

© 2012 Angelo F. Corridori http://idcp.marist.edu Page 1 of 4

 #9 IN A SERIES

When working with an enterprise server 1 and z/OS,
you will encounter messages from the operating

system and related products on an on-
going basis. These messages are the
way that the operating system or the

software you are using communicates information to
you or the need for you to take action. Sometimes
the meaning of the message and what needs to be
done will be obvious just by reading the message
text. More often than not, especially for someone
new to z/OS, that will not be the case. You will need
to obtain further information and decide what needs
to be done. This article will acquaint you with z/OS
messages, codes, and the tools that can be used to
help you understand them.

Messages
Think of the interaction between an end user
(human) and a computing system as a conversation.
The end user makes a request of the computing
system – perhaps by entering a TSO2 command to
display some information or requesting an
application program to be run. The response to the
end user request may include a message – a way for
the operating system or application program to
provide information about the status of the request.
For example, the requested action may have
completed successfully or the system may have
encountered an error. If you have used a personal
computer, you have probably encountered various
messages. Figure 1 shows an example of a Windows
message that requires a decision on the part of the
end user.

1 See ECI No. 5
2 See ECI No. 10

Figure 1 An example of a message that requires a decision

Figure 2 shows an example of a Windows
informational message that requires further
investigation to determine what needs to be done.

Figure 2 An example of an information message

Managing Messages
When using an enterprise server, you will find that
there are several sources of messages; the z/OS
operating system itself, “add on” software products
such as a database or transaction manager, and
application programs.

The destination for messages is also varied. One
primary destination for messages is an operations
console. Here a human operator is responsible for
monitoring and responding to messages. A long time
ago, the z/OS operator’s main job was to manage
messages – read them, understand them, respond to
them, take action, etc., much like you do on a PC
today. As we have seen, a message may be
informational in nature or a message may ask that
you make a decision. In today’s world, with very
large and very fast systems processing literally

© 2012 Angelo F. Corridori http://idcp.marist.edu Page 2 of 4

thousands of transactions per second and hundreds
of batch JOBs3, the flow of messages is just too fast
for a human to read and respond in a timely manner.
Consequently, while messages are still extremely
important, many of them have been automated or
suppressed. If they have been “automated”, it
means that an automation tool or product has been
set up to respond to an action or decision message
with a “standard” response so that a human
operator does not have to. And many informational
messages are simply suppressed – not displayed at
all for an operator, usually because it is not really
very informative and nothing is going to be done any
way (e.g. message IEF403I jobname STARTED that
indicates that a particular JOB has begun and
message IEF404I jobname ENDED that indicates that
a particular JOB has ended is not very informative in
a system that runs hundreds or thousands of JOBs).
Even though a message is suppressed at the
operator’s console, it can still be entered into a log
so as not to be “lost” if needed. So, the operator at
an operations console is left with the really
important messages – the ones that can’t be
automated or suppressed and need some human
thought before a response is provided.

In addition to an operator console, messages can be
found in various logs that record messages and other
events. Examples include OPERLOG (which records
all of the console messages from all the systems in a
Parallel Sysplex configuration as well as all of the
commands or responses entered by the operators),
SYSLOG (which is similar to OPERLOG, but for a
single system) and a Job LOG (where JOB related
messages are sent as defined by MSGCLASS on the
JOB statement for the JOB). Messages associated
with a JOB may also be sent to a SYSOUT data set. If
MSGCLASS and SYSOUT are directed to the same
data set, then all messages for a JOB will be found in
the same place. When examining a message sent to
any of these destinations, it is helpful to understand
the general structure of a message.

Message Format
The general format of a z/OS message is:

3 See ECI No. 4

 CCCCnnnnns message text

where:
CCCC is a three or four character string that
identifies the z/OS component, subsystem, or
product that issued the message. If a fourth
character is present, it identifies a subcomponent of
the component (identified by the first three
characters) that issued the message. The character
string is pretty cryptic, but after you have seen
enough z/OS messages, you will begin to recognize
what part of the system a particular character string
identifies. For example, messages that begin with
“IEA” are issued by the supervisor component of
z/OS and messages that begin with “HAS “are from
the Job Entry Subsystem (JES). These identifiers are
documented, but there are so many of them that it
is not worth trying to memorize them. Exposure to
and working with messages is the best way to learn
the identifiers and their corresponding relationship
to the system. (Note: the z/OS three character
message prefix is often the same three characters
used to name the component module identifier for
the software module that issues the message). You
can find the three character message identifier for
z/OS components in the MVS Diagnosis Reference
manual (GA22-7588).

nnnnn is a three to five character number that
uniquely identifies the message

“s” is a suffix that identifies the message “type” – i.e.
the system expectations as to what needs to be
done. The characters you will find in the “s” position
of a message are:
• A – an action message; the system is expecting

an action to be taken
• D – a decision message; the system is expecting

a choice to be made
• E – an error/eventual action message
• I – an informational message; something the

system thinks you should know about
• S – a severe error
• W – a wait or attention message; processing

stops until an action is taken

© 2012 Angelo F. Corridori http://idcp.marist.edu Page 3 of 4

Finally, the “message text” provides the actual
message text of the message. Some simple messages
can be understood simply by reading the message
text, but usually the message text needs some
additional explanation.

Understanding Messages
One way to get additional information regarding a
message is to look it up in the books that document
the details of the messages. There are several
volumes of message documentation (SA22-7631
through 7640) so consulting a book may not always
be convenient. Instead, you can use an IBM program
called LookAt that is designed to provide a detailed
explanation for a particular message when you
provide just the message identifier. LookAt can be
used on the web (at:
http://www.ibm.com/servers/eserver/zseries/zos/b
kserv/lookat/) or installed on a PC or on mobile
device and used locally. It can also be used directly
from TSO. Another option used to understand
messages is to install a z/OS vendor product like
MVS QuickRef by Chicago-Soft. QuickRef is similar in
concept to LookAt in that it provides explanatory
information for z/OS messages and codes. But it also
provides other z/OS reference information such as
JCL syntax, usage for various z/OS utilities and other
useful information.

While z/OS messages bear some resemblance to
messages on a PC, there are some significant
differences as well. First, they look very different in
that they are not displayed in a pop up window and
the z/OS message identifier has structure as
described above. Second, the volume of messages
produced by an enterprise server with hundreds or
thousands of end users is considerably more than
that produced by a PC with a single user. We have
seen how suppressing and automating messages can
be used to significantly reduce the amount of
message traffic that a human operator needs to deal
with. Third, while the basic message format
described above is always used, the basic message
itself may be surrounded by other information
depending on where the message is recorded. For
example, a message displayed on an operator

console will be preceded by a unique numeric
console message identifier. This is so that the
operator can reply selectively to any particular
message that needs a response (messages usually do
not have to be replied to in strict chronological
order). So, if there are three outstanding messages
that need a response and their console message
identifiers are: 26, 47, and 53, an operator can type
the following at the console:
R47,end
Doing so indicates that the operator is responding to
the message with the console identifier of “47” and
the response for the message in this case is “end”.
Messages with console message identifiers of 26 and
53 in this case are still outstanding and need replies
at some point.

Codes
The term “code” is short for "completion code". A
completion code is issued by the system or an
application program in the event something
terminates abnormally (an “abnormal end” is usually
referred to using the contraction "abend"). The
completion code provides the reason for the abend.
A system completion code consists of an “S”
followed by a unique three digit hexadecimal
number (e.g. S0C1) that is used to look up additional
information in the MVS Codes manual (SA22-7626).

If a user code is issued (e.g. by an application
program) it consists of a “U” followed by a four digit
decimal number (e.g. U0230). User completion
codes are documented in the product
documentation for the product that issues the code
so there is no central repository of all the user
completion codes as there is for z/OS system
completion codes.

System and User codes are occasionally found in the
message text that accompanies an abend. Since
completion codes are usually the result of an error
condition, they are also typically encountered in
dumps and error logs (e.g. LOGREC) where they will
be of use to whomever is diagnosing the problem.

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/

© 2012 Angelo F. Corridori http://idcp.marist.edu Page 4 of 4

Some errors are so serious that the operating system
cannot continue processing. In these cases the
system issues a wait state completion code and
processing stops. Many of these wait state
completion codes have to do with errors (abends)
encountered during z/OS initial program load (IPL).

Summary
Messages and codes are a way of communicating
information to or requesting an action or decision
from a user of an enterprise computing
configuration.

We will explore other aspects of Enterprise
Computing in subsequent articles.

	Messages
	Managing Messages
	Message Format
	Understanding Messages

	Codes
	Summary

