

IIInnnpppuuuttt /// OOOuuutttpppuuuttt:::

AAA WWWhhhiiittteee PPPaaapppeeerrr

III///OOO TTTeeeccchhhnnnooolllooogggyyy SSSeeerrriiieeesss
SSSyyysssttteeemmm zzz

jjjkkkeeettt tttnnneeerrr@@@uuusss... iiibbbmmm...cccooommm

NNNooovvveeemmmbbbeeerrr 222000000777

IIInnnpppuuuttt /// OOOuuutttpppuuuttt::: AAA WWWhhhiiittteee PPPaaapppeeerrr
Much of the mainframe’s distinction leading to its success was founded on its I/O
Architecture. The I/O model and its design implementation was an initial engineering
idea which pioneered the unprecedented throughput this platform has today.

An Abstract from the 1964 System/360 Architecture Announcement:

An input/output system offering new degrees of concurrent operation, compatible channel operation,
data rates approaching 5,000,000 characters/second, integrated design of hardware and software, a new
low-cost, multiple-channel package sharing main-frame hardware, new provisions for device status
information, and a standard channel interface between central processing unit and input/output devices.

At the time an advanced concept was to ensure input/output (I/O) devices made systems
specifically useful for given applications. A general method was needed for using I/0
devices differing in data rate, access, and function.

During this era, the new design was speculation, although from this point forward, IBM’s
mainframe systems and its modern lineage succeeded beyond the imaginable dreams of
the people who designed and built its introductory models. It changed the fortunes of our
clients and of IBM, and to this day carries an extraordinary portion of the world’s workload.

Most important, IBM continues to be motivated by the aspiration to make a difference in
the world, and to shape global businesses with mainframe innovation. This paper
attempts to briefly describe I/O anatomy and its implementation.

Basics
The terms “input” and “output” are used to describe the transfer of data between I/O
devices and main storage. An operation involving this kind of transfer is referred to as an
I/O operation. The facilities used to control I/O operations are collectively called the
channel subsystem, (I/O devices and their control units attach to the channel
subsystem.)

The channel subsystem1 directs the flow of information between I/O devices and main
storage. It relieves CPUs of the task of communicating directly with I/O devices and
permits data processing to proceed concurrently with I/O processing. The channel
subsystem uses one or more channel paths using a Channel Path ID (CHPID) as the
communication link in managing the flow of information to or from I/O devices.

1. As part of I/O processing, the channel subsystem also performs a path-management operation by testing for channel-

path availability, chooses an available channel path, and initiates the performance of the I/O operation by the device.

At the time this photograph was taken
at the System/360 announcement in
Poughkeepsie on April 7 1964, the
sage of what Fortune magazine writer
T. A. Wise would later call IBM’s
$5,000,000,000 gamble was well
under way.

Tom Watson, Jr. at the System/360 press conference.

Illustration of I/O component relationship

Within the channel subsystem are subchannels. One subchannel is provided for and
dedicated to each I/O device accessible to the program through the channel subsystem.
Each subchannel provides information concerning the associated I/O device and its
attachment to the channel subsystem. The subchannel also provides information
concerning I/O operations and other functions involving the associated I/O device. The
subchannel is the means by which the channel subsystem provides information about
associated I/O devices to CPUs, which obtain this information by executing I/O
instructions. The actual number of subchannels provided depends on the model and the
configuration, although a system can support in the millions.

I/O devices are attached through control units to the channel subsystem by means of
channel paths. Control units may be attached to the channel subsystem by more than
one channel path, and an I/O device may be attached to more than one control unit. In
all, an individual I/O device may be accessible to the channel subsystem by as many as
eight different channel paths via a subchannel, depending on the model and the
configuration. The total number of channel paths provided by a channel subsystem
depends on the model and the configuration. The current maximum is 0-255 (256).

The performance of a channel subsystem depends on its use and on the system model
in which it is implemented. Channel paths are provided with different data-transfer
capabilities, and an I/O device designed to transfer data only at a specific rate (a
magnetic-tape unit or a disk storage, for example) can operate only on a channel path
that can accommodate at least this data rate.

The channel subsystem contains common facilities for the control of I/O operations.
When these facilities are provided in the form of separate, autonomous equipment
designed specifically to control I/O devices, I/O operations are completely overlapped
with the activity in CPUs. The only main-storage cycles required by the channel
subsystem during I/O operations are those needed to transfer data and control
information to or from the final locations in main storage, along with those cycles that
may be required for the channel subsystem to access the subchannels when they are
implemented as part of non-addressable main storage. These cycles do not delay CPU
programs, except when both the CPU and the channel subsystem concurrently attempt
to reference the same main-storage area.

Main
MEMORY Tape

@
@

==

Control
Units Disk

Channel Path
(CHPID)

* Channels are the communication path from the CSS
 to the control units and I/O devices
* Channel Path Identifier (CHPID) is a value assigned
 to each channel path uniquely identifying that path
* Control Units provide the logical capabilities to operate
 and control an I/O Device
* Subchannels provide the logical appearance of a

 device to the program and contains the information
 for sustaining an I/O

* Devices provides the external storage medium between
 the processing systems and its environment.

Subchannels

Printer

Channel
Subsystem
 (CSS)

Channels

The subchannel consists of internal storage that contains information in the form of a
Channel Program consisting of one or more Channel Command Words (CCWs) chained
together in main storage. Each 8-byte CCW contains a command, count, address, flags
and I/O-interrupt code. In the past, CCWs typically resided in consecutive memory
locations. In order to provide support for noncontiguous real memory, an additional
construct called an indirect address word (IDAW) list was devised. The IDAW list allows
scattering of data in memory for noncontiguous real pages using a 64-bit addressing
scheme. I/O operations are initiated with a device by the execution of I/O instructions
that designate the subchannel associated with the device. The IDAW designated by the
CCW can designate any location. Data is then transferred, for read, write, channel status,
etc. The Modified IDAW (MIDAW) facility is a address word facility added to
z/Architecture to coexist with the current IDAW facility. The MIDAW facility is a method
of gathering or scattering data from and into discontinuous storage locations during an
I/O operation.

The I/O z/Architecture supports indirect addressing implementing the Modified Indirect
Data Address Word facility for both ESCON and FICON channels. The use of the
MIDAW facility, by applications that currently use data chaining, results in improved
channel throughput in FICON environments. This facility is used by VSAM media
manager (VMM).

After I/O processing at the subchannel has been requested by the execution of START
SUBCHANNEL (SSCH), the CPU is released for other work, and the channel subsystem
assembles or disassembles data and synchronizes the transfer of data bytes between
the I/O device and main storage.

\

 \

The Channel Subsystem (CSS)
The CSS comprises all of the hardware and firmware required to implement the Channel
architecture, including all of the different types of channel paths provided by the system.
The firmware in the dedicated I/O processor also known as the system assist processors
(SAPs)* and I/O channel paths performs the bulk of the I/O instructions as well as I/O
interrupt processing. There is also firmware in the CPs that initiates the I/O instructions
and participates in the handling of I/O interruptions. The CSS directs the flow of
information between I/O devices and main storage. The CSS uses one or more channel
paths as the communication links in managing the flow of this information. As part of I/O
processing, the CSS also performs channel-path selection and channel-path
management functions, such as testing for channel-path availability, selecting an
available channel path, and initiating execution of I/O operations over the selected
channel path with the attached I/O devices. When I/O operations are completed, the
CSS analyzes the resulting status and transmits it back to the program by use of I/O
interrupts* and I/O status information.

* Described later in this document

Note: For a traditional channel-attached device, the I/O operation is executed according to a channel
program that is constructed by software and initiated by the execution of the start subchannel
(SSCH) instruction. An operand of the SSCH is the operation request block (ORB) instruction, which
describes the starting address of the channel program in memory and other dynamic parameters
that are in effect for the I/O operation.

NOTE: VSAM is the underlying Access Method used by IMS, DB2 and Unix System Services.

Illustration of CSS relationship

 MBA / SAP are covered later in this document

To provide communication among the various elements in the CSS and to maintain
information about the I/O configuration, a set of control blocks are allocated in the
Hardware System Area (HSA) storage that is accessible only to the embedded firmware.
One class of control block in HSA is the subchannel control block (SCB). Each SCB
contains much of the information used to represent the architected subchannel. As with
the architected subchannel, one HSA subchannel for each device is associated with an
LPAR. It contains most of the information required to communicate with the associated
I/O device. An SCB contains information such as the channel program address, path
selection controls, the device address, subchannel and device status. In short, this is the
major control block used to pass information among the elements in the CSS. Although,
there are additional control blocks used to manage I/O operations with the channels,
while others allow the queuing of work or interruptions.

Additional requirements to stage an I/O is the Subsystem Identification Word (SID)
operand used by all z/Architecture I/O instructions that require a subchannel (logical
device) specification as the means of identifying the target subchannel associated with a
specific I/O device. For example, the Start Subchannel (SSCH) instruction that is used to
initiate an I/O operation with a specific I/O device requires an SID operand as the means
for identifying the subchannel that is used to access the associated device.

Channel Path Types
The channel subsystem may contain more than one type of channel path. Many of the
channel types use fiber optic for data transmission. In general, fiber cables are 100 times
lighter than the previous cable type (bus and tag), have substantially reduced bulk, have
a smaller more reliable connectors, have reduced distortion, and are free from signal
skew. These cable types are known as Enterprise Connectivity (ESCON) and Fiber
Connectivity (FICON). Fiber uses light sources in place of the previous parallel bit
copper transmission. ESCON is being replaced by FICON which supports full duplex
rates of 1, 2, and 4 Gigabit up to 100 km.

Fiber-optic communication is a
method of transmitting information
from one place to another by sending
light through an optical fiber.
The light forms an electromagnetic
carrier wave that is modulated
to carry information.

Channel Subsystem (CSS)

LPAR
Production

(SOA)

LPAR
LINUX

LPAR
Database
Production

LPAR
z/VM

LPAR
CICS

Production

LPAR
Test

The CSS enables communication from server memory
 to peripherals via channel connections. The channels
 in the CSS permit transfer of data between main
 storage and I/O devices or other LPARs under the
 control of a channel program. The CSS allows channel
 I/O operations to continue independently of other
 operations within the server. This allows other functions
 to resume after an I/O operation has been initiated.

 The CSS also provides communication between logical
 partitions within a physical server using internal
 channels.

A CSS can have up to 256 channel paths. One CSS can
connect to many LPARS.

Cache

MBA SAP

CP CP CP CP CP CP CP CP CP CP CP CP

MBA SAP MBA SAP MBA SAP

Cache

MBA = Memory Bus Adapter
SAP = System Assist Processor (I/OHardware System Area

((HSA)Hypervisor

Here are a few distinguishing features between these two channel types:

* FICON improves distance solutions by a factor of 10
* FICON provides up to twenty times greater bandwidth per channel
* FICON supports 16 times as many devices

 * FICON uses fiber more efficiently
 * FICON provides greater configuration flexibility
 * FICON provides relief for “channel constrained” systems

 i.e. FICON delivers up to 2688 ESCON equivalent channels on an z9 EC,
 with the maximum number of 336 FICON channels (448MHz).

Another channel type is the IBM Open Systems Adapter (OSA) which is an integrated
hardware feature that allows the Z platform to provide industry-standard connectivity
directly to clients on local area networks (LANs) and wide area networks (WANs).
With OSA, Z is an open systems platform that brings mainframe resources directly to its
attached networks.

Other channels types are hipersockets which allows a seamless network connection
between LPAR images within a single machine and coupling facility links used for
connecting systems providing resource and data sharing functionality.

Sharing Channels
Channels can be shared within a CSS via the Multiple Image Facility (MIF) and across
CSSs using Spanned Channels. I/O sharing was already possible in a pre-MIF ESCON
environment, where multiple systems could share control units, devices, and common
links through ESCON device features. Under this situation, channel assignment to an
LPAR, however was more ‘static’. Channels could only be defined as reconfigurable,
enabling them to be administratively removed from one logical partition (LPAR) and
attached to another. They were dedicated to one logical partition at a particular time and
could not be shared by other logical partitions.

With MIF, the server’s channel subsystem provides channel path sharing by extending
the logical access capability of the channel architecture to logical partitions.

MIF provides the same communication between logical partitions and I/O devices, but
using fewer physical channels, and therefore, fewer ports and possible control unit link
interfaces. Also, manual reassignment of channels between logical partitions to handle
different workloads is no longer necessary, which improves reliability, availability and
less costly not needing to acquire additional channel cards.

 Control
Unit

LPAR 1 LPAR 2 LPAR 3

 Control
Unit

LPAR 1 LPAR 2 LPAR 3

 M I F

With MIF, the channel subsystem
provides channel path sharing by
extending the logical access capability of
the ESCON / FICON architecture to
logical partitions.

Pre-MIF

Using MIF, each LPAR has its own view of a shared channel (logical channel path
image) and each control unit connected to the shared channel (subsystem image).

The allocation of additional channels when adding new logical partitions or for availability
reasons is no longer required, and elimination of under utilized channels is possible. MIF
eases system and configuration management tasks such as enabling disaster backup
solutions, consolidating applications, and providing migration, test, and other special
environments. Moreover, MIF improves system configuration flexibility, especially in
handling greater numbers of logical partitions, through easier access to control units and
reduced operational complexity.

Channel Subsystem Images
Before we describe Spanned Channels, let’s discuss multiple channel subsystems. The
mainframe can support more than one Channel Subsystem. The multiple-channel-
subsystem (MCSS) architecture was introduced with the z990 family and its intentions
were to design, and support efforts focused on expanding upon the z platform existing
multiple-image facility (MIF) in order to:

1) Minimize the changes necessary to provide greater I/O capacity,
2) Build upon and increase the MIF channel-sharing capabilities,
3) Ensure backward compatibility with previous mainframe computing environments.

Each Logical CSS (LCSS) may have from 1 to 256 channels and may in turn be
configured with 1 to 15 logical partitions (LPARs). At the time of this writing up to four
LCSS were available on an Enterprise Class machine (On a Business Class depending
on the model up to two). The LCSS uses virtualization in order to share channel between
the CSS’.

In order to achieve the necessary increase in the total I/O capacity, several
z/Architecture constraints had to be addressed and redefined in a manner that minimizes
their impact on providing more than 256 channels and associated I/O devices on the z
platform operating systems.

Specifically, the architecturally defined channel-path identification number (mentioned
earlier) known as the channel-path identifier (CHPID), had to be maintained without
change. The CHPID value is defined as an 8-bit binary number resulting in a range of
unique CHPID values from 0 to 255, therefore, a maximum of 256 channel paths were
possible on previous S/370, S/390, and early z/Architecture-class systems. Since the
inception pioneering of the S/370 XA channel-subsystem architecture in the late 1970s,
this 8-bit CHPID has been maintained without change because of its pervasive use in
the z/OS and z/VM operating systems. For example, the CHPID value is maintained in
many internal programming control blocks, is displayed in various operator messages,
and is the object of various system commands, programming interfaces, etc., all of which
would have to be redesigned if the CHPID value was increased to more than an 8-bit
number in order to accommodate more than 256 channel paths.

Note: Under the present z/Architecture the mainframe theoretically can support up to 256 CSS’.

 Note: It is still possible to define dedicated channels.

To accommodate more than 256 channel paths an additional level of channel-
addressing indirection was created that allows more than 256 physical channel paths to
be installed and uniquely identified without changing the legacy 8-bit CHPID value and
the corresponding programming dependencies on the CHPID. This new channel-path-
identification value, called the physical-channel identifier (PCHID), is a 16-bit binary
number ranging from 0 to 65,279, which uniquely identifies each physically installed
channel path. With the current mainframe platform, a maximum of 1024 external
channel paths (i.e., ESCON, FICON, OSA) and 48 internal channel paths (e.g., Internal
Coupling and IQDIO hiperlinks) are each assigned a unique PCHID. The PCHID value is
transparent to the programs operating in each LPAR. Correspondingly, both of these I/O
configuration management programs are enhanced to provide the controls necessary to
associate the PCHID value of each channel path with its corresponding CHPID values.
Therefore, a PCHIP reflects the physical location of a channel type interface based on
the I/O cage location, slot number and port number.

CHPIDs are not pre-assigned on mainframe servers. It is the user responsibility to
assign the CHPID numbers through the use of the CHPID Mapping Tool (CMT) or
directly with the Hardware Configuration Definition (HCD)2. Assigning CHPIDs means
that the CHPID number is associated with a physical channel port location (PCHID) and
a LCSS. The CHPID number range is still from ‘00’ to ‘FF’ and must be unique within an
LCSS. Having said this, the same CHIPD number can be used by multiple LCSS’.

The Physical Channel Identifier (PCHID) Summary Report lists the PCHIDs defined in
the Input Output Configuration Data Set (IOCDS) as well as the channel paths that
cannot have PCHIDs. The IOCDS is loaded into the Hardware System Area described
earlier. The IOCDS is output from an Input Output Definition File (IODF)3. The device
configuration is loaded at Power On Reset (POR) when the machine is turned on.

2. HCD is a special TSO/ISPF application used to configure mainframe hardware
3. The I/O definition file (IODF) is a VSAM linear data set that is built and maintained by HCD.

Up to
28 I/O
Feature
Slots

An I/O Cage in the
mainframe houses
different types of

channels in the form
of circuit cards

I/O cards

OSA ESCON FICON FICON OSA

I/O SLOT 1 2 3 4 5 … … … …

110

111

112

120

122

123
124

125
126

127

121

Illustration

140 150

141 151

160

161

162

I/O PORTS

PCHIDs

 For each channel path, the report shows the following:

* PCHID number associated with the channel path
* CHPID number of the channel path
* Channel path type
* Control Unit number associated with the channel path
* CSS IDs to which the channel path has access
* Any configuration discrepancy or comment for the channel path.

 Sample PCHID Report

Each logical CSS is called a channel-subsystem image, and each image is identified by
a unique 8-bit binary number ranging from 0 to 254, called the channel-subsystem-
image identifier (CSSID), resulting in an architecture maximum of 256 channel
subsystem images per central processor complex (CPC) footprint. Additionally, each
CSS image may be configured with a maximum of 256 unique channel paths, called a
channel-path set (CPS). This results in an architecture maximum of 64K physical
channel paths for a given CPC footprint.

z/OS

LINUX

Database

 LPAR
Hipervisor

LPAR 1

LPAR 2

LPAR 3

H S A

Physically
machine

attached
hardware

configuration
device

LAN
attached
hardware

configuration
devices

Describes the configuration for
several LPAR’s Hardware

The Input Output Configuration Program used to
compile an I/O environment

Feature Code
(Channel Type)

Each channel-subsystem image is also structured to provide its own z/Architecture MIF.
In this case, each MIF is identified by a value or number known as an Image ID (IID)
providing the replication of both channel-path and subchannel controls. This allows each
of the logical partitions that are configured to a given channel subsystem image to have
its own set of I/O controls in order to dynamically access and share up to 256 physical
channel paths and up to 64K physical I/O devices. The physical devices are mapped to
logical device structures defined in a Multiple Subchannel Set (MSS). MSS will be
discussed shortly.

 illustration

Spanned channels
Channel paths are called “spanned” channel paths when they allow the channel paths
and their attached I/O devices to be dynamically and transparently shared by programs
operating in LPARs which are configured to different channel-subsystem images, that is,
they span multiple channel-subsystem images.

Correspondingly, each configured LPAR is assigned to an appropriately defined CSS
image in order to accommodate the I/O connectivity requirements of the operating
system and associated application programs that are executed in each of the configured
LPARs.

Illustration of Spanned Channels

LPAR 1

LPAR 2

LPAR 3

LPAR 4

H S A

z/OS

LINUX

Database

z/VM

 LPAR
 Hipervisor

IID 3
within

CSSID 4

IID 6
within

CSSID 1

IDD 3
within

CSSID 1
IID14
within

CSSID3
 IID=3

IID=6
CSSID 1

IID=3 CSSID 4

IID=14 CSSID 3

CSSID 254IID=254

Channel
Subsystem

*
*
*

MCSS

Partition
1

Partition
2

Partition
14

Partition
16

Partition
17

Partition
15

CSS

MIF-1 MIF-2 MIF-F

. . .

Partition
18

Partition
60

CSS

MIF-1 MIF-2 MIF-F . . . MIF-3

In summary, each configured mainframe LPAR is assigned to an appropriately defined
CSS image in order to accommodate the I/O connectivity requirements of the operating
system and associated application programs that are executed in each of the configured
LPARs. The MIF provides for intra-CSS LPAR channel sharing and the Spanned
Channels provide for inter-CSS LPAR channel sharing.

Parallel Access Volumes
Before we describe Multiple Channel Sets (MSS) we’ll define functionality within the
Enterprise Storage Subsystem called Parallel Access Volumes (PAV). This feature is
incorporated into defining MSS.

In the past, due to device circuitry and storage architecture, any single device located
amongst the DASD farm used one hardware address. Therefore, only one I/O request at
a time could access data on that disk. The other I/O requests targeted for that device
were queued waiting for their turn. This had very severe performance impact which
could easily back up in to the overall mainframe workload. In other words, before PAV
was available, the operating system allowed only one request at a time for each volume
identified within the IOCDS containing a hardware address. Thus, when there was an
active I/O to a disk volume, its hardware address was flagged “busy”.

Introducing Parallel Access Volumes, in place of one hardware address there are
multiple addresses associated with the same logical volume and each such address is
associated with a corresponding subchannel known as a PAV Alias.

Thus, a PAV disk is represented by a base address and possibly one or more
aliases. Because the mainframe I/O architecture permits a unit address and its
associated subchannel within a Channel Subsystem to handle only a single request at a
time, PAV supports multiple concurrent I/O requests from the same system against the
same logical volume. Using this technology virtually eliminates I/O queuing to a device
allowing multiple requests breaking the serialization to a volume. Greater throughput is
achieved transparent to the executing applications.

The PAV Aliases can also be workload managed. As hhhooottt I/O begins to occur on a
different disk device the aliases can be dynamically migrated to that disk ensuring
applications meet their service level objectives. This is performed through a policy or rule
based management by system administrators. There can be a mixture of both static and
dynamic PAV devices depending on business needs.

I/O

I/O

I/O

Applications

1

2

3

4

IO
Queue

IO
QueueApplications

1

2

3

4

with
Alias’

Multiple Subchannel Sets
The multiple subchannel sets (MSS) functionality was introduced with the System z9 and
should not be confused with multiple channel subsystems (MCSS). In most cases a
subchannel represents an addressable device. For example, a disk control unit with 40
drives uses 40 subchannels. An addressable device is associated with a specific device
number.

Subchannel numbers (including their implied path information to a device) are limited to
four hexadecimal digits by hardware and software architectures. Four hexadecimal digits
provide 64 K addresses, known as a set. IBM reserved 256 subchannels for system use,
leaving 63.75 K subchannels for general use with the current mainframe implementation.

The Parallel Access Volume (PAV) feature has made this limitation of subchannels a
problem for larger installations. A single disk drive (with PAV) often consumes at least
four subchannels. Because the use of four hexadecimal digits for subchannels (and
device numbers corresponding to subchannels) is architected in a number of places, it
was difficult to remove this constraint. Simply expanding the field would break too many
system programs. A solution was devised and allowed sets of subchannels
(“addresses”) incorporating a current implementation of two sets. Each set provides 64 K
addresses. Subchannel set 0, the first set, still reserves subchannels for IBM use
although the number of reserved subchannels (256) on the System z9 is less than
earlier servers (1024). Subchannel set 1 provides a full range of 64 K subchannels on a
System z9.

In principle, subchannels in either set could be used for any device addressing purpose.
However, the current implementation (in z/OS) restricts subchannel set 1 to disk alias
subchannels. Subchannel set 0 may be used for base addresses and for alias
addresses.

The System Assist Processor (SAP)
The mainframe uses an asynchronous processor called the System Assist Processor
(SAP) which is architected into the I/O design dedicated to drive the mainframe’s
channel subsystem(s). This is an I/O Processor (IOP) running special Licensed Internal
Code (LIC) and takes responsibility during the execution of an I/O operation. The SAP
relieves the OS (and consequently, general CP involvement) during the setup of an I/O
operation. It does the scheduling of an I/O, that is, it finds an available channel path to
the device and guarantees that the I/O operation starts. SAP, however, is not in charge
of the movement between main storage and the channel.

Mainframe
Logical Channel Subsystem

Subchannls

Subchannel
Set 0

Subchannel
Set 1

63.75K 64K
devices devices

SET 0 SET 1

A SAP processes the Start-Subchannel (SSCH) instruction and locates a subchannel or
logical device in its work queue. The requests in this queue are processed based upon
the I/O Priority assigned either by the Workload Manager policy or by the hardware, then
tries to locate an available channel that succeeds in connecting to a control unit, then
starts the I/O operation. The SAP uses information in the subchannel to determine which
channels and control units can be used to reach the target device. The SAP serves a
very critical role in the mainframe’s ability to executing thousands of I/Os at any moment
in time executing up to 100,000 I/Os per second. Each model mainframe comes with a
default number of SAP engines, although more SAPs can be added through special
licensing.

Memory Bus Adapter
A Memory Bus Adapter (MBA) is a card designed to provide the path for data between
memory and the I/O channels using Self-Timed Interconnect (STI) cables. An MBA uses
an STI to gather and send data. The MBA card is hot-pluggable. Up to 32 MBA cards
are available for a high-end machine.

The self-timed interface (STI) was first introduced with the third generation of S/390
CMOS servers (G3) and devised to satisfy the increasing I/O bandwidth requirements.
As the performance of the processors increased, it became apparent that in order for
IBM to be successful with its line of early CMOS servers, bandwidth and connectivity of
the I/O subsystem had to scale along with the processor. STI was developed to satisfy
those requirements.

Each STI has a bidirectional bandwidth of 2.7 GBps for I/O and 2.0 GBps for ICB-4s and
STI-3 extender cards. When populated with 16 STIs, each book containing the CPUs
Multi Chip Module (MCM) has a maximum bandwidth of 43.2 GBps.

I/O Interrupts
I/O interruptions provide a means for the CPU to change its state in response to
conditions that occur at I/O devices or subchannels. These conditions can be caused by
the program, by the channel subsystem, or by an external event at the device. When an
I/O operation is requested by a program executing a task to the channel subsystem, it
calls the input/output supervisor (IOS) through a system Supervisor Call (SVC 0)
instruction, the SVC then passes control to IOS. In z/Architecture, the I/O operation is
not handled by the CP executing z/OS code, but by the SAP engine mentioned earlier.

When an I/O operation or sequence of I/O operations are initiated, the channel
subsystem and the device generate status conditions. The generation of these
conditions can be brought to the attention of the program by means of an I/O interruption.
The status conditions, as well as an address and a count indicating the extent of the
operation sequence are presented to the program in the form of a subchannel-status
word (SCSW) parameter. The SCSW is stored in an interruption-response block (IRB)
during the execution of TEST SUBCHANNEL to see whether the channel is clear of the
I/O operation.

Book Card Layout Fan out from memory to I/O Adapters

MBA
MBA

MBA
MBA
MBA
MBA
MBA
MBA

MBA

Normally an I/O operation is performed until the device signals primary interruption
status. Primary interruption status can be signaled during initiation of an I/O operation.

Now, how does Channel Subsystem and the CP become aware that the I/O operation
handled by the channel is finished? This is handled through an I/O interrupt triggered by
the channel. See I/O scenario later in this document.

Dynamic Channel path Management
In the past, LPAR to channel mapping was static and required a reconfiguration of the
LPAR in order to adjust resources to changing workload. This was unwieldy since
workloads change during the day and channel utilization at any point was either under or
over utilized. Overall, this affected the entire operation of the machine burdening
hardware cost with equipment not used or applications experiencing decreased
throughput. This also required skill personnel to analyze reports to attempt some form of
resource balancing adequate enough to achieve daily service levels. During month end
or year end processing further analysis and reconfiguration needed to be assessed. In
these instances where application’s workload spiked additional channel cards were likely
purchased to meet the infrequent demands and in the absence of high demand,
channels went unused.

Dynamic channel path management (DCM) allows Channels to dynamically change
channel path definitions to attached DASD control units in response to changing
workloads, moving channel resources to the control units as required. When combined
with WLM and hardware components, DCM moves the channel resources to control
units that are being used by business-critical workloads to help them meet their service
level objectives. This also enhances availability as well as maximizing overall hardware
usage. This Intelligent Resource Director feature also complements PAV when moving
dynamic aliases to high utilized devices as workload changes.

Illustration – when workload increases greater bandwidth is obtained using DCM

During system initialization, DCM builds tables that represent the physical I/O topology.
These tables include entries for each channel, ESCON or FICON director, and DASD
control unit that is physically attached to and accessible by this system. The topology
tables are used by DCM to determine what potential paths exist that DCM could add to a
control unit in order to help it achieve its bandwidth requirements.

 mainframe

@ @

LPAR LPAR LPAR LPAR
SOA LINUX DB OLTP

DCM Cluster
 mainframe

@ @

LPAR LPAR LPAR LPAR
SOA LINUX DB OLTP

DCM Cluster

Channels

Control Control
Units Unit
 Channels

move dynamically

Disks Disks

This is called managed channel paths and are defined to belong to a specific LPAR
cluster, not individual logical partitions. This form of clustering LPARs is a means of
sharing aggregate resources within a sysplex. When any operating system is loaded into
a logical partition, it does not immediately have access to any managed channel paths.
All managed channel paths are automatically deconfigured from a partition when it is
IPLed. It is only after the software in the logical partition declares that it is part of a
specific LPAR cluster that it is allowed to configure the managed channel paths for that
LPAR cluster online. With this process, only logical partitions that are part of the LPAR
cluster can use the channel path, so the entire usage is understood by the LPAR cluster
members in the aggregate.

Internally once every interval (currently defined to be ten seconds), DCM goes through a
process known as data gathering. During this process, DCM collects several
measurements on DASD subsystems and uses that information to calculate a new
metric called the subsystem I/O velocity (IOV). The I/O velocity is conceptually a wait-to-
use ratio on the channels serving a particular subsystem. It indicates how long I/O
requests must wait for a channel to a subsystem, compared to how long I/O requests
actually use those channels.

Channel Subsystem I/O Priority Queuing
Priorities only make a difference when there is a queue. This applies whether we are
talking about queuing for access to the CPU or queuing to start an I/O. If you are the
only one in the queue, it makes no difference whether you have the highest or lowest
priority. But, as mentioned earlier, scheduling an I/O is the role of the SAP engine and
here is where the I/O request is prioritized within the SAP initiation queue.

The effectiveness of prioritizing I/O requests depends on:

• Having a queue. In other words, there must be regular occurrences where the
queue depth is at least two.

• The I/O requests in the queue coming from transactions or requests running in
different LPARs or applications having different levels of throughput importances.

Channel Subsystem I/O Priority Queuing was delivery in z/Architecture and exploited by
z/OS. z/OS uses WLM to dynamically manage the channel subsystem priority of I/O
operations for given workloads based on the performance goals for these workloads as
specified in the WLM policy. In addition, because Channel Subsystem I/O Priority
Queuing works at the channel subsystem level, and therefore affects every I/O request
(for every device, from every LP) on the machine, you can also specify a single channel
subsystem I/O priority that is to be used for all I/O requests from systems that do not
actively exploit Channel Subsystem I/O Priority Queuing.

I/O Queuing
There are a number of places during the execution of an I/O request where it can be
queued because the resources necessary to execute the next phase of the request are
unavailable.

 These queuing points include:
• The UCB queue or device address queue. This is a local queue, because it is per

device and all requests come from the same operating system (no PAV
implemented).

• Queues within the Channel Subsystem (CSS). The CSS queues are global,
 because they are for all the devices connected to that machine and all the I/O
 requests coming from all the LP images contained in the machine.

• The control unit queue. The control unit queue type is global because it
 applies to all I/O requests coming from all the LPs in all the connected machines
 which include remote systems.

In summary, features described as designed within the mainframe’s architecture solve
problems where I/O delays can affect a business’ ability to meet customer demand
reflecting directly to the organization’s bottom line revenue. From the introduction of the
System/360’s multiplex channels to today’s multiple channel subsystems and channel
management capability, IBM continues to be inspired by the objective to make a
difference in the world shaping global businesses with mainframe innovation.

An I/O scenario

1. The user program begins an I/O operation by issuing an OPEN instruction and
requesting either input or output of data using an I/O instruction like GET, PUT, READ,
or WRITE, and specifying a target I/O device. An I/O macro instruction invokes an
access method that interprets the I/O request and determines which system resources
are needed to satisfy the request.
NOTE:

The user program could bypass the access method, but it would then need to consider many details
of the I/O operation, such as the physical characteristics of the device. The program would also have
to create a channel program composed of instructions for the channel subsystem, and invoke the
EXCP processor, an IOS driver, to handle the next phase of the I/O process. By using an access
method, a user program maintains device independence.

2. There are several MVS access methods, each of which offers different functions to
the user program. The selection of an access method depends on how the program
plans to access the data (randomly, or sequentially, for example) and the data set
organization (sequential, PDS, VSAM, and so on).

3. To request the movement of data, either the access method or the user program
presents information about the operation to the EXCP processor by issuing the EXCP
macro instruction. EXCP translates the information (CCW Command Chain Addresses
and CCW Data Addresses) into a format acceptable to the channel subsystem, fixes the
pages containing the CCWs and the data buffers, validity-checks the extents, and
invokes the I/O Supervisor (IOS) within the Channel Subsystem (CSS).

4. IOS places the request for I/O on the SAP queue for the chosen I/O device in the UCB
(this is the unit control block and represents the device address) and issues the Start
Subchannel (SSCH) instruction to send the request to the channel subsystem. At this
point, the central processor can continue with other work until the channel subsystem
indicates, with an I/O interrupt, that the I/O operation has completed.

5. The channel subsystem selects a channel path to initiate the I/O operation between
the channel and control unit or device, and this controls the movement of data between
the channel and processor storage.

User
Appl

Program

Access
Method

I/O
Drivers

SAP Channels Control
 Unit

Device

General CP Channel Subsystem

Writes
and-or
Reads

Depends on
File organization

(PDS, VSAM, QSAM)

Initiates an
Execute Channel
Program (EXCP)

Hand-off
CCW

Create
d

I/O placed
on queue
(SSCH)

CHPID selected Controller verifies
device availability
and connects to
the device

Data access
1 2 3 4 5 6 7

Data is placed
in output
buffer

Controller
disconnects
from device

UCB

 CSS signals
I/O Interrupt
completion

 14 13 12 11 10 9 8 Verifies
I/O status

EXCP posts
back to Access

Method

Dispatcher is
notified from
Access Method

User pgm
receives data
and redispatched

6. A control unit or fiber director is selected from the I/O Configuration Dataset (IOCDS)
that can access the device(s) where the requested data resides.

7. The connection to the device last as long as necessary for the device’s positional
sensor to reach the track (disk area) where the data is located.

8. The data is placed in an available buffer from the controller’s buffer pool and compiled
into the appropriate frames (data grams) in order to be transfer back to the channel
subsystem.

9. Once the data is transfer back to the controller, it disconnects for the next I/O freeing
its buffer and returning it to the pool.

10. When the I/O operation is complete, the channel subsystem signals completion by
generating an I/O interrupt which is handled by a special system routine called the First
Level Interrupt Handler (FLIH). There are six different types of interrupts within z/OS
where I/O is one of them.

11. SAP processes the interruption by determining the status of the I/O operation
(successful or otherwise) from the channel subsystem using a Test Subchannel (TSCH)
instruction.

12. EXCP indicates that I/O is complete by posting status to the access method and
calling the z/OS task dispatcher.

13. When appropriate, the dispatcher reactivates the access method.

14. The access method returns control to the user program for redispatch by the z task
dispatcher to continue its processing restoring the Program Status Word (PSW) of the
next executable instruction within the application module that issued the I/O.

 - - - - -

