

SIGNED

Format: Logical-expression, function-invocation
Operands: Arithmetic

Output: SIGNED(aexpr) or (SIGNED aexpr) converts its arithmetic argument to a decimal character
string representation of its value, with a leading minus sign if the argument is negative.

Examples
SIGNED(10) has value ’10’
SIGNED(-10) has value ’-10’

336 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

|
|

Note: The SIGNED function creates properly signed values for display, whereas assigning a SETA
value to a SETC variable produces only the magnitude of the SETA value. For example:
&A SETA 10 &A has value 10
&C SETC ’&A’ &C has value ’10’
&A SETA -10 &A has value -10
&C SETC ’&A’ &C has value ’10’ (unsigned)

SYSATTRA

Format: Function-invocation
Operands: Character

Output: SYSATTRA(’symbol’) returns the assembler-type value for the specified symbol.
v The 1 to 4 character assembler type is returned, with trailing spaces removed. For symbols

defined in DC and DS statements, the assembler type includes the type extensions, if any.
v Symbols without an assigned assembler type, undefined symbols, and null arguments return

null.

Examples

Given that symbol Sym1 has previously been assigned an assembler type of GR, and variable
symbol &SName has a value of SYM1, then:
SYSATTRA(’Sym1’) has value ’GR’
SYSATTRA(’&SName’) has value ’GR’

SYSATTRP

Format: Function-invocation
Operands: Character

Output: SYSATTRP(’symbol’) returns the program-type value for the specified symbol.
v The 4 byte program type is returned.
v Symbols without an assigned program type, undefined symbols, and null arguments return

null.

Examples

Given that symbol Sym1 has previously been assigned a program type of “Box7”, and variable
symbol &SName has a value of SYM1, then:
SYSATTRP(’Sym1’) has value ’Box7’
SYSATTRP(’&SName’) has value ’Box7’

UPPER

Format: Logical-expression, function-invocation
Operands: Character

Output: UPPER(’cexpr’) or (UPPER ’cexpr’) converts the alphabetic characters a-z in the
argument to uppercase, A-Z. Null arguments return a null string.

Examples
UPPER(’aBcDefG’) has value ’ABCDEFG’

X2B

Format: Function-invocation
Operands: Character

Chapter 9. How to write conditional assembly instructions 337

Output: X2B(’hexstring’) converts the value of its argument string of hexadecimal characters to
a character string containing only zero (’0’) and one (’1’) characters representing the same bit
pattern. Null arguments return a null string.

If the result is not too long, the length of the result is four times the length of the ’hexstring’
argument.

The operand must contain only hexadecimal digits. Any other value causes the message ASMA214E
to be generated.

Examples
X2B(’’) has value ’’ (null string)
X2B(’00’) has value ’00000000’
X2B(’1’) has value ’0001’
X2B(’F3’) has value ’11110011’
X2B(’00F3’) has value ’0000000011110011’

X2C

Format: Function-invocation
Operands: Character

Output: X2C(’hexstring’) converts the hexstring argument to characters representing the same
bit pattern. Null arguments return a null string.

If needed, the argument string is padded internally on the left with a zero character so that its
length is a multiple of two.

The operand must contain only hexadecimal digits. Any other value causes the message ASMA214E
to be generated.

Examples
X2C(’’) has value ’’ (null string)
X2C(’F3’) has value ’3’
X2C(’0’) has value ’n’ (EBCDIC null character)
X2C(’F1F2F3F4F5’) has value ’12345’
X2C(’000F1’) has value ’nn1’

X2D

Format: Function-invocation
Operands: Character

Output: X2D(’hexstring’) converts its argument string of at most eight hexadecimal characters to
one to ten decimal characters preceded by a plus or minus sign, representing the value of the
argument. Null arguments return ’+0’. For example:
X2D(’’) has value ’+0’
X2D(’91’) has value ’+145’
X2D(’000F1’) has value ’+241’
X2D(’7FFFFFFF’) has value ’+2147483647’
X2D(’FFFFFFF1’) has value ’-15’

Evaluation of character expressions: The value of a character expression is the character string within
the enclosing apostrophes, after the assembler carries out any substitution for variable symbols.

Character strings, including variable symbols, can be concatenated to each other within a character
expression. The resultant string is the value of the expression.

Notes:

1. Use two apostrophes to generate a single apostrophe as part of the value of a character expression.

338 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

The following statement assigns the character value L’SYMBOL to the SETC symbol &LENGTH.
&LENGTH SETC ’L’’SYMBOL’

2. A double ampersand generates a double ampersand as part of the value of a character expression. To
generate a single ampersand in a character expression, use the substring notation; for example:
& SETC ’&&’(1,1)

Note: A quoted single ampersand '&' is not a valid character string.
The following statement assigns the character value HALF&& to the SETC symbol &AND.
&AND SETC ’HALF&&’

This is the only instance when the assembler does not pair ampersands to produce a single
ampersand. However, if you substitute a SETC symbol with such a value into the nominal value in a
DC instruction operand, or the operand of an MNOTE instruction, when the assembler processes the
DC or MNOTE instruction, it pairs the ampersands and produces a single ampersand.

3. To generate a period, two periods must be specified after a variable symbol.
For example, if &ALPHA has been assigned the character value AB%4, the following statement can be
used to assign the character value AB%4.RST to the variable symbol &GAMMA.
&GAMMA SETC ’&ALPHA..RST’

4. To generate a period, the variable symbol must have a period as part of its value. For example:
&DOT SETC ’.’
&DELTA SETC ’A&DOT.&DOT’ &DELTA has value ’A..’

5. Double-byte data can appear in the character string if the assembler is invoked with the DBCS option.
The double-byte data must be bracketed by the SO and SI delimiters, and the double-byte data must
be valid.

6. The DBCS ampersand and apostrophe are not recognized as delimiters.
7. A double-byte character that contains the value of an EBCDIC ampersand or apostrophe in either byte

is not recognized as a delimiter when enclosed by SO and SI.
8. Duplication (replication) factors are permitted before character built-in functions.
9. Releases of HLASM prior to Version 1 Release 4 permitted predefined absolute symbols in character

expressions. To remove inconsistencies when handling character and arithmetic expressions such
usage is no longer permitted and results in message ASMA137S if attempted. The built-in function
BYTE can be used to convert a numeric value in a character expression as shown.

RPTDS EQU X’01’
&RPTC1 SETC ’SEND ’.(BYTE RPTDS)

Concatenation of character string values: Character expressions can be concatenated to each other or to
substring notations in any order. The resulting value is a character string composed of the concatenated
parts. This concatenated string can then be used in the operand field of a SETC instruction, or as a value
for comparison in a logical expression.

You need the concatenation character (a period) to separate the apostrophe that ends one character
expression from the apostrophe that begins the next.

For example, either of the following statements can be used to assign the character value ABCDEF to the
SETC symbol &BETA.
&BETA SETC ’ABCDEF’
&BETA SETC ’ABC’.’DEF’

Concatenation of strings containing double-byte data: If the assembler is invoked with the DBCS option, then
the following additional considerations apply:
v When a variable symbol adjoins double-byte data, the SO delimiting the double-byte data is not a valid

delimiter of the variable symbol. The variable symbol must be terminated by a period.

Chapter 9. How to write conditional assembly instructions 339

v The assembler checks for SI and SO at concatenation points. If the byte to the left of the join is SI and
the byte to the right of the join is SO, then the SI/SO pair is considered redundant and are removed.

v To create redundant SI/SO pairs at concatenation points, use the substring notation and SETC
expressions to create additional SI and SO characters. By controlling the order of concatenation, you
can leave a redundant SI/SO pair at a concatenation point.
Instead of substring notation, you can use the BYTE function to create additional SI and SO characters:
&SO SETC (BYTE 14)
&SI SETC (BYTE 15)

Examples:
&DBDA SETC ’<Da>’
&SO SETC BYTE(X’0E’)
&SI SETC BYTE(X’0F’)
&DBCS1A SETC ’&DBDA.<Db>’
&DBCS1E SETC ’&DBDA<Db>’
&DBCS2 SETC ’&DBDA’.’<Db>’
&DBCS2A SETC ’&DBDA’.’<Db>’.’&DBDA’
&DBCS3 SETC ’&DBDA’.’&SI’.’&SO’.’<Db>’
&DBCS3P SETC ’&DBDA’.’&SI’
&DBCS3Q SETC ’&SO’.’<Db>’
&DBCS3R SETC ’&DBCS3P’.’&DBCS3Q’

These examples use the BYTE function to create variables &SO and &SI, which have the values of SO and
SI. The variable &DBCS1A is assigned the value <DaDb> with the SI/SO pair at the join removed. The
assignment to variable &DBCS1E fails with error ASMA035E Invalid delimiter, because the symbol &DBDA is
terminated by SO and not by a period. The variable &DBCS2 is assigned the value <DaDb>. The variable
&DBCS2A is assigned the value <DaDbDa>. As with &DBCS1A, redundant SI/SO pairs are removed at the joins.
The variable &DBCS3 is assigned the value <DaDb>. Although SI and SO have been added at the join, the
concatenation operation removes two SI and two SO characters, since redundant SI/SO pairs are found at
the second and third concatenations. However, by using intermediate variables &DBCS3P and &DBCS3Q to
change the order of concatenation, the string <Da><Db> can be assigned to variable &DBCS3R. Substituting
the variable symbol &DBCS3R in the nominal value of a G-type constant results in removal of the SI/SO
pair at the join.

Using SETC symbols
The character value assigned to a SETC symbol is substituted for the SETC symbol when it is used in the
name, operation, or operand field of a statement.

For example, consider the following macro definition, macro instruction, and generated statements:
MACRO

&NAME MOVE &TO,&FROM
LCLC &PREFIX

&PREFIX SETC ’FIELD’ Statement 1
&NAME ST 2,SAVEAREA

L 2,&PREFIX&FROM Statement 2
ST 2,&PREFIX&TO Statement 3
L 2,SAVEAREA
MEND

HERE MOVE A,B

+HERE ST 2,SAVEAREA
+ L 2,FIELDB
+ ST 2,FIELDA
+ L 2,SAVEAREA

Statement 1 assigns the character value FIELD to the SETC symbol &PREFIX. In statements 2 and 3,
&PREFIX is replaced by FIELD.

340 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

The following example shows how the value assigned to a SETC symbol can be changed in a macro
definition.

MACRO
&NAME MOVE &TO,&FROM

LCLC &PREFIX
&PREFIX SETC ’FIELD’ Statement 1
&NAME ST 2,SAVEAREA

L 2,&PREFIX&FROM Statement 2
&PREFIX SETC ’AREA’ Statement 3

ST 2,&PREFIX&TO Statement 4
L 2,SAVEAREA
MEND

HERE MOVE A,B

+HERE ST 2,SAVEAREA
+ L 2,FIELDB
+ ST 2,AREAA
+ L 2,SAVEAREA

Statement 1 assigns the character value FIELD to the SETC symbol &PREFIX. Therefore, &PREFIX is replaced
by FIELD in statement 2. Statement 3 assigns the character value AREA to &PREFIX. Therefore, &PREFIX is
replaced by AREA, instead of FIELD, in statement 4.

The following example uses the substring notation in the operand field of a SETC instruction.
MACRO

&NAME MOVE &TO,&FROM
LCLC &PREFIX

&PREFIX SETC ’&TO’(1,5) Statement 1
&NAME ST 2,SAVEAREA

L 2,&PREFIX&FROM Statement 2
ST 2,&TO
L 2,SAVEAREA
MEND

HERE MOVE FIELDA,B

+HERE ST 2,SAVEAREA
+ L 2,FIELDB
+ ST 2,FIELDA
+ L 2,SAVEAREA

Statement 1 assigns the substring character value FIELD (the first five characters corresponding to
symbolic parameter &TO to the SETC symbol &PREFIX. Therefore, FIELD replaces &PREFIX in statement 2.

Notes:

1. If the COMPAT(SYSLIST) assembler option is not specified, you can pass a sublist into a macro
definition by assigning the sublist to a SETC symbol, and then specifying the SETC symbol as an
operand in a macro instruction. However, if the COMPAT(SYSLIST) assembler option is specified,
sublists assigned to SETC symbols are treated as a character string, not as a sublist.

2. Regardless of the setting of the COMPAT(SYSLIST) assembler option, you cannot pass separate (as
opposed to a sublist of) parameters into a macro definition, by specifying a string of values separated
by commas as the operand of a SETC instruction and then using the SETC symbol as an operand in
the macro instruction. If you attempt to do this, the operand of the SETC instruction is passed to the
macro instruction as one parameter, not as a list of parameters.

Concatenating substring notations and character expressions: Substring notations (see “Substring
notation” on page 328) can be concatenated with character expressions in the operand field of a SETC

Chapter 9. How to write conditional assembly instructions 341

instruction. If a substring notation follows a character expression, the two can be concatenated by placing
a period between the terminating apostrophe of the character expression and the opening apostrophe of
the substring notation.

For example, if &ALPHA has been assigned the character value AB%4, and &BETA has been assigned the
character value ABCDEF, the following statement assigns &GAMMA the character value AB%4BCD:
&GAMMA SETC ’&ALPHA’.’&BETA’(2,3)

If a substring notation precedes a character expression or another substring notation, the two can be
concatenated by writing the opening apostrophe of the second item immediately after the closing
parenthesis of the substring notation.

Optionally, you can place a period between the closing parenthesis of a substring notation and the
opening apostrophe of the next item in the operand field.

If &ALPHA has been assigned the character value AB%4, and &ABC has been assigned the character value 5RS,
either of the following statements can be used to assign &WORD the character value AB%45RS.
&WORD SETC ’&ALPHA’(1,4).’&ABC’
&WORD SETC ’&ALPHA’(1,4)’&ABC’(1,3)

If a SETC symbol is used in the operand field of a SETA instruction, the character value assigned to the
SETC symbol must be 1-to-10 decimal digits (not greater than 2147483647), or a valid self-defining term.

If a SETA symbol is used in the operand field of a SETC statement, the magnitude of the arithmetic value
is converted to an unsigned integer with leading zeros removed. If the value is 0, it is converted to a
single 0.

Extended SET statements
As well as assigning single values to SET symbols, you can assign values to multiple elements in an array
of a subscripted SET symbol with one single SETx instruction. Such an instruction is called an extended
SET statement.

�� variable_symbol(subscript) SETA
SETB
SETC

�

,

operand ��

variable_symbol(subscript)
Is a variable symbol and a subscript that shows the position in the SET symbol array to which the
first operand is to be assigned.

operand
Is the arithmetic value, binary value, or character value to be assigned to the corresponding SET
symbol array element.

The first operand is assigned to the SET symbol denoted by variable_symbol(subscript). Successive operands
are then assigned to successive positions in the SET symbol array. If an operand is omitted, the
corresponding element of the array is unchanged. Consider the following example:

LCLA &LIST(50)
&LIST(3) SETA 5,10,,20,25,30

342 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

The first instruction declares &LIST as a subscripted local SETA symbol. The second instruction assigns
values to certain elements of the array &LIST. Thus, the instruction does the same as the following
sequence:
&LIST(3) SETA 5
&LIST(4) SETA 10
&LIST(6) SETA 20
&LIST(7) SETA 25
&LIST(8) SETA 30

Alternative statement format
You can use the alternative statement format for extended SETx statements. This coding can be written
as:
&LIST(3) SETA 5, THIS IS X

10,, AN ARRAY X
20,25,30 SPECIFICATION

SETAF instruction
Use the SETAF instruction to call an external function to assign any number of arithmetic values to a
SETA symbol. You can assign many parameters—the exact number depending on factors such as the size
of the program and of virtual storage—to pass to the external function routine.

The SETAF instruction can be used anywhere that a SETA instruction can be used.

�� variable_symbol SETAF 'function─name'

� ,expression

��

variable symbol
Is a variable symbol.

A global variable symbol in the name field must have been previously declared as a SETA symbol in
a GBLA instruction. Local SETA symbols need not be declared in an LCLA instruction. The assembler
considers any undeclared variable symbol found in the name field of a SETA instruction as a local
SET symbol.

The variable symbol is assigned a type attribute value of N.

function_name
The name of an external function load module. The name must be specified as a character expression,
and must evaluate to a valid module name no longer than eight bytes.

See the chapter “Providing External Functions” in the HLASM Programmer's Guide for information
about external function load modules.

expression
Is an arithmetic expression evaluated as a signed 32 bit arithmetic value. The minimum and
maximum allowable values of the expression are -231 and +231-1.

See “SETA instruction” on page 308 for further information about setting SETA symbols, and ways to
specify arithmetic expressions.

The function name must be enclosed in single quotes. For example:
&MAX_VAL SETAF ’MAX’,7,4 Calls the external function X

MAX, passing values 7 and X
4 as operands.

Chapter 9. How to write conditional assembly instructions 343

SETCF instruction
Use the SETCF instruction to call an external function to assign a character value to a SETC symbol. You
can specify a many parameters—the exact number depending on factors such as the size of the program
and of virtual storage—to pass to the external function routine.

The SETCF instruction can be used anywhere that a SETC instruction can be used.

�� variable_symbol SETCF 'function─name'

� ,character_value

��

variable symbol
Is a variable symbol.

A global variable symbol in the name field must have been previously declared as a SETC symbol in
a GBLC instruction. Local SETC symbols need not be declared in an LCLC instruction. The assembler
considers any undeclared variable symbol found in the name field of a SETC instruction as a local
SET symbol. The variable symbol is assigned a type attribute value of U.

The character value assigned to the variable symbol can have a string length in the range 0 (for a null
character string) through 1024.

function_name
The name of an external function load module. The name must be specified as a character expression,
and must evaluate to a valid module name no longer than eight bytes.

See the chapter “Providing External Functions” in the HLASM Programmer's Guide for information
about external function load modules.

character_value
Is a character value specified by:
v A type attribute reference
v An operation code attribute reference
v A character expression
v A substring notation
v A concatenation of one or more of the above

The character value can have a string length in the range 0 (for a null character string) through 1024.

When a SETA or SETB symbol is specified in a character expression, the unsigned decimal value of the
symbol (with leading zeros removed) is the character value given to the symbol.

See “SETC instruction” on page 326 for further information about setting SETC symbols, and ways to
specify character expressions.

Branching
You can control the sequence in which source program statements are processed by the assembler by
using the conditional assembly branch instructions described in this section.

AIF instruction
Use the AIF instruction to branch according to the results of a condition test. You can thus alter the
sequence in which source program statements or macro definition statements are processed by the
assembler.

344 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

The AIF instruction also provides loop control for conditional assembly processing, which lets you control
the sequence of statements to be generated.

It also lets you check for error conditions and thus branch to the appropriate MNOTE instruction to issue
an error message.

��
sequence_symbol

AIF (logical_expression)sequence_symbol ��

sequence_symbol
Is a sequence symbol

logical_expression
Is a logical expression (see “Logical (SETB) expressions” on page 323) the assembler evaluates during
conditional assembly time to determine if it is true or false. If the expression is true (logical value=1),
the statement named by the sequence symbol in the operand field is the next statement processed by
the assembler. If the expression is false (logical value=0), the next sequential statement is processed
by the assembler.

In the following example, the assembler branches to the label .OUT if &C = YES:
AIF (’&C’ EQ ’YES’).OUT

.ERROR ANOP
.
.
.

.OUT ANOP

The sequence symbol in the operand field is a conditional assembly label that represents a statement
number during conditional assembly processing. It is the number of the statement that is branched to if
the logical expression preceding the sequence symbol is true.

The statement identified by the sequence symbol referred to in the AIF instruction can appear before or
after the AIF instruction. However, the statement must appear within the local scope of the sequence
symbol. Thus, the statement identified by the sequence symbol must appear:
v In open code, if the corresponding AIF instruction appears in open code
v In the same macro definition in which the corresponding AIF instruction appears.

You cannot branch from open code into a macro definition or between macro definitions, regardless of
nested calls to other macro definitions.

The following macro definition generates the statements needed to move a fullword fixed-point number
from one storage area to another. The statements are generated only if the type attribute of both storage
areas is the letter F.

MACRO
&N MOVE &T,&F

AIF (T’&T NE T’&F).END Statement 1
AIF (T’&T NE ’F’).END Statement 2

&N ST 2,SAVEAREA Statement 3
L 2,&F
ST 2,&T
L 2,SAVEAREA

.END MEND Statement 4

Chapter 9. How to write conditional assembly instructions 345

The logical expression in the operand field of Statement 1 has the value true if the type attributes of the
two macro instruction operands are not equal. If the type attributes are equal, the expression has the
logical value false.

Therefore, if the type attributes are not equal, Statement 4 (the statement named by the sequence symbol
.END) is the next statement processed by the assembler. If the type attributes are equal, Statement 2 (the
next sequential statement) is processed.

The logical expression in the operand field of Statement 2 has the value true if the type attribute of the
first macro instruction operand is not the letter F. If the type attribute is the letter F, the expression has
the logical value false.

Therefore, if the type attribute is not the letter F, Statement 4 (the statement named by the sequence
symbol .END) is the next statement processed by the assembler. If the type attribute is the letter F,
Statement 3 (the next sequential statement) is processed.

Extended AIF instruction
The extended AIF instruction combines several successive AIF statements into one statement.

��
sequence_symbol

AIF �

,

(logical_expression)sequence_symbol ��

sequence_symbol
Is a sequence symbol

logical_expression
Is a logical expression the assembler evaluates during conditional assembly time to determine if it is
true or false. If the expression is true (logical value=1), the statement named by the sequence symbol
in the operand field is the next statement processed by the assembler. If the expression is false
(logical value=0), the next logical expression is evaluated.

The extended AIF instruction is exactly equivalent to n successive AIF statements. The branch is taken to
the first sequence symbol (scanning left to right) whose corresponding logical expression is true. If none
of the logical expressions is true, no branch is taken.

Example:
Cont.

AIF (’&L’(&C,1) EQ ’$’).DOLR, X
(’&L’(&C,1) EQ ’#’).POUND, X
(’&L’(&C,1) EQ ’@’).AT, X
(’&L’(&C,1) EQ ’=’).EQUAL, X
(’&L’(&C,1) EQ ’(’).LEFTPAR, X
(’&L’(&C,1) EQ ’+’).PLUS, X
(’&L’(&C,1) EQ ’-’).MINUS

This statement looks for the occurrence of a $, #, @, =, (, +, and -, in that order; and causes control to
branch to .DOLR, .POUND, .AT, .EQUAL, .LEFTPAR, .PLUS, and .MINUS, if the string being examined contains
any of these characters at the position designated by &C.

Alternative format for AIF instruction
The alternative statement format is allowed for extended AIF instructions. This format is illustrated in the
above example.

346 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

AIFB—synonym of the AIF instruction
For compatibility with some earlier assemblers, High Level Assembler supports the AIFB symbolic
operation code as a synonym of the AIF instruction. However, do not use the AIFB instruction in new
applications as support for it might be removed in the future.

AGO instruction
The AGO instruction branches unconditionally. You can thus alter the sequence in which your assembler
language statements are processed. This provides you with final exits from conditional assembly loops.

��
sequence_symbol

AGO sequence_symbol ��

sequence_symbol
Is a sequence symbol.

The statement named by the sequence symbol in the operand field is the next statement processed by the
assembler.

The statement identified by a sequence symbol referred to in the AGO instruction can appear before or
after the AGO instruction. However, the statement must appear within the local scope of the sequence
symbol. Thus, the statement identified by the sequence symbol must appear:
v In open code, if the corresponding AGO instruction appears in open code
v In the same macro definition in which the corresponding AGO instruction appears.

Example:
MACRO

&NAME MOVE &T,&F
AIF (T’&T EQ ’F’).FIRST Statement 1
AGO .END Statement 2

.FIRST AIF (T’&T NE T’&F).END Statement 3
&NAME ST 2,SAVEAREA

L 2,&F
ST 2,&T
L 2,SAVEAREA

.END MEND Statement 4

Statement 1 determines if the type attribute of the first macro instruction operand is the letter F. If the
type attribute is the letter F, Statement 3 is the next statement processed by the assembler. If the type
attribute is not the letter F, Statement 2 is the next statement processed by the assembler.

Statement 2 indicates to the assembler that the next statement to be processed is Statement 4 (the
statement named by sequence symbol .END).

Computed AGO instruction
The computed AGO instruction makes branches according to the value of an arithmetic expression
specified in the operand.

Chapter 9. How to write conditional assembly instructions 347

��
sequence_symbol

AGO �

,

(arithmetic_expression) sequence_symbol ��

sequence_symbol
Is a sequence symbol.

arithmetic_expression
Is an arithmetic expression the assembler evaluates to k, where k is 1 - n (the number of occurrences
of sequence_symbol in the operand field). The assembler branches to the k-th sequence symbol in the
list. If k is outside that range, no branch is taken.

In the following example, control passes to the statement at .THIRD if &I= 3. Control passes through to the
statement following the AGO if &I is less than 1 or greater than 4.

Cont.
AGO (&I).FIRST,.SECOND, X

.THIRD,.FOURTH

Alternative format for AGO instruction
The alternative statement format is allowed for computed AGO instructions. The example can be coded:

Cont.
AGO (&I).FIRST, X

.SECOND, X

.THIRD, X

.FOURTH

AGOB - synonym of the AGO instruction
For compatibility with some earlier assemblers, High Level Assembler supports the AGOB symbolic
operation code as a synonym of the AGO instruction. However, do not use the AGOB instruction in new
applications as support for it might be removed in the future.

ACTR instruction
The ACTR instruction sets a conditional assembly branch counter either within a macro definition or in
open code. The ACTR instruction can appear anywhere in open code or within a macro definition.

Each time the assembler processes a successful AIF or AGO branching instruction in a macro definition or
in open code, the branch counter for that part of the program is decremented by one. When the number
of conditional assembly branches reaches the value assigned to the branch counter by the ACTR
instruction, the assembler exits from the macro definition or stops processing statements in open code.

By using the ACTR instruction, you avoid excessive looping during conditional assembly processing.

��
sequence_symbol

ACTR arithmetic_expression ��

sequence_symbol
Is a sequence symbol.

arithmetic_expression
Is an arithmetic expression used to set or reset a conditional assembly branch counter.

348 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

A conditional assembly branch counter has a local scope; its value is decremented by AGO and successful
AIF instructions, and reassigned only by ACTR instructions that appear within the same scope. Thus, the
nesting of macros has no effect on the setting of branch counters in other scopes. The assembler assigns a
branch counter for open code and for each macro definition. In the absence of an ACTR instruction, a
default value of 4096 is assigned.

Branch counter operations
Within the scope of a branch counter, the following occurs:
1. Each time an AGO or AIF branch is executed, the assembler checks the branch counter for zero or a

negative value.
2. If the count is not zero or negative, it is decremented by one.
3. If the count is zero or negative, the assembler takes one of two actions:

a. If it is processing instructions in open code, the assembler processes the remainder of the
instructions in the source module as comments. Errors discovered in these instructions during
previous passes are flagged.

b. If it is processing instructions inside a macro definition, the assembler terminates the expansion of
that macro definition and processes the next sequential instruction after the calling macro
instruction. If the macro definition is called by an outer macro instruction, the assembler processes
the next sequential prototype instruction after the call; that is, it continues processing at the next
outer level of nested macros.

The assembler halves the ACTR counter value when it encounters serious syntax errors in conditional
assembly instructions.

ANOP instruction
You can specify a sequence symbol in the name field of an ANOP instruction, and use the symbol as a
label for branching purposes.

The ANOP instruction carries out no operation itself, but you can use it to allow conditional assembly to
resume assembly or conditional generation at an instruction that does not have a sequence symbol in its
name field. For example, if you wanted to branch to a SETA, SETB, or SETC assignment instruction,
which requires a variable symbol in the name field, you can insert a labeled ANOP instruction
immediately before the assignment instruction. By branching to the ANOP instruction with an AIF or
AGO instruction, you are, in effect, branching to the assignment instruction.

�� sequence_symbol ANOP ��

sequence_symbol
Is a sequence symbol.

No operation is carried out by an ANOP instruction. Instead, if a branch is taken to the ANOP
instruction, the assembler processes the next sequential instruction.

Example:
MACRO

&NAME MOVE &T,&F
LCLC &TYPE
AIF (T’&T EQ ’F’).FTYPE Statement 1

&TYPE SETC ’E’ Statement 2
.FTYPE ANOP Statement 3
&NAME ST&TYPE 2,SAVEAREA Statement 4

Chapter 9. How to write conditional assembly instructions 349

L&TYPE 2,&F
ST&TYPE 2,&T
L&TYPE 2,SAVEAREA
MEND

Statement 1 determines if the type attribute of the first macro instruction operand is the letter F. If the
type attribute is not the letter F, Statement 2 is the next statement processed by the assembler. If the type
attribute is the letter F, Statement 4 should be processed next. However, because there is a variable
symbol (&NAME) in the name field of Statement 4, the required sequence symbol (.FTYPE) cannot be placed
in the name field. Therefore, an ANOP instruction (Statement 3) must be placed before Statement 4.

Then, if the type attribute of the first operand is the letter F, the next statement processed by the
assembler is the statement named by sequence symbol .FTYPE. The value of &TYPE retains its initial null
character value because the SETC instruction is not processed. Because .FTYPE names an ANOP
instruction, the next statement processed by the assembler is Statement 4, the statement following the
ANOP instruction.

350 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Chapter 10. MHELP instruction

The MHELP instruction controls a set of trace and dump facilities. MHELP statements can occur
anywhere in open code or in macro definitions. MHELP options remain in effect until superseded by
another MHELP statement.

MHELP options
Options are selected by an absolute expression in the MHELP operand field.

��
sequence_symbol

MHELP options ��

sequence_symbol
Is a sequence symbol.

options
Is the sum of the binary or decimal options. Here is a description of these options:

MHELP B'1' or MHELP 1, Macro Call Trace:
This option provides a one-line trace listing for each macro call, giving the name of the called
macro, its nested depth, and its &SYSNDX value. The trace is provided only upon entry into the
macro. No trace is provided if error conditions prevent entry into the macro.

MHELP B'10' or MHELP 2, Macro Branch Trace:
This option provides a one-line trace-listing for each AGO and AIF conditional assembly branch
within a macro. It gives the model statement numbers of the “branched from” and the “branched
to” statements, and the name of the macro in which the branch occurs. This trace option is
suppressed for library macros.

MHELP B'100' or MHELP 4, Macro AIF Dump:
This option dumps undimensioned SET symbol values from the macro dictionary immediately
before each AIF statement that is encountered.

MHELP B'1000' or MHELP 8, Macro Exit Dump:
This option dumps undimensioned SET symbols from the macro dictionary whenever an MEND
or MEXIT statement is encountered.

MHELP B'10000' or MHELP 16, Macro Entry Dump:
This option dumps parameter values from the macro dictionary immediately after a macro call is
processed.

MHELP B'100000' or MHELP 32, Global Suppression:
This option suppresses global SET symbols in two preceding options, MHELP 4 and MHELP 8.

MHELP B'1000000' or MHELP 64, Macro Hex Dump:
This option, when used with the Macro AIF dump, the Macro Exit dump, or the Macro Entry
dump, dumps the parameter and SETC symbol values in EBCDIC and hexadecimal formats. Only
positional and keyword parameters are dumped in hexadecimal; system parameters are dumped
in EBCDIC. The full value of SETC variables or parameters is dumped in hexadecimal.

MHELP B'10000000' or MHELP 128, MHELP Suppression:
This option suppresses all currently active MHELP options.

© Copyright IBM Corp. 1992, 2013 351

MHELP Control on &SYSNDX:
The maximum value of the &SYSNDX system variable can be controlled by the MHELP
instruction. The limit is set by specifying a number in the operand of the MHELP instruction that
is not one of the MHELP codes defined above, and is in the following number ranges:
v 256 to 65535
v Most numbers in the range 65792 to 9999999. Refer to “MHELP operand mapping” for details.

When the &SYSNDX limit is reached, message ASMA013S ACTR counter exceeded is issued, and
the assembler in effect ignores all further macro calls.

MHELP operand mapping
The MHELP operand field is mapped into a fullword. The predefined MHELP codes correspond to the
fourth byte of this fullword, while the &SYSNDX limit is controlled by setting any bit in the third byte to
1. If all bits in the third byte are 0, then the &SYSNDX limit is not set.

The bit settings for bytes 3 and 4 are shown in Table 62.

Table 62. &SYSNDX Control Bits

Byte Description

Byte 3 - &SYSNDX control 1...
Bit 0 = 1. Value=32768. Limit &SYSNDX to
32768.

.1..
Bit 1 = 1. Value=16384. Limit &SYSNDX to
16384.

..1.
Bit 2 = 1. Value=8192. Limit &SYSNDX to 8192.

...1
Bit 3 = 1. Value=4096. Limit &SYSNDX to 4096.

.... 1...
Bit 4 = 1. Value=2048. Limit &SYSNDX to 2048.

.... .1..
Bit 5 = 1. Value=1024. Limit &SYSNDX to 1024.

.... ..1.
Bit 6 = 1. Value=512. Limit &SYSNDX to 512.

.... ...1
Bit 7 = 1. Value=256. Limit &SYSNDX to 256.

Byte 4 1...
Bit 0 = 1. Value=128. MHELP Suppression.

.1..
Bit 1 = 1. Value=64. Macro Hex Dump.

..1.
Bit 2 = 1. Value=32. Global Suppression.

...1
Bit 3 = 1. Value=16. Macro Entry Dump.

.... 1...
Bit 4 = 1. Value=8. Macro Exit Dump.

.... .1..
Bit 5 = 1. Value=4. Macro AIF Dump.

.... ..1.
Bit 6 = 1. Value=2. Macro Branch Trace.

.... ...1
Bit 7 = 1. Value=1. Macro Call Trace.

352 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Note: You can use any combination of bit settings in any byte of the MHELP fullword to set the limit,
provided at least one bit in byte 3 is set. This explains why not all values 65792 - 9999999 can be used to
set the limit. For example, the number 131123 does not set the &SYSNDX limit because none of the bits in
byte 3 are set to 1.

Examples:
MHELP 256 Limit &SYSNDX to 256
MHELP 1 Trace macro calls
MHELP 65536 No effect. No bits in bytes 3,4
MHELP 65792 Limit &SYSNDX to 65792

See Figure 51 for more examples.

Combining options
More than one MHELP option, including the limit for &SYSNDX, can be specified at the same time by
combining the option codes in one MHELP operand. For example, call and branch traces can be invoked
by:
MHELP B’11’
MHELP 2+1
MHELP 3

Substitution by variable symbols can also be used.

┌────────────────────────┬───────────────────────────────────┬───────────────────────────────────┐
│ MHELP Instruction │ MHELP Operand │ MHELP Effect │
├────────────────────────┼──────────┬────────────────────────┤ │
│ │ Decimal │ Hexadecimal │ │
│ │ ├──────┬─────────┬───────┤ │
│ │ │ │ &SYSNDX │ MHELP │ │
├────────────────────────┼──────────┼──────┼─────────┼───────┼───────────────────────────────────┤
│ MHELP 4869 │ 4869 │ 0000 │ 13 │ 05 │ Macro call trace and AIF dump; │
│ │ │ │ │ │ &SYSNDX limited to 4869 │
├────────────────────────┼──────────┼──────┼─────────┼───────┼───────────────────────────────────┤
│ MHELP 65536 │ 65536 │ 0001 │ 00 │ 00 │ No effect │
├────────────────────────┼──────────┼──────┼─────────┼───────┼───────────────────────────────────┤
│ MHELP 16777232 │ 16777232 │ 0010 │ 00 │ 10 │ Macro entry dump │
├────────────────────────┼──────────┼──────┼─────────┼───────┼───────────────────────────────────┤
│ MHELP 28678 │ 28678 │ 0000 │ 70 │ 06 │ Macro branch trace and AIF dump; │
│ │ │ │ │ │ &SYSNDX limited to 28678 │
├────────────────────────┼──────────┼──────┼─────────┼───────┼───────────────────────────────────┤
│ MHELP 256+1 │ 257 │ 0000 │ 01 │ 01 │ Macro call trace; │
│ │ │ │ │ │ &SYSNDX limited to 257 │
├────────────────────────┼──────────┼──────┼─────────┼───────┼───────────────────────────────────┤
│ MHELP B’11’ │ 3 │ 0000 │ 00 │ 03 │ Macro call trace, and │
│ │ │ │ │ │ macro branch trace │
└────────────────────────┴──────────┴──────┴─────────┴───────┴───────────────────────────────────┘

Figure 51. MHELP control on &SYSNDX

Chapter 10. MHELP instruction 353

354 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Appendix A. Assembler instructions

Table 63 summarizes the basic formats of assembler instructions, and Table 64 on page 357 summarizes
assembler statements.

Table 63. Assembler instructions

Operation Entry Name Entry Operand Entry

ACONTROL⁵ A sequence symbol or space One or more operands, separated by commas

ACTR A sequence symbol or space An arithmetic SETA expression

ADATA⁵ A sequence symbol or space One-to-four decimal, self-defining terms, and one
character string, separated by commas.

AEJECT² A sequence symbol or space Taken as a remark

AGO A sequence symbol or space A sequence symbol

AIF A sequence symbol or space A logical expression enclosed in parentheses,
immediately followed by a sequence symbol

AINSERT⁵ A sequence symbol or space A character string, followed by FRONT or BACK

AMODE Any symbol or space 24, 31, 64, ANY, or ANY31

ALIAS⁵ A symbol A character string or a hexadecimal string

ANOP A sequence symbol or space Taken as a remark

AREAD² Any SETC symbol NOPRINT, NOSTMT, CLOCKB, CLOCKD, or
spaces

ASPACE A sequence symbol or space An absolute expression

CATTR (z/OS and
CMS)

A valid program object external class name One or more attributes

CCW⁴ Any symbol or space Four operands, separated by commas

CCW0⁴ Any symbol or space Four operands, separated by commas

CCW1⁴ Any symbol or space Four operands, separated by commas

CEJECT⁵ A sequence symbol or space An absolute expression or space

CNOP⁴ Any symbol or space Two absolute expressions, separated by a comma

COM Any symbol or space Taken as a remark

COPY⁵ A sequence symbol or space An ordinary symbol, or, for open code statements, a
variable symbol

CSECT Any symbol or space Taken as a remark

CXD⁴ Any symbol or space Taken as a remark

DC⁴ Any symbol or space One or more operands, separated by commas

DROP A sequence symbol or space One or more absolute expressions and symbols,
separated by commas, or space

DS⁴ Any symbol or space One or more operands, separated by commas

DSECT A symbol or space Taken as a remark

DXD5 A symbol One or more operands, separated by commas

EJECT⁵ A sequence symbol or space Taken as a remark

END A sequence symbol or space A relocatable expression or space

© Copyright IBM Corp. 1992, 2013 355

Table 63. Assembler instructions (continued)

Operation Entry Name Entry Operand Entry

ENTRY⁵ A sequence symbol or space One or more relocatable symbols, separated by
commas

EQU⁴ A variable symbol or an ordinary symbol One to five operands, separated by commas

EXITCTL⁵ A sequence symbol or space A character-string operand followed by one to four
decimal self-defining terms, separated by commas

EXTRN⁵ A sequence symbol or space One or more relocatable symbols, separated by
commas

GBLA A sequence symbol or space One or more variable symbols that are to be used
as SET symbols, separated by commas¹

GBLB A sequence symbol or space One or more variable symbols that are to be used
as SET symbols, separated by commas¹

GBLC A sequence symbol or space One or more variable symbols that are to be used
as SET symbols, separated by commas¹

ICTL Space One to three decimal self-defining terms, separated
by commas

ISEQ⁵ A sequence symbol or space Two decimal self-defining terms, separated by a
comma, or space

LCLA A sequence symbol or space One or more variable symbols that are to be used
as SET symbols, separated by commas¹

LCLB A sequence symbol or space One or more variable symbols that are to be used
as SET symbols, separated by commas¹

LCLC A sequence symbol or space One or more variable symbols separated by
commas¹

LOCTR A variable or ordinary symbol Space

LTORG Any symbol or space Taken as a remark

MACRO2,5 Space Taken as a remark

MEND2,5 A sequence symbol or space Taken as a remark

MEXIT2,5 A sequence symbol or space Taken as a remark

MHELP A sequence symbol or space Absolute expression, binary, or decimal options

MNOTE A sequence symbol or space A severity code, followed by a comma, followed by
a character string enclosed in apostrophes.
Double-byte characters are permitted if the DBCS
assembler option is specified.

OPSYN
An ordinary symbol

An operation code mnemonic

A machine instruction mnemonic
or an operation code defined by
a previous macro definition or
OPSYN instruction

Space

ORG A sequence symbol or space A relocatable expression or space

POP⁵ A sequence symbol or space One or more operands, separated by commas

PRINT⁵ A sequence symbol or space One or more operands, separated by commas

PUNCH⁵ A sequence symbol or space A 1-to-80-character string enclosed in apostrophes.
Double-byte characters are permitted if the DBCS
assembler option is specified.

PUSH⁵ A sequence symbol or space One or more operands, separated by commas

356 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Table 63. Assembler instructions (continued)

Operation Entry Name Entry Operand Entry

REPRO⁵ A sequence symbol or space Taken as a remark

RMODE Any symbol or space 24, 31, 64, or ANY

RSECT Any symbol or space Taken as a remark

SETA A SETA symbol An arithmetic expression

SETAF A SETA symbol An external function module, and the arithmetic
expressions it requires, separated by commas

SETB A SETB symbol A 0 or a 1, or a logical expression enclosed in
parentheses

SETC A SETC symbol A type attribute, a character expression, a substring
notation, or a concatenation of character expressions
and substring notations. Double-byte characters are
permitted if the DBCS assembler option is specified.

SETCF A SETC symbol An external function module, and the character
expressions it requires, separated by commas

SPACE⁵ A sequence symbol or space An absolute expression

START Any symbol or space An absolute expression or space

TITLE3,5 A 1-to-8-character string, a variable
symbol, a combination of character string
or variable symbol, a sequence symbol, or
space

A 1-to-100-character string enclosed in apostrophes.
Double-byte characters are permitted if the DBCS
assembler option is specified.

USING A symbol or space Either a single absolute or relocatable expression or
a pair of absolute or relocatable expressions
enclosed in parentheses and followed by 1 to 16
absolute expressions, separated by commas, or
followed by a relocatable expression

WXTRN⁵ A sequence symbol or space One or more relocatable symbols, separated by
commas

XATTR⁵ (z/OS
and CMS)

An external symbol One or more operands, separated by commas

Notes:
1. SET symbols can be defined as subscripted SET symbols.
2. Can only be used as part of a macro definition.
3. See “TITLE instruction” on page 190 for a description of the name entry.
4. These instructions start a private section.
5. These instructions can be specified before the first executable control section.

Table 64. Assembler statements

Instruction Entry Name Entry Operand Entry

ModelStatements1 and 2 An ordinary symbol, variable symbol,
sequence symbol, or a combination of
variable symbols and other characters
that is equivalent to a symbol, or space

Any combination of characters
(including variable symbols)

Prototype Statement³ A symbolic parameter or space Zero or more operands that are
symbolic parameters (separated by
commas), and zero or more operands
(separated by commas) of the form
symbolic parameter, equal sign,
optional standard value

Appendix A. Assembler instructions 357

Table 64. Assembler statements (continued)

Instruction Entry Name Entry Operand Entry

Macro Instruction Statement³ An ordinary symbol, a variable symbol,
or a combination of variable symbols
and other characters that is equivalent
to a symbol, any character string, a
sequence symbol⁴ or space

Zero or more positional operands
(separated by commas), and zero or
more keyword operands (separated by
commas) of the form keyword, equal
sign, value⁵

Assembler Language Statement12 An ordinary symbol, a variable symbol,
a sequence symbol, or a combination of
variable symbols and other characters
that is equivalent to a symbol, or space

Any combination of characters
(including variable symbols)

Notes:

1. Variable symbols can be used to generate assembler language mnemonic operation codes (listed in Chapter 5,
“Assembler instruction statements,” on page 83), except COPY, ICTL, ISEQ, and REPRO. Variable symbols cannot
be used in the name and operand entries of COPY, ICTL, and ISEQ instructions, except for the COPY instruction
in open code, where a variable symbol is allowed for the operand entry.

2. No substitution is done for variables in the line following a REPRO statement.

3. Can only be used as part of a macro definition.

4. When the name field of a macro instruction contains a sequence symbol, the sequence symbol is not passed as a
name field parameter. It only has meaning as a possible branch target for conditional assembly.

5. Variable symbols appearing in a macro instruction are replaced by their values before the macro instruction is
processed.

358 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Appendix B. Summary of constants

Table 65 and Table 66 on page 360 summarize the types of assembler constants.

Table 65. Summary of constants (part 1 of 2)

Constant Type

Implicit
Length
(Bytes) Alignment

Length
Modifier
Range Specified By

Address A 4 Fullword .1 to 4¹ Any expression

Doubleword Address AD 8 Doubleword .1 to 8¹ Any expression

Binary B As needed Byte .1 to 256 Binary digits

Character C As needed Byte .1 to 256² Characters

ASCII Character CA As needed Byte .1 to 256² Characters

Unicode Character CU As needed Byte 2 to 256³ Characters

Floating Point Hex D 8 Doubleword .1 to 8 Decimal digits

Floating Point Hex DH 8 Doubleword .12 to 8 Decimal digits

Floating Point Binary DB 8 Doubleword .12 to 8 Decimal digits

Floating Point Decimal DD 8 Doubleword 8 Decimal digits

Floating Point Hex E 4 Fullword .1 to 8 Decimal digits

Floating Point Hex EH 4 Fullword .12 to 8 Decimal digits

Floating Point Binary EB 4 Fullword .9 to 8 Decimal digits

Floating Point Decimal ED 4 Fullword 4 Decimal digits

Fixed Point F 4 Fullword .1 to 8 Decimal digits

Doubleword Fixed
Point

FD 8 Doubleword .1 to 8 Decimal digits

Graphic (DBCS) G As needed Byte 2 to 256³ DBCS characters

Fixed Point H 2 Halfword .1 to 8 Decimal digits

Length J 4 Fullword 1 to 4 Class name or external DSECT name⁴

Floating Point Hex L 16 Doubleword .1 to 16 Decimal digits

Floating Point Hex LH 16 Doubleword .12 to 16 Decimal digits

Floating Point Binary LB 16 Doubleword .16 to 16 Decimal digits

Floating Point Decimal LD 16 Doubleword 16 Decimal digits

Floating Point Hex LQ 16 Quadword .1 to 16 Decimal digits

Decimal P As needed Byte .1 to 16 Decimal digits

Offset
Q
QY⁴

4
3

Fullword
Halfword

1 to 4
3 only

Symbol naming a DXD, DSECT, or
part

Address R⁴ 4 Fullword 3, 4 Symbol

Address
S
SY

2
3

Halfword
Halfword

2 only
3 only

One absolute or relocatable expression,
or two absolute expressions: exp(exp)

Address V 4 Fullword 3, 4 Relocatable symbol

Hexadecimal X As needed Byte .1 to 256² Hex digits

© Copyright IBM Corp. 1992, 2013 359

Table 65. Summary of constants (part 1 of 2) (continued)

Constant Type

Implicit
Length
(Bytes) Alignment

Length
Modifier
Range Specified By

Address Y 2 Halfword .1 to 2¹ Any expression

Decimal Z As needed Byte .1 to 16 Decimal digits

Notes:

1. Bit length specification permitted with absolute expressions only; relocatable A-type constants, 2, 3, or 4 bytes
only; relocatable Y-type constants, 2 bytes only.

2. In a DS assembler instruction, C-and-X type constants can have length specification to 65535.

3. The length modifier must be a multiple of 2, and can be up to 65534 in a DS assembler instruction.

4. GOFF only.

Table 66. Summary of constants (part 2 of 2)

Constant Type

No. of
Constants
per Operand

Range for
Exponents

Range for
Scale Truncation or Padding Side

Address A Multiple Left

Binary B Multiple Left

Character C One Right

ASCII Character CA One Right

Unicode Character CU One Right

Floating Point Hex D Multiple -85 to +75 0 to 13 Right¹

Floating Point Hex DH Multiple -231 to 231-1 0 to 13 Right¹

Floating Point Binary DB Multiple -231 to 231-1 N/A Right¹

Floating Point Decimal DD Multiple -231 to 231-1 N/A

Floating Point Hex E Multiple -85 to +75 0 to 5 Right¹

Floating Point Hex EH Multiple -231 to 231-1 0 to 5 Right¹

Floating Point Binary EB Multiple -231 to 231-1 N/A Right¹

Floating Point Decimal ED Multiple -231 to 231-1 N/A

Fixed Point F Multiple -85 to +75 -187 to +346 Left¹

Graphic (DBCS) G One Right

Fixed Point H Multiple -85 to +15 -187 to +346 Left¹

Length J Multiple Left¹

Floating Point Hex L Multiple -85 to +75 0 to 27 Right¹

Floating Point Hex LH Multiple -231 to 231-1 0 to 27 Right¹

Floating Point Binary LB Multiple -231 to 231-1 N/A Right¹

Floating Point Decimal LD Multiple -231 to 231-1 N/A

Floating Point Hex LQ Multiple -231 to 231-1 0 to 28 Right¹

Decimal P Multiple Left

Offset Q Multiple Left

Address R Multiple Left

Address S Multiple

Address V Multiple Left

360 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Table 66. Summary of constants (part 2 of 2) (continued)

Constant Type

No. of
Constants
per Operand

Range for
Exponents

Range for
Scale Truncation or Padding Side

Hexadecimal X Multiple Left

Address Y Multiple Left

Decimal Z Multiple Left

Notes:

1. Errors are flagged if significant bits are truncated or if the value specified cannot be contained in the implicit
length of the constant.

Appendix B. Summary of constants 361

362 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Appendix C. Macro and conditional assembly language
summary

This appendix summarizes the macro and conditional assembly language described in Part 3 of this
publication. Table 67 on page 364 indicates which macro and conditional assembly language elements can
be used in the name and operand entries of each statement. Table 69 on page 368 summarizes the
expressions that can be used in macro instruction statements. Table 71 on page 368 summarizes the
attributes that can be used in each expression. Table 72 on page 369 summarizes the variable symbols that
can be used in each expression. Table 73 on page 370 summarizes the system variable symbols that can be
used in each expression.

© Copyright IBM Corp. 1992, 2013 363

Ta
bl

e
67

.
M

ac
ro

la
ng

ua
ge

el
em

en
ts

(p
ar

t
1)

S
ta

te
m

en
t

V
ar

ia
b

le
S

ym
b

ol
s

S
eq

u
en

ce
S

ym
b

ol
S

ym
b

ol
ic

P
ar

am
et

er

G
lo

b
al

-s
co

p
e

S
E

T
S

ym
b

ol
s²

L
oc

al
S

E
T

S
ym

b
ol

s²

S
E

TA
S

E
T

B
S

E
T

C
S

E
TA

S
E

T
B

S
E

T
C

M
A

C
R

O

Pr
ot

ot
yp

e
St

at
em

en
t

N
am

e
O

pe
ra

nd

G
B

L
A

O
pe

ra
nd

¹¹
O

pe
ra

nd
O

pe
ra

nd
¹¹

O
pe

ra
nd

¹¹
O

pe
ra

nd
¹¹

O
pe

ra
nd

¹¹
O

pe
ra

nd
¹¹

N
am

e

G
B

L
B

O
pe

ra
nd

¹¹
O

pe
ra

nd
¹¹

O
pe

ra
nd

O
pe

ra
nd

¹¹
O

pe
ra

nd
¹¹

O
pe

ra
nd

¹¹
O

pe
ra

nd
¹¹

N
am

e

G
B

L
C

O
pe

ra
nd

¹¹
O

pe
ra

nd
¹¹

O
pe

ra
nd

¹¹
O

pe
ra

nd
O

pe
ra

nd
¹¹

O
pe

ra
nd

¹¹
O

pe
ra

nd
¹¹

N
am

e

L
C

L
A

O
pe

ra
nd

¹¹
O

pe
ra

nd
¹¹

O
pe

ra
nd

¹¹
O

pe
ra

nd
¹¹

O
pe

ra
nd

O
pe

ra
nd

¹¹
O

pe
ra

nd
¹¹

N
am

e

L
C

L
B

O
pe

ra
nd

¹¹
O

pe
ra

nd
¹¹

O
pe

ra
nd

¹¹
O

pe
ra

nd
¹¹

O
pe

ra
nd

¹¹
O

pe
ra

nd
O

pe
ra

nd
¹¹

N
am

e

L
C

L
C

O
pe

ra
nd

¹¹
O

pe
ra

nd
¹¹

O
pe

ra
nd

¹¹
O

pe
ra

nd
¹¹

O
pe

ra
nd

¹¹
O

pe
ra

nd
¹¹

O
pe

ra
nd

N
am

e

M
od

el
St

at
em

en
t

N
am

e
O

pe
ra

ti
on

O
pe

ra
nd

N
am

e
O

pe
ra

ti
on

O
pe

ra
nd

N
am

e
O

pe
ra

ti
on

O
pe

ra
nd

N
am

e
O

pe
ra

ti
on

O
pe

ra
nd

N
am

e
O

pe
ra

ti
on

O
pe

ra
nd

N
am

e
O

pe
ra

ti
on

O
pe

ra
nd

N
am

e
O

pe
ra

ti
on

O
pe

ra
nd

N
am

e

SE
TA

N
am

e¹
²

O
pe

ra
nd

³
N

am
e

O
pe

ra
nd

N
am

e¹
²

O
pe

ra
nd

⁴
N

am
e¹
²

O
pe

ra
nd

¹⁰
N

am
e

O
pe

ra
nd

N
am

e¹
²

O
pe

ra
nd

⁴
N

am
e¹
²

O
pe

ra
nd

¹⁰

SE
TA

F

N
am

e¹
²

O
pe

ra
nd

³,
¹³

N
am

e
O

pe
ra

nd
¹³

N
am

e¹
²

O
pe

ra
nd

⁴,
¹³

N
am

e¹
⁰,
¹²

O
pe

ra
nd

¹³
N

am
e

O
pe

ra
nd

¹³
N

am
e¹
²

O
pe

ra
nd

⁴,
¹³

N
am

e¹
⁰,
¹²

O
pe

ra
nd

¹³

SE
T

B

N
am

e¹
²

O
pe

ra
nd

⁷
N

am
e¹
²

O
pe

ra
nd

⁷
N

am
e

O
pe

ra
nd

N
am

e¹
²

O
pe

ra
nd

⁷
N

am
e¹
²

O
pe

ra
nd

⁷
N

am
e

O
pe

ra
nd

N
am

e¹
²

O
pe

ra
nd

⁷

SE
T

C

N
am

e¹
²

O
pe

ra
nd

N
am

e¹
²

O
pe

ra
nd

⁸
N

am
e¹
²

O
pe

ra
nd

⁹
N

am
e

O
pe

ra
nd

N
am

e¹
²

O
pe

ra
nd

⁸
N

am
e¹
²

O
pe

ra
nd

⁹
N

am
e

O
pe

ra
nd

O
pe

ra
nd

SE
T

C
F

N
am

e¹
²

O
pe

ra
nd

¹³
N

am
e¹
²

O
pe

ra
nd

⁸,
¹³

N
am

e¹
²

O
pe

ra
nd

⁹,
¹³

N
am

e
O

pe
ra

nd
¹³

N
am

e¹
²

O
pe

ra
nd

⁸,
¹³

N
am

e¹
²

O
pe

ra
nd

⁹,
¹³

N
am

e
O

pe
ra

nd
¹³

A
C

T
R

O
pe

ra
nd

³
O

pe
ra

nd
O

pe
ra

nd
⁴

O
pe

ra
nd

³
O

pe
ra

nd
O

pe
ra

nd
⁴

O
pe

ra
nd

³
N

am
e

A
E

JE
C

T

N
am

e

A
G

O
N

am
e

O
pe

ra
nd

A
IF

O
pe

ra
nd

⁷
O

pe
ra

nd
⁷

O
pe

ra
nd

O
pe

ra
nd

⁷
O

pe
ra

nd
⁷

O
pe

ra
nd

O
pe

ra
nd

⁷

N
am

e
O

pe
ra

nd

A
N

O
P

N
am

e

A
R

E
A

D
N

am
e¹
²

N
am

e¹
²

N
am

e¹
²

N
am

e
N

am
e¹
²

N
am

e¹
²

N
am

e

364 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Ta
bl

e
67

.
M

ac
ro

la
ng

ua
ge

el
em

en
ts

(p
ar

t
1)

(c
on

tin
ue

d)

S
ta

te
m

en
t

V
ar

ia
b

le
S

ym
b

ol
s

S
eq

u
en

ce
S

ym
b

ol
S

ym
b

ol
ic

P
ar

am
et

er

G
lo

b
al

-s
co

p
e

S
E

T
S

ym
b

ol
s²

L
oc

al
S

E
T

S
ym

b
ol

s²

S
E

TA
S

E
T

B
S

E
T

C
S

E
TA

S
E

T
B

S
E

T
C

A
SP

A
C

E
O

pe
ra

nd
³

O
pe

ra
nd

O
pe

ra
nd

⁴
O

pe
ra

nd
³

O
pe

ra
nd

O
pe

ra
nd

⁴
O

pe
ra

nd
³

N
am

e

M
E

X
IT

N
am

e

M
N

O
T

E
O

pe
ra

nd
O

pe
ra

nd
O

pe
ra

nd
O

pe
ra

nd
O

pe
ra

nd
O

pe
ra

nd
O

pe
ra

nd
N

am
e

M
E

N
D

N
am

e

O
ut

er
M

ac
ro

N
am

e
O

pe
ra

nd
N

am
e

O
pe

ra
nd

N
am

e
O

pe
ra

nd
N

am
e

O
pe

ra
nd

N
am

e
O

pe
ra

nd
N

am
e

O
pe

ra
nd

N
am

e

In
ne

r
M

ac
ro

N
am

e
O

pe
ra

nd
N

am
e

O
pe

ra
nd

N
am

e
O

pe
ra

nd
N

am
e

O
pe

ra
nd

N
am

e
O

pe
ra

nd
N

am
e

O
pe

ra
nd

N
am

e
O

pe
ra

nd

N
am

e

N
ot

es
:

1.
V

ar
ia

bl
e

sy
m

bo
ls

in
m

ac
ro

in
st

ru
ct

io
ns

ar
e

re
pl

ac
ed

by
th

ei
r

va
lu

es
be

fo
re

pr
oc

es
si

ng
.

2.
D

ep
en

d
in

g
up

on
th

ei
r

va
lu

es
,s

ys
te

m
va

ri
ab

le
sy

m
bo

ls
w

it
h

gl
ob

al
sc

op
e

ca
n

be
us

ed
in

th
e

sa
m

e
w

ay
as

gl
ob

al
SE

T
sy

m
bo

ls
,a

nd
sy

st
em

va
ri

ab
le

sy
m

bo
ls

w
it

h
lo

ca
l

sc
op

e
ca

n
be

us
ed

in
th

e
sa

m
e

w
ay

as
lo

ca
l

SE
T

sy
m

bo
ls

.
3.

O
nl

y
if

va
lu

e
is

se
lf

-d
ef

in
in

g
te

rm
.

4.
C

on
ve

rt
ed

to
ar

it
hm

et
ic

0
or

1.
5.

O
nl

y
in

ch
ar

ac
te

r
re

la
ti

on
s.

6.
O

nl
y

in
ar

it
hm

et
ic

re
la

ti
on

s.
7.

O
nl

y
in

ar
it

hm
et

ic
or

ch
ar

ac
te

r
re

la
ti

on
s.

8.
C

on
ve

rt
ed

to
an

un
si

gn
ed

nu
m

be
r.

9.
C

on
ve

rt
ed

to
ch

ar
ac

te
r

0
or

1.
10

.
O

nl
y

if
on

e
to

te
n

d
ec

im
al

d
ig

it
s,

no
t

gr
ea

te
r

th
an

21
47

48
36

47
.

11
.

O
nl

y
in

cr
ea

te
d

SE
T

sy
m

bo
ls

if
va

lu
e

of
pa

re
nt

he
si

ze
d

ex
pr

es
si

on
is

an
al

ph
ab

et
ic

ch
ar

ac
te

r
fo

llo
w

ed
by

0
to

61
al

ph
an

um
er

ic
ch

ar
ac

te
rs

.
12

.
O

nl
y

in
cr

ea
te

d
SE

T
sy

m
bo

ls
(a

s
d

es
cr

ib
ed

ab
ov

e)
an

d
in

su
bs

cr
ip

ts
(s

ee
SE

TA
st

at
em

en
t)

.
13

.
T

he
fi

rs
t

op
er

an
d

of
a

SE
TA

F
or

SE
T

C
F

in
st

ru
ct

io
n

m
us

t
be

a
ch

ar
ac

te
r

(S
E

T
C

)
ex

pr
es

si
on

co
nt

ai
ni

ng
or

ev
al

ua
ti

ng
to

an
ei

gh
t

by
te

m
od

ul
e

na
m

e.

Appendix C. Macro and conditional assembly language summary 365

Ta
bl

e
68

.
M

ac
ro

la
ng

ua
ge

el
em

en
ts

(p
ar

t
2)

S
ta

te
m

en
t

A
tt

ri
b

u
te

s
Ty

p
e

L
en

gt
h

S
ca

le
In

te
ge

r
C

ou
n

t
N

u
m

b
er

D
ef

in
ed

O
p

er
at

io
n

C
od

e

M
A

C
R

O

Pr
ot

ot
yp

e
St

at
em

en
t

G
B

L
A

G
B

L
B

G
B

L
C

L
C

L
A

L
C

L
B

L
C

L
C

M
od

el
St

at
em

en
t

SE
TA

O
pe

ra
nd

O
pe

ra
nd

O
pe

ra
nd

O
pe

ra
nd

O
pe

ra
nd

O
pe

ra
nd

SE
TA

F
O

pe
ra

nd
¹³

O
pe

ra
nd

¹³
O

pe
ra

nd
¹³

O
pe

ra
nd

¹³
O

pe
ra

nd
¹³

SE
T

B
O

pe
ra

nd
⁵

O
pe

ra
nd

⁶
O

pe
ra

nd
⁶

O
pe

ra
nd

⁶
O

pe
ra

nd
⁶

O
pe

ra
nd

⁶
O

pe
ra

nd
⁶

O
pe

ra
nd

⁵

SE
T

C
O

pe
ra

nd
O

pe
ra

nd

SE
T

C
F

O
pe

ra
nd

¹³

A
C

T
R

O
pe

ra
nd

O
pe

ra
nd

O
pe

ra
nd

O
pe

ra
nd

O
pe

ra
nd

A
E

JE
C

T

A
G

O

A
IF

O
pe

ra
nd

⁵
O

pe
ra

nd
⁶

O
pe

ra
nd

⁶
O

pe
ra

nd
⁶

O
pe

ra
nd

⁶
O

pe
ra

nd
⁶

O
pe

ra
nd

O
pe

ra
nd

A
N

O
P

A
R

E
A

D

A
SP

A
C

E
O

pe
ra

nd
O

pe
ra

nd
O

pe
ra

nd
O

pe
ra

nd
O

pe
ra

nd

M
E

X
IT

M
N

O
T

E

M
E

N
D

O
ut

er
M

ac
ro

366 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Ta
bl

e
68

.
M

ac
ro

la
ng

ua
ge

el
em

en
ts

(p
ar

t
2)

(c
on

tin
ue

d)

S
ta

te
m

en
t

A
tt

ri
b

u
te

s
Ty

p
e

L
en

gt
h

S
ca

le
In

te
ge

r
C

ou
n

t
N

u
m

b
er

D
ef

in
ed

O
p

er
at

io
n

C
od

e

N
ot

es
:

1.
V

ar
ia

bl
e

sy
m

bo
ls

in
m

ac
ro

in
st

ru
ct

io
ns

ar
e

re
pl

ac
ed

by
th

ei
r

va
lu

es
be

fo
re

pr
oc

es
si

ng
.

2.
D

ep
en

d
in

g
up

on
th

ei
r

va
lu

es
,s

ys
te

m
va

ri
ab

le
sy

m
bo

ls
w

it
h

gl
ob

al
sc

op
e

ca
n

be
us

ed
in

th
e

sa
m

e
w

ay
as

gl
ob

al
SE

T
sy

m
bo

ls
,a

nd
sy

st
em

va
ri

ab
le

sy
m

bo
ls

w
it

h
lo

ca
l

sc
op

e
ca

n
be

us
ed

in
th

e
sa

m
e

w
ay

as
lo

ca
l

SE
T

sy
m

bo
ls

.
3.

O
nl

y
if

va
lu

e
is

se
lf

-d
ef

in
in

g
te

rm
.

4.
C

on
ve

rt
ed

to
ar

it
hm

et
ic

0
or

1.
5.

O
nl

y
in

ch
ar

ac
te

r
re

la
ti

on
s.

6.
O

nl
y

in
ar

it
hm

et
ic

re
la

ti
on

s.
7.

O
nl

y
in

ar
it

hm
et

ic
or

ch
ar

ac
te

r
re

la
ti

on
s.

8.
C

on
ve

rt
ed

to
an

un
si

gn
ed

nu
m

be
r.

9.
C

on
ve

rt
ed

to
ch

ar
ac

te
r

0
or

1.
10

.
O

nl
y

if
on

e
to

te
n

d
ec

im
al

d
ig

it
s,

no
t

gr
ea

te
r

th
an

21
47

48
36

47
.

11
.

O
nl

y
in

cr
ea

te
d

SE
T

sy
m

bo
ls

if
va

lu
e

of
pa

re
nt

he
si

ze
d

ex
pr

es
si

on
is

an
al

ph
ab

et
ic

ch
ar

ac
te

r
fo

llo
w

ed
by

0
to

61
al

ph
an

um
er

ic
ch

ar
ac

te
rs

.
12

.
O

nl
y

in
cr

ea
te

d
SE

T
sy

m
bo

ls
(a

s
d

es
cr

ib
ed

ab
ov

e)
an

d
in

su
bs

cr
ip

ts
(s

ee
SE

TA
st

at
em

en
t)

.
13

.
T

he
fi

rs
t

op
er

an
d

of
a

SE
TA

F
or

SE
T

C
F

in
st

ru
ct

io
n

m
us

t
be

a
ch

ar
ac

te
r

(S
E

T
C

)
ex

pr
es

si
on

co
nt

ai
ni

ng
or

ev
al

ua
ti

ng
to

an
ei

gh
t

by
te

m
od

ul
e

na
m

e.

Appendix C. Macro and conditional assembly language summary 367

Table 69. Conditional assembly expressions

Expression
Arithmetic
Expressions

Character
Expressions

Logical
Expressions

Can
contain

Self-defining terms Absolute,
predefined ordinary
symbols Length, scale, integer,
count, defined, and number
attributes SETA and SETB
symbols SETC symbols whose
values are a self-defining
term Symbolic parameters if
the corresponding operand is a
self-defining term Built-in
Functions &SYSDATC
&SYSLIST(n) if the
corresponding operand is a
self-defining term &SYSLIST
(n,m) if the corresponding
operand is a self-defining
term &SYSOPT_DBCS,
&SYSOPT_RENT, and
&SYSOPT_XOBJECT
&SYSM_HSEV and
&SYSM_SEV &SYSNDX,
&SYSNEST, and &SYSSTMT

Any combination of characters (including
double-byte characters, if the DBCS
assembler option is specified) enclosed in
apostrophes Any variable symbol
enclosed in apostrophes A concatenation
of variable symbols and other characters
enclosed in apostrophes Built-in
Functions A type or operation code
attribute reference Substrings

A 0 or a 1 Absolute, predefined
ordinary symbols SETB
symbols Arithmetic
relations Character
relations Arithmetic value

Operations +, - (unary and binary), *, and
/; Parentheses permitted

Concatenation, with a period (.), or by
juxtaposition; substrings

AND, OR, NOT,
XOR Parentheses permitted

Range of values -2³¹ to +2³¹-1 0 through 1024 characters 0 (false) or 1 (true)

Used in SETA operands Arithmetic
relations Created SET
symbols Subscripted SET
symbols &SYSLIST
subscripts Substring
notation Sublist notation

SETC operands Character
relations Created SET symbols

SETB operands AIF
operands Created SET symbols

Built-in functions fall into the following categories:

Table 70. Built-in functions

Value Type Functions

Arithmetic AND, B2A, C2A, D2A, DCLEN, FIND, INDEX, NOT, OR, SLA, SLL, SRA, SRL, X2A,
XOR

Logical AND, AND NOT, ISBIN, ISDEC, ISHEX, ISSYM, NOT, OR, OR NOT, XOR, XOR NOT

Character A2B, A2C, A2D, A2X, B2C, B2D, B2X, BYTE, C2B, C2D, C2X, D2B, D2C, D2X, DCVAL,
DEQUOTE, DOUBLE, LOWER, SIGNED, UPPER, X2B, X2C, X2D

Table 71. Attributes

Attribute Notation Can be used with:
Can be used only if
Type Attribute is: Can be used in:

Type T' Ordinary symbols defined
in open code; symbolic
parameters inside macro
definitions; &SYSLIST(n),
&SYSLIST(n,m) inside macro
definitions; SET symbols; all
system variable symbols

Any value SETC expressions

Character relations

368 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Table 71. Attributes (continued)

Attribute Notation Can be used with:
Can be used only if
Type Attribute is: Can be used in:

Length L' Ordinary symbols defined
in open code; symbolic
parameters inside macro
definitions; &SYSLIST(n),
and &SYSLIST(n,m) inside
macro definitions

Any value except M, N, O, T, U SETA and ordinary
arithmetic expressions

Scale S' Ordinary symbols defined
in open code; symbolic
parameters inside macro
definitions; &SYSLIST(n),
and &SYSLIST(n,m) inside
macro definitions

H,F,G,D,E,L,K,P, and Z SETA and ordinary
arithmetic expressions

Integer I' Ordinary symbols defined
in open code; symbolic
parameters inside macro
definitions; &SYSLIST(n),
and &SYSLIST(n,m) inside
macro definitions

H,F,G,D,E,L,K,P, and Z SETA and ordinary
arithmetic expressions

Count K' Symbolic parameters inside
macro definitions;
&SYSLIST(n), and
&SYSLIST(n,m) inside macro
definitions; SET symbols; all
system variable symbols

Any letter or @ or $ SETA and ordinary
arithmetic expressions

Number N' Symbolic parameters,
&SYSLIST and &SYSLIST(n)
inside macro definitions,
with dimensioned SET
symbols

Any value SETA and ordinary
arithmetic expressions

Defined D' Ordinary symbols defined
in open code; symbolic
parameters inside macro
definitions; &SYSLIST and
&SYSLIST(n) inside macro
definitions; SETC symbols
whose value is an ordinary
symbol

Any value except M, N, O, T, U SETA arithmetic
expressions

Operation Code O' A character string, or
variable symbol containing
a character string.

@, $, and any letter except N, O and
(only sometimes) U

SETC expressions

Character relations

Refer to Chapter 9, “How to write conditional assembly instructions,” on page 279 for usage restrictions
of the attributes in Table 71 on page 368.

Table 72. Variable symbols

Variable
Symbol

Declared
by:

Initialized
or set to:

Value changed
by:

Can be used
in:

Symbolic¹ parameter Prototype
statement

Corresponding
macro instruction
operand

Constant
throughout
definition

Arithmetic expressions if
operand is self-defining term

Character expressions

SETA LCLA or GBLA
instruction

0 SETA instruction Arithmetic expressions

Character expressions

Logical expressions

Appendix C. Macro and conditional assembly language summary 369

Table 72. Variable symbols (continued)

Variable
Symbol

Declared
by:

Initialized
or set to:

Value changed
by:

Can be used
in:

SETB LCLB or GBLB
instruction

0 SETB instruction Arithmetic expressions

Character expressions

Logical expressions

SETC LCLC or GBLC
instruction

String of length 0
(null)

SETC instruction Arithmetic expressions if
value is self-defining term

Character expressions

Logical expressions if value
is self-defining term

Notes:

1. Can be used only in macro definitions.

Table 73. System variable symbols

System Variable Symbol
Avail-
ability¹ Type²

Type
Attr.³ Scope Initialized or set to

Value
changed by Can be used in

&SYSADATA_DSN HLA2 C U,O L Current associated data
file

Constant
throughout
assembly

Character
expressions

&SYSADATA_MEMBER HLA2 C U,O L Current associated data
file member name

Constant
throughout
assembly

Character
expressions

&SYSADATA_VOLUME HLA2 C U,O L Current associated data
file volume identifier

Constant
throughout
assembly

Character
expressions

&SYSASM HLA1 C U G Assembler name Constant
throughout
assembly

Character
expression

&SYSCLOCK HLA3 C U L Current date and time Constant
throughout
macro
expansion

Character
expressions

&SYSDATC HLA1 C,A N G Assembly date (with
century)

Constant
throughout
assembly

Arithmetic
expressions

Character
expressions

&SYSDATE AsmH C U G Assembly date Constant
throughout
assembly

Character
expressions

&SYSECT All C U L Name of control section
in effect where macro
instruction appears

Constant
throughout
definition; set
by START,
CSECT,
RSECT,
DSECT, or
COM

Character
expressions

&SYSIN_DSN HLA1 C U L Current primary input
data set name

Constant
throughout
definition

Character
expressions

370 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Table 73. System variable symbols (continued)

System Variable Symbol
Avail-
ability¹ Type²

Type
Attr.³ Scope Initialized or set to

Value
changed by Can be used in

&SYSIN_MEMBER HLA1 C U,O L Current primary input
member name

Constant
throughout
definition

Character
expressions

&SYSIN_VOLUME HLA1 C U,O L Current primary input
volume identifier

Constant
throughout
definition

Character
expressions

&SYSJOB HLA1 C U G Source module assembly
job name

Constant
throughout
assembly

Character
expressions

&SYSLIB_DSN HLA1 C U L Current macro library
filename

Constant
throughout
definition

Character
expressions

&SYSLIB_MEMBER HLA1 C U,O L Current macro library
member name

Constant
throughout
definition

Character
expressions

&SYSLIB_VOLUME HLA1 C U,O L Current macro library
volume identifier

Constant
throughout
definition

Character
expressions

&SYSLIN_DSN HLA2 C U L Current object data set
name

Constant
throughout
assembly

Character
expressions

&SYSLIN_MEMBER HLA2 C U,O L Current object data set
member name

Constant
throughout
assembly

Character
expressions

&SYSLIN_VOLUME HLA2 C U,O L Current object data set
volume identifier

Constant
throughout
assembly

Character
expressions

&SYSLIST All C any L Not applicable Not applicable N'&SYSLIST in
arithmetic
expressions

&SYSLIST(n)&SYSLIST(n,m) All C any L Corresponding macro
instruction operand

Constant
throughout
definition

Arithmetic
expressions if
operand is
self-defining
term

Character
expressions

&SYSLOC AsmH C U L Location counter in effect
where macro instruction
appears

Constant
throughout
definition; set
by START,
CSECT,
RSECT,
DSECT, COM,
and LOCTR

Character
expressions

&SYSMAC HLA3 C U,O L Macro name Constant
throughout
definition

Arithmetic
expressions

&SYSMAC(n)₁ HLA3 C U,O L Ancestor macro name Constant
throughout
definition

Arithmetic
expressions

&SYSM_HSEV HLA3 A N G 0 Mnote Arithmetic
expressions

Appendix C. Macro and conditional assembly language summary 371

Table 73. System variable symbols (continued)

System Variable Symbol
Avail-
ability¹ Type²

Type
Attr.³ Scope Initialized or set to

Value
changed by Can be used in

&SYSM_SEV HLA3 A N G 0 At nesting and
unnesting of
macros, from
MNOTE

Arithmetic
expressions

&SYSNDX All C N L Macro instruction index Constant
throughout
definition;
unique for
each macro
instruction

Arithmetic
expressions

Character
expressions

&SYSNEST HLA1 A N L Macro instruction nesting
level

Constant
throughout
definition;
unique for
each macro
nesting level

Arithmetic
expressions

Character
expressions

&SYSOPT_DBCS HLA1 B N G DBCS assembler option
indicator

Constant
throughout
assembly

Arithmetic
expressions

Character
expressions

Logical
expressions

&SYSOPT_OPTABLE HLA3 C U G OPTABLE assembler
option value

Constant
throughout
assembly

Character
expressions

&SYSOPT_RENT HLA1 B N G RENT assembler option
indicator

Constant
throughout
assembly

Arithmetic
expressions

Character
expressions

Logical
expressions

&SYSOPT_XOBJECT HLA3 B N G XOBJECT assembler
option indicator

Constant
throughout
assembly

Arithmetic
expressions

Character
expressions

Logical
expressions

&SYSPARM All C U,O G User defined or null Constant
throughout
assembly

Arithmetic
expressions if
value is
self-defining
term

Character
expressions

&SYSPRINT_DSN HLA2 C U L Current assembler listing
data set name

Constant
throughout
assembly

Character
expressions

&SYSPRINT_MEMBER HLA2 C U,O L Current assembler listing
data set member name

Constant
throughout
assembly

Character
expressions

&SYSPRINT_VOLUME HLA2 C U,O L Current assembler listing
data set volume identifier

Constant
throughout
assembly

Character
expressions

372 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Table 73. System variable symbols (continued)

System Variable Symbol
Avail-
ability¹ Type²

Type
Attr.³ Scope Initialized or set to

Value
changed by Can be used in

&SYSPUNCH_DSN HLA2 C U L Current object data set
name

Constant
throughout
assembly

Character
expressions

&SYSPUNCH_MEMBER HLA2 C U,O L Current object data set
member name

Constant
throughout
assembly

Character
expressions

&SYSPUNCH_VOLUME HLA2 C U,O L Current object data set
volume identifier

Constant
throughout
assembly

Character
expressions

&SYSSEQF HLA1 C U,O L Outer-most macro
instruction identification-
sequence field

Constant
throughout
definition

Character
expressions

&SYSSTEP HLA1 C U G Source module assembly
job name

Constant
throughout
assembly

Character
expressions

&SYSSTMT HLA1 C,A N G Next statement number Assembler
increments
each time a
statement is
processed

Arithmetic
expressions

Character
expressions

&SYSSTYP HLA1 C U,O L Type of control section in
effect where macro
instruction appears

Constant
throughout
definition; set
by START,
CSECT,
RSECT,
DSECT, or
COM

Character
expressions

&SYSTEM_ID HLA1 C U G Assembly operating
system environment
identifier

Constant
throughout
assembly

Character
expressions

&SYSTERM_DSN HLA2 C U L Current terminal data set
name

Constant
throughout
assembly

Character
expressions

&SYSTERM_MEMBER HLA2 C U,O L Current terminal data set
member name

Constant
throughout
assembly

Character
expressions

&SYSTERM_VOLUME HLA2 C U,O L Current terminal data set
volume identifier

Constant
throughout
assembly

Character
expressions

&SYSTIME AsmH C U G Source module assembly
time

Constant
throughout
assembly

Character
expressions

&SYSVER HLA1 C U G Assembler release level Constant
throughout
assembly

Character
expressions

Appendix C. Macro and conditional assembly language summary 373

Table 73. System variable symbols (continued)

System Variable Symbol
Avail-
ability¹ Type²

Type
Attr.³ Scope Initialized or set to

Value
changed by Can be used in

Notes:

1. Availability:
All All assemblers, including the DOS/VSE Assembler
AsmH Assembler H Version 2 and High Level Assembler
HLA1 High Level Assembler Release 1
HLA2 High Level Assembler Release 2
HLA3 High Level Assembler Release 3
HLA4 High Level Assembler Release 4
HLA5 High Level Assembler Release 5

2. Type:
A Arithmetic
B Boolean
C Character

3. Type Attr:
N Numeric (self-defining term)
O Omitted
U Undefined, unknown, deleted, or unassigned

4. Scope:
L Local - only in macro
G Global - in entire program

374 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Appendix D. Standard character set code table
Table 74. Standard character set code table - from code page 00037

Hex. Dec. EBCDIC Binary Hex. Dec. EBCDIC Binary

00 0 0000 0000 20 32 0010 0000

01 1 0000 0001 21 33 0010 0001

02 2 0000 0010 22 34 0010 0010

03 3 0000 0011 23 35 0010 0011

04 4 0000 0100 24 36 0010 0100

05 5 0000 0101 25 37 0010 0101

06 6 0000 0110 26 38 0010 0110

07 7 0000 0111 27 39 0010 0111

08 8 0000 1000 28 40 0010 1000

09 9 0000 1001 29 41 0010 1001

0A 10 0000 1010 2A 42 0010 1010

0B 11 0000 1011 2B 43 0010 1011

0C 12 0000 1100 2C 44 0010 1100

0D 13 0000 1101 2D 45 0010 1101

0E 14 0000 1110 2E 46 0010 1110

0F 15 0000 1111 2F 47 0010 1111

10 16 0001 0000 30 48 0011 0000

11 17 0001 0001 31 49 0011 0001

12 18 0001 0010 32 50 0011 0010

13 19 0001 0011 33 51 0011 0011

14 20 0001 0100 34 52 0011 0100

15 21 0001 0101 35 53 0011 0101

16 22 0001 0110 36 54 0011 0110

17 23 0001 0111 37 55 0011 0111

18 24 0001 1000 38 56 0011 1000

19 25 0001 1001 39 57 0011 1001

1A 26 0001 1010 3A 58 0011 1010

1B 27 0001 1011 3B 59 0011 1011

1C 28 0001 1100 3C 60 0011 1100

1D 29 0001 1101 3D 61 0011 1101

1E 30 0001 1110 3E 62 0011 1110

1F 31 0001 1111 3F 63 0011 1111

Hex. Dec. EBCDIC Binary Hex. Dec. EBCDIC Binary

40 64 SPACE 0100 0000 60 96 - 0110 0000

41 65 0100 0001 61 97 / 0110 0001

© Copyright IBM Corp. 1992, 2013 375

Hex. Dec. EBCDIC Binary Hex. Dec. EBCDIC Binary

42 66 0100 0010 62 98 0110 0010

43 67 0100 0011 63 99 0110 0011

44 68 0100 0100 64 100 0110 0100

45 69 0100 0101 65 101 0110 0101

46 70 0100 0110 66 102 0110 0110

47 71 0100 0111 67 103 0110 0111

48 72 0100 1000 68 104 0110 1000

49 73 0100 1001 69 105 0110 1001

4A 74 0100 1010 6A 106 0110 1010

4B 75 . 0100 1011 6B 107 , 0110 1011

4C 76 0100 1100 6C 108 0110 1100

4D 77 (0100 1101 6D 109 _ 0110 1101

4E 78 + 0100 1110 6E 110 0110 1110

4F 79 0100 1111 6F 111 0110 1111

50 80 & 0101 0000 70 112 0111 0000

51 81 0101 0001 71 113 0111 0001

52 82 0101 0010 72 114 0111 0010

53 83 0101 0011 73 115 0111 0011

54 84 0101 0100 74 116 0111 0100

55 85 0101 0101 75 117 0111 0101

56 86 0101 0110 76 118 0111 0110

57 87 0101 0111 77 119 0111 0111

58 88 0101 1000 78 120 0111 1000

59 89 0101 1001 79 121 0111 1001

5A 90 0101 1010 7A 122 0111 1010

5B 91 $ 0101 1011 7B 123 # 0111 1011

5C 92 * 0101 1100 7C 124 @ 0111 1100

5D 93) 0101 1101 7D 125 ’ 0111 1101

5E 94 0101 1110 7E 126 = 0111 1110

5F 95 0101 1111 7F 127 0111 1111

Hex. Dec. EBCDIC Binary Hex. Dec. EBCDIC Binary

80 128 1000 0000 A0 160 1010 0000

81 129 a 1000 0001 A1 161 1010 0001

82 130 b 1000 0010 A2 162 s 1010 0010

83 131 c 1000 0011 A3 163 t 1010 0011

84 132 d 1000 0100 A4 164 u 1010 0100

85 133 e 1000 0101 A5 165 v 1010 0101

86 134 f 1000 0110 A6 166 w 1010 0110

87 135 g 1000 0111 A7 167 x 1010 0111

88 136 h 1000 1000 A8 168 y 1010 1000

376 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Hex. Dec. EBCDIC Binary Hex. Dec. EBCDIC Binary

89 137 i 1000 1001 A9 169 z 1010 1001

8A 138 1000 1010 AA 170 1010 1010

8B 139 1000 1011 AB 171 1010 1011

8C 140 1000 1100 AC 172 1010 1100

8D 141 1000 1101 AD 173 1010 1101

8E 142 1000 1110 AE 174 1010 1110

8F 143 1000 1111 AF 175 1010 1111

90 144 1001 0000 B0 176 1011 0000

91 145 j 1001 0001 B1 177 1011 0001

92 146 k 1001 0010 B2 178 1011 0010

93 147 l 1001 0011 B3 179 1011 0011

94 148 m 1001 0100 B4 180 1011 0100

95 149 n 1001 0101 B5 181 1011 0101

96 150 o 1001 0110 B6 182 1011 0110

97 151 p 1001 0111 B7 183 1011 0111

98 152 q 1001 1000 B8 184 1011 1000

99 153 r 1001 1001 B9 185 1011 1001

9A 154 1001 1010 BA 186 1011 1010

9B 155 1001 1011 BB 187 1011 1011

9C 156 1001 1100 BC 188 1011 1100

9D 157 1001 1101 BD 189 1011 1101

9E 158 1001 1110 BE 190 1011 1110

9F 159 1001 1111 BF 191 1011 1111

Hex. Dec. EBCDIC Binary Hex. Dec. EBCDIC Binary

C0 192 1100 0000 E0 224 1110 0000

C1 193 A 1100 0001 E1 225 1110 0001

C2 194 B 1100 0010 E2 226 S 1110 0010

C3 195 C 1100 0011 E3 227 T 1110 0011

C4 196 D 1100 0100 E4 228 U 1110 0100

C5 197 E 1100 0101 E5 229 V 1110 0101

C6 198 F 1100 0110 E6 230 W 1110 0110

C7 199 G 1100 0111 E7 231 X 1110 0111

C8 200 H 1100 1000 E8 232 Y 1110 1000

C9 201 I 1100 1001 E9 233 Z 1110 1001

CA 202 1100 1010 EA 234 1110 1010

CB 203 1100 1011 EB 235 1110 1011

CC 204 1100 1100 EC 236 1110 1100

CD 205 1100 1101 ED 237 1110 1101

CE 206 1100 1110 EE 238 1110 1110

CF 207 1100 1111 EF 239 1110 1111

Appendix D. Standard character set code table 377

Hex. Dec. EBCDIC Binary Hex. Dec. EBCDIC Binary

D0 208 1101 0000 F0 240 0 1111 0000

D1 209 J 1101 0001 F1 241 1 1111 0001

D2 210 K 1101 0010 F2 242 2 1111 0010

D3 211 L 1101 0011 F3 243 3 1111 0011

D4 212 M 1101 0100 F4 244 4 1111 0100

D5 213 N 1101 0101 F5 245 5 1111 0101

D6 214 O 1101 0110 F6 246 6 1111 0110

D7 215 P 1101 0111 F7 247 7 1111 0111

D8 216 Q 1101 1000 F8 248 8 1111 1000

D9 217 R 1101 1001 F9 249 9 1111 1001

DA 218 1101 1010 FA 250 1111 1010

DB 219 1101 1011 FB 251 1111 1011

DC 220 1101 1100 FC 252 1111 1100

DD 221 1101 1101 FD 253 1111 1101

DE 222 1101 1110 FE 254 1111 1110

DF 223 1101 1111 FF 255 1111 1111

378 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program,
or service that does not infringe any IBM intellectual property right may be used instead. However, it is
the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or
service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not give you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Mail Station P300
2455 South Road
Poughkeepsie New York 12601-5400
U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or
any equivalent agreement between us.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this
statement may not apply to you.

© Copyright IBM Corp. 1992, 2013 379

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
Copyright and trademark information at http://www.ibm.com/legal/copytrade.shtml.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

380 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

http://www.ibm.com/legal/copytrade.shtml

Bibliography

High Level Assembler Documents
HLASM General Information, GC26-4943
HLASM Installation and Customization Guide, SC26-3494
HLASM Language Reference, SC26-4940
HLASM Programmer's Guide, SC26-4941

Toolkit Feature document
HLASM Toolkit Feature User's Guide, GC26-8710
HLASM Toolkit Feature Debug Reference Summary, GC26-8712
HLASM Toolkit Feature Interactive Debug Facility User's Guide, GC26-8709
HLASM Toolkit Feature Installation and Customization Guide, GC26-8711

Related documents (Architecture)
z/Architecture Principles of Operation, SA22-7832

Related documents for z/OS
z/OS:
z/OS MVS JCL Reference, SA23-1385
z/OS MVS JCL User's Guide, SA23-1386
z/OS MVS Programming: Assembler Services Guide, SA23-1368
z/OS MVS Programming: Assembler Services Reference, Volume 1 (ABE-HSP), SA23-1369
z/OS MVS Programming: Assembler Services Reference, Volume 2 (IAR-XCT), SA23-1370
z/OS MVS Programming: Authorized Assembler Services Guide, SA23-1371
z/OS MVS Programming: Authorized Assembler Services Reference, Volumes 1 - 4, SA23-1372 - SA23-1375
z/OS MVS Program Management: User's Guide and Reference, SA23-1393
z/OS MVS System Codes, SA38-0665
z/OS MVS System Commands, SA38-0666
z/OS MVS System Messages, Volumes 1 - 10, SA38-0668 - SA38-0677
z/OS Communications Server: SNA Programming, SC27-3674
UNIX System Services:
z/OS UNIX System Services User's Guide, SA23-2279
DFSMS/MVS:
z/OS DFSMS Program Management, SC27-1130
z/OS DFSMSdfp Utilities, SC23-6864
TSO/E (z/OS):
z/OS TSO/E Command Reference, SA32-0975
SMP/E (z/OS):
SMP/E for z/OS Messages, Codes, and Diagnosis, GA32-0883
SMP/E for z/OS Reference, SA23-2276
SMP/E for z/OS User's Guide, SA23-2277

© Copyright IBM Corp. 1992, 2013 381

http://publibz.boulder.ibm.com/cgi-bin/bookmgr/download/DZ9ZR008.pdf
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss?CTY=US&FNC=SRX&PBL=SC27-3674-00
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/dgt2m200/CCONTENTS

Related documents for z/VM
z/VM: VMSES/E Introduction and Reference, GC24-6243
z/VM: Service Guide, GC24-6247
z/VM: CMS Commands and Utilities Reference, SC24-6166
z/VM: CMS File Pool Planning, Administration, and Operation, SC24-6167
z/VM: CP Planning and Administration, SC24-6178
z/VM: Saved Segments Planning and Administration, SC24-6229
z/VM: Other Components Messages and Codes, GC24-6207
z/VM: CMS and REXX/VM Messages and Codes, GC24-6161
z/VM: CP System Messages and Codes, GC24-6177
z/VM: CMS Application Development Guide, SC24-6162
z/VM: CMS Application Development Guide for Assembler, SC24-6163
z/VM: CMS User's Guide, SC24-6173
z/VM: XEDIT User's Guide, SC24-6245
z/VM: XEDIT Commands and Macros Reference, SC24-6244
z/VM: CP Commands and Utilities Reference, SC24-6175

Related documents for z/VSE
z/VSE: Guide to System Functions, SC33-8312
z/VSE: Administration, SC34-2627
z/VSE: Installation, SC34-2631
z/VSE: Planning, SC34-2635
z/VSE: System Control Statements, SC34-2637
z/VSE: Messages and Codes, Vol.1 , SC34-2632
z/VSE: Messages and Codes, Vol.2, SC34-2633
z/VSE: Messages and Codes, Vol.3, SC34-2634
REXX/VSE Reference, SC33-6642
REXX/VSE User's Guide, SC33-6641

382 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

http://publibz.boulder.ibm.com/epubs/pdf/hcsc6c20.pdf
http://publibz.boulder.ibm.com/epubs/pdf/hcsf1c20.pdf
http://publibz.boulder.ibm.com/epubs/pdf/hcsd8c20.pdf
http://publibz.boulder.ibm.com/epubs/pdf/hcsi3c10.pdf
http://publibz.boulder.ibm.com/epubs/pdf/hcsg0c20.pdf
http://publibz.boulder.ibm.com/epubs/pdf/hcsg4c20.pdf
http://publibz.boulder.ibm.com/epubs/pdf/hcsb6c20.pdf
http://publibz.boulder.ibm.com/epubs/pdf/hcsb5c20.pdf
http://publibz.boulder.ibm.com/epubs/pdf/hcsb4c20.pdf
http://publibz.boulder.ibm.com/epubs/pdf/hcsd0c10.pdf
http://publibz.boulder.ibm.com/epubs/pdf/hcsd2c10.pdf
http://publibz.boulder.ibm.com/epubs/pdf/hcsd7c20.pdf
http://publibz.boulder.ibm.com/epubs/pdf/hcsd9c00.pdf
http://publibz.boulder.ibm.com/epubs/pdf/hcse0c00.pdf
http://publibz.boulder.ibm.com/epubs/pdf/hcse4c20.pdf
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/iessye40/CCONTENTS
ftp://public.dhe.ibm.com/eserver/zseries/zos/vse/pdf3/zvse51/iesame71.pdf
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/IESIST70/CCONTENTS?SHELF=IESVSE91&DN=SC34-2631-00
ftp://public.dhe.ibm.com/eserver/zseries/zos/vse/pdf3/zvse51/iesple72.pdf
ftp://public.dhe.ibm.com/eserver/zseries/zos/vse/pdf3/zvse51/iessoe71.pdf
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/IESMC171/CCONTENTS?SHELF=IESVSE91&DN=SC34-2632-01
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/IESMC271/CCONTENTS?SHELF=IESVSE91&DN=SC34-2633-01
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/IESMC371/CCONTENTS?SHELF=IESVSE91&DN=SC34-2634-01
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/iesrre31/CCONTENTS
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/iesrue02/CCONTENTS

Index

Special characters
-

as negative unary operator 318
as subtraction operator 318

/
as division operator 318

.
concatenation operator for strings 339
in qualified symbols 56

*PROCESS statement 84
initiating the first control section 46
restricted options 85

&SYS
as start of system variable names 229

&SYSADATA_DSN system variable symbol 231
&SYSADATA_MEMBER system variable symbol 231
&SYSADATA_VOLUME system variable symbol 232
&SYSASM system variable symbol 232
&SYSCLOCK system variable symbol 233
&SYSDATC system variable symbol 233
&SYSDATE system variable symbol 234
&SYSECT system variable symbol 234

CSECT 234
DSECT 234
RSECT 234

&SYSIN_DSN system variable symbol 235
&SYSIN_MEMBER system variable symbol 236
&SYSIN_VOLUME system variable symbol 237
&SYSJOB system variable symbol 238
&SYSLIB_DSN system variable symbol 238
&SYSLIB_MEMBER system variable symbol 238
&SYSLIB_VOLUME system variable symbol 239
&SYSLIN_DSN system variable symbol 239
&SYSLIN_MEMBER system variable symbol 240
&SYSLIN_VOLUME system variable symbol 241
&SYSLIST system variable symbol 241
&SYSLOC system variable symbol 243

LOCTR 243
&SYSM_HSEV system variable symbol 244
&SYSM_SEV system variable symbol 244
&SYSMAC system variable symbol 243
&SYSNDX system variable symbol

controlling its value using MHELP 352
definition 245

&SYSNEST system variable symbol 247
&SYSOPT_DBCS system variable symbol 248
&SYSOPT_OPTABLE system variable symbol 248
&SYSOPT_RENT system variable symbol 248
&SYSOPT_XOBJECT system variable symbol 248
&SYSPARM system variable symbol 249
&SYSPRINT_DSN system variable symbol 249
&SYSPRINT_MEMBER system variable symbol 250
&SYSPRINT_VOLUME system variable symbol 251
&SYSPUNCH_DSN system variable symbol 251
&SYSPUNCH_MEMBER system variable symbol 252
&SYSPUNCH_VOLUME system variable symbol 253
&SYSSEQF system variable symbol 253
&SYSSTEP system variable symbol 254
&SYSSTMT system variable symbol 254
&SYSSTYP system variable symbol 254

CSECT 254

&SYSSTYP system variable symbol (continued)
DSECT 254
RSECT 254

&SYSTEM_ID system variable symbol 255
&SYSTERM_DSN system variable symbol 255
&SYSTERM_MEMBER system variable symbol 256
&SYSTERM_VOLUME system variable symbol 256
&SYSTIME system variable symbol 257
&SYSVER system variable symbol 257
+

as addition operator 318
as positive unary operator 318

=
defining a literal constant 151

Numerics
24

AMODE instruction 95
RMODE instruction 187

31
AMODE instruction 95
RMODE instruction 187

64
AMODE instruction 95
RMODE instruction 187

64 bit addressing mode 84

A
A-type address constant 133
A2B (SETC built-in function) 331
A2C (SETC built-in function) 332
A2D (SETC built-in function) 332
A2X (SETC built-in function) 332
absolute addresses

base registers for 194
defined 74

absolute expression 41
absolute symbol

defined 27
absolute terms 24
ACONTROL

PUSH instruction 186
ACONTROL instruction 85
ACONTROL operands

AFPR 72
NOAFPR 72

ACTR instruction 348
ADATA assembler option 92
ADATA instruction 92
address constants

A-type 133
complex relocatable 132
J-type 140
Q-type 139
R-type 135
S-type 136
V-type 137
Y-type 133

© Copyright IBM Corp. 1992, 2013 383

addressability
by means of the DROP instruction 152
by means of the USING instruction 193
dependent 57
establishing 54
qualified 56
relative 57
using base register instructions 56

addresses
absolute 73
explicit 54
implicit 54
relocatable 73

addressing mode
64 bit 84

addressing mode (AMODE) 58
AEJECT instruction 225
AFPR ACONTROL operand 72
AFPR assembler option 86
AGO instruction

alternative statement format 348
general statement format 347

AGOB
as synonym of AGO instruction 348

AIF instruction 344
alternative statement format 346

AIFB
as synonym of AIF instruction 347

AINSERT instruction 92, 225
ALIAS instruction 93

maximum operand length 94
ALIGN

suboption of FLAG 88
ALIGN assembler option 112, 156
alignment

A address constant 134
beginning of control section

determined by SECTALGN option 188
D hexadecimal floating-point constant 141
E hexadecimal floating-point constant 141
F fixed-point constant 129
H fixed-point constant 129
in CATTR instruction 97
J length constant 140
L hexadecimal floating-point constant 141
of an element defined by CATTR 97
Q offset constant 139
R address constant 135
S address constant 137
V address constant 138
within ORG instruction 178
Y address constant 134

alphabetic character
defined 26

alternative statement format 216
AGO instruction 348
AIF instruction 346
continuation lines 13
extended SET statements 342
GBLx instructions 302
LCLx instructions 304
macro instructions 260
prototype statements 216
summary 13

AMODE
indicators in ESD 58
instruction to specify addressing mode 95

ampersands (&)
as special character 270
DBCS ampersand not delimiter 174
in variable symbols 26
not recognized in double-byte data 125
paired in CA string 125
paired in MNOTE message 174
paired in PUNCH instruction 185
paired in Unicode data 125
pairing in character relations 295
pairing in DC 125
representation in character constant 124, 185
variable symbol identifier in PUNCH statement 185

AND (SETA built-in function) 311
AND (SETB built-in function) 323
AND NOT (SETB built-in function) 323
ANOP instruction 349
ANY

AMODE instruction 95
RMODE instruction 187

ANY31
AMODE instruction 95

ANY64
AMODE instruction 95

apostrophes
as delimiter for character string in SETC 326
as string terminator PUNCH instruction 185
DBCS apostrophe not delimiter 174
not recognized in double-byte data 125
paired in CA string 125
paired in MNOTE message 174
paired in PUNCH instruction 185
paired in Unicode data 125
representation in character constant 124

AREAD instruction 225
CLOCKB operand 226
CLOCKD operand 226

arithmetic (SETA) expressions
built-in functions 311
evaluation of 318
rules for coding 318
SETC variables in 319
using 308

arithmetic external function calls 343
arithmetic relations in logical expressions 325
array 283

dimensioned 280
subscripted 280

ASCII character constants 125
type extension 116

ASCII translation table 11
ASPACE instruction 227
assembler instruction statements

base register instructions 56
data definition instructions 109
exit-control parameters 166
listing control instructions 190
operation code definition instruction 175
program control instructions 168
program sectioning and linking instructions 44
symbol definition instructions 162

assembler language
assembler instruction statements 2
coding aids summary 6
coding conventions of 11
coding form for 11
compatibility with other languages 1

384 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

assembler language (continued)
conditional assembly instructions 279
introduction to 1
machine instruction statements 2, 65
macro instruction statements 2, 259
statements

summary of 357
structure of 17
summary of instructions 355

assembler options
ADATA 92
AFPR 86
ALIGN 112, 156
BATCH 300
CODEPAGE 125
COMPAT 9, 86, 243, 266, 269, 275, 283, 341
controlling output using 3
DBCS 10, 12, 29, 31, 125, 126, 174, 184, 192, 216, 218, 219,

221, 248, 260, 262, 263, 270, 319, 356, 357, 368
DECK 166, 251, 252, 253
EXIT 166
FLAG 13, 86, 175, 216, 330
FOLD 12
GOFF 32, 53, 62, 92, 95, 96, 107, 108, 140, 191, 239, 241
LIBMAC 86, 210
NOALIGN 112
NODECK 185, 187
NOGOFF 32, 53, 62
NOLIST 184
NOOBJECT 185, 187
NOXOBJECT 62
OBJECT 239, 241
OPTABLE 86, 248
PROFILE 47
RA2 86, 135
RENT 188, 248
SECTALGN 97, 171, 178
specifying with PROCESS statements 84
SYSPARM 249
TYPECHECK 86
USING 196
XOBJECT 62, 92, 94, 96, 239, 241

assembler program
basic functions 3
processing sequence 4
relationship to operating system 5

assembler type
assign to symbol using EQU 162
assigned in EQU instruction 163
retrieved by SYSATTRP function 337
returned by SYSATTRA built-in function 337
set by EQU instruction 162
value returned by SYSATTRA function 337

assembler type value
assigned by EQU instruction 165

associated data file
ADATA instruction 92
contents 3
EXITCTL instruction 166
writing to 92

association of code and data areas 205
asterisks (*)

as location counter reference 33
as relocatable term 33
defining comment statements 15

asterisks)
as multiplication operator 318

attribute reference
notation 286

attributes
assembler

EQU instruction 164, 165
count (K') 295
data 284
defined (D') 296
definition mode 299
in combination with symbols 286
integer (I') 294
length (L') 292
lookahead 299
number (N') 295
of expressions 41, 286
of symbols 286
operation code (O') 297
program type

EQU instruction 164, 165
reference notation 270
relocatable term 41
scale (S') 293
summary of 363, 369
type (T') 289

ATTRIBUTES
XATTR operands 203

B
B-type binary constant 122
B2A (SETA built-in function) 311
B2C (SETC built-in function) 332
B2D (SETC built-in function) 333
B2X (SETC built-in function) 333
base register instructions

DROP instruction 152
POP instruction 180
PUSH instruction 185
USING instruction 193

base registers
for absolute addresses 194

BATCH assembler option 300
binary constant (B) 122
binary floating-point constant DB 145
binary floating-point constant EB 145
binary floating-point constant LB 145
binary floating-point constants 145
binary operators 318
binary self-defining term 30
bit patterns

for masks 76
bit-length modifier 119
blank line

equivalent SPACE statement 189
blank lines

ASPACE instruction 227
in macros 15
in open code 15

books xii
boundary alignment

adjust by SECTALGN assembler option 97, 171, 178
set by CATTR instruction 97
set by ORG instruction 178

branching
conditional assembly 344

AGO instruction 347
AIF instruction 344

Index 385

branching (continued)
conditional assembly (continued)

extended AIF instruction 346
machine instructions

based 67
extended mnemonics 67
relative 67, 70

built-in functions
A2B 331
A2C 332
A2D 332
A2X 332
AND 311, 323
AND NOT 323
arithmetic (SETA) expressions 311
B2A 311
B2C 332
B2D 333
B2X 333
BYTE 333
C2A 312
C2B 334
C2D 334
C2X 334
character (SETC) expressions 331
D2A 312
D2B 334
D2C 335
D2X 335
DCLEN 313
DCVAL 335
DEQUOTE 336
DOUBLE 336
FIND 313
function-invocation format 306
INDEX 314
introduction 305
ISBIN 314
ISDEC 314
ISHEX 314
ISSYM 315
logical-expression format 306
LOWER 336
NOT 315, 324
OR 315, 324
OR NOT 324
SIGNED 336
SLA 316
SLL 316
SRA 316
SRL 317
summary table 306
SYSATTRA 337
SYSATTRP 337
UPPER 337
X2A 317
X2B 337
X2C 338
X2D 338
XOR 317, 324
XOR NOT 324

BYTE (SETC built-in function) 333

C
C-type character constant 123
C-type character self-defining terms 31

C2A (SETA built-in function) 312
C2B (SETC built-in function) 334
C2D (SETC built-in function) 334
C2X (SETC built-in function) 334
CATTR instruction 96
CCW instruction 99
CCW0 instruction 99
CCW1 instruction 100
CEJECT instruction 101
character (SETC) expressions

built-in functions 331
using 326

character constant 123
DBCS 125
Unicode UTF-16 125

character constant (C) 123
character expressions

evaluation of 338
character external function calls 344
character relations in logical expressions 325

comparing comparands of unequal length 325
character self-defining term 31
character set

code table
standard 375

CODEPAGE option 125
default 9
double-byte 10
standard 9
translation table 11

character strings 270
concatenating 339
defined 326
in SETC instruction 326
relational operators for 324
values 339

characters
invariant 31

class names
assigned by default 51
assigned explicitly 50
CATTR instruction 96

classes
assignment to

by binding and loading properties 50
default names 51
defined by CATTR instruction 96
entry point 51
group of machine language blocks 43

CNOP instruction 102
COBOL communication 49
code areas

association with data areas 205
code table

standard character set 375
CODEPAGE assembler option 125
coding

functions in addition to machine instructions 6
coding aids summary 6
coding conventions

assembler language
alternative format for AGO 348
alternative format for AIF 346
alternative format for LCLx 305
alternative format for SETx 343
alternative statement format for GBLx 304
comment statement 15

386 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

coding conventions (continued)
assembler language (continued)

continuation line errors 13
continuation lines 13
standard coding format 11
statement coding rules 15

collection kits xiii
COM instruction 49, 104

&SYSECT 234
&SYSSTYP 254

combining keyword and positional parameters 223, 265
comment statements

format 15
function of 209
internal macro 229
ordinary 229

comparisons in logical expressions 325
COMPAT assembler option 86

CASE suboption 87
LITTYPE suboption 87
MACROCASE suboption 9, 87, 269
NOLITTYPE suboption 87
NOMACROCASE suboption 87
NOSYSLIST suboption 87
SYSLIST suboption 87, 243, 266, 269, 275, 283, 341

compatibility
default classes 51
object files 51
of HLASM with other languages 1

complex relocatable
address constant operands 135
address constants 133
defined 41
EQU instruction 162
expressions 42

complexly relocatable addresses
defined 74

computed AGO instruction 347
concatenating character string values 339
concatenation of characters in model statements 218
concatenation operator for strings 339
conditional assembly instructions

ACTR instruction 348
AGO instruction 347

alternative statement format 348
AIF instruction 344

alternative statement format 346
ANOP instruction 349
computed AGO instruction 347
extended AIF instruction 346
function of 224
GBLA instruction 302

alternative statement format 304
GBLB instruction 302

alternative statement format 304
GBLC instruction 302

alternative statement format 304
how to write 279
LCLA instruction 304

alternative statement format 305
LCLB instruction 304

alternative statement format 305
LCLC instruction 304

alternative statement format 305
list of 302
MHELP instruction 351

conditional assembly instructions (continued)
OPSYN assembler instruction

effect of 177
redefining 177
SETA instruction 308

alternative statement format 343
SETAF instruction 343
SETB instruction 321

alternative statement format 343
SETC instruction 326

alternative statement format 343
SETCF instruction 344
substring notations in 328

conditional assembly language
CATTR instruction 50, 52
summary 210
summary of expressions 368

constants
address 132, 137
alignment of 111
binary 122
binary floating-point 145
character 123
comparison with literals and self-defining terms 35
decimal 131
decimal floating-point 146
duplication factor 114
fixed-point 128
floating-point 141

hexadecimal 143
IEEE binary 149

general information 111
graphic 126
hexadecimal 127
length 111, 140
length attribute value of symbols naming 111
modifiers of 118
nominal values of 121
offset 139
padding of values 113
subfield 1 (duplication factor) 114
subfield 2 (type) 115
subfield 3 (type extension) 116
subfield 4 (modifier) 118
subfield 5 (nominal value) 121
summary of 359
symbolic addresses of 111
truncation of values 113
type extension 116
types of 109, 115

CONT
suboption of FLAG 88

continuation line errors 216
continuation lines 13

description 13
errors in 13
nine maximum for each statement 13
unlimited number of 13

continuation-indicator field 12
control instructions 66
control section

alignment 188
control sections

concept of 45
defining blank common 49
executable 46
first 46

Index 387

control sections (continued)
identifying 106, 188
interaction with LOCTR instruction 170
reference 48
segments 58
unnamed 47

controlling the assembly 3
converting SETA symbol to SETC symbol 342
COPY instruction 105, 228
COPY member

containing sequence symbols 106
count attribute (K') 295
created SET symbols 284
CSECT instruction 106

&SYSECT 234
&SYSSTYP 254
interaction with LOCTR instruction 170

Customization book xiii
CXD instruction 108

D
D-type floating-point constant 141
D' defined attribute 296
D2A (SETA built-in function) 312
D2B (SETC built-in function) 334
D2C (SETC built-in function) 335
D2X (SETC built-in function) 335
DATA

PRINT instruction 183
data areas

association with code areas 205
data attributes 284
data definition instructions

CCW instruction 99
CCW0 instruction 99
CCW1 instruction 100
DC instruction 109
DS instruction 154

DB-type floating-point constant 145
DBCS

PUNCH instruction 184
DBCS assembler option 10, 12, 29, 31, 125, 126, 174, 184, 192,

216, 218, 219, 221, 260, 262, 263, 270, 319, 356, 357, 368
&SYSOPT_DBCS system variable symbol 248
determining if supplied 248
extended continuation-indicators 14

DC instruction 109
binary floating-point constants 147
decimal floating-point constants 147
hexadecimal floating-point constants 147

DCLEN (SETA built-in function) 313
DCVAL (SETC built-in function) 335
DD-type floating-point constant 146
decimal constant

P-type 131
packed 131
Z-type 131
zoned 131

decimal constant (P) 131
decimal constant (Z) 131
decimal floating-point constant DD 146
decimal floating-point constant ED 146
decimal floating-point constant LD 146
decimal floating-point constants 146
decimal instructions 66
decimal self-defining term 30

DECK assembler option 166
&SYSPUNCH_DSN system variable symbol 251
&SYSPUNCH_MEMBER system variable symbol 252
&SYSPUNCH_VOLUME system variable symbol 253

defaults
class names 51
entry point 51

defined attribute (D') 296
definition mode 299
dependent addressing 57
dependent USING

domain 201
instruction syntax 200
range 201

DEQUOTE (SETC built-in function) 336
DH-type floating-point constant 141
dimensioned SET symbols 303, 305
documents

High Level Assembler xii, 381
HLASM Toolkit 381
machine instructions 381
z/OS 381
z/VM 381, 382
z/VSE 382

domain
dependent USING instruction 201
labeled USING instruction 199
ordinary USING instruction 197

DOUBLE (SETC built-in function) 336
double-byte data

code conversion in the macro language 319
concatenation in SETC expressions 339
concatenation of fields 219
continuation of 12, 13
definition of 10
duplication of 326
graphic constants 109, 126
graphic self-defining term 31
in C-type constants 125
in character self-defining terms 31
in comments 15
in G-type constants 126
in keyword operands 263
in macro comments 229
in macro operands 221
in MNOTE operands 175
in positional operands 262
in PUNCH operands 184
in quoted strings 270
in remarks 17
in REPRO operands 187
in TITLE operands 192
listing of macro-generated fields 218
mixed 125
notation 7
pure 126

DROP instruction 152
DS instruction 154
DSECT instruction 48, 157

&SYSECT 234
&SYSSTYP 254

dummy section
external 49
identifying 48, 157

duplication factor
and substrings 326
in character expressions 326

388 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

duplication factor (continued)
in constants 114

DVD collection kits xiii
DXD instruction 159

no conflict with other external names 50

E
E-Decks

reading in z/VSE 2
E-type floating-point constant 141
EB-type floating-point constant 145
ED-type floating-point constant 146
edited macros 210
edited macros in z/VSE 2
editing inner macro definitions 273
EH-type floating-point constant 141
EJECT instruction 160
elements of conditional assembly language 279
END instruction 160

nominated entry point 161
END Instruction 300
ENTRY instruction 162
entry point symbol

referencing using the ENTRY instruction 162
transfer control to

using END instruction 161
EQU instruction 162

assembler type 162
assigning the length attribute 293
assigning the type attribute 300
program type 162

equal sign
designating a literal constant 37

ESD entries 61
exclusive OR (XOR)

SETA built-in function 317
executable control sections 46
EXIT assembler option

ADEXIT suboption 166
INEXIT suboption 166
LIBEXIT suboption 166
OBJEXIT suboption 166
PRTEXIT suboption 166
TRMEXIT suboption 166

exit-control parameters 166
EXITCTL instruction 166
exiting macros 214
EXLITW

suboption of FLAG 88
explicit address

specifying 74
explicit addresses 54
explicit length attribute 111
exponent modifier

floating-point constants 141
specifying 121

expressions
absolute 41
arithmetic 308
attributes 41
character 326
complex relocatable 42
conditional assembly

summary of 368
discussion of 38
EQU instruction 162

expressions (continued)
evaluation of

character 338
logical 325
multiterm 40
single-term 40

logical 321
paired relocatable terms 41
relocatable 41
rules for coding 39, 322

extended AGO instruction 347
extended AIF instruction 346
extended continuation-indicator

double-byte data continuation 13
listing of macro-generated fields 218

extended SET statement 342
external dummy sections

CXD instruction to define cumulative length 108
discussion of 49
DSECT name in Q-type constant 50
DXD instruction to define an 159

external function calls
arithmetic 343
character 344
SETAF instruction 343
SETCF instruction 344

external names
no conflict with DXD instruction 50

external symbol dictionary entries 61
external symbols

ALIAS command 93
in V-type address constant 203
length restrictions 94
providing alternate names 93

EXTRN instruction 167

F
F-type fixed-point constant 128
field boundaries 12
FIND (SETA built-in function) 313
first control section 46
fixed-point constant (F) 128
fixed-point constant (H) 128
FLAG assembler option 86

CONT suboption 13, 216
nnn suboption 175
NOSUBSTR suboption 330

floating-point constant (D) 141
floating-point constant (DH) 141
floating-point constant (E) 141
floating-point constant (EH) 141
floating-point constant (L) 141
floating-point constant (LH) 141
floating-point constant (LQ) 141
floating-point instructions 66
FOLD assembler option 12
format notation, description xiii
format of 215, 259
format-0 channel command word 99
format-1 channel command word 100
Fortran communication 49
function-invocation format built-in function 306
functions of conditional assembly language 279

Index 389

G
G-type graphic constant 126
GBLA instruction 302

alternative statement format 304
GBLB instruction 302

alternative statement format 304
GBLC instruction 302

alternative statement format 304
GEN

PRINT instruction 182
general instructions 65
generated fields

listing 218
generating END statements 300
global-scope system variable symbols 230
GOFF assembler option 62, 92, 107, 108, 140, 191, 239, 241

affect on RI-format instructions 77
CATTR instruction 96
entry point 95
location counter maximum value 32, 53
program object 43
sections 58
XATTR instruction 203

GOFF option
interaction with PUNCH instruction 185
interaction with REPRO instruction 187

graphic constant (G) 126
graphic self-defining term 31

H
H-type fixed-point constant 128
header

macro definition 214
hexadecimal constant (X) 127
hexadecimal self-defining term 30
High Level Assembler

documents xii

I
I' integer attribute 294
ICTL instruction 168
identification-sequence field 12
immediate data

in machine instructions 76
IMPLEN

suboption of FLAG 88
implicit address

specifying 73
implicit addresses 54
implicit length attribute 111
INDEX (SETA built-in function) 314
information retrieval functions

SYSATTRA 337
SYSATTRP 337

inner macro definitions 272, 274
inner macro instructions 224, 273

passing sublists to 269
input stream 7
input/output operations 66
installation and customization

book information xiii
instruction statement format 15
instructions

&SYSOPT_OPTABLE system variable symbol 248

instructions (continued)
assembler

ACONTROL 85
ADATA 92
ALIAS 93
AMODE 95
CATTR 96
CCW 99
CCW0 99
CCW1 100
CEJECT 101
CNOP 102
COM 104
COPY 105
CSECT 106
CXD 108
DC 109
DROP 152
DS 154
DSECT 157
DXD 159
EJECT 160
END 160
ENTRY 162
EQU 162
EXTRN 167
ICTL 168
ISEQ 168
LOCTR 169
LTORG 171
OPSYN 175
ORG 177
POP 180
PRINT 181
PUNCH 184
PUSH 185
REPRO 186
RMODE 187
RSECT 188
SPACE 189
START 189
TITLE 190
USING 193
WXTRN 202
XATTR 203

conditional assembly
ACTR 348
AGO 347
AIF 344
ANOP 349
GBLA 302
GBLB 302
GBLC 302
LCLA 304
LCLB 304
LCLC 304
SETA 308
SETAF 343
SETB 321
SETC 326
SETCF 344

machine
examples 76
OPTABLE option 248

macro
AEJECT 225
AINSERT 92, 225

390 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

instructions (continued)
macro (continued)

ASPACE 227
COPY 228
MEXIT 228
MHELP 351
MNOTE 173

integer attribute (I') 294
internal macro comment statement format 15
internal macro comment statements 229
invariant characters 31
ISBIN (SETA built-in function) 314
ISDEC (SETA built-in function) 314
ISEQ instruction 168
ISHEX (SETA built-in function) 314
ISSYM (SETA built-in function) 315

J
J-type length constant 140

K
K' count attribute 295
keyword parameters 223, 263

L
L-type floating-point constant 141
L' length attribute 292
labeled dependent USING

as parameter of DROP instruction 152
definition 200

labeled USING 152, 197
as parameter of DROP instruction 152
domain 199
range 198

labeled USING instruction
difference from ordinary using instruction 198

labels
on USING instructions 197

Language Reference xiii
LB-type floating-point constant 145
LCLA instruction 304

alternative statement format 305
LCLB instruction 304

alternative statement format 305
LCLC instruction 304

alternative statement format 305
LD-type floating-point constant 146
length attribute

(L') 292
assigned by modifier in DC instruction 118
bit-length modifier 119
DC instruction

address constant 133
binary constant 122
character constant 125
decimal constant 131
fixed-point constant 129
floating-point constant 143
graphic constant 126
hexadecimal constant 127
length constant 140
offset constant 139

duplication factor 115

length attribute (continued)
EQU instruction 293
explicit length 111
exponent modifier 121
implicit length 111
value assigned to symbols naming constants 111

length attribute reference 33
length constant (J) 140
length fields in machine instructions 75
length modifier

constant 118
syntax 118

length of control section 53
LH-type floating-point constant 141
LIBMAC assembler option 86, 210
library macro definitions 210
license inquiry 379
lines

how to continue 13
LINKAGE

XATTR operands 204
linkages

by means of the ENTRY instruction 162
by means of the EXTRN instruction 167
by means of the WXTRN instruction 202
symbolic 58

linking 44
LIST(121) option

displaying location counter 32
LIST(133) option

displaying location counter 32
listing

generated fields 218
listing control instructions

AEJECT instruction 225
AINSERT instruction 92, 225
ASPACE instruction 227
CEJECT instruction 101
EJECT instruction 160
PRINT instruction 181
SPACE instruction 189
TITLE instruction 190

literal constants
coding 37
definition 151

literal pool 38, 58, 172
alignment 172
conditions of creation 172
LTORG instruction 171

literals
comparison with constants and self-defining terms 35
duplicate 173
explanation of 35
general rules for usage 36
type attribute 291

local scope system variable symbols 230
location counter

defined 32
for control sections 53
maximum value

effect of GOFF assembler option 32
effect of NOGOFF assembler option 32

location counter reference
effect of duplication factor in constants 115
effect of duplication factor in literals 115
relocatable term 33, 37

location counter setting 52

Index 391

location counter setting (continued)
LOCTR instruction 169
ORG instruction 177
START instruction 52
THREAD option 52

LOCTR instruction 169
&SYSLOC 243
interaction with CSECT instruction 170

logical (SETB) expressions 321, 323
logical functions

AND 311
NOT 315
OR 315
XOR 317

logical operators
AND 323
AND NOT 323
NOT 324
OR 324
OR NOT 324
XOR 317, 324
XOR NOT 324

logical XOR 317
logical-expression format

defined 323
logical-expression format built-in function 306
lookahead mode 299
LOWER (SETC built-in function) 336
LQ-type floating-point constant 141
LTORG instruction 171

M
machine instruction format examples

RI format 76
RR format 78
RS format 78
RSI format 79
RX format 80
SI format 81
SS format 81

machine instruction statements
addresses 73
control 66
decimal 66
floating-point 66
formats 70
general 65
immediate data 76
input/output 66
length field in 75
operand entries 71
symbolic operations codes in 70

machine instructions 20
documents 381

macro comment statement format 15
macro definition

inner macro definitions 272
nesting 272

macro definition header (MACRO) 214
macro definition trailer (MEND) 214
macro definitions

alternative statement format 216
arguments 261
body of a 217
combining positional and keyword parameters 223
comment statements 229

macro definitions (continued)
COPY instruction 228
description 207
format of 214
header 208, 214
how to specify 213
inner macro instructions 224
internal macro comment statements 229
keyword parameters 223
MEXIT instruction 228
MNOTE instruction 173
model statements 208
name entry parameter 215
nesting in 273
operand entry 261
parameters 215
parts of a macro definition 207
positional parameters 223
prototype 208
sequence symbols 298
subscripted symbolic parameters 223
symbolic parameters 222
trailer 208, 214
where to define in a source module 213
where to define in open code 213

macro editing
for inner macro definitions 272

macro instruction 215
nested 272

macro instruction statements 259
macro instructions 259

alternative statement format 260
arguments 261
description 209, 259
effects of LIBMAC option 210
general rules and restrictions 274
inner and outer 273
M type attribute 289
multilevel sublists 268
name entry 261
name field type attribute 289
operand entry 261
operation entry 261
passing sublists to inner 269
passing values through nesting levels 275
prototype statement 214
sequence symbols 298
sublists in operands 266
summary of 357
values in operands 269

macro language
comment statements 209
conditional assembly language 210
defining macros 207
library macro definition 210
macro instruction 209
model statements 208
processing statements 208
source macro definition 210
summary of 363
using 207

macro language extensions
nesting definitions 272

macro library 210
MACRO statement (header) 214
macros

continuation line errors 216

392 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

macros (continued)
edited macros 210
effects of LIBMAC option 210
exiting 214
format of a macro definition 214
how to specify 213
library macro definition 210
macro definition 207
macro definition header (MACRO) 208, 214
macro definition trailer (MEND) 208, 214
macro instruction 209
macro library 210
macro prototype statement 208
MACRO statement (header) 214
MEND statement (trailer) 214
MEXIT instruction 228
MNOTE instruction 173
model statements 208
source macro definition 210
using macros 207

manuals xii
masks

specifying their bit pattern using immediate data 76
MCALL

PRINT instruction 183
MEXIT instruction 228
MHELP instruction 351
mnemonic codes

extended 67
machine instruction 70

mnemonic tags 23
MNOTE instruction 173
model statements

explanation of 217
function of 208
in macros 208, 217
in open code 217
rules for concatenation of characters in 218
rules for specifying fields in 220
summary of 357
variable symbols as points of substitution in 217

modifiers of constants
exponent 121
length 118
scale 120

MSOURCE
PRINT instruction 183

multilevel sublists 268

N
N' number attribute 295
name entry coding 16
name entry parameter

in macro definition 215
nesting

macro calls 274
macro definitions 273
passing values through nesting levels 275
recursion 273
system variable symbols in nested macros 276

nesting macro definitions 272
nesting macro instructions

in calls 274
in definitions 274

NOAFPR ACONTROL operand 72

NOALIGN
suboption of FLAG 88

NOALIGN assembler option 112
NOCOMPAT assembler option 87
NOCONT

suboption of FLAG 88
NODATA

PRINT instruction 182
NODECK assembler option 185, 187
NOEXLITW

suboption of FLAG 88
NOGEN

PRINT instruction 182
NOGOFF assembler option 32, 53, 62
NOIMPLEN

suboption of FLAG 89
NOLIST assembler option 184
NOMCALL

PRINT instruction 183
nominal values of constants and literals

address 132
binary 122
binary floating-point 145
character 123
decimal 131
decimal floating-point 146
fixed-point 128
floating-point 141
graphic 126
hexadecimal 127

NOMSOURCE
PRINT instruction 183

NOOBJECT assembler option 185, 187
NOPAGE0

suboption of FLAG 89
NOPRINT

PRINT instruction 184
PUSH instruction 186

NOPRINT operand
AREAD instruction 226
POP instruction 180
PUSH instruction 186

NOSUBSTR
suboption of FLAG 89

NOT (SETA built-in function) 315
NOT (SETB built-in function) 324
notation, description xiii
NOUHEAD

PRINT instruction 184
NOUSING0

suboption of FLAG 89
NOXOBJECT assembler option 62
number attribute (N') 295

O
O' operation code attribute 297
OBJECT assembler option 166, 239, 241
object external class name

establishing 96
object program structure

load module model 43
program object model 43

OFF
PRINT instruction 182

offset constant (Q) 139
omitted operands 269

Index 393

ON
PRINT instruction 182

open code 213
blank lines within 15
conditional assembly instructions in 301
defined 213

operand entries 16
operand entry 261
operands

assembler instruction statements 71
combining positional and keyword 265
compatibility with earlier assemblers 269
in machine instructions 71
keyword 263
machine instruction statements 71
multilevel sublists in 268
omitted 269
positional 261, 262
special characters in 269
statement coding rules 16
sublists in 266
unquoted operands 269
values in 269

operating system
relationship to assembler program 5

operation code attribute (O') 297
operation codes, symbolic

extended 67
machine instruction 70

operation entry coding 16
OPSYN instruction 175
OPTABLE assembler option 86

&SYSOPT_OPTABLE system variable symbol 248
determining value 248

OR (SETA built-in function) 315
OR (SETB built-in function) 324
OR NOT(SETB built-in function) 324
ordinary comment statements 229
ordinary symbols

defined 26
ordinary USING instruction

difference from labeled using instruction 198
ORG instruction 177

location counter setting 177
organization of this manual xi
outer macro definitions 274
outer macro instructions 273
OVERRIDE 84

P
P-type decimal constant 131
packed decimal constant 131
PAGE0

suboption of FLAG 89
paired relocatable terms 41
pairing rules

&& 295
'' 295
character self-defining terms 31
DC instruction 125

parameters
combining positional and keyword 223
keyword 223
positional 223
subscripted symbolic 223
symbolic 222

parentheses
enclosing terms 24

PL/I communication 49
POP instruction 180
positional parameters 223, 262
predefined absolute symbols

in logical expressions 323
in SETA expressions 318
legal use 323
not permitted in character expressions 339

previously defined symbols 29
PRINT

PUSH instruction 186
PRINT instruction 181

DATA 183
GEN 182
MCALL 183
MSOURCE 183
NODATA 182
NOGEN 182
NOMCALL 183
NOMSOURCE 183
NOPRINT 184
NOUHEAD 184
OFF 182
ON 182
UHEAD 183

private code 46, 165
privileged instructions 66
process

override 84
processing of statements

conditional assembly instructions 224
COPY instruction 228
inner macro instructions 224
MEXIT instruction 228
MNOTE instruction 173

PROFILE assembler option 47
program control instructions

CNOP instruction 102
COPY instruction 105
END instruction 160
ICTL instruction 168
ISEQ instruction 168
LTORG instruction 171
ORG instruction 177
POP instruction 180
PUNCH instruction 184
PUSH instruction 185
REPRO instruction 186

program object model
element 43
part 43
section 43

program sectioning 44
program sectioning and linking instructions

AMODE instruction 95
CATTR instruction 96
COM instruction 49, 104
CSECT instruction 106
CXD instruction 108
DSECT instruction 48, 157
DXD instruction 159
ENTRY instruction 162
EXTRN instruction 167
LOCTR instruction 169
RMODE instruction 187

394 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

program sectioning and linking instructions (continued)
RSECT instruction 188
WXTRN instruction 202
XATTR instruction 203

program type
assign to symbol using EQU 162
assigned by modifier in DC instruction 117
assigned in EQU instruction 163
attribute of EQU instruction 164
defined by DC instruction 110
retrieved by SYSATTRP function 337
set by EQU instruction 162

program type value
assigned by EQU instruction 164

Programmer's Guide xiii
prototype 215

macro instruction
alternative statement format 216, 260
function of 214
name entry 215
operand field 215
operation field 215
summary of 357

PSECT 205
address 114, 135
discussed 205
XATTR operands 204

pseudo-registers 49
publications xii

DVD xiii
organization of this manual xi

PUNCH instruction 184
DBCS 184

PUSH instruction 185
ACONTROL 186
NOPRINT 186
PRINT 186
USING 186

Q
Q-type offset constant 139
qualified addressing 56

labeled USING instructions 56
qualified symbols 197

composition 56
labeled USING 197

qualifiers
for symbols 197
relocatable 198

quoted strings 270

R
R-type address constant 114, 135, 205
RA2 assembler option 86, 135
railroad track format, how to read xiii
range

dependent USING instruction 201
labeled USING instruction 198
ordinary USING instruction 196

reading edited macros in z/VSE 2
redefining conditional assembly instructions 177
REFERENCE

XATTR operands 204
reference constant (R) 135

reference control sections 48
reference notation for attribute 270
register zero

as base address 196
in USING instruction 194

registers
use by machine instructions 72

relational operators
for character strings 324

relative address
specifying 74

relative addressing 57
relocatability attribute 41
relocatable expression

complex 42
definition 41
EQU instruction 162

relocatable symbol
defined 27

relocatable terms 24
remarks entries 17
RENT assembler option 188

&SYSOPT_RENT system variable symbol 248
determining if supplied 248

representation conversion functions
A2 332
A2B 331
A2D 332
A2X 332
B2A 311
B2C 332
B2D 333
B2X 333
BYTE 333
C2A 312
C2B 334
C2D 334
C2X 334
D2A 312
D2B 334
D2C 335
D2X 335
SIGNED 336
X2A 317
X2B 337
X2C 338
X2D 338

REPRO instruction 186
RI format 76
RMODE

establishing values 58
indicators in ESD 58
instruction 187

RMODE instruction
24 187
31 187
64 187
ANY 187

RR format 78
RS format 78
RSECT instruction 188

&SYSECT 234
&SYSSTYP 254

RSI format 79
rules for model statement fields 220
RX format 80

Index 395

S
S-type address constant 136
S' scale attribute 293
scale attribute (S') 293
scale modifier 118, 120
SCOPE

XATTR operands 205
scope of SET symbols 280
SECTALGN assembler option

interaction with ALIGN 97
interaction with LTORG instruction 171
interaction with ORG instruction 178

sectioning, program
addressing mode of a control section 95
CSECT instruction 106
ESD entries 61
external symbols 167
LOCTR instruction 169
multiple location counters in a control section 169
read-only control section 188
residence mode of a control section 187
sectioning, program

control sections 45
defining 159
first control section 46
identifying a blank common control section 49
identifying a dummy section 48
location counter 52
maximum length of control section 53
source module 44
total length of external dummy sections 108
unnamed control section 47

weak external symbols 202
sections

GOFF option considerations 58
segments of control sections 58
self-defining terms

binary 30
character 31
comparison with literals and constants 35
decimal 30
graphic 31
hexadecimal 30
overview 29
using 29

semiprivileged instructions 66
sequence symbols 298

defined 26
defined within COPY member 106

SET statement
extended 342

SET symbols
arrays 280
assigning values to 308
created 284
declaring 302

global 302
local 304

description of 279
dimensioned 280
external function calls 343, 344
scope of 280
SETA (set arithmetic) 308
SETB (set binary) 321
SETC (set character) 326
specifications 280
specifications for subscripted 283

SET symbols (continued)
subscripted 280

SETA
arithmetic expression 308
built-in functions 311
statement format 308
symbol in operand field of SETC

in arithmetic expressions 311
leading zeros 342
sign of substituted value 342

symbols
subscripted 308
using 319

SETAF instruction 343
SETB

character relations in logical expressions 325
logical expression 321
statement format 321
symbols

subscripted 321
using 325

SETC
built-in functions 331
character expression 326
character expressions 328
SETA symbol in operand field 342
statement format 326
substring notation 326
symbols

subscripted 326
SETCF instruction 344
shift codes

shift-in (SI) DBCS character delimiter 10
shift-out (SO) DBCS character delimiter 10

shift functions
SLA 316
SLL 316
SRA 316
SRL 317

shift left arithmetic (SETA built-in function) 316
shift left logical (SETA built-in function) 316
shift right arithmetic (SETA built-in function) 316
shift right logical (SETA built-in function) 317
SI (shift-in) character

continuation of double-byte data 13
continuation-indicator field 12
double-byte character set 10

SI format 81
SIGNED (SETC built-in function) 336
simply relocatable addresses

defined 74
SLA (SETA built-in function) 316
SLL (SETA built-in function) 316
SO (shift-out) character

continuation of double-byte data 13
continuation-indicator field 12
double-byte character set 10

softcopy publications xiii
source macro definitions 210
source module 7
SPACE instruction 189

blank lines 189
special characters 269
SRA (SETA built-in function) 316
SRL (SETA built-in function) 317
SS format 81
stacked items xiv

396 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

START instruction 189
&SYSECT 234
&SYSSTYP 254
beginning a source module 45
control section 46
syntax 189

statement coding rules 15
statement field 12
string manipulation functions

DCLEN 313
DCVAL 335
DEQUOTE 336
DOUBLE 336
LOWER 336
UPPER 337

string scanning functions
FIND 313
INDEX 314

strings
character 270
quoted 270

structure of assembler language 17
subfield 1 of constant (duplication factor) 114
subfield 2 of constant (type) 115
subfield 3 of constant (type extension) 116
subfield 4 of constant (modifier) 118
subfield 5 of constant (nominal value) 121
sublists

compatibility with Assembler H 243
effect of COMPAT(SYSLIST) assembler option 266, 269
in operands 266
multilevel 268
passing

to inner macro instructions 269
subscripted local SET symbol 305
subscripted SET symbols 280, 283
subscripted symbolic parameters 223
SUBSTR

suboption of FLAG 89
substring notation

arithmetic expressions in 311
assigning SETC symbols 326, 344
concatenating double-byte data 340
concatenation 341
definition 328
duplicating double-byte data 327
duplication factor 326
evaluation of 329
level of parentheses 318
using count (K') attribute 285

symbol definition (EQU) instruction 162
symbol length attribute reference 33
symbol qualifier

label unavailable as result of DROP instruction 152
symbol qualifiers 197
symbol table 25
symbolic linkages 58
symbolic operation codes 70

defining 175
deleting 175
OPSYN 175

symbolic parameters 222
symbols

absolute 162
attributes in combination with 286
complexly relocatable

EQU instruction 163

symbols (continued)
defining 27
explanation of 25
extended SET 342
external 137, 202

EXTRN instruction 167
labeled USING 197
length attribute reference 33
previously defined 29
qualifiers 197
relocatable 27
restrictions on 28
sequence 298
SET 305

declaring global 302
declaring local 304

USING instruction labels 197
variable

as points of substitution in model statements 217
SET symbols 279
subscripted 280
symbolic parameters 222

weak 202
syntax notation, description xiii
SYSADATA file

ADATA instruction 92
SYSATTRA (SETC built-in function) 165, 337
SYSATTRP (SETC built-in function) 165, 337
SYSPARM assembler option

&SYSPARM system variable symbol 249
system macro instructions 210
system variable symbols

&SYS naming convention 229
&SYSADATA_DSN 231
&SYSADATA_MEMBER 231
&SYSADATA_VOLUME 232
&SYSASM 232
&SYSCLOCK 233
&SYSDATC 233
&SYSDATE 234
&SYSECT 234
&SYSIN_DSN 235
&SYSIN_MEMBER 236
&SYSIN_VOLUME 237
&SYSJOB 238
&SYSLIB_DSN 238
&SYSLIB_MEMBER 238
&SYSLIB_VOLUME 239
&SYSLIN_DSN 239
&SYSLIN_MEMBER 240
&SYSLIN_VOLUME 241
&SYSLIST 241
&SYSLOC 243
&SYSM_HSEV 174, 244
&SYSM_SEV 174, 244
&SYSMAC 243
&SYSNDX 245
&SYSNEST 247
&SYSOPT_DBCS 248
&SYSOPT_OPTABLE 248
&SYSOPT_RENT 248
&SYSOPT_XOBJECT 248
&SYSPARM 249
&SYSPRINT_DSN 249
&SYSPRINT_MEMBER 250
&SYSPRINT_VOLUME 251
&SYSPUNCH_DSN 251

Index 397

system variable symbols (continued)
&SYSPUNCH_MEMBER 252
&SYSPUNCH_VOLUME 253
&SYSSEQF 253
&SYSSTEP 254
&SYSSTMT 254
&SYSSTYP 254
&SYSTEM_ID 255
&SYSTERM_DSN 255
&SYSTERM_MEMBER 256
&SYSTERM_VOLUME 256
&SYSTIME 257
&SYSVER 257
defined 229
in nested macros 276
in open code 229, 276, 302
summary of 370
variability 230

T
terms 24

enclosed in parentheses 24
TITLE instruction 190
Toolkit Customization book xiii
Toolkit installation and customization

book information xiii
trailer

macro definition 214
TRANSLATE option

converting default EBCDIC characters 123
not modifying ASCII 125

translation table 11
type attribute (T') 289

literals 290, 291
name field of macro instruction 289
undefined type attribute 290
unknown type attribute 290

type extension of constants 116
TYPECHECK assembler option 86
types of constants 115

U
UHEAD

PRINT instruction 183
unary operators 318
undefined type attribute 290
Unicode character constant 123
Unicode UTF-16

character constant 125
Unicode UTF-16 constant nominal data

CODEPAGE option 125
unknown type attribute 290
unnamed control section 47
unquoted operands 269
unsigned integer conversion 342
UPPER (SETC built-in function) 337
user I/O exits 166
user records

ADATA instruction 92
USING

PUSH instruction 186
USING assembler option

WARN suboption 196
USING instruction 193

USING instruction (continued)
base registers for absolute addresses 194
dependent 200
discussion of 193
domain of a 197
for executable control sections 193
for reference control sections 193
labeled 197
labeled dependent 200
range

dependent 201
labeled 198
ordinary 196

USING0
suboption of FLAG 89

UTF-16 125
UTF-16 Unicode character constant 116

V
V-type address constant 137, 205
validity checking functions

ISBIN 314
ISDEC 314
ISHEX 314
ISSYM 315

values
passing through nesting levels 275

values in operands 269
variable symbols

&SYSADATA_DSN 231
&SYSADATA_MEMBER 231
&SYSADATA_VOLUME 232
&SYSASM 232
&SYSCLOCK 233
&SYSDATC 233
&SYSDATE 234
&SYSECT 234
&SYSIN_DSN 235
&SYSIN_MEMBER 236
&SYSIN_VOLUME 237
&SYSJOB 238
&SYSLIB_DSN 238
&SYSLIB_MEMBER 238
&SYSLIB_VOLUME 239
&SYSLIN_DSN 239
&SYSLIN_MEMBER 240
&SYSLIN_VOLUME 241
&SYSLIST 241
&SYSLOC 243
&SYSM_HSEV 244
&SYSM_SEV 244
&SYSMAC 243
&SYSNDX 245
&SYSNEST 247
&SYSOPT_DBCS 248
&SYSOPT_OPTABLE 248
&SYSOPT_RENT 248
&SYSOPT_XOBJECT 248
&SYSPARM 249
&SYSPRINT_DSN 249
&SYSPRINT_MEMBER 250
&SYSPRINT_VOLUME 251
&SYSPUNCH_DSN 251
&SYSPUNCH_MEMBER 252
&SYSPUNCH_VOLUME 253
&SYSSEQF 253

398 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

variable symbols (continued)
&SYSSTEP 254
&SYSSTMT 254
&SYSSTYP 254
&SYSTEM_ID 255
&SYSTERM_DSN 255
&SYSTERM_MEMBER 256
&SYSTERM_VOLUME 256
&SYSTIME 257
&SYSVER 257
attributes 286, 368
defined 26
dimensioned 283
implicitly declared 281, 283

SETA 308
SETB 321
SETC 326

subscripted 283
summary of 369
symbolic parameters 215
type 280

W
WXTRN instruction 202

X
X-type hexadecimal constant 127
X2A (SETA built-in function) 317
X2B (SETC built-in function) 337
X2C (SETC built-in function) 338
X2D (SETC built-in function) 338
XATTR instruction 203
XATTR operands

ATTRIBUTES 203
LINKAGE 204
PSECT 204
REFERENCE 204
SCOPE 205

XOBJECT assembler option 62, 92, 166, 239, 241
ALIAS string 94
CATTR instruction 96
XATTR instruction 203

XOR (SETA built-in function) 317
XOR (SETB built-in function) 324
XOR NOT (SETB built-in function) 324

Y
Y-type address constant 133

Z
Z-type decimal constant 131
z/OS documents 381
z/VM documents 381, 382
z/VSE documents 382
zero

division by, in expression 40

Index 399

400 High Level Assembler for z/OS & z/VM & z/VSE: Language Reference

����

SC26-4940-06

	Contents
	Figures
	Tables
	About this document
	Who should use this manual
	Programming interface information
	Organization of this manual
	High Level Assembler documents
	Documents
	Collection kits

	Related publications
	Syntax notation

	How to send your comments to IBM
	If you have a technical problem

	Summary of changes
	Chapter 1. Introduction
	Language compatibility
	Assembler language
	Machine instructions
	Assembler instructions
	Macro instructions

	Assembler program
	Basic functions
	Associated data
	Controlling the assembly
	Processing sequence

	Relationship of assembler to operating system
	Coding made easier
	Symbolic representation of program elements
	Variety in data representation
	Controlling address assignment
	Relocatability
	Sectioning a program
	Linkage between source modules
	Program listings
	Multiple source modules

	Double-byte character set notation

	Chapter 2. Coding and structure
	Character set
	Standard character set
	Double-byte character set
	Translation table

	Assembler language coding conventions
	Field boundaries
	Statement field
	Continuation-indicator field
	Identification-sequence field

	Continuation lines
	Alternative statement format
	Continuation of double-byte data

	Blank lines
	Comment statement format
	Instruction statement format
	Statement coding rules

	Assembler language structure
	Overview of assembler language structure
	Machine instructions
	Assembler instructions
	Conditional assembly instructions
	Macro instructions
	Mnemonic tags

	Terms, literals, and expressions
	Terms
	Terms in parentheses
	Symbols
	Self-defining terms
	Location counter
	Symbol length attribute reference
	Other attribute references

	Literals
	Literals, constants, and self-defining terms
	General rules for using literals
	Literal pool

	Expressions
	Rules for coding expressions
	Evaluation of expressions
	Absolute and relocatable expressions

	Chapter 3. Program structures and addressing
	Object program structures
	Source program structures
	Source module
	Beginning of a source module
	End of a source module

	Sections, elements, and parts
	Sections
	First section
	Unnamed section

	Reference control sections
	Dummy control sections
	Common control sections
	External dummy sections

	Classes (z/OS and CMS)
	Class binding and loading attributes
	Default class assignments

	Parts (z/OS and CMS)
	Location counter setting
	Location counter and length limits
	Use of multiple location counters

	Addressing
	Addressing within source modules: establishing addressability
	How to establish addressability

	Base register instructions
	Qualified addressing
	Dependent addressing
	Relative addressing
	Literal pools
	Establishing residence and addressing mode
	Symbolic linkages
	Establishing symbolic linkage
	Referring to external data
	Branching to an external address
	Establishing an external symbol alias

	External symbol dictionary entries
	Summary of source and object program structures

	Chapter 4. Machine instruction statements
	General instructions
	Decimal instructions
	Floating-point instructions
	Control instructions
	Input/output operations
	Branching with extended mnemonic codes
	Alternative mnemonics for some branch relative instructions

	Statement formats
	Symbolic operation codes
	Operand entries
	Registers
	Register usage by machine instructions
	Register usage by system

	Addresses
	Implicit address
	Explicit address
	Relative address
	Relocatability of addresses
	Machine or object code format

	Lengths
	Immediate data

	Examples of coded machine instructions
	RI format
	RR format
	RS format
	RSI format
	RX format
	SI format
	SS format

	Chapter 5. Assembler instruction statements
	64 bit addressing mode
	*PROCESS statement
	ACONTROL instruction
	ADATA instruction
	AINSERT instruction
	ALIAS instruction
	AMODE instruction
	CATTR instruction (z/OS and CMS)
	CCW and CCW0 instructions
	CCW1 instruction
	CEJECT instruction
	CNOP instruction
	COM instruction
	COPY instruction
	CSECT instruction
	CXD instruction
	DC instruction
	Rules for DC operands
	General information about constants
	Length attribute value of symbols naming constants
	Alignment of constants

	Padding and truncation of values
	Padding
	Truncation

	Subfield 1: Duplication Factor
	Subfield 2: Type
	Subfield 3: Type Extension
	Subfield 4: Program type
	Subfield 5: Modifier
	Length modifier
	Scale modifier
	Exponent modifier

	Subfield 6: Nominal Value
	Binary constant—B
	Character constant—C
	Graphic constant—G
	Hexadecimal constant—X
	Fixed-point constants—F and H
	Decimal constants—P and Z
	Address constants
	Offset and length constants
	Hexadecimal floating-point constants—E, EH, D, DH, L, LH, LQ
	Binary floating-point constants—EB, DB, LB
	Decimal floating-point constants—ED, DD, LD
	Syntax of binary, decimal, and hexadecimal floating-point constants
	Floating-point special values
	Literal constants

	DROP instruction
	Labeled USING
	Dependent USING

	DS instruction
	Bytes skipped for alignment
	How to use the DS instruction
	To reserve storage
	To force alignment
	To name fields within an area

	DSECT instruction
	DXD instruction
	EJECT instruction
	END instruction
	ENTRY instruction
	EQU instruction
	Using conditional assembly values

	EXITCTL instruction
	EXTRN instruction
	ICTL instruction
	ISEQ instruction
	LOCTR instruction
	LTORG instruction
	Literal pool
	Addressing considerations
	Duplicate literals

	MNOTE instruction
	Remarks

	OPSYN instruction
	Redefining conditional assembly instructions

	ORG instruction
	POP instruction
	PRINT instruction
	Process statement
	PUNCH instruction
	PUSH instruction
	REPRO instruction
	RMODE instruction
	RSECT instruction
	SPACE instruction
	START instruction
	TITLE instruction
	Deck ID in object records
	Printing the heading
	Printing the TITLE statement
	Sample program using the TITLE instruction
	Page ejects
	Valid characters

	USING instruction
	Base address
	How to use the USING instruction
	Base registers for absolute addresses
	Ordinary USING instruction
	Computing displacement
	Using General Register Zero
	Range of an ordinary USING instruction
	Domain of an ordinary USING instruction

	Labeled USING instruction
	Range of a labeled USING instruction
	Domain of a labeled USING instruction

	Dependent USING instruction
	Range of a dependent USING instruction
	Domain of a dependent USING instruction

	WXTRN instruction
	XATTR instruction (z/OS and CMS)
	Association of code and data areas (z/OS and CMS)

	Chapter 6. Introduction to macro language
	Using macros
	Macro definition
	Model statements
	Processing statements
	Comment statements

	Macro instruction
	Source and library macro definitions
	Macro library
	System macro instructions

	Conditional assembly language

	Chapter 7. How to specify macro definitions
	Where to define a macro in a source module
	Format of a macro definition
	Macro definition header and trailer
	MACRO statement
	MEND statement

	Macro instruction prototype
	Alternative formats for the prototype statement

	Body of a macro definition
	Model statements
	Variable symbols as points of substitution
	Listing of generated fields
	Listing of generated fields containing double-byte data

	Rules for concatenation
	Concatenation of fields containing double-byte data

	Rules for model statement fields
	Name field
	Operation field
	Operand field
	Remarks field
	Using spaces

	Symbolic parameters
	Positional parameters
	Keyword parameters
	Combining positional and keyword parameters
	Subscripted symbolic parameters

	Processing statements
	Conditional assembly instructions
	Inner macro instructions
	Other conditional assembly instructions
	AEJECT instruction
	AINSERT instruction
	AREAD instruction
	Assign character string value
	Assign local time of day

	ASPACE instruction
	COPY instruction
	MEXIT instruction

	Comment statements
	Ordinary comment statements
	Internal macro comment statements

	System variable symbols
	Scope and variability of system variable symbols
	&SYSADATA_DSN System Variable Symbol
	&SYSADATA_MEMBER System Variable Symbol
	&SYSADATA_VOLUME System Variable Symbol
	&SYSASM System Variable Symbol
	&SYSCLOCK System Variable Symbol
	&SYSDATC System Variable Symbol
	&SYSDATE System Variable Symbol
	&SYSECT System Variable Symbol
	&SYSIN_DSN System Variable Symbol
	&SYSIN_MEMBER System Variable Symbol
	&SYSIN_VOLUME System Variable Symbol
	&SYSJOB System Variable Symbol
	&SYSLIB_DSN System Variable Symbol
	&SYSLIB_MEMBER System Variable Symbol
	&SYSLIB_VOLUME System Variable Symbol
	&SYSLIN_DSN System Variable Symbol
	&SYSLIN_MEMBER System Variable Symbol
	&SYSLIN_VOLUME System Variable Symbol
	&SYSLIST System Variable Symbol
	&SYSLOC System Variable Symbol
	&SYSMAC System Variable Symbol
	&SYSM_HSEV System Variable Symbol
	&SYSM_SEV System Variable Symbol
	&SYSNDX System Variable Symbol
	&SYSNEST System Variable Symbol
	&SYSOPT_DBCS System Variable Symbol
	&SYSOPT_OPTABLE System Variable Symbol
	&SYSOPT_RENT System Variable Symbol
	&SYSOPT_XOBJECT System Variable Symbol
	&SYSPARM System Variable Symbol
	&SYSPRINT_DSN System Variable Symbol
	&SYSPRINT_MEMBER System Variable Symbol
	&SYSPRINT_VOLUME System Variable Symbol
	&SYSPUNCH_DSN System Variable Symbol
	&SYSPUNCH_MEMBER System Variable Symbol
	&SYSPUNCH_VOLUME System Variable Symbol
	&SYSSEQF System Variable Symbol
	&SYSSTEP System Variable Symbol
	&SYSSTMT System Variable Symbol
	&SYSSTYP System Variable Symbol
	&SYSTEM_ID System Variable Symbol
	&SYSTERM_DSN System Variable Symbol
	&SYSTERM_MEMBER System Variable Symbol
	&SYSTERM_VOLUME System Variable Symbol
	&SYSTIME System Variable Symbol
	&SYSVER System Variable Symbol

	Chapter 8. How to write macro instructions
	Macro instruction format
	Alternative formats for a macro instruction
	Name entry
	Operation entry
	Operand entry
	Positional operands
	Keyword operands
	Combining positional and keyword operands

	Sublists in operands
	Multilevel sublists
	Passing sublists to inner macro instructions

	Values in operands
	Omitted operands
	Unquoted operands
	Special characters
	Ampersands
	Apostrophes
	Shift-out (SO) and shift-in (SI)
	Quoted strings and character strings
	Attribute reference notation
	Parentheses
	Spaces
	Commas
	Equal signs
	Periods

	Nesting macro instruction definitions
	Inner and outer macro instructions
	Levels of macro call nesting
	Recursion
	General rules and restrictions
	Passing values through nesting levels
	System variable symbols in nested macros

	Chapter 9. How to write conditional assembly instructions
	Elements and functions
	SET symbols
	Subscripted SET symbols
	Scope of SET symbols
	Scope of symbolic parameters
	SET symbol specifications
	Subscripted SET symbol specification
	Created SET symbols

	Data attributes
	Attributes of symbols and expressions
	Type attribute (T')
	Length attribute (L')
	Scale attribute (S')
	Integer attribute (I')
	Count attribute (K')
	Number attribute (N')
	Defined attribute (D')
	Operation code attribute (O')

	Sequence symbols
	Lookahead
	Generating END statements
	Lookahead restrictions
	Sequence symbols

	Open code
	Conditional assembly instructions
	Declaring SET symbols
	GBLA, GBLB, and GBLC instructions
	Subscripted global SET symbols
	Alternative format for GBLx statements

	LCLA, LCLB, and LCLC instructions
	Subscripted local SET symbols
	Alternative format for LCLx statements

	Assigning values to SET symbols
	Introducing Built-In Functions
	SETA instruction
	Subscripted SETA symbols
	Arithmetic (SETA) expressions
	Using SETA symbols

	SETB instruction
	Subscripted SETB symbols
	Logical (SETB) expressions

	SETC instruction
	Subscripted SETC symbols
	Character (SETC) expressions
	Using SETC symbols

	Extended SET statements
	Alternative statement format

	SETAF instruction
	SETCF instruction

	Branching
	AIF instruction
	Extended AIF instruction
	Alternative format for AIF instruction
	AIFB—synonym of the AIF instruction

	AGO instruction
	Computed AGO instruction
	Alternative format for AGO instruction
	AGOB - synonym of the AGO instruction

	ACTR instruction
	Branch counter operations

	ANOP instruction

	Chapter 10. MHELP instruction
	MHELP options
	MHELP operand mapping
	Combining options

	Appendix A. Assembler instructions
	Appendix B. Summary of constants
	Appendix C. Macro and conditional assembly language summary
	Appendix D. Standard character set code table
	Notices
	Trademarks

	Bibliography
	Index
	Special characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

