These products are withdrawn from marketing.

In z/OS V1.9, support was added to write SMF data to log streams. In z/OS V1.12, z/OSSMF's partitions, when the CFRM message-based event management protocol can be used for CFRM event management but the policy-maximum limit is lower than the primary syslog CDS's system limit, when shared CIDs are being used for policy partitioning, when the CFRM message-based event management protocol can be used for CFRM event management but the policy-based protocol is being used for SMF-LINE data packets, when the Sysplex Facility Management (SMF) policy does not specify that automatic actions are to be taken to relieve hang caused by the unresponsiveness of one or more of CDS's structure's, and when a CDF does not have a designated percentage of available space to allow for new CF structure allocation, structure expansion, or CDF takeover function.

New health checks are designed for the I/O Supervisor (IOS). IBM recommends using the relatively new MIDAWs and Captured UCBS Protection functions introduced in recent releases, and setting eligible TRCF-related control blocks above the 16 MB line. These health checks are designed to notify you of any problems with your data warehouse and to help you manage system performance and the use of virtual storage.

The Health Check workload provisioning - Capability Provisioning is to use CICS® and IMS® monitoring data to determine if additional resources are needed to meet service-level requirements for these workloads. Storage management and scaling - Extended Address Volumes are planned to support additional data set types, including dedicated AS/400, z Osborne, z/OSMF, and program libraries. The z/OS iSeries system test indicates that z/OSMF workload performance can be improved by up to 44% or more, in addition to helping you avoid outages that are required to be satisfied as well.

To help improve the performance efficiency of SMF data handling on z/OS, z/OS Health Check is used to detect potential configuration problems before they impact system availability by comparing critical values and settings to those suggested by IBM or defined by your installation. The z/OS Health Check Facility is a usage feature that helps identify z/OS SMF records for problems. The z/OS Health Check Facility is a usage feature that helps identify z/OS SMF records for problems. The z/OS Health Check Facility is a usage feature that helps identify z/OS SMF records for problems.

For z/OS V1.12 z/OS Health Check is planned to be updated with the ability to write checks in Metal C, and with the addition of checks for the z/OSMF build, provide better reporting for CFRM event management but the policy-maximum limit is lower than the primary syslog CDS's system limit, when shared CIDs are being used for policy partitioning, when the CFRM message-based event management protocol can be used for CFRM event management but the policy-based protocol is being used for SMF-LINE data packets, when the Sysplex Facility Management (SMF) policy does not specify that automatic actions are to be taken to relieve hang caused by the unresponsiveness of one or more of CDS's structure's, and when a CDF does not have a designated percentage of available space to allow for new CF structure allocation, structure expansion, or CDF takeover function.

In the event of a system problem - A new z/OS Health Check Diagnostics function is planned to help you identify system problems in as little as one minute.

Automatic partitioning - GRS and XCF components are planned to automatically initiate actions to preserve sysplex availability to help reduce the incidence of sysplex-wide problems that can result from unrelated system critical components.

IBM z/OS Mainframe
When a corrupt PSDE is detected in the link list during IPL, the system enters a wait state. In Z/OS V1.12, the system will be designed to issue a message identifying the corrupt PSDE prior to entering the wait state. This allows the user to prevent the resource corruption and re-IPL the system and avoid taking a standalone dump to debug the problem.

System Logger is planned to be enhanced to correct the VSAM SHAREOPTIONS for new log stream data sets when it is determined that SHAREOPTIONS is not less than the specified value. This function is designed to indicate that SHAREOPTIONS is not less than the specified value on a portion of the data set. This enhancement is designed to support the System Logger and is planned to add messages to show key data set characteristics at allocation and deletion time.

Disk Space is planned to support additional data set types, including sequential (both basic and large) data sets, partitioned (PDS/PDSX) data sets, catalogs, and BDAM data sets in the extended addressing space (EAS) on an EAV. Support is also planned to allow additional data sets (XDS) and VSAM data volume data sets (XVDS) to be monitored, including data space and space management as well as simplify space management by providing the ability to manage larger, volume as group managements.

z/OS Government is planned to make all data sets used by DFSMSshmm eligible for allocation in the extended addressing space of an EAV. This includes the DFSMSshm journal and dynamically allocated temporary files.

In Tape Policy for Data Sets** is planned to support ISPF/IODEF for ISPF IODEF for ISPF/VTAM ISPF/VTAM/TSO dialog.

Language Environment provides support for C++ to access alternate indexes (AIXs) for extended format key-segment data sets, which reside in the INTEG data set.

z/OS string data sets (XDS) are included in the extended addressing space (XT0) with uncaptured UCBSs, and support data set association blocks (USAbs) under the 16 MB file size. This is expected to allow more data sets to be allocated by an address space and to provide a cross-system consistent reference for DFSMSHsm tape data sets.

DAM is planned to provide API support for the Object Storage and Retrieval function (OSRF) to run in a CICS threadsafe environment. This is intended to allow exploiters to take advantage of the improved multitasking and throughput capabilities provided by threadsafe programming.

File System was introduced in Z/OS V1.11 and Z/OS V1.12. The nucleus data area is planned to be backed up using 1 MB pages. This is intended to reduce the overhead of memory management for nucleus pages and to free translation lock-free (LB) entries, so they can be used for other storage areas. This is expected to help reduce the number of translations that need to be performed by the system and help improve overall system performance.

DFSMSf support for catalogs with extended addressability (EA) is planned to be designed in order to provide full support for Java Callable Translations (JCTs) Basic Catalog Structures (BCS) with EA, allowing catalogs larger than 4 GB.

z/OS Communications Server AT-TLS processing will be designed to provide reduced CPU usage and encryption and decryption of application data while improving throughput for some types of workloads.

z/OS communications server AT-TLS is planned to support improved VSAM, including the ability to support the following features:

- **Java** is planned to support extended addressing space (EAS) on an EAV.
- **Language Environment** supports support for C++ to access alternate indexes (AIXs) for extended format key-segment data sets, which reside in the INTEG data set.
- **z/OS string data sets (XDS)** are included in the extended addressing space (XT0) with uncaptured UCBSs, and support data set association blocks (USAbs) under the 16 MB file size. This is expected to allow more data sets to be allocated by an address space and to provide a cross-system consistent reference for DFSMSHsm tape data sets.
- **DAM** is planned to provide API support for the Object Storage and Retrieval function (OSRF) to run in a CICS threadsafe environment. This is intended to allow exploiters to take advantage of the improved multitasking and throughput capabilities provided by threadsafe programming.

File System was introduced in Z/OS V1.11 and Z/OS V1.12. The nucleus data area is planned to be backed up using 1 MB pages. This is intended to reduce the overhead of memory management for nucleus pages and to free translation lock-free (LB) entries, so they can be used for other storage areas. This is expected to help reduce the number of translations that need to be performed by the system and help improve overall system performance.

DFSMSf support for catalogs with extended addressability (EA) is planned to be designed in order to provide full support for Java Callable Translations (JCTs) Basic Catalog Structures (BCS) with EA, allowing catalogs larger than 4 GB.

z/OS Communications Server AT-TLS processing will be designed to provide reduced CPU usage and encryption and decryption of application data while improving throughput for some types of workloads.

z/OS communications server AT-TLS is planned to support improved VSAM, including the ability to support the following features:

- **Java** is planned to support extended addressing space (EAS) on an EAV.
- **Language Environment** supports support for C++ to access alternate indexes (AIXs) for extended format key-segment data sets, which reside in the INTEG data set.
- **z/OS string data sets (XDS)** are included in the extended addressing space (XT0) with uncaptured UCBSs, and support data set association blocks (USAbs) under the 16 MB file size. This is expected to allow more data sets to be allocated by an address space and to provide a cross-system consistent reference for DFSMSHsm tape data sets.
- **DAM** is planned to provide API support for the Object Storage and Retrieval function (OSRF) to run in a CICS threadsafe environment. This is intended to allow exploiters to take advantage of the improved multitasking and throughput capabilities provided by threadsafe programming.

File System was introduced in Z/OS V1.11 and Z/OS V1.12. The nucleus data area is planned to be backed up using 1 MB pages. This is intended to reduce the overhead of memory management for nucleus pages and to free translation lock-free (LB) entries, so they can be used for other storage areas. This is expected to help reduce the number of translations that need to be performed by the system and help improve overall system performance.

DFSMSf support for catalogs with extended addressability (EA) is planned to be designed in order to provide full support for Java Callable Translations (JCTs) Basic Catalog Structures (BCS) with EA, allowing catalogs larger than 4 GB.

z/OS Communications Server AT-TLS processing will be designed to provide reduced CPU usage and encryption and decryption of application data while improving throughput for some types of workloads.

z/OS communications server AT-TLS is planned to support improved VSAM, including the ability to support the following features: