Assembler Language Programming
for
IBM z System™ Servers

Version 1.00

John R. Ehrman

IBM Silicon Valley Lab
Contents

Figures .. xvi

Tables .. xxviii

Foreword .. 1

Outline and Overview .. 1
Programming Environments ... 2
Levels of Difficulty (*) .. 2
Exercises and Programming Problems 2
Some Observations ... 2
Why Program in Assembler Language (and Why Not)? 5
Assembler Language Misconceptions 8

Index ... 11

Chapter I: Getting Started .. 13

1. Some Basic Items .. 14
 1.1. Notation and Terminology 14
 1.2. Instruction Elements .. 15
 1.2.1. Register Names ... 16
2. Binary and Hexadecimal Numbers 18
 2.1. Positional Notation and Binary Numbers 18
 2.2. Hexadecimal Numbers ... 19
 2.3. Converting Integers from One Base to Another (*) 21
 2.4. Examples of General Conversions (*) 24
 2.5. Number Representations 26
 2.6. Logical (Unsigned) Representation 27
 2.7. Two’s Complement (Signed) Representation (*) 27
 2.8. Computing Two’s Complements 29
 2.9. Sign Extension .. 32
 2.10. Binary Addition .. 33
 2.11. Binary Subtraction ... 34
 2.12. How Additions and Subtractions Are Actually Performed (*) 36
 2.13. A Circular View of Binary Arithmetic (*) 38
 2.14. Logical (Unsigned) and Arithmetic (Signed) Results (*) .. 39
 2.15. Examples of Representations (*) 40

Chapter II: z System .. 43

3. Conceptual Structure of z System 44
 3.1. Memory Organization .. 45
 3.2. Central Processing Unit .. 47
 3.3. General Registers .. 47
 3.4. Floating-Point Registers 48
 3.5. Program Status Word (PSW) 49
 3.6. Other Registers .. 50
 3.7. Input-Output (I/O) ... 50
 3.8. Features, Facilities, and Assists 50
 3.9. Microprograms and Millicode (*) 50
4. Instruction Execution .. 52
 4.1. Basic Instruction Cycle ... 52
 4.2. Basic Instruction Types ... 53
 4.3. Instruction Lengths .. 55
 4.4. Some Operation Codes (*) 56
 4.5. Interruptions (*) .. 57
 4.6. Exceptions and Program Interruptions (*) 59
 4.7. Machine Language and Assembler Language 61
 4.8. Processor Evolution .. 61
5. Memory Addressing .. 63
Chapter IV: Defining Constants and Storage Areas

1. Defining Constants 138
 1.1. Defining Constants 139
 1.2. DC Instruction Statements and Operands 140
 1.2.1. Blanks in Nominal Values 140
 1.3. Boundary Alignment 141
 1.4. Length Modifiers 142
 1.5. Duplication Factors and Multiple Operands 143
 1.6. Multiple Nominal Values 144
 1.7. Length Attributes 145
 1.8. Decimal Exponents (*) 145
 1.8.1. Decimal Exponents 145
 1.8.2. Exponent Modifiers 146

2. Basic Constants 148
 2.1. F-Type and H-Type Constants 148
 2.2. A-Type Address Constants 149
 2.3. Y-Type Address Constants 151
 2.4. Constants of Types C, B, and X 152
 2.5. Padding and Truncation 154
 2.6. Literals .. 156
 2.7. The LTORG Assembler Instruction 158
 2.8. Type Extensions 159

3. Data Storage Definition 161
 3.1. Storage Areas: The DS Assembler Instruction 161
 3.2. Zero Duplication Factor 162
 3.3. The EQU Assembler Instruction 164
 3.4. EQU Instruction Extended Syntax (*) 168
 3.5. The ORG Assembler Instruction 169
 3.6. Parameterization 171
 3.7. Constants Depending on the Location Counter 173
 3.8. Assembly Time and Execution Time, Revisited (*) 175
 3.9. Summary Observations 176

Chapter V: Basic Instructions

4. General Register Data Transmission 180
 4.1. Load and Store Instructions 181
 4.2. Multiple Loads and Stores 182
 4.3. Halfword Data 184
 4.4. Insert and Store Character 186
 4.5. ICM and STCM Instructions 187
 4.6. RR-Type Data Transmission Instructions 189
 4.7. Load, Store, and Insert for 64-bit General Registers 192
 4.8. RR-Type Data Transmission Instructions for 64-bit General Registers 194
 4.9. The Load and Test Instructions 195
 4.10. Mixed 32- and 64-bit Operands 196
 4.11. Other General Register Load Instructions (*) 197
 4.11.1. Load Byte Instructions 198
 4.11.2. Load Logical Character Instructions 198
 4.11.3. Load Logical Halfword Instructions 199
 4.11.4. Load Logical (Word) Instructions 199
 4.11.5. Load Logical Thirty One Bit Instructions ... 199
 4.12. Misunderstandings to Avoid 200
 4.13. Summary ... 201

5. Testing the Condition Code: Conditional Branching 206
 5.1. The Branch Address 206
 5.2. The Branch Mask and Branch Condition 207
 5.3. Examples of Conditional Branch Instructions 208
 5.4. No-Operation Instructions 208
 5.4.1. Special No-Operation Instructions (*) 208
 5.5. Conditional No-Operation 209
 5.6. Extended Mnemonics 212
 5.7. A Comment on Programming Style 214
15.8. A Design Oversight and a Modern “Correction” (*) ... 214
15.9. Summary ... 215

16. Fixed-Point Binary Addition, Subtraction, and Comparison 218
 16.1. Signed-Arithmetic Add and Subtract Instructions ... 218
 16.3. Signed-Arithmetic Operations Using 64-Bit Registers .. 222
 16.4. Signed-Arithmetic Compare Instructions ... 223
 16.5. Logical-Arithmetic Add and Subtract Instructions ... 225
 16.6. Add With Carry, Subtract With Borrow (*) ... 229
 16.7. Operations With Mixed 64-Bit and 32-Bit Operands .. 231
 16.8. Logical-Arithmetic Compare Instructions ... 233
 16.9. Retrieving and Setting the Program Mask (*) ... 235
 16.10. Summary .. 236

17. Binary Shifting .. 242
 17.1. Unit Shifts ... 243
 17.2. Single-Length Logical Shifts .. 245
 17.2.1. Three-Operand Shift Instructions .. 247
 17.3. Double-Length Logical Shifts .. 248
 17.4. Arithmetic Shift Instructions .. 252
 17.5. Rotating Shifts ... 257
 17.6. Calculated Shift Amounts .. 258
 17.7. Bit-Length Constants (*) ... 259
 17.8. Summary ... 261

18. Binary Multiplication and Division ... 264
 18.1. Overview of Multiplication Instructions .. 264
 18.2. Arithmetic (Signed) Multiplication Instructions .. 265
 18.2.1. Double-Length Arithmetic Products .. 265
 18.2.2. Single-Length Arithmetic Products ... 267
 18.3. Logical (Unsigned) Multiplication Instructions ... 270
 18.4. How Multiplication Is Done (*) .. 272
 18.5. Division Instructions .. 274
 18.6. Arithmetic (Signed) Division Instructions .. 275
 18.6.1. Double-Length Division .. 275
 18.6.2. Single-Length Division ... 278
 18.7. Logical (Unsigned) Division Instructions .. 279
 18.8. How Division Is Done (*) ... 280
 18.9. Summary ... 283

19. Logical Operations ... 288
 19.1. Logical Operations ... 289
 19.2. Register-Based Logical Instructions ... 289
 19.3. Logical AND .. 290
 19.4. Logical OR .. 291
 19.5. Logical Exclusive OR ... 292
 19.6. Interesting Uses of Logical Instructions (*) .. 295
 19.7. Summary ... 298

Chapter VI: Addressing, Immediate Operands, and Loops .. 301
20. Address Generation and Addressing Modes ... 302
 20.1. Address Generation ... 302
 20.1.1. Address Generation With 12-Bit Displacements ... 302
 20.1.2. Address Generation With 20-Bit Displacements .. 302
 20.1.3. Address Generation With Relative-Immediate Operands 304
 20.2. Addressing Modes ... 306
 20.3. Load Address Instructions .. 309
 20.4. 64-Bit Virtual Addresses .. 314
 20.5. Summary ... 314

21. Immediate Operands .. 317
 21.1. Insert and Load Instructions with Immediate Operands 319
 21.1.1. Logical-Immediate Insert Instructions .. 319
 21.1.2. Arithmetic- and Logical-Immediate Load Instructions 319
 21.2. Arithmetic Instructions with Immediate Operands .. 322
 21.2.1. Arithmetic-Immediate Add and Subtract Instructions 322
21.2.2. Arithmetic-Immediate Compare Instructions 323
21.2.3. Arithmetic-Immediate Multiply Instructions 323
21.3. Logical Operations with Immediate Operands 324
 21.3.1. Logical-Immediate AND Instructions 324
 21.3.2. Logical-Immediate OR Instructions 324
 21.3.3. Logical-Immediate XOR Instructions 325
21.4. Summary .. 326

22. Branches, Loops, and Indexing .. 330
 22.1. Branch Relative on Condition Instructions 330
 22.2. A Simple Example of a Loop 333
 22.3. Simple Tables and Array Indexing 334
 22.4. Branch on Count Instructions 335
 22.5. Loopping in General ... 340
 22.6. Branch on Index Instructions 342
 22.7. Examples Using BXLE ... 344
 22.8. Examples Using BXH .. 347
 22.9. Specialized Uses of BXH and BXLE (*) 348
 22.10. Summary .. 350

Chapter VII: Bit and Character Data 353

23. Bit Data and Instructions ... 354
 23.1. SI-Type Instructions .. 354
 23.2. MVI Instructions .. 355
 23.3. NI, OI, and XI Instructions 355
 23.4. CLI Instructions .. 356
 23.5. Test Under Mask Instructions 358
 23.6. Bit Data ... 360
 23.7. Bit-Naming Problems (*) ... 361
 23.8. A Conversion Example .. 363
 23.9. Instruction Modification (*) 364
 23.10. Summary ... 365

24. Character Data and Basic Instructions 367
 24.1. Basic SS-Type Instructions .. 367
 24.2. Operand Specifications .. 369
 24.3. Implied Lengths .. 370
 24.4. Symbol Length Attribute References 372
 24.5. The Encoded Length “L” (*) 373
 24.6. The MVC and MVCIN Instructions 374
 24.6.1. MVC: Move Characters 374
 24.6.2. MVCIN: Move Characters Inverse 375
 24.6.3. MVCOS: Move Characters With Optional Specifications 376
 24.7. The NC, OC, and XC Instructions 378
 24.8. The CLC Instruction ... 379
 24.9. The TR Instruction ... 380
 24.10. The TRT and TRTR Instructions 384
 24.10.1. TRT .. 385
 24.10.2. TRTR .. 388
 24.11. The Execute Instructions 390
 24.11.1. Execute Instruction Without Target-Instruction Modification 391
 24.11.2. Execute Instruction with Target-Instruction Modification 392
 24.11.3. Comments on the Execute Instructions (*) 393
 24.11.4. Modifiable Parts of Instructions 394
 24.12. Summary ... 397

25. Character Data and Extended Instructions 404
 25.1. Move Long and Compare Logical Long 404
 25.1.1. MVCL ... 406
 25.1.2. CLCL ... 408
 25.2. Move Long and Compare Logical Long Extended 411
 25.2.1. MVCLE ... 412
 25.2.2. CLCLE ... 414
 25.3. Special String-Handling Instructions 415
 25.4. Search String Instruction 416
25.5. Move String Instruction ... 418
25.6. Compare Logical String Instruction 420
25.7. Translate Extended Instruction 422
25.8. Compare Until Substring Equal Instruction (*) 424
25.9. Summary .. 426

26. Other Types of Character Data (*) 429
26.1. Character Representations .. 429
 26.1.1. BCD characters .. 429
26.2. EBCDIC Representations and Code Pages 430
26.3. ASCII .. 432
26.4. Double-Byte EBCDIC Data (*) 433
 26.4.1. The DBCS Option (*) ... 435
 26.4.2. G-Type DBCS Constants and Self-Defining Terms (*) 435
 26.4.3. Continuation Rules for DBCS Data (*) 436
26.5. Unicode .. 437
 26.5.1. The Unicode Representation 437
 26.5.2. Glyphs and Characters 438
 26.5.3. Unicode Character Constants 439
26.6. Unicode Instructions .. 440
 26.6.1. String Search, Compare, and Move 440
 26.6.3. Optional Operands .. 442
 26.6.4. Translation .. 443
 26.6.5. Conversion Among Transformation Formats 445
26.7. Byte Reversal and Workstation Data 448
 26.7.1. Byte-Reversing Instructions 449
26.8. Summary .. 451

Chapter VIII: Zoned and Packed Decimal Data and Operations 453
27. Zoned and Packed Decimal Representations 454
 27.1. Zoned Decimal Representation 454
 27.1.1. Why Zoned Decimal Is The Way It Is (*) 457
 27.2. Zoned Decimal Constants 458
 27.3. Packed Decimal Representation 459
 27.4. Packed Decimal Constants 461
 27.4.1. Scale Attributes and Packed Decimal Constants (*) 461
 27.5. Converting Between Packed and Zoned 463
 27.6. The PACK Instruction ... 465
 27.7. The UNPK Instruction ... 468
 27.8. Packing and Unpacking ASCII and Unicode Data (*) 471
 27.8.1. Packing ASCII and Unicode Data 471
 27.8.2. Unpacking ASCII and Unicode Data 473
 27.9. Printing Hexadecimal Values 475
 27.10. Summary ... 476
28. Packed Decimal Arithmetic ... 477
 28.1. General Rules .. 477
 28.1.1. Precision and Accuracy 478
 28.2. Decimal Addition and Subtraction 478
 28.3. Decimal Comparison .. 480
 28.4. Decimal Multiplication .. 481
 28.5. Decimal Division ... 483
 28.6. True Decimal Addition (*) 484
 28.7. Complement Decimal Addition (*) 486
29. Packed Decimal Instructions ... 489
 29.1. TP Instruction .. 490
 29.2. ZAP Instruction .. 491
 29.3. AP and SP Instructions .. 493
 29.4. CP Instruction .. 496
 29.5. MP Instruction .. 497
 29.6. DP Instruction .. 500
 29.7. SRP Instruction .. 502
 29.7.1. Biased and Unbiased Rounding with SRP 504
 29.8. MVO Instruction ... 507
3.3. Hexadecimal Floating-Point Data and Operations

33.1. Hexadecimal Floating-Point Data

33.2. Writing Hexadecimal Floating-Point Constants

33.2.1. Decimal Exponents

33.3. Modifiers

33.3.1. Length Modifiers

33.3.2. Scale Modifiers (*)

33.3.3. Exponent Modifiers

33.4. Subtypes Q and H (*)

33.4.1. LQ-Type Constants

33.4.2. Subtype H

33.4.3. Difficult Numbers (*)

33.5. Basic Hexadecimal Floating-Point Instructions

33.6. Hexadecimal Floating-Point RR-Type Data-Movement Instructions

33.7. Hexadecimal Floating-Point Multiplication

33.8. Hexadecimal Floating-Point Division

33.8.1. The Halve Instructions (*)

33.9. Hexadecimal Floating-Point Addition and Subtraction

33.9.1. Unnormalized Added and Subtraction

33.9.2. Older Uses of Unnormalized Addition (*)

33.10. Adding Operands of Like Sign (*)

33.11. Adding Operands of Unlike Sign (*)

33.11.1. Hexadecimal Floating-Point Complement Addition (*)

33.11.2. Implementing Hexadecimal Floating-Point Complement Addition (*)

33.12. Hexadecimal Floating-Point Comparison

33.13. Rounding and Lengthening Instructions

33.13.1. Rounding Instructions

33.13.2. Lengthening Instructions

33.14. Converting Between Binary Integers and HFP

33.14.1. Converting Binary Integers to Hexadecimal Floating-Point

33.14.2. Converting Hexadecimal Floating-Point to Binary Integers

33.15. Hexadecimal Floating-Point Integers and Remainders (*)

33.16. Square Root Instructions (*)

33.17. Multiply and Add/Subtract Instructions (*)

33.18. Some Hexadecimal Floating-Point History (*)

33.18.1. Zeroing Floating-Point Registers

33.18.2. Hexadecimal Floating-Point to Binary Conversion Comments (*)

33.18.3. Initial System/360 Oversights

33.19. Summary

34. Binary Floating-Point Data and Operations

34.1. Binary Floating-Point Data

34.1.1. Data Representations

34.1.2. Normal Numbers

34.1.3. Special Values

34.1.4. Range of the Representation

34.2. Writing Binary Floating-Point Constants

34.2.1. Decimal Exponents and Exponent Modifiers

34.2.2. Length Modifiers (*)

34.3. Binary Floating-Point Arithmetic in General

34.3.1. Rounding Modes

34.3.2. Denormalized Numbers

34.3.3. Arithmetic with Zero, Infinity, and NaNs

34.4. Binary Floating-Point Exceptions, Interruptions, and Controls

34.4.1. Binary Floating-Point Exceptions (*)

34.4.2. FPC Register Instructions (*)

34.4.3. Exception Actions (*)

34.4.4. Scaled Exponents (*)

34.5. Basic Binary Floating-Point Instructions

34.6. Binary Floating-Point RR-Type Data Movement Instructions

34.7. Binary Floating-Point Multiplication
34.8. Binary Floating-Point Division .. 646
34.9. Binary Floating-Point Addition and Subtraction 648
34.10. Binary Floating-Point Comparison .. 649
 34.10.1. Compare and Signal (*) .. 650
34.11. Binary Floating-Point Rounding and Lengthening Instructions (*) 651
 34.11.1. Rounding Instructions (*) .. 651
 34.11.2. Lengthening Instructions (*) .. 651
34.12. Converting Between BFP and Binary Integers (*) 653
 34.12.1. Converting Binary Integers to Binary Floating-Point (*) 653
 34.12.2. Converting Binary Floating-Point to Binary Integers (*) 653
34.13. Binary Floating-Point Integers and Remainders (*) 655
 34.13.1. Load FP Integer Instructions ... 655
 34.13.2. Divide to Integer Instructions (*) 656
34.14. Binary Floating-Point Square Root Instructions (*) 658
34.15. Binary Floating-Point Multiply and Add/Subtract (*) 659
34.16. Summary .. 660

35. Decimal Floating-Point Data and Operations 667
 35.1. Representations .. 668
 35.1.1. Conceptual View of the Decimal Floating-Point Representation 669
 35.2. z System Decimal Floating-Point Data Encoding and Representation (*) 671
 35.2.1. Decimal Floating-Point Data Encoding (*) 671
 35.2.2. Decimal Floating-Point Data Representation (*) 673
 35.2.3. Decimal Floating-Point Combination Field (*) 674
 35.3. Decimal Floating-Point Constants ... 676
 35.3.1. Rounding-Mode Suffixes for Decimal Floating-Point Constants 677
 35.3.2. Decimal Exponents and Modifiers 678
 35.4. Decimal Floating-Point Data Classes (*) 679
 35.5. Decimal Floating-Point Operations: Rounding, Quanta, and Exceptions 681
 35.5.1. Rounding .. 681
 35.5.2. Preferred Exponent and Quantum 682
 35.5.3. DFP Exceptions .. 684
 35.4.4. Overflow/Underflow Scale Factors (*) 685
 35.6. Decimal Floating-Point Data Movement Instructions 686
 35.6.1. Copy Sign .. 686
 35.6.2. Copy between General and Floating-Point Registers 686
 35.6.3. Copy Among Floating-Point Registers 686
 35.7. Decimal Floating-Point Arithmetic Instructions 687
 35.7.1. Multiplication ... 688
 35.7.2. Division ... 689
 35.7.3. Addition and Subtraction .. 689
 35.8. Decimal Floating-Point Compare Instructions 691
 35.8.1. Compare ... 691
 35.8.2. Compare and Signal ... 692
 35.8.3. Compare Biased Exponent ... 692
 35.9. Converting Decimal Floating-Point To and From Fixed Binary 693
 35.9.1. Convert From Fixed Binary to DFP 693
 35.9.2. Convert From DFP To Fixed Binary 694
 35.10. Converting Decimal Floating-Point To/From Packed and Zoned Decimal 696
 35.10.1. Convert To/From Signed Packed Decimal 696
 35.10.2. Convert To/From Unsigned Packed Decimal 697
 35.10.3. Convert To/From Zoned Decimal 698
 35.11. Decimal Floating-Point Load Operations 701
 35.11.1. Load and Test, Complement, Negative, and Positive 701
 35.11.2. Load Floating-Point Integer .. 702
 35.11.3. Load Lengthened ... 702
 35.11.4. Load Rounded ... 703
 35.12. Decimal Floating-Point Miscellaneous Operations (*) 704
 35.12.1. Set Decimal Rounding Mode ... 704
 35.12.2. Extract and Insert Biased Exponent 705
 35.12.3. Extract Significance ... 706
 35.12.4. Shift Significand Left/Right .. 707
 35.12.5. Quantize .. 708
<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>39.8</td>
<td>Summary</td>
</tr>
<tr>
<td>39.8.1</td>
<td>USING Statement Summary</td>
</tr>
<tr>
<td>39.8.2</td>
<td>DROP Statement Summary</td>
</tr>
<tr>
<td>40.</td>
<td>Basic Data Structures</td>
</tr>
<tr>
<td>40.1</td>
<td>One-Dimensional Arrays</td>
</tr>
<tr>
<td>40.2</td>
<td>Two-Dimensional Arrays</td>
</tr>
<tr>
<td>40.3</td>
<td>General Array Subscripts</td>
</tr>
<tr>
<td>40.3.1</td>
<td>Multi-Dimensional Arrays (*)</td>
</tr>
<tr>
<td>40.3.2</td>
<td>Non-Homogeneous Arrays (Tables)</td>
</tr>
<tr>
<td>40.4</td>
<td>Address Tables</td>
</tr>
<tr>
<td>40.5</td>
<td>Searching an Ordered Array</td>
</tr>
<tr>
<td>40.6</td>
<td>Stacks</td>
</tr>
<tr>
<td>40.6.1</td>
<td>An Example Using a Stack</td>
</tr>
<tr>
<td>40.6.2</td>
<td>An Example Implementing a Stack</td>
</tr>
<tr>
<td>40.7</td>
<td>Lists</td>
</tr>
<tr>
<td>40.7.1</td>
<td>List Insertion</td>
</tr>
<tr>
<td>40.7.3</td>
<td>List Deletion</td>
</tr>
<tr>
<td>40.7.4</td>
<td>Free Storage Lists</td>
</tr>
<tr>
<td>40.8</td>
<td>Queues</td>
</tr>
<tr>
<td>40.9</td>
<td>Trees</td>
</tr>
<tr>
<td>40.10</td>
<td>Hash Tables</td>
</tr>
<tr>
<td>40.11</td>
<td>Summary</td>
</tr>
</tbody>
</table>

Chapter XII: System Services, Reenterability, and Recursion

41. Using System Services

41.1. Invoking System Services

41.2. Invoking System Services with Macro Instructions

41.3. Macro Formats: Standard, List, and Execute

41.4. Causing Abnormal Termination

41.5. Storage Management

41.6. Basic Input and Output

41.7. Handling Program Interruptions

41.8. Abnormal Terminations of Any Kind

41.9. Summary

42. Reenterability and Recursion

42.1. Reenterability

42.2. Recursion

42.3. Summary

43. Reserved for Future Expansion

Appendix A: Conversion and Reference Tables

Hexadecimal Digits in Decimal and Binary

Hexadecimal Addition and Multiplication Tables

Powers of 2

Multiples of Powers of Sixteen

Powers of 10 in Hexadecimal

Hexadecimal and Decimal Integers

Conversion Tables for Hexadecimal Fractions

EBCDIC Character Representation in Assembler Language Programs

ASCII Character Representation in Assembler Language Programs

DC Statement Types

Appendix B: Simple I/O Macros

Macro Facilities

The READCARD Macro-Instruction

The PRINTLIN Macro-Instruction

The CONVERTO Macro-Instruction

The CONVERTI Macro-Instruction

The PRINTOUT Macro-Instruction

The DUMPOUT Macro-Instruction

PRINTOUT and DUMPOUT Header

Usage Notes
112. Using shift instructions for a 6-byte data item ... 246
113. Shifting to make the low-order bit one (1) ... 249
114. Shifting to make the low-order bit one (2) ... 249
115. Four integers packed in a 32-bit word .. 249
116. Extracting one packed integer from a 32-bit word .. 249
117. Unpacking four unsigned integers using right shifts .. 250
118. Unpacking four unsigned integers using left shifts ... 250
119. Unpacking four signed integers .. 254
120. Logical rotate unit shift .. 257
121. Packing four unsigned bit-length constants in a 32-bit word 260
122. Packing four signed bit-length constants in a 32-bit word 260
123. General layout of multiplication operands ... 265
124. Double-length product of multiply operations .. 266
125. Calculate the sum of the first 10 cubed integers ... 267
126. Illustration of binary multiplication ... 273
127. General result of divide operation .. 274
128. Operands of double-length division ... 275
129. Example of division by 3 .. 276
130. Example of rounded integer division .. 276
131. Example of rounded integer division with signed dividend 277
132. Ensuring a valid arithmetic division .. 277
133. Causing a fixed-point divide interruption ... 277
134. Operands of single-length division before division .. 278
135. Operands of single-length division after division ... 278
136. Example of logical division ... 280
137. Illustration of binary division .. 282
138. Logical operations AND, OR, and XOR ... 289
139. Examples of logical operations .. 290
140. Inserting a new integer value using AND and OR .. 291
141. Data masking using Exclusive OR ... 292
142. Rounding to the next multiple of 8 ... 293
143. Rounding to the next multiple of 8 ... 293
144. Complementing a double-length integer .. 294
145. Effective Address generation for long-displacement instructions 303
146. Addressability range with 12-bit displacements .. 304
147. Addressability range with 20-bit displacements .. 304
148. Effective Address formation for relative-immediate instructions 305
149. Areas of memory addressed by three AMODEs .. 308
150. z System PSW showing addressing-mode bits .. 308
151. Loading integer constants with the LAY instruction .. 310
152. Counting number of shifts to make rightmost bit a 1-bit 311
153. Using LA to set a branch address ... 311
154. 64bit Virtual Address .. 314
155. 64-bit Virtual Address with Region Indexes ... 314
156. Instruction classes, including RI, RIL .. 317
157. Four halfwords in a 64-bit general register .. 318
158. Operation of six Insert Immediate instructions .. 318
159. Operation of LHI instruction .. 319
160. Operation of LGHI instruction ... 320
161. Examples of load-immediate instructions .. 321
162. Operation of six logical load instructions .. 321
163. Extracting an unsigned integer value using AND Immediate 324
164. Inserting a new integer value using AND Immediate .. 324
165. Data masking using immediate operands .. 325
166. Data masking using a symbolically defined immediate operand 325
167. A simple loop to scan and replace characters .. 333
168. A simple loop, using indexing ... 334
169. Indexing into a branch table .. 334
170. A backward loop to scan and replace characters ... 336
171. Calculate the sum of the first N odd integers ... 336
172. Store the cubes of the first 10 integers .. 337
173. Sketch of a Do-Until loop .. 340

xviii Assembler Language Programming for IBM z System™ Servers Version 1.00
236. Execution of the MVST instruction .. 418
237. Moving a null-terminated string ... 419
238. Using MVST to isolate comma-separated tokens 419
239. Execution of the CLST instruction ... 421
240. Translating characters to upper case with TRE 423
241. Examples using the CUSE instruction 425
242. Mixed single- and double-byte EBCDIC characters 433
243. Examples of DBCS data .. 434
244. Extended continuation for DBCS data 437
245. CU-type constant generating Unicode characters 439
246. Using MVCLU to initialize an area to Unicode spaces 441
247. Using CLCLU to test for Unicode spaces 442
248. Assembler instruction statement for RRF-type instructions with an optional operand 443
249. Translating a long string with TR and MVC, and with TROO 445
250. Bits of a UTF-16 Unicode character 446
251. Bits of a UTF-32 Unicode character from a UTF-16 surrogate pair 446
252. Big-Endian storage representation of X′87654321′ 449
253. Little-Endian storage representation of X′87654321′ 449
254. Byte reversal by LRV, LRVR, and STRV instructions 449
255. Byte reversal by LRVH and STRVH instructions 450
256. Four integers packed in a Big-Endian 32-bit word 450
257. The same four integers packed in a Little-Endian 32-bit word 451
258. Zone and numeric digits of a byte 454
259. Example of MVN and MVZ instructions 455
260. Zoned decimal sign conventions ... 456
261. A zoned decimal number .. 456
262. Zoned decimal constants with implied lengths 458
263. Zoned decimal constants with explicit lengths 458
264. Representation of a packed decimal number 460
265. Packed decimal constants with implied lengths 461
266. Packed decimal constants with explicit lengths 461
267. Format of typical two-length SS-type instructions 463
268. Examples of assembled PACK and UNPK instructions 464
269. Zoned and packed forms of +12345 465
270. PACK instruction operation ... 465
271. Examples of the PACK instruction ... 466
272. Digit swap using PACK ... 466
273. Operation of the UNPK instruction ... 468
274. Example of an UNPK instruction .. 468
275. Examples of UNPK instructions ... 469
276. Digit swap using UNPK .. 469
277. Packing ASCII characters .. 472
278. Packing Unicode characters ... 472
279. Unpacking to ASCII and Unicode characters 473
280. Unpacking hex digits (incorrectly) .. 475
281. Unpacking hex digits (correctly) .. 475
282. Converting hex data to printable characters 475
283. Syntax of the TP instruction ... 490
284. Examples of the ZAP instruction .. 492
285. Using ZAP to initialize a table of packed decimal operands 492
286. Initializing a table of decimal numbers using MVC 492
287. Examples of the AP and SP instructions 494
288. Adding a table of 50 packed decimal numbers 494
289. Adding positive and negative items separately 496
290. Finding the largest item in a table 497
291. Example of decimal multiplication .. 498
292. Using MP to square a table of decimal numbers 498
293. Using ZAP to set correct decimal multiplicand length 499
294. Using ZAP to set correct decimal multiplicand length 499
422. Examples of binary integer to binary floating-point instructions ... 653
423. Examples of converting binary floating-point fractions to integers with rounding 654
424. Examples of Convert to Fixed instructions ... 654
425. Examples of load FP integer instructions ... 656
426. Examples of divide to integer instructions ... 657
427. Example of iterative divide to integer ... 657
428. Iterative execution of a divide to integer instruction ... 658
429. Examples of binary floating-point square root instructions .. 659
430. Example of binary floating-point multiply and add instructions ... 660
431. Hexadecimal and binary floating-point representations .. 668
432. Conceptual decimal floating-point representation .. 669
433. Three decimal floating-point representations of the same value ... 670
434. Decimal floating-point data representation ... 673
435. z System decimal floating-point representations ... 673
436. DFP constants with exponent modifiers and decimal exponents .. 678
437. Examples of decimal floating-point Test Data Class instructions ... 680
438. Illustration of decimal floating-point rounding candidates .. 681
439. Illustration of decimal floating-point rounding candidates near zero .. 682
440. Floating-Point Control (FPC) register ... 685
441. Examples of converting decimal floating-point to fixed binary .. 695
442. Examples of converting decimal floating-point to binary integer ... 695
443. Converting signed packed decimal to decimal floating-point .. 696
444. Converting decimal floating-point to signed packed decimal .. 697
445. Converting decimal floating-point to signed packed decimal .. 697
446. Converting unsigned packed decimal to decimal floating-point .. 698
447. Converting decimal floating-point to unsigned packed decimal .. 698
448. Effect of the mask operand on Convert from Zoned results ... 699
449. Examples of converting decimal floating-point to zoned .. 700
450. DFP arithmetic with short operands ... 704
451. Floating-Point Control Register showing Decimal Rounding Mode bits 705
452. Example of extracting DFP biased exponent .. 705
453. Example of inserting a biased DFP exponent .. 706
454. Examples of DFP Extract Significance instructions .. 707
455. Converting an extended decimal floating-point value to packed decimal 708
456. Calculate price plus tax .. 710
457. Correctly rounding a cost to two decimal digits ... 710
458. Example of a reround instruction ... 711
459. Example of rerounding arbitrary amounts .. 711
460. Examples of assembled DFP constants using rounding for reround ... 712
461. Example of DFP binary-significand format .. 716
462. Sketch of short binary-significand format ... 716
463. BCD-to-DPD encodings .. 720
464. DPD-to-BCD translation .. 721
465. Degraded precision in adding hexadecimal floating-point pseudo-zeros 734
466. Trivial example of a subroutine (1) .. 743
467. Trivial example of a subroutine (2) .. 743
468. Subroutine linkage using a BAS instruction .. 744
469. Subroutine linkage using a BASR instruction ... 745
470. Subroutine linkage using an address constant ... 745
471. Simple shift subroutine (1) ... 746
472. Simple shift subroutine (2) ... 746
473. Simple shift subroutine with named arguments (3) .. 746
474. Simple shift subroutine (4) using argument addresses ... 747
475. Simple shift subroutine (5) with argument addresses in memory ... 747
476. Subroutine call with inline arguments .. 747
477. Subroutine returning past inline argument ... 748
478. Subroutine call with inline argument addresses .. 748
479. Subroutine with argument address list .. 749
480. Subroutine saves and restores registers .. 750
481. General argument-passing scheme ... 752
482. Subroutine call using an argument address list ... 752
483. Subroutine called with an argument address list ... 752
<table>
<thead>
<tr>
<th>Page</th>
<th>Text</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>608</td>
<td>BASSM setting of first-operand register for 24-, 31-, and 64-bit addressing modes</td>
<td>845</td>
</tr>
<tr>
<td>609</td>
<td>Sketch of residence and addressing modes</td>
<td>849</td>
</tr>
<tr>
<td>610</td>
<td>Example showing why LLGT/LLGTR are necessary</td>
<td>849</td>
</tr>
<tr>
<td>611</td>
<td>Example of a dummy control section</td>
<td>857</td>
</tr>
<tr>
<td>612</td>
<td>Example using a dummy control section</td>
<td>857</td>
</tr>
<tr>
<td>613</td>
<td>USING Table with two entries, one for a dummy section</td>
<td>858</td>
</tr>
<tr>
<td>614</td>
<td>Object code from references to a dummy control section</td>
<td>858</td>
</tr>
<tr>
<td>615</td>
<td>Example using a dummy control section</td>
<td>858</td>
</tr>
<tr>
<td>616</td>
<td>A poor method for describing two instances of a record</td>
<td>859</td>
</tr>
<tr>
<td>617</td>
<td>A better record description with a DSECT</td>
<td>860</td>
</tr>
<tr>
<td>618</td>
<td>Ordinary USING statement syntax</td>
<td>860</td>
</tr>
<tr>
<td>619</td>
<td>Copying a field from Old record to New</td>
<td>861</td>
</tr>
<tr>
<td>620</td>
<td>Incorrect addressing with ordinary USING</td>
<td>862</td>
</tr>
<tr>
<td>621</td>
<td>Correct but awkward addressing with ordinary USING</td>
<td>862</td>
</tr>
<tr>
<td>622</td>
<td>Manual coding of base and displacement for a large DSECT</td>
<td>863</td>
</tr>
<tr>
<td>623</td>
<td>Labeled USING statement syntax</td>
<td>866</td>
</tr>
<tr>
<td>624</td>
<td>Qualified symbol syntax</td>
<td>866</td>
</tr>
<tr>
<td>625</td>
<td>Examples of qualifier definitions</td>
<td>866</td>
</tr>
<tr>
<td>626</td>
<td>Copying a field with Labeled USINGs</td>
<td>867</td>
</tr>
<tr>
<td>627</td>
<td>DROP statement for Labeled USING</td>
<td>867</td>
</tr>
<tr>
<td>628</td>
<td>Concurrently active Ordinary and Labeled USINGs</td>
<td>868</td>
</tr>
<tr>
<td>629</td>
<td>Dummy control section for record address</td>
<td>869</td>
</tr>
<tr>
<td>630</td>
<td>Improved definition of a record description</td>
<td>869</td>
</tr>
<tr>
<td>631</td>
<td>Mapping a substructure with a second DSECT</td>
<td>870</td>
</tr>
<tr>
<td>632</td>
<td>Dependent USING statement syntax</td>
<td>870</td>
</tr>
<tr>
<td>633</td>
<td>Anchoring an internal DSECT with a Dependent USING</td>
<td>871</td>
</tr>
<tr>
<td>634</td>
<td>Outer DSECT with two nested DSECTs</td>
<td>871</td>
</tr>
<tr>
<td>635</td>
<td>Assembler listing of multiple Dependent USINGs and DSECTs</td>
<td>872</td>
</tr>
<tr>
<td>636</td>
<td>Three independent data structures with one base register</td>
<td>872</td>
</tr>
<tr>
<td>637</td>
<td>Defining DSECTs for three independent data structures</td>
<td>873</td>
</tr>
<tr>
<td>638</td>
<td>Defining a mapping of three independent but contiguous data structures</td>
<td>873</td>
</tr>
<tr>
<td>639</td>
<td>Example of a message-skeleton CSECT</td>
<td>873</td>
</tr>
<tr>
<td>640</td>
<td>Example of mapping a CSECT as though it is a DSECT</td>
<td>874</td>
</tr>
<tr>
<td>641</td>
<td>Labeled Dependent USING statement syntax</td>
<td>875</td>
</tr>
<tr>
<td>642</td>
<td>Nesting two identical structures within a third</td>
<td>876</td>
</tr>
<tr>
<td>643</td>
<td>Addressing two nested DSECTs with Labeled Dependent USINGs</td>
<td>877</td>
</tr>
<tr>
<td>644</td>
<td>Data in nested DSECTs addressed with Labeled Dependent USINGs</td>
<td>877</td>
</tr>
<tr>
<td>645</td>
<td>Multiply-Nested Data Structures</td>
<td>877</td>
</tr>
<tr>
<td>646</td>
<td>Doubly Nested DSECT definitions</td>
<td>878</td>
</tr>
<tr>
<td>647</td>
<td>Addressing doubly nested DSECT definitions</td>
<td>879</td>
</tr>
<tr>
<td>648</td>
<td>Using the Labeled Dependent USINGs to move data</td>
<td>880</td>
</tr>
<tr>
<td>649</td>
<td>Addressing two DCBs with ordinary USINGs</td>
<td>881</td>
</tr>
<tr>
<td>650</td>
<td>Addressing instructions and DCBs with one register</td>
<td>881</td>
</tr>
<tr>
<td>651</td>
<td>Define a personnel-file record</td>
<td>882</td>
</tr>
<tr>
<td>652</td>
<td>Employee-record Person DSECT</td>
<td>883</td>
</tr>
<tr>
<td>653</td>
<td>Employee-record Date DSECT</td>
<td>883</td>
</tr>
<tr>
<td>654</td>
<td>Employee-record Address DSECT</td>
<td>883</td>
</tr>
<tr>
<td>655</td>
<td>Employee-record Phone DSECT</td>
<td>883</td>
</tr>
<tr>
<td>656</td>
<td>DSECT nesting in an employee record</td>
<td>885</td>
</tr>
<tr>
<td>657</td>
<td>Anchoring various DSECTs within Employee record</td>
<td>884</td>
</tr>
<tr>
<td>658</td>
<td>Manipulating fields within an Employee record</td>
<td>886</td>
</tr>
<tr>
<td>659</td>
<td>Addressing DSECTs within Employee record with ordinary USINGs</td>
<td>886</td>
</tr>
<tr>
<td>660</td>
<td>Comparing dates of birth in Employee record</td>
<td>886</td>
</tr>
<tr>
<td>661</td>
<td>Comparing date fields in different parts of an Employee record</td>
<td>887</td>
</tr>
<tr>
<td>662</td>
<td>Copying addresses with an Employee Record</td>
<td>888</td>
</tr>
<tr>
<td>663</td>
<td>Example of a one-dimensional array of halfwords</td>
<td>894</td>
</tr>
<tr>
<td>664</td>
<td>Sum of array elements with known subscript bounds</td>
<td>894</td>
</tr>
<tr>
<td>665</td>
<td>Sum of array elements with unknown subscript bounds</td>
<td>895</td>
</tr>
<tr>
<td>666</td>
<td>Typical arrangement of elements of a matrix</td>
<td>896</td>
</tr>
<tr>
<td>667</td>
<td>Storing an array in column order</td>
<td>896</td>
</tr>
<tr>
<td>668</td>
<td>Storing an array in row order</td>
<td>896</td>
</tr>
<tr>
<td>669</td>
<td>Retrieving a specified element of an array</td>
<td>897</td>
</tr>
</tbody>
</table>
670. Retrieving a specified element of an array efficiently .. 898
671. Searching for a matching table entry ... 900
672. Searching for a table entry mapped by a DSECT .. 901
673. USING Table with two entries, one for a DSECT ... 901
674. Creating a table of addresses .. 903
675. Creating a better table of addresses ... 903
676. Creating a table of addresses at assembly time .. 904
677. Example of a binary search ... 906
678. A stack growing toward higher addresses ... 909
679. A stack implemented as an array ... 910
680. Pushing a data item onto a stack .. 910
681. Adding top two elements of a stack .. 910
682. A stack growing toward lower addresses .. 911
683. Add top two elements of a stack .. 911
684. Sketch of a linked list ... 913
685. Inserting an element into a linked list ... 913
686. Example of inserting an element into a linked list ... 913
687. DSECT describing a list element ... 914
688. Mapping multiple list elements with Labeled USINGs 914
689. Deleting an element from a linked list .. 914
690. Example of deleting an element from a linked list ... 914
691. Example of deleting an element from a linked list ... 914
692. Defining a free storage list as an array .. 915
693. Initializing a free storage list as an array ... 915
694. Example of a list anchor ... 916
695. DSECT mapping a list anchor ... 916
696. Defining an anchor for a working list ... 916
697. Moving a list element from the FSL to the working list 917
698. A two-dimensional array to implement a linked list ... 917
699. Initializing a two-dimensional array implementing a linked list 918
700. Structure of a queue element .. 919
701. A queue with several elements .. 920
702. DSECT structure of a typical queue element ... 920
703. An element to be inserted into a queue ... 920
704. A queue after insertion of a new element ... 920
705. Instructions to insert a new queue element ... 921
706. Insert a new list element with ordinary USINGs .. 921
707. Ordinary-USING Code to Insert a New List Element .. 921
708. Labeled USING example: inserting a new queue element 922
709. Node of a binary tree ... 923
710. DSECT structure of a typical tree element .. 923
711. Three nodes of a binary tree .. 923
712. A growing binary tree with seven nodes ... 924
713. Entering a new node in a binary tree ... 924
714. Retrieving data from a binary tree .. 926
715. Example of a binary tree of 7 elements ... 926
716. Example of searching a hash table .. 928
717. Example of searching a hash table .. 929
718. Sample macro invocation, Standard form ... 937
719. Generated statements from an OPEN macro ... 938
720. Sample macro invocation using List form .. 938
721. Generated statements from a List form OPEN macro 939
722. Sample macro invocation using Execute form .. 939
723. Generated statements from an Execute form OPEN macro 939
724. Sample macro invocation using empty List form .. 939
725. Generated instructions from empty List form .. 939
726. Sample macro invocation using Execute form .. 939
727. Generated statements from an Execute form OPEN macro 939
728. Another macro invocation using Execute form and same List form 940
729. An R-Type macro invocation generating an argument in a register 940
730. Generated statements from R-Type macro .. 940
731. A macro invocation with arguments in registers ... 940

Figures xxvii
Tables

1. Binary, decimal, and hexadecimal 20
2. Multiples of powers of sixteen (part 1 of 2) 22
3. Multiples of powers of sixteen (part 2 of 2) 23
4. Examples of two's complement representation 31
5. Examples of sign extension .. 32
6. RR-type instruction format 54
7. RX-type and RS-type instruction format 54
8. SI-type instruction format 54
9. SS-type instruction format 55
10. Instruction Length Code and instruction types 56
11. General instruction classifications 57
<p>| 12. | Punched-card image of a RETURN statement | 80 |
| 13. | Assembler Language EBCDIC character representation | 89 |
| 14. | Differences between Assembler Language and high-level language symbols | 96 |
| 15. | Expressions with absolute and relocatable terms | 101 |
| 16. | Typical RR-type instructions | 108 |
| 17. | RR-type instruction | 109 |
| 18. | Typical RX-type instructions | 110 |
| 19. | RX-type instruction | 110 |
| 20. | Operands of RX-type instructions | 111 |
| 21. | Typical RS- and SI-type instructions | 113 |
| 22. | Typical RS-type instruction | 113 |
| 23. | Operands of RS-type instructions | 114 |
| 24. | Typical SI-type instruction | 114 |
| 25. | Operands of SI-type instructions | 114 |
| 26. | Typical SS-type instructions | 115 |
| 27. | Typical type SS-1 instruction with one length field | 115 |
| 28. | Operands of type SS-1 single-length instructions | 115 |
| 29. | Typical type SS-2 instruction with two length fields | 116 |
| 30. | Operands of type SS-2 two-length instructions | 116 |
| 31. | Examples of truncated and padded constants | 154 |
| 32. | Truncation/padding rules for some DC operands | 155 |
| 33. | Truncation and padding rules for some DC operands with extended types | 160 |
| 34. | Load/Store instructions for 32-bit general registers | 181 |
| 35. | Format of an RX-type instruction | 181 |
| 36. | Multiple load/store instructions for 32-bit general registers | 182 |
| 37. | RS-type instruction format | 182 |
| 38. | Halfword load/store instructions for 32-bit general registers | 184 |
| 39. | Character insert/store instructions for 32-bit general registers | 186 |
| 40. | Insert/Store characters under mask instructions for 32-bit general registers | 187 |
| 41. | RS-type instruction format for ICM and STCM | 188 |
| 42. | CC settings after ICM instruction | 189 |
| 43. | Register/register instructions for 32-bit general registers | 190 |
| 44. | Action of five RR-type general register instructions | 190 |
| 45. | Condition Code settings | 190 |
| 46. | Register/storage instructions for 64-bit general registers | 192 |
| 47. | RXY-type instruction format | 192 |
| 48. | RSY-type instruction format | 192 |
| 49. | RRE-type instruction format | 194 |
| 50. | Register/register instructions for 64-bit general registers | 195 |
| 51. | Action of five RR-type 64-bit general register instructions | 195 |
| 52. | Load and Test instructions | 195 |
| 53. | Register/register instructions for 64-bit general registers | 196 |
| 54. | Action of 32-bit-to-64-bit general register instructions | 196 |
| 55. | Other general register load instructions | 198 |
| 56. | Summary of instructions discussed in this section | 202 |
| 57. | BCR instruction | 207 |
| 58. | BC instruction | 207 |
| 59. | Mask bits and corresponding CC values | 207 |
| 60. | CNOP operands | 210 |
| 61. | Extended branch mnemonics and their branch mask values | 212 |
| 62. | Frequently used add and subtract instructions | 218 |
| 63. | CC settings for arithmetic add and subtract instructions | 219 |
| 64. | Arithmetic compare instructions | 223 |
| 65. | CC settings after arithmetic comparisons | 223 |
| 66. | Logical arithmetic instructions | 225 |
| 67. | CC settings for logical add and subtract instructions | 225 |
| 68. | CC indications for logical addition and subtraction | 226 |
| 69. | CC settings after logical addition | 229 |
| 70. | CC settings after logical subtraction | 229 |
| 71. | Logical arithmetic instructions with carry/borrow | 230 |
| 72. | Instructions for mixed-length operands | 231 |
| 73. | Arithmetic compare instructions | 233 |</p>
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>74</td>
<td>CC settings after logical comparisons</td>
</tr>
<tr>
<td>75</td>
<td>IPM and SPM instructions</td>
</tr>
<tr>
<td>76</td>
<td>Program Mask bits</td>
</tr>
<tr>
<td>77</td>
<td>Summary of instructions discussed in this section</td>
</tr>
<tr>
<td>78</td>
<td>General register shift instructions</td>
</tr>
<tr>
<td>79</td>
<td>RS-type shift instruction</td>
</tr>
<tr>
<td>80</td>
<td>RSY-type instruction format</td>
</tr>
<tr>
<td>81</td>
<td>CC settings for arithmetic shift instructions</td>
</tr>
<tr>
<td>82</td>
<td>Summary of shift instructions discussed in this section</td>
</tr>
<tr>
<td>83</td>
<td>Binary integer multiply instructions</td>
</tr>
<tr>
<td>84</td>
<td>Double-length arithmetic multiply instructions</td>
</tr>
<tr>
<td>85</td>
<td>Single-length arithmetic multiply instructions</td>
</tr>
<tr>
<td>86</td>
<td>Logical multiply instructions</td>
</tr>
<tr>
<td>87</td>
<td>Binary divide instructions</td>
</tr>
<tr>
<td>88</td>
<td>Arithmetic divide instructions</td>
</tr>
<tr>
<td>89</td>
<td>Binary divide instructions</td>
</tr>
<tr>
<td>90</td>
<td>Summary of multiply instructions discussed in this section</td>
</tr>
<tr>
<td>91</td>
<td>Summary of divide instructions discussed in this section</td>
</tr>
<tr>
<td>92</td>
<td>Logical operations involving general registers</td>
</tr>
<tr>
<td>93</td>
<td>CC settings by logical instructions</td>
</tr>
<tr>
<td>94</td>
<td>Summary of the logical operations AND, OR, XOR</td>
</tr>
<tr>
<td>95</td>
<td>Logical-operation instructions discussed in this section</td>
</tr>
<tr>
<td>96</td>
<td>Format of RXY- and RSY-type instructions</td>
</tr>
<tr>
<td>97</td>
<td>Format of R-I instructions with 16-bit immediate operands</td>
</tr>
<tr>
<td>98</td>
<td>Format of R-I instructions with 32-bit immediate operands</td>
</tr>
<tr>
<td>99</td>
<td>PSW addressing-mode bits</td>
</tr>
<tr>
<td>100</td>
<td>Load Address instructions</td>
</tr>
<tr>
<td>101</td>
<td>Load Address instructions described in this section</td>
</tr>
<tr>
<td>102</td>
<td>RI-type instruction</td>
</tr>
<tr>
<td>103</td>
<td>RIL-type instruction</td>
</tr>
<tr>
<td>104</td>
<td>Insert-Immediate instructions</td>
</tr>
<tr>
<td>105</td>
<td>Load and insert instructions with immediate operands</td>
</tr>
<tr>
<td>106</td>
<td>Arithmetic-immediate add and subtract instructions</td>
</tr>
<tr>
<td>107</td>
<td>Arithmetic-immediate compare instructions</td>
</tr>
<tr>
<td>108</td>
<td>Arithmetic-immediate multiply instructions</td>
</tr>
<tr>
<td>109</td>
<td>AND-immediate instructions</td>
</tr>
<tr>
<td>110</td>
<td>OR-immediate instructions</td>
</tr>
<tr>
<td>111</td>
<td>XOR-immediate instructions</td>
</tr>
<tr>
<td>112</td>
<td>Load and insert instructions with immediate operands</td>
</tr>
<tr>
<td>113</td>
<td>Arithmetic instructions with immediate operands</td>
</tr>
<tr>
<td>114</td>
<td>Logical instructions with immediate operands</td>
</tr>
<tr>
<td>115</td>
<td>Format of the BRC instruction</td>
</tr>
<tr>
<td>116</td>
<td>Format of the BRCL instruction</td>
</tr>
<tr>
<td>117</td>
<td>Extended branch relative on condition mnemonics and their branch mask values</td>
</tr>
<tr>
<td>118</td>
<td>Branch on count instructions</td>
</tr>
<tr>
<td>119</td>
<td>Extended mnemonics for branch relative on count instructions</td>
</tr>
<tr>
<td>120</td>
<td>Branch on index instructions</td>
</tr>
<tr>
<td>121</td>
<td>RS-type BXH and BXLE instructions</td>
</tr>
<tr>
<td>122</td>
<td>RSY-type BXHG and BXLEG instructions</td>
</tr>
<tr>
<td>123</td>
<td>RSI-type BRXH and BRXLE instructions</td>
</tr>
<tr>
<td>124</td>
<td>RIE-type BRXHG and BRXLEG instructions</td>
</tr>
<tr>
<td>125</td>
<td>Extended mnemonics for branch relative on index instructions</td>
</tr>
<tr>
<td>126</td>
<td>Branch relative on condition instructions</td>
</tr>
<tr>
<td>127</td>
<td>Branch instructions for loop control</td>
</tr>
<tr>
<td>128</td>
<td>SI-type instruction format</td>
</tr>
<tr>
<td>129</td>
<td>SIY-type instruction format</td>
</tr>
<tr>
<td>130</td>
<td>SI-type instruction actions</td>
</tr>
<tr>
<td>131</td>
<td>Move Immediate instructions</td>
</tr>
<tr>
<td>132</td>
<td>Logical Storage-Immediate instructions</td>
</tr>
<tr>
<td>133</td>
<td>CC settings by SI-type logical instructions</td>
</tr>
<tr>
<td>134</td>
<td>Compare Immediate instructions</td>
</tr>
<tr>
<td>135</td>
<td>CC settings after CLI instruction</td>
</tr>
<tr>
<td>Page Range</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td>384-728</td>
<td>Length modifiers of floating-point constants</td>
</tr>
<tr>
<td>385-728</td>
<td>Assembler rounding-mode suffixes for floating-point constants</td>
</tr>
<tr>
<td>386-730</td>
<td>Internal precision required for faithful In-Out conversion</td>
</tr>
<tr>
<td>387-730</td>
<td>Decimal precision required for faithful Out-In conversion</td>
</tr>
<tr>
<td>388-731</td>
<td>Perform Floating-Point Operation instruction</td>
</tr>
<tr>
<td>389-732</td>
<td>Laws of real and realistic arithmetic</td>
</tr>
<tr>
<td>390-734</td>
<td>Examples of hexadecimal floating-point pseudo-zeros</td>
</tr>
<tr>
<td>391-736</td>
<td>Examples of other floating-point representations</td>
</tr>
<tr>
<td>392-737</td>
<td>Equivalent decimal and floating-point precisions</td>
</tr>
<tr>
<td>393-744</td>
<td>Branch and Save instructions</td>
</tr>
<tr>
<td>394-756</td>
<td>Standard (Format-0) Save Area</td>
</tr>
<tr>
<td>395-759</td>
<td>Standard Format-4 save area</td>
</tr>
<tr>
<td>396-761</td>
<td>Standard Format-5 save area</td>
</tr>
<tr>
<td>397-813</td>
<td>AMODE values</td>
</tr>
<tr>
<td>398-814</td>
<td>RMODE values</td>
</tr>
<tr>
<td>399-814</td>
<td>Default AMODE and RMODE values</td>
</tr>
<tr>
<td>400-814</td>
<td>Valid combinations of AMODE and RMODE values</td>
</tr>
<tr>
<td>401-827</td>
<td>Differences in linking COMMONs and External dummy items</td>
</tr>
<tr>
<td>402-827</td>
<td>ESD symbol search types</td>
</tr>
<tr>
<td>403-829</td>
<td>Matching existing CESD SD symbol to incoming symbols</td>
</tr>
<tr>
<td>404-829</td>
<td>Matching existing CESD LD symbol to incoming symbols</td>
</tr>
<tr>
<td>405-829</td>
<td>Matching existing CESD CM symbol to incoming symbols</td>
</tr>
<tr>
<td>406-830</td>
<td>Matching existing CESD ER symbol to incoming symbols</td>
</tr>
<tr>
<td>407-830</td>
<td>Matching existing CESD ER symbol to incoming symbols</td>
</tr>
<tr>
<td>408-841</td>
<td>Comparing load modules and program objects</td>
</tr>
<tr>
<td>409-844</td>
<td>Instructions to change addressing mode</td>
</tr>
<tr>
<td>410-844</td>
<td>CC settings for TAM instruction</td>
</tr>
<tr>
<td>411-844</td>
<td>PSW addressing-mode bits</td>
</tr>
<tr>
<td>412-846</td>
<td>BASSM actions summary</td>
</tr>
<tr>
<td>413-846</td>
<td>Operation of BSM instruction</td>
</tr>
<tr>
<td>414-847</td>
<td>BSM actions summary</td>
</tr>
<tr>
<td>415-848</td>
<td>Instruction pairs for call/return with possible AMODE change</td>
</tr>
<tr>
<td>416-848</td>
<td>Calling among addressing modes within an assembly</td>
</tr>
<tr>
<td>417-849</td>
<td>LLGT and LLGTR instructions</td>
</tr>
<tr>
<td>418-857</td>
<td>Symbol table entries for DSECT symbols</td>
</tr>
<tr>
<td>419-890</td>
<td>Summary of USING Statements</td>
</tr>
<tr>
<td>420-890</td>
<td>Summary of DROP Statement Behaviors</td>
</tr>
<tr>
<td>421-900</td>
<td>Example of a non-homogeneous array</td>
</tr>
<tr>
<td>422-903</td>
<td>Array addressing with a table of addresses</td>
</tr>
<tr>
<td>423-904</td>
<td>Example of an address table’s contents</td>
</tr>
<tr>
<td>424-904</td>
<td>Supervisor and Program Call instructions</td>
</tr>
<tr>
<td>425-936</td>
<td>SVC instruction format</td>
</tr>
<tr>
<td>426-937</td>
<td>PC instruction format</td>
</tr>
<tr>
<td>427-944</td>
<td>GETMAIN request options</td>
</tr>
<tr>
<td>428-945</td>
<td>FREEMAIN request options</td>
</tr>
<tr>
<td>429-952</td>
<td>Comparing QSAM and BSAM</td>
</tr>
<tr>
<td>430-960</td>
<td>Partial contents of Extended Program Interruption Element (EPIE)</td>
</tr>
<tr>
<td>431-981</td>
<td>Hexadecimal, decimal, and binary</td>
</tr>
<tr>
<td>432-982</td>
<td>Hexadecimal Addition Table</td>
</tr>
<tr>
<td>433-982</td>
<td>Hexadecimal Multiplication Table</td>
</tr>
<tr>
<td>434-983</td>
<td>Integer powers of 2</td>
</tr>
<tr>
<td>435-984</td>
<td>Integer powers of 2</td>
</tr>
<tr>
<td>436-986</td>
<td>Multiples of powers of sixteen (part 1 of 2)</td>
</tr>
<tr>
<td>437-986</td>
<td>Multiples of powers of sixteen (part 2 of 2)</td>
</tr>
<tr>
<td>438-987</td>
<td>Powers of 10 expressed in hexadecimal</td>
</tr>
<tr>
<td>439-998</td>
<td>Assembler Language EBCDIC character representation</td>
</tr>
<tr>
<td>440-999</td>
<td>7-bit ASCII character representation</td>
</tr>
<tr>
<td>441-1000</td>
<td>High Level Assembler DC-Statement Constant Types</td>
</tr>
<tr>
<td>442-1061</td>
<td>ASCII Character Representation</td>
</tr>
<tr>
<td>443-1112</td>
<td>Examples of different types of integer division</td>
</tr>
<tr>
<td>444-1197</td>
<td>Comparing five binary floating-point operands</td>
</tr>
</tbody>
</table>
Foreword

Outline and Overview

We will survey many aspects of Assembler Language programming on z System processors.

Chapters I-IV cover basic material needed for almost all programs.

- Chapter I introduces some notation we'll use, and discusses the important topics of binary and hexadecimal number representations and arithmetic, and conversion among number representations.
- Chapter II introduces the “Central Processing Unit” or CPU. We’ll survey central memory, the registers you’ll use in your programs, and the Program Status Word (PSW). Then we’ll look at some basic types of instructions and their operation codes, and see how they refer to data in memory.
- Chapter III describes basic properties of the Assembler Language, including symbols, self-defining terms, and expression evaluation. Then we will see how to write Assembler Language statements and their components. Last, we discuss the key concept of addressability and the important USING statement.
- Chapter IV describes methods for defining often-used data types, and techniques for organizing data items in your programs.
- The six sections of Chapter V discuss basic instructions, emphasizing those that operate on data in the general registers, and the important “conditional branch” instructions.
- Chapter VI considers addressing techniques, loops and other iterative processes, and “immediate” instructions containing useful operands.
- Chapter VII discusses bit and character data and techniques for handling them.
- Chapter VIII examines the packed and zoned decimal data representations, instructions for packed decimal arithmetic, and for conversion between those representations and EBCDIC characters.
- Chapter IX describes general concepts of floating-point arithmetic and the three floating-point representations supported by z System: hexadecimal, binary, and decimal, and instructions for manipulating data in and among each of the representations. It concludes with a summary of important differences between floating-point and mathematicians’ “real” arithmetics.
- Chapter X discusses large programs and modularization techniques such as subroutines and common linkage conventions, how to combine separately assembled (or compiled) routines into a single executable program, and how to change addressing modes.
- Chapter XI describes the powerful “Dummy Control Section” and the enhanced USING statements, and shows how to apply them to several basic data structures.
• Chapter XII introduces common techniques for accessing operating system services, basics of exception handling, and uses of reenterability and recursion.
• Appendix A contains reference and conversion tables.
• Appendix B describes a set of useful macro instructions that handle simple input, output, conversion, and display operations.

Programming Environments

Every programming language must eventually deal with the environments under which the programs will be run. While we will see many examples of program segments, we will defer complete programs until later sections.

If you like, browse the solutions to the Programming Problems: these are complete programs that have been executed successfully, and produce what I believe are correct answers. The simple conventions used here for communicating with the Operating System’s Supervisor are described in “Appendix B: Simple I/O Macros” on page 1001; these may be augmented or replaced as desired.

The conventions and procedures needed to execute an Assembler Language program in your computing environment should be locally available to you.

Levels of Difficulty (*)

This material varies in depth and detail. Where a detailed portion can be skipped with no loss of continuity, the heading is tagged with a parenthesized asterisk (*), as in the heading just above.

Exercises and Programming Problems

Exercises and programming problems appear throughout. Some are integral to the material, while others explore interesting sidelines. Exercises and programming problems are rated in order of estimated difficulty from 1 to 5; the most useful or illustrative exercises are tagged with a plus (+), and are strongly recommended.

In all cases, the exercises and programming problems are important.

The Exercise and Programming Problem solutions should be considered as samples, and are not in any way intended to be the “correct” solutions. If yours are shorter, simpler, or just plain nicer, so much the better. But if your solutions seem to be two or three times longer than these, you may want to study them for suggestions of useful approaches to solving a programming problem.

Some Observations

1. Some exercises ask you to find what is wrong with a statement or instruction sequence. While it may be poor style (or manners) to show coding errors, I feel justified in doing so on two grounds: pedagogical value and self-defense.
 • First, it helps to see wrong or poor ways to do something, as well as correct or better ways.
 • Second, some programs may be written by people who learned from examples containing errors — and their programs will be processing my bills, checking my tax returns, and calculating my bank balance. I want your programs — and theirs — to be as safe, correct, and reliable as possible.

 I trust you will understand. I am of course willing to have you point out my errors. If you find any, please let me know so I can correct them.

2. This is not intended to be a cookbook. I have tried to give not just occasional recipes for doing some basic tasks, but a view of some underlying processor structures and the language closest to the processor, Assembler Language. You may have already been introduced to programming a computer using a “higher-level” language, and are probably familiar with
concepts such as loops and conditional branching. Because the internal structures of computers have many similarities, I sometimes try to point out not only what a particular instruction does, but also why it does it that way. Learning to program other processors will then be a comfortable extension of the concepts and techniques you learned here.

3. This book is too large\(^1\) to be used as a text for a programming class of normal length. I expect that most instructors will use those portions most useful for their selection of topics; other portions may have information that can be sampled as desired.

I assume you are interested mainly in writing “application-level” programs for z/Architecture processors, not specialized or privileged operating system components. This text therefore deals with nonprivileged instructions, which in any event are the great majority of instructions in all programs.

4. I confess that levels of detail may vary depending on my level of interest in a particular topic.

5. Some of this material is based on lecture notes I created for Assembler Language classes when I was at the Stanford Linear Accelerator Center in Menlo Park, California.

\(^1\) Yes, this book is too long. As my Chinese-restaurant fortune cookie said: “You have a love for words, and should write a book.”
A digital computer can be considered from various viewpoints; here are five possible views, each treating the computer’s inner workings in successively less detail.

- To an engineer concerned with designing its logical circuits, a computer might be thought of as a collection of devices for controlling and ordering the flow of electrical signals.
- At another level, a person concerned with methods used to make these logical circuits perform operations such as addition and division might treat a computer as a collection of registers, switches, and control mechanisms that perform a series of steps leading (say) to the computation of a quotient.
- At the next level one might consider a computer’s basic operations to be single arithmetic operations, a simple data movement, or a test of a single piece of data.
- Another viewpoint (typical of “higher-level languages”) considers the basic operations to be moving blocks of data, evaluating and assigning mathematical expressions, and controlling counting and testing operations.
- At yet another level, as in certain applications such as traffic simulation, data reduction, and network analysis, the computer processes information in a form closely approximating the problem under consideration, and produces output directly applicable to that problem.

Each of these views is of course not especially distinct from its neighbors. We will be primarily concerned with the middle level, considering the basic operations or instructions that we want the computer to perform, such as single arithmetic or logical operations, simple data transmission operations, etc. We will also consider the computer from “neighboring” viewpoints: sometimes it is useful to know some details of the internal sequencing of operations such as multiplication and branching; at other times it will be convenient to consider groups of instructions such as macro-instructions that perform operations in a larger context.

The level that is our primary concern is usually known as “Assembler Language programming” or “Assembler coding”. The Assembler we’ll describe is the IBM High Level Assembler for z/OS & z/VM & z/VSE, known as “HLASM”. It also can be used on IBM Linux for z System.

Getting the desired machine language instructions and data into the computer in executable form requires the aid of a number of programs: the most important for us is the Assembler. Other important programs are the linker and the operating system Supervisor. Each will be considered in the appropriate context.

2 Some people call it “BAL” — meaning “Basic Assembler Language” — but the language is not basic (nor is it BASIC) except in the sense that it can be fundamental to understanding the z System processor’s operations.

3 The term “linker” here stands for several important programs that combine and load programs for execution. Their names vary among operating systems (Binder or Linkage Editor and Program Loader on z/OS, Loader and Link Editor on z/VM, Linkage Editor on z/VSE, etc.)
To give hardware designers greater freedom to implement instructions in the best way, without your having to be aware of each implementation’s techniques, IBM describes an “architecture”. A processor’s architecture defines the actions of instructions, I/O, storage, etc. to describe a known set of behaviors, while giving processor designers flexibility in implementing those behaviors.

It will help to have available a copy of the z/Architecture Principles of Operation manual. It is easily obtained, and is the reference for basic z System architecture. You should consult it regularly when we discuss individual instructions.

Remember!
The Assembler Language itself is quite simple. The syntax is sparse, there are few “reserved words”, and almost no structuring rules. The main challenge in learning Assembler Language is learning about the processor for which you’re writing programs.

Why Program in Assembler Language (and Why Not)?

Before going any further, ask why you’re considering writing programs in Assembler Language. These are some reasons for programming in Assembler Language:

1. You have to.
 Maybe you’re taking a course like “Assembler Language Programming”, or you’ve been made responsible for an existing Assembler Language application.

2. You want to.
 It’s useful to know, or maybe you’re just curious about what is really going on inside the processor when you write high-level language programs. The architecture represented by System/360 and its modern descendants has pervaded the computing industry since the mid-1960’s, and will continue to do so for many years. Because you may encounter some modern incarnation of the System/360 family, it helps to be familiar with its architecture.

3. It’s educational.
 Programming in Assembler Language is the best way to learn how the processor works. Even if you program in high-level languages, there will be times when understanding the processor’s properties will help you understand why certain choices and tradeoffs are made in programming in those languages.

4. It’s fundamental.
 A key to writing efficient software is understanding the underlying hardware; no language other than Assembler Language provides such insights. Even if you don’t write much Assembler Language code, writing good high-level language programs often depends on knowing how to write good Assembler Language programs.

 Debugging a problem in high-level language applications may require knowing some machine language. (You might say that a language needing this kind of debugging isn’t very “high-level”, but it is necessary at times.)

 Assembler Language is also a natural vehicle for recovering lost source code (yes, it happens!). Object or binary programs can easily be disassembled into Assembler Language source programs.

5. It can be more efficient.
 Efficiency depends on many things. Because you can specify almost the exact instruction sequences you want, you can do many things to improve program efficiency. If you know which parts of a program consume the most time, recoding those parts in Assembler Language can often lead to savings.
However, pursuing efficiency has limits. Programmers have been known to struggle happily over a program modification that will save a few seconds of processor execution time over the program’s lifetime.4

There is another objection to using Assembler Language to attain efficiency: some modern compilers can produce quite efficient code for certain applications.5 However, even clever coding and powerful compilers can’t help a badly implemented algorithm. Also, you may have difficulty learning the costs of various high-level language statements.

6. It’s independent.

Error recovery (and avoidance) can be simpler in Assembler Language than with high-level languages.

You need not rely on the presence of any run-time environment other than the operating system environment in which your program will execute. You can access many services that may not be available to high-level languages.

7. It’s more flexible.

There are some processor facilities for which higher-level languages provide limited or no support. And even when these facilities are supported, their expression in such languages may be inefficient, restricted, or difficult to use. Assembler Language may be the simplest, or even the only, way to access those facilities.

Unlike many high-level languages, Assembler Language imposes no assumptions about how you should (or must) structure your programs. Someone else’s program structures or concepts of proper programming technique aren’t forced on you by the language, and you have more freedom to choose solutions you like.

8. It’s more powerful.

In addition to Assembler Language’s efficiency and flexibility, you also have available to you the entire repertoire of the processor’s instruction set. New instructions on your CPU are usable immediately; you don’t need to wait for high-level language compilers to “catch up” to the latest architecture. (Some instructions, though, may require special privileges such as executing in supervisor state.)

9. It’s more fun.

You can do things your own way. You can define the meanings of each and every piece of your program, and not have to be satisfied with assurances that “the compiler (or the system) takes care of that for you”.

10. It’s controllable.

Unlike “higher-level” languages, the Assembler creates machine language instructions and data in exactly the form and order you specify. It doesn’t try to organize (or re-organize) anything for you; there are no “helpful” intermediaries between you and the processor. In a nutshell, “What you write is what you get”.

11. It’s stable.

You needn’t worry about re-translating and re-testing programs with new releases of compilers or run-time libraries; the object code won’t change each time you re-assemble.

12. It’s parameterizable.

Because Assembler languages have been with us for almost as long as computers, a lot has been learned about minimizing the pain of modification: we will see that the Assembler Language is very rich in possibilities for parameterization. That is, you can revise a value in just one place in your program, and the Assembler automatically adjusts the portions of your program that depend on that value.

4 And possibly wasting many more seconds of processor time re-assembling and re-linking the program than will be ever saved during its execution! (Yes, I’ve done that...)

5 Compilers do have occasional errors; finding problems with the generated code is easier if you know Assembler Language.
13. It’s extensible.

This is one of the best reasons for programming in Assembler Language: you can define *macro-instructions* that have whatever meaning you want them to have. You can design and create an entire programming language of your own, and then build other languages on top of that, for as many levels as you like or need. Macro-instructions also provide some “insulation” between your program and the habits of the Operating System under whose control it will run.

Macro instructions are definitely a highly satisfying aspect of Assembler Language programming. Unfortunately, we don’t have room here to describe conditional assembly and macros.

Conversely, there are also reasons for *not* programming in Assembler Language.

1. The language can be verbose.

Economy of expression is *not* a characteristic of most Assembler Languages except (and this is an important exception) for the availability of macro-instructions. Usually, you must write more lines of code to do a simple task than if you had chosen a higher-level language.

This is due mainly to the richness of the z/Architecture processor’s instruction set, because the Assembler Language itself is quite simple.

2. The language is very flexible.

It can be *too* flexible for some users. There are many acceptable ways to use Assembler Language to solve a given problem, and almost all problems can be solved with a small and manageable set of instructions.

3. The language is idiosyncratic.

To a large extent, the occasional lapses of regularity and coherence in the syntax and semantics of the Assembler Language are due to irregularities in the z System instruction set and architecture: instructions that do similar things may have different syntaxes. Thus, the Assembler Language contains occasional “special cases” and “exceptions to the rules”. (This is of course not unique to Assembler Language!)

4. The language’s flexibility means it’s easier to make errors.

While this reason is implicit in the previous three, it also is part of the price you pay for being able to specify everything yourself; you have more chances to make mistakes. We will see that there are good ways to avoid some of the pitfalls that this extra freedom provides.

5. Programs can be harder to debug.

In some cases, programmers may not write programs so they can detect processing errors, or terminate gracefully. Because programs can be written with great freedom, they might not be organized so that errors do a minimum amount of damage. Similarly, some programmers are often reluctant to insert the extra instructions necessary to leave an easily-followed diagnostic trail for the person (you?) trying to discover why your program did something unexpected.

6. Programs may seem hard to maintain.

Maintenance costs are much more strongly influenced by the structure and clarity of the code than by the language used to write it. Extensive research has shown little difference in maintenance costs between Assembler Language and high-level languages.

7. Lack of a run-time library.

Assembler Language programs can be written as a component of a high-level language application. But “stand-alone” Assembler Language applications may not have access to the run-time libraries provided with most high-level languages. By using careful modular design techniques, this lack can be overcome with a set of routines or macro-instructions that provide functions shareable among many applications.

Assembler Language programs can access run-time libraries, so long as they adhere to appropriate programming conventions; this can often reduce programming effort.

8. Lack of portability.

Unlike programs written in some high-level languages, Assembler language code is intended for execution only on the processors for which it is created. (And, high-level language programs are not always easily moved to other processor architectures!)
If none of the reasons for programming in Assembler Language has much appeal to you — you don’t have to program in Assembler Language, you don’t need its efficiency, flexibility, power, or extensibility, and your sources of amusement (or employment) lie elsewhere — then don’t. Use whatever tool will do the job with the least time, effort, and nuisance, and get on to whatever task comes next.

Assembler Language Misconceptions

These are some common misconceptions about Assembler Language:

- **Assembler Language is dead.**
 For many small-environment or short-lived applications, fast implementation is more important than long life, small size or high performance. But many substantial organizations have made major investments in Assembler Language applications that must be fast, compact, and can process high volumes of data efficiently; such applications need regular enhancement.

- **It’s hard.**
 The language itself is trivially simple. Understanding programs in any programming language is more a matter of clear coding and good style and organization. Any programming task can be made easy or difficult. (We’ll offer occasional bits of advice on ways to simplify your programming challenges.)

- **Assembler Language programs are faster than compiled programs.**
 That depends more on your choice of algorithms, the high-level language, and its compiler. You can write slow programs in any language.

- **Assembler Language programs are hard to read.**
 Only if you write them that way! But you do need to understand the zSeries instructions.

- **It’s hard to manage all those base registers.**
 Not at all: careful program organization and appropriate instruction choice easily make it a non-problem.

- **Assembler Language is hard to maintain, especially if you don’t have the needed skills.**
 Extensive research shows little difference in maintenance costs among programming languages, and lack of skills is a problem for any programming language.

- **Many applications written in Assembler Language can be replaced with “out-of-the-box” functionality.**
 It’s rare that a purchased software package does exactly what your organization needs; you must pay in time and money for negotiating, training, and adaptations that you could complete “at home” more promptly and cheaply.

- **You don’t need to worry about efficiency, because a faster CPU will be along in a year.**
 Rarely true, because growing businesses continually need to process more data and their programs must provide new capabilities. Once you fall behind, it’s difficult to rewrite inefficient applications.

- **Converting an Assembler Language application to a high-level language will make it easier to hire skilled programmers.**
 There are some critical factors here: research has shown that
 1. Changing language has many hidden costs and should be avoided.
 2. High-level languages do not improve reliability or maintainability.
 3. Problem-domain expertise is often more important than programming-language expertise. It is much easier to train people who understand your business and business processes in the language you need, rather than hiring people who have the necessary language skill.

Some further considerations include:
- Transition and testing require system stability, which implies possible lost business opportunity.
- Converting and validating test cases can be a major effort in itself.
- High stress levels for “bilingual” staff.

- You can’t do “Structured Programming” in Assembler Language.
- By using a set of Structured Programming macros such as those available with the High Level Assembler, programs can be as fully structured as any high-level language program.
- Because you have full control over the separation of code and data into individual modules, you can have greater flexibility in determining the structure of an application than a typical high-level language may provide.

<table>
<thead>
<tr>
<th>Remember!</th>
</tr>
</thead>
</table>
| **What’s good about Assembler Language?**
Almost everything you do works OK. |
| **What’s bad about Assembler Language?**
Almost everything you do works OK. |

Exercises

0.1.1.(1) Why are you interested in Assembler Language?

0.1.2.(0) What is the difficulty level of this exercise?
Index

A
access register
addition
address constant
address generation
address translation
addressing
addressing halfword
addressing mode
alignment
architecture

definition 5
arithmetic
ASCII
Assembler 4
assembler instruction statement
Assembler Language 4
assembler option
assembly
attribute
attribute reference
See attribute reference

data structure
decimal floating-point
decimal overflow
See overflow
decimal self-defining term
See self-defining term
definition
dependent USING
division
DROP assembler instruction
dsect assembler instruction
DXC
See Data Exception Code

E
editing
Effective Address
Encoded Length
exception
See interruption
expression
extended mnemonic
External Symbol Dictionary

F
fixed-point binary
fixed-point overflow
See overflow
floating-point
Floating-Point Control Register
floating-point overflow
See overflow
floating-point register
floating-point underflow
See underflow
FPCR
See Floating-Point Control Register
FPR
See floating-point register
fraction conversion

G
general register
GPR
See general register

H
hexadecimal
hexadecimal floating-point
hexadecimal self-defining term
See self-defining term
HLASM 4

I
IA
See Instruction Address
IBM High Level Assembler for
z/OS & z/VM & z/VSE 4
ILC
See Instruction Length Code
immediate operand
instruction
Instruction Address
instruction format
Instruction Length Code
instruction operation
instruction register
integer conversion
interruption
interruption code

L
labeled dependent USING
labeled USING
length field
library
linkage convention
Linker
literal
load module
Location Counter
logical

M
machine instruction
macro instruction
memory address
mnemonic
multiplication

N
notation

O
object module
ones’ complement representation
operand
operation code
operator
option
See assembler option
ordinary USING
overflow

P
packed decimal
pattern
program interruption
See interruption
Program Loader
Program Mask
program object
Program Status Word
PSW
See Program Status Word

Q
quantum

R
recipe
register
relative-immediate
relocatable
relocation attribute
representation
residence mode

S
section
self-defining term
shift
space
See blank
statement
subtraction
symbol

T
term
time
two’s complement representation

U
underflow
Unicode
USING assembler instruction
In this chapter, we will look at factors involved in Assembler Language programming, and then investigate the binary number representation and its arithmetic.

- Section 1 looks at some notation, terminology, and conventions we’ll use.
- Section 2 describes basic topics about the number representations used in z System processors: binary and hexadecimal numbers, arithmetic and logical representations, 2’s complement arithmetic, and discusses alternative number representations.
1. Some Basic Items

In this section we introduce some basic terms and notations that we’ll use later, and then investigate the important properties of the binary number representation.

1.1. Notation and Terminology

- Some diagrams and figures need to show the lengths and positions of parts of the figure. In Figure 1 we want to show some object’s structure, and to indicate the amount of space required for each of its components. To do this, we place a number above the field to indicate its length. In cases where we also indicate the numbering and positions of the digits in that component, we use numbers below the field, at its right and left ends. Two four-digit fields in an eight-digit area would be as shown in Figure 1:

![Figure 1. Example of numbering and notation](image)

By convention, numbering starts with digit zero on the left. We call the leftmost digit, digits, or portion of a field the high-order part of the field; the rightmost digit, digits, or portion of the field the low-order part. Thus, position 0 in this figure is the high-order digit, and position 7 is the low-order digit.

- Standard mathematical symbols such as subscripts and superscripts, and the capital Sigma used to denote summation are hard to produce, so we sometimes use a slightly different notation. For subscripted quantities like \(B_k \) (“B-sub-k”) we will sometimes use “\(B_k \)”, but also either “Bk” or the programming-language convention “B(k)”. For quantities like “element i,j of ARRAY” or “ARRAY-sub-i,j” (often written “ARRAY\(_{i,j}\)”) we write “ARRAY(i,j)”. There are very few places where the juxtaposition of two letters like “XY” means multiplying X and Y, but these will be obvious from the context where they appear. In some cases we use superscripts for quantities like \(10^5 \) and \(B^k \), but we also use the common notation of paired asterisks to denote exponentiation, as in \(10^{**5} \) and \(B^{**k} \).

- For the operations of addition, subtraction, multiplication, and division, we use the operators +, −, *, and / respectively. (In some descriptions, we use “\(\times \)” for multiplication and “\(\div \)” for...
division.) We use vertical bars or the functional notation ABS() to denote absolute values: $|x|$ and $\text{ABS}(x)$ mean the magnitude of the quantity x.

- To denote the contents of something called “x”, we use $c(x)$ or $C(x)$. Sometimes the object whose contents we’re interested in will be an identifiable object such as a register, so that we might speak of the contents of Register 1 as $c(R1)$. At other times we may speak of the contents of something whose actual form or location is not precisely known, such as an area of memory that has been given the name AREA; in this case we still use the notation $c(\text{AREA})$.

- Some words have similar but different meanings. For example, the word “operand” is used in several different senses in most of the literature describing z System and its Assembler Language.

 1. In the description of instructions in the z/Architecture Principles of Operation, an operand is the object being operated on, or is involved in the instruction. For example, in

 $$\text{LM } R1,R3,S2$$

 the contents of GR $R1$ is the first operand, and the contents of storage addressed by $S2$ is the second operand. Note that operand numbers may not correspond to their sequential position!

 2. In an Assembler Language statement, an operand is defined by its position in the operand field. For example, in

 $$\text{LM } 2,12,\text{SAVE}$$

 the first operand is 2, the second operand is 12, and the third operand is the symbol SAVE. Note the difference in operand numbering compared to the z/Architecture Principles of Operation description!

 3. During execution, an operand is the subject of an operation: an operand is something being acted on or operated on by an instruction as it is executed in the processor. For example, in

 $$\text{LM } 2,12,\text{SAVE}$$

 one operand is the contents of general register 2, and another operand is the contents of memory named by the symbol SAVE.

 We’ll try to clarify these differences; the intended sense will be usually clear from the context in which the word appears.

- Sometimes we need to indicate positions where a blank or space character should appear. Rather than use a blank “ ” character, we sometimes use a “•” character. For example,

 $$\text{John•Q. • Public}$$

 has a blank on each side of the middle initial.

- Sometimes we refer to the “euro” character. Because this document formatter doesn’t have that exact character, we use \in as the best available approximation.

Exercises

1.1.1.(1) What is the total width of the fields illustrated in Figure 1 on page 14?

1.2. Instruction Elements

We will often refer to parts of a machine instruction. In the z/Architecture Principles of Operation, you will see notations like

$$R1,R2 \text{ or } D_2(X2,B2) \text{ or } M_1 \text{ or } I_2 \text{ or } L_1$$

where the subscripted letters specify numeric values appearing in the fields of a machine instruction. They are simply a way to indicate numbers that you or the Assembler must provide. In particular:
• A notation like “R₁” is simply a number that usually denotes any register, not “register number 1”.
• “GR R₁” means the general register denoted by the number used in place of R₁.
• “GR1” means general register 1.

We’ll clarify these and other details as we proceed.

1.2.1. Register Names

We refer regularly to registers, using small numbers like 0, 12, etc. Some people like to use “names” like R₀ and R₁₂ for them. They can be helpful, but can also be very misleading, because “R₀” isn’t really a register name; it’s only a name for a number. (Some exercises will help you understand why it can be misleading.) I don’t want you to develop a habit of thinking that names like “R₀” always mean “register 0”. I prefer to use just numbers like “0” or “12” to designate register names. That said, we will sometimes refer to a specific register using terms like R₀ and R₁₂, meaning specifically general registers 0 and 12.

Unlike some other processors and their assemblers, there are no reserved register names or symbols in the z System Assembler Language.

Exercises

1.2.1.(1) If R₁ has value 9, what register is referenced by GR R₁?

Terms and Definitions

algorithm
A finite sequence of well-defined steps for solving a problem. After al Khwarizmi, a nickname of the 9th century Persian astronomer and mathematician Abu Jafar Muhammad ibn Musa, who authored many books on arithmetic and algebra. He worked in Baghdad and his nickname alludes to his place of origin, Khwarizm (Khiva), in present-day Uzbekistan and Turkmenistan.

architecture
A description of “the attributes of a system as seen by the programmer, i.e., the conceptual structure and functional behavior, as distinct from the organization of the data flow and controls, and the physical implementation.”

Assembler Language
A lower-level language allowing programmers maximum freedom in specifying processor instructions, providing powerful “macro-instruction” facilities supporting encapsulation and economy of expression.

Assembler
A program that translates programs written in Assembler Language to machine language instructions and data.

HLASM
IBM’s High Level Assembler for z/OS and z/VM and z/VSE. The Assembler we describe here.

6 One reason for using symbolic register names was that all early assemblers’ “Symbol Cross Reference” (a list of all symbols used in your program) showed the places where the names were used—and searching the cross-reference might be the only way to know which instructions might have referenced specific registers. The IBM High Level Assembler for z/OS & z/VM & z/VSE provides a “Register Cross Reference” showing where the general registers were used, whether or not they were named. So, it’s no longer necessary to “name” registers.

blank
A nonempty, finite-width invisible character; a space. In contexts where explicit blank spaces appear, we sometimes use the “•” character.

space
A nonempty, finite-width invisible character; a blank character. In contexts where explicit blank spaces appear, we sometimes use the “•” character.

operator
A character specifying a mathematical operation: + for addition, − for subtraction, * or × for multiplication, and / or ÷ for division
In this section we examine number representations and methods for converting numbers in those representations to and from decimal. Then we examine arithmetic using numbers in the binary representation.

z System, like most other digital computers, uses binary—base two—numbers for most internal arithmetic. A binary digit takes only values 0 and 1; because it is relatively simple to build a mechanical or electrical device representing a binary digit, the binary representation is quite natural. For example, a 1 digit may be represented by the presence of a current through a circuit component or by the presence of a positive voltage at some point. Facility with binary numbers is fundamental to understanding the basic operations of *z* System, so it is important to understand the binary number representation.

For now, all numbers are assumed to be integers. This means that the “decimal point” (the “radix point” or “binary point”) lies at the right end of the number. We will discuss nonintegral (fractional) numbers in Sections 29 and 31.

We are familiar with numbers using radixes other than 10. Times (and angles) measure minutes and seconds using radix 60; hours are counted using radix 24; and before The United Kingdom changed to a decimal monetary system: radix 20 for shillings and radix 12 for pence. Binary is easier.

2.1. Positional Notation and Binary Numbers

In base ten, writing a number such as “1705” means the quantity

\[1000 + 700 + 00 + 5, \]

which can also be written as

\[1 \times 1000 + 7 \times 100 + 0 \times 10 + 5 \times 1, \]

or as

\[1 \times 10^3 + 7 \times 10^2 + 0 \times 10^1 + 5 \times 10^0. \]

That is, each digit position as we move to the left is weighted by one more power of the base, ten.
Similarly, when in binary notation we write “11010” we mean
\[10000 + 1000 + 000 + 10 + 0, \]
\[1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0, \]
\[1 \times 16 + 1 \times 8 + 0 \times 4 + 1 \times 2 + 0 \times 1 \]
which is not the same as what is meant by the decimal number 11010, where powers of ten are understood. In fact, the binary number 11010 is the representation (in the number system with base two) of the decimal number 26: the sum in this example is 16+8+2.

To clarify which base is intended we use a notation like the Assembler’s: if base 10 is intended, the digits are written normally; if base 2 is intended, the binary digits are preceded by a “B” and an apostrophe, and are followed by an apostrophe. For example:
\[26 = B'11010', 1 = B'1', 10 = B'1010', 8 = B'1000', 999 = B'11111100111'. \]

Positional notation can be used for any base (or radix). For example, if humans had only one hand we might use base 5 for numbering, so that 1413 in base 5 would have decimal value 233 (in our ten-finger decimal world):
\[1413_5 = 1 \times 5^3 + 4 \times 5^2 + 1 \times 5^1 + 3 \times 5^0 \]
\[= 125 + 100 + 5 + 3 \]
\[= 233_{10} \]

Exercises

2.1.1.(1) Determine the decimal value of the following binary numbers: (a) B’000010110’, (b) B’0000101100’ , (c) B’10101010’, (d) B’1111111’.

2.1.2.(1) Suppose a binary number is represented by a single 1-bit followed by a string of \(n \) zero bits (100...00). What is its value?

2.1.3.(2) Suppose a binary number is represented by a string of \(n \) one bits (111...11). What is its value?

2.2. Hexadecimal Numbers

As values become larger, the number of binary digits required becomes larger also (over three times as many bits as decimal digits), so we use a more compact notation for binary numbers. If we consider groups of four binary digits at a time, the possible decimal values that can be represented run from zero to fifteen. If we then represent each of these groups by the “digits” 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, we can establish the correspondences shown in Table 1 on page 20. (The letters A through F are a natural choice for “digits”, but we could actually have chosen any other six symbols to represent the “digits” to which we assign the values 10, 11, ..., 15.²)

We use the same positional notation for base 16 number representation as for decimal and binary numbers. Thus, we can write the base 16 number A97E₁₆ as
\[A \times 16^3 + 9 \times 16^2 + 7 \times 16^1 + E \times 16^0, \]
or
\[10 \times 16^3 + 9 \times 16^2 + 7 \times 16^1 + 14 \times 16^0 = 10 \times 4096 + 9 \times 256 + 7 \times 16 + 14 = 43390. \]

² In fact, some early computers such as the ILLIAC I used the characters K, S, N, J, F, and L because those letters had the required binary 4-bit hole combinations on 5-hole punched paper teletype tape. (Remembering those six letters was helped by the phrase “Kind Souls Never Josh Fat Ladies”.)
Why use something as unfamiliar as a base-sixteen representation for numbers that are binary in nature? Base 16 is compact and convenient for expressing long strings of binary digits, and a natural representation for z System. Other groupings are possible; another form is “octal”, or base eight, in which the binary digits are grouped by threes.9

The base sixteen digits in the third column are called hexadecimal10 or hex digits, and we use them in most situations when we need to refer to binary numbers. As with binary numbers, a notation similar to the Assembler’s will denote hexadecimal quantities: the hexadecimal digits are preceded by an “X” and an apostrophe, and are followed by an apostrophe. For example:

26 = B’11010’ = X’1A’,
X’26’ = B’100110’ = 38,

1 = B’1’ = X’1’,
10 = B’1010’ = X’A’,

B’1000’ = 8 = X’8’,
100 = X’64’ = B’1100100’.

Converting numbers between binary and hexadecimal representations is easy:
• To convert a hexadecimal number to binary, substitute for each hexadecimal digit the four binary digits it represents.
• To convert a binary number to hexadecimal, group the binary digits four at a time starting from the right (adding extra zeros at the left end if needed), and substitute the corresponding hexadecimal digit.

For example:

X’D5B’ = B’1101 0101 1011’ (hexadecimal to binary),
B’11 1110 1000’ = X’3E8’ (binary to hexadecimal).

In the second example we could add two extra binary zero digits at the left or “high-order” end of the number without affecting its value; similarly, we can omit high-order zero digits, and write

X’11’ = B’10001’ (rather than B’00010001’).

9 Processors whose word lengths were “natural” multiples of 3 included the IBM 70x and 709x processors with 36-bit words, and several Control Data Corporation (CDC) processors with 48-bit words. Most processors now have word lengths that are a multiple of 8 bits.

10 The correct term for base 16 is “sexadecimal” (or even “hexadecimal”), but you can understand that abbreviating the term “sexadecimal” would not be appropriate for dignified corporations.
Don’t omit zeros on the right! That is, $B'00111100' \neq X'F'$. Converting between decimal and hexadecimal representations is more cumbersome; it is simplest to use Tables 2 and 3 starting on page 22 below, and the tables in “Appendix A: Conversion and Reference Tables” on page 981. The following section discusses general methods for converting integers from one base to another; if you are satisfied to use the tables, the next section may be skipped.

We use these abbreviations regularly: *bit* means “binary digit”, and *hex* is an abbreviation for “hexadecimal”.

Exercises

2.2.1.(1) Convert the following hexadecimal numbers to binary: (a) $X'A'$, (b) $X'2B'$, (c) $X'3E8'$.

2.2.2.(1) Make a table similar to Table 1 on page 20 showing binary, decimal, and octal (base 8) values.

2.2.3.(2) In grouping bits to form hex digits, why can’t we start at the left? That is, why do we begin grouping at the radix point?

2.2.4.(2)+ Create addition and multiplication tables for single hexadecimal digits.

2.2.5.(1) Convert the following octal numbers to hexadecimal:

1. 21474
2. 77777
3. 1750
4. 60341303
5. 4631

2.2.6.(3) You may have noticed that the characters in many cartoons and comics have only four fingers. To help them with “cartoon arithmetic”, create base-8 (octal) addition and multiplication tables.

2.3. Converting Integers from One Base to Another (*)

In our familiar notation, a string of digits like 73294 in some base A means

$$7 \times A^4 + 3 \times A^3 + 2 \times A^2 + 9 \times A^1 + 4 \times A^0.$$

Using symbols, the digit string

$$d_n \ldots d_3 d_2 d_1 d_0$$

is the representation in some base A of a number X:

$$X = d_n \times A^n + \ldots + d_3 \times A^3 + d_2 \times A^2 + d_1 \times A^1 + d_0 \times A^0.$$

The subscripts on the digits d match the power of the base A. If A has value 10, then the digit string 73294 is the familiar decimal number seventy-three thousand, two hundred ninety four.

Suppose we want to convert X from its representation in base A to its representation in a new base B, with digits e_0, e_1, e_2, etc.:

$$X = e_m \times B^m + \ldots + e_3 \times B^3 + e_2 \times B^2 + e_1 \times B^1 + e_0 \times B^0.$$

We know the old and new bases A and B, and the digits d_k of the old representation. To find the digits e_k of the new representation, we use the following scheme:

1. Divide X (in base A notation and arithmetic) by the new base B; save the quotient. The remainder is the low-order digit e_0. This can be seen from the definition of the quotient and remainder:
\[X = B \times \text{Quotient} + \text{Remainder} \]
\[= B \times \left(e_m \times B^{m-1} + \ldots + e_3 \times B^2 + e_2 \times B + e_1 \times B^0 \right) + e_0, \]

where the term in square brackets is the quotient.

For example, taking A to be 10 and B to be 16, we convert 73294 to hex:

\[X = 73294 = 16 \times \text{Quotient} + \text{Remainder} = 16 \times 4580 + 14, \]

so \(e_0 = 14 = X'_{E} \).

2. Now, divide the saved quotient by B; save the new quotient, and the new remainder is \(e_1 \).

In our example, dividing 4580 by 16 gives quotient 286 and remainder 4, the value of the next digit, \(e_1 \).

3. Continue this process until a zero quotient is obtained. The successive remainders are the desired digits \(e_0, e_1, \ldots, e_m \); they were obtained in order of increasing significance, from right to left.

Continuing to divide by 16 in our example, we obtain remainders 14, 1, and 1; these are the digits \(e_2, e_3, \) and \(e_4 \) respectively. The result of this sample conversion shows that 73294 (base 10) has value 11E4E (base 16).

Our most frequent conversions are between decimal and binary or hexadecimal; use Tables 2 and 3, or the conversion tables in Appendix A.

1. If the number is small enough, find it in the conversion tables.

2. For larger numbers,
 a. To convert from hex to decimal, find each digit’s decimal value in the tables in Tables 2 and 3, and evaluate the sum.
 b. To convert from decimal to hex, find the largest power of 16 in the tables that is less than or equal to your number, subtract that number, and note the corresponding hex digit. Repeat, writing the hex digits from left to right. The following example shows how to do this for the decimal value 1000:

\[
\begin{align*}
1000 & \quad \text{hex digit } 3 \\
-768 & \quad \text{hex digit E} \\
232 & \quad \text{hex digit } 8 \\
-8 & \quad \text{hex digit 0}
\end{align*}
\]

so that 1000 (decimal) is \(X'_{E}38' \).

Table 2. Multiples of powers of sixteen (part 1 of 2)

<table>
<thead>
<tr>
<th>Hex Digit</th>
<th>(\times 16^0)</th>
<th>(\times 16^1)</th>
<th>(\times 16^2)</th>
<th>(\times 16^3)</th>
<th>(\times 16^4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>16</td>
<td>256</td>
<td>4,096</td>
<td>65,536</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>32</td>
<td>512</td>
<td>8,192</td>
<td>131,072</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>48</td>
<td>768</td>
<td>12,288</td>
<td>196,608</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>64</td>
<td>1,024</td>
<td>16,384</td>
<td>262,144</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>80</td>
<td>1,280</td>
<td>20,480</td>
<td>327,680</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>96</td>
<td>1,536</td>
<td>24,576</td>
<td>393,216</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>112</td>
<td>1,792</td>
<td>28,672</td>
<td>458,752</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>128</td>
<td>2,048</td>
<td>32,768</td>
<td>524,288</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>144</td>
<td>2,304</td>
<td>36,864</td>
<td>589,824</td>
</tr>
<tr>
<td>A</td>
<td>10</td>
<td>160</td>
<td>2,560</td>
<td>40,960</td>
<td>655,360</td>
</tr>
<tr>
<td>B</td>
<td>11</td>
<td>176</td>
<td>2,816</td>
<td>45,056</td>
<td>720,896</td>
</tr>
<tr>
<td>C</td>
<td>12</td>
<td>192</td>
<td>3,072</td>
<td>49,152</td>
<td>786,432</td>
</tr>
<tr>
<td>D</td>
<td>13</td>
<td>208</td>
<td>3,328</td>
<td>53,248</td>
<td>851,968</td>
</tr>
<tr>
<td>E</td>
<td>14</td>
<td>224</td>
<td>3,584</td>
<td>57,344</td>
<td>917,504</td>
</tr>
<tr>
<td>F</td>
<td>15</td>
<td>240</td>
<td>3,840</td>
<td>61,440</td>
<td>983,040</td>
</tr>
</tbody>
</table>
The binary powers 2^{10}, 2^{20}, and 2^{30} are often abbreviated by the letters “K”, “M”, and “G”. Thus, it is common to refer to the decimal number $4,096 = 2^{10}$ as “4K”. Similarly, 3×2^{20} might be referred to as “3M”. Thus, for example, an area of memory (which we’ll discuss in Section 3.1) containing $8,192$ storage locations might be said to contain “8K bytes” or “8 K-bytes”.

Exercises

2.3.1.(2) Convert these numbers from the given base to the new bases:

1. 26293 (base 10) to bases 2, 4, 8, and 16.
2. $X'2FACED'$ (base 16) to bases 10 and 2.
3. $X'BABEFOO'D$ (base 16) to bases 10 and 8.
4. $X'COFFEE'$ (base 16) to bases 10 and 2.

2.3.2.(2) Convert the following to decimal.

1. $X'7FFFFFFF'$
2. $X'C1C2C3'$
3. $X'4040405C'$ (This digit pattern will reappear in other forms!)

2.3.3.(3) Make a table of the hexadecimal values of the squares of the integers from 1 to 32.

<table>
<thead>
<tr>
<th>Hex Digit</th>
<th>$\times 16^5$</th>
<th>$\times 16^6$</th>
<th>$\times 16^7$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,048,576</td>
<td>16,777,216</td>
<td>268,435,456</td>
</tr>
<tr>
<td>2</td>
<td>2,097,152</td>
<td>33,554,432</td>
<td>536,870,912</td>
</tr>
<tr>
<td>3</td>
<td>3,145,728</td>
<td>50,331,648</td>
<td>805,306,368</td>
</tr>
<tr>
<td>4</td>
<td>4,194,304</td>
<td>67,108,864</td>
<td>1,073,741,824</td>
</tr>
<tr>
<td>5</td>
<td>5,242,880</td>
<td>83,886,080</td>
<td>1,342,177,280</td>
</tr>
<tr>
<td>6</td>
<td>6,291,456</td>
<td>100,663,296</td>
<td>1,610,612,736</td>
</tr>
<tr>
<td>7</td>
<td>7,340,032</td>
<td>117,440,512</td>
<td>1,879,048,192</td>
</tr>
<tr>
<td>8</td>
<td>8,388,608</td>
<td>134,217,728</td>
<td>2,147,483,648</td>
</tr>
<tr>
<td>9</td>
<td>9,437,184</td>
<td>150,994,944</td>
<td>2,415,919,104</td>
</tr>
<tr>
<td>B</td>
<td>11,534,336</td>
<td>184,549,376</td>
<td>2,952,790,016</td>
</tr>
<tr>
<td>C</td>
<td>12,582,912</td>
<td>201,326,592</td>
<td>3,221,225,472</td>
</tr>
<tr>
<td>D</td>
<td>13,631,488</td>
<td>218,103,808</td>
<td>3,489,660,928</td>
</tr>
<tr>
<td>E</td>
<td>14,680,064</td>
<td>234,881,024</td>
<td>3,758,096,384</td>
</tr>
<tr>
<td>F</td>
<td>15,728,640</td>
<td>251,658,240</td>
<td>4,026,531,840</td>
</tr>
</tbody>
</table>

The binary powers 2^{10}, 2^{20}, and 2^{30} are often abbreviated by the letters “K”, “M”, and “G”. Thus, it is common to refer to the decimal number $4,096 = 2^{10}$ as “4K”. Similarly, 3×2^{20} might be referred to as “3M”. Thus, for example, an area of memory (which we’ll discuss in Section 3.1) containing $8,192$ storage locations might be said to contain “8K bytes” or “8 K-bytes”.

More properly, the abbreviations K, M, and G refer to the closest powers of 10: one thousand = 1K = 10^3, one million = 1M = 10^6, etc. To avoid this confusion, you can use the more precise terms “Ki”, “Mi”, and “Gi” to refer to the binary powers. But few computer people bother.

Chapter I: Getting Started
2.3.6.(2) Convert these octal (base 8) numbers to base 10: (a) 5061, (b) 257, (c) 192. Work carefully!

2.3.7.(2) What decimal values are represented by the binary numbers 9K, 5M, and 2G?

2.4. Examples of General Conversions (*

We will use the division methods described in the previous section to illustrate conversions from one base to another.

1. Convert 19 (base 10) to base 2.

\[
\begin{array}{cccc}
9 & 4 & 2 & 0 \\
2 & 9 & 4 & 2 & 1 \\
18 & 8 & 4 & 2 & 0 \\
1 & 0 & 0 & 0 & 0 \\
\end{array}
\]

Hence, \(19 = \text{B}'10011'\).

2. Convert 1000 (base 10) to base 16. (The conversion arithmetic is done in base 10.)

\[
\begin{array}{cccc}
62 & 3 & 0 \\
16 & 62 & 3 \\
992 & 48 & 0 \\
8 & 0 & 0 \\
\end{array}
\]

Hence \(1000 = \text{X}'3E8'\).

\[
\begin{array}{cccc}
69 & 7 & 0 \\
9 & 69 & 7 \\
621 & 63 & 0 \\
6 & 0 & 0 \\
\end{array}
\]

so that \(627 = 766\) (base 9).

4. Convert 766 (base 9) to base 7. First, we convert to base 10, and then do the arithmetic in decimal:

\[
\begin{array}{cccc}
766 & 567 & 54 & 6 \\
7 & 8 & 1 & 0 \\
567 & 54 & 6 & 0 \\
7 & 0 & 0 & 0 \\
\end{array}
\]

so that \(766 = 1554\) (base 7).

If you are mathematically inclined:

Just for fun, now do the conversion in base 9:

\[
\begin{array}{cccc}
108 & 13 & 1 & 0 \\
7 & 10 & 1 & 0 \\
762 & 103 & 0 & 0 \\
4 & 5 & 0 & 0 \\
\end{array}
\]

Thus \(766 = 1554\) (base 7) again. This shows that you can do base conversion using any (other) base for the arithmetic.

5. Convert 1413 (base 5) to base 10. This is simplest if we expand the positional notation:

\[
1413 = 1\times125 + 4\times25 + 1\times5 + 3 = 233_{10}.
\]
If you are still (or very) mathematically inclined:

Alternatively, since 10 (base 10) = 20 (base 5), we can do the conversion in base 5 arithmetic:

\[
\begin{array}{c|c|c|c}
20 & 43 & 2 & 0 \\
\hline
130 & 1413 & 20)1413 & 20)43 \\
113 & 40 & 3=e_1 & 2=e_2 \\
110 & 3=e_0 \\
\end{array}
\]

Again, we find 1413 (base 5) = 233 (base 10).

6. Convert \(x'3E8' \) to base 10. In this case it is simpler to evaluate the positional notation:

\[x'3E8' = 3 \times 16^2 + 14 \times 16^1 + 8 \times 16^0,\]

and then evaluate this sum in decimal. Thus we find

\[x'3E8' = 3 \times 256 + 14 \times 16 + 8 = 768 + 224 + 8 = 1000.\]

This type of conversion can be simpler if you use the table of multiples of powers of 16 in Tables 2 and 3, or the conversion tables in Appendix A.

Exercises

2.4.1.(2) Perform the indicated conversions. For number bases greater than 10, assume that the “digits” corresponding to 10, 11, 12, etc., are represented by the letters A, B, C, etc., respectively.

1. Convert 31659 (base 10) to bases 8, 4, and 2.
2. Convert 6917 (base 10) to bases 5, 13, and 16.
3. Convert \(x'E1F2A' \) (base 16) to bases 10 and 13.

2.4.2.(2)+ Make a table of the hexadecimal representations of the first ten powers of ten, from \(10^0 \) to \(10^9 \). (Suggestion: use hexadecimal arithmetic, and multiply each term by \(x'A' \) to obtain the next.)

2.4.3.(3) Make a table like those in Tables 2 and 3, except that the nine multiples of the powers of ten from 0 to 9 should be expressed in hexadecimal notation.

2.4.4.(3) Convert \(B'1111101000' \) to base 10 using binary arithmetic (that is, divide by \(B'1010' \)).

2.4.5.(3) Convert 73294 (base 10) to bases 11, 12, 13, 14, and 15. Can you make any use of the result of converting to base N to help in converting to base N+1?

2.4.6.(3) Make a base seven multiplication table. Use it to perform the following conversions directly, without first converting to base ten: (1) 526 (base 7) to base 16, (2) 10110 (base 7) to base 8, (3) 61436 (base 7) to base 8, (4) 666 (base 7) to base 10.

2.4.7.(2) Convert 629 (base 11) to bases 10 and 12.

2.4.8.(3) In converting from some base A to base 10, it is usually most convenient to expand the positional notation as illustrated in Examples 5 and 6 of Section 2.4. We can also expand the positional form by rewriting it in “nested” form:

\[X = (((\ldots (d_n \times A) + \ldots + d_3) \times A + d_2) \times A + d_1) \times A + d_0, \]

That is, the leftmost digit is multiplied by A, the next digit is added to it and the result is multiplied by A, and so forth until the rightmost digit has been added. Using this technique, perform the following conversions.

1. 2F3 (base 25) to base 10.
2. 61436 (base 8) to base 10.
3. X′DEFACE′ (base 16) to base 10.
4. 999 (base 10) to base 16.

2.4.9.(2) In applying the “nested multiplication” technique of the previous exercise to conversions from base A to base B, what base should be used for the conversion arithmetic?

2.4.10.(3) Using the base seven multiplication table you made in Exercise 2.4.6, perform the following conversions in base 7 arithmetic: (1) 526 (base 10) to base 16, (2) 10110 (base 2) to base 5, (3) 61436 (base 8) to base 10, (4) 666 (base 10) to base 7.

2.4.11.(3) Write the decimal value 8 in bases 8, 7, 6, 5, 4, 3, 2, and 1.

2.4.12.(3) If you have two numbers in bases A and B, what is a necessary relationship between A and B that will allow you to use the same “digit grouping” technique you used to convert between binary and hexadecimal?

2.4.13.(3) Show the value of 16_{10} in bases 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, and 3.

2.4.14.(4) Using base 7 arithmetic, calculate the sum and product of 435_{7} and 64_{7}. First, convert those two numbers to base 10 and then add and multiply the results in base 10; then use those results to test that you have evaluated the base 7 sum and product correctly.

2.4.15.(2) Convert the following decimal values to base 3: 2, 6, 10, 12, 16, 28, 41, 99, 104.

2.5. Number Representations

Now that we know how to convert numbers between binary and hexadecimal, we will see how they are used in z System for address calculations, indexing, and integer arithmetic. Up to now, we have examined the binary number representation only for nonnegative numbers; representing negative numbers requires further consideration.

There are three fixed-point (integer) number representations in common use: the radix-complement, the sign-magnitude, and the diminished radix-complement representations. In practice, the radix-complement representation is called the two’s complement representation, and the diminished radix-complement representation is called the ones’ complement representation. Two of these representations are used in z System: the two’s complement form is used for addressing and integer arithmetic, and the sign-magnitude form is used for floating-point and packed decimal numbers. A variation of the radix-complement form is used internally for packed decimal arithmetic, which we’ll see in Chapter VIII.

With so many representations, you might wonder why the z System designers settled on two’s complement. The reason follows from the processor’s “architecture”: since virtually all computers use the two’s complement representation for address arithmetic, and because in z System the general registers are used for both arithmetic and addressing, it is natural that ordinary integer arithmetic has the same form.

We will illustrate the following discussion using 32-bit numbers, corresponding (as we shall see) to the length of a word in memory and half the length of a general register.\[13\]

12 Why is it called “two’s complement”? The name of the ones’ complement representation seems obvious: just complement each bit by subtracting it from 1 (or, change 0 to 1 and 1 to 0); but we don’t get the two’s complement by subtracting each bit from 2! We’ll explain this oddity shortly.

13 z/Architecture provides 64-bit general registers, but for now our examples will use the 32-bit length.
2.6. Logical (Unsigned) Representation

To begin, we examine what is represented by the rightmost 32 bits of any nonnegative integer.

Thus, if a number is less than 2^{32}, its value can be held correctly in the 32 available bits. If it is greater than or equal to 2^{32}, some significant bits are lost off the left end. (That is, the number’s value is represented modulo 2^{32}.) Some instructions perform unsigned addition and subtraction with numbers that satisfy the inequalities

$$0 \leq x \leq 2^{32} - 1.$$

Such arithmetic is called logical or unsigned arithmetic; we call this the logical or unsigned representation of binary numbers. If the 32 bits of a logical binary integer are denoted $b_{31}b_{30}...b_1b_0$ (this temporary scheme is the reverse of the field-numbering convention introduced in Figure 1 on page 14), then the value X represented by the binary digits $b_{31}b_{30}...b_1b_0$ is

$$X = b_{31} \times 2^{31} + b_{30} \times 2^{30} + ... + b_2 \times 2^2 + b_1 \times 2^1 + b_0 \times 2^0$$

in the logical representation. This is the most common numeric interpretation of a string of bits.

The representation of a nonnegative 32-bit number less than 2^{31} is the same in the sign-magnitude, ones’ complement, and two’s complement representations (and is also the same as its logical representation), no matter which of the three forms is chosen to represent negative numbers. Since the two’s complement representation is used for most integer arithmetic in z System, we will investigate its properties in detail. Arithmetic using binary numbers in this representation will be covered shortly.

Exercises

2.6.1.(2)+ Give the decimal value of the following hexadecimal numbers in the logical representation:

1. $X'\text{DEADBEEF}'$
2. $X'\text{FFFFFFF}'$
3. $X'\text{DEC0DED1}'$

2.7. Two’s Complement (Signed) Representation (*)

This section describes the mathematical justification for the two’s complement representation. You can skip to Section 2.8 where a simple “recipe” for calculating the two’s complement of a number is shown on page 29.

Most programs must deal with both positive and negative numbers. A single bit (usually, the leftmost) is used to represent the number’s sign. A 0 bit represents a “+” sign, and a 1 bit represents a “−” sign.

First, the two’s complement representation of a 32-bit nonnegative binary integer Y satisfying the inequalities

$$0 \leq Y \leq 2^{31} - 1$$

(numbers within that range with a “+” sign bit)

is the same as the logical representation. $2^{31} - 1$ is the largest integer that can be represented using 31 bits; the remaining (32nd) digit at the left end is zero, the sign digit.
Now, consider negative numbers. The two’s complement representation of a negative integer Y satisfying the inequalities

$$-2^{31} \leq Y \leq -1$$

(numbers within that range with a “−” sign bit)

is simply $2^{32} + Y$. The bit pattern representing this value can be found this way. The leftmost bit is set to 1 to indicate that the number is negative, and the remaining 31 bits are set to the binary representation of the nonnegative integer ($2^{31} + Y$). The result therefore satisfies the inequalities

$$0 \leq 2^{31} + Y \leq 2^{31} - 1.$$

The reasons for representing negative numbers this way are not obvious, but we will see that it leads to very simple rules for performing arithmetic on signed binary numbers.

In effect, we have done the following: if Y is positive, we find its value by adding the individual terms ($b_i \times 2^i$); because the leftmost (sign) bit is zero, it does not contribute to the sum. If Y is negative, the sum of the rightmost 31 bits is ($2^{31} + Y$), and the leftmost bit is 1. Now, if we assign value -2^{31} to the sign bit, we can combine these to obtain

$$Y = (-2^{31}) \times b_{31} + b_{30} \times 2^{30} + \ldots + b_2 \times 2^2 + b_1 \times 2^1 + b_0 \times 2^0,$$

where the digits b_{30} through b_0 are the representation of $2^{31} + Y$, not the representation of $|Y|$, the absolute value of Y. This formula is almost the same as that used for the logical representation, except that the leftmost bit has negative “weight”. (There are good reasons to assign -2^{31} to the sign bit.)

Finally, we will see how the representations of positive and negative numbers work together. The relationship between the logical and two’s complement representations is seen by examining the above sum for the logical representation of X:

$$X_{\text{logical}} = b_{31} \times 2^{31} + b_{30} \times 2^{30} + \ldots + b_2 \times 2^2 + b_1 \times 2^1 + b_0 \times 2^0.$$

If b_{31} is zero, the logical and two’s complement representations yield the same value, and $Y_{\text{arith}} = X_{\text{logical}}$. Now, suppose we are given the 32-bit two’s complement representation of a negative number Y_{arith}, and we want to know the value those 32 bits would represent if we consider them as the logical representation of a number X_{logical}. Since bit b_{31} is 1, indicating a negative number, and we represent the remaining 31 bits of Y_{arith} by ($Y_{\text{arith}} + 2^{31}$), we find that

$$X_{\text{logical}} = 2^{31} + (Y_{\text{arith}} + 2^{31}) = (Y_{\text{arith}} + 2^{32}) \pmod{2^{32}}.$$

This is interesting: because we can only represent numbers less than 2^{32} in the 32-bit logical representation, $Y_{\text{arith}} + 2^{32}$ for nonnegative Y must have the same bit pattern as X_{logical}, since the extra (2^{32}) bit is lost. Thus, for

$$0 \leq X_{\text{logical}} \leq 2^{32} - 1 \quad \text{and} \quad -2^{31} \leq Y_{\text{arith}} \leq 2^{31} - 1,$$

we have the following key relation between the logical and two’s complement representations:

$$X_{\text{logical}} = (Y_{\text{arith}} + 2^{32}) \pmod{2^{32}}.$$

That is, the bit pattern corresponding to the two’s complement representation of any positive or negative number $-2^{31} \leq Y \leq +2^{31} - 1$ is the rightmost 32 bits of the sum $2^{32} + Y$ (modulo 2^{32}).

Why it is called “two’s” complement?

This equation is the original source of the term “two’s complement”. In the earliest computers it was customary to treat binary numbers as fractions: the representation was the same as just described, except that the “binary point” or “radix point” was assumed to lie just to the right of the sign bit rather than at the right-hand end of the number, so that values were in the range $-1 \leq \text{value} < +1$. The equation giving the relationship between logical and arithmetic representations was then written

$$X = Y + 2 \pmod{2},$$

so that the representation of a negative number was obtained by finding its complement with respect to 2: its “two’s” complement.
Calculating the two’s complement representation of a negative number is very cumbersome if we follow the above steps for any negative number Y: we would first have to calculate the binary representation of the positive quantity $2^{31}+Y$. But calculating $(2^{31}-1+Y)+1$ instead is very simple, because the representation of $2^{31}-1$ is exactly 31 one-bits. Now, because Y is negative,

$$2^{31}-1+Y = (2^{31}-1) - |Y|.$$

Thus $|Y|$, the magnitude of Y, is subtracted from a string of 31 one-bits. But wherever $|Y|$ has a one bit, the resulting difference bit will be zero, and vice versa. Thus, there is no need to subtract! Just change each of the 31 bits of $|Y|$ to its opposite (namely the result of subtracting it from 1), and we have the value of $2^{31}-1-|Y|$. This result is called the “ones’ complement” of $|Y|$. Finally, we add 1 to the rightmost bit position to get $2^{31}+Y$, set the leftmost bit (the sign bit) to 1, and we are done.

If Y_{arith} was nonnegative, complementing all 32 bits automatically sets a 1-bit in the sign; and if Y_{arith} was negative, complementing all 32 bits sets the sign to zero. So, we don’t have to do anything special with the sign bit!

This simple method lets us find the binary representation (in the two’s complement representation) of a negative number, as we will see in the next section.

Exercises

2.7.1.(3) Convert $X'AB0DE'$ to base 15, using hexadecimal arithmetic throughout.

2.7.2.(3) We saw that the radix-complement representation of a number Y in radix r with n digits is

$$r^n+Y \pmod{r^n}$$

Suppose $r=10$ and $n=4$. Show the ten’s-complement representation of the following values, and indicate which are and are not validly representable.

(a) $+729$, (b) -729, (c) -1, (d) $+9999$, (e) -5000, (f) $+5000$, (g) -9999.

2.7.3.(2) What is the decimal value of the 12-bit binary number 100000000001 in a signed two’s complement representation?

2.7.4.(3) Based on your results of Exercise 2.7.3, give an expression for the value of the n-bit binary number $10000...00001$ in a signed two’s complement representation.

2.7.5.(3) Knowing the logical representation of the three numbers in Exercise 2.6.1, convert them to their signed decimal representation.

2.8. Computing Two’s Complements

A simple scheme for computing two’s complements is based on the observation that the representation of a negative number Y is simply $2^{32}-|Y|$.

Two’s-Complementation Recipe

Given a binary number Y, to find the two’s complement representation of $-Y$:

1. Take the ones’ complement of all bits of Y: change 0 digits to 1, and 1 digits to 0.
2. Add 1 in the low-order (rightmost) position, and ignore carries out of the leftmost position.

These two examples do the arithmetic with eight binary digits rather than thirty-two.

1. Find the two’s complement representation of -2.

Chapter I: Getting Started 29
2. Find the two’s complement representation of \(-75\).

(1) representation of \(+75\): \(0100\ 1011\)
(2) form ones’ complement: \(1011\ 0100\)
(3) add one:

\[
\begin{array}{c}
\text{+} \\
\hline
1011 \ 0101
\end{array}
\]

This recipe also works in the opposite direction.

3. Find the two’s complement representation of \(B’11111110’\) \((-2)\).

(1) form ones’ complement: \(0000\ 0001\)
(2) add one:

\[
\begin{array}{c}
\text{+} \\
\hline
0000 \ 0010
\end{array}
\]

This is the binary representation of \(+2\); thus the two’s complement of the two’s complement of a number is the original number. So, our recipe for computing complements does not depend on the sign of the original operand.

Two unusual cases arise during complementation when all the bits except the sign bit are zero: the complemented result is the same as the original operand.

4. Find the two’s complement representation of \(B’00000000’\).

(1) form ones’ complement: \(1111\ 1111\)
(2) add one:

\[
\begin{array}{c}
\text{+} \\
\hline
0000 \ 0000
\end{array}
\]

The result is zero, and the carry of a 1 bit out the left-hand end is lost. Thus the negative of zero is still zero. This is mathematically satisfying: there is no negative zero.\(^{14}\)

5. Find the 8-bit two’s complement representation of \(B’10000000’\).

(1) form ones’ complement: \(0111\ 1111\)
(2) add one:

\[
\begin{array}{c}
\text{+} \\
\hline
1000 \ 0000
\end{array}
\]

In this case, the complement of the number is also the same as the original number. This particular number, a negative sign bit with all other bits zero, is called the “maximum negative number”. It is well defined, and behaves normally in all arithmetic operations except that is has no representable negation.

The maximum negative number has no corresponding positive value available for the representable negative value. We say that we have generated an overflow condition—the result is too large to fit into the number of bits allotted for it. Overflow will be treated in more detail in the following sections on two’s complement arithmetic.

Some examples of numbers in the 32-bit arithmetic representation are shown in Table 4 on page 31.

\(^{14}\) Some older computers used the ones’ complement representation for binary integers, so negative zeros were possible. \(z\) System packed decimal and floating-point numbers (discussed in Chapters VIII and IX) support negative zeros.
Table 4. Examples of two’s complement representation

<table>
<thead>
<tr>
<th>Decimal Value</th>
<th>32-bit Two’s Complement Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>X’00000000’</td>
</tr>
<tr>
<td>1</td>
<td>X’00000001’</td>
</tr>
<tr>
<td>256</td>
<td>X’00000100’</td>
</tr>
<tr>
<td>5000</td>
<td>X’0001388’</td>
</tr>
<tr>
<td>+2147483647 (+231−1)</td>
<td>X’7FFFFFFF’</td>
</tr>
<tr>
<td>−2147483648 (−231)</td>
<td>X’80000000’</td>
</tr>
<tr>
<td>−2147483647 (−231+1)</td>
<td>X’80000001’</td>
</tr>
<tr>
<td>−5000</td>
<td>X’FFFFFF78’</td>
</tr>
<tr>
<td>−256</td>
<td>X’FFFFFO0’</td>
</tr>
<tr>
<td>−2</td>
<td>X’FFFFFE’</td>
</tr>
</tbody>
</table>
| −1 | X’FFFFFFFF’

The number of values with positive sign is the same as the number of values with negative sign, since every bit may be chosen arbitrarily. Because zero has a positive sign bit, it is sometimes treated as a positive number, even though (mathematically) it has no sign. If we exclude zero as a positive number, then there is one fewer member of the set of positive values than of the set of negative values, since there is no representation for +231. With 32 bits, we can represent 232 values: between −1 and −231 there are 231 values; 0 is a single value; between +1 and +231 there are 231−1 values. The total number of possible signed values is therefore 231+1 + (231−1), or 232.

Unfortunately, the terminology used to describe this process can be confusing. We are actually describing the mathematical operation of negation that turns a value into its negative. For other number representations, the operation that forms the negative of a number will be different, because there are many ways to represent a negative number. However, sometimes complementation is used to describe the operation of negation! For example, we often talk about the binary representation of some number, and then say that in negating that quantity we have formed its two’s complement.

Exercises

2.8.1.(1) Why does the simple two-step prescription for computing complements given above not depend on the sign of the number being complemented?

2.8.2.(2)+ Give the decimal values represented by each of the following 16-bit numbers, assuming that the binary values are in two’s complement representation:

1. X’0257’
2. X’7FFA’
3. X’8008’
4. X’E000’
5. X’FFFA’

(See Exercise 2.3.4. also.)

2.8.3.(2) It is sometimes said that the complement of a number X is the same as −X. State this more precisely.

2.8.4.(2) Four 16-bit areas of a program are named A, B, C, and D. Their contents are

\[
\begin{align*}
\text{c(A)} & = X’7D40’ \\
\text{c(B)} & = X’D000’ \\
\text{c(C)} & = X’15A2’ \\
\text{c(D)} & = X’800A’
\end{align*}
\]

If they are the signed 16-bit two’s complement binary representations of four decimal numbers, determine their decimal values.
2.8.5.(2) Given the quantities Z = 0, A = 1, B = 9, C = 62, D = 101, E = 255, F = 256, give the nine-bit (eight bits plus sign) representations of the positive and negative values of each quantity in the two's complement representation.

2.8.6.(3) Give the 32-bit two's complement representation (in either hexadecimal or binary) of both the positive and negative values of the following decimal integers: (a) 10, (b) 729, (c) 1000000, (d) 1000000000, (e) 2147483648, (f) 65535, (g) 2147483647.

2.8.7.(3) Sometimes two's complementation is described by these steps:

- Subtract 1
- Complement all bits

Does this differ from the two's complementation recipe given on page 29? Create examples that show how this form does or does not differ from that recipe.

2.8.8.(1) Give the 16-bit two's complement binary representation of each decimal number in hexadecimal:

1. +13055
2. −9582

2.8.9.(2) Show the 32-bit hexadecimal value of the two's complement binary representation of each of the following decimal values:

1. +5
2. −97
3. +65795
4. −16777158
5. +16777219
6. −78606

2.8.10.(1) Assuming a 16-bit two's complement representation, give the signed decimal values of these hexadecimal values:

1. X'B00F'
2. X'FFF1'
3. X'0FFF'
4. X'F001'

2.9. Sign Extension

In the representation of nonnegative numbers, an arbitrary number of zero bits may be attached to the left end of a number without affecting its value. For example, the 8-bit and 16-bit representations of +9 are

B'0000 1001' and B'0000 0000 0000 1001'

respectively. Similarly for negative numbers, we can add any number of 1 bits at the left without affecting the value. For example, the 8-bit and 16-bit two's complement representations of −9 are

B'1111 0111' and B'1111 1111 1111 0111'

respectively. Thus, for numbers that can be represented correctly in a given number of bits, the correct representation using a larger number of bits is found by duplicating the sign bit toward the left as many places as desired. This is called sign extension, and is illustrated in the following:

<table>
<thead>
<tr>
<th>Length</th>
<th>Representation of +1</th>
<th>Representation of −1</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 bits</td>
<td>X'01'</td>
<td>X'FF'</td>
</tr>
<tr>
<td>16 bits</td>
<td>X'0001'</td>
<td>X'FFFF'</td>
</tr>
<tr>
<td>32 bits</td>
<td>X'000000001'</td>
<td>X'FFFFFFFF'</td>
</tr>
<tr>
<td>64 bits</td>
<td>X'000000000000000001'</td>
<td>X'FFFFFFFFFFFFFFFFFFF'</td>
</tr>
</tbody>
</table>
Table 5. Examples of sign extension

We will discuss sign extension again when we examine instructions that perform shifting, and instructions that perform arithmetic on operands of different lengths.

Exercises

2.9.1.(2) Provide the 32-bit sign extensions in binary and hexadecimal notation of the five items in Exercise 2.8.2.

2.10. Binary Addition

Though number-representation details may vary slightly from one processor to another, the methods for performing binary arithmetic remain nearly the same for all processors. Thus the following is slightly more general than if only z System is discussed. The rules for adding binary digits are:

\[
\begin{array}{cccc}
0 & 0 & 1 & 1 \\
+0 & +1 & +0 & +1 \\
\hline
0 & 1 & 1 & 1 (carry)
\end{array}
\]

Adding numbers in the logical representation is simplest, because all the bits are numeric digits and do not represent signs. The only unusual condition is whether or not a carry occurs out of the leftmost digit position, which would indicate whether the resulting sum is or is not correctly representable by the number of bits available.

In the two’s complement representation, addition is performed in the same way, but the result is interpreted somewhat differently.

1. All bits of each operand are added, including sign bits, and carries out the left end of the sum are lost. (This is the same as for adding numbers in the logical representation.)
2. If the result cannot be correctly represented using the number of digits available, a fixed-point overflow condition occurs. The actions taken when an overflow condition occurs will vary; sometimes it can be ignored.

Using signed 4-bit binary values, we know that valid values must lie in the range \(-8 \leq \text{value} \leq +7\). We first add B’0010’ (+2) to itself, and then we add B’0100’ (+4) to itself.

\[
\begin{array}{cccc}
0010 & 0100 \\
+0010 & +0100 \\
\hline
0100 (no overflow) & 1000 (overflow)
\end{array}
\]

In the first case, 2+2=4, which lies in the representable range for our 4-bit numbers. But in the second case, 4+4=−8, because +8 is not representable. That is, the sum has overflowed.

A fixed-point overflow condition is possible only when adding operands of like sign: adding numbers with opposite signs always produces a representable result (or, as is often said, the result is in range). When an overflow occurs, the sign of the result is always the opposite of the sign of the two operands. The actual method used to detect overflow is simpler, since sign-change detection would require remembering the signs of both operands for comparison against the sign of the sum. Here is how it’s done:

Overflow Detection Recipe

If the carries into and out of the sign bit position disagree, arithmetic overflow has occurred.

There are two kinds of binary addition: arithmetic and logical. They produce identical bit patterns, as we will see in Section 2.14. Overflow is detected only for arithmetic addition, while logical addition is concerned only with a possible carry out of the high-order bit position.
Exercises

2.10.1.(2)+ Consider adding the 8-bit binary number $X'F5'$ to itself. There is no carry from $X'5' + X'5' = X'A'$, but there is a carry from $X'F' + X'F' = X'E'$. Since the carry out of the low-order digit position is different from the carry out of the high-order digit position, has overflow occurred?

2.11. Binary Subtraction

Subtraction is performed by adding the two’s complement of the number to be subtracted, the second operand. That is, $A - B$ is calculated as $A + (-B)$, where $(-B)$ is the two’s complement of B. A few examples using 8-bit binary two’s complement arithmetic will help illustrate addition and subtraction.

While this prescription is essentially correct, there is a minor but important complication we’ll examine after illustrating the basic scheme. (In Examples 6 and 7, note that the carries into and out of the high-order bit are different.)

- Example 1.

 $\begin{align*}
 5 - 3: & \quad 0000\ 0101 \\
 & -0000\ 0011 \\
 \text{becomes} & \quad 0000\ 0101 \\
 & +1111\ 1101 \\
 \text{(carry lost)} & \quad 0000\ 0010 = 2
 \end{align*}$

- Example 2.

 $\begin{align*}
 3 - 5: & \quad 0000\ 0011 \\
 & -0000\ 0101 \\
 \text{becomes} & \quad 0000\ 0011 \\
 & +1111\ 1011 \\
 \text{(no carry)} & \quad 1111\ 1110 = -2
 \end{align*}$

- Example 3.

 $\begin{align*}
 25 - (-17): & \quad 0001\ 1001 \\
 & -1110\ 1111 \\
 \text{becomes} & \quad 0001\ 1001 \\
 & +0001\ 0001 \\
 \text{(no carry)} & \quad 0010\ 1010 = 42
 \end{align*}$

- Example 4.

 $\begin{align*}
 (-17) - 25: & \quad 1110\ 1111 \\
 & -0001\ 1001 \\
 \text{becomes} & \quad 1110\ 1111 \\
 & +1110\ 0111 \\
 \text{(carry lost)} & \quad 1101\ 0110 = -42
 \end{align*}$
• Example 5.

\[-17-(-25): \begin{array}{c}
1110 \\
-1110
\end{array}
\begin{array}{c}
0111 \\
0111
\end{array}
\begin{array}{c}
1110 \quad 1111 \\
1110 \quad 0111
\end{array}
\begin{array}{c}
0000 \\
0000
\end{array}
\begin{array}{c}
1001 \\
1001
\end{array}
\begin{array}{c}
0000 \\
0000
\end{array}
\begin{array}{c}
1000 \quad 1000 \\
1000 \quad 1000
\end{array}
\]

(carry lost) \begin{array}{c}
0000 \quad 1000 = 8
\end{array}

• Example 6.

\[67-(-93): \begin{array}{c}
0100 \quad 0011 \\
-1010 \quad 0011
\end{array}
\begin{array}{c}
0100 \quad 0011 \\
0100 \quad 0011
\end{array}
\begin{array}{c}
0100 \quad 1101 \\
0100 \quad 1101
\end{array}
\begin{array}{c}
1010 \quad 0000 = -96
\end{array}
\begin{array}{c}
1010 \quad 0000
\end{array}
\]

(no carry) \begin{array}{c}
1010 \quad 0000
\end{array}
\]

• Example 7.

\[(-93)-67: \begin{array}{c}
1010 \quad 0011 \\
-0100 \quad 0011
\end{array}
\begin{array}{c}
1010 \quad 0011 \\
1010 \quad 0011
\end{array}
\begin{array}{c}
1011 \quad 1101 \\
1011 \quad 1101
\end{array}
\begin{array}{c}
0110 \quad 0000 = 96
\end{array}
\begin{array}{c}
0110 \quad 0000
\end{array}
\]

(carry lost) \begin{array}{c}
0110 \quad 0000
\end{array}
\]

• Example 8.

\[-128-(-93): \begin{array}{c}
1000 \quad 0000 \\
-1010 \quad 0011
\end{array}
\begin{array}{c}
1000 \quad 0000 \\
1000 \quad 0000
\end{array}
\begin{array}{c}
1001 \quad 1101 \\
1001 \quad 1101
\end{array}
\begin{array}{c}
1101 \quad 1101 = -35
\end{array}
\begin{array}{c}
1101 \quad 1101
\end{array}
\]

(no carry) \begin{array}{c}
1101 \quad 1101
\end{array}
\]

• Example 9.

\[3-3: \begin{array}{c}
0000 \quad 0011 \\
-0000 \quad 0011
\end{array}
\begin{array}{c}
0000 \quad 0011 \\
0000 \quad 0011
\end{array}
\begin{array}{c}
0000 \quad 1101 \\
0000 \quad 1101
\end{array}
\begin{array}{c}
0111 \quad 1101 \\
0111 \quad 1101
\end{array}
\begin{array}{c}
0000 \quad 0000 = 0
\end{array}
\begin{array}{c}
0000 \quad 0000
\end{array}
\]

(carry lost) \begin{array}{c}
0000 \quad 0000
\end{array}
\]

The above examples illustrate addition and subtraction and give the expected results. However, there is one case where the method as given above fails to detect correctly the presence or absence of overflow, and this occurs when the maximum negative number is being subtracted from something. (This is the minor complication mentioned previously.)

• Example 10.

\[1-(-128): \begin{array}{c}
0000 \quad 0001 \\
-1000 \quad 0000
\end{array}
\begin{array}{c}
0000 \quad 0001 \\
0000 \quad 0001
\end{array}
\begin{array}{c}
1000 \quad 0000 \\
1000 \quad 0000
\end{array}
\begin{array}{c}
1000 \quad 0000
\end{array}
\begin{array}{c}
1000 \quad 0000
\end{array}
\]

(no carry) \begin{array}{c}
1000 \quad 0000 = -127
\end{array}
\begin{array}{c}
1000 \quad 0000
\end{array}
\begin{array}{c}
1000 \quad 0000
\end{array}
\begin{array}{c}
1000 \quad 0000
\end{array}
\]

• Example 11.

\[-1-(-128): \begin{array}{c}
1111 \quad 1111 \\
-1000 \quad 0000
\end{array}
\begin{array}{c}
1111 \quad 1111 \\
1111 \quad 1111
\end{array}
\begin{array}{c}
1000 \quad 0000 \\
1000 \quad 0000
\end{array}
\begin{array}{c}
0111 \quad 1111 = +127
\end{array}
\begin{array}{c}
0111 \quad 1111
\end{array}
\]

(carry lost) \begin{array}{c}
0111 \quad 1111
\end{array}
\]
In each of these two last cases, the result seems to be arithmetically correct, but our original overflow indication is incorrect. This is because taking the two’s complement of the maximum negative number before adding it has already generated an overflow condition. To see how the processor can still use our overflow detection scheme as originally described (the carries into and out of the leftmost bit differ), it is worth examining the actual addition process in slightly more detail. The next section may be omitted if you are uninterested in such details, but be sure to learn the “Binary Subtraction Recipe” on page 37.

Exercises

2.11.1.(2) Give the 32-bit integer representation in hexadecimal or binary of the result of the following operations, where the operands are given as decimal numbers.

1. 10−(−10)
2. 729−65535
3. 2147483647+2
4. 100000000+(−2147483647)
5. 0−(+0)
6. (−10)+10

Do the arithmetic in the two’s complement representation, indicating for each case (1) the presence or absence of overflow, and (2) the presence or absence of a carry out of the leftmost digit position.

2.11.2.(2) Assume that the values defined in Exercise 2.8.4 are used to compute three 16-bit numbers X, Y, and Z. Using 16-bit binary arithmetic, determine the final (hex) contents of the 16-bit fields named X, Y, and Z, and whether or not an overflow condition has occurred.

\[
c(X) = c(A) - c(C)
\]
\[
c(Y) = c(B) + c(D)
\]
\[
c(Z) = c(A) + c(D)
\]

2.11.3.(3) Suppose you want to subtract 1 from a binary number. A suggested technique uses these two steps: (1) change all the rightmost zeros to ones, and (2) change the previous rightmost one to zero. Create examples to show that this technique is or is not correct.

2.11.4.(4) Assume that the method in Exercise 2.11.3 is correct. How can you detect overflow conditions?

2.11.5.(2) Evaluate each of the following 32-bit sums and differences, and in each case determine (a) whether an arithmetic overflow occurs, and (b) whether there is a carry out of the leftmost bit.

1. X′7D26F071′+X′B40E99A4′
2. X′7D26F071′-X′B40E99A4′
3. X′FFFF39A′+X′FFFFFF06′
4. X′FFFF39A′-X′FFFFFF06′
5. X′80000003′+X′00000007′
6. X′80000003′+X′80000007′

2.12. How Additions and Subtractions Are Actually Performed (*)

Remember that the two’s complement of a number (the two’s complement representation of the negation of a number) is found by inverting each bit of the number and then adding a one in the low-order position. Digital circuits that invert bits are called NOT circuits. Similarly, adding a 1 bit to the low-order digit position is also easy, because each digit position of an adder circuit must add the corresponding bits of the two input operands A and B, and the carry bit from the next lower-order bit position, as illustrated in Figure 2.
In the lowest-order position of the adder there will be no carry from a lower-order bit position. However, if an identical adder circuit is used, it still has a carry input that can be used to insert the 1 bit to be added to the low-order position during a complementation or subtraction operation! Thus subtraction is simply a matter of passing the second operand through a bit inverter (forming the ones’ complement), and then activating the low-order carry input to the adder to add the required one-bit.

Figure 2. One stage of a binary adder

<table>
<thead>
<tr>
<th>Bit n of Operand A</th>
<th>Adder Position n</th>
<th>Bit n of sum A+B</th>
<th>Bit n of Operand B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carry bit to Adder Position n+1</td>
<td>Carry bit from Adder Position n-1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Binary Subtraction Recipe

Subtraction is performed by adding the ones’ complement of the second operand and a low-order one-bit to the first operand, in a single operation. The subtraction in Example 10 is evaluated this way:

\[
\begin{align*}
1-(-128): & \quad \begin{array}{c}
0000 \ 0001 \text{ first operand} \\
\text{becomes} & \\
-1000 \ 0000 \text{ second operand}
\end{array} \\
& \begin{array}{c}
0000 \ 0001 \text{ first operand} \\
0111 \ 1111 \text{ ones’ complement of second operand} \\
+ & \quad \begin{array}{c}
1 \text{ complementation bit} \\
(0)1000 \ 0001 \text{ (overflow!)}
\end{array}
\end{array}
\end{align*}
\]

An overflow is indicated because carries into (1) and out of the high-order bit (0) are different.

Exercises

2.12.1.(2) For each of the quantities defined in Exercise 2.8.5, compute the following nine-bit values, indicating for each case whether or not there is a carry out of the high-order digit position, and whether or not an overflow has occurred. (Some of the values may not be representable; state which.) (a) A+C; (b) D−E; (c) Z+(−F); (d) (−E)−C; (e) (−B)+A; (f) C−Z; (g) A+(−A).

2.12.2.(3) In the ones’ complement representation, subtraction is sometimes described this way:

- Take the ones’ complement of the subtrahend (the number to be subtracted), and add the operands. Cross off the high-order digit and add 1 to the sum.
- If the subtrahend is greater than the minuend (the number from which the subtrahend is subtracted), take the ones’ complement of the subtrahend, add the operands, then complement the result and put a minus sign in the high-order position.

Construct some examples showing how this process works, for operands of both signs and of various magnitudes.
2.13. A Circular View of Binary Arithmetic (*)

We’ll use a four-bit binary representation to illustrate some concepts we have been discussing. The “circular” diagram in Figure 3 contains all 16 possible four-bit numbers.

First, suppose the numbers are considered to be the logical representation of the integers from 0 to 15. Counting up from 0000 by one takes us around the circle counter-clockwise from 0000 to 1111 and then back to 0000, as we would expect for numbers modulo 24. Adding and subtracting two numbers can be thought of as adding and subtracting the angles (measured counter-clockwise from 0000) represented by the numbers. Thus,

\[0100 + 0110 = 1010, \quad \text{and} \quad 1100 + 0111 = 0011. \]

A carry condition occurs in addition if we go past the “carry point” in the counter-clockwise direction; similarly, a “borrow” condition occurs in subtraction if we go past the “carry point” in the clockwise direction.

For the two’s complement representation, the negative of a number is the one vertically opposite it across the horizontal axis. Thus, the negative of 0011 is 1101, and the negative of 0001 is 1111. We also see that the numbers 0000 and 1000 are their own negatives, just as we found in examples 4 and 5 of Section 2.8 above.

Now, consider the numbers to be the signed 4-bit two’s complement representation of the integers from −8 to +7. In the figure, the numbers with a zero sign bit are represented by open circles (o), and the numbers with a sign bit = 1 are represented by the solid black dots (●). As before, we can visualize adding and subtracting numbers by adding or subtracting the corresponding angles represented by the numbers. Now, however, we can detect overflow conditions as well: if in adding or subtracting we move in either direction past the “overflow point” between 1000 and 0111, an overflow condition occurs. Thus if we add

\[0110 + 0011 = 1001 \]

we generate an overflow by passing the overflow point in a counter-clockwise direction. Similarly, in the subtraction

\[1010 - 0110 = 0100 \]

we generate an overflow by passing the overflow point in a clockwise direction.

![Figure 3. “Circular” representation of two’s complement representation](image-url)
Experiment with this diagram; it reveals many properties of two’s complement arithmetic.

Exercises

2.13.1.(3) In many early editions of the System/360 *Principles of Operation*, the Subtract operation was described as follows: “Subtraction is performed by adding the two’s complement of the second operand to the first operand. All 32 bits of both operands participate. If the carries out of the sign-bit position and the high-order numeric bit position agree, the difference is satisfactory; if they disagree, an overflow occurs.”

This differs from the subtraction rule given in Section 2.13. Construct one or more examples that will show that these two descriptions are *not* precisely equivalent.

2.14. **Logical (Unsigned) and Arithmetic (Signed) Results (*)**

We can show that the correct algebraic result is obtained by simply adding all the bits of the operands in the two’s complement representation as though they were logical operands. For 32-bit operands, the logical representation X corresponding to an arithmetic signed integer x satisfies the relation

$$X = 2^{32} + x \pmod{2^{32}},$$

then the sum of two logical operands X and Y is

$$(X + Y) = 2^{32} + 2^{32} + (x + y) \pmod{2^{32}}$$

$$= 2^{32} + (x + y) \pmod{2^{32}}$$

$$= x + y$$

Thus the arithmetic and logical sums give the same binary result; the leftmost bits and the high-order two carry bits are just interpreted differently in the two representations.

<table>
<thead>
<tr>
<th>Logical vs. arithmetic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logical and arithmetic sums and differences of binary integers produce identical bit patterns.</td>
</tr>
</tbody>
</table>

We can make a further observation about adding and subtracting numbers in the logical representation. From the examples in Section 2.11, we see that subtraction if the second operand is *logically* smaller than or equal to the first (see examples 1, 4, 5, 7, 9, and 11) then there will be a carry out of the leftmost bit position. Conversely, we see (in examples 2, 3, 6, 8, and 10) that if the first operand is logically smaller than the second operand subtracted from it, there is no carry out of the left end. In these latter cases we have in some sense generated a “negative” logical answer, since the result is not correctly represented to the given number of bits. We’ll see examples of these cases when we examine instructions that perform logical arithmetic.

Exercises

2.14.1.(2) Assuming an eleven-bit word, give the logical and two’s complement representations of the following quantities: (a) 200, (b) 1023, (c) −1000, (d) 2047, (e) −1, (f) −1024, (g) −1023, (h) 1024, (i) −0. If a quantity is not representable, indicate that it is not.

2.14.2.(2) Consider the four five-bit binary numbers

A=11111, B=00010, C=10000, D=01111.

For each pair of values (like A+A, A+B, etc.) determine (a) their sum, (b) whether or not a carry occurs, and (c) for arithmetic addition, whether or not an overflow occurs. Display the results in a short table. (Because addition is commutative: $X+Y = Y+X$ — you will need to evaluate only ten sums.)
2.14.3.(3) + Using the same values for \(A, B, C, D \) in Exercise 2.14.2, determine the result, the carry condition, and the arithmetic overflow condition for pair-wise subtraction (like \(A - B, B - A, \) etc.) of these values. Display your results in a short table; this time your table will need all 16 entries, because subtraction is non-commutative: \(X - Y \neq Y - X \).

2.14.4.(2) + Can an overflow be caused by subtracting two numbers of opposite signs?

2.15. Examples of Representations (*)

It may help to see the differences among the sign-magnitude, radix complement (two’s complement), and diminished radix-complement (ones’ complement) representations. All 5-bit binary numbers with positive and negative values would be represented as shown in the following table.

<table>
<thead>
<tr>
<th>Binary Digits</th>
<th>Logical Representation</th>
<th>Sign-Magnitude</th>
<th>Ones’ Complement</th>
<th>Two’s Complement</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000</td>
<td>0</td>
<td>+0</td>
<td>+0</td>
<td>0</td>
</tr>
<tr>
<td>00001</td>
<td>1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
</tr>
<tr>
<td>00010</td>
<td>2</td>
<td>+2</td>
<td>+2</td>
<td>+2</td>
</tr>
<tr>
<td>00011</td>
<td>3</td>
<td>+3</td>
<td>+3</td>
<td>+3</td>
</tr>
<tr>
<td>00100</td>
<td>4</td>
<td>+4</td>
<td>+4</td>
<td>+4</td>
</tr>
<tr>
<td>00101</td>
<td>5</td>
<td>+5</td>
<td>+5</td>
<td>+5</td>
</tr>
<tr>
<td>00110</td>
<td>6</td>
<td>+6</td>
<td>+6</td>
<td>+6</td>
</tr>
<tr>
<td>00111</td>
<td>7</td>
<td>+7</td>
<td>+7</td>
<td>+7</td>
</tr>
<tr>
<td>01000</td>
<td>8</td>
<td>+8</td>
<td>+8</td>
<td>+8</td>
</tr>
<tr>
<td>01001</td>
<td>9</td>
<td>+9</td>
<td>+9</td>
<td>+9</td>
</tr>
<tr>
<td>01010</td>
<td>10</td>
<td>+10</td>
<td>+10</td>
<td>+10</td>
</tr>
<tr>
<td>01011</td>
<td>11</td>
<td>+11</td>
<td>+11</td>
<td>+11</td>
</tr>
<tr>
<td>01012</td>
<td>12</td>
<td>+12</td>
<td>+12</td>
<td>+12</td>
</tr>
<tr>
<td>01101</td>
<td>13</td>
<td>+13</td>
<td>+13</td>
<td>+13</td>
</tr>
<tr>
<td>01110</td>
<td>14</td>
<td>+14</td>
<td>+14</td>
<td>+14</td>
</tr>
<tr>
<td>01111</td>
<td>15</td>
<td>+15</td>
<td>+15</td>
<td>+15</td>
</tr>
<tr>
<td>10000</td>
<td>16</td>
<td>−0</td>
<td>−15</td>
<td>−16</td>
</tr>
<tr>
<td>10001</td>
<td>17</td>
<td>−1</td>
<td>−14</td>
<td>−15</td>
</tr>
<tr>
<td>10010</td>
<td>18</td>
<td>−2</td>
<td>−13</td>
<td>−14</td>
</tr>
<tr>
<td>10011</td>
<td>19</td>
<td>−3</td>
<td>−12</td>
<td>−13</td>
</tr>
<tr>
<td>10100</td>
<td>20</td>
<td>−4</td>
<td>−11</td>
<td>−12</td>
</tr>
<tr>
<td>10101</td>
<td>21</td>
<td>−5</td>
<td>−10</td>
<td>−11</td>
</tr>
<tr>
<td>10110</td>
<td>22</td>
<td>−6</td>
<td>−9</td>
<td>−10</td>
</tr>
<tr>
<td>10111</td>
<td>23</td>
<td>−7</td>
<td>−8</td>
<td>−9</td>
</tr>
<tr>
<td>11000</td>
<td>24</td>
<td>−8</td>
<td>−7</td>
<td>−8</td>
</tr>
<tr>
<td>11001</td>
<td>25</td>
<td>−9</td>
<td>−6</td>
<td>−7</td>
</tr>
<tr>
<td>11010</td>
<td>26</td>
<td>−10</td>
<td>−5</td>
<td>−6</td>
</tr>
<tr>
<td>11011</td>
<td>27</td>
<td>−11</td>
<td>−4</td>
<td>−5</td>
</tr>
<tr>
<td>11100</td>
<td>28</td>
<td>−12</td>
<td>−3</td>
<td>−4</td>
</tr>
<tr>
<td>11101</td>
<td>29</td>
<td>−13</td>
<td>−2</td>
<td>−3</td>
</tr>
<tr>
<td>11110</td>
<td>30</td>
<td>−14</td>
<td>−1</td>
<td>−2</td>
</tr>
<tr>
<td>11111</td>
<td>31</td>
<td>−15</td>
<td>−0</td>
<td>−1</td>
</tr>
</tbody>
</table>

In the sign-magnitude and ones’ (diminished radix) complement representations, there are two distinct representations for zero. In the two’s (radix complement) representation, there is no representation for +16 corresponding to the valid representation for −16.

The sign bit in the sign-magnitude representation is attached to the (unsigned) magnitude of the value. However, the “sign bit” in the two’s complement representation is not just an indicator: it is numerically significant.

15 More formally, the representation in radix \(r \) of an \(n \)-bit negative number \(X \) is \(r^n - X \) in the two’s complement representation, and \((r^n-1) - X \) in the ones’ complement representation.
Representing signed numbers in a computer always involves tradeoffs: how should “peculiar” cases like these be handled?

Exercises

2.15.1.(2) Suppose your computer uses the ten’s complement representation for integers. (This representation was very widely used in mechanical desk calculators, and in many early computers.) Write the following values in ten’s-complement notation: (a) +28, (b) −49, (c) +527, (d) −333, (e) −1234, (f) +2469.

2.15.2.(3) Using the representations you calculated in Exercise 2.15.1, evaluate the following using ten’s-complement arithmetic: (a) +28+(−49), (b) +527+(−333), (c) −1234+2469.

2.15.3.(3) Write the values in Exercise 2.15.1 in the diminished radix-complement (nines’ complement) representation.

Terms and Definitions

- **bit**
 A binary digit, taking values 0 and 1.

- **hexadecimal**
 A base-16 representation. Its digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.

- **hex**
 See hexadecimal.

- **logical representation**
 An unsigned number representation.

- **arithmetic representation**
 A signed number representation.

- **sign-magnitude representation**
 The familiar signed representation of numbers with prefixed + or − signs.

- **radix-complement representation**
 A signed representation where the numerically significant high-order digit contains sign information.

- **two’s complement representation**
 A signed binary representation where the high-order bit contains sign information, and has weight -2^{n-1}.

- **diminished radix-complement representation**
 A signed representation where negative numbers are represented by subtracting each digit from (the radix minus 1).

- **ones’ complement representation**
 A signed binary representation where negative numbers are represented by changing each 0 bit to a 1 bit and vice versa.

- **overflow**
 The sum, difference, product, or quotient of two numbers is too large to be correctly represented in the number of digits provided.
This chapter’s three sections introduce the main features of z System processors:

- Section 3 describes basic structures memory organization and addressing, general purpose registers, the Program Status Word (PSW), and other topics.
- Section 4 discusses the instruction cycle, basic machine instruction types and lengths, exceptions and interruptions and their effects on the instruction cycle.
- Section 5 covers address calculation, the “addressing halfword”, Effective Addresses, indexing, addressing problems, and virtual memory.
We can describe the structure of most computers in terms of four functional units: memory, arithmetic, control, and input-output. A real computer may not identify components this way, but it helps us to think of them as distinct units.

![Conceptual structure of a typical computer](image)

Figure 4. Conceptual structure of a typical computer

The solid lines in Figure 4 represent data paths among the various units, and the dashed lines indicate the flow of control signals. As indicated, the same memory holds instructions for the control unit and the data used by the arithmetic and input-output units. This gives modern digital processors their flexibility and power: they can treat instructions as data or data as instructions.

z System makes no special distinction between the arithmetic and control units, and the combination is often called the “Central Processing Unit”, or “CPU”.
“Memory” is sometimes called “central storage” or similar terms. It refers to that part of the processor holding the directly accessible instructions and data to be manipulated by those instructions.

As Figure 5 indicates, input and output—once initiated by the CPU—is performed between external devices and memory, and does not pass through the CPU. The Input-output Unit communicates the status of its operations to the CPU, indicating error conditions or completion of the operation.

3.1. Memory Organization

Digital computers deal with data consisting of binary digits, easily and rapidly accessed from “central memory”. The basic data item is an eight-bit group called a byte.\(^{16}\) The bits in a byte are numbered from 0 to 7, beginning on the left with the numerically most significant digit. (The importance of designating the “left” side of a byte will be clearer when we consider groups of bytes.) In Figure 6, the leftmost bit is a 1-bit, and the rightmost bit is a 0-bit.

\[\begin{array}{c}
\text{0} \\
\text{7}
\end{array}\]

Figure 6. A byte containing 8 binary digits

Bytes in memory are arranged so that each byte may be referenced as easily as any other. The bytes are individually numbered beginning at zero; the number associated with each byte is called its memory address. Memory may be thought of as a linear string of bits; the bits are grouped into bytes arranged in order of increasing addresses. Only bytes have addresses; bits within a byte don’t have their own addresses.

\[\begin{array}{cccccccc}
\text{..} & \text{701} & \text{702} & \text{703} & \text{704} & \text{705} & \text{706} & \text{707} & \text{..} \\
\text{byte} & \text{byte}
\end{array}\]

Figure 7. A portion of memory, with addresses shown above each byte

The bits in a byte are accessed (or “read”) by the CPU without being changed. Reading the contents of a byte does not affect the contents; the memory provides the CPU with a copy of the

\(^{16}\) Because the eight bits in a byte are often described using two hex digits, some people like to call a “half byte” hex digit a cute name like “nibble” or even “nybble”. We won’t.
contents of a byte. Storing (or “writing”) a new bit pattern into a byte replaces the previous contents.

Many machine instructions referring to memory actually refer to a group of consecutive bytes. In such situations the group is normally addressed by referring to its leftmost member, the byte with the lowest address in the group.\(^{17}\) Also, some instructions require the address of a group of bytes (the address of the leftmost byte) to also be a multiple of the length of the group, in which case we say that the group is aligned.\(^{18}\) The possible lengths for such groups of bytes are 2, 4, 8, or 16; we sometimes refer to them as halfwords, words (or fullwords), doublewords, and quadwords respectively.

\begin{verbatim}
8DF 8E0 8E1 8E2 8E3 8E4 8E5 8E6 8E7 8E8 8E9 8EA 8EB 8EC 8ED 8EE 8EF 8F0
\end{verbatim}

Figure 8. A portion of memory

When some operation manipulates a group of bytes, we call that group an “operand”; something that is “operated on”. The group always consists of data from consecutively-addressed bytes in memory.

Some operations treat the operand as a string of bits whose meaning for that operation is independent of the fact that they are arranged into 8-bit bytes in memory. For example, suppose a halfword operand (a group of two bytes whose address is divisible by 2) is specified for an operation, and the address of the 16-bit operand is X’8EA’. Then the 16 bits in the bytes at X’8EA’ and X’8EB’ will be treated as a single 16-bit halfword, and we ignore the fact that they are stored in memory as two distinct eight-bit bytes. Thus, bit 0 of the halfword operand—its leftmost bit—corresponds to bit 0 of the byte at X’8EA’, and bit 15 of the halfword operand—its rightmost bit—corresponds to bit 7 of the byte at X’8EB’.\(^{19}\)

Bytes in memory contain only bit patterns. Whether the bit pattern is interpreted as an instruction, or as one of many types of data, depends only on the context of its use; at one time it may be data, and at another, an instruction. Whatever the interpretation, however, a byte is simply a group of eight bits.

We now see why we use hexadecimal (base 16) notation for expressing binary numbers instead of octal (base 8) notation. It is simplest to arrange bits in groups of the same size, and the presence of eight bits in a byte makes four-bit groups natural. A half-byte contains 4 bits, exactly the number of bits needed to represent one hex digit. If octal notation is used, a byte would contain two three-bit octal digits and two extra bits.

Exercises

3.1.1.(2) An area of memory reserved for data begins at address X’2EC9’ and ends with address X’30A6’ (including the start and end bytes!). How many bytes are there in the area, and how many halfwords, words, and doublewords can be stored in the area?

3.1.2.(1) The memory of z System can be thought of as a continuous string of bits. Does each individual bit in memory have an address? Explain.

\(^{17}\) This is true with few exceptions, which we will note as they appear. For now, remember “leftmost” as the rule.

\(^{18}\) In early System/360 processors, many memory operands had to be aligned on byte boundaries whose addresses were a multiple of the operand’s length. While this is no longer required for most (but not all) instructions, proper alignment is always a good programming practice.

\(^{19}\) z/Architecture processors use what is called “big-endian” addressing; we’ll examine “endianness” in detail in Chapter VII, Section 26.7.
3.1.3. Suppose we are interested in the string of contiguous bits starting with bit 5 of memory address X′1A023′ and ending with bit 1 of the byte at memory address X′1A03B′ (including the start and end bits). Determine the number of bits in the string.

3.1.4. (1) State which of the following addresses refer to halfwords, words, and doublewords: (1) X′123456′; (2) X′234567′; (3) X′345678′; (4) X′000BBC′.

3.1.5. (1) Determine the number of bits that can be stored in a memory area of the following sizes: (1) X′20000′ bytes, (2) X′8000′ bytes, (3) X′200000′ bytes.

3.1.6. (1) Express the contents of the byte in Figure 6 in octal notation and in hexadecimal notation.

3.1.7. (1) If you examine the rightmost hex digit of a memory address, what can you tell about the alignment of the address?

3.2. Central Processing Unit

The CPU performs the operations specified by your program. An important element of the CPU is a set of registers, a special and very fast form of memory kept very close to the instruction and data processing functions of the CPU.

- The general registers are used for arithmetic and logical operations, and to hold addresses of data and instructions; 20
- the Floating-Point Registers are used for floating-point arithmetic and data;
- the Program Status Word is used by the CPU to control the progress of your program as it is executed.

3.3. General Registers

There are sixteen general registers, numbered from zero to fifteen. Each is 64 bits (or 16 hex digits or 8 bytes) long. They are represented schematically in Figures 9 and 10.

![Figure 9. A single 64-bit general register](image)

When we discuss instructions that do 32- and 64-bit arithmetic, we’ll understand why this picture shows two 32-bit parts of a 64-bit general register.

20 Because the general registers are used for so many activities, they are sometimes called “General Purpose Registers”.

This figure arranges the registers in pairs, the left register being even-numbered and the right being the next higher odd-numbered register. Some operations require using a pair of registers, and in such cases it is always an even-odd-numbered pair.

We will often refer to the general registers using a short notation: we sometimes write “GRn” (meaning the rightmost 32 bits of a 64-bit register) or “GGn” (meaning all 64 bits) or simply “Rn” to refer to general register n when the register length is clear from context. Thus, in Figure 10, we might use R1 to mean register 1, R14 to mean register 14, and so on.

Be Careful!

“R1” (without a subscript) is not the same as the notation “R₁” (with a subscript). This difference will be important when we discuss machine instructions.

Exercises

3.3.1.(1) Suppose a shifting operation requires the use of a pair of general registers. Is it possible to perform the shifting operation using both GR7 and GR8? Using GR15 and GR0? Using GR6 and GR7?

3.3.2.(1) How many bytes can be placed in a pair of general registers?

3.4. Floating-Point Registers

On the earliest System/360 models only four floating-point registers were available, and then only as an option. Sixteen are always present in z System processors, as we will see in Section 32.7. Each is 64 bits (16 hex digits, 8 bytes, or 1 doubleword) long. We will look into this more deeply when we discuss floating-point instructions and data in Chapter IX.
Figure 11. Four Floating-Point Registers

Sometimes the floating-point registers contain operands 32 bits long. In this case they use only the left half of the register, and the rightmost 32 bits are ignored. In other situations, a floating-point instruction using 128-bit operands will use a pair of floating-point registers.

We won’t mention the floating-point registers until we discuss instructions for floating-point arithmetic. We sometimes use the abbreviations “FPRn” or “FRn” or “Fn” to refer to floating-point registers.

In some cases we use “register” to describe a general register or a floating-point register (or some other type of register); which is meant will be clear from context.

Exercises

3.4.1.(1) How many short (32-bit) floating-point numbers can be held in a floating-point register?

3.4.2.(3) Can you think of any reasons why the designers of System/360 and z System included a separate set of registers for floating-point arithmetic? That is, why should it not be possible to use the general registers for binary integer arithmetic, addresses, and floating-point arithmetic?

3.5. Program Status Word (PSW)

Usually, the Program Status Word (PSW) is of no immediate concern, and you need not worry about its contents. It is another internal register that contains various fields indicating the status of the program being executed. As the System/360 and z System processors have evolved, the PSW has taken several forms.

For our purposes, we need to know about only a few parts of a PSW: the Instruction Address (IA), the Condition Code (CC), the Instruction Length Code (ILC), and the Program Mask (PM). Of these, the IA is most important now; we’ll see more about the others later.

Figure 12 illustrates these four parts of the PSW (and the “System Flags”). The IA is always in the rightmost position; the positions of the other three aren’t significant.

The PSW for the currently executing program resides in the CPU, not in memory.

The CC is set (given a value) by some instructions—for example, to indicate that the result of an addition operation is a negative number. Other instructions may have no effect on the CC; in
such cases we say that it is *not set*, or that its value is *unchanged*. Still other instructions can test the value of the CC and make decisions based on the result.

Among the system flag bits in the PSW is the “P” bit, which determines whether or not the CPU will allow certain instructions to be executed. If the “P” bit is 1, the CPU is in *Problem State* and will not execute *privileged* instructions, such as those specifying Input-Output operations. If you try to execute a privileged instruction while the CPU is in Problem State, a program interruption will occur instead. When the “P” bit is 0, the CPU is in *Supervisor State*, and it allows any instruction to be executed. This is how supervisory programs retain control over activities critical to the smooth operation of a complex programming system.

3.6. Other Registers

In all z System processors, the CPU contains many additional registers including *Access Registers* and *Control Registers*. The Access Registers are used for special types of addressing. The Control Registers are not normally available to application programs: they are not used for arithmetic or for addressing by a program because they control various execution functions.

We’ll say more about these and other registers as needed.

3.7. Input-Output (I/O)

Data transmission between main memory and external devices is managed by *channels*. Channels transmit bytes of data from an external device to memory, or from memory to an external device, while allowing the CPU to continue with the execution of a processing program. We will use some simple forms of I/O later, especially for Programming Problems at the end of each chapter.

3.8. Features, Facilities, and Assists

The z System family of processors has grown from its original System/360 capabilities. The added capabilities are sometimes called “features”, “facilities”, or “assists”. For example, the “long-displacement” facility is a recent addition. We assume that your CPU has all the facilities needed to execute our instructions and program examples.

3.9. Microprograms and Millicode (*)

For the earliest System/360 models, internal operations were controlled by “microprograms” that were kept in a special type of read-only memory. The internal circuits were then “programmed” by a combination of hardware and micro-instructions to act like a System/360 processor!

Modern processors, in contrast, use a combination of hardware, microcode, and “millicode” instructions to execute the instructions you write, and to perform other CPU “housekeeping” functions. Millicode instructions are kept in a reserved area of main memory. They are very similar to your instructions, but can do things that your “normal” instructions can’t do. The set of millicode instructions is sometimes referred to as “firmware”.

Terms and Definitions

byte

A group of 8 bits; the basic addressable unit of memory.

CPU

Central Processing Unit

21 This is quite an understatement.

22 If you’re interested in learning more about millicode, see the article by Lisa Heller and Mark Farrell in the *IBM Journal of Research and Development*, Vol. 48 No. 3/4, May/July 2004.
GR
General Register

FPR
Floating-Point Register

PSW
Program Status Word, containing information about the current state of a program.

CC
Condition Code, a 2-bit field in the PSW used to indicate the status or result of executing certain instructions.

Instruction Length Code
Instruction Length Code, a 2-bit field in the PSW indicating the length in halfwords of the currently executing instruction.

millicode
Internal instructions used by the CPU to perform operations too complex to be done cost-effectively in hardware.

problem state
A state in which the CPU disallows the execution of certain privileged instructions.

supervisor state
A state in which the CPU allows the execution of all instructions.
In this section we see how instructions are executed by the CPU, and then look at examples of the formats used for five representative classes of instructions.

As we saw in Figure 5 on page 45, instructions executed by the computer reside in memory along with the data to be processed. Instructions in z System can be 2, 4, or 6 bytes long. Instructions are always aligned so that the leftmost byte is on a halfword boundary: that is, the address of an instruction must always be divisible by two. This alignment does not depend on the length of the instruction; it doesn’t matter, for instance, that a 4-byte instruction begins halfway between two word boundaries. It is more precise to say that instructions are 1, 2, or 3 halfwords long.

Unlike some types of data, there is no requirement that an instruction start at an address that is a multiple of its length; only that it start on a halfword boundary.

4.1. Basic Instruction Cycle

The process of executing instructions may be visualized in Figure 13.

![Figure 13. Basic instruction cycle](image-url)

In the “fetch” portion of the cycle, the CPU locates the instruction beginning at the halfword in memory whose address is contained in the rightmost part of the PSW (the Instruction Address, or IA), and places it into an internal register where it is decoded. Though this internal register is not accessible to programs, we will refer to it as the Instruction Register, or IR. The CPU determines the length of the instruction by examining its first two bits, as we will see shortly.

To complete the fetch portion of the cycle, the CPU adds the length in bytes of the instruction now in the Instruction Register to the IA in the PSW, so that the IA will contain the address of the next instruction to be fetched when the current instruction completes its execution. This
means that instructions must be packed tightly in memory; there are no leftover bytes or gaps between instructions executed in sequence.

To decode the instruction, the CPU examines the bit pattern in the IR to see what action is intended. Since (1) the bytes were brought from memory and (2) the memory contains both data and instructions, the bytes brought to the IR may actually represent data and not instructions. The CPU has no way of knowing this; it simply goes to the memory address in the IA portion of the PSW and fetches those bytes into the IR to be interpreted as an instruction. If this is what you intended, good; otherwise, strange things can happen.

Not all of the possible bit patterns in the IR might represent “valid” instructions (i.e., actions the CPU can execute, or will allow to execute). The decoding mechanism can sometimes detect confused situations (such as data being interpreted as instructions) before too much damage has been done, and cause remedial actions to be initiated.

Assuming that the bytes in the IR contain a valid instruction, further actions may be necessary before the decoding is completed, such as calculating addresses of the operands to be manipulated during the execute portion of the cycle.

During the execution phase, the actual operation is performed. It could cause the contents of one general register to replace the contents of another, or it may involve many intermediate steps of complicated logic or arithmetic. If no errors are detected during the execution phase (such as attempting to divide a number by zero), the CPU resumes the instruction cycle by returning to the fetch portion of the cycle.

We sometimes refer to the entire cycle of fetching, decoding, and executing an instruction simply as “executing” that instruction.

<table>
<thead>
<tr>
<th>Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>The IA portion of the PSW addresses the next instruction to be fetched. If you didn’t intend the fetched bytes to be an instruction, it’s a mistake you must correct.</td>
</tr>
</tbody>
</table>

Exercises

4.1.1.(2) How could you build a CPU without a separate Instruction Address (such as in the z/Architecture PSW)?

4.2. Basic Instruction Types

The instructions provided by the original System/360 processors had five formats:

1. register-and-register (RR)
2. register-and-indexed-storage (RX)
3. register-and-storage (RS)
4. storage-and-immediate (SI)
5. storage-and-storage (SS)

Modern z System processors support over 30 instruction formats that we’ll introduce as needed. These five formats are enough for now, because newer instruction formats are variations on these basic forms.

The letters RR, RX, RS, SI, and SS are abbreviations that indicate the type, or class, of an instruction. Individual instructions belonging to each class will be treated in later chapters.

Figure 14 gives a useful way to visualize the behavior of these classes:

- RR-type instructions operate on data within registers;
- RX- and RS-type instructions operate on data between registers and memory;
• SS-type instructions operate on data in two memory locations; and
• SI-type instructions operate on data in memory using an operand in an instruction.

Figure 14. Instruction formats and data interactions

The first byte of an instruction always contains an operation code (often abbreviated “opcode”), specifying the operation to be performed. The second byte usually contains data about the location, type, or length of the data to be operated on. This second byte has several forms: it is called the register specification byte (for RR, RX, and RS instructions), the immediate data byte (for SI instructions), or the length specification byte (for SS instructions).\(^{23}\) The interpretation of this second byte therefore depends on the class to which the instruction belongs.

• RR-type instructions are always one halfword long.

<table>
<thead>
<tr>
<th>operation code</th>
<th>register specification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6. RR-type instruction format

• RX- and RS-type instructions are always two halfwords long.

<table>
<thead>
<tr>
<th>operation code</th>
<th>register specification</th>
<th>addressing halfword</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 7. RX-type and RS-type instruction format

The RX- and RS-type instruction formats differ only in the interpretation of the bits in the “Register Specification” byte.

• SI-type instructions are always two halfwords long.

<table>
<thead>
<tr>
<th>operation code</th>
<th>immediate data</th>
<th>addressing halfword</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 8. SI-type instruction format

Instead of a register specification, the second byte of an SI-type instruction contains an 8-bit data item used in executing the instruction.

\(^{23}\) In some newer instructions, the second byte may contain another part of the opcode; and in some instructions, part of the opcode may be in the sixth byte! The CPU knows, so you needn’t worry.
SS-type instructions are always three halfwords long.

<table>
<thead>
<tr>
<th>operation code</th>
<th>length specification</th>
<th>addressing halfword</th>
<th>addressing halfword</th>
</tr>
</thead>
</table>

Table 9. SS-type instruction format

For most instructions except RR-type instructions, an addressing halfword is used by the CPU to compute the address of an operand; this important process is described in “5.1. The Addressing Halfword”, on page 64, and again in Section 20. These classifications are not exhaustive; many newer instructions are variations on these basic forms.

Exercises

4.2.1.(1) Must a 4-byte RX-type instruction begin on a word boundary?

4.2.2.(1) What is the length of the shortest instruction in z System?

4.2.3.(2) How is it possible for instructions of different lengths to be packed tightly into memory with no wasted bytes?

4.2.4.(1)+ May an instruction begin on a word boundary? On a doubleword boundary?

4.2.5.(2)+ Figure 14 implies that both instructions and data reside in the same memory. How can you tell if a given string of bytes represents instructions or data?

4.3. Instruction Lengths

The first two bits of the operation code tell the CPU how many bytes to fetch from memory. Since at least two bytes per instruction must always be fetched, the CPU can check the two leading bits to tell how many more bytes (if any) are required. The bit patterns are shown in Figure 15; “xxxxxx” represents the remaining six bits of the eight-bit operation code.

00xxxxxx	2-byte instructions such as RR-type
01xxxxxx	4-byte instructions such as RX-type
10xxxxxx	4-byte instructions such as RS- and SI-type
11xxxxxx	6-byte instructions such as SS-type

Figure 15. Opcode bit patterns for typical instruction types

If the first two bits of the opcode are 00 the instruction is one halfword long; if the bits are 01 or 10 it is two halfwords long; and if the bits are 11 it is three halfwords long.

Before decoding the instruction, the CPU places the number of pairs of bytes in the instruction (the number of halfwords: 1, 2, or 3) into an internal two-bit PSW field called the Instruction Length Code (ILC). It is important to remember that the two bits of the ILC are not the same as the first two bits of the opcode. Table 10* shows the relationship between the first 2 bits of the opcode and the ILC:

* Courtesy of Michael Stack.
Table 10. Instruction Length Code and instruction types

<table>
<thead>
<tr>
<th>ILC (decimal)</th>
<th>ILC (binary)</th>
<th>Instruction types</th>
<th>Opcode bits 0-1</th>
<th>Instruction length</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>B’00’</td>
<td></td>
<td></td>
<td>Not available</td>
</tr>
<tr>
<td>1</td>
<td>B’01’</td>
<td>RR</td>
<td>B’00’</td>
<td>One halfword</td>
</tr>
<tr>
<td>2</td>
<td>B’10’</td>
<td>RX</td>
<td>B’01’</td>
<td>Two halfwords</td>
</tr>
<tr>
<td>2</td>
<td>B’10’</td>
<td>RS, SI</td>
<td>B’10’</td>
<td>Two halfwords</td>
</tr>
<tr>
<td>3</td>
<td>B’11’</td>
<td>SS</td>
<td>B’11’</td>
<td>Three halfwords</td>
</tr>
</tbody>
</table>

If an error is detected during decoding or executing the instruction, the PSW at the time of the error is saved, and the programmer can examine the ILC and the IA of the saved PSW to determine what instruction caused the error. If the ILC was not saved it would not be possible to determine the exact location of the offending instruction, since the location of the next instruction to be executed is already in the IA portion of the saved PSW, and the length of the bad instruction could have been 2, 4, or 6 bytes.

Exercises

4.3.1.(1) Is it possible for a six-byte instruction to be mistaken by the CPU for a four-byte instruction? Explain.

4.3.2.(2)+ A program segment consists of the following six operations (only the opcodes are given): X’05’, X’58’, X’89’, X’5A’, X’D2’, X’50’. Determine the length in bytes of the program segment.

4.3.3.(2) For each of the instructions in the previous exercise, determine the value of the Instruction Length Code after each has been fetched.

4.3.4.(2) By examining Figure 15, deduce a simple formula that can be used to determine, for any z System instruction, what number should be added to the Instruction Address in the PSW to give the address of the following instruction.

4.3.5.(2)+ Make (and study) a short table of four rows, with the following column headings: (1) value of first two bits of opcode, (2) instruction type, (3) instruction length, (4) ILC after instruction fetch is complete, and (5) number of addressing halfwords.

4.3.6.(2)+ The following twelve halfwords taken from memory are known to be a sequence of instructions. (The spaces have been inserted for readability; the bytes in memory are contiguous.)

90EC D00C 0580 5000 89EA D703 89EE 89EE 18CD 41D0 89E6 1B11

Determine (1) how many instructions there are, (2) their lengths, and (3) their types.

4.3.7.(3)+ Suppose you know the PSW and ILC after an execution error has occurred. How do you determine the address of the instruction that caused the error?

4.3.8.(2) What would happen if gaps are left between instructions?

4.4. Some Operation Codes (*)

Table 11 summarizes the characteristics of some basic instructions, as they depend on the first four bits of the operation code. As described above, the first two bits determine the type and length of the instruction. The second pair of bits determines (to some degree) the operand length or the general functions performed by the instructions. (These groupings are only approximate, but they may help you to appreciate how opcodes are designed.)

A closer examination of a complete table of operation codes reveals a great deal of symmetry in the opcodes used for similar functions. For example, the four original System/360 instructions
that perform the “Logical AND” operation all have operation codes where the second hex digit is 4 and the first hex digits differ by multiples of 4 (X’14’, X’54’, X’94’, and X’D4’).

<table>
<thead>
<tr>
<th>First pair of bits</th>
<th>Second pair of bits</th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>00 (RR)</td>
<td>Branching, status switching</td>
<td>Word logical, fixed-point binary</td>
<td>Long hexadecimal floating-point</td>
<td>Short hexadecimal floating-point</td>
<td></td>
</tr>
<tr>
<td>01 (RX)</td>
<td>Branching, halfword fixed-point</td>
<td>Word logical, fixed-point binary</td>
<td>Long hexadecimal floating-point</td>
<td>Short hexadecimal floating-point</td>
<td></td>
</tr>
<tr>
<td>10 (RS, SI)</td>
<td>Branching, shifting, status switching</td>
<td>Fixed-point, logical, I/O</td>
<td>Logical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 (SS)</td>
<td>Logical</td>
<td></td>
<td></td>
<td>Packed decimal</td>
<td></td>
</tr>
</tbody>
</table>

Table 11. General instruction classifications

Since we will refer to instructions almost entirely using mnemonics — short abbreviations for their full names — these details are only of minor interest.

Exercises

4.4.1.(2) Examine the operation codes given in Exercise 4.3.2, and determine their general instruction classifications from Table 11.

4.5. Interruptions (*)

The instruction cycle shown in Section 4.1 on page 52 describes the basic mechanism of instruction sequencing. However, a more workable view requires understanding *interruptions*, sometimes called *interrupts*. We’ll discuss them briefly here, and in more detail when we describe possible exceptions caused by instructions.

When an interruption occurs, the CPU stores the PSW that currently controls its operation in a predefined area of memory, and immediately replaces it with a new one from a different predefined area of memory. Many things can cause this PSW switching: a program may contain an instruction that causes an interruption to occur, or some external event such as a completed I/O operation could cause an interruption. The basic mechanism used for handling interruptions is illustrated in Figure 16.
The usual cycle of fetching, decoding, and executing will continue undisturbed so long as no interruption occurs. When an interruption condition is present, the CPU first examines bits in the PSW (or in the Program Mask or in other special registers) to see whether the interruption should be accepted. If these bits are zero, the interruption condition is said to be masked or disabled, and the CPU takes a default action before proceeding to the next instruction.

If the interruption is not masked (or is enabled), the CPU places information about the cause of the condition into a reserved “Interruption Code” area near the low-address end of memory. The CPU then stores the current (old) PSW and loads a new PSW. Instruction fetching then resumes, with the next instruction being fetched from the memory address specified by the IA portion of the newly-loaded PSW. This will almost always be in the Supervisor.

Normally, the new PSW will disable further interruptions until the Supervisor can save information about the status of the program being interrupted. After this status information (such as register contents and the old PSW) has been saved, the CPU can be enabled for further interruptions. After the interruptions have been handled, the saved status information is restored and the interrupted program can be resumed.

These are the six classes of interruptions, with examples of possible causes:
1. Restart (operator action)
2. External (timer, clock comparator)
3. Machine Check25 (equipment malfunction)
4. Input-Output (an I/O device has signaled a condition)
5. Program (exception condition during program execution)
6. Supervisor Call (program requests an Operating System service)

Corresponding to each class is an area of memory where an old PSW is stored, and an area from which a new PSW is loaded by the CPU. Thus there are six areas in memory into which old PSWs are stored, and another six areas from which new PSWs are retrieved. These areas are at fixed positions in the low-address end of memory; a programmer has no control over where they are placed.

We sometimes distinguish two different classes of interruption. The first is caused by events whose occurrence cannot be predicted, or for which a program cannot test in advance: these are sometimes called involuntary or asynchronous interrupts. The first four classes of interruption are involuntary. Except for the restart interruption, all the involuntary interruptions can be masked.

24 Figure 16 doesn’t account for the possibility that an interruption can occur during the fetch or decode phases. In almost all cases, this distinction is unimportant.

25 This interruption shouldn’t be masked off because the CPU must save diagnostic information before the situation gets worse.
The program and supervisor call interruptions are *voluntary* or *synchronous*. They are mutually exclusive, and cannot both occur at the same time. Program interruptions are caused by many conditions, as you will discover. A supervisor call interruption occurs only as a result of executing a Supervisor Call (SVC) instruction.

The program and supervisor call interrupts are “voluntary” because the program can (if it wishes) know what instruction will be executed next, and what interruption-causing actions that instruction could take.

4.6. Exceptions and Program Interruptions (*)

Programs can create a many types of exception condition. Some of them may not be serious, and your program can tell the CPU to take some default action (like setting the Condition Code, or generating a specified default result). Other exception conditions require interrupting the instruction cycle.

We will be most concerned with *program interruptions*. They may be caused by error conditions detected during any of the three portions of the instruction cycle. For example, if the IA specifies that an instruction should be fetched from an odd memory address, no fetch occurs and an interruption is generated instead. During the decode phase, the CPU may discover that the operation code is invalid. Similarly, an error condition such as attempting to divide a number by zero may occur during the execution phase.

Exceptions and Interruptions

<table>
<thead>
<tr>
<th>Exception</th>
<th>An unusual condition possibly requiring attention; your program may be able to request the CPU take a default action and continue execution, or cause an interruption.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interruption</td>
<td>An exception condition requiring alteration of the normal sequence of program execution by passing control to the Operating System.</td>
</tr>
</tbody>
</table>

For most program interruption conditions, the Operating System provides a brief indication of the cause of the interruption. Additional diagnostic information may also be given, such as the old PSW and the contents of the general and floating-point registers, and the contents of various areas of memory. You can then use this information to try to deduce the cause of the interruption.

The most common types of program interruption are shown below with their associated Interruption Codes. This list is not complete, but may help you find the causes of typical interruptions generated by your programs.

IC=1 Invalid Operation Code. The decoding phase has found an operation code that cannot be executed. This could be due to (1) allowing data to be fetched as instructions, or (2) the program’s destroying part of itself.

IC=2 Privileged Operation. The program is trying to execute an instruction not allowed in problem state.

IC=3 Execute exception. An execute instruction is attempting to execute another execute instruction.

IC=4 Access, Protection. The program has attempted to refer to some area of memory to which access is not allowed. There can be other causes, but this is the most common.

IC=5 Addressing. The program has attempted to address a nonexistent memory address.

IC=6 Specification Error. This can be caused by many conditions, but a common cause is referring to an odd-numbered register when an even-numbered register is required. An odd IA in the PSW indicates an attempt to access an instruction not starting on a halfword boundary.

IC=7 Data Exception. This is caused by invalid packed decimal data, or by binary or decimal floating-point conditions described in Chapter IX.

IC=8 Fixed-Point Overflow. This is caused when a fixed-point binary result is too large.
IC=9 Fixed-Point Divide Exception. A binary divide instruction has found that a quotient would be too big to fit in a register, or a divisor is zero.

IC=A Decimal Overflow. A packed decimal result is too large to fit in the result field.

IC=B Decimal Divide. A packed decimal quotient is too large to fit in the result field, or a divisor is zero.

IC=C Hexadecimal floating-point exponent overflow. A hexadecimal floating-point result is too large.

IC=D Hexadecimal floating-point exponent underflow. A hexadecimal floating-point result is too small.

IC=E Hexadecimal floating-point lost significance. A hexadecimal floating-point result has lost all its significant digits.

IC=F Hexadecimal floating-point divide exception. A hexadecimal floating-point operation is attempting to divide by zero.

Four of the fifteen possible program interruption conditions are often regarded as harmless: fixed-point and decimal overflow exceptions, and hexadecimal floating-point exponent underflow and lost-significance exceptions. By setting an appropriate mask bit in the Program Mask to zero (see Figure 12 on page 49), you can use the SPM instruction (described on page 235) to request that the CPU take a predefined default action and continue execution without causing an interruption. Other default actions can be requested for many floating-point operations, by setting mask bits in the Floating-Point Control Register (more about this in Chapter IX).

Thus, exception conditions can sometime cause an interruption, and sometimes take a default action if the interruption is masked. For example, a fixed-point overflow if enabled will cause an interruption with interruption code 8; but if masked off, the CPU will set the Condition Code to 3 before fetching the next instruction.

The CPU may seem overly cautious about detecting error conditions: the number of ways to generate interrupts sometimes seems larger than the number of ways to write a correct program! However, these error-detection mechanisms help catch program errors: an interruption condition will usually be generated before your program has gone too far, and you will have an indication that something is wrong before the cause is obscured.

Consider the problem of finding program errors on a CPU in which all bit patterns represent valid data or operation codes, and where none but the most unusual error conditions were caught. The processor could offer little help, and you would have to write programs with many internal checks and tests. In addition to the extra effort needed to write correct programs, the time used for checking would cause the program to run more slowly. Program interruptions should be seen as helpful clues from the CPU, and not as an indication that something is wrong with the processor.

Exercises

4.6.1.(2) Suppose the contents of the following 8-byte System/360 PSW26 (sketched in Figure 12 on page 49) was displayed as the result of a program interruption. What error condition is immediately evident? (The “xxxxxxxx” digits are unimportant for this exercise.)

```
xxxxxxxx 4017E26F
```

4.6.2.(3) Suppose the 8-byte Program New PSW area of memory had been initialized with the following “New PSW”: (The “xxxxxxxx” digits are unimportant for this exercise.)

```
xxxxxxxx 0000A237
```

What do you suppose would happen if any program interruption occurs?

4.6.3.(1) What caused the following Interruption Codes?

26 The modern z/Architecture PSW is quite different!
4.7. Machine Language and Assembler Language

Sometimes people refer to Assembler Language programming as “machine language” or “processor language” programming. In the earliest days of digital computers, there were almost no programming tools like assemblers and compilers, so the instructions and data for programs had to be created in the form of binary (or decimal or hexadecimal) digits that were loaded directly into memory for execution, without any intermediate translation.

Thus, we consider “machine language” to be the processor’s internal bit patterns representing instructions and data types. Because it’s difficult to know (and work with) these bit patterns, we use assemblers and compilers to convert a program from forms manageable by humans into the forms needed by the processor.

Even though Assembler Language is considered a lower-level language, we rarely program digital computers in “machine language”, so it is no longer accurate to say we program in machine language.\(^{27}\)

4.8. Processor Evolution

Since the early days of System/360, many updates, changes, enhancements, and improvements have been made to the original architecture. These have included 31-bit and 64-bit addressing (which we’ll see in Section 20), 64-bit registers, and a vast variety of new instructions. Many of the instructions we’ll see didn’t exist in System/360. Each generation of processors has introduced small and large enhancements; while we’ll start with basic instructions that have been used for many years, we’ll also see many new forms that can simplify programming chores that were more difficult or expensive when only the older instructions were available.

IBM has tried very hard to ensure that existing applications continue to execute correctly on each new generation of processors. This concern with “backward compatibility” has made it easy for users to increase the capacity and performance of their systems without having to rewrite and retest large applications in which they have invested considerable time and effort.

Backward compatibility doesn’t apply as uniformly to specialized programs that use system-specific features, but most such features are typically managed by the operating system.

Terms and Definitions

fetch

The CPU action of bringing halfwords from memory into the Instruction Register to be interpreted as an instruction.

IR

Instruction Register, a conceptual internal register in the CPU into which fetched instructions are placed.

decode

The CPU action of analyzing the contents of the IR to determine the validity and type of instruction.

execute

The CPU’s action of performing the operation requested by the instruction in the IR.

\(^{27}\) But some hardy souls still make corrective “patches” to programs in machine language, or enter machine language instructions into memory using various testing and debugging techniques.
operation code
The portion of an instruction specifying the actions to be performed by the CPU when it executes the instruction. Often called “opcode”.

ILC
Instruction Length Code, a 2-bit field in the PSW containing the number of halfwords in the current instruction.

exception condition
A condition indicating an unusual result. Some exceptions can deliver a default result if an interruption has been masked off by appropriate settings, while others always cause an interruption.

interruption
A process taking control away from the currently executing instruction stream, saving information about the interrupted program, and giving control to the Operating System Supervisor.

IC
Interruption Code, a value indicating the cause of an interruption.

machine language
The internal representations of instructions and data processed by a computer.

PM
Program Mask, a 4-bit field in the PSW used to control whether or not certain types of exception condition should cause an interruption, or take a predefined default action.
5. Memory Addressing

We now describe how the CPU calculates addresses of data and instructions in memory when it decodes the instructions of your program.

The addressing technique used in z System differs from that found in many earlier computers, where the actual memory address (or addresses) of the operand (or operands) was part of the instruction.

<table>
<thead>
<tr>
<th>opcode</th>
<th>operand address</th>
</tr>
</thead>
</table>

Figure 17. Typical instruction format for old computers

When memory sizes were limited, this was a reasonable and efficient choice.28

Because the original System/360 architecture allowed addressing up to 2^{24} bytes of memory, the older technique of placing actual operand addresses into the instructions would have required at least a 24-bit field for each such address. Since few processors had as many as 2^{24} bytes of memory, and because few programs needed as many as 2^{24} bytes of memory to execute, many of the bits in the 24-bit address field would be wasted by such a direct-addressing technique, and instructions would be longer than needed.

In z System, the scheme used for addressing memory operands is much more flexible than using actual operand addresses, and more economical in using the bits allotted to each instruction; but more complex in the way it determines operand addresses.

The z System family of processors supports three modes of addressing. This section describes a fundamental type of base-displacement address generation with 24-bit addresses. Section 20 in Chapter VI describes 31-bit and 64-bit addressing, as well as two other types of address generation.

28 Another reason is that memory was very expensive! A really big machine might have had as many as 128 kilobytes of memory; modern processors can have billions of times more.
5.1. The Addressing Halfword

To refer to data or instructions in memory, a program will almost always use one of the general registers, because the CPU uses information in a part of many instructions called an "addressing halfword". An addressing halfword always occupies a halfword in memory.

Figure 18. Structure of an addressing halfword

The first 4 bits of the addressing halfword contain a hex digit called the base register specification digit, or base digit. The base digit specifies a general register called the base register. The 12-bit field in the rest of the addressing halfword contains an unsigned nonnegative number called the displacement that takes values from 0 to 4095.

To generate the address of an operand, the CPU does the following:

Step 1: The 12-bit displacement is put at the right-hand end of an internal register called the Effective Address Register (abbreviated "EAR"), and the leftmost bits of the EAR are cleared to zeros.

Step 2a: If the base register specification digit is not zero, then the contents of the specified general register (the base register) are added to the contents of the EAR, and carries out the left end are ignored.

Step 2b: If the base register specification digit is zero, nothing is added to the EAR (so that general register zero will never be used by the CPU as a base register). That is, a zero base digit means “no register”.

The result in the EAR is called the Effective Address. It may be used as the address of an operand in memory, and for many other purposes (such as a shift count). These steps are sketched in Figure 19.

Figure 19. Sketch of Effective Address calculation

This method of generating addresses is called base-displacement addressing. In 24-bit addressing mode (which we’re assuming for now), only the rightmost 24 bits of the Effective Address are used.

The base register specification digit was sometimes called the “base register address”, but this is misleading because the base registers aren’t “addressable” like bytes in memory.
Remember
An addressing halfword is not an address. It can be used to form an Effective Address.

Exercises

5.1.1.(2) The use of the term “halfword” in describing an addressing halfword implies that it (the addressing halfword) lies on a halfword boundary. Is this true under all circumstances?

5.1.2.(1) How many values may be assumed by the base register specification digit? How many registers may be used by the CPU as base registers?

5.2. Examples of Effective Addresses

In the following examples, additions are done in both binary and hexadecimal arithmetic.

1. Suppose the addressing halfword of an instruction is 1011 001011010101 in binary (X′B2D5′) and suppose general register 11 contains
 1100 0111 0011 1110 1001 0000 1010 1111
 in binary (or C73E90AF in hex). Then, assuming we are generating 24-bit addresses, the Effective Address of the instruction is
 0000 0000 0000 0010 1101 0101 0002D5 (displacement)
 +0011 1110 1001 0000 1010 1111 3E90AF (base)
 0011 1110 1001 0011 1000 0100 3E9384 (Effective Address)

2. Suppose the addressing halfword of the same instruction is X′0468′. Then the Effective Address is X′000468′, since general register zero is never used as a base register.

3. Suppose the addressing halfword of the same instruction is X′B000′, and the contents of R11 are as before. Then the Effective Address is X′3E90AF′; a zero displacement is valid.

Exercises

5.2.1.(2)+ Assume general registers 0, 1, and 2 contain these values:
 c(GR0) = X′12001038′
 c(GR1) = X′0902A020′
 c(GR2) = X′001AAEA4′
 Calculate the 24-bit Effective Address for these addressing halfwords: (1) X′206C′, (2) X′1EEC′, (3) X′0FB0′.

5.2.2.(2)+ Assuming the same register contents as in Exercise 5.2.1, calculate the 24-bit Effective Address for these addressing halfwords: (1) X′1FEF′, (2) X′0FC8′, (3) X′2EA4′.

5.3. Indexing

After the displacement has been added to the base (if any), the CPU again checks the type of the instruction. If the instruction is type RX, an indexing cycle is needed. The second byte of an RX-type instruction (the “register specification” in Table 7 on page 54) contains two four-bit fields: the second is called the index register specification digit or index register digit or index digit, as shown in Figure 20.
Step 3: If the instruction is type RX, and the 4-bit index register specification digit is not zero, then the contents of the general register specified by the index register specification digit are added to the contents of the EAR (again ignoring carries out the left end). A zero index digit means “no register”, not general register zero.

The resulting quantity in the EAR is still called the Effective Address (sometimes called the Indexed Effective Address). These steps are sketched in Figure 21.

Exercises

5.3.1.(1) Draw a picture showing the locations of the base register specification digit, the base register, and the base address. Then do the same for the corresponding index quantities.

5.3.2.(1) How does the CPU determine that an indexing cycle is needed during address computation?

5.3.3.(2) For each instruction type, determine the maximum number of general registers that might be accessed by the CPU in calculating Effective Addresses.

5.3.4.(2) Under what circumstances will the CPU not calculate an Effective Address?
5.4. Examples of Indexing

Continuing the examples of calculating Effective Addresses that we saw in Section 5.2:

4. Suppose an RX-type instruction is X’430A7468’ and that GR7 contains X’12345678’ and GR10 contains X’FEDCBA98’. (The base register specification digit X’7’ means that GR7 is used as the source of the base address.) Again assuming we are generating 24-bit addresses, the Effective Address is

\[
\begin{align*}
&0000 \ 0000 \ 0000 \ 0100 \ 0110 \ 1000 \ 000468 \ \text{(displacement)} \\
+&0011 \ 0100 \ 0101 \ 0110 \ 0111 \ 1000 \ 345678 \ \text{(base, from GR7)} \\
&0111 \ 0100 \ 0101 \ 1010 \ 1110 \ 0000 \ 345AE0 \\
+&1101 \ 1100 \ 1011 \ 1010 \ 1001 \ 1000 \ DCBA98 \ \text{(index, from GR10)} \\
&0001 \ 0001 \ 0001 \ 0101 \ 0111 \ 1000 \ 111578 \ \text{(Effective Address)}
\end{align*}
\]

5. Suppose an RX-type instruction is X’43007468’ and that the contents of GR7 are again X’12345678’. Then the Effective Address is

\[
\begin{align*}
&0000 \ 0000 \ 0000 \ 0100 \ 0110 \ 1000 \ 000468 \ \text{(displacement)} \\
+&0011 \ 0100 \ 0101 \ 0110 \ 0111 \ 1000 \ 345678 \ \text{(base)} \\
&0011 \ 0100 \ 0101 \ 1010 \ 1110 \ 0000 \ 345AE0 \ \text{(Effective Address)}
\end{align*}
\]

(No indexing cycle is needed, since the index register specification digit is zero.)

6. Suppose an RX-type instruction is X’43070468’ and that GR7 still contains X’12345678’. Then the Effective Address is

\[
\begin{align*}
&0000 \ 0000 \ 0000 \ 0100 \ 0110 \ 1000 \ 000468 \ \text{(displacement)} \\
+&0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 000000 \\
&0000 \ 0000 \ 0000 \ 0100 \ 0110 \ 1000 \ 000468 \\
+&0011 \ 0100 \ 0101 \ 0110 \ 0111 \ 1000 \ 345678 \ \text{(index)} \\
&0111 \ 0100 \ 0101 \ 1010 \ 1110 \ 0000 \ 345AE0 \ \text{(Effective Address)}
\end{align*}
\]

In this example the values of the base and index register specification digits were interchanged from those in example 5, so that the indexing cycle was required to compute the same Effective Address.

In situations where only one register is used to calculate an Effective Address (as above, where the base digit was 0 and the index digit was 7), be careful not to call that register the base register, even though it usually behaves like a base register in an RX-type instruction. \(^{30}\)

Exercises

5.4.1.(1) Under what circumstances may GR0 be used as a base register? As an index register?

5.4.2.(3)+ Assume the hexadecimal contents of the general registers are as shown:

\[
\begin{align*}
&\text{C(GR0)} = \text{12001028} & &\text{C(GR4)} = \text{8888000E} \\
&\text{C(GR1)} = \text{8902A020} & &\text{C(GR5)} = \text{12345678} \\
&\text{C(GR2)} = \text{4F1AAEA4} & &\text{C(GR6)} = \text{0FDE3B72} \\
&\text{C(GR3)} = \text{FFFFFFFF} & &\text{C(GR7)} = \text{92B37465}
\end{align*}
\]

and GR8 through GR15 contain zeros. Now, compute the 24-bit Effective Address of each of the following instructions, paying careful attention to instruction type: (1) X’9803206C’, (2) X’50F10EEC’, (3) X’41133333’, (4) X’7A341DA4’, (5) X’91220166’, (6) X’8F120FB0’.

5.4.3.(3)+ Assume that the contents of the general registers are as shown below for GR0 through GR7, and that GR8 through GR15 contain zeros.

\(^{30}\) In the “Access Register” addressing mode, index and base registers participate differently in calculating Effective Addresses: only base registers are used to select an Access Register.
Now, compute the 24-bit Effective Address of each of the following instructions: (1) X’41726100’, (2) X’920710FC’, (3) X’7A333002’, (4) X’5806016C’, (5) X’43B00044’, (6) X’90EC126A’, (7) X’86052E4D’.

5.4.4.(3) Suppose the contents of the general registers are as shown in Exercise 5.5.2. For each of the following instructions, determine the Effective Address, paying careful attention to instruction type: (1) X’58040404’, (2) X’91628DBC’, (3) X’44FF7D5C’.

5.5. Addressing Problems (*

The Effective Address in the EAR has many uses, most often to address operands in memory; it is also used for other purposes such as shifting and branching.

Certain instructions operating on groups of bytes require the address of the leftmost (lowest-addressed) byte of the operand group be exactly divisible by the length of the operand. If this condition is not satisfied, a program interruption for a specification exception occurs. In early processors, operand alignment was required for almost all instructions, but the requirement was relaxed soon after.31 Few instructions in modern processors require strict operand alignment.

When you use base-displacement addressing with 12-bit displacements, the only part of the memory that can be referenced without using a base register is the area with addresses 0 to 4095 = X’FFF’, so you will almost always use a base register to refer to operands in memory. (We’ll see in Chapter VI, Section 20 that instructions with signed 20-bit displacements make this 4K-byte limitation much less severe.)

You can’t put your program into those first 4096 bytes32 because that area of memory (and more) is reserved by the CPU and the Operating System. This means that if you want to access a byte in memory at address XX (where XX is greater than 4095), there must be a base register available—one of registers 1 to 15. If a base register contains a base address, and XX lies between that base address and the base address + 4095, then we say that XX is addressable. If there is no such number in a register, then the byte at XX is not addressable by your program.

When we place a number in a register to address a 4096-byte region of memory, that register provides addressability for the region. However, if the number itself must be brought from another portion of memory that is not currently addressable, we are back where we started, needing another number to provide addressability for the first number.

Fortunately, there are simple solutions to the problems of establishing addressability. The BASR instruction is often used (as we will see soon), and the Assembler’s address constants also allow us to refer to other areas of our program. Modern processors provide new ways to minimize these addressing problems: long displacements and relative addressing. We will turn to them in Section 20 after we have investigated the most often-used instructions.

Exercises

5.5.1.(3)+ Suppose the general registers contain the values shown in Exercise 5.2.1. Which of the following locations in memory (given in hexadecimal) are addressable through the use of the base-displacement addressing technique? For each location that is addressable, derive an

31 Because many programs had to manage unaligned data items, extra instructions were needed to isolate and align the required item. The processor designers were asked (urgently!) to remove the restriction wherever possible. The relaxation of the alignment requirement was called the “Byte-Oriented Operand Feature”; it soon was known as the “BOOF”.

32 Unless you’re writing your own operating system!
addressing halfword that can be used to address it. (1) X’02ABCD’, (2) X’000A4D’, (3) X’001139’, (4) X’88888E’, (5) X’02A010’.

5.5.2.(3)+ Suppose the contents of the general registers are as follows:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>GR0</td>
<td>00010A20</td>
</tr>
<tr>
<td>GR1</td>
<td>42319B7C</td>
</tr>
<tr>
<td>GR2</td>
<td>91FOF002</td>
</tr>
<tr>
<td>GR3</td>
<td>1002340A</td>
</tr>
<tr>
<td>GR4</td>
<td>00FF00FF</td>
</tr>
<tr>
<td>GR5</td>
<td>D907C401</td>
</tr>
<tr>
<td>GR6</td>
<td>12345678</td>
</tr>
<tr>
<td>GR7</td>
<td>992842A3</td>
</tr>
<tr>
<td>GR8</td>
<td>8031B244</td>
</tr>
<tr>
<td>GR9</td>
<td>00000010</td>
</tr>
<tr>
<td>GR10</td>
<td>723894C1</td>
</tr>
<tr>
<td>GR11</td>
<td>E931AB7F</td>
</tr>
<tr>
<td>GR12</td>
<td>00000E38</td>
</tr>
<tr>
<td>GR13</td>
<td>68005000</td>
</tr>
<tr>
<td>GR14</td>
<td>80000000</td>
</tr>
<tr>
<td>GR15</td>
<td>FFFFFFFF</td>
</tr>
</tbody>
</table>

For each of the following memory addresses, determine first whether or not that memory location is addressable by a program using those registers. If it is addressable, determine an addressing halfword (base-displacement halfword) that can be used to address the location. (1) X’010A20’, (2) X’FFFFFF’, (3) X’6A0054’, (4) X’31AB7E’, (5) X’001234’, (6) X’07D3C4’, (7) X’00A004’, (8) X’31BB65’, (9) X’9ABCDE’, (10) X’07C401’.

5.5.3.(3) In Exercise 5.5.2, which locations are addressable through the base-displacement addressing technique with indexing allowed? Derive an addressing halfword and the accompanying index digit that (in an RX-type instruction) would make the locations addressable.

5.5.4.(3)+ Suppose the contents of the general registers are as shown in Exercise 5.1.2 on page 65 (note that registers 8 through 15 contain zeros). For each of the following memory addresses, determine an addressing halfword that can be used to address that memory position. If no such addressing halfword exists, say so. (1) X’000EEB’, (2) X’001040’, (3) X’072000’. How many solutions are there for address (1)?

5.5.5.(4)+ In Exercise 5.5.1, which locations in memory are addressable through the base-displacement addressing technique with indexing allowed? Derive an addressing halfword and the accompanying index digit that (in an RX-type instruction) would make the locations addressable. (Remember that Exercise 5.5.1 refers to Exercise 5.2.1.)

5.5.6.(1) Suppose a program can be put entirely within the first 4096 bytes of memory. Will it use GR0 as a base register?

5.5.7.(2) Assume that the contents of the general registers are as shown in Exercise 5.5.2. For each of the following SS-type instructions, compute both Effective Addresses (there are two addressing halfwords in an SS instruction, as shown in Table 9 on page 55). (1) X’D2078FD7C4’, (2) X’DCFFDF70000’, (3) X’F26337390050’, (4) X’D58DFE4FC016’.

5.6. Address Translation and Virtual Memory (*)

All models of z System support address translation, called Dynamic Address Translation (or “DAT”). Address translation is invisible to application programs. It provides greater Operating System flexibility in assigning programs to main memory, a heavily used resource. Address translation takes your program’s “virtual” addresses and maps them invisibly into the “real addresses” needed for references to “real” memory.

Without DAT, a reference to a byte at X’123456’ addresses that byte in the physical or “real” memory of the processor. When DAT is active, your reference to a byte (at your virtual Effective Address X’123456’) is translated into a “real” address (such as X’27D94FA’) having no obvious relation to your address; you can’t determine the relation of your virtual addresses to the real addresses to which they are mapped. The Operating System, working with the DAT facilities, makes it possible for your program to operate as though it is addressing “real” memory; but only the Operating System works with real addresses. This is why your addresses are called “virtual” — they aren’t real.
Address translation is simple in concept but complex in implementation. To illustrate, the virtual (effective) address supplied by your program is divided into sections; for 31-bit addresses, they are a segment index, a page index, and a byte index, as illustrated in Figure 22.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>segment index</td>
<td>page index</td>
<td>byte index</td>
</tr>
</tbody>
</table>

Figure 22. 31-bit Virtual Address

To use these indexes for calculating real addresses, the Operating System first constructs (in a protected area of real memory) two sets of tables, page tables and a segment table, and it places the address of the segment table (for example, taken from Control Register 1) into an internal field. Your virtual address is translated into a real address roughly as follows:

Step 1: The segment table address is retrieved and the segment index is added to it. The result is the address of one of the entries in a list of segment tables.

Step 2: The specified segment table entry (which contains the address of one of the entries in a list of page tables) is retrieved, and the page table index is added to it. The result is the address of an entry in the specified page table.

Step 3: The specified entry in the page table is retrieved, and attached to the left (high-order) end of the byte index. The result is the real address of a byte in main memory.

We will not show examples of translation, since it is invisible to your program.

This description covers only very basic aspects of translation, and does not cover 64-bit virtual addresses. There are many other details of the process, and (because translation is very heavily used) the processor has a lot of additional hardware to optimize the process.

Exercises

5.6.1.(3) Some processors use a technique called indirect addressing. If a bit in the instruction (called the indirect-addressing bit) is nonzero, the CPU uses the Effective Address not to access an operand, but to access a second instruction. The Effective Address of this new instruction then becomes the operand address that points to the desired operand. (On some processors, if the instruction at the “indirect address” had its indirect-addressing bit set, then the entire process repeats until an instruction is found without the indirect-addressing bit set.) Can you think of reasons why indirect addressing is not provided by z System?

5.6.2.(0) Another aspect of early addressing techniques (whereby instructions contained actual operand addresses) was that the address portions of instructions often had to be modified. Find a programming “old-timer”: ask for an explanation of address modification techniques on processors such as the IBM 7090, and why the method used on z System is so clearly superior.

5.7. Summary

As noted earlier, Effective Addresses are used for many purposes; the most common is to refer to an operand in memory. Almost always, the operand is referred to by its lowest-addressed byte; and if the operand is a binary integer, that byte contains the most significant (high-order) byte of the integer. So, references to “low-order” and “high-order” may need to distinguish clearly between memory addresses, bit ordering, and numeric significance.

Terms and Definitions
addressing halfword
A halfword containing a base register specification digit in the first 4 bits, and an unsigned displacement in the remaining 12 bits. A key element of z System addressing.

Effective Address
The address calculated from an addressing halfword, possibly with indexing.

EAR (Effective Address Register)
A (conceptual) internal register used to hold Effective Addresses.

base register specification digit
The first 4 bits of an addressing halfword.

base register
A general register used at execution time to form an Effective Address.

base address
The execution-time contents of a base register.

index register specification digit
4 bits of an RX-type instruction specifying a register with a value to be added to the Effective Address calculated from an addressing halfword.

index
The contents of an index register.

indexing
Computation of an Effective Address by adding a displacement to the contents of a base register and an index register.

displacement
An unsigned 12-bit integer field in an addressing halfword used in generating Effective Addresses.\(^{33}\)

addressability
A base register and a displacement provide an Effective Address allowing valid reference to a byte in memory.

real address
The “true” address of a memory location.

virtual address
The address of a memory location that may physically reside at a different real address.

address translation ("Dynamic Address Translation", DAT)
The procedure used by the CPU to convert virtual addresses into real addresses.

\(^{33}\) We will see in Section 20 that z System provides another form of base-displacement addressing with a signed 20-bit displacement.
Chapter III: Assembler Language Programs

We have seen how the CPU executes instructions and evaluates addresses; now we’ll see how we write Assembler Language programs.

- Section 6 describes typical steps involved in preparing, assembling, linking, and executing programs written in Assembler Language.
- Sections 7 and 8 examine the components from which machine, assembler, and macro instruction statements are formed.
- Section 9 describes five major machine-instruction types and how we write their operands in machine instruction statements.
- Section 10 introduces the key concept of addressability in Assembler Language programs, a necessary step for any program executed on z System.
The Assembler is the program most used in creating specific instruction sequences for execution by the processor.

First, we describe how to write programs and see the steps leading to their execution. The conventions and rules for using the Assembler are called “Assembler Language”, even though there is little resemblance to what most people mean by “language”.

6.1. Processing Your Program

First, we consider the steps involved in running an Assembler Language program:

1. assembly
2. linking
3. loading and execution

6.1.1. Assembly

Assembly is represented schematically in Figure 23. The Supervisor places the Assembler in memory to begin assembling your source program.

![Figure 23. Simple view of Assembler processing](image-url)
The Assembler reads the statements of your Assembler Language program, processes them—possibly with the help of some data in libraries of macro-instructions and other statements—converts your Assembler Language program to machine language, and produces an object module containing object code. Usually you will want a program listing showing your source program and the generated object code, with additional information about the Assembler’s processing and indications of errors it may have detected.

The Assembler converts the program from a form convenient for you (statements) to a form convenient for the processor (binary data and instructions), its machine language.

6.1.2. Linking

The Linker\(^{34}\) combines your object module with any others needed for execution. The linking step is sketched in Figure 24; the Linker is placed in memory and begins execution.

![Figure 24. Simple view of program linking](image)

The output of the Linker is a load module.\(^{35}\) The load module is written to a storage device, and a listing of information summarizing the linking process is created.

The Linker also accepts load modules as input, allowing you to update or modify existing load modules without having to reassemble all its components.

6.1.3. Loading and Execution

At execution time, the load module produced in the linking step is “loaded” into memory. An essential feature of this process is relocation, which we’ll investigate in Chapter X, Section 38. The portion of the Supervisor that loads and relocates load modules is called the Program Loader. Like the Linker, it is a program that treats other programs as data.

After your program has been loaded into memory, the Supervisor transfers control to it by setting the Instruction Address in the PSW to the address of the instruction where you want execution to begin. Your program then does whatever processing you told it to do\(^{36}\) and when it is finished it returns control to the Supervisor.

34 We’ll use “Linker” to mean any program (such as the Binder and Linkage Editor) that combines object module files into executable files like load modules.

35 The output of a Linker has many many different names and forms, depending on the operating system and the system Linker. For example, on z System the output of the z/OS binder can be a “load module” or a “program object”; the output of the z/VSE Linker is a “phase”, and the output of the z/VM CMS loader is a “module”. We’ll use “load module” to mean a data set or file ready to be loaded directly into memory for execution.

36 Which may not always be what you intended!
The last two linking and program-loading steps can be combined by using a *Loader* instead of the Linker and Program Fetch routines. The Linker or Loader reads and relocates your object modules directly into memory, and combines them with any necessary additional object and load modules from the “Libraries of Object or Load Modules”.

An Assembler Language program is “processed” *twice*: once by the Assembler at *assembly time*, and once by the CPU when it is executed at *execution time* (or *run time*). The difference between these two times is important: the Assembler produces object modules with machine language instructions and data to be placed into memory later; your data is processed only when your program is finally loaded and your instructions are executed.

Exercises

6.1.1.(1) Draw a diagram combining Figures 23 through 25, to show the relationships between the inputs and outputs of processing your programs at each step.

6.2. Preparing Assembler Language Statements

You prepare Assembler Language programs in the form of *statements*. There are four types: *comment* statements, *machine instruction* statements, *assembler instruction* statements, and *macro-instruction* statements. All four can be used in creating programs.

1. Comment statements provide explanatory material in the program so it will be easier for you and others to read and understand. They are displayed in the program listing, but are not translated into instructions or data and do not appear in the object module.

2. Machine instruction statements are converted by the Assembler into machine language instructions for the CPU to execute when your program is loaded into memory for execution.

3. Assembler instruction statements provide information to the Assembler. They can be as simple as statements generating data or specifying a title for the top of each page of the listing, or can be more complicated, such as statements telling the Assembler that certain registers may be used as base registers. Some Assembler instruction statements cause the Assembler to generate machine language data; others do not.

4. Macro-instructions provide a compact assembly-time notation for groups of statements. They are a convenient way to specify sequences of other statements (all four types are allowed) in which parts of the generated statements can be changed to suit your needs. Macro-instructions are a very powerful and useful feature of the Assembler Language.
The Assembler processes input records exactly 80 bytes long. Your records may not extend all
the way to 80 characters, but there must still be enough blank or other characters to extend its
length to 80. These 80-character records are often called “card-image” records.37

Statements occupy positions 1 through 71 of a line. Such positions are called “columns”.
Column 72 has a special meaning: if it is not blank, the next line is considered to be a continua-
tion of the line with the nonblank character in column 72, in such a way that the character in
column 16 of the second line is treated as following immediately after the character in column 71
of the preceding continued line.38 This is illustrated in Figure 26. These conventions—column 72
for the continuation indicator and column 16 where the statement continues—are almost always
used for machine instruction and assembler instruction statements.

Columns 73-80 may be used for any purposes (usually, for sequencing data).

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure26.png}
\caption{Assembler Language statement columns}
\end{figure}

Columns 1 through 15 of a continuation line must be blank. (A common error is to write char-
acters in column 72 accidentally, so that the following line is treated as a continuation line, and
processed in an unexpected way.)

Columns 73 through 80 are ignored by the Assembler. Since all 80 columns of the input record
appear on the listing, the last 8 columns are often used for identification or sequencing informa-
tion.39

A comment statement is identified by an asterisk (*) in column 1. Any information may appear in
columns 2 through 71. Figure 27 has examples of comment statements:

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure27.png}
\caption{Examples of comment statements}
\end{figure}

37 The choice of 80 characters goes back to the nearly universal use of “IBM cards”. For many years before and after
the introduction of System/360, programs and data were prepared on 80-column punched cards. So, we still say
“column” rather than something like “position”.

38 You can change these columns with the ICTL Assembler instruction statement. It allows other columns to be used
for the start, end, and continuation columns of a statement. The numbers given are the ones the Assembler uses if it
is not told otherwise. ICTL is almost never used, anyway; if you use ICTL to change those columns, other readers of
your program may be confused.

39 Even though IBM cards have 80 columns, early computers like the IBM 704 and 709 couldn’t read the last 8
columns! Those processors had 36-bit words, so their card readers read alternate groups of 36 bits from the 12 rows
on a card into 24 words. This 72-column custom persists.
Figure 27. Comment statement examples

Figure 27 contains some entirely blank lines. They are often used to improve readability; the Assembler copies them to the program listing, and they have no effect on your program.

Comment statements may be continued onto following lines, as shown in the figure above. This is generally not a good practice; most programmers avoid column 72 in comment statements.

A common method for adding “blocks” of comments to a program is illustrated in Figure 28.

* This is a block of comments documenting the behavior of this
* program. Since we have not written any programs yet, this block
* only illustrates how you can include large amounts of descriptive
* text to your program to help readers and maintainers understand
* what the program does -- at least, what you intended it to do.
* ***

Figure 28. Block comments

Exercises

6.2.1.(1) For the Assembler you use, determine what rules apply to the columns of continued statements after the first continuation.

6.3. Statement Fields

The machine instruction, Assembler instruction, and macro-instruction statements each have four parts called fields: the name, operation, operand, and comment or remarks fields. An entry in the operation field must always be present, and for certain statements an entry in some of the other fields may or must be omitted.

If there is a name field entry in the statement, it must begin with a nonblank character in column 1. It is terminated by the first blank column after column 1. If no name field entry is desired, column 1 must be left blank.

40 It’s better to call this the “remarks” field, to avoid confusion with comment statements.
After the name field and separated from it by one or more blanks is the operation field entry; it
ends with the first blank after the start of the operation field. The operation field entry is some-
times called the “mnemonic” or “operation” or “operation mnemonic”.41

After the operation field entry and separated from it by one or more blanks is the operand field
entry, which, like the name and operation field entries, terminates with the first blank column
detected after the start of the operand field entry, except for one special case (quoted strings)
described in the next section.

The rest of the input line is treated as remarks by the Assembler and is ignored. It does not influ-
ence the processing of the statement unless this field extends into column 72, indicating a continu-
ation on the next line. Except for the name field, there is no restriction on the columns where
the other three fields must start; they simply end with a blank column.

This allows free-field statements: you can arrange the information on the input lines of your
program as you like, but the fields must appear in the proper order. These rules are summarized
in Figure 29, where “\(\downarrow\)” means “one or more blanks”.

![Figure 29. Statement fields for machine, Assembler, and macro-instruction statements](image)

Even though any number of blanks can be used to separate the fields of a statement, it is cus-
tomary to improve program readability by making all operation, operand, and remarks fields
entries start in the same columns. For example, if your name-field entries are eight or fewer char-
acters long, place your operation field entries in column 10; similarly, if the operation field entries
are eight or fewer characters long, start your operand field entries in column 19. Later examples
of program fragments will show how this can be done.

A good programming practice is to use the remarks field to tell the reader what the statement is
supposed to do, and why. (Program comments and remarks sometimes say the program “does”
one thing, while it actually does something different when the CPU executes it!)

Good Programming Practice

Your program’s comments and remarks should help the reader (who may
be you!) understand what each statement and group of statements is
doing, and why.

The term “operand” can be confusing. Section 3.1 on page 45 stated that an operand is something
in a register or in memory that is “operated on” during the execution portion of the instruction
cycle. “Operand” is also used here to describe the components that make up the operand field
entry of a statement! It helps to remember that the first meaning applies to the execution step of
a job, while the second meaning applies only during the assembly step.

Figure 30 illustrates a machine instruction statement in which entries appear in all four fields.

41 Be careful not to call it the “opcode”! That term is properly used for the bits of an instruction that tell the CPU what
to do. Sometimes people use “opcode” to mean both the operation field entry of an instruction—the mnemonic—and
the machine instruction bits, so listen carefully. Which is meant will usually be clear.
LOAD

LR

7,3

Copy c(GR3) to GR7

Figure 30. A machine instruction statement

The operand field entry has two entries, “7” and “3”, separated by a comma. If the instruction is
executed in a program, it would cause the contents of general register 7 to be replaced by a copy
of the contents of general register 3.42
The assembler instruction statement in Figure 31 omits the name and comment field entries, and
causes the Assembler to put a “title” heading on each page of the program listing.
TITLE ′ PROGRAM NO. 1′
Figure 31. An assembler instruction statement

Figure 32 shows an example of a macro-instruction statement in which only an operation field
entry appears.
RETURN
Figure 32. The macro-instruction statement R E T U R N

If the RETURN statement above had been prepared in the days of punched cards, the card 43
might look like this:
RETURN

 
00000000000000
11
22
3333333333333
444444444444444
5555555555555555
66
77
88
999999999999999IBM5081
Table 12. Punched-card image of a R E T U R N statement

The Assembler supports mixed-case characters, so you need not write symbols, operation field
entries, and most operand field entries using upper-case letters. (However, the Assembler treats
lower-case and upper-case letters as equivalent when they appear in symbols and operation field
entries; unlike some high-level languages, the Assembler is not case-sensitive except for characters
within quoted strings.) Thus, you could write Figure 32 as
Return

42

43

80

The remarks in this statement are quite useless, because readers can see what the instruction does. Remarks should
explain reasons for doing something, like “Copy record count to GR7 for multiplication”.
The characters “IBM5081” in the bottom right corner of the “card” were called the “electro number”, the number of
the plate used for printing the cards. Number 5081 was used for cards with no other information than the row
numbers, zero through nine. The empty two rows at the top were called the “twelve” row and the “eleven” row. (This
card was also known as the “IBM Model 5081 Data Storage Device”.)
Assembler Language Programming for IBM z System™ Servers

Version 1.00


with the same results.

Mixed Case Names: Be Careful!

The Assembler accepts mixed-case names, but processes them internally as though they are all in upper case. Thus, a symbol like `AbCdEfgh` is considered to be the same as the symbol `ABCDEFGH`.

6.3.1. What’s in a Name Field? (*)

Many items can appear in the name field of an instruction statement, such as:

- the name of a machine instruction
- the name of a data area
- a symbol to be given a value without naming any part of the program
- a Labeled USING qualifier (described in Chapter XI, Section 39.4)
- in the Conditional Assembler Language, a variable or sequence symbol
- characters to be copied to the sequence field of the object module
- ... and some statement require the name field to be empty!

Some people call the name field entry a “label” when it is the name of a machine instruction, but in other contexts this can be very misleading. It’s too easy to start thinking of all name-field symbols as “labels” when they’re actually used for other purposes.

Exercises

6.3.1.(1) Suppose a program contains the machine instruction statement shown in Figure 30. During what part of the job processing will the statement be read by the Assembler? During what part of the job processing will the assembled hexadecimal instruction be fetched by the CPU?

6.3.2.(1) In what column should the remarks field of a machine instruction statement begin?

6.3.3.(1) In what columns may the operation field entry of a machine instruction statement begin?

6.3.4.(1) Which field in an assembler instruction statement is required?

6.3.5.(2)+ What types of statement may be written without an operation field? Without an operand field? Without a remarks field?

6.3.6.(2)+ Suppose the machine instruction statement in Figure 30 had been written so that column 1 was blank, and the characters “LOAD” began in column 2. How would the fields of the statement be interpreted?

6.3.7.(2) What types of Assembler Language statements may be written without an operation field? Without a comment field?

6.4. Writing Programs

While these basic rules are nearly complete, you will be able to write executable programs after we cover a few necessary details.

A program is a sequence of Assembler Language statements. The input to the Assembler should consist of

1. a START statement,
2. the statements of your program, and
3. an END statement.
The START statement is written

```
proname START origin
```

The name-field symbol `proname` is the name of the program. It will usually have eight or fewer letters. The `origin` operand is called the *initial location or assumed origin* of the program; its value is used by the Assembler. For now, we will use zero for this initial location. Thus, the first statement of a program should be something like

```
TEST START 0 First statement of program TEST
```

where `TEST` is the name of your program.

The last statement of the program must be an END statement telling the Assembler to stop reading records. It is written

```
END proname Last statement of program
```

where the `proname` operand of the END statement should (for now) be the same as the `proname` in the name field of the START statement. For our example, we would write

```
END TEST Begin execution at 'TEST'
```

The `proname` in the operand field of the END statement specifies the name of the instruction where execution should start when the program is loaded into memory. The operand field entry on the END statement may be omitted, but specifying it is a good programming practice, so we’ll write our sample programs this way.

The Assembler allows *no* symbol as the name-field entry in an END statement. Assembler Language programs, unlike programs in many high-level languages, must not try to terminate execution by allowing control to reach the END statement. Doing so usually results in some form of disaster, since the END assembler instruction statement only tells the Assembler to stop reading records, and is not translated into executable instructions.

The START and END statements, when read by the Assembler, determine the beginning and end of the statements to be assembled. The START statement may be preceded by a few types of statements (such as TITLE and comment statements), but for now, assume it is the first statement to be read. The END statement may not be followed by *any* other statement: it must be last.

Some programmers like to start their programs with a CSECT (“Control SECTion”) statement rather than START. It has the same effect, except that no operand field entry is allowed, so you can’t set the initial location or assumed origin value. We’ll discuss control sections and the CSECT instruction thoroughly in Chapter X, Section 38.

6.5. A Sample Program

Here is a little program that prints my name. This set of records is typical of those required on many z System systems. All statements begin in column 1 and end before column 72. (The “Line n” comments are used only for this example; you don’t need them for your programs.)
The first 3 lines and the last are control statements for the Supervisor; they are not part of your program, and are not read by the Assembler. They tell the operating system to run the Assembler, Linker, and Program Loader, and how to pass your program’s statements to the Assembler. The information on these lines follows the rules of a Job Control Language for an operating system. Line 1 (the JOB statement) marks the beginning of a job: a unit of work for the computer separate from all other units. Additional information on the JOB statement provides accounting data such as an account number and a user name.

Line 2 (the EXEC statement) requests that the following program be assembled, linked, and executed; Line 3 indicates that records for the Assembler follow immediately. The last line (the “/*” or “end-of-file” statement) tells the Operating System that no more records are given to the Assembler.

The Assembler Language program is contained in the remaining lines:

- Line 4 is the assembler instruction statement defining the name of your program as Test and starts a Control Section to contain the machine language data and instructions of your program when it is executed by the CPU.
- Line 5 is an assembler instruction statement; it causes the Assembler not to print statements generated by the PRINTOUT macro-instruction in Line 9. (More about PRINTOUT and other useful macro-instructions in Section 6.6 on page 84.)
- Line 6 is a comment statement.
- Line 7 is a machine instruction statement.
- Line 8 is an assembler instruction statement. (Lines 7 and 8 are important: we’ll discuss them in Section 10.)
- Line 9 is a macro-instruction statement that causes some data to be printed, and then returns control to the Supervisor.
- Line 10 is an assembler instruction statement. The Assembler converts the characters enclosed in the apostrophes into an internal form representing the characters.
- Line 11 is an assembler instruction statement. It tells the Assembler that no further statements will be processed for this program. The operand field entry Test tells the Linker where you want your program to begin execution.

Exercises

6.5.1. Determine what control statements are required at your installation for the following sequences of steps (if they are available): (1) assembling a program, (2) assembling and linking a program, (3) assembling, linking, and executing a program, (4) assembling, loading, and executing a program, and (5) linking and executing an object module created in a previous assembly.

6.5.2. At execution time, if control reaches the END statement, will that be the end of the program?

6.5.3. Examine the Assembler Language program in Figure 33. Which statements have entries in the name field? In the operation field? In the operand field? In the comment field?
6.6. Basic Macro Instructions

For our sample programs, we need only very simple methods of reading 80-character “card-image” records, printing strings of characters, displaying useful information, and displaying or “dumping” areas of memory in hexadecimal format.

Your operating system may provide similar facilities already, but you should check to see how or whether they differ from these. We will use these six macro-instructions, and show how they’re used in some programming examples.

- **PRINTOUT** Print formatted information about data and registers
- **READCARD** Read 80-byte card-image records
- **PRINTLIN** Print lines of characters
- **DUMPOUT** Dump memory in hexadecimal format
- **CONVERTI** Convert decimal characters to a 32- or 64-bit binary integer
- **CONVERTO** Convert a 32- or 64-bit binary number to decimal characters

The macro instructions and their operands are described in “Appendix B: Simple I/O Macros” on page 1001.

6.7. Summary

The Assembler provides many facilities to simplify programming tasks.

1. It automatically resolves addresses into the base-displacement and other forms used by z System. The Assembler determines the needed base and displacement so that correct Effective Addresses will be calculated at execution time.

2. Rather than remembering that operation code X’43’ copies a byte from memory into the right end of a general register, a mnemonic operation code gives a simple indication of what the operation code does. (The term “operation code” is often abbreviated “opcode”.) The opcode X’43’ has mnemonic “IC”, which stands for “Insert Character”.

3. Symbols let you name areas of memory and other objects in your program.

4. Diagnostic messages warn you about possible errors and oversights.

5. The Assembler converts data from convenient external representations into internal forms.

6. It creates relocatable object code to be combined with other programs by the linker.

7. Using macro-instructions, you can define your own instruction names to supplement existing instructions, and your own macro-instructions can make use of previously defined sequences of statements, including other macros!

8. It provides lots of other helpful information such as cross-references of symbols, registers, and macros.

Terms and Definitions

Assembler

A program that converts Assembler Language statements into machine language, in the form of an object module.

assembly time

The time when the Assembler is processing your program’s statements, as distinct from the time when the machine language instructions created from your Assembler Language program are executed by the processor.
statement
The contents of the records read and processed by the Assembler. There are four types: comment statements, machine instruction statements, assembler instruction statements, and macro-instruction statements.

statement field
One of the four fields of an Assembler Language statement (other than a comment statement). They are the name, operation, operand, and the remarks fields. Which fields are required and/or optional depends on the specific statement.

operand
(1) Something operated on by an instruction. (2) A field in a machine instruction statement.

object module
The machine language information created by the Assembler, used as input to the Linker.

object code
The machine language contents of an object module.

load module
Our generic name for the output of a Linker; a mixture of machine language instructions and data ready to be loaded directly into memory for execution.

Linker
A program that converts and combines object modules and load modules into an executable “load module” format ready for quick loading into memory by the Program Loader. The term “Linker” can describe several programs:

Binder
The z/OS program that can generate load modules (and a newer form, program objects) as well as place the linked program directly into memory.

Linkage Editor
The predecessor to the z/OS Binder; its functions are included in the Binder. A Linkage Editor is used on z/VSE.

Loader
This can have several meanings:
• On z/VM systems, a program that can link object modules directly into memory for execution, or generate a relocatable “MODULE”.
• On older OS/360 systems, a program that links object and load modules into memory for execution; now called the “Batch Loader”.

relocation
A procedure used by the Linker and the Program Loader to ensure that addresses in your loaded program are correct and usable.

Program Loader
The component of the Operating System that brings load modules into memory, makes final relocations, and transfers control to your program.

execution time
The time when your program has been put in memory by the Program Loader and given control. This may happen long after assembly time.

origin
A starting value assigned by you (or by the Assembler) needed to calculate offsets and displacements in your program. Because most programs are relocated, it’s rarely necessary to specify an origin.

mnemonic
A convenient shorthand for the name of an instruction. For example, the “Branch and Save” instruction has mnemonic “BASR”.

macro instruction
A powerful means to encapsulate groups of statements under a single name, and then generate them (with possible programmer-determined modifications) by using the macro-instruction name as an operation field entry.
Job Control Language

The statements needed to tell your Operating System how to process your program through the assembly, linking, and execution phases. “JCL” for short.

code

An informal term for groups of Assembler Language statements.

Programming Problems

Problem 6.1. (2) Write, assemble, link, and execute a short program (like the one in Figure 33 on page 83) that will print your name. Look through the printed output from the job, and determine which parts were printed by the Assembler, the Linker, and the executed program. (If your name contains apostrophes (like O’Brien), you must type a pair of them wherever you want to print one, as in O’ BRIEN.) Observe what is produced by the Assembler for each type of statement.

Problem 6.2. (2) Using your solution to Problem 6.1 as a template, write and execute a program that will generate a noncontroversial, culturally-sensitive, nonpolitical message such as Message = C’Hello, World!’
7. Self-Defining Terms and Symbols

We now investigate two important features of the Assembler Language, self-defining terms and symbols. Each has a numeric value. In a self-defining term, the value is constant and inherent in the term, so you can think of them as different ways to write numbers. Self-defining terms are not data! They are just numbers that can be written in any of several convenient forms; they all result in 32-bit integer values. Symbols have values assigned by you and by the Assembler.

7.1. Self-Defining Terms

There are four basic types of self-defining term: decimal, hexadecimal, binary, and character. The value of each is treated by the Assembler as a 32-bit two’s complement number.

- A decimal self-defining term is an unsigned string of decimal digits. 12345, 98, and 007 are examples of decimal self-defining terms. The size of a decimal self-defining term is determined by the fact that 32 bits are allotted by the Assembler to hold its value during assembly. Because it is unsigned, a decimal self-defining term must lie in the range from 0 to $+2^{31}-1$ (2147483647). Thus, $+2147483647$ and -2147483647 are not valid decimal self-defining terms because they are signed, even though their values can be correctly represented in 32 bits.

- A hexadecimal self-defining term is written as the letter “X”, an apostrophe, a string of hexadecimal digits, and a second apostrophe. $X'123456'$, $X'FACE'$, and $X'001B7'$ are examples of hexadecimal self-defining terms. The value of a hexadecimal self-defining term must lie in the range from 0 to $+2^{32}-1$, or, between $X'00000000'$ and $X'FFFFFFFF'$. If fewer than eight digits are specified, the Assembler assumes that the omitted digits are high-order zeros. If the high-order digit of an eight-digit hexadecimal self-defining term lies between $X'8'$ and $X'F'$, the value of the term is negative.

Because hexadecimal terms represent just a string of bits, their value can be greater than $2^{31}-1$, unlike decimal terms.

- A binary self-defining term is written as the letter “B”, an apostrophe, a string of binary digits, and a second apostrophe. $B'110010'$, $B'0001'$, and $B'111111100001100'$ are examples of binary self-defining terms. Because 32 bits are allotted for the value of a self-defining term, at most 31 binary digits may follow the first 1-bit. (For example,

44 A fifth type of self-defining term, the Graphic type, requires invoking the Assembler with the DBCS option. Its use is beyond the scope of this section, but we’ll meet it again in Chapter VI, Section 26.4.
B′00000000000000001000000000000000000000000 has 41 digits, but only 24 significant digits follow the first 1.) If fewer than 32 digits are specified, the Assembler assumes that the omitted digits are high-order zeros.

The value of a binary self-defining term must lie in the range from 0 to \(2^{32} - 1\). The value of a binary self-defining term is negative if the leftmost significant bit of the 32-bit digit string contains a 1-bit.

We will see in Chapter 4 that embedded blanks can be used in decimal, binary, and hexadecimal constants to improve readability. However, embedded blanks cannot be used in self-defining terms of those three types.

- A character self-defining term is written as the letter “C”, an apostrophe, a string of up to four characters (except for two special cases to be described momentarily), and a second apostrophe. Thus, C′A′, C′...′, and C′A•′ are valid character self-defining terms. (Remember that we are using “•” to represent a blank.) This last example, in which a blank appears, is the one exception to the rule mentioned in the previous section that stated that the operand field is terminated by the first blank column after it starts; if the blank is part of a character string enclosed in apostrophes, as in a character self-defining term, it doesn’t terminate the field but is part of the operand. A blank terminating the operand field must appear outside of a character string enclosed in apostrophes.

The two special cases concern the apostrophe (’) and the ampersand (&). Since apostrophes are used to delimit the character string, we need a way to get an apostrophe into the generated character string. (The ampersand has special uses in macro-instructions.) We represent a single apostrophe or ampersand in a character string by a pair of apostrophes or ampersands. A character self-defining term containing a single apostrophe or a single ampersand is written C′′′ or C′&&. This can lead to cryptic but valid forms like C′′′′ (for the three characters ‘′′’, giving a term with value X′0070D70′), and and C′&&′′&&′ (for the three characters &′&′, giving a term with value X′00507050′). A pair of apostrophes is entered as two characters, and should not be confused with the quotation mark (”), which is a single character.45

Character self-defining terms use the EBCDIC character representation described next.

Exercises

7.1.1.(2)+ Which of the following are valid self-defining terms? If you think a term is invalid, explain why; otherwise, give the hexadecimal value of the term.

(1) 00000012345
(2) B′1010101101010101′
(3) X′0000B4DAD′
(4) X′B4DAD0000′
(5) +65535
(6) B′00000000001111000011110000000011110000111101′
(7) B′1010110100111100001111000111101′

7.1.2.(1) The maximum value of a decimal self-defining term is \(2^{31} - 1\), while the maximum value a binary or hexadecimal self-defining term is \(2^{32} - 1\). Why are they different?

45 Unfortunately, people sometimes call the apostrophe or single quote a “quotation mark” or “single quotation mark”. Calling a quotation mark a “double quote” or “” doesn’t help either, because it might be understood to mean a pair of apostrophes.
7.2. EBCDIC Character Representation

The value assigned to a binary, decimal, or hexadecimal self-defining term is clear, as they are familiar bit patterns. But what value should we give to a character self-defining term? This depends on the internal representation or code defined for characters. We could decide that the value of \(\mathcal{C}'\mathcal{A}' \) should be the same as \(X'0A' \), or \(X'41' \), or \(X'74' \), or \(X'A1' \), or even \(X'C1' \).

In z System the conventional character code is called the “Extended Binary Coded Decimal Interchange Code”, or EBCDIC for short.\(^{46}\) Each character is represented internally by an eight-bit number—two hexadecimal digits—as indicated in Table 13. The internal bit patterns that represent external characters are a matter of choice; any mutually agreeable set is about as good as any other. The Extended BCD code, or EBCDIC, is the code defined by the designers of System/360 for communicating with character-sensitive components of the computer such as the CPU, printers, graphic display devices, etc. We will see other important character encodings in Chapter IV, Section 12.8, and again in Chapter VII, Section 26.

This table shows the EBCDIC representation used by the Assembler, “Code Page 037”. (There are many other EBCDIC code pages used around the world.)

<table>
<thead>
<tr>
<th>Char</th>
<th>Hex</th>
<th>Char</th>
<th>Hex</th>
<th>Char</th>
<th>Hex</th>
<th>Char</th>
<th>Hex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blank</td>
<td>40</td>
<td>e</td>
<td>85</td>
<td>y</td>
<td>A8</td>
<td>S</td>
<td>E2</td>
</tr>
<tr>
<td>.</td>
<td>4B</td>
<td>f</td>
<td>86</td>
<td>z</td>
<td>A9</td>
<td>T</td>
<td>E3</td>
</tr>
<tr>
<td>(</td>
<td>4D</td>
<td>g</td>
<td>87</td>
<td>A</td>
<td>C1</td>
<td>U</td>
<td>E4</td>
</tr>
<tr>
<td>+</td>
<td>4E</td>
<td>h</td>
<td>88</td>
<td>B</td>
<td>C2</td>
<td>V</td>
<td>E5</td>
</tr>
<tr>
<td>&</td>
<td>50</td>
<td>i</td>
<td>89</td>
<td>C</td>
<td>C3</td>
<td>W</td>
<td>E6</td>
</tr>
<tr>
<td>$</td>
<td>5B</td>
<td>j</td>
<td>91</td>
<td>D</td>
<td>C4</td>
<td>X</td>
<td>E7</td>
</tr>
<tr>
<td>*</td>
<td>5C</td>
<td>k</td>
<td>92</td>
<td>E</td>
<td>C5</td>
<td>Y</td>
<td>E8</td>
</tr>
<tr>
<td>)</td>
<td>5D</td>
<td>l</td>
<td>93</td>
<td>F</td>
<td>C6</td>
<td>Z</td>
<td>E9</td>
</tr>
<tr>
<td>-</td>
<td>60</td>
<td>m</td>
<td>94</td>
<td>G</td>
<td>C7</td>
<td>0</td>
<td>F0</td>
</tr>
<tr>
<td>/</td>
<td>61</td>
<td>n</td>
<td>95</td>
<td>H</td>
<td>C8</td>
<td>1</td>
<td>F1</td>
</tr>
<tr>
<td>,</td>
<td>6B</td>
<td>o</td>
<td>96</td>
<td>I</td>
<td>C9</td>
<td>2</td>
<td>F2</td>
</tr>
<tr>
<td>_</td>
<td>6D</td>
<td>p</td>
<td>97</td>
<td>J</td>
<td>D1</td>
<td>3</td>
<td>F3</td>
</tr>
<tr>
<td>#</td>
<td>7B</td>
<td>q</td>
<td>98</td>
<td>K</td>
<td>D2</td>
<td>4</td>
<td>F4</td>
</tr>
<tr>
<td>@</td>
<td>7C</td>
<td>r</td>
<td>99</td>
<td>L</td>
<td>D3</td>
<td>5</td>
<td>F5</td>
</tr>
<tr>
<td>'</td>
<td>7D</td>
<td>s</td>
<td>A2</td>
<td>M</td>
<td>D4</td>
<td>6</td>
<td>F6</td>
</tr>
<tr>
<td>=</td>
<td>7E</td>
<td>t</td>
<td>A3</td>
<td>N</td>
<td>D5</td>
<td>7</td>
<td>F7</td>
</tr>
<tr>
<td>a</td>
<td>81</td>
<td>u</td>
<td>A4</td>
<td>O</td>
<td>D6</td>
<td>8</td>
<td>F8</td>
</tr>
<tr>
<td>b</td>
<td>82</td>
<td>v</td>
<td>A5</td>
<td>P</td>
<td>D7</td>
<td>9</td>
<td>F9</td>
</tr>
<tr>
<td>c</td>
<td>83</td>
<td>w</td>
<td>A6</td>
<td>Q</td>
<td>D8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>84</td>
<td>x</td>
<td>A7</td>
<td>R</td>
<td>D9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In Table 13 we see that the value associated with the character self-defining term \(\mathcal{C}'/\mathcal{A}' \) is the same as that of the hexadecimal self-defining term \(X'61' \), the binary self-defining term \(B'11000001' \), and the decimal self-defining term 97. Similarly, the character self-defining term \(\mathcal{C}''''' \) has the same value as the hexadecimal self-defining term \(X'70' \), and \(\mathcal{C}'&\&' \) has the same value as \(X'50' \). Which type of term you choose is largely a matter of context; in some places, certain types will be more natural than others.

\(^{46}\) Occasionally it is even called BCD. That term is normally used to denote an older six-bit character code or even a 4-bit encoding of decimal digits; the eight-bit Extended BCD code is used to represent characters on z System.
The value of a character self-defining term is determined by right-adjusting the EBCDIC codes of the characters in a 32-bit field, and filling with zero bits at the left end if needed. Thus, the value of $C'A'$ is $X'000000C1'$, and the value of $C'ABC'$ is $X'001C2C3'$.\(^{47}\)

The characters shown in Table 13 are the portion of the EBCDIC character set used in the Assembler Language (except in character self-defining terms and character constants, where all 256 possible characters are allowed). The codes for other characters are defined in the z/Architecture Principles of Operation. It is worth remembering that the EBCDIC code for a blank space is $X'40'$.

Exercises

7.2.1.(2) Which of the following are valid self-defining terms? If you think a term is invalid, explain why; otherwise, give the hexadecimal value of the term.

1. $C'#$
2. $C'\ldots$
3. $C'\cdot\&...
1. B'110010111000010111011001'
2. C'R&Z'
3. 51401

7.2.10.(2)+ Give the value in hexadecimal of these self-defining terms:
(a) B'01110101100010'
(b) C''''+''
(c) 10010

7.3. Symbols and Attributes

Many programming problems can be greatly simplified by using symbols. If this were not so, we might try to dispense with Assemblers and be content with producing programs consisting of strings of hexadecimal digits; thus we would write the hex digits X'580064EC' instead of a machine instruction statement containing symbols.

Symbols are more interesting than self-defining terms: they let you assign meaningful names to parts of your program. You can give the name PLUS1 to an area containing the constant +1, and the name READ to an instruction that reads data.

Three types of symbols are used in the Assembler Language: ordinary symbols, variable symbols, and sequence symbols. The last two are used only in macro-instructions and in conditional assembly, so we won’t say more about them here.

There are two types of ordinary symbols: internal and external. External symbols are used during linking to communicate with other programs (and are part of the object module, as we’ll see in Chapter X, Section 38), while internal symbols are used only during the assembly, and do not appear in the object module.48

For now, we assume that all symbols are internal symbols. A word of caution: if you have done some programming in a high-level language, you may be inclined to think of symbols as variables. They aren’t; the differences are described in Section 7.7 on page 96.

A symbol is a string of letters or digits, the first of which must be a letter. The characters “$”, “_”, “#”, and “@” are considered to be letters in the Assembler Language.49 These special characters are not allowed in symbols:

() + - * / = . , & blank

Early Assemblers restricted symbols to at most eight characters, which is why the “customary” operation field of a statement begins in column 10. HLASM allows mixed-case symbols up to 63 characters long, but there is no difference between upper and lower case letters. Thus, NAME, Name, and name all refer to the same symbol.

The following are all valid symbols.

<table>
<thead>
<tr>
<th>A</th>
<th>Agent086</th>
<th>A1B2D3C4</th>
<th>The_End</th>
</tr>
</thead>
<tbody>
<tr>
<td>#235</td>
<td>00@H</td>
<td>ApoPlexy</td>
<td>The_Utter_Final_Bitter_End</td>
</tr>
<tr>
<td>James</td>
<td>KQED</td>
<td>Prurient</td>
<td>EtCetera</td>
</tr>
<tr>
<td>$746295</td>
<td>Wonka</td>
<td>ZYZGY99</td>
<td>Close_Files</td>
</tr>
</tbody>
</table>

48 Internal symbols are added to the object module if you specify the Assembler’s TEST option, but that option is little used now. The ADATA option is preferable, because it generates a SYSADATA “side file” containing much more useful information that can be used by other programs like debuggers.

49 If there’s any chance your program might be sent (or read or printed) outside the United States, avoid the “national” characters ¹, ², and $. They may look different in other countries, or may even have different EBCDIC representations. Other characters usable in Assembler Language symbols—those in Table 13—always have the same EBCDIC representations.
Note that the first character of the symbol $00@H must be the letter “O” and not the digit zero “0”. (A good reason to avoid using symbols starting with the letter O!)

The following are not valid symbols, for the reasons given.

$7462.95 (decimal point not allowed)
Bond/007 (special character / not allowed)
Set Go (no blanks allowed)
Ten*Five (contains the special character *)
C’Wonka’ (no apostrophes allowed)
2Faced (doesn’t begin with a letter)
An_Absurdly_Long_Symbol_With_No_Use_Other_Than_To_Illustrate_Excessive_Symbol_Length (!)

Several numeric quantities called attributes are associated with a symbol. Symbols have six primary attributes: value, relocation, length, type, scale, and integer. Of these, the value and length attributes are most important; the rest will be described as needed. The length attribute is especially useful, and we’ll see how it’s defined when we examine constant definitions in Section 11.

• The Assembler assigns numeric values to the attributes of a symbol when it encounters the symbol as the name field entry in a statement. We say that a symbol has been defined when numeric values have been given to its value, relocation, and length attributes. These three attributes, like all other numeric attribute values, are always nonnegative.

• This terminology is clumsy: rather than the “numeric value of the value attribute” of a symbol, we simply say the “value of the symbol”. Similarly, the “numeric value of the relocation attribute” of a symbol is its “relocatability”. We say that a symbol whose relocation attribute is nonzero is relocatable, and a symbol whose relocation attribute has a zero value is not relocatable, or that it is absolute.51

• We call the “numeric value of the length attribute” of a symbol its “length attribute”. It depends on the type of statement named by the symbol. Occasionally someone refers to the “length” of a symbol when its length attribute is meant; but the length of a symbol might be misunderstood to mean the number of characters in the symbol itself, which is rarely interesting. The length attribute is different, and is very useful.

For example, while the symbol A is one character long, it could have length attribute 133!

Symbols are used mainly as names of places in the program. For example, in Figure 30 on page 80, the symbol LOAD is the name of the instruction. Similarly, in the machine instruction statement

GETCONST L 0,4(2,7)

the symbol **GETCONST** is the name of an area of the program containing a machine instruction. In the Assembler instruction statement

TEN DC F’10’

the symbol **TEN** is the name of a word area of the program where the Assembler will place a binary integer constant with decimal value 10.

In the macro-instruction statement

EXIT RETURN (14,12), T

the symbol **EXIT** names the area of the program containing the set of instructions generated by the RETURN macro-instruction.

50 Conditional assembly supports additional attributes: Assembler, Count, Number, Defined, Opcode, and Program. The Assembler, Opcode, and Type attributes have nonnumeric values.

51 A useful definition of the relocation attribute is that a symbol that names a place in a program is relocatable; details are given in Section 7.6 on page 95. A convenient image is to think of the relocation attribute of a symbol as its color: the Assembler assigns the same color to all symbols having the same relocation attribute, and no color to absolute symbols.
No symbol can be given a value in a comment statement.

Remember: the attributes of the symbols, and the symbols themselves, exist only at assembly time. They help in producing the object program; internal symbols and their attributes are discarded when the assembly is complete.\footnote{This information can be saved in a SYSADATA “side file” when you specify the Assembler’s ADATA option.}

Exercises

7.3.1.(2)+ Which of the following are valid symbols? If you think a symbol is invalid, explain why.

1. SuperBOY
2. Captain Major
3. KillerWhale
4. Send400$Soon
5. #@$!
6. 4Hundred$Sent
7. ?
8. (Eight)
9. @9AM

7.3.2.(2) Some Assemblers (for processors other than z System) allow you to define a symbol as a string of alphanumeric characters at least one of which must be a letter (it needn’t be the first character). Can you think of any reasons why the designers of the Assembler Language decided not to allow this form of symbol?

7.4. Program Relocatability

Understanding the value and relocation attributes of a symbol is usually not very important. You can write lots of Assembler Language programs without ever having to know how and why the Assembler uses these attributes. When things go wrong (and because things will go wrong), it is worth understanding some basic features of value and relocation.

The most important part of the Assembler’s task of converting a program from Assembler Language statements to machine language code is determining the relative positions of all parts of your program. To do this, the Assembler constructs an accurate model of the program as it will eventually reside in memory when it is executed.

This model is necessarily incomplete, for two reasons:

1. The Assembler normally has no way to know where the program will eventually be placed in memory by the Program Loader.
2. There is no way for the Assembler to know the relationship of the program it is assembling to other programs that will be combined with it in the load module produced by the Linker.

Methods for handling the second reason will be treated when we discuss external linkages and subroutines in Chapter X, Sections 37 and 38.

Because the Assembler cannot determine in advance what memory addresses will eventually hold the program, it must produce a machine language program that will work correctly no matter where it is placed at execution time. That is, the program must be relocatable. Thus, in building its model of the final form of the program, the Assembler only needs to determine the relative positions of the parts of the program it is assembling.

The Assembler doesn’t know where the program will eventually be placed in memory, so it does the next best thing:
1. It assumes that the program starts at some arbitrary (or programmer-specified) origin, and generates instructions and data based on that assumption.

2. It includes enough information about its assumptions in the object module, so the Linker and the Program Loader can tell (a) what starting location was assumed, and (b) what parts of the program will contain or depend on actual memory addresses at the time the program is executed.

3. By computing the difference between the program’s assembly-time starting location assumed by the Assembler, and its true starting address assigned at execution time by the Supervisor, the Program Loader can supply (“relocate”) the necessary true addresses used at execution time.

In practice, very few parts of a program depend on knowing actual addresses; these will almost always involve the use of address constants; we’ll introduce them in Section 12.2 on page 149. Many programs can be written to contain no address-dependent information.

7.5. The Location Counter

To help clarify the differences between assembly and execution times, we will make a careful and important distinction between locations and addresses.

• Locations refer to positions in the Assembler’s model of the program at assembly time.

• Addresses refer to the positions in memory, at execution time, where the various parts of the program reside.

<table>
<thead>
<tr>
<th>Locations and Addresses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locations are used at assembly time; addresses are used at execution time.</td>
</tr>
</tbody>
</table>

The relationship between locations and addresses is close; they differ at most by a single constant value, the difference between the Assembler’s assumed assembly-time starting location and the Supervisor’s assigned execution-time starting address. This difference is handled by the Program Loader when it relocates the program just before execution, so we don’t have to worry about this at assembly time. 53

To assign locations to the various parts of your program as it is assembled, the Assembler maintains an internal counter called the Location Counter, or LC. The initial value of the LC is the “initial location” or “assumed origin” specified on the START statement (see Section 6.4 on page 81); or, if no initial location is specified, the Assembler assigns an initial LC value of zero.

As the Assembler reads your program, it determines how many bytes will be required in the program for the instruction or data generated for each statement. It adds this number to the LC, and then reads and processes the next statement. In this way, the Assembler determines the location and length of each part of the program.

It is important to understand the difference between the Assembler’s Location Counter and the CPU’s Instruction Address. The LC is a counter used by the Assembler at assembly time to determine positions within a program; it goes away when the Assembler is removed from memory at the completion of an assembly. The IA is a part of the CPU’s PSW, and contains the address of the next instruction to be fetched at execution time; it is always in use whenever any program is being executed.

Exercises

53 The Assembler puts the assumed origin into the object module to help the Linker adjust addresses correctly.
7.5.1. (3) In the following program segment, determine (1) the value attributes of all symbols, and (2) the LC value at the time each statement is read by the Assembler. The length of the generated instructions and data are given in the comment field of each statement.

```
EX7_5_1 START '5000' 0 bytes generated
BASR 6,0 2 bytes generated
BEGIN L 2,N 4 bytes generated
    A 2,ONE 4 bytes generated
    ST 2,N 4 bytes generated
DUMMY DS XL22 22 bytes generated
    ND C F '8' 4 bytes generated
ONE DC F '1' 4 bytes generated
```

We will revisit this program fragment in Section 10.

7.6. Assigning Values to Symbols

Instructions and data are given names by writing symbols as the name field entry of the statement. When the Assembler encounters such a symbol, it enters it into a Symbol Table containing the program’s symbols and their attributes.

1. The value attribute (or simply, the value) of the symbol is determined from the contents of the LC at the time the statement was processed, before adding the length of the generated instruction or data.

2. The relocation attribute will be nonzero, to indicate that the symbol is relocatable. (We will see shortly how to define absolute symbols that are not relocatable.)

3. The length (in bytes) of the generated instruction or data is assigned as the value of the length attribute (in most cases).

There are, of course, occasional minor exceptions to these general rules.

There is a simple test to determine whether an internal symbol is relocatable: add a constant to the initial value of the LC, and re-assemble the program. If the value of the symbol increases by exactly the same amount, then the symbol is relocatable. If the value doesn’t change at all, the symbol is absolute.

The names of instructions and data areas in a program are relocatable; these are the most frequent uses of symbols. The numeric value of the relocation attribute of a symbol is assigned by the Assembler, and can be determined from the Assembler’s External Symbol Dictionary, another part of the object module.

To illustrate how values are assigned to symbols, suppose that when the statement named `GETCONST` (on page 92) is read by the Assembler, the value of the LC is X’0007B6’. Then the symbol `GETCONST` would appear in the Symbol Table with value X’0007B6’; it would be relocatable; and because the statement specifies an RX-type instruction, the length attribute will be 4. Before reading the next statement, the Assembler increments the LC by the length of the instruction, so that its value will then be X’0007BA’.

Similarly, if the sample statement named `TEN` (on page 92) was encountered when the LC value was X’012088’, then the value of the symbol `TEN` would be X’012088’; it would be marked as relocatable; and its length attribute would be 4. The LC value after incrementing would be X’01208C’.

To define an absolute symbol, we use the “EQU” assembler instruction statement:

```
symbol EQU self-defining term
```

This statement causes the value of the self-defining term to be assigned as the value attribute of the symbol. (More about the EQU assembler instruction is in Section 13.3.) Thus, the statement

```
ABS425 EQU 425
```
defines the symbol \texttt{ABS425} by assigning a value of 425 (\texttt{X'000001A9'}), a relocation attribute of zero, and (for want of anything better) a length attribute of one. The symbol \texttt{ABS425} is simply the name of a number!

Absolute symbols give you great freedom and flexibility in writing your programs. We will find many ways to use absolute symbols whose values do not change if the initial LC value is changed.

Exercises

7.6.1.(1) Why can a symbol not be given a value in a comment statement?

7.6.2.(1) The symbol \texttt{TEN} on page 91 will be assigned a length attribute of 4 by the Assembler. What is the length of the symbol?

7.7. Symbols and Variables

In Assembler Language, we make some important distinctions in terminology. In high-level languages such as FORTRAN, COBOL, PL/I, and C, symbols are normally used to name variables: you can assign new values to them as the program executes. Thus, you might write

\texttt{BAD = GOOD + 7*(LOG(BETTER)/SQRT(BEST)); /* Assign new value to BAD */}

and understand it to mean “evaluate the quotient of the results of the LOG and SQRT functions, multiply that by 7, add the result to the current value of the variable \texttt{GOOD}, and assign the result as the new value of the variable \texttt{BAD}.” Assembler Language doesn’t work this way! The value of a symbol is not the value of a variable of the same name.

\begin{center}
\textbf{Assembler symbols}

Assembler Language symbols are not variables. There are no “variables” in the Assembler Language we’re describing!54
\end{center}

Some of the differences in the meanings of symbols in high-level languages and Assembler Language are shown in Table 14.

\begin{tabular}{|l|l|}
\hline
\textbf{Assembler Language} & \textbf{High-Level Languages} \\
\hline
Used only at assembly time & Can be thought of as existing at execution time \\
\hline
Names of places in a program & Contain execution-time values \\
\hline
Contents of memory has a “value” & Variable has a “value” \\
\hline
The name has a “location” value used by the Assembler to lay out and organize the program & The name is thought of as naming the value of a variable \\
\hline
\end{tabular}

Table 14. Differences between Assembler Language and high-level language symbols

We will have more to say about this in Section 13.8 on page 175.

Terms and Definitions

54 The conditional assembly language \textit{does} have variable symbols, but that topic is beyond what we’re discussing now.
Location Counter (LC)
A counter used by the Assembler at assembly time to build its model of the relative positions of all components of an assembled program.

self-defining term
One of binary, character, decimal, and hexadecimal. Its value is inherent in the term, and does not depend on the values of other items in the program.

EBCDIC
Extended Binary Code Decimal Interchange Code. Used to assign numeric values to characters. There are many EBCDIC encodings; they assign different values to some characters, but all the alphabetic, numeric, and other characters used in the Assembler Language listed in Table 13 on page 89 are invariant across EBCDIC encodings, except for the characters “$”, “@”, and “#”.

symbol
A name known at assembly time, to which various values are assigned. The values may be absolute or relocatable (or even complexly relocatable, as we’ll see in Section 8.3).

defined symbol
A symbol is defined when the Assembler assigns values to its value, relocation, and length attributes.

symbol attribute
Useful information about the properties of a symbol. Attributes include value, relocation, length, type, scale, and integer. (Only the first three attributes are important for our current needs.)

relocatable
A property of a program allowing it to execute correctly no matter where it is placed in memory by the Program Loader.

relocation
Actions performed by the Linker and Program Loader to ensure that a program in memory will execute correctly no matter where it is loaded. This may require assigning true execution-time addresses to parts of a program.
In this section we will see how to specify components of the operand field entry of various instruction statements.

The operand field entry of a typical machine instruction statement is a sequence of operands separated by commas. For example, a typical instruction statement might look like this:

```
symbol operation operand1,operand2,... optional remarks
```

where the name field symbol is often optional, and the operand field may specify zero to many operands.

The operands are formed from expressions that are in turn formed by combining terms and operators.

8.1. Terms and Operators

The basic elements of an expression are terms. They can be any of the following items:

- a self-defining term
- a symbol
- a Location Counter reference
- a literal
- a Symbol Attribute reference
 - Length
 - Integer
 - Scale

We will discuss Integer and Scale attributes later; while they aren’t used frequently, they can be very helpful in certain situations.
Terms

Length, integer, and scale attribute references to a symbol are always absolute terms; a symbol can be either absolute or relocatable; literals and Location Counter references are always relocatable. A self-defining term is always absolute.

We have seen how to write symbols and self-defining terms. Literals are special symbols that provide a convenient way to write constants, and we will discuss them in Section 12.6.

A Location Counter reference is written as a single asterisk; it has the attributes of the Assembler's Location Counter, and a length attribute that depends on the type of statement where it is used. The value of * as a Location Counter reference therefore changes during an assembly as the LC value changes.

A symbol length attribute reference is written as a letter L followed by an apostrophe followed by a symbol (or an asterisk, for a Location Counter reference).

L’SYMBOL or L’*

is an absolute term whose value is the length attribute of the term following the apostrophe.

The operators used for combining terms are +, −, *, and /, indicating addition, subtraction, multiplication, and division respectively. A term has no sign; however, + and − may be used as unary or prefix operators, as in +5. In Assembler Language, the asterisk is therefore used in two ways: to denote a Location Counter Reference and as the multiplication operator. The Assembler can distinguish these two uses.

8.2. Expressions

An expression is an arithmetic combination of terms and operators. In the absence of unary plus or minus signs or parentheses, an expression must begin and end with a term, and there must be an operator between each pair of terms. To illustrate, two expressions are

GETCONST+X’4A’ and X’L’X

The following expression uses all four types of self-defining term:

X’12’+C’’-B’0001010001’+7

Parentheses may be used, as in ordinary mathematical use (and as in familiar procedural languages) to indicate groupings. In evaluating expressions, an expression in parentheses is treated as a term. Thus

(A+2)*(X’4780’-JJ)

is an expression that is the product of two subexpressions, each of which has two terms and one operator.

Syntactically, an expression may not contain two multiplication or division operators in succession, or an addition or subtraction operator followed by a multiplication or division operator. For example:

*+2 valid because * is a Location Counter reference
-A, +A are valid uses of unary + and -
A++B, A--B, A+-B, A+ B are valid (second + and second - are unary operators)
A/+B, A/-B, A*+B, A*-B are valid (+ and - are unary operators)
A+/B, A-/B, A*B, A/B are invalid
A**B, A*/B, A//B are invalid

Some syntactically valid expressions might not be evaluatable if either or both terms is relocatable (to be described shortly).
An easy way to determine the validity of expressions with successive operators is to parenthesize each operator with its immediately following term, so that \(A++B \) becomes \(A+(+B) \); because the unary + in \((+B)\) is equivalent to \(B\), \(A++B\) is evaluated as \(A+B\). (See Exercise 8.2.3.)

Exercises

8.2.1.(2) What would you expect to be the result of \(A--B \), \(A+-B \), and \(A-+B \)?

8.2.2.(1) What is the value of the expression \(X'12'+C'.-B'0001010001'+7? \)

8.2.3.(2)+ Determine the syntactic validity of each of the following expressions; and if the expression is valid, show its simplified form.
 a. \(A+-+B \)
 b. \(A*---B \)
 c. \(A-*-B \)
 d. \(A---B \)
 e. \(--A-++B\)

8.3. Evaluating Assembly-Time Expressions (*)

The rules for evaluating expressions are familiar, with one or two minor exceptions, so it’s no surprise that the Assembler evaluates \(2+3\) as 5.

Remember: we are describing the Assembler’s evaluation of *assembly-time* expressions involving the values of assembly-time symbols and other terms. This is entirely different from most high-level languages, where an expression like \(A+B\) in a statement is evaluated at *execution* time, using the values of the execution-time variables \(A\) and \(B\).

The details of the rules can be rather complicated, so don’t try to grasp everything on a first reading. The examples on page 102 will help to illustrate the rules.

1. Each *term* (along with any preceding unary operator) is evaluated to word precision, 32 bits. The relocation attribute of each term is noted, so that the relocation attribute of the entire expression can be evaluated also, as described in rule 10 below.
2. Inner parenthesized subexpressions are evaluated first, using 32-bit two’s complement arithmetic. The resulting value is used in computing the rest of the expression. Thus in \((X'100'+2*(ABS425-420))+1\)
 where \(ABS425\) has value 425 (as defined on page 95), the subexpression \((ABS425-420)\) would be evaluated first. The value of the whole expression is \(X'0000010\), and is absolute.

3. Multiplications and divisions are done before additions and subtractions. Thus the value of the expression just given would be evaluated as \((X'100' + (2* (5))) + 1\) and not as \(((X'100' + 2) * (5)) + 1\). Multiplication and division operators may not be combined, as in \(*\) and */.

4. Relocatable terms or subexpressions may not occur in multiplication or division operations.

5. Operations are performed in left-to-right order within a group of operations of the same priority. Thus \(5*2/4\) means the same as \((5*2)/4\), not \(5*(2/4)\); similarly, \(5/2*4\) means the same as \((5/2)*4\), not \(5/(2*4)\).

6. Multiplications yield a 64-bit result, of which the rightmost 32 bits are kept, and the high-order (leftmost) 32 bits are discarded. Significant bits can be lost if the product is too large.

7. Division always yields an integer result; the Assembler always discards remainders when evaluating expressions. Thus \(5*2/4\) has value 2, and \(5*(2/4)\) has value zero. *Division by zero is permitted*, and the result is simply set to zero.
8. Negative quantities are carried in two’s complement representation.

9. When the expression has been completely evaluated, the result is in 32-bit two’s complement form.

10. The relocation attribute of the result is found as follows; assume that the symbol A is relocatable:

 - If there is an even number of relocatable terms appearing in the expression and they are paired (that is, they have the same relocation attribute appearing with opposite signs) so that a change in the relative origin assigned to the program has no effect on the value of the expression, then the expression is absolute. For example, A-A+2 is an absolute expression with value 2.

 - If there is one remaining unpaired term not directly preceded by a minus sign, then the expression is simply relocatable, and it has the relocation attribute of the unpaired term. For example, A+2 is a simply relocatable expression.

 - If there is more than one remaining unpaired relocatable term, or if the remaining term is preceded by a minus sign, the expression is complexly relocatable. Intentional use of complexly relocatable symbols is extremely rare. For example, 2-A is a complexly relocatable expression. (Some later examples will show how complex relocatability can happen, so don’t worry if this seems obscure.)

In general, you can determine the relocatability of an expression roughly as follows: first, compute the value of the expression. Second, add some constant to the initial value of the LC, which will cause the values of relocatable symbols to change. Third, recompute the value of the expression using the new values of the symbols. If the new value of the expression is identical to the old value, the expression is absolute; if the values differ by the amount added to the LC, the expression is simply relocatable; otherwise it is complexly relocatable.

To summarize the rules for combining terms, let A and R represent respectively an absolute and a simply relocatable expression. The rules for combining terms are summarized in Table 15.

<table>
<thead>
<tr>
<th>An expression of this form</th>
<th>is</th>
</tr>
</thead>
<tbody>
<tr>
<td>R+A, R-A, A+R</td>
<td>simply relocatable</td>
</tr>
<tr>
<td>R+R, A-R</td>
<td>complexly relocatable</td>
</tr>
<tr>
<td>R-R</td>
<td>absolute or complexly relocatable</td>
</tr>
</tbody>
</table>

Table 15. Expressions with absolute and relocatable terms

R–R is absolute only if both expressions have the same relocation attribute. Because this will almost always be true, we assume (until further notice) that expressions of the form R–R are absolute. We’ll give a precise definition of the relocation attribute in Chapter X when we discuss external symbols.

Machine instruction statement operands may never be complexly relocatable.

Exercises

8.3.1.(2) Suppose R stands for an arbitrary relocatable expression, and A stands for an arbitrary absolute expression. State which of the following expressions are and are not valid in machine instruction statement operands.

8.3.2.(2) Rule 7 on page 100 states that the Assembler always discards remainders in evaluating expressions. Does this mean that a program cannot compute a remainder? Explain.
8.3.3.(2) The last row of Table 15 says that R-R can be complexly relocatable. How can the difference of two simply relocatable symbols be complexly relocatable?

8.4. Examples

For these examples, we assume that

- `ABS425` is an absolute symbol of value 425 (or X'000001A9'),
- the value of the Location Counter is X'00011D46',
- `REL1` is a relocatable symbol of value X'00010A20',
- `REL2` is a relocatable symbol of value X'00012345' having length attribute 6, and
- The Location Counter, REL1, and REL2 have the same relocation attribute.

1. $5*2/4 = 10/4$, an absolute expression of value X'00000002'.
2. $16*16*16*16*16*16$ is an absolute expression of value X'01000000'.
3. 6-ABS425 has value X'FFFE59', and is absolute.
4. $(REL2-REL1)/(ABS425-B'011111')$ is an absolute expression of value X'00000010'.
5. REL2+C'-'+*L'REL2-* is a relocatable expression of value X'00013C6A'.
6. $2*REL2-REL1$ is an invalid expression, because a relocatable term (REL2) occurs in a multiply operation. (If the Assembler was able to evaluate the expression, it would be simply relocatable, and have value X'00013C6A'.)
7. Even REL1*1 and REL1*0 (as well as REL1/1 and REL1/0) are invalid expressions, even though their values are perfectly well defined.
8. $(1*(1+(1+(1+(1+(1+2)*2)*2)*2)*2)*2)*2)+1$ is an absolute expression, and has value X'2000'.
9. *+6 is a relocatable expression of value X'00011D4C'.
10. $(REL2-*)*L'REL2$ is an absolute expression of value X'000023FA'. Note the two distinct uses of the asterisk!

The example of a machine instruction statement in Figure 30 on page 80 could have been written

```
LOAD LR C'45'-(7*X'2A36')+ABS425*B'11111'=-235,18/(Q-Q)+3
```

though the gain in clarity is not obvious. More reasonable usage is illustrated in the following statements.

```
* EXAMPLE 8_4_1
R7 EQU 7
R3 EQU 3
LOAD LR R7,R3
```

There is a difference between

1. the notational convenience of the symbol R7 defined in the first EQU statement above and intended to mean general register 7,
2. the definition of an absolute symbol R7 to have the value 7, and
3. the use of the symbol as an operand in the operand field entry of a machine instruction statement where the use of register 7 is intended.

Example 8_4_1 is equivalent to the two below. (The second is considered poor style, for obvious reasons.)

```
* EXAMPLE 8_4_2 * EXAMPLE 8_4_3
 ZORCH EQU 3                  R7 EQU 3
 ZILCH EQU 7                  R3 EQU 7
LOAD LR ZILCH,ZORCH LOAD LR R3,R7
```

Expressions can also be used to good advantage in EQU statements. For example, suppose we need to define a symbol `NWords` whose value gives the number of words in a table, and we also
need a symbol \texttt{NBits} whose value is the number of bits in the same table. We could define the symbols in the following way.

* \textbf{Example 8.4.4} EQU with expressions
\begin{tabular}{ll}
\texttt{NWords} & \texttt{EQU} 75 \text{ Table has 75 word entries} \\
\texttt{BitsWd} & \texttt{EQU} 32 \text{ Number of bits per word} \\
\texttt{NBits} & \texttt{EQU NWords*BitsWd} \text{ Number of bits in the table}
\end{tabular}

\section*{Exercises}

\textbf{8.4.1}(2) What are the values of the symbols \texttt{NWords}, \texttt{BitsWd}, and \texttt{NBits} in Example 8.4.4 above?

\textbf{8.4.2}(3) The following short program segment contains instructions (whose purpose is of no interest for this exercise) whose operand fields contain various expressions. For each expression, determine (1) whether the expression is absolute or relocatable, and (2) the value of the expression. The column headed “LOC” gives the hexadecimal value of the Location Counter for each instruction.

<table>
<thead>
<tr>
<th>LOC</th>
<th>Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>466</td>
<td>A L 4, B'11C'</td>
</tr>
<tr>
<td>46A</td>
<td>BALR R6,0</td>
</tr>
<tr>
<td>46C</td>
<td>B ST 4, C-A+X-2*(R6/2)</td>
</tr>
<tr>
<td>470</td>
<td>C SLL 5, 2*C'-C+2</td>
</tr>
<tr>
<td></td>
<td>USING B-2, R6-2</td>
</tr>
<tr>
<td>474</td>
<td>X DS F Define Symbol X</td>
</tr>
</tbody>
</table>

\textbf{8.4.3}(3) Assume that the Location Counter, and symbols \texttt{REL1}, \texttt{REL2}, and \texttt{ABS425} have the value and relocation attributes defined in the examples on page 102. Determine the value and relocation attributes of the following expressions.

(1) \texttt{REL1+C'2'/2}
(2) \texttt{REL1-REL2+ABS425}
(3) \texttt{C'45'-(7*X'2A36')+ABS425*B'11111'-235}
(4) \texttt{(B/(REL2-REL1)/X'107C'+3)}
(5) \texttt{ABS425/((REL2-REL1)/X'C701'+3)}
(6) \texttt{**ABS425*(~REL1-4900)}

\textbf{8.4.4}(2) Assuming that the symbols \texttt{REL1}, \texttt{REL2}, and \texttt{ABS425} have the attributes defined on page 102, determine the validity of each of the following expressions. Explain why you think any expression is invalid.

(1) \texttt{-2+ABS425}
(2) \texttt{((REL1))*2-2*((REL1))}
(3) \texttt{REL1+C'7592'*B'10110'+ABS425}
(4) \texttt{B'10221'+REL2}
(5) \texttt{ABS425*74239661-2}
(6) \texttt{X'1875'+X'}
(7) \texttt{-**REL2}
(8) \texttt{**1}

\textbf{8.4.5}(3) Assume that the symbols \texttt{A} and \texttt{B} are simply relocatable with the same relocation attribute, and that they have values \texttt{X'00172B9E'} and \texttt{X'00173AA6'} respectively. Determine the value and relocation attributes of the following expressions.

(1) \texttt{B-A}
(2) \texttt{A+C'}
(3) \texttt{(A+X'000FF')-(B-B'1101011100001')}
(4) \texttt{(B-A)/10}
(5) \texttt{B+C'B'/(B+B'101'-B)
The symbols SAM and JOE are simply relocatable with the same relocation attribute, and have values $X'0017400A'$ and $X'0016FB63'$ respectively. The symbol BOB is absolute and has value $X'000003E8'$. First, determine the validity of each of the following expressions. Then determine the value and relocation of each of the valid expressions.

1. $2*\text{BOB}+2*\text{SAM}-2*\text{JOE}$
2. $\text{BOB}+(\text{SAM}+\text{BOB})-(\text{JOE}+\text{BOB})$
3. $2*(\text{SAM}-\text{JOE})/5$
4. $\text{SAM}-(B'10000'*(X'0010'*(\text{BOB}-C'H')))$
5. $(2*\text{SAM}-2*\text{JOE})/5$
6. $2*(\text{JOE}-\text{SAM})/(\text{SAM}-\text{JOE})$

8.4.7.(4) Can you think of any reasons why the designers of the Assembler Language did not allow relocatable terms to appear in multiplications or divisions? Assuming that the final value of the term must be either relocatable or absolute, what modifications would be needed to allow such expressions, as in example 6 on page 102?

8.4.8.(1) The symbols A and B are relocatable, and have values $X'0017289E'$ and $X'00173AA6'$ respectively. Determine the value and relocation of these expressions:

1. $B-A$
2. $A+C'$

8.5. Machine Instruction Statement Operand Formats

The operand field entry of a machine instruction statement consists of a sequence of operands separated by commas, and terminated by a blank not enclosed in apostrophes. For example, the operand field entry of the LR machine instruction statement in Examples 8.4.1 through 8.4.3 contains two operands, expressions of value 7 and 3 respectively.

An operand of a $machine$ instruction statement has only one of three possible formats:

- $expr\ expr_1(expr_2)\ expr_1(expr_2,expr_3)$

where “$expr$” is an abbreviation for “expression”, and the subscripts indicate only that each $expr$ can be different from the others. To repeat: operands of machine instruction statements have one of these three formats.

The third operand format has two interesting features. First, the comma between the second and third expressions does not terminate the operand; it merely separates the expressions within the parentheses. Second, the first of the expressions within the parentheses, $expr_2$, may sometimes be omitted, so that

- $expr_1(,expr_3)$

is a valid form of the third operand format. The Assembler will assume that the omitted expression is absolute and has value zero. The format $expr_1(expr_2,)$ is never valid.

Examples of the first $expr$ format are

ABLE $2*(\text{SAM}-\text{JOE})/5\ \ X'6D'$ \ TWO+2 \ *

Examples of the second $expr_1(expr_2)$ format are

ABLE(4) \ $X'6D'(\text{POINTER})\ P(*-*)\ (A-ST)(2+ST)$

Multiplication is not implied in the last example!

Finally, examples of the third $expr_1(expr_2,expr_3)$ format are

$0(255,12)\ 8(,3)\ X(Y-8,Z/2)\ (A-B)(A-B,(A-B))$

Again, no multiplication is implied in any example.
Depending on the machine instruction, one or more operands may be required; for each operand, one or more of the operand formats may be valid. Also, depending on the type of the instruction, there may be restrictions on the value and relocation attributes of the expressions in an operand. One of the most important restrictions is that all operands of a machine instruction statement must either be absolute or simply relocatable; no complexly relocatable expressions are allowed.

For example, a typical RR-type instruction (as in the examples on page 102) has two operands: each must be of the form

\[\text{expr} \]

For such RR-type instructions, the Assembler requires that the expressions must be absolute and have value between 0 and 15.

Exercises

8.5.1.(2) For each of the following operands, determine whether it is of the first, second, or third type. If the operand is invalid, explain why.

1. A+B(5)
2. A+(B+{5})
3. A+C('(C')')
4. A(C',C')
5. 7+(X'BAD'/B'01101')
6. (C('')(C'),',(C'(),'))
7. 0-0(0,0)
8. 0/0(0*0)
9. C''''(A)'*C'A('C''')'-X'C' *C'X')

8.6. Details of Expression Evaluation (*)

While the rules for writing specific machine instruction statement operands will be covered in the later sections as new instruction types are introduced, this view of the rules for valid expressions (stated in the previous section) can be summarized in these diagrams.55

1. An operand can take one of three forms:

```
operand
  ┌──────────┼────────────┐
  │ expr expr expr(expr) expr(expr,expr) │
```

2. An expression can take any of these three items involving a “factor” (this shows how unary + and − signs are described):

```
expr
  ┌────────┼────────────┐
  │ factor ±factor factor±factor │
```

3. A factor can take any of these three forms (this shows how multiplication and division have higher priority than addition and subtraction):

```
factor
  ┌─────────────┼─────────────────┐
  │ primary primary*primary primary/primary │
```

4. A primary is either a term or a parenthesized expression:

55 These five diagrams are pictorial representations of a notation known as “BNF”, which stands for either “Backus Normal Form” (after John Backus, the leader of the team that created the first FORTRAN compiler in 1957), or “Backus-Naur Form” (after John Backus and Peter Naur, who worked on defining the ALGOL language in 1958-1960.)
5. Finally, a term in an expression is one of the following:

- Symbol
- Self-Defining Term
- Location Counter Reference
- Literal
- Symbol Attribute Reference

We haven’t yet described Literals and Symbol Attribute References; they will appear shortly.

The quantities “factor” and “primary” do not appear anywhere in the Assembler Language. They are used here only to help clarify the precedence of multiplication, division, addition, subtraction, and parentheses.

Terms and Definitions

expression
A combination of terms and operators to be evaluated by the Assembler.

expression evaluation
The procedure used by the Assembler to determine the value of an expression.

operator
One of * (meaning multiplication), / (meaning division), + (meaning addition), or − (meaning subtraction). (The Assembler does not support **, which is sometimes used to mean exponentiation.)

term
A symbol, self-defining term, Location Counter reference, literal, or symbol attribute reference.

absolute symbol
A symbol whose value behaves in expressions like a self-defining term. Its value does not change if the assumed origin of the program changes.

Symbol Attribute Reference
A term whose value is that of a symbol’s attribute. The three most important types of Symbol Attribute Reference are length, scale, and integer.

Length Attribute Reference
A term whose value is the length attribute of a symbol.

simple relocatability
A property of a symbol or expression whose value changes by the same amount as a change to the program’s assumed origin.

complex relocatability
A property of a symbol or expression whose relocation attribute is neither absolute or simply relocatable.

Programming Problems

Problem 8.1.(2) Write and execute some test cases with your Assembler to determine whether it allows you to specify a Length Attribute reference of any term, not just for symbols and Location Counter References. Are there any cases that don’t work? (Some test cases you might try are L’2, L’(*-10), L’*, L’ABS425, L’425, L’=F’1’, and L’L’*.)
Problem 8.2. (2) What is the length attribute of an expression? Suppose \(A \) and \(B \) are absolute symbols with value 5 and 3 respectively, and they both have length attribute 1. Determine the value of each of the following expressions: (1) \(L' A*B \), (2) \(A*L'B \), (3) \(L'(A*B) \). Evaluate them on your Assembler. This code fragment may help you start:

```assembly
A Equ 5
B Equ 3
C1 Equ L' A*B
C2 Equ A*L'B
C3 Equ L'(A*B)
```

Try some similar expressions and see what happens.
9. Instructions, Mnemonics, and Operands

We will now see how to write some machine instruction statements, with various instruction formats and examples of actual code sequences. The instructions in Table 16 and their behavior will be discussed in detail later, so don’t worry now about learning the mnemonics, operation codes, or descriptions.

Mnemonics are short abbreviations for a word or phrase describing the action of each operation code. A mnemonic may be as simple as “A” meaning “Add”, or “BXLE”, meaning “Branch on Index Low or Equal”. We will look at several classes of instructions, showing how their operands are written. Abbreviations and notations used to describe operands such as “R₁”, “S₂”, “I₂”, etc., will be explained as we go along.

9.1. Basic RR-Type Instructions

Table 16 illustrates some common RR-type instructions, where “Op” and “Mnem” are abbreviations for “Operation Code” or “Opcode”, and “Mnemonic”.

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnm</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnm</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>04</td>
<td>SPM</td>
<td>Set Program Mask</td>
<td>05</td>
<td>BALR</td>
<td>Branch And Link</td>
</tr>
<tr>
<td>06</td>
<td>BCTR</td>
<td>Branch On Count</td>
<td>07</td>
<td>BCR</td>
<td>Branch On Condition</td>
</tr>
<tr>
<td>0D</td>
<td>BASR</td>
<td>Branch And Save</td>
<td>0E</td>
<td>MVCL</td>
<td>Move Long</td>
</tr>
<tr>
<td>0F</td>
<td>CLCL</td>
<td>Compare Logical Long</td>
<td>10</td>
<td>LPR</td>
<td>Load Positive</td>
</tr>
<tr>
<td>11</td>
<td>LNR</td>
<td>Load Negative</td>
<td>12</td>
<td>LTR</td>
<td>Load And Test</td>
</tr>
<tr>
<td>13</td>
<td>LCR</td>
<td>Load Complement</td>
<td>14</td>
<td>NR</td>
<td>AND</td>
</tr>
<tr>
<td>15</td>
<td>CLR</td>
<td>Compare Logical</td>
<td>16</td>
<td>OR</td>
<td>OR</td>
</tr>
<tr>
<td>17</td>
<td>XR</td>
<td>Exclusive OR</td>
<td>18</td>
<td>LR</td>
<td>Load</td>
</tr>
<tr>
<td>19</td>
<td>CR</td>
<td>Compare</td>
<td>1A</td>
<td>AR</td>
<td>Add</td>
</tr>
<tr>
<td>1B</td>
<td>SR</td>
<td>Subtract</td>
<td>1C</td>
<td>MR</td>
<td>Multiply</td>
</tr>
<tr>
<td>1D</td>
<td>DR</td>
<td>Divide</td>
<td>1E</td>
<td>ALR</td>
<td>Add Logical</td>
</tr>
<tr>
<td>1F</td>
<td>SLR</td>
<td>Subtract Logical</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 16. Typical RR-type instructions
1. Not all of the 64 available bit combinations between \(\text{X}'00' \) and \(\text{X}'3F' \) are used as actual operation codes. For example, IBM has promised not to use \(\text{X}'00' \) as an operation code.\(^{56}\)

2. There are many other RR-type instructions, and several other RR-type instruction formats. The examples that follow generally apply to all such instructions.

9.2. Writing RR-Type Instructions

For most RR instructions, the operand field entry in a machine instruction statement is written

\[R_1, R_2 \]

where the operands “\(R_1 \)” and “\(R_2 \)” designate registers.\(^{57}\) (Some instructions require one or both of the operands to be even numbers, designating even-numbered registers.)

The numeric subscripts “1” and “2” in the quantities “\(R_1 \)” and “\(R_2 \)” distinguish the operand being referenced. Using the terms “first operand”, “second operand”, etc. consistently will help you remember what actions are being performed by each instruction.

To explain the notation “\(R_1, R_2 \)”, refer to the example of a machine instruction statement in Figure 30 on page 80, where the operation and operand field entries were “LR” and “7,3”, respectively. In this case, the “\(R_1 \)” operand is “7” and the “\(R_2 \)” operand is “3”. The quantities \(R_1 \) and \(R_2 \) must be absolute expressions between 0 and 15. Thus, we could just as well have written

\[\text{LOAD LR X}'7', \text{B}'11' \]

For these basic RR-type instructions, the values of the operand field expressions are placed by the Assembler into two adjacent hexadecimal digits, called the “operand register specification digits” in the second byte of the instruction. This second byte was denoted “register specification” in Table 6 on page 54. Table 17 shows the positions of the register specification digits.

<table>
<thead>
<tr>
<th>Table 17. RR-type instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>opcode</td>
</tr>
</tbody>
</table>

For most RR instructions the \(R_1 \) operand specifies the register that at execution time contains the “first operand”. Our notation “\(R_1 \)” means a number specifying the \(R_1 \) digit of an instruction; no reference to general register register 1 (possibly denoted by GR1) is implied. You can of course specify “1” as the value of the \(R_1 \) operand!

We can now see the difference between (1) the “operands” of an instruction statement at assembly time, and (2) the “operands” of a machine instruction at execution time. The operands (first meaning) in the operand field entry of the instruction “LR 7,3” are the single characters 7 and 3, whereas at execution time the operands (second meaning) of the LR instruction will be the data found in general registers 7 and 3. Table 16 shows that the operation code corresponding to the mnemonic LR is \(\text{X}'18' \), so the two-byte instruction generated by the Assembler would be \(\text{X}'1873' \).

Programming with RR instructions is easy. Suppose we wish to compute the sum of the contents of general registers 2 and 14, subtract the contents of GR9 from the sum, and leave the result in GR0. These statements will do the job.

\(^{56}\) \(\text{X}'00' \) has not been assigned as a valid opcode for two reasons. First, unused areas of memory are often set to zero when programs are initialized; programs that try to execute “instructions” from those areas will stop immediately with a program interruption for an invalid instruction. (Sometimes, a programmer will purposely insert a \(\text{X}'0000' \) halfword in a program to force it to stop at an exact position so the contents of registers and memory can be verified.) Also, programs like debuggers sometimes use \(\text{X}'00' \) as “breakpoints” to halt instruction tracing at a specified place.

\(^{57}\) Some instructions have only one or even no explicit operands!
The instructions, their actions, and other properties will be described in subsequent sections.

Exercises

9.2.1.(2) Which of the following are valid register operands for an RR-type instruction?
(a) 0, (b) B’1101’, (c) X’11’, (d) 4*(X’F2’−C’0’)/5+X’E’.

9.2.2.(2) Which of the values in Exercise 9.2.1 are valid operands if the instruction operand requires an even-numbered register?

9.3. Basic RX-Type Instructions

Table 18 shows examples of some frequently-used RX-type instructions. As in Table 16, not all of the 64 available digit combinations between X’40’ and X’7F’ are used as actual operation codes. Again, you needn’t try to remember them here.

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>STH</td>
<td>Store Halfword</td>
<td>41</td>
<td>LA</td>
<td>Load Address</td>
</tr>
<tr>
<td>42</td>
<td>STC</td>
<td>Store Character</td>
<td>43</td>
<td>IC</td>
<td>Insert Character</td>
</tr>
<tr>
<td>44</td>
<td>EX</td>
<td>Execute</td>
<td>45</td>
<td>BAL</td>
<td>Branch And Link</td>
</tr>
<tr>
<td>46</td>
<td>BCT</td>
<td>Branch On Count</td>
<td>47</td>
<td>BC</td>
<td>Branch On Condition</td>
</tr>
<tr>
<td>48</td>
<td>LH</td>
<td>Load Halfword</td>
<td>49</td>
<td>CH</td>
<td>Compare Halfword</td>
</tr>
<tr>
<td>4A</td>
<td>AH</td>
<td>Add Halfword</td>
<td>4B</td>
<td>SH</td>
<td>Subtract Halfword</td>
</tr>
<tr>
<td>4C</td>
<td>MH</td>
<td>Multiply Halfword</td>
<td>4D</td>
<td>BAS</td>
<td>Branch And Save</td>
</tr>
<tr>
<td>4E</td>
<td>CVD</td>
<td>Convert To Decimal</td>
<td>4F</td>
<td>CVB</td>
<td>Convert To Binary</td>
</tr>
<tr>
<td>50</td>
<td>ST</td>
<td>Store</td>
<td>54</td>
<td>N</td>
<td>AND</td>
</tr>
<tr>
<td>55</td>
<td>CL</td>
<td>Compare Logical</td>
<td>56</td>
<td>O</td>
<td>OR</td>
</tr>
<tr>
<td>57</td>
<td>X</td>
<td>Exclusive OR</td>
<td>58</td>
<td>L</td>
<td>Load</td>
</tr>
<tr>
<td>59</td>
<td>C</td>
<td>Compare</td>
<td>5A</td>
<td>A</td>
<td>Add</td>
</tr>
<tr>
<td>5B</td>
<td>S</td>
<td>Subtract</td>
<td>5C</td>
<td>M</td>
<td>Multiply</td>
</tr>
<tr>
<td>5D</td>
<td>D</td>
<td>Divide</td>
<td>5E</td>
<td>AL</td>
<td>Add Logical</td>
</tr>
<tr>
<td>5F</td>
<td>SL</td>
<td>Subtract Logical</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 18. Typical RX-type instructions

9.4. Writing RX-Type Instructions

In this and the following section we will introduce some basic concepts, using RX-type instructions as examples.

The format of an RX-type instruction was shown in Table 7 on page 54. We now look at the parts of the instruction in Table 19 and describe Assembler Language techniques for specifying them.

<table>
<thead>
<tr>
<th>opcode</th>
<th>R1</th>
<th>X2</th>
<th>B2</th>
<th>D2</th>
</tr>
</thead>
</table>

Table 19. RX-type instruction
As noted when we reviewed addressing in Section 5.3 on page 65, three components of an RX instruction are used in computing an Effective Address: the index register specification digit \(X_2 \), the base register specification digit \(B_2 \), and the displacement \(D_2 \). The operand field entries may be written in several ways, but they must yield values for the four needed quantities: \(R_1 \), \(X_2 \), \(B_2 \), and \(D_2 \). Usually, values for all of these items need not be explicitly given; the Assembler can make assumptions about what to provide in cases where values are not explicitly given. When the Assembler provides values for something, we say that the values were “specified by default” or “specified implicitly”.

The operand field entry of RX-type instructions has the general form

\[R_1, \text{address-specification} \]

where “address-specification” will be described next. The operand register specification digit \(R_1 \) is formed according to the same rules given above for the \(R_1 \) and \(R_2 \) digits for RR instructions, and must be an absolute expression with value between 0 and 15.

9.5. Explicit and Implied Addresses

For an explicit address, you supply the base and displacement; for an implied address, the Assembler determines the base and displacement. (Section 10 will show you how it’s done.)

<table>
<thead>
<tr>
<th>Explicit and Implied Addresses</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Explicit: you specify the base and displacement.</td>
</tr>
<tr>
<td>• Implied: the Assembler calculates the base and displacement for you.</td>
</tr>
</tbody>
</table>
How this is done is explained in Section 10.

Suppose we wish to specify \(\text{explicitly} \) the values assigned to \(X_2 \), \(B_2 \), and \(D_2 \): we write the second operand (the “address-specification”) as

\[D_2(X_2, B_2) \]

which is the third of the possible operand formats described in Section 8.5 on page 104. The instructions in examples 4, 5, and 6 of Section 5.4 on page 67 could be written as shown in Figure 34, where the assembled form is on the left, and the Assembler Language machine instruction statement is in the center; the displacements have the same value in each instruction.

430A7468	IC 0,1128(10,7)	\(D_2=1128 \), \(X_2=10 \), \(B_2=7 \)
43007468	IC 0,1128(0,7)	\(D_2=1128 \), \(X_2=0 \), \(B_2=7 \)
43070468	IC 0,1128(7,0)	\(D_2=1128 \), \(X_2=7 \), \(B_2=0 \)

Figure 34. RX Instruction with explicit operands

Compare the machine language form of these three instructions to the fields in Table 19.

The four possible forms of the second operand of an RX instruction are shown below, where we use “\(S_2 \)” to mean an implied address (which need not necessarily refer to a symbol, as we’ll see!).

<table>
<thead>
<tr>
<th>Explicit Address</th>
<th>Implied Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D_2(B_2))</td>
<td>(S_2)</td>
</tr>
<tr>
<td>(D_2(X_2,B_2))</td>
<td>(S_2(X_2))</td>
</tr>
</tbody>
</table>

Table 20. Operands of RX-type instructions

In the two cases where an \(\text{explicit address} \) is written, each of the quantities \(D_2 \), \(X_2 \), and \(B_2 \) must be an absolute expression; \(X_2 \) and \(B_2 \) must have value less than 16, and \(D_2 \) must have value less
than or equal to $4095 = 1'FFF$. The not-indexed form of explicit address implies $X_2 = 0$, as we saw earlier; both indexed addresses specify an index digit.

In the two cases where an implied address is written, the quantity S_2 may be either an absolute or a relocatable expression. This means that we can write instructions such as

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Operands</th>
<th>Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>L 0,ANSWER</td>
<td>R_1,S_2</td>
<td></td>
</tr>
<tr>
<td>L 0,16</td>
<td>R_1,S_2</td>
<td></td>
</tr>
<tr>
<td>LA 2,25*40</td>
<td>R_1,S_2</td>
<td></td>
</tr>
</tbody>
</table>

and let the Assembler assign the proper base and displacement; this is the subject of Section 10. Note that the second operand of the first statement is a symbol (that we assume is relocatable), while the second operand of the other two statements is an absolute expression.

For the moment, suppose the Assembler has sufficient information so that the instruction

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Operands</th>
<th>Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC 0,BYTE</td>
<td>R_1,S_2</td>
<td></td>
</tr>
</tbody>
</table>

is translated into the hexadecimal digits 43007468, as in Figure 34. Then if the index register is GR10, the instruction

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Operands</th>
<th>Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC 0,BYTE(10)</td>
<td>$R_1,S_2(X_2)$</td>
<td></td>
</tr>
</tbody>
</table>

is translated into the hexadecimal digits 430A7468. In the last example in Figure 34 we could have written the second operand with an indexed implied address of the form $S_2(X_2)$, as 1128(7), where the S_2 expression is absolute!

For example, it is common practice to load a small constant into a register using the LA (Load Address) instruction:

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Operands</th>
<th>Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA 2,10</td>
<td>Put 10 in R2</td>
<td></td>
</tr>
</tbody>
</table>

and the operand 10 is an absolute implied address. This will almost never lead to difficulties; but to be absolutely safe, you could write instead

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Operands</th>
<th>Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA 2,10(0,0)</td>
<td>Put 10 in R2</td>
<td></td>
</tr>
</tbody>
</table>

and the operand now specifies an explicit address.

The only way the Assembler can decide among the four forms of address specification in Table 20 is (1) by noting whether a left parenthesis follows the first expression (if not, the address is implied), and (2) if there is a left parenthesis, by noting whether a comma appears before the matching right parenthesis (if so, the address is explicit). There is of course no effect of commas and parentheses in character self-defining terms.

It helps to remember that implied addresses almost always involve relocatable expressions, and explicit addresses always involve absolute expressions. Sometimes we accidentally use a relocatable expression where it should have been absolute, or an absolute expression where it should have been relocatable. The Assembler usually (but not always) diagnoses such errors.

The most common form of address specification is an implied address, where the Assembler computes the proper displacement for us. While we have now seen implied addresses in the context of RX-type instructions, they are used in many other instruction types.

Exercises

9.5.1.(2) In Table 20, use the rules of Section 8.5 to identify the format of each of the four operands.

9.5.2.(2) The following are examples of the second operand of an RX-type instruction (the address-specification). For each operand, determine (1) whether the address is implied or...
explicit, and (2) whether indexing is specified. Assume that the symbols \(A\), \(B\), \(C\) are relocatable with the same relocation attribute, and that the symbol \(N\) is absolute.

1. \(B \cdot X + 1\) \(C\)
2. \(C - A + \frac{B}{2}(N/2)\)
3. \(2 + C \cdot \neg C \cdot \neg C \cdot \neg C + 2(N+N)\)
4. \(B - A(\{(B-A)/2\},\{(B-A)+2\})\)
5. \(C \cdot \neg A + A(\neg \neg \neg 99)\)
6. \(N+N(N,N)\)

9.5.3(2) Assume that each of the operands in Exercise 8.5.1 on page 105 is used in an RX-type instruction. Using the rules in Section 9.5, determine whether the addresses are explicit or implied.

9.6. Typical RS- and SI-Type Instructions

The examples of basic RS-type and SI-type instructions in Table 21 are quite varied in the way you specify their operand fields.

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>STM</td>
<td>RS</td>
<td>Store Multiple</td>
<td>91</td>
<td>TM</td>
<td>SI</td>
<td>Test Under Mask</td>
</tr>
<tr>
<td>92</td>
<td>MVI</td>
<td>SI</td>
<td>Move Immediate</td>
<td>94</td>
<td>NI</td>
<td>SI</td>
<td>AND Immediate</td>
</tr>
<tr>
<td>86</td>
<td>BXH</td>
<td>RS</td>
<td>Branch On Index High</td>
<td>95</td>
<td>CLI</td>
<td>SI</td>
<td>Compare Logical Immediate</td>
</tr>
<tr>
<td>87</td>
<td>BXLE</td>
<td>RS</td>
<td>Branch On Index Low or Equal</td>
<td>96</td>
<td>OI</td>
<td>SI</td>
<td>OR Immediate</td>
</tr>
<tr>
<td>97</td>
<td>XI</td>
<td>SI</td>
<td>Exclusive OR Immediate</td>
<td>88</td>
<td>SRL</td>
<td>RS</td>
<td>Shift Right Single Logical</td>
</tr>
<tr>
<td>98</td>
<td>LM</td>
<td>RS</td>
<td>Load Multiple</td>
<td>89</td>
<td>SLL</td>
<td>RS</td>
<td>Shift Left Single Logical</td>
</tr>
<tr>
<td>8A</td>
<td>SRA</td>
<td>RS</td>
<td>Shift Right Single</td>
<td>8B</td>
<td>SLA</td>
<td>RS</td>
<td>Shift Left Single</td>
</tr>
<tr>
<td>8C</td>
<td>SRDL</td>
<td>RS</td>
<td>Shift Right Double Logical</td>
<td>8D</td>
<td>SLDL</td>
<td>RS</td>
<td>Shift Left Double Logical</td>
</tr>
<tr>
<td>8E</td>
<td>SRDA</td>
<td>RS</td>
<td>Shift Right Double</td>
<td>8F</td>
<td>SLDA</td>
<td>RS</td>
<td>Shift Left Double</td>
</tr>
<tr>
<td>BD</td>
<td>CLM</td>
<td>RS</td>
<td>Compare Logical Characters Under Mask</td>
<td>BE</td>
<td>STCM</td>
<td>RS</td>
<td>Store Characters Under Mask</td>
</tr>
<tr>
<td>BF</td>
<td>ICM</td>
<td>RS</td>
<td>Insert Characters Under Mask</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 21. Typical RS- and SI-type instructions

Some instructions (like “Shift Double”) require a register operand to be an even number.

9.7. Writing RS- and SI-Type Instructions

We will show the operand field formats for RS-type and SI-type instructions separately, as they are quite different.

The RS-type instruction format is similar to RX-type format, except that the \(X_2\) field is replaced by an \(R_3\) field, so no indexing is performed when Effective Addresses are formed.

<table>
<thead>
<tr>
<th>opcode</th>
<th>(R_1)</th>
<th>(R_3)</th>
<th>(B_2)</th>
<th>(D_2)</th>
</tr>
</thead>
</table>

Table 22. Typical RS-type instruction
The operand fields of Assembler Language instructions specifying RS-type instructions are shown in Table 23. There are two forms, one with a single “Rₙ” operand and the other with two, indicated by RS-1 and RS-2 meaning one or two register operands respectively.

<table>
<thead>
<tr>
<th></th>
<th>Explicit Address</th>
<th>Implied Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-1</td>
<td>R₁,D₂(B₂)</td>
<td>R₁,S₂</td>
</tr>
<tr>
<td>RS-2</td>
<td>R₁,R₃,D₂(B₂)</td>
<td>R₁,R₃,S₂</td>
</tr>
</tbody>
</table>

Table 23. Operands of RS-type instructions

Examples of RS-type instructions with explicit and implied addresses are:

- SRA 11,2
- SLDL 6,N
- LM 14,12,12(13)
- STM 14,12,SaveArea+12
- BXLE 4,1,Loop_3

SI-type instructions are different. The I₂ operand is contained in the second byte of the instruction, as in this figure:

<table>
<thead>
<tr>
<th>opcode</th>
<th>I₂</th>
<th>B₁</th>
<th>D₁</th>
</tr>
</thead>
</table>

Table 24. Typical SI-type instruction

Table 25 gives the operand fields of Assembler Language statements involving SI-type instructions:

<table>
<thead>
<tr>
<th></th>
<th>Explicit Address</th>
<th>Implied Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>SI</td>
<td>D₁(B₁).I₂</td>
<td>S₁.I₂</td>
</tr>
</tbody>
</table>

Table 25. Operands of SI-type instructions

Examples of SI-type instructions with explicit and implied addresses are:

- MWI 0(6),C*“
- CLI Buffer,C’0’

Exercises

9.7.1.(2) The following are operand fields could be used in RS- and SI-type instructions. Identify the type of instruction (RS-1, RS-2, or SI) for which they are valid, and the components of the instruction to which each expression applies. State which expressions specify explicit addresses and which specify implied addresses.

(a) 1(2),3
(b) 4,5(6)
(c) 7,8,9
(d) 10,11
(e) 14,15(16)
(f) 100,101
9.8. Typical SS-Type Instructions

Table 26 shows some examples of popular SS-type instructions. The column headed “Len” shows the number of length fields in the instruction.

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Len</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Len</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>MVN</td>
<td>1</td>
<td>Move Numeric</td>
<td>F0</td>
<td>SRP</td>
<td>2</td>
<td>Shift And Round</td>
</tr>
<tr>
<td>D2</td>
<td>MVC</td>
<td>1</td>
<td>Move</td>
<td>F1</td>
<td>MVO</td>
<td>2</td>
<td>Move With Offset</td>
</tr>
<tr>
<td>D3</td>
<td>MVZ</td>
<td>1</td>
<td>Move Zone</td>
<td>F2</td>
<td>PACK</td>
<td>2</td>
<td>Pack</td>
</tr>
<tr>
<td>D4</td>
<td>NC</td>
<td>1</td>
<td>AND</td>
<td>F3</td>
<td>UNPK</td>
<td>2</td>
<td>Unpack</td>
</tr>
<tr>
<td>D5</td>
<td>CLC</td>
<td>1</td>
<td>Compare Logical</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D6</td>
<td>OC</td>
<td>1</td>
<td>OR</td>
<td>F8</td>
<td>ZAP</td>
<td>2</td>
<td>Zero And Add</td>
</tr>
<tr>
<td>D7</td>
<td>XC</td>
<td>1</td>
<td>Exclusive OR</td>
<td>F9</td>
<td>CP</td>
<td>2</td>
<td>Compare</td>
</tr>
<tr>
<td>D8</td>
<td>TR</td>
<td>1</td>
<td>Translate</td>
<td>FA</td>
<td>AP</td>
<td>2</td>
<td>Add</td>
</tr>
<tr>
<td>D9</td>
<td>TRT</td>
<td>1</td>
<td>Translate And Test</td>
<td>FB</td>
<td>SP</td>
<td>2</td>
<td>Subtract</td>
</tr>
<tr>
<td>DE</td>
<td>ED</td>
<td>1</td>
<td>Edit</td>
<td>FC</td>
<td>MP</td>
<td>2</td>
<td>Multiply</td>
</tr>
<tr>
<td>DF</td>
<td>EDMK</td>
<td>1</td>
<td>Edit And Mark</td>
<td>FD</td>
<td>DP</td>
<td>2</td>
<td>Divide</td>
</tr>
</tbody>
</table>

Table 26. Typical SS-type instructions

ED, EDMK, SRP, and the last six instructions in the right-hand column operate on data stored in **packed decimal** format, which is different from the data formats used for the general register and floating-point instructions. We’ll learn about them in Chapter VIII.

9.9. Writing SS-Type Instructions

Most SS-type instructions specify two addresses, and may have one or two length fields depending on whether you must specify the length of only one operand (type SS-1) or of both operands (type SS-2). Their formats are shown in Tables 27 and 29.

As with explicit and implied addresses, you can also specify explicit and implied **lengths** in SS-type instructions. When we use implied lengths the Assembler determines the values put into the length fields of the instruction, often by using the length attribute of a symbol. Implied lengths are very useful, and we’ll see many examples.

This is the format of instructions with a single length field.

<table>
<thead>
<tr>
<th>opcode</th>
<th>L₁</th>
<th>B₁</th>
<th>D₁</th>
<th>B₂</th>
<th>D₂</th>
</tr>
</thead>
</table>

Table 27. Typical type SS-1 instruction with one length field

Addresses and lengths may be specified explicitly or implicitly, as summarized in the following tables. First, we examine the single-length instructions.

<table>
<thead>
<tr>
<th>SS-1</th>
<th>Explicit Addresses</th>
<th>Implied Addresses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explicit Length</td>
<td>D₁(N₁,B₁),D₂(B₂)</td>
<td>S₁(N₁),S₂</td>
</tr>
<tr>
<td>Implied Length</td>
<td>D₁,(B₁),D₂(B₂)</td>
<td>S₁,S₂</td>
</tr>
</tbody>
</table>

Table 28. Operands of type SS-1 single-length instructions
When you write an instruction with an explicit length, you provide a “Length Expression” or “program length”, denoted “N\(_1\)”. The Assembler generates object code with an “Encoded Length” or “machine length” denoted by “L\(_1\)”. This seems strange: why are they different?

The Assembler generates the value of L\(_1\) by subtracting 1 from the value of N\(_1\) (unless N\(_1\) is zero). We’ll see why this is done when we discuss SS-type instructions starting in Section 24.

Some examples of SS-type instructions with a single length field are:

- **MVC O(80,4),40(9) Explicit length and addresses**
- **CLC Name(24),RecName Explicit length, implied addresses**
- **TR OutCh(15),0(12) Implied length, explicit addresses**
- **XC Count,Count Implied length and addresses**

where the symbol OutCh must be absolute. (This form is rarely used.)

SS-type instructions with two length fields have the format shown in Table 29.

<table>
<thead>
<tr>
<th>opcode</th>
<th>L(_1)</th>
<th>L(_2)</th>
<th>B(_1)</th>
<th>D(_1)</th>
<th>B(_2)</th>
<th>D(_2)</th>
</tr>
</thead>
</table>

Table 29. Typical type SS-2 instruction with two length fields

Most more combinations of explicit and implied lengths and addresses are available when you use SS-type instructions with two length fields. Some of the Assembler Language operand field combinations are shown below.

<table>
<thead>
<tr>
<th>SS-2</th>
<th>Explicit Addresses</th>
<th>Implied Addresses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explicit Lengths</td>
<td>D(_1)(N(_1),B(_1)),D(_2)(N(_2),B(_2))</td>
<td>S(_1)(N(_1)),S(_2)(N(_2))</td>
</tr>
<tr>
<td>Implied Lengths</td>
<td>D(_1)(,B(_1)),D(_2)(,B(_2))</td>
<td>S(_1),S(_2)</td>
</tr>
</tbody>
</table>

Table 30. Operands of type SS-2 two-length instructions

You can specify explicit lengths and addresses for either of the two operands; see Exercise 9.9.2.

As noted for SS-1 type instructions, the Encoded or machine lengths L\(_1\) and L\(_2\) are one less than the Length Expressions or program lengths N\(_1\) and N\(_2\). We’ll see these again in Chapter VIII.

Some examples of SS-type instructions with two length fields are:

- **PACK O(8,4),40(5,9) Explicit lengths and addresses**
- **ZAP Sum(14),OldSum(4) Explicit lengths, implied addresses**
- **AP Total(15),Num(12) Implied lengths, explicit addresses**
- **UNPK String,Data Implied lengths and addresses**

The symbols Total and Num must be absolute for the third statement to be valid.

This SS-type instruction copies five bytes from a memory area named AREA to an area of memory named FIELD:

MVC FIELD(5),AREA

Exercises

9.9.1.(2)+ The following operands could be used in SS-type instructions. State the operand for which they may be valid, for both SS-1-type and SS-2-type instructions, and whether a length is explicit or implied. (Validity and form may depend in the relocation attribute of the symbols.)

(a) 1(2)
(b) 4(5,6)
(c) A(L’8)
9.9.2. Make a table to show all possible combinations of explicit and implied addresses, and implicit and implied lengths, for SS-2 type instructions.

9.10. Summary

When describing the fields of both machine instructions and assembler instruction statements, we use notations like S, B, N, L, etc.

- Fields denoted S can be absolute or relocatable expressions, and are most often relocatable.
- Fields denoted B, D, I, L, N, and X must always be absolute expressions.

Terms and Definitions

explicit address
An address in which you specify the base register specification digit and the displacement as absolute expressions.

implied address
An address where you expect the Assembler to assign a base register specification digit and a displacement to an addressing halfword.

explicit length
A length field that you specify explicitly.

implied length
A length field completed by the Assembler based on its analysis of the operand.

mnemonic
A character string representing an instruction, intended to be easier to remember than the operation code of the instruction.

operation code
The z/Architecture definition of an instruction’s bit pattern to be decoded by the CPU to determine what actions it should take.

opcode
An abbreviation for operation code. Occasionally used when the term mnemonic is actually meant.

Length Expression
A value you write in an SS-type instruction specifying the length of the operand(s).

program length
A Length Expression.

Encoded Length
The contents of a Length Specification Byte; one less than the value of the Length Expression (unless the Length Expression is zero, in which case the Encoded Length is also zero).

machine length
An Encoded Length.
10. Establishing and Maintaining Addressability

In Section 5 we saw how the CPU at execution time converts addressing halfwords into Effective Addresses. Now we will see how the Assembler derives addressing halfwords from the values of symbolic expressions at assembly time, and answer the question “How do we help the Assembler create addressing halfwords?”

This important information is provided in the USING assembler instruction statement.

10.1. The BASR Instruction

The RR-type Branch and Save (Register) instruction with mnemonic BASR is frequently used to generate a base address that provides addressability. For now, we consider what happens when we write

\[
\text{BASR } R_1,0
\]

where the second operand register specification digit \(R_2 \) is zero. This instruction when executed replaces the contents of the general register specified by \(R_1 \) by the Instruction Address (IA) portion of the PSW. This address will necessarily be the address of the instruction following the BASR, because the IA was incremented by the BASR instruction’s length (2 bytes) during the fetch portion of the instruction cycle.

In this RR-type instruction (unlike many other RR-type instructions), the zero second operand does not refer to general register zero! Instead, it means that only the described actions will occur without any “branch”, as the “Branch and Save” name implies. (We’ll see in Chapter X that BASR is often used for branching, usually in subroutine linkages.)

Suppose the following short sequence of statements is part of a program that has been assembled and placed in memory to be executed. While we are giving the Assembler Language statements in Figure 35, the assembled contents of memory will be hexadecimal machine language data, as shown in Figure 36 on page 120. Suppose the Program Loader has relocated the program so that the first instruction (the BASR) was placed at memory address \(X’5000’ \).

59 The BASR instruction should be used in place of BALR in most situations; the main difference is that BALR inserts the ILC, CC, and Program Mask in the high-order 8 bits of the first operand register when executing in 24-bit addressing mode. BALR and BASR work the same way in 31-bit addressing mode.
For this and the following examples, the instructions following the BASR are intended just to show how the Assembler creates addressing halfwords. Briefly, their actions are:

- **L** is the mnemonic for the RX-type (4-byte) machine instruction Load. It copies the contents of a 4-byte (word) area of memory and puts it into a general register.
- **A** is the mnemonic for the RX-type (4-byte) machine instruction Add. It adds a copy of the contents of a 4-byte (word) area of memory to the contents of a general register.
- **ST** is the mnemonic for the RX-type (4-byte) machine instruction Store. It replaces the contents of a 4-byte (word) area in memory with a copy of the contents of a general register.
- **DC** (Define Constant) is an Assembler instruction used to create constants. The two DC statements create word binary integers in memory.

The leftmost column in Figure 35 shows the memory address of each instruction and data item.

For now, we’ll ignore what the instructions actually do, and focus on how they are assembled.

Exercises

10.1.1.(2) Use the lengths of the instructions and constants in Figure 35 to calculate their addresses in memory, and determine if the values in the figure are correct.

10.2. Computing Displacements

Now, suppose the program has begun execution. After the BASR has been executed, register 6 will contain X’00005002’. (Remember: BASR places the address of the next instruction into the register designated by the R1 operand.) We can now use the address in register 6 as a base address for the instructions following the BASR, so the base register specification digit in subsequent addressing halfwords should be 6.

We can determine the proper displacement in the L instruction at X’5002’ by using two important values: the known contents of register 6 (X’00005002’) and the address of the word area named N. Using these values, we can now compute a displacement:

\[
X’00005024’ - X’00005002’ = X’022’
\]

Then, the assembled machine language instruction (using opcode X’58’ for the mnemonic L) will be X’58206022’.

When this instruction is executed, its Effective Address is

\[
X’022’ + X’00005002’ = X’00005024’;
\]

the address of the word named N that we want!

If we continue this way for the rest of the statements, the “assembled” machine language instructions and data will give the desired results at execution time. That is, after program loading...
is complete, we want the memory areas starting at address $X'5000'$ to contain the (hexadecimal) machine language data shown under “Assembled Contents” in Figure 36.

<table>
<thead>
<tr>
<th>Address</th>
<th>Assembled Contents</th>
<th>Original Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>5000</td>
<td>0D60</td>
<td>BASR 6,0</td>
</tr>
<tr>
<td>5002</td>
<td>58206022</td>
<td>BEGIN L 2,N</td>
</tr>
<tr>
<td>5006</td>
<td>5A206026</td>
<td>A 2,ONE</td>
</tr>
<tr>
<td>500A</td>
<td>50206022</td>
<td>ST 2,N</td>
</tr>
<tr>
<td>5024</td>
<td>00000008</td>
<td>N DC F'8'</td>
</tr>
<tr>
<td>5028</td>
<td>00000001</td>
<td>ONE DC F'1'</td>
</tr>
</tbody>
</table>

Figure 36. Simple program segment with assembled contents

Remember that when the Assembler processes the BASR statement and produces two bytes of machine language code containing $X'0D60'$, nothing is yet “in” register 6. It is only when this machine language instruction is finally executed by the processor that the desired base address will be placed in register 6.

So far, so good: we have constructed a sequence of instructions that will give a desired result if it is placed in memory at exactly the right place. You might ask “What would happen if the program is put elsewhere by the Program Loader?” So, let’s suppose the same program segment begins at memory address $X'84E8'$, as in Figure 37.

<table>
<thead>
<tr>
<th>Address</th>
<th>Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>84E8</td>
<td>BASR 6,0</td>
</tr>
<tr>
<td>84EA</td>
<td>BEGIN L 2,N</td>
</tr>
<tr>
<td>84EE</td>
<td>A 2,ONE</td>
</tr>
<tr>
<td>84F2</td>
<td>ST 2,N</td>
</tr>
<tr>
<td>850C</td>
<td>N DC F'8'</td>
</tr>
<tr>
<td>8510</td>
<td>ONE DC F'1'</td>
</tr>
</tbody>
</table>

--- the same 22 bytes of odds and ends ---

Figure 37. Same program segment, at different memory addresses

After executing the BASR, register 6 contains $X'000084E8'$. To address the contents of the word named N using register 6 as a base register, the necessary displacement is $X'0000850C' - X'000084E8' = X'022'$

Similarly, the displacement necessary in the “A” instruction is $X'00008510' - X'000084E8' = X'026'$

After completing the three addressing halfwords, the assembled machine language program would appear in memory as shown in Figure 38.

<table>
<thead>
<tr>
<th>Address</th>
<th>Assembled Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>84E8</td>
<td>0D60</td>
</tr>
<tr>
<td>84EA</td>
<td>58206022</td>
</tr>
<tr>
<td>84EE</td>
<td>5A206026</td>
</tr>
<tr>
<td>84F2</td>
<td>50206022</td>
</tr>
<tr>
<td>850C</td>
<td>00000008</td>
</tr>
<tr>
<td>8510</td>
<td>00000001</td>
</tr>
</tbody>
</table>

Figure 38. Same program segment, with assembled contents

The identical machine language program is generated in both Figures 36 and 38. We see that so long as the same fixed relationship is maintained among the various parts of the program segment (there are 22 bytes between the ST instruction and the word named N), the program segment
could be placed anywhere in memory and still execute correctly. That is, the program is relocatable.

Indeed, we could have assumed that the program began at memory address zero (even though an actual program would not be placed there) because the contents of register 6 after the BASR is executed would be X'00000002', and the displacements would be calculated exactly as before.

10.3. Explicit Base and Displacement

Knowing what we need for the assembled program (the machine language instructions shown in Figures 36 and 38), we now write the instruction statements with explicit addresses in their second operands. Register 6 is the base register, and the displacements are those we just calculated. Then we can write the program as in Figure 39, using an assumed origin of zero for the LC. (Remember: we’re describing locations at assembly time, not the execution time addresses we saw in the previous examples.)

<table>
<thead>
<tr>
<th>Location</th>
<th>Name</th>
<th>Operation</th>
<th>Operand</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>BASR</td>
<td>6,0</td>
<td></td>
</tr>
<tr>
<td>0002</td>
<td>BEGIN</td>
<td>L</td>
<td>2,X'022'(0,6)</td>
</tr>
<tr>
<td>0006</td>
<td>A</td>
<td>2,X'026'(0,6)</td>
<td></td>
</tr>
<tr>
<td>000A</td>
<td>ST</td>
<td>2,X'022'(0,6)</td>
<td></td>
</tr>
</tbody>
</table>

---------- 22 bytes ----------

<table>
<thead>
<tr>
<th>Location</th>
<th>Name</th>
<th>Operation</th>
<th>Operand</th>
</tr>
</thead>
<tbody>
<tr>
<td>0024</td>
<td>N</td>
<td>DC F</td>
<td>F'8'</td>
</tr>
<tr>
<td>0028</td>
<td>ONE</td>
<td>DC F</td>
<td>F'1'</td>
</tr>
</tbody>
</table>

Figure 39. Program segment with pre-calculated explicit base and displacements

This example has two shortcomings. First, calculating displacements in advance is tedious (especially in large programs), and certainly error-prone. Second, if the relative positions of the parts of the program change in any way, we will be forced to recalculate some or all of the displacements.

Thus, our first simplification is to find a way to let the Assembler compute the displacements just as we did. Now, however, we can make good use of the values assigned by the Assembler to the symbols BEGIN, N, and ONE. (As noted in Section 7.6 on page 95, the values of the symbols are the values of the LC when the statement is processed.) Referring to Figure 39, the values assigned to the three symbols will be the value of the assumed origin plus X'0002', X'0024', and X'0028', respectively.

The key to this example is that when the program is executing, the base register (register 6) contains the address of the instruction named BEGIN. We use this observation to rewrite the program segment, as shown in Figure 40.

<table>
<thead>
<tr>
<th>Location</th>
<th>Name</th>
<th>Operation</th>
<th>Operand</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>BASR</td>
<td>6,0</td>
<td></td>
</tr>
<tr>
<td>0002</td>
<td>BEGIN</td>
<td>L</td>
<td>2,N-BEGIN(0,6)</td>
</tr>
<tr>
<td>0006</td>
<td>A</td>
<td>2,ONE-BEGIN(0,6)</td>
<td></td>
</tr>
<tr>
<td>000A</td>
<td>ST</td>
<td>2,N-BEGIN(0,6)</td>
<td></td>
</tr>
</tbody>
</table>

---------- the usual 22 bytes ----------

<table>
<thead>
<tr>
<th>Location</th>
<th>Name</th>
<th>Operation</th>
<th>Operand</th>
</tr>
</thead>
<tbody>
<tr>
<td>0024</td>
<td>N</td>
<td>DC F</td>
<td>F'8'</td>
</tr>
<tr>
<td>0028</td>
<td>ONE</td>
<td>DC F</td>
<td>F'1'</td>
</tr>
</tbody>
</table>

Figure 40. Program segment with explicit base and Assembler-calculated displacements

We have eliminated both of the shortcomings of the program segment in Figure 39: the displacements were not calculated in advance, and adding (say) four more bytes of instructions or data preceding the DC statements would not require the rest of the program to be rewritten. However, we have created another nuisance, since every instruction containing a reference to a symbol must now specify two extra items: the symbol BEGIN and the base register (6).
So, we need a way to make the Assembler do the rest of the work for us, after we have told it (1) which base register to use, and (2) the value that will be in it when the program is executed.

10.4. The USING Assembler Instruction and Implied Addresses

The USING assembler instruction provides exactly the information we need. It is written

```
USING base_location,base_register
```

where “base_location” is almost always a relocatable expression. (The base_location is sometimes called the “base”, but it easy to mistake this for the “base_register”.) The “base_register” operand is an absolute expression between 0 and 15, specifying the register to be used as a base register. (Zero is very rarely used.)

Thus, the statement

```
USING BEGIN,6
```

tells the Assembler to assume that register 6 may be used as a base register that at execution time will contain the relocated address of the instruction named by the symbol BEGIN. The Assembler can then calculate displacements relative to the location of BEGIN, and then use this assumption to create addressing halfwords with base register specification digit 6 and the calculated displacements.

We now rewrite the sample program segment of Figure 40 to include the USING statement in Figure 41.

```
BASR 6,0
USING BEGIN,6
BEGIN L 2,N
A 2,ONE
ST 2,N
-----------------------
N DC F'8'
ONE DC F'1'
```

Figure 41. Program Segment with USING Instruction

If the initial LC value is zero, the value of the symbol BEGIN will be X’0002’, and the values of the symbols N and ONE will be X’0024’ and X’0028’ respectively. To complete its derivation of the addressing halfword of the ST instruction, the Assembler needs only to calculate the difference between the location of the symbol N and the base_location of BEGIN specified in the USING instruction:

```
X’0024’ − X’0002’ = X’022’
```

and this is the required displacement.

Similarly, the implied address of the operand ONE of the A instruction has value X’0028’; when the base_location value is subtracted, we find the displacement is X’026’, as before. We say that the Assembler has resolved the implied addresses of the L, A, and ST instructions into base-displacement form. Thus, the machine language generated from this set of statements would appear exactly as in Figures 36 and 38. (Details about how the Assembler computes displacements and assigns base registers is described starting in Section 10.8.)

If the attempted calculation

```
displacement = (operand value) − (base_location value)
```

yields a negative result or a value greater than 4095, the location referred to by the symbol is still not addressable with this base register, and some other solution is needed.\(^\text{60}\)

\(^\text{60}\) Section 20 describes long-displacement and relative-immediate instructions with a larger range of displacement values.
It is clear that the Assembler can make use of the information supplied by the USING statement only for implied addresses. If you provide an explicit base and displacement, the Assembler simply converts them to their proper binary form.

Two important features of the program segment in Figure 41 on page 122 should be noted.

1. The USING instruction does absolutely nothing about actually placing an address into a register; it merely tells the Assembler what to assume will be there when the program is executed.

 That is, your USING statement is a promise to the Assembler that if it computes displacements for you, everything will work properly when the program is executed. (It is very easy to mislead the Assembler, as we’ll see in Section 10.11 on page 131.)

2. If the BASR instruction had been omitted, the contents of register 6 at execution time is probably unknown. There is no guarantee that correct Effective Addresses will be computed when the program is executed.

 Remember!

 A USING statement is your assembly-time promise to the Assembler that your program will obey that promise at execution time.

10.5. Location Counter Reference

The Assembler provides a convenient way to refer to the current value of the Location Counter, the Location Counter Reference. The term * in an expression has the current value of the LC, and is always relocatable.

We can rewrite the first two statements of our sample program as

\[\text{BASR } 6,0 \]
\[\text{USING } *,6 \]

with the same results as before. Remember that after the BASR instruction is assembled, the LC will have a value corresponding to the location of the next byte to be assembled. Because BASR will (at execution time) place the address of the following instruction into register 6, we can use a Location Counter Reference to specify the base_location, and not have to use a symbol (such as the symbol `BEGIN` in Figure 41) to name the instruction following the BASR instruction.

A common technique for specifying base registers in a program is to choose a base register, write the statements

\[\text{BASR } \text{reg},0 \]
\[\text{USING } *,\text{reg} \]

at the beginning of the program, and then carefully avoid modifying that register. For simple programs, specifying and using base registers is very easy.

It’s important to remember that while the value of “*” changes as your program is assembled, the value used in the first operand of the USING statement does not: it has the value of the LC at the time the USING is processed by the Assembler.

Exercises

10.5.1.(2)+ A careless programmer inverted the order of his BASR and USING statements as follows:

\[\text{USING } *,12 \]
\[\text{BASR } 12,0 \]

Why is this wrong? What would you expect to happen?
10.6. Destroying Base Registers

Suppose an error was made in writing the statement with the L instruction, such that it became

```
BEGIN L 6,N  Load contents of N into GR2
```

The comment in the remarks field is correct; the instruction is wrong, because the first operand was incorrectly written as 6 instead of 2.

The assembled program would then appear as in Figure 42.

<table>
<thead>
<tr>
<th>Location</th>
<th>Assembled Contents</th>
<th>Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0D60</td>
<td>BASR 6,0</td>
</tr>
<tr>
<td>0002</td>
<td>58606022</td>
<td>BEGIN L 6,N ←Wrong register!</td>
</tr>
<tr>
<td>0006</td>
<td>5A206026</td>
<td>A 2,ONE</td>
</tr>
<tr>
<td>00A</td>
<td>50206022</td>
<td>ST 2,N</td>
</tr>
<tr>
<td>024</td>
<td>00000008</td>
<td>N DC F'8'</td>
</tr>
<tr>
<td>028</td>
<td>00000001</td>
<td>ONE DC F'1'</td>
</tr>
</tbody>
</table>

Figure 42. Sample program segment with erroneous statement

This program would assemble correctly, since all quantities are properly specified. However, at execution time, things go wrong quickly.

Suppose again that the program is placed in memory by the Program Loader starting at address X'5000', so that when the L instruction is executed, register 6 contains X'00005002'. Now, the L instruction copies a word from memory at the address given by the second operand into the register specified by the first operand. However, the first operand in this case specifies register 6, instead of register 2 as intended. When the Effective Address of the operand named N is calculated during instruction decoding, register 6 contains the correct base address; but when the execution of the L instruction is complete, register register 6 will contain X'00000008' and not X'00005002', because the number at N was placed in register 6.

Now the fun begins. When the next instruction (A) is executed, the Effective Address calculated is

\[X'026' + X'00000008' = X'0000000E' \]

and not X'00005028', where the intended operand is found. In this case the Effective Address is not anywhere within the program, but is somewhere among the predefined fixed fields at the low end of memory; strange numbers will be added to register 2’s initial (and unknown) contents. Finally, the ST instruction will attempt to store a word at X'0000002A', which should cause a storage protection exception. At this point, the program would stop.

This does not mean that if we accidentally destroy the contents of a base register, the CPU will be able to detect the error. (See Exercise 10.6.1.) It is partly a matter of chance how much damage such a program error can cause when the program is executed; indeed, when the CPU finally (if ever) detects an error, all evidence pointing to the offending instruction may have been lost, making error tracing difficult. (Register 6 may have been changed several times!) You must be very careful to guarantee the integrity of the contents of base registers.

Remember also that the Assembler makes no checks for instructions that might alter the contents of registers designated as base registers in USING statements.

Exercises

10.6.1.(3)+ In the erroneous program in Figure 42, consider the possibility that the word at N contained the decimal integer 20450. If the program began in memory at address X'5000', what would be in that area of memory after the ST instruction is executed?
10.7. Calculating Displacements: the Assembly Process, Pass One

Now, we’ll examine more closely how the Assembler computes bases and displacements.

You can visualize assembly as making two passes over the program: that is, the Assembler “reads” the program twice. On the first pass, the Symbol Table is built; on the second pass, data in the Symbol Table is used to help generate the desired instructions and data.

First, you will remember that values are assigned to symbols by the Assembler as follows:

1. A statement is read and examined to determine its general character. It is also saved in a temporary place so it can be read again during the second pass over the program.

2. If the statement will generate instructions or data, the Assembler adjusts the Location Counter (if necessary) to satisfy alignment requirements, so that instructions begin on halfword boundaries, words begin on word boundaries, etc.

3. If a symbol appears in the name field of the statement, it is entered into the Assembler’s Symbol Table, and (if it is not an EQU statement) is given the value of the Location Counter. That is, the symbol is defined, as described in Section 7.6 on page 95. (Of course, it will be an error if the symbol is already in the table with a value; this is called multiple or duplicate definition.)

4. The rest of the statement is scanned; if any other symbols are encountered, they are entered into the Symbol Table (if not there already), but numeric values are not assigned to their attributes. That is, if the symbol is not yet defined, it remains “undefined”.

5. The length of the instruction or data to be generated from the statement is then added to the Location Counter. No data or instructions are generated at this time, however.

This process is repeated for each statement, until the end of the program is reached. Because the Assembler has made a complete scan or “pass” over the program’s statements, this is called “Pass One” of the assembly. At this point the Symbol Table contains all the symbols in the program, whether or not they are defined.

The first assembly pass is sketched in Figure 43, but the sketch is incomplete in many ways. For example, an EQU statement lets you assign a value to a symbol, and that value is taken from the expression in the operand field. Figure 43, however, only shows values being assigned to symbols using the Location Counter. It also omits any description of macro-instruction statements, and how symbols are treated in erroneous statements.
Exercises

10.7.1.(2) In the following program segment, resolve the implied addresses into base-displacement form, and fill in the four blank fields.

<table>
<thead>
<tr>
<th>Loc</th>
<th>Object Code</th>
<th>Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>5000</td>
<td>05A0</td>
<td>BASR 10,0</td>
</tr>
<tr>
<td>5002</td>
<td></td>
<td>USING *,10</td>
</tr>
<tr>
<td>5002</td>
<td>41D0</td>
<td>LA 13,SAVE</td>
</tr>
<tr>
<td>5006</td>
<td>4110</td>
<td>LA 1,PARM</td>
</tr>
<tr>
<td>500A</td>
<td>4DE0</td>
<td>BAS 14, SUB</td>
</tr>
<tr>
<td>500E</td>
<td>50</td>
<td>ST 0, TBL(15)</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>512C</td>
<td></td>
<td>SAVE DS 18F</td>
</tr>
<tr>
<td>5174</td>
<td></td>
<td>PARM DC A(TBL)</td>
</tr>
<tr>
<td>5178</td>
<td></td>
<td>TBL DS 10F</td>
</tr>
<tr>
<td>51A0</td>
<td></td>
<td>SUB STM 14,12,12(13)</td>
</tr>
</tbody>
</table>

Figure 43. Sketch of pass one of an assembly
10.8. Calculating Displacements: the Assembly Process, Pass Two

The Assembler now begins a second pass over the program by retrieving the statements from their temporary storage place. The Assembler creates machine language object code, converting instruction mnemonics to operation codes and using data in the Symbol Table to evaluate all expressions appearing in the statements.

The overall flow of the second pass of the assembly process is sketched in Figure 44. As noted following Figure 43 on page 126 describing the first pass of the assembly, this is a very abbreviated description, so don’t attach great significance to the precise sequence of processing actions implied by the diagram.

![Figure 44. Sketch of pass two of an assembly](image)

When a USING statement is encountered, the Assembler enters the value and relocation attributes of the first operand expression (the base_location), and the value of the second expression (the base_register number), into a USING Table.
Figure 45 shows an example of a USING Table with one entry. The abbreviations “basereg” and “RA” denote respectively the base_register specified in the second operand of the USING statement, and the relocation attribute of the base_location expression from the first operand of the USING statement. For now, the only importance of the relocation attribute is that it indicates whether the symbol is relocatable (RA=01) or absolute (RA=00).

<table>
<thead>
<tr>
<th>basereg</th>
<th>base_location</th>
<th>RA</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>00000002</td>
<td>01</td>
</tr>
</tbody>
</table>

Figure 45. USING Table with one entry

When a subsequent instruction operand contains an implied address, the Assembler compares the value and relocation attribute of that expression to each entry in the USING Table. If a matching relocation attribute is found, and a valid displacement can be calculated from

\[
\text{displacement} = (\text{implied address value}) - (\text{base_location value})
\]

then the Assembler inserts the computed displacement and the corresponding base_register digit into the addressing halfword of the instruction. The Assembler has resolved the implied address into base-displacement form, and the implied address is addressable.

For example, consider the second and third statements in Figure 41 on page 122. If the initial LC value assigned to the program was zero, the USING Table would contain an entry for register 6, with an associated relocatable base_location value of \(\times'00000002' \), the value of the symbol BEGIN illustrated in Figure 45.

When the third statement in Figure 41 is processed, the value of the implied address is the value of the symbol \(N \), or \(\times'00000024' \). The computed displacement is

\[
\times'00000024' - \times'00000002' = \times'022'
\]
as we saw previously, so the completed addressing halfword is \(\times'6022' \).

Here is a way to summarize the description of operand address resolution: at assembly time, the Assembler computes a displacement:

\[
\text{displacement} = (\text{operand_location}) - (\text{base_location})
\]

while at execution time, the CPU reverses this computation:

\[
(\text{operand address}) = \text{displacement} + (\text{base address})
\]

It is important to give correct information in a USING statement because it specifies the intimate connection between the base_location at assembly time and the base address at execution time.

Remember that the difference between assembly-time locations and execution-time addresses in a relocatable program is only a single constant value.

Exercises

10.8.1.(2)+ In the blank fields provided in the six instructions below, show the values and addressing halfwords provided by the Assembler. Assume that the Location Counter values are as shown in the column headed “LOC”.

Assembler Language Programming for IBM z System™ Servers Version 1.00
10.9. Multiple USING Table Entries

You can create more than one entry in the USING Table, so it is possible to have more than one valid resolution of an implied address into base-displacement form. Suppose we add another USING statement to the program, as in Figure 46:

<table>
<thead>
<tr>
<th>Location</th>
<th>Name</th>
<th>Operation</th>
<th>Operand</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>BASR</td>
<td>6,0</td>
<td></td>
<td>Original USING statement</td>
</tr>
<tr>
<td></td>
<td>USING</td>
<td>* ,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0002</td>
<td>BEGIN</td>
<td>L 2,N</td>
<td></td>
<td>Added USING statement</td>
</tr>
<tr>
<td></td>
<td>USING</td>
<td>* ,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0006</td>
<td>A</td>
<td>2,ONE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>000A</td>
<td>ST</td>
<td>2,N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0024</td>
<td>N</td>
<td>DC F’8’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0028</td>
<td>ONE</td>
<td>DC F’1’</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 46. Program segment with second USING statement

For now, we ignore the fact that the contents of register 7 are unknown.

When the second USING is processed, the value of the Location Counter is X’00000006’, so the Assembler makes a second entry in the USING Table, as shown in Figure 47.

<table>
<thead>
<tr>
<th>basereg</th>
<th>base_location</th>
<th>RA</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>00000002</td>
<td>01</td>
</tr>
<tr>
<td>7</td>
<td>00000006</td>
<td>01</td>
</tr>
</tbody>
</table>

Figure 47. USING Table with multiple entries

When the next statement

```
A 2,ONE
```

is processed, two possible valid resolutions are available for the implied address specified by the symbol `ONE`:

- If register 6 is used as a base register, the displacement is $X'00000028' - X'00000002' = X'026'$
- and the addressing halfword would be $X'6026'$ (as in Figure 42).
• If register 7 is used as a base register (again, ignoring the fact that its run-time contents are unknown), the Assembler determines that the displacement is

\[X'00000028' - X'00000006' = X'022' \]

and the addressing halfword would be \(X'7022' \). (Similarly, the ST instruction could have an addressing halfword \(X'701E' \).)

The Assembler must make a choice: which of the two valid resolutions should be selected for the completed machine language instruction?

The Assembler uses these resolution rules:

1. Find all USING table entries whose relocation attribute matches that of the implied address to be resolved.
2. Choose the base register that leads to the smallest displacement.
3. If more than one base register provides the same smallest displacement, choose the corresponding highest-numbered register.

Thus, the assembled program would appear as shown in Figure 48 below:

<table>
<thead>
<tr>
<th>Location</th>
<th>Assembled Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000</td>
<td>0D60</td>
</tr>
<tr>
<td>00002</td>
<td>58206022 Based on register 6</td>
</tr>
<tr>
<td>00006</td>
<td>5A207022 Based on register 7</td>
</tr>
<tr>
<td>0000A</td>
<td>5020701E Based on register 7</td>
</tr>
<tr>
<td>00024</td>
<td>00000008</td>
</tr>
<tr>
<td>00028</td>
<td>00000001</td>
</tr>
</tbody>
</table>

Figure 48. Assembled contents when two USINGs are active

At this point, you could (correctly) observe that this program is seriously flawed, because the contents of GR7 at execution time could be “anything”. When the A and ST instructions are executed, their operand addresses are likely to cause errors (whether or not they are detected immediately!).

The important lesson in this example is that the Assembler has no way of knowing that the information supplied in the statement

\[\text{USING *,7} \]

may not be valid. It can only trust that you have provided correct base_location and base_register data it can use to resolve implied addresses.

10.10. The DROP Assembler Instruction

It is also possible to delete entries from the USING Table. The DROP instruction tells the Assembler to remove the information corresponding to a given register. Its general form is

\[\text{DROP register} \]

where the “register” operand specifies the USING Table entry to be deleted.

For example, if the statement

\[\text{DROP 6} \]

was inserted after the third statement, the L instruction named \text{BEGIN} in Figure 47, the initial USING Table entry for register 6 would be deleted, and the USING Table would appear as in Figure 49:
Another form of the DROP statement is

\texttt{DROP}

with \textit{no} operand! This will cause all USING Table entries to be deleted. While this might seem odd, it's useful: if you have reached a part of your program where no valid base registers will be available at execution time, DROPping all the USINGs will avoid unexpected or unintended resolution of implied addresses in later parts of your program.

\textbf{Exercises}

10.10.1.(1)+ A frustrated programmer wrote the statements

\texttt{DEAD EQU 101}
\texttt{DROP DEAD}

How would you expect the Assembler to deal with this impertinence?

10.10.2.(3)+ For each statement of the following program segment, show what will appear in the USING Table following each USING and DROP statement. Then, use that information to show the assembled machine language object code produced from the program segment. Assume the program segment begins at location $X'4000'$.

\begin{verbatim}
BASR 9,0
USING *,9
L 4,*+54
BASR 10,0
USING *,10
L 3,*+52
DROP 9
L 2,*+48
DROP 10
L 1,10(0,9)
\end{verbatim}

What would be found in register 1 after the last instruction is executed? How does it depend on the address where the instructions are loaded into memory?

\section*{10.11. Addressability Errors}

Addressability errors have many causes. These examples show some of the ways they can arise.

1. An operand value is larger than any USING Table base location value.

\begin{verbatim}
BASR 6,0
USING *,6
L 2,*+5000
\end{verbatim}

Suppose the value of the Location Counter after the BASR instruction is $X'002468'$. This means that the value of the operand $*+5000$ is $X'002468' + X'1388' = X'0037E0'$

and that the calculated displacement (for register 6) would be
\[X'0037E0' - X'002468' = X'1388' \]

which is too large for a 12-bit displacement field. This means the operand is not addressable with 16-bit addressing halfwords.

2. An operand value is smaller than any USING Table base_location value. Again assuming the value of the LC after the BASR instruction is \(X'002468' \):

\[
\begin{align*}
\text{BASR } & 6,0 \\
\text{USING } & *,6 \\
\text{L } & 2,*,^-32
\end{align*}
\]

In this case the operand value is \(X'002448' \), leading to a negative calculated displacement, \(X'FFFFFFE0' \). This means the operand is not addressable with 16-bit addressing halfwords.

3. The USING Table is empty. Suppose a second DROP statement is added after the A instruction in the program shown in Figure 46, specifying register 7:

\[
\text{DROP } 7
\]

Then, the remaining entry in the USING Table would be deleted, and the USING table would appear as in Figure 50 below.

<table>
<thead>
<tr>
<th>basereg</th>
<th>base_location</th>
<th>RA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>empty</td>
<td></td>
</tr>
<tr>
<td></td>
<td>empty</td>
<td></td>
</tr>
</tbody>
</table>

Figure 50. USING Table after second DROP statement

Because there are no entries left in the USING Table, there is no way for the Assembler to resolve the implied addresses of any following instructions, and an addressability error would be noted for those statements.

Exercises

10.11.1.(3)+ Suppose these instructions are assembled and then executed in a program:

\[
\begin{align*}
\text{B } & \text{ BASR } 6,0 \\
& \text{ USING } *,6 \\
& \text{L } 2,*^-32
\end{align*}
\]

What (if anything) would you expect to appear in GR2?

10.12. Resolutions With Register Zero (*)

Although USING statements specifying absolute base_locations are rare, they are allowed; absolute implied address expressions follow the same resolution rules as relocatable expressions. In most cases, there is no entry in the USING Table with an absolute base address, so the Assembler proceeds as though a hidden or implied

\[
\text{USING } 0,0 \ \ \ \ \ \ \ \ \ \ \ \text{Assembler's implicit USING}
\]

is always present. You can think of the USING Table appearing like this:
Thus, an *implied* address such as

\[\text{LA 3,1000} \quad \text{Implied address} = 1000 = X'3E8' \]

would be resolved to the addressing halfword \(X'03E8'\), with base register zero.

In the example in Figure 34 on page 111, we saw an instruction with an absolute implied \(\text{S}_2 \) operand:

\[43000468 \quad \text{IC 0,1128} \]

The generated object code shows that the second operand was resolved with base register zero.

Now, suppose you wrote a USING statement with an absolute base address:

\[
\text{USING 400,9 Base Address = 400 = X'190'}
\]

\[\text{LA 3,1000 Implied address} = 1000 = X'3E8' \]

so the USING Table would look like this:

<table>
<thead>
<tr>
<th>basereg</th>
<th>base_location</th>
<th>RA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>00000000</td>
<td>00</td>
</tr>
<tr>
<td>9</td>
<td>00000190</td>
<td>00</td>
</tr>
<tr>
<td>–</td>
<td>etc.</td>
<td>—</td>
</tr>
</tbody>
</table>

The Assembler follows its usual resolution rules, and finds that there are two valid resolutions with addressing halfwords \(X'03E8'\) and \(X'9258'\). Since the latter provides the smallest displacement, the Assembler chooses the resolution with base register 9! Fortunately, the Assembler will issue a diagnostic message whenever a USING with an absolute operand appears to overlap with its implicit USING \(0,0\) statement.

If the original resolution using base register zero is required no matter what other USINGs are active, the operand should be written explicitly, as

\[\text{LA 3,1000(0,0) Explicit displacement=1000, base=index=0} \]

Thus, we add one further resolution rule when absolute implied addresses have not been resolved according to the three previous rules:

4. If no previous resolution has been completed, *and* the implied operand is absolute *and* has value between 0 and 4095, use General Register 0 as the base register and the value of the implied address expression as the displacement.

This behavior is used often in Assembler Language programs. If any implied address has absolute nonnegative value, a valid displacement can always be computed only if that value does not exceed 4095.\(^{61}\)

\(^{61}\) Section 20 shows how to use a much larger range of displacement values with long-displacement instructions.
According to the rules for evaluating expressions, attempting to compute a displacement for a relocatable symbol using an absolute base_location would require that the displacement be relocatable, which is invalid. That is, a valid displacement cannot be calculated from

\[(\text{absolute} \ \text{displacement} \ = \ (\text{relocatable} \ \text{operand}) - (\text{absolute} \ \text{base}_\text{location}))\ (??)\]

Similarly, an absolute implied address cannot be resolved into base-displacement form using a register whose base_location is relocatable, since a valid displacement cannot be computed from

\[(\text{absolute} \ \text{displacement} \ = \ (\text{absolute} \ \text{base}_\text{location}) - (\text{relocatable} \ \text{operand}))\ (??)\]

It is possible (but not recommended!) to specify USING statements with register zero as the base register, but the Assembler will always assign a base address of zero to register zero.

Exercises

10.12.1.(1) The Assembler tries to resolve absolute implied addresses into an addressing halfword containing a zero base digit, and a displacement of the value of the implied address. Do you think this is desirable? Would you prefer that the Assembler diagnose absolute implied addresses as an error?

10.13. Summary

In summary, the ordinary USING statement provides two major features:

1. A base_location relative to which the Assembler can calculate displacements.
2. A base_register to be used in addressing halfwords of implied addresses whose displacements were calculated as being addressable with this register.

The information conveyed in a USING statement is only, and no more than, a promise that you make to the Assembler. You are asserting that if it uses the base_location and base_register specified in your USING statement to calculate addressing halfwords at assembly time, then the CPU will calculate correct Effective Addresses at execution time.

The rules for resolving implied addresses into base-displacement form can be difficult to remember, and forgetting them can sometimes lead to programming errors that are difficult to correct.

USING Resolution Rules

1. The Assembler searches the USING Table for entries with a relocation attribute matching that of the implied address (which will almost always be simply relocatable, but may be absolute).
2. For all matching entries, the Assembler checks to see if a valid displacement can be derived. If so, it will select as a base register the register that yields the smallest displacement.
3. If more than one register yields the same smallest displacement, the Assembler will select the highest-numbered register as a base register.
4. If no resolution has been completed, and the implied address is absolute, try a resolution with register zero and base zero.

A minor addition to these rules will apply when we discuss instructions with long 20-bit signed displacements in Section 20.

62 When we discuss Dummy Control Sections in Section 39, we will see that there can be times when specifying a zero base register is a reasonable practice.

63 Some programmers note that “USING” is part of “confusing”.
The relocatability attribute of any given symbol almost always has a single value; it won’t matter if we ignore “complex relocatability” situations for now, because they don’t affect addressability. However, it is not unusual for programs to use many different relocatability attributes to correctly describe its symbols.

In Chapter XI we will see powerful extensions to the USING statement—Labeled and Dependent USINGs—that give you much greater control over USING resolutions.

10.13.1. How the Assembler Helps

The Assembler simplifies many programming tasks:

1. It automatically resolves addresses into the base-displacement and other forms used by z System. The Assembler determines the needed base and displacement so that correct Effective Addresses will be computed at execution time.

2. Rather than remembering that operation code X’43’ places a byte from memory into the right end of a general register, a mnemonic operation code IC (“Insert Character”) gives a simple indication of what the operation code does.

3. Symbols let you name areas of memory and other objects in your program.

4. Diagnostic messages help you find possible errors and oversights.

5. The Assembler converts data from convenient external representations into internal forms.

6. It creates relocatable object code to be combined with other programs by the linker.

7. It provides lots of other helpful information such as symbol and register cross-references.

8. Using macro-instructions, you can define your own instruction names to supplement existing instructions, and your macro-instructions can make use of previously defined sequences of statements, including other macros!

9. The High Level Assembler provides an optional summary of all USING Table activity, in the form of a USING Map. If you specify USING(MAP) as part of the parameter string when you invoke the High Level Assembler, it will display all USING and DROP activity for the entire program.

Exercises

10.13.1.(3) Some older assemblers let you redefine symbols in EQU statements. Thus, you could write

```
A Equ 6          Define a value for A
   - - -         Write statements using A’s value
A Equ 32         Define a new value for A
   - - -         Statements using A’s new value
```

How would the assembler’s treatment of the Symbol Table be changed? What would happen if any symbol could be redefined?

Terms and Definitions

USING statement

A promise to the Assembler that addressing halfwords can be derived correctly from the base_location and base address information provided in the instruction.

USING Table

An internal table used by the Assembler to hold information provided in USING instructions.

DROP assembler instruction

An instruction telling the Assembler to eliminate one or more entries from its USING Table.
base_location
The first operand of a USING instruction at assembly time.

base_register
The second operand of a USING instruction at assembly time.

addressability
The ability of the Assembler to calculate a displacement and assign a base register to an implicit addressing expression, using information in the USING Table.

addressability error
The inability of the Assembler to derive an addressing halfword for an implicit operand.

Symbol Table
A table used by the Assembler to hold the names, values, and attributes of all symbols in a program.

Programming Problems

Problem 10.1.(1) Write and assemble a program segment like the one in Figure 41 on page 122, with the following additional statements:

1. Following the last DC statement, place an Assembler instruction statement with the mnemonic END in the operation field.
2. Replace the dotted line that means “twenty-two additional bytes” with an Assembler instruction statement with DS in the operation field and 22X in the operand field.
3. Preceding the first statement place an Assembler instruction statement with the mnemonic START in the operation field, and X’5000’ in the operand field.

Assemble the program, and save the Assembler’s listing. Then, replace the X’5000’ operand in the START statement with the X’84EB’, and re-assemble the program, saving the second listing.
Verify that the assembled machine language program is the same in both listings, and that the same bases and displacements are calculated by the Assembler for all instructions that require them. If time and budget permit, do the same for the programs in Figures 39 and 40.
Chapter IV: Defining Constants and Storage Areas

The three sections of this chapter treat the DC (Define Constant) and DS (Define Storage) assembler instruction statements, and methods used to define data and storage areas in Assembler Language programs.

- Section 11 describes the Assembler’s basic data definition instruction, DC.
- Section 12 discusses the most often-used data types, introduces the powerful constant-referencing mechanism provided by literals, and the LTORG instruction to control their location in your program.
- Section 13 demonstrates methods for defining and describing data areas in ways that simplify data manipulation problems, including the very useful DS, EQU, and ORG instructions.
11. Defining Constants

In the preceding sections we used the DC assembler instruction to create constants in the program. Now, we’ll describe basic rules for defining constants of any type.

z/System supports a very rich variety of data types, and various lengths and precisions can be specified for most of them. Among the “native” data types the Assembler supports are:

1. Fixed-point data (two’s complement binary), signed and unsigned
 - doubleword precision (64 bits)
 - word precision (32 bits)
 - halfword precision (16 bits)
 - byte precision (8 bits)

2. Logical data (binary and hexadecimal)
 - doubleword (64 bits)
 - word (32 bits)
 - one byte (8 bits)
 - varying-length (1 to 256 bytes)

3. Address-valued (3, 4, and 8 bytes)

4. Character data (1 to 256 bytes) in EBCDIC, Graphic (Double-Byte), ASCII, and Unicode formats.

5. Decimal data (sign-magnitude representation)
 - zoned decimal (1 to 16 digits)
 - packed decimal data (1 to 31 digits)

6. Floating-point data (sign-magnitude representation in binary, hexadecimal, and decimal formats)
 - short precision (4 bytes)
 - long precision (8 bytes)
 - extended precision (16 bytes)

64 We’ll investigate some non-EBCDIC character data types in Section 27.
Data for each of these types is defined using the DC (“Define Constant”) assembler instruction, with many options for each type.

Be Careful!

The DC instruction doesn’t really define an unchangeable constant value, because you can change it at execution time. (It’s only constant if you don’t change it!) The instruction might better be called “Define Data with Initial Value”. We’ll see that literals can help you define what appear to be “true constants” in Section 13.9 on page 176.

You will usually write values in data definitions in the external representation most convenient for you. The Assembler then converts the data into the internal form used by your program, the CPU, and other devices.

As indicated in previous examples, a DC assembler instruction statement may have name, operation, operand, and remarks field entries; the operation and operand field entries are required.

11.1. Defining Constants

We’ll start with the F-type constant we saw in several earlier examples. The assembler instruction statement

\[
\text{DC F}^8\text{'}
\]

creates a word binary integer constant (X’00000008’), placed on a word boundary. In this statement, four items were specified or implied:

1. The type of desired conversion from the external form you wrote in the statement, to an internal representation. For type F, the decimal value is converted to a two’s complement binary integer.
2. The nominal value of the constant, the decimal value 8.
3. The length of the constant, which for type F is implicitly four bytes.
4. The alignment in memory of the constant, implicitly on a word boundary for type F.

Some other types of conversion, and the letters that specify the types, are character (C), binary (B), hexadecimal (X), halfword binary integer (H), and address constant (A and Y). Here are examples of some of these types:

\[
\begin{align*}
\text{DC} & \quad \text{H}^8\text{'} \quad \text{halfword binary integer} \\
\text{DC} & \quad \text{C}^8\text{'} \quad \text{character constant} \\
\text{DC} & \quad \text{X}^8\text{'} \quad \text{hexadecimal constant} \\
\text{DC} & \quad \text{B}^8\text{'} \quad \text{binary constant}
\end{align*}
\]

The last three constants are each one byte long, and contain identical bit patterns.

Important to remember

The binary, character, and hexadecimal self-defining terms use the same notation as constants of those types. It can be easy to forget that a self-defining term is just a number, while the operand of a DC statement defines an initial value in storage.

Exercises

11.1.1.(1) Constants of types B, C, and X are written in a form very much like self-defining terms of the same types, as in

\[
\text{DC} \quad \text{B}^8\text{'} \quad \text{binary constant}
\]

Constants with decimal values are written as (for example) F-type constants, as in
Why do you think the designers of the Assembler Language made this choice, rather than allowing you to write this constant in the simpler form

DC 8 ? Alternative to F’8′ ?

11.2. DC Instruction Statements and Operands

The operand field entry contains one or more operands separated by commas. An operand of a DC statement has four parts, with no spaces between them:

1. a duplication factor (if omitted, it defaults to 1)
2. a letter (or pair of letters\(^65\)) specifying the type of representation
3. zero to four modifiers
4. the nominal value of the constant, enclosed in a pair of delimiters. The delimiters are either apostrophes or parentheses, depending on the type of the constant.

Of these four parts, only the second (the type) and fourth (the nominal value) are required. In the example above, F’8′ specifies type F and nominal value 8.

The three important modifier types are length, scale, and exponent.\(^66\) Only length will be discussed here.

<table>
<thead>
<tr>
<th>DC Operands</th>
</tr>
</thead>
<tbody>
<tr>
<td>This may help you remember the order of of the fields: duplication factor ((d)), type ((T)), modifiers ((m)), and nominal value ((V)), where the required type and value are specified in capital letters: (dTmV)</td>
</tr>
</tbody>
</table>

The nominal value part of the operand is specified in different ways for different constant types. For F-type constants, the value is written as a string of decimal digits, preceded by an optional + or − sign and followed by an optional decimal exponent. For B-type constants, the value is expressed as a string of binary digits, so F’110′ and B’110′ are quite different.

The constant type also determines what conversion from external to internal representation should be performed: the internal representations of F’110′ (binary word), X’110′ (hexadecimal constant), E’110′ (short floating-point), Z’110′ (zoned decimal), and P’110′ (packed decimal) are different, even though they all have the same nominal value.

11.2.1. Blanks in Nominal Values

Some constant types delimited by apostrophes (like F’8′) let you put blank spaces between the digits to improve readability. For example, you can write either

```
DC F’12345678′
```

or

```
DC F’12 345 678′
```

We’ll see more examples as we investigate various data types.

\(^65\) We’ll discuss type extensions in Section 12.8.

\(^66\) HLASM supports another constant modifier and attribute, “Program”. It is used almost entirely in conditional assembly macro-instruction statements.
11.3. Boundary Alignment

Many constant types have “natural” boundary alignments. For example, the F-type constant is naturally word-aligned. Other constant types don’t have a natural alignment; Tables 32 and 33 in Sections 12.5 and 12.8 summarize default alignments for many common data types.

There is an important relationship between boundary alignment and the presence of a byte-length modifier, which helps you align constants and data properly. This will be discussed shortly, in Section 11.4.

By default, the Assembler initializes the Location Counter to zero. If you specify an initial LC value at the start of the program, the Assembler rounds it up (if necessary) to a multiple of eight to ensure that the program begins on a doubleword boundary. Then, if a constant must fall on a specific boundary, the Assembler only needs to be sure that the Location Counter is divisible by the proper power of two (such as 2, 4, or 8) at the location of the leftmost byte of the constant.

The Linker and Program Loader respect this assumed alignment for the beginning of the program. This guarantees that data and instructions will be aligned on the desired boundaries when the program is loaded into memory for execution.

Suppose that after a sequence of instructions has been processed, the value of the LC is $X'00012E'$ (on a halfword boundary). If another machine instruction is assembled at this point, it would begin on this halfword boundary between two word boundaries. But if the next statement is instead

```
DC F'8'
```

the Assembler must place it on a word boundary to force the desired alignment.

Generating the four bytes of this constant beginning at the halfword-aligned location $X'00012E'$ could be incorrect, because instructions referring to word constants normally expect the address to be on a word boundary. To avoid alignment errors, the Assembler automatically skips enough bytes to obtain the desired alignment. The LC would be increased to $X'000130'$ (now word-aligned) before the word constant is assembled. The LC has value $X'000134'$ after the constant is processed; it would be $X'000132'$ if automatic alignment was not done.

Automatic alignment is not performed (bytes are not automatically skipped) if:

1. it isn’t needed: that is, the LC happens to fall on the desired boundary; or
2. the type of constant specified doesn’t require alignment, such as types C, B, or X (among others); or
3. a length modifier is present.

You can tell the Assembler to do no boundary alignment even if the constant type normally requires it.

67 We’ll see in Section 17.5 that constants can also have bit-length modifiers, but here we use the term “length modifier” to mean “byte length modifier”.

68 HLASM provides the SECTALGN option to let you specify even more restrictive boundaries. See the High Level Assembler Programmer’s Guide for details.

69 For details, consult the High Level Assembler Programmer’s Guide for the NOALIGN option. However, few programs use this option.
11.4. Length Modifiers

Length modifiers let you specify (within limits) a constant’s exact length in bytes.\(^{70}\) When used, we say that an explicit length was specified.

A length modifier is written immediately following the letter specifying the data type, in the form

\[L_n \quad \text{or} \quad L(\text{expr}) \]

The quantity “\(n\)” is an unsigned, nonzero decimal self-defining term, and “\(\text{expr}\)” is a positive absolute expression enclosed in parentheses. The length modifier specifies the constant’s length. Any symbols appearing in the length modifier expression must be defined before they are used in the length modifier expression, so that it can be evaluated immediately.\(^ {71}\) For example, the statements

\[
\text{DC } \text{FL}3'8' \\
\text{and} \\
\text{DC } \text{FL}(2*4-5)'8'
\]

both cause the three-byte constant \(X'000008'\) to be assembled at the location specified by the Location Counter; no boundary alignment is performed. In practice, length modifiers are used mostly with constants of types C and X, and very rarely with type F and other normally-aligned constants.

Because alignment is automatic only

1. when the length is implied (that is, when no length modifier is given), and
2. for constant types for which alignment is the default action,

the two statements

\[
\text{DC } F'8' \\
\text{and} \\
\text{DC } \text{FL}4'8'
\]

define the same constant, but the first is automatically aligned and the second is not.

When a symbol appears in the name field of a DC assembler instruction statement, boundary alignment affects the symbol’s value. Suppose the value of the LC is \(X'00012E'\) when each of the statements in Figure 51 is encountered.

<table>
<thead>
<tr>
<th>Explicit DC</th>
<th>FL4'8'</th>
<th>Explicit length = 4 bytes, not aligned</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implied DC</td>
<td>F'8'</td>
<td>Implied length = 4 bytes, word aligned</td>
</tr>
</tbody>
</table>

Figure 51. Implied and explicit length specifications

Because no boundary alignment is performed for the first constant, the value of the symbol Explicit will be \(X'00012E'\). For the second constant, two bytes must be skipped to achieve the required word alignment. If we refer to the constant using the symbol Implied, the symbol will have the value of the location of the first byte of the constant, \(X'000130'\).

Symbol definition

When a symbol is defined, it is given its value after bytes are skipped for boundary alignment.

\(^{70}\) It is also possible to specify a constant’s length in bits, using a bit-length modifier. They have specialized uses; we will describe them in Section 17.5 on page 257.

\(^{71}\) Sometimes the Assembler will let you define symbols after they are used in length modifier expressions, but it’s safest to make sure they’re defined before they’re used in length modifiers.
As a general rule, the Assembler never automatically assigns the location of skipped bytes as the value of a symbol. This includes cases where a byte must be skipped to ensure that an instruction begins on a halfword boundary. When bytes are skipped to achieve alignment of a following constant or instruction, the Assembler will insert bytes containing all zero bits into the bytes skipped.

Proper boundary alignments can be important: some instructions require aligned operands. Also, operand misalignment can affect the performance of your applications, because the CPU may need to bring more data from memory than your instruction actually requires.

Exercises

11.4.1.(2) What data is generated by these constants?
(1) DC FL1′-127′
(2) DC FL2′+128′
(3) DC FL3′-99,+99′
(4) DC FL1′+127′

11.4.2.(1)+ For these constants:
(1) DC F′11′,FL3′12′,FL3′13′
(2) DC F′21′,FL2′22′,FL2′22′
(3) DC F′31′,FL4′32′,FL3′33′

on what boundaries are the constants 13, 23, and 33 aligned?

11.5. Duplication Factors and Multiple Operands

A duplication factor (sometimes called a multiplicity, replication, or repetition factor) specifies the number of times the constant or constants in the operand will be duplicated; it is written immediately preceding the letter specifying the constant type. It may be either an unsigned decimal self-defining term, or a nonnegative absolute expression enclosed in parentheses. Any symbols appearing in the duplication factor expression must be defined prior to their use in the duplication factor. For example, both

Three8s DC 3F′8′ Duplication factor 3
and

Three8s DC (5/2+1)F′8′

are equivalent to writing the three statements

Three8s DC F′8′ Three statements
DC F′8′
DC F′8′

You can write more than one operand in the operand field entry of a DC instruction, so you will get the same result by writing

Three8s DC F′8′,F′8′,F′8′ Three operands

Duplication factors apply only to operands, not to statements.

For example, if you write

72 You can find ways to do it if you like, but there’s no real value in doing so. (Why refer to something so uninteresting?)

73 Sometimes the Assembler will let you define symbols after they are used in duplication factor expressions, but it’s safest to make sure they’re defined before they’re used in duplication factors.
DC F’7′,2F’4′,3F’9′
the Assembler generates six word-length, word-aligned constants: one with value 7, two with value 4, and three with value 9.

There are occasionally important uses for DC statement operands with a zero duplication factor. In such a case, the Assembler first skips as many bytes as necessary to properly align the constant specified by the operand, and then generates no data for that operand. This means that the Location Counter is not further incremented for that operand, after alignment (if any). Thus we could generate a word-aligned 4-byte constant with a statement like

DC 0F’0′,FL4’-1′

or even

DC 0F,FL4’-1′

Zero duplication factors are discussed further in Section 13.2 on page 162.

11.6. Multiple Nominal Values

For almost all constant types, the nominal value may actually be a sequence of values separated by commas, as in

Three8s DC F’8,8,8′ One operand, 3 nominal values

This is equivalent to

Three8s DC 3F’8′ One operand, duplication factor 3

and

Three8s DC F’8′,F’8′,F’8′ Three operands

Which format you use is largely a matter of taste and convenience. For example, you could specify a table of constants with a statement such as:

TABLE DC F’1,2,3,4,5,6,7,8,9,10′

Figure 52. Multiple constants

Each generated constant is a word integer, aligned on a word boundary.

In cases where multiple constants are specified, any symbol in the name field (in this example, TABLE) is given the value and Length Attribute associated with the first constant generated.

Exercises

11.6.1.(2) A meticulous programmer determined that 10^9 is the largest power of ten that will fit in a word binary integer, and wanted to define a constant of that value. To ensure that he wrote the constant with the correct number of zeros, he wrote the statement

TEN_to_9 DC F’1,000,000,000′

What would be generated? What would you recommend?

11.6.2.(1) What will be generated by this constant?

DC 2F’1,-1′
11.7. Length Attributes

Although its many benefits will become clear later, we noted in Section 7.3 on page 91 that the Length Attribute of a symbol can be very useful. Its value is determined by the statement in which the symbol is defined.

1. The Length Attribute of a symbol naming an instruction is the length of the instruction. Thus, the Length Attribute of the symbol LOAD in

```
LOAD LR R7,R3  (from Example 8_4_1 on page 102 in Section 8.4.)
```

is 2, and the Length Attribute of the symbol BEGIN in

```
BEGIN L 2,N    (from Figure 35 on page 119)
```

is 4.

2. If a symbol is the name of a DC statement, its Length Attribute is the length of the first generated constant, ignoring duplication factors. Explicit lengths and Length Attributes may be assigned with a length modifier; otherwise the Length Attribute is the implied length. Thus, the three symbols in

```
Implied DC F′8′   (from Figure 51 on page 142)
Explicit DC FL4′8′
ThreeEs DC 3F′8′
```

all have Length Attribute 4.

3. If the symbol names a DC statement whose first operand contains multiple values, the symbol’s Length Attribute is the length of the first generated constant, as noted for the symbol ThreeEs above. Similarly, the Length Attribute of the symbol TABLE in

```
TABLE DC F′1,2,3,4,5,6,7,8,9,10′   (from Figure 52 on page 144)
```

is 4, even though the statement defines constants occupying 40 bytes.

4. If the symbol names a DC statement with more than one operand, the Length Attribute assigned to the symbol is determined from the first operand only, according to the previous rules. Thus,

```
TwoCons DC F′2′,FL2′-2′
```

would assign 4 as the Length Attribute of TwoCons.

5. A symbol defined in an EQU statement to have the value of a self-defining term is assigned a Length Attribute of 1. Thus, the symbol ZILCH in

```
ZILCH Equ 7       (from Example 8_4_2 in Section 8.4.)
```

has Length Attribute 1. (The EQU assembler instruction is described further in Section 13.3 on page 164.)

11.8. Decimal Exponents (*).

Some numeric constants can be simplified by using either a decimal exponent or an exponent modifier. When you want to generate a constant with several trailing zeros, both forms let you omit the trailing zeros.

11.8.1. Decimal Exponents

A decimal exponent is written as part of the nominal value of the constant. Following the numeric portion, write the letter E followed by a signed or unsigned integer. For example:

```
F100A DC F′1E2′  Generates X′00000064′
F100B DC F′1000E-1′ Generates X′00000064′
F1000 DC F′1E3′  Generates X′000003E8′
FBillion DC F′1E9′ Generates X′3B9ACA00′
```
11.8.2. Exponent Modifiers

An exponent modifier is written following the constant’s type, and following any other modifiers. For example:

<table>
<thead>
<tr>
<th>Location</th>
<th>Type</th>
<th>Modifier</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>F100A</td>
<td>DC</td>
<td>FE2’1’</td>
<td>Generates X’00000064’, aligned</td>
</tr>
<tr>
<td>F100B</td>
<td>DC</td>
<td>FE-1’1000’</td>
<td>Generates X’00000064’, aligned</td>
</tr>
<tr>
<td>F100C</td>
<td>DC</td>
<td>FL4E2’1’</td>
<td>Generates X’00000064’, unaligned</td>
</tr>
<tr>
<td>F1000A</td>
<td>DC</td>
<td>FE3’1’</td>
<td>Generates X’000003E8’, aligned</td>
</tr>
<tr>
<td>F1000B</td>
<td>DC</td>
<td>FL3E3’1’</td>
<td>Generates X’000003E8’, unaligned</td>
</tr>
<tr>
<td>FBillion</td>
<td>DC</td>
<td>FE9’1’</td>
<td>Generates X’3B9ACA00’, aligned</td>
</tr>
</tbody>
</table>

You can write constants with both an exponent modifier and a decimal exponent in the nominal value; the power of 10 applied to the numeric portion of the nominal value is the sum of the two. For example:

<table>
<thead>
<tr>
<th>Location</th>
<th>Type</th>
<th>Modifier</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>F100A</td>
<td>DC</td>
<td>FE1’E1’</td>
<td>Generates X’00000064’</td>
</tr>
<tr>
<td>F100B</td>
<td>DC</td>
<td>FE-1’E3’</td>
<td>Generates X’00000064’</td>
</tr>
<tr>
<td>F1000A</td>
<td>DC</td>
<td>FE-7’E10’</td>
<td>Generates X’000003E8’</td>
</tr>
<tr>
<td>FBillion</td>
<td>DC</td>
<td>FE5’E4’</td>
<td>Generates X’3B9ACA00’</td>
</tr>
</tbody>
</table>

We’ll see more about scale and exponent modifiers in Section 32.3, on page 561.

Exercises

11.8.1.(2) Show the constants generated by these statements, indicating which are aligned by default and which are not.

(1) DC FE1’E3’
(2) DC FE-1’E5’
(3) DC FL2E2’E2’
(4) DC FL4’E8E’

11.8.2.(1) Rewrite the intended constant in Exercise 11.6.1 using (a) a decimal exponent and (b) an exponent modifier.

11.8.3.(2)+ In following program segment, determine the values assigned to the Location Counter in the last four statements. Then complete the “Object Code” column for the four statements with spaces provided.

<table>
<thead>
<tr>
<th>Location</th>
<th>Object Code</th>
<th>Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>000000</td>
<td>Ex11_8_3 START 0</td>
<td></td>
</tr>
<tr>
<td>000000</td>
<td>05F0 BALR 15,0</td>
<td></td>
</tr>
<tr>
<td>000002</td>
<td>USING *,15</td>
<td></td>
</tr>
<tr>
<td>000002</td>
<td>L 2,X</td>
<td></td>
</tr>
<tr>
<td>000006</td>
<td>A 2,Y</td>
<td></td>
</tr>
<tr>
<td>0000A</td>
<td>S 2,Z</td>
<td></td>
</tr>
<tr>
<td>0000E</td>
<td>ST 2,RESULT</td>
<td></td>
</tr>
<tr>
<td>00012</td>
<td>PRINTOUT RESULT,*</td>
<td></td>
</tr>
<tr>
<td>000038</td>
<td>DUMMY DC OCL16’GARBAGE’</td>
<td></td>
</tr>
<tr>
<td>———</td>
<td>X DC F’2’</td>
<td></td>
</tr>
<tr>
<td>———</td>
<td>Y DC F’15’</td>
<td></td>
</tr>
<tr>
<td>———</td>
<td>Z DC F’3’</td>
<td></td>
</tr>
<tr>
<td>———</td>
<td>RESULT DC F’0’</td>
<td></td>
</tr>
</tbody>
</table>
Terms and Definitions

constant type
A letter specifying the internal data representation for a generated constant.

nominal value
The value you write between delimiters or value separators to specify the assembled value of a constant.

boundary alignment
The Assembler’s action in incrementing the Location Counter so that its value is adjusted to the boundary required by an instruction or by a constant operand.

duplication factor
The number of times a constant operand should be assembled.

modifier
A value following the constant type, specifying other information about the constant’s Length, Scale, and Exponent.

length modifier
A modifier specifying the exact length to be used for a constant, rather than its default length.

exponent modifier
A modifier specifying a positive or negative power of ten to be multiplied by the nominal value of a constant.

decimal exponent
A letter E attached at the end of the digits of a constant, followed by a positive or negative integer giving the power of ten by which the value of the digits is multiplied.
12. Basic Constants

We now use the general rules of the previous section to describe seven basic constant types used in many programs — F, H, A, Y, C, B, and X — and the useful form of constants called “literals”.

12.1. F-Type and H-Type Constants

We saw the F-type constant in earlier examples, so we will just summarize its properties here. The implied length is four, and the default alignment is to a word boundary. If an explicit length is specified, no alignment is performed and the length may be between 1 and 8 bytes. The nominal value of the constant is an optionally signed string of decimal digits. Thus, you can write

```
DC FL1' -10' Generates X'F6', not aligned
DC FL8' -10' Generates X'FFFFFFFFFFFFFFF6', not aligned
```

The H-type constant is similar to type F, specifying two’s complement binary integer conversion to a 16-bit integer in two bytes aligned on a halfword boundary. Thus

```
DC H' -10'
```

places the constant X’FF6’ on the next available halfword boundary. If an explicit length is given, there is no difference between constants of types F and H, so that FL3’8’ and HL3’8’ produce identical results.

As we saw in Section 11.8, a decimal exponent can be specified in the nominal values in F- and H-type constants. It is written as the letter E followed by an optionally signed decimal integer, as in

```
DC F' -43E+6' -43x10**6, generates X'FD6FFD40'
```

The decimal exponent specifies the power of ten by which the preceding value is multiplied. You could define a table of the first six powers of ten with either of the following two statements:

```
Powers10 DC F'1,10,100,1000,10000,100000'
Powers10 DC F'E0,E1,E2,E3,E4,E5'
```

Figure 53. F-type constant with decimal exponent
To improve readability, you can insert blanks among the digits of F-type and H-type constants (remember: not in decimal self-defining terms!):

\[
\text{Powers10 DC } \ F'1, 10, 100, 1\ 000, 10\ 000, 100\ 000'
\]

In practice, decimal exponents are used mainly in floating-point constants, which we’ll discuss in Chapter IX.

You may sometimes want to create unsigned or logical binary integers constants, as described in Section 2.6 on page 27. You can define such integers by preceding the nominal value of the constant with the letter “U”, as in these examples:

\[
\begin{align*}
\text{DC } & \ F'U2147483648' \quad \text{X'80000000' } +2^{31} \\
\text{DC } & \ H'U65535' \quad \text{X'FFFF' } +2^{16} -1 \\
\text{DC } & \ F'U4294967295' \quad \text{X'FFFFFFFF' } +2^{32} -1 \\
\text{DC } & \ H'1.U2' \quad \text{X'00010002' Mixed signed and unsigned} \\
\text{DC } & \ H'\ -1.032768' \quad \text{X'FFFF8000' Mixed signed and unsigned}
\end{align*}
\]

No signs are allowed either before or after the “U”.

Exercises

12.1.1.(1) In Exercise 11.6.1 on page 144, our friend wanted to define a word binary integer constant with value 10^9. Help him by rewriting the constant with a decimal exponent.

12.1.2.(1) Suppose you modified your table of powers of 10 to generate the first six negative powers, as in

\[
\text{Powers10 DC } F'1E-0,1E-1,1E-2,1E-3,1E-4,1E-5'
\]

What values will be generated?

12.1.3.(2) Suppose you need a halfword constant with value 1/2, so you write

\[
\text{Half DC } H'5E-1'
\]

What do you think will be generated?

12.1.4.(1) What will be generated if you write

\[
\text{DC } F'2147483648'
\]

12.1.5.(2) What would happen to the Location Counter values in Figure 35 on page 119 if there were now 24 bytes (instead of 22 bytes) between the ST instruction and the first DC instruction?

12.1.6.(9) Show the object code generated for these statements:

\[
\begin{align*}
\text{DC } & \ F'\ -2147483620'
\text{DC } & \ H'-32594'
\text{DC } & \ F'+2147483260'
\end{align*}
\]

12.2. A-Type Address Constants

The type A address constant, sometimes called an “adcon”, has great power and broad applicability in Assembler Language programs. An address constant is written differently from the other types we have considered, because the nominal value is delimited by parentheses, as in A(10), rather than by apostrophes. Address constants are particularly useful because the nominal value
within the parentheses may be any expression, either absolute or relocatable. Understanding relocatable address constants involves considering Linker and Program Loader processing, as we will see in Section 39.

A special case where the nominal value of an A-type constant contains a Location Counter Reference is described in Section 13.6 on page 171.

A-type and F-type constants have similarities: a length of four bytes and word boundary alignment are implied. An explicit length suppresses alignment; thus A(10) and F’10’ are equivalent operands, as are AL4(10) and FL4’10’ . The major difference is that you can write expressions as the nominal value of constants like A(X'00012E') and A(1+C'). In some contexts, these may be much more natural or convenient than the equivalent F-type constants F’302’ and F’76’.

A-type address constants are especially useful when we want to define word-aligned constants with types not ordinarily aligned by the Assembler. For example, if we need a word containing 1-bits in the rightmost 12 positions and zeros elsewhere, we could write

\[\text{DispMask DC A(X'FFF')} \times '00000FFF' \]

If we had written this DC’s operand field as XL4’FFF’ instead, we can’t guarantee it will be word aligned, even though the same four bytes are generated. Similarly, a word containing the EBCDIC representation of the letter A could be written

\[\text{AConst DC A(C'A')} \times '000000C1' \]

This is easier to read than F’193’, even though the same constant is generated. A constant like

\[\text{Word DC A(C'WORD')} \times 'E6D6D9C4' \]

can be used as a word-aligned “character” constant.

Using such expressions can greatly simplify programming tasks. For example, you can define constants using operands such as

\[\text{Con425 DC A(ABS425)} \]

where the symbol ABS425 may have been defined in an EQU statement (as in Section 7.6 on page 95) to have a known value. We will see that this technique can provide clarity and simplicity in your programs.

Address constants let you define an area that will contain the actual address of a byte in memory when the program is executed. For example, suppose we have written a program that requires the address of the word integer constant with value 8, in Figure 51 on page 142. We can define the necessary address constant with the statement

\[\text{Con8Addr DC A(Implied)} \]

Exercises

12.2.1.(2) Show the generated constant for each of these address constants:

1. \[A(X'213'+C'*-B'11') \]
2. \[A(92*X'F') \]
3. \[A(5*C'0'/C') \]

The name “address constant” can be somewhat misleading, because the generated data need not be an address!
12.3. Y-Type Address Constants

Y-type address constants bear the same relationship to A-type adcons as H-type constants bear to F-type constants, except that relocatable Y-type adcons are almost never used. The Y-type adcon has an implied halfword length and alignment, and is identical to the A-type adcon if an explicit length is specified. For example, the operands H'10' and Y(10) in DC statements define identical 2-byte constants, and the operands YL1(10), AL1(10), HL1'10', and FL1'10' all generate X'0A'.

If we assume that the symbol Implied is relocatable (as in Figure 51 on page 142), then the statement

```
BadCon DC Y(Implied)
```

would fail at linking time, because 3 or more bytes will be required to hold the execution-time address of Implied.

The main use of Y-type constants is for symbolically-defined constants such as

```
DC Y(ABS425)
```

or

```
DC Y(C'A')
```

where the equivalent of a halfword integer is desired. Y-type constants are most often used this way: to create a halfword value depending on an absolute expression.

Other address constant types are V, S, and Q. V-type constants are very similar to A-type constants, and will be treated when we discuss external subroutines in Chapter X. Q-type constants will be described when we examine external data structures. The S-type constant generates an addressing halfword that need not be part of an instruction: the value of the operand expression is resolved into base-displacement form. We’ll defer these types to later sections.

Exercises

12.3.1.(1) What hex data will be generated by these constants?

```
DC Y(C'A')
DC Y(X'F*C'B')
DC Y(B'101'*729/C'&&')
```

12.3.2.(3) An S-type address constant is occasionally useful. It has a length of two bytes, which may be implied or explicit. It is almost always aligned on a halfword boundary. The unusual property of this constant is that

```
S(expression) or S(expression(expression))
```

is resolved into an *addressing halfword*. For the first (implied address) format, sufficient USING information must be available to the Assembler so that it can resolve the expression into base-displacement form.

Assuming that A is a relocatable symbol and that N is an absolute symbol, determine the validity of each of the following constants:

1. \(S(A+N)\)
2. \(S(A(N))\)
3. \(S(N(7))\)
4. \(S(7(N))\)
5. \(S(N)\)

For which of these constants will the result depend (a) on USING information, and (b) on the values of the symbols?
12.4. Constants of Types C, B, and X

Constant types C, X, and B differ in an important way from types F, H, A, and Y: \textit{no defaults are assumed for either length or alignment.} For example, the five bytes required to store the constant generated by the statement

\begin{verbatim}
DC C'12345'
\end{verbatim}

will be placed by the Assembler at the next available location given by the current value of the LC. If a particular boundary alignment is desired, we use a DC or DS statement with zero duplication factor, as we'll see in Section 13.2 on page 162.

We write these three constant types almost the same way we write character, hexadecimal, and binary self-defining terms, but the limits on length and value are different. Self-defining terms are restricted to the range between \(-2^{31}\) and \(+2^{31}-1\) while much longer constants can be defined with the DC instruction.\footnote{Remember: decimal self-defining terms are always nonnegative!} For example, you can define constants as shown in Figure 54.

\begin{verbatim}
CharCon DC C'This is a long character constant'
Digits DC X'8462AFCB975310'
ManyBits DC B'001011011100011001111011010001011101001'
\end{verbatim}

Figure 54. Character, hexadecimal, and binary constants

Note that blanks can be used to separate groups of digits in hexadecimal and binary constants (but not in self-defining terms!) to improve readability. Thus we could write

\begin{verbatim}
Digits DC X'84 62AF CB97 5310'
ManyBits DC B'0010 1110 1110 0011 0011 1101 1010 0010 1110 1001'
\end{verbatim}

The data generated for character (type C) constants is converted to 8-bit bytes using the EBCDIC representation shown in Table 13 on page 89. Blanks characters are part of the nominal value, of course! The special rules concerning the apostrophe and ampersand in character self-defining terms also apply to character constants: for each ampersand or apostrophe to appear in the generated constant, a pair of ampersands or apostrophes must appear in the nominal value between the delimiting apostrophes. For example:

\begin{verbatim}
DC C'''' Generates X'7D'
DC C'&&' Generates X'50'
DC C'&&&&&& Generates X'5050507D'
\end{verbatim}

In Section 7 we noted that the value of a character self-defining term is determined by right-adjusting the term in a 32-bit binary field. However, a character constant is generated by starting at the left end of the character string, and encoding the necessary characters byte by byte. We sometimes say that each byte of a C-type constant contains a character, but it is more precise to say that it contains the 8-bit encoding used to represent the character internally.\footnote{Character representations have many encodings: some are 8, 16, or 32 bits long, and others vary between 1 and 4 bytes! We'll meet some of them in Section 26.}

Unlike F- and H-type constants, the implied length of C-, B-, or X-type constants is not a fixed number. Because no length modifier is present, the two constants

\begin{verbatim}
Star1 DC C'*'
Star2 DC C'*'
\end{verbatim}

have implied lengths as shown. The Assembler determines the \textit{minimum} number of bytes needed to hold the nominal value of the constant, and assigns that as the implied length of a symbol naming the constant.

This rule also applies to continued constants. For example, in
ManyChar DC 'An example of a very long string of characters intended to illustrate the length attribute of a constant that extends over many lines.'

the symbol ManyChar has length attribute 134; you certainly don’t want to count the characters in each line manually (and possibly make a mistake). It’s much easier to use the Assembler’s Length Attribute, as in L’ManyChar, and know it’s correct.

If we write a statement like

CharData DC 0C 'Characters'

the zero duplication factor means that no data will be generated. (We’ll discuss this in Section 13.2.) However, the symbol CharData will have Length Attribute 10, the length of the nominal value. This method of assigning a Length Attribute to a symbol without necessarily reserving space is often useful.

We will see in Section 27 that the Assembler can generate character constants in other representations such as ASCII and Unicode.

Exercises

12.4.1.(1) What are the implied lengths of the constants in Figure 54?

12.4.2.(2) How many input lines would be needed to write an Assembler Language statement that defines a B-type constant with an implied length of 100 bytes?

12.4.3.(1) How can you specify multiple values in a single operand of a C-type constant?

12.4.4.(2) A four-byte area of memory contains the digit pattern X’4040405C’. What is represented by that pattern? (You should be able to describe two different possibilities.)

12.4.5.(2) Suppose you define the constant

DC 4C

What is its value if these 4 bytes are thought to represent a binary integer?

12.4.6.(1) What is generated for these constants?

(1) DC B’11110001’
(2) DC B’000011111’
(3) DC X’0123456’

12.4.7.(2) What constants are generated from these statements:

1. DC C’A’ B&’C’
2. DC C’’B&B’ C’
3. DC C’ABCF’’

12.4.8.(1) A programmer wanted to generate 16 bytes of EBCDIC characters representing the 16 possible values of a hexadecimal digit, and wrote

Can you save some effort for him, and write this in a simpler way?

12.4.9. What constants are generated by these statements? Explain any differences.
12.4.10. For each of the following sets of statements, the value of the Location Counter is X'000743' when the Assembler encounters the first statement. Give the value and length attributes of all symbols (but not the generated object code).

(1) A DC AL3(A)
 B DC A(8)

(2) C DC C
 D DC C

12.4.11.(1)+ The constant
DC CL4'345'
generates which of these constants?
1. X'00000345'
2. X'00000159'
3. X'F3F4F540'
4. X'00F3F4F5'

12.5. Padding and Truncation

The Assembler must decide what to do if
1. a constant is too large to fully occupy the number of bytes allocated for it (whether an explicit length modifier or the default length is used), so some (possibly significant) bits must be truncated, or
2. a constant is too small, so the generated value must be padded to fit in the allotted space.

Some examples are given in Table 31, with the generated constants. Most of the padded constants could have been fit into smaller fields, if you needed desperately to save a few bytes.

<table>
<thead>
<tr>
<th>Truncation</th>
<th>Padding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value too large</td>
<td>Assembled Value</td>
</tr>
<tr>
<td>H'65537'</td>
<td>X'00001' (with error!)</td>
</tr>
<tr>
<td>FL1'+300'</td>
<td>X'2C' (with error!)</td>
</tr>
<tr>
<td>CL3'SMITH'</td>
<td>X'E2D49' (C'SMI')</td>
</tr>
<tr>
<td>XL2'56789'</td>
<td>X'6789'</td>
</tr>
<tr>
<td>BLI'100100100'</td>
<td>X'24' (B'00100100')</td>
</tr>
<tr>
<td>AL2(X'789AB')</td>
<td>X'89AB'</td>
</tr>
<tr>
<td>YLI(X'124')</td>
<td>X'24'</td>
</tr>
</tbody>
</table>

Table 31. Examples of truncated and padded constants
For all of the constants on the left, some part of the value must be truncated to make it fit in the allotted space, since there is an implied or explicit length in each case. For all these constant types except C, excess information is dropped at the left end of the constant, and the rightmost portion is assembled. For character constants, the excess is trimmed off the right end, as in the CL3’S M I ′ example above, generating C S MI ′. Truncated F- and H-type constants are considered errors by the Assembler.

For the constants on the right side of Table 31 on page 154, more space is allotted either explicitly or implicitly than is needed to hold the significant bits of the given constants. For types H and F, the assembled value is simply the rightmost part of the two’s complement representation in which the sign bit has been extended to the left. In the character constant CL3’S ′, the single letter “S” has been padded on the right with two EBCDIC blanks (with representation X′40′) to fill out the constant to the required length of three bytes, generating C S′••′.77

As mentioned in Section 12.4 on page 152, no default length is assumed for constants of types C, X, and B. In the absence of explicit lengths, the Assembler uses just enough bytes for the constant to ensure that no information is lost, and no more. Thus the lengths of the three constants in Figure 54 on page 152 are 33, 7, and 5 bytes respectively; no information is lost, and no padding was required.78

Table 32 summarizes some of the rules for writing operands in DC instructions. A complete set of rules is given in the High Level Assembler Language Reference. (We’ll discuss V-type address constants in Chapter X.)

<table>
<thead>
<tr>
<th>Type</th>
<th>H</th>
<th>F</th>
<th>Y</th>
<th>A</th>
<th>V</th>
<th>B</th>
<th>C</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Length</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>256</td>
<td>256</td>
<td>256</td>
</tr>
<tr>
<td>Implied Length</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Implied Alignment</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>none</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>Value Specified by</td>
<td>dec</td>
<td>dec</td>
<td>absexpr</td>
<td>expr</td>
<td>symbol</td>
<td>bin</td>
<td>char</td>
<td>hex</td>
</tr>
<tr>
<td>Delimiters Used</td>
<td>′′</td>
<td>′′</td>
<td>()</td>
<td>()</td>
<td>()</td>
<td>′′</td>
<td>′′</td>
<td>′′</td>
</tr>
<tr>
<td>Truncation, Padding</td>
<td>left</td>
<td>left</td>
<td>left</td>
<td>left</td>
<td>left</td>
<td>right</td>
<td>left</td>
<td></td>
</tr>
<tr>
<td>Multiple Values</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
</tbody>
</table>

Note: * The implied length is the minimum number of bytes required to contain the data.

Table 32. Truncation/padding rules for some DC operands

Section 12.8 on page 159 shows some type extensions that let you write longer constants with stricter default alignments.

Exercises

12.5.1.(2)+ What will the Assembler generate for these two statements? Will the results be different? If so, why?

```
DC CL2′ABC′
DC AL2(C′ABC′)
```

12.5.2.(2)+ Show what will be assembled for each of the following DC statement operands:

(1) F′1000′, (2) H′1000′, (3) B′1000′, (4) XL1′1000′, (5) CL1′1000′, (6) AL1′1000′, (7) YL3′1000′. Describe the boundary alignment of each.

12.5.3.(2)+ What will be generated for these constants?

77 Remember that we use the • character to represent a blank space.
78 I trust you completed Exercise 12.4.1 before reading this sentence!
12.5.4.(2) The statement preceding Table 31 says that some of the constants can be fit into smaller fields. Which ones cannot?

12.6. Literals

We often define data meant to be used only as a constant: it should not be modified during program execution. In the sample program in Figure 35 on page 119, the two quantities in the words named N and ONE are defined by DC instructions, but we expect the symbol ONE to mean that the contents of that word retains the value +1 throughout program execution.\(^9\)

Literals are a simple and convenient way to simultaneously define constants and refer to them. A literal is a special kind of symbol: the contents of the storage area named by the literal is defined by the “symbol” itself.

A literal is written as an equal sign (=) followed by characters conforming to the rules for a single operand of a DC instruction. These are examples of literals:

\[
\begin{align*}
=\text{F}'1' & \quad =\text{C}'\text{LongLiteral}' \\
=\text{H}'1' & \quad =\text{CL}'\text{BLANK&}' \\
=\text{A}(1) & \quad =\text{F}'1,2,3,4' \\
=\text{H}'1' & \quad =\text{CL}'\text{BLANK&}' \\
\end{align*}
\]

Literals may be used in most places where symbols are permitted, with the following exceptions:

1. The Assembler indicates an error if an instruction obviously tries to store into or otherwise modify a constant defined by a literal: thus,

\[
\text{ST} \ 7,=\text{F}'1'
\]

is invalid, even though it’s easy to modify “constants” created by the DC assembler instruction statement without any assembly-time indication. (This error detection at assembly time is what makes literals “more constant” than the “constants” defined by DC statements.)

2. A literal may not be specified in an address constant, so that \(A(=\text{F}'1')\) is invalid.

3. Multiple operands may not be specified, but multiple values may; thus

\[
\text{LM} \ 1,2,=\text{F}'1,2'
\]

is valid, but both

\[
\begin{align*}
\text{LM} \ 1,2,=\text{F}'1',=\text{F}'2' \\
\text{L} \ 1,=\text{H}'1',=\text{H}'2'
\end{align*}
\]

are not, because a literal must be a single operand.

4. The duplication factor may not be zero.

5. The alignment and length of the data described in the literal are implied by the constant type, so that this L instruction,

\[
\text{L} \ 2,=\text{X}'2\text{B}'
\]

that copies 4 bytes from memory to GR2, will copy unpredictable data into the rightmost three bytes of GR2 because we can’t know precisely where the Assembler will place the literal, and what might be in the three bytes following the single byte \(\text{X}'2\text{B}'\).

\(^9\) You can even write statements like

\[
\text{ONE} \ \text{DC} \ \text{F}'137'
\]

but this won’t make your program easier to understand; and it’s even more misleading if your program stores varying values into the word area named ONE.
This statement is entirely equivalent to

\[
\begin{align*}
L & \quad 2,X2B \\
X2B & \quad DC \quad X'2B' \\
\end{align*}
\]

(Not aligned!)

Three more (mystery) bytes

except that the symbol \texttt{X2B} is not needed when the literal \texttt{=X'2B'} is used.

6. A reference to a literal is always a relocatable implied address (as defined in Section 9.5 on page 111).

7. A literal may be indexed in RX-type instructions, so that

\[
L \quad 0,=F'1,2,3,4,5'(9)
\]

is valid, and is exactly equivalent to

\[
L \quad 0,FiveInts(9)
\]

\[
\begin{align*}
FiveInts & \quad DC \quad F'1,2,3,4,5' \\
\end{align*}
\]

If the value of the index in GR9 is 8, the \texttt{L} instruction will put the integer 3 in GR0.

8. You may refer to a portion of a literal, as in

\[
IC \quad 0,=F'1'+3
\]

but this is considered a very poor programming practice.

9. In most situations, you can use the Assembler’s \texttt{L'} Attribute Reference notation in an address constant to refer to the Length Attribute of a literal. (Note that this does not violate rule 2 above!)

\[
\begin{align*}
\text{LitLen} & \quad DC \quad A(L'=C'This is a message') \quad \text{Generates X'00000011'} \\
\end{align*}
\]

which is equivalent to

\[
\begin{align*}
\text{Message} & \quad DC \quad C'This is a message' \quad \text{Named character constant} \\
\text{MsgLen} & \quad DC \quad A(L'Message) \quad \text{Length attribute of 'Message'}
\end{align*}
\]

Figure 55. Length attribute reference to two constants, one a literal

The “message” character string is 17 bytes long, but we rarely refer to the Length Attribute of a literal.

We’ll make frequent use of symbol length attribute references in Chapters VII and VIII.

After reading this apparently long list of restrictions, you might think that literals are fairly useless. We will see that they can be extremely helpful in writing clear and readable programs, and that these restrictions make good sense.

To illustrate a typical use of a literal, you could rewrite the program segment in Figure 35 on page 119:

\[
\begin{align*}
\text{BASR} & \quad 6,0 \\
\text{USING} & \quad \text{BEGIN,6} \\
\text{BEGIN} & \quad L \quad 2,N \\
\text{A} & \quad 2,=F'1' \\
\text{ST} & \quad 2,N \\
\text{---------} \\
\text{N} & \quad DC \quad F'8'
\end{align*}
\]

Here, you didn’t need to define a constant and create a symbol \texttt{ONE} to refer to it.

As literals are encountered in scanning the source program, the Assembler forms a separate internal table containing the literals, with duplicates eliminated. Eliminating duplicates saves space and lets you use literals without generating duplicate constants. The constants from the Assembler’s literal table are placed into the program at an appropriate location, and the Assembler then
assigns addressing halfwords to instructions that reference the literals, just as it does for references to symbols.

The area of the program where the Assembler deposits its collection of literal constants into your program is sometimes called a literal pool.

Though the Assembler eliminates duplicate literals, those containing references to the Location Counter, as in

```
L 2,=A(*)
L 3,=A(*)
```

are not eliminated, because Location Counter values may vary for each occurrence.

For the added ease of referring to constants using literals there is a corresponding loss in your ability to specify exactly where the constant is located, since this is normally determined by the Assembler. The LTORG instruction gives you some control.

Exercises

12.6.1.(2) What data is generated by the literal `=AL3(5,X'D7'/C'.')` ?

12.6.2.(2) What data is generated by the literal `=CL7'BLANK'&&` ?

12.6.3.(1)+ Write and assemble a short program containing the statements

```
DC 2A(*)
T DC 2A(*-T)
```

and examine the generated object code; describe the differences.

12.6.4.(2)+ In Figure 55, the constant named Message is followed by the word-aligned A-type constant named MsgLen. How many bytes might be skipped before the A-type constant?

12.7. The LTORG Assembler Instruction

The LTORG assembler instruction statement lets you control the placement of constants generated by literals. It may have a name-field entry, but no operand field entry. The Assembler aligns the LC at the next doubleword boundary,\(^{80}\) defines the name-field symbol (if any), and then places its collection of literal-defined constants into the program. The order in which they appear is determined by the Assembler; don’t make any assumptions about ordering.

After dumping the contents of its literal table, the Assembler clears the table. Excessive use of LTORG instructions in a program with many literals might cause duplicate constants to be defined. For example,

```
L 0,=F'1'
LTORG
L 1,=F'1'
LTORG
```

will cause two identical constants to be generated.

The literals in the literal pool are generated in decreasing order of alignment. Thus, a word literal like `=F'4'` will be generated ahead of a halfword literal like `=H'2'`. This rule applies not only to literals with implied alignment, but to literals whose length is a power of two. Thus, the literal `=X'00000004'` will be generated in the same group as `=F'4'`.

\(^{80}\) Or quadword boundary, if the value of the SECTALGN option specifies an alignment stricter than doubleword. See the *High Level Assembler Programmer’s Guide* for further information.
This alignment difference can sometimes be surprising. These two constants, though identical, will be aligned differently:

\[
\begin{align*}
L & \quad 2,=FL4'4' \\
L & \quad 2,FL4Const \\
& \quad \text{Explicit length 4, word aligned} \\
& \quad \text{Explicit length 4, not word aligned} \\
DS & \quad F,X \\
& \quad \text{Align LC off a word boundary} \\
FL4Const & \quad DC \quad FL4'4' \\
& \quad \text{Unaligned constant } X'00000004' \\
\end{align*}
\]

Though rarely a problem, it’s worth remembering the difference.

In the absence of any LTORG instructions, the Assembler will generate any accumulated literals at the end of the assembly, so you will need to ensure they are addressable.

We will use literals in many places.

\begin{center}
\textbf{Remember:}
\end{center}

A literal is treated by the Assembler as a special symbol with the additional effect of causing it to reserve a storage area containing the specified constant.

While the Assembler tries to diagnose instructions appearing to modify a literal, it’s easy for your program to modify them by writing into the area where they’re stored. (In fact, a program can modify almost anything that’s not memory-protected!) You should think of literals as “intended” constants, not as immutable values.

12.8. Type Extensions

As the z System processors have evolved since System/360 was introduced in the mid-1960s, many enhancements and additions have been made to the instruction set and the data types they use.

An important enhancement with z/Architecture was the expansion of the 32-bit general registers to 64 bits, as illustrated in Figure 9 on page 47. To support 64-bit data types, the Assembler extended several existing data types to provide 64-bit constants. Among these are the F-, A-, V-, and Q-type constants. This is done by adding a type extension letter following the constant type.

With a “D” type extension, these constants may be up to 8 bytes long, and by default are aligned on doubleword boundaries. For example:

\[
\begin{align*}
DC & \quad FD'-1' \\
& \quad X'FFFFFFF' \\
DC & \quad AD(C'ABC') \\
& \quad X'00000000C1C2C3' \\
DC & \quad FD'U1E15' \\
& \quad X'00038D7EA4C6800' \\
\end{align*}
\]

We will see many examples of these doubleword constants when we describe instructions using the 64-bit general registers.

Other type extensions are used for character constants. Many other character representations are now widely used, including ASCII and Unicode. Like EBCDIC, ASCII characters (defined with type extension “A”) are one byte long, while the Unicode characters (with type extension “U”) generated by HLASM are two bytes long. For example:

\[
\begin{align*}
DC & \quad C'ABC' \\
& \quad X'C1C2C3' \quad \text{EBCDIC by default} \\
DC & \quad CE'ABC' \\
& \quad X'C1C2C3' \quad \text{EBCDIC always} \\
DC & \quad CA'ABC' \\
& \quad X'414243' \quad \text{ASCII always} \\
DC & \quad CU'ABC' \\
& \quad X'004100420043' \quad \text{Unicode} \\
\end{align*}
\]

Chapter IV: Defining Constants and Storage Areas 159
The “E” type extension means that the generated constant must use the EBCDIC representation even if the Assembler’s TRANSLATE option requests translation of C-type constants to a different encoding. We’ll see more about specialized character sets in Section 27.

Other type extensions are used for floating-point data; we’ll learn more about them in Chapter IX.

Table 33 summarizes some rules for writing operands in DC instructions with operand type extensions. A complete set of rules is given in the High Level Assembler Language Reference.

<table>
<thead>
<tr>
<th>Type</th>
<th>FD</th>
<th>AD</th>
<th>VD</th>
<th>QD</th>
<th>CA</th>
<th>CE</th>
<th>CU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum length</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>256</td>
<td>256</td>
<td>256</td>
</tr>
<tr>
<td>Implied length</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Implied alignment</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>none</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>Value specified by</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delimiters used</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Truncation, padding</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiple Values</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

Note: * The implied length is the minimum number of bytes required to contain the data.

Table 33. Truncation and padding rules for some DC operands with extended types

Terms and Definitions

address constant
A field into which a value is inserted by the Assembler, the Linker, or the Program Loader. Typically, an address.

literal
A special symbol with the side effect of defining a constant referenced by that symbol.

literal pool
A set of literal-generated constants grouped together by the Assembler. A program may contain multiple literal pools.

padding
Adding extra bits or bytes to a constant so that it will fill the space allotted to it.

truncation
Removing bits or bytes from a constant so that it will fit in the space allotted to it.

type extension
A second letter following the constant type, providing additional information about the constant’s length or representation.

81 See the High Level Assembler Programmer’s Guide for details.
In this section we examine methods for defining data areas and data structures that simplify programs manipulating the data, and describe the useful assembler instruction statements DS, EQU, and ORG.

13.1. Storage Areas: The DS Assembler Instruction

A storage area is often needed in a program that need not be initialized to contain a value, as done by the DC instruction. This can be done with the DS (“Define Storage”) assembler instruction; it is almost identical to the DC instruction, except that no data is generated: space in the program is allocated, but not initialized. The rules for writing the operand field entry are the same for DC and DS, except that a nominal value (and its enclosing delimiters) is optional for DS.

Thus the statements

```
DS F Define word storage
DS F'8' Define word storage
```

both cause the Assembler to reserve a four-byte area on a word boundary, but no constant is assembled, even though a nominal value is specified in the second statement. Specifying a value in a DS statement is useful in statements such as

```
DS 'C'Message' Define storage for characters
```

because it will reserve an area whose length is determined from the length of the nominal value (7 bytes, in this case). Large blocks of storage may be reserved:

```
FW100 DS 100F Define storage for 100 words
```

This reserves 100 words and assigns the symbol FW100 to the location of the first. The statements

```
AREA1 DS 80C
AREA2 DS CL80
```

both define storage areas 80 bytes long, but the Length Attributes of the symbols AREA1 and AREA2 are 1 and 80 respectively, which may be very useful in a program. The length attribute of the symbol AREA1 is 1 byte; the length of the area it names is the product of the duplication factor (80) and the length attribute (1).

In the absence of either a constant or an explicit length for types B, C, and X,
DS B and DS C and DS X each assigns an implied length of one byte and reserves a single byte.

Exercises

13.1.1.(2) Suppose the value of the Location Counter is X′012345′ when the following three statements are read by the Assembler:
X DS AL(4)
Y DS A(4)
Z DS AL4

What is generated by these statements? What are the value and Length Attributes of the symbols X, Y, and Z?

13.2. Zero Duplication Factor

A zero duplication factor may be specified for operands of DS and DC instructions. First, boundary alignment implied by the storage type is performed if necessary. If a name field symbol is present, the aligned value of the LC is assigned as its value; the symbol’s Length Attribute is determined from the operand. No space is reserved. Thus a DS or DC instruction with a zero duplication factor can be used to force boundary alignment.

For example, the two sets of statements

\[
\begin{align*}
\text{WORD} & \text{ DS } 0F \\
\text{DC} & \text{ } \text{C’WORD’}
\end{align*}
\]

and

\[
\begin{align*}
\text{WORD} & \text{ DS } 0F \\
\text{DC} & \text{ } \text{C’WORD’}
\end{align*}
\]

both serve to define a four-byte character constant on a word boundary named by the symbol WORD which would not in general have been the case if
\[
\begin{align*}
\text{WORD} & \text{ DC } \text{C’WORD’}
\end{align*}
\]

or
\[
\begin{align*}
\text{WORD} & \text{ DC } \text{CL4’WORD’}
\end{align*}
\]

had been specified.

If a zero duplication factor is used in a DC instruction, it behaves just as would the corresponding DS instruction. However, when bytes are skipped to perform alignments required by DS statements, the Assembler does not put zeros into the skipped bytes, while skipped bytes are zeroed when aligning DC instructions if the preceding statement generated instructions or data.

Because constants with zero duplication factors do not advance the Location Counter (except for possible boundary alignment), they have many uses. For example, suppose we must define a storage area to hold a (U.S.) ten-digit telephone number:

\[
\begin{align*}
\text{PhoneNum DS } & \text{OCL10 Define 10-byte area for full number} \\
\text{AreaCode DS } & \text{CL3 Space for area code} \\
\text{Prefix DS } & \text{CL3 Space for prefix} \\
\text{Local_No DS } & \text{CL4 Space for local number}
\end{align*}
\]

Figure 56. Describing fields of a (U.S.) telephone number

This way we can refer to the entire field using the symbol PhoneNum, or to each component by its name.

Suppose we are writing a program that scans Assembler Language statements, and we want to give names to the fields of the statement. We’ll assume that
1. name-field symbols begin in column 1,
2. mnemonics start in column 10 and are 5 or fewer characters long,82
3. operands start in column 16 and are less than 20 characters long,
4. remarks lie within columns 36 and 71,
5. column 72 is the continuation column, and
6. columns 73-80 contain sequencing data.

Then, we can name each of the fields of an 80-byte area named \textit{Statemnt} that contains the statement and assign appropriate Length Attributes, as shown in Figure 57.

\begin{verbatim}
Statemnt DS 0CL80 Define 80-column record area
Name DS 0CL8 Define name-field symbol
 DS CL9 Reserve space for name-field symbol + blank
Mnemonic DS 0CL5 Define 5-character mnemonic field
Mnemopnd DS 0CL25 Define both mnemonic and operands
 DS CL6 Reserve space for mnemonic + blank
Operand DS 0CL19 Define 19-character operand field
 DS CL20 Reserve space for operand field + blank
Comment DS CL36 Allocate 36 columns for comments
Continue DS C Define continuation-indicator column
Sequence DS CL8 Define sequencing columns
\end{verbatim}

Figure 57. Describing fields of an Assembler Language statement

- The first DS statement defines \textit{Statemnt} to be 80 characters long, but reserves no space.
- Similarly, the second DS defines an 8-byte \textit{Name} field beginning at the same location.
- The third DS then causes the Location Counter to be incremented by 9 bytes, so that the symbol \textit{Mnemonic} has a value corresponding to “column 10” of the record.
- Because we might refer to the mnemonic and the operands together, the symbol \textit{Mnemopnd} has the same location, but its length of 25 bytes includes both fields.

The rest of the definitions are similar.

We make this (apparently additional) effort because a program containing these declarations can now refer to the desired fields by \textit{name}. For example, we can use the symbol \textit{Operand} instead of the expression \textit{Statemnt}+15 to refer to the start of the operand field. While this may not seem an important difference, consider what modifications would have to be made to the program if the \textit{Mnemonic} field is changed to be six characters long: every statement in the program containing a reference to expressions like \textit{Statemnt}+15 would have to be found and changed.

By using this technique, only the DS statements need changing before the program is reassembled; the statements referring to the various fields in our Assembler Language “statement” need not be changed. Another big advantage of this style of definition is that the symbols have useful Length Attributes; we will see in Chapters VII and VIII how instructions can make good use of that information.

As another example, suppose we wish to reserve space for three words that are also regarded as a single group of twelve bytes named \textit{FWGroup}. We can do this with these statements:

\begin{verbatim}
DS 0F Align to word boundary
FWGroup DS OXL(3*4) Define start of 3-word group
 DS 3F Reserve space for the three words
\end{verbatim}

Figure 58. Define a group of words

82 But: many newer mnemonics can be as many as 8 (or more!) characters long, so you may want to adjust your column positions appropriately. Similarly, the names of some macro-instructions we use (like PRINTOUT) are at most 8 characters long.
Exercises

13.2.1.(2) Assemble the statement in Figure 57 to verify the locations and lengths of each field. (Remember to add an END statement.)

13.2.2.(3) Assume the Assembler’s Location Counter is X’345’ when it reads each of the following sets of statements. For each symbol, give its value and Length Attribute.

- J DS 3H
- K DS 1X
- L DS 0F
- P DC C’A’B’
- Q DC 2C’ABA’
- R DC 2A(C’.’)
- T DS XL2’234567’
- V DC 4Y(37)
- W DC 0F’1,2’

13.2.3.(2) For each of the following, assume that the Location Counter value is X’345’ when the initial statement is processed by the Assembler. Give the value and Length Attributes of the symbol A.

1. A DC F’2’
2. DS 0H
 DC C’*’
 A DC C’Asterisk’
3. DC 0F’1’
 A DC 0XL2’0’
4. A DC A(A)
5. DS 19H
 A DC X’12345’
6. DC 3CL4’ABCDE’
 A DC C’A&B’
7. DS CL400
 A DC F’12,34,56’

13.3. The EQU Assembler Instruction

Two other assembler instruction statements are often useful in defining and describing data areas, EQU and ORG. When we write

symbol equ expression
the Assembler assigns the attributes of the expression in the operand field (including value, relocatability, and length) to the symbol in the name field.

The EQU instruction reserves no storage and generates no data or machine language; it only defines a symbol by assigning it an assembly-time value. EQU is a powerful tool for simplifying and understanding programs.

Suppose a program needs a storage area of 75 words, and a word integer constant whose value gives the number of words reserved. The two statements
define the necessary items. However, if we decide to change the table size, both statements must be changed before re-assembling the program. If we had written instead

```
TblSiz Equ 75 Define table size
NItems DC A(TblSiz) Number of words
Table DS (TblSiz)F Table of words.
```

then only the EQU statement would have to be modified before re-assembling. If we also want to refer to the word in the “middle” of the table, we can write

```
MidTbl Equ Table+(TblSiz/2)*4
```

where the factor 4 is the length of each table entry. This illustrates using EQU to define a relocatable symbol.

A better programming practice is to use the length attribute of Table as in L’Table, instead of 4. Here is why: Suppose we can save space in the program by defining halfword table entries instead of words. If we define the symbol Table as

```
Table DS (TblSiz)H Table of halfwords.
```

the position of the new table’s middle item will still be determined correctly, because the length attribute of Table is now 2 instead of 4.

You cannot use EQU instructions to assign more than one value to a symbol.83 For example, the second statement in this example is invalid:

```
X Equ 5 Define X
- - -
X Equ 10 Invalid duplicate definition
```

Exercises

13.3.1.(1) Why is the Length Attribute of the symbol MidTbl equal to 4?

13.3.2.(2) A programmer wished to conserve space in his program. He needed both a halfword and a fullword binary constant of value +8. He wrote the statements

```
FW8 DC F’8’
HW8 Equ FW8+2
```

and referred to the halfword value with the symbol HW8. Can you think of any circumstances in which this might be unsafe?

13.3.3.(2) Suppose the definition of the symbol MidTbl had been written in the following forms:

```
MidTbl Equ Table+TblSiz*4/2
MidTbl Equ Table+4*TblSiz/2
MidTbl Equ Table+TblSiz/2*4
MidTbl Equ Table+(TblSiz/2)*4
```

Are these equivalent? Why and why not? Why would you choose one in preference to the others?

13.3.4.(2) Describe the differences among the following statements. (It may help to assemble them!) (See Exercise 11.7.1 also.)

83 Some very early assemblers let you use multiple EQU statements to change the value assigned to a symbol. For z System assemblers, the values of ordinary symbols are not changed at assembly time. Symbols whose values may be re-assigned at assembly time are called variable symbols; they are used in conditional assembly and macros.
A1 Equ 5
A2 DC F’5’
A3 Equ A2
A4 Equ =F’5’
A5 Equ A1

13.3.5.(2) An EQU statement like
NFS Equ 135
is sometimes described by saying (a) it assigns a constant to NFS, (b) it assigns an assembly-time constant to NFS, or (c) it assigns the name NFS to a constant. Which of these descriptions is preferable, and why? What would be a better one?

13.3.6.(3) What would you expect to happen when the Assembler encounters the following three statements?
A Equ B
B Equ C
C Equ A

13.3.7.(2) What would you expect to happen when the Assembler processes each of the following pairs of statements?
ABLE Equ 2
BAKER Equ ABLE+2
BAKER Equ ABLE+2
ABLE Equ 2

13.3.8.(2)+ For each of the following two sets of statements, assume that the Location Counter value is X’01DBC5’ when the first statement is encountered. Determine the value, relocatability, and Length Attributes of all symbols.

1. ST DS 0CL8
 W DS 2F
 X DS 2F
2. P DS 0F
 Q DS 0H
 R DC 4X’0’
 S Equ *

13.3.9.(5) Suppose the symbols A and B have absolute values, and were defined by complicated expressions whose values are not immediately evident. Write a set of EQU statements that will set the value of the symbol MaxOfA_B to the greater of A and B, or to either if they are equal.

13.3.10.(2) Suppose the symbol A has value X’291B’ in each of these sequences of statements. Give the value and Length Attribute of the symbol B.

1. A Equ *
 X DS 3H
 B DS 0F
2. A Equ *
 B DC CL3’Okay’
3. A Equ *
 F DC F’11,22’
 X DC X’123’
 B Equ X-A
13.3.11.(3) In each of the following sets of statements, give the value and Length Attribute of each symbol, assuming that the Location Counter value is $X'12345'$ when the first statement of each set is read by the Assembler.

1. A DS F
 B DS 2H
 C DS 2CL2
2. F DC A(F)
 G DC 3AL3(F,G,H)
 H DC Y(*-F,275)
3. P DC 2C'3&'
 Q DC 2A(C'3&')
 R DS 3XL3'FEDCBA93'
4. X DC 0FL5'5,10,20'
 Y DC FL3'5,10,20'
 Z DC 2C'5,10,20'

13.3.12.(3) Assuming the same statements as in the previous exercise, show the hex data values assembled for the constants having these names: F, G, H, P, Q, and Y.

13.3.13.(2) In each of the following sets of statements, give the value and Length Attribute of each symbol, assuming that the Location Counter value is $X'012BC5'$ when the first statement of each set is read by the Assembler.

1. STR DS 0CL8
 W DS 2F
 X DS 2F
2. P DS 0F
 Q DS 0H
 R DC 4X'40'
 S EQU *-P

13.3.14.(3) For each of the following sequences of statements, assume that the value of the LC is $X'125'$ when the first statement is encountered. For each sequence, give the value and Length Attributes of all symbols, the assembled machine language constants (in hex) and their locations, and the LC value after the last statement in the sequence.

1. A DC F'-17'
 B DC H'33'
2. D DC FL4'+17'
 C DC H'33'
3. E DC C'ABCDEFGH'
 F DC F'1000'
4. G DS 2H
 H DC A(X'129E')
5. J DS 0H
 K DS 0X
 L DS 0F
 M DC OFL6'+15'
 N DC F'-1000'
6. P DC 3C' A' B'
 Q DC 2A(C' A' B')
7. R DS 100F
 S DS 10CL80
8. AB DC F'900',HL5'2147483650',H'1'

Chapter IV: Defining Constants and Storage Areas 167
9. BC DC 3XL2’7’,0 CL3’ABCD’,B’1’
 CD DC H’16383’,H’-16383’
10. DE DS 2F’,0D’,2CL6
 EF Equ *’,L’DE
11. T DC X’CAB’
 V DC 2B’101011100’
 W DC (V-T)CL(W-T+2)’CAB’
12. Y DS H
 X DC (X-Y)AL(X-Y)(X-Y)
13. Z DC CL2’ZZ’
 ZZ DC (ZZ-Z)A(ZZ-Z)

13.3.15.(2)+ You are given a number N in the range 0 ≤ N ≤ 14 and you must use it to
assign a pair of symbols REven and ROdd to an even-odd pair of 32-bit general registers, respec-
tively. Write EQU statements to assign the symbols.

13.3.16.(3) In Exercise 13.3.14, some expressions may be difficult for an Assembler to resolve. Which do you think they are, and why?

13.4. EQU Instruction Extended Syntax (*)

HLASM supports an Extended EQU Syntax, allowing you to specify up to five operands.

symbol Equ expression1,expression2,expression3,expression4,keyword

which we understand to mean

symbol Equ value,length,type,program-attribute,assembler-attribute

We have been using only the first operand, expression1. The second and third operands let you
override default values for the length and type attributes.

length (expression2)

Assigns a new Length Attribute to symbol, overriding the Length Attribute assigned from
expression1.

type (expression3)

Assigns a type attribute to symbol. If no type operand is present, the Assembler assigns
type U (“Unknown”)

program-attribute (expression4)

Assigns a programmer-defined “Program Attribute” to symbol.

assembler-attribute (keyword)

A four-character Assembler-defined keyword providing additional information about the
expected behavior of symbol.

The High Level Assembler Language Reference describes the operands in detail. (The last three
operands are used mainly for conditional assembly, so we won’t discuss them further here.)

The most common use of the Extended EQU statement is to assign specific Length Attributes to
symbols. For example, you could write

InRec DS XL80
OutRec Equ *’,L’InRec Length attribute = 80

that defines the location of OutRec and its Length Attribute, even though the Length Attribute of
the Location Counter Reference * would otherwise default to 1 in an EQU statement.
Exercises

13.4.1.(2)+ Assuming that the symbol Result is at location X’2000’, give the value and Length Attributes of each symbol.

Result DS XL133
Pfx Equ Result,24
Prod Equ Pfx+’Pfx,12
Cost Equ Prod+’Prod,8
Desc Equ Cost+’Cost,60
Fill Equ Desc+’Desc,(L’Result-L’Pfx-L’Prod-L’Cost-L’Desc)
LFill Equ L’Fill

13.5. The ORG Assembler Instruction

The ORG instruction lets you modify the Location Counter. Like EQU, it generates no instructions or data. The statement

ORG expression

sets the LC to the value of the expression in the operand field of the statement. The relocatability attribute of the expression must match that of the LC.

We can use the ORG statement to rewrite the data area described in Figure 57 on page 163, as in Figure 59. Note that none of the DS statements uses a zero duplication factor.

Statemmtn DS CL80 Define 80-column record area
ORG Statement Reset to start
Name DS CL8 Define name-field symbol
ORG Name+9 Move to ’column 10’
Mnemonic DS CL5 Define 5-character mnemonic field
ORG Mnemonic Back up the LC
Mnemopnd DS CL25 Define both mnemonic and operands
ORG Mnemonic+6 Move back to ’column 16’
Operand DS CL19 Define 19-character operand field
ORG Statement+35 Move forward to ’column 36’
Comment DS CL36 Allocate 36 columns for comments
Continue DS C Define continuation column
Sequence DS CL8 Define sequencing columns

Figure 59. Describing fields of an Assembler Language statement using ORG instructions

After these statements have been processed, the LC will have the value of the expression Statemmtn+80, and we can continue assembling as though the LC had never been adjusted by the ORG statements.

Now, suppose we want to check for possible comment statements by defining Column1 as a new field, so we add the statements

ORG Statemmtn+80 Move LC to end of Statement field

at the end of Figure 59. Any statements following the last statement in the figure would begin assembling at Statemmtn+1, which is undoubtedly not what you intended.

To rectify such a mistake, you can do either of two things. First, you could place the statement

ORG Statemmtn+80 Move LC to end of Statement field

after all the other statements. A second way is to write
ORG , Set LC to its highest value

The Assembler interprets the missing, or null, operand (indicated by the comma) to mean that the LC should be set to the highest value it has attained so far in the assembly.

This example assumes that Statement+80 is the highest location at this point in the assembly; if not, other instructions and data might be assembled in the wrong places. This possible error is one reason why the technique shown in Figure 57 on page 163 is generally preferred.

The ORG instruction also supports an extended form:

\[
\text{ORG expression, boundary, offset}
\]

The Assembler first sets the LC to the location given by “expression”, then rounds it up to the next higher “boundary” (it must be a power of two between 2 and 4096), and then adds the value of “offset” to determine the final LC setting. For example, suppose the current value of the LC is \(X'12345'\). If we write

\[
\text{ORG *+4,8,-3}
\]

the Assembler first adjusts the LC to \(X'12349'\), then rounds it up to the next doubleword boundary \(X'12350'\), and finally subtracts 3, setting the LC value to \(X'1234D'\).

In practice, ORG statements are used infrequently. Their usual applications are to construct data areas that share storage or “overlay” one another, as in Figure 59 on page 169.

Exercises

13.5.1.(2) The programmer mentioned in Exercise 13.3.2 wanted to be as cautious as possible, and changed his constant definitions to

\[
\begin{align*}
\text{FW8} & \quad \text{DC F}^{'}8' \\
\text{ORG FW8+2} & \\
\text{HW8} & \quad \text{DS H}
\end{align*}
\]

Is this better than the technique used in Exercise 13.3.2? Why or why not?

13.5.2.(2) A programmer didn’t know about using a null operand in an ORG statement to reset the LC to its highest value. In trying to do this, he observed that * represents the value of the LC, and therefore wrote

\[
\begin{align*}
\text{Here Equ *} \\
\text{ORG Anywhere Assemble somewhere elsewhere} \\
* \quad \text{Equ Here Set LC back to ‘Here’}
\end{align*}
\]

What is wrong with this technique? Solve his problem without using an ORG statement with a null operand.

13.5.3.(3) In each of the three following code segments, the symbol A has value \(X'982E'\). Determine the value and Length Attributes of the symbol B.

\[
\begin{align*}
\text{A} & \quad \text{DS 29H} \\
\text{B} \quad \text{Equ A+1} \\
\text{A} & \quad \text{DS 7CL5} \\
\text{ORG A+10} \\
\text{B} & \quad \text{DS 2D}
\end{align*}
\]

84 In higher-level languages, the overlaying of one data definition on another is sometimes called a “union” or a “redefinition”.
A DC 0CL40*'
DS 5CL8,3CL3
B DS 3F

13.5.4.(3) With the same assumptions as in Exercise 13.5.3, determine the value, length, and relocatability attributes of the symbol B.

A DC FL7’8’
ORG A+2
DC HL7’8’
ORG
B DC HL5’-8’
A Equ *
ORG A+4*L’A
DS (C’*’) CL(C’*’)’*’
B Equ *

13.5.5.(3) Using suitable DC and ORG statements, find a way to cause the Assembler to assign the location of some skipped bytes as the value of a symbol SKIP3. For example, three bytes are skipped in

DC F’1’,X’2’,F’3’

13.5.6.(2) Suppose a programmer wrote the statement

ORG Set LC to its highest value
without a comma to separate the operation and comment fields. What do you expect will happen? Why?

13.5.7.(3) In the code sequences illustrated in Figures 57 and 59, suppose you placed the statement

StmtLen Equ *-Statemnt

following the last statement (with name-field symbol Sequence). What value is assigned to the symbol StmtLen? What value should be assigned to StmtLen?

A bonus question: how could you induce the Assembler to detect the difference between the actual and desired values assigned to StmtLen?

13.6. Parameterization

We have seen how we use EQU statements to define quantities such as table sizes, string lengths, and duplication factors; these quantities are assembly-time constants, so they are not part of the data whose values may be changed at execution time. The following examples illustrate this.

1. EQU is often used to set a value for defining several storage areas. For example, if you need to process multiple records having the same length, you could define

 RecLen Equ 80 Define record length
 InRec DS CL(RecLen) Space for input record
 OutRec DS CL(RecLen) Space for output record
 WorkRec DS CL(RecLen) Space for record work area

 Then, if the length of the record areas must be changed, you need to modify only the EQU statement and reassemble the program.

2. Suppose a table of five words is stored starting at FTable, and we need to copy the last word of the table into general register 5. We could do this by writing

 L 5,FTable+16 Get last word of FTable
but we have mixed the data definition (the fact that the word at \texttt{FTable+16} is indeed the last in the table!) with the processing of the data by the \texttt{L} instruction. The "+16" term is a hidden data description.

This program fragment will be easier to understand and modify if we write something like the following:

\begin{verbatim}
NWords Equ 5 Number of words in Table
L 5,LastWord Get last word of Table

FTable DS (NWords)F Define name and space for Table
LastWord Equ FTable+(NWords-1)*4 Define last word
\end{verbatim}

We can now change the length of the table by modifying the EQU statement, \textit{without} changing the instructions that reference the data. There was nothing in the expression \texttt{FTable+16} clearly relating it to the number of words in the table. Indeed, if the number of words in the table is less than five, \texttt{FTable+16} refers to data beyond the end of the table!

3. In Figure 58 on page 163, we might need to change the number of words in the group named \texttt{FGroup}. By defining a symbol \texttt{NWords} giving the number of words, we can rewrite the example:

\begin{verbatim}
NWords Equ 5 Five-word group this time
DS 0F Align to word
FGroup DS 0XL(4*NWords) Length of group
Words DS (NWords)F Reserve space for Words
\end{verbatim}

4. Suppose we want to define a table containing a number of character strings, all of the same length. Suppose also that our program processes these strings, \textit{without} knowing in advance either how many there will be or how long they will be. Let \texttt{NST} and \texttt{STL} be symbols whose values specify respectively the number of strings and the length of each. Then we can reserve storage space for the data with the statement

\begin{verbatim}
Strgs DS (NST)CL(STL) NST strings each of length STL
\end{verbatim}

Then, if we need the addresses of the first and last strings in the block of data, we can define the constants

\texttt{AFirst DC A(Strgs)} Address of first string
\texttt{ALast DC A(Strgs+STL*(NST-1))} Address of last string

Similarly, if we need halfword integer constants containing the length of each string and the number of strings, we can define these Y-type address constants:

\texttt{HWStL DC Y(STL)} Length of a string
\texttt{HWNSt DC Y(NST)} Number of character strings

Having written the program to make all its references to the data counts and lengths through these constants, we can finally assign values to the symbols \texttt{NST} and \texttt{STL} by defining two EQU statements:

\begin{verbatim}
NST Equ 219 Number of data strings
STL Equ 43 Length of a data string
\end{verbatim}

As a final example of symbolically-defined data areas, suppose we have written our own Assembler, and have a routine which prints symbol-table information at the end of an assembly. Each line to be printed contains (1) a single carriage-control character to control vertical printer spacing, (2) a symbol up to 8 characters long, (3) a 4-character field for the symbol’s length attribute, (4) a 2-character relocatability attribute field, (5) a 4 or 5-character field for the number of the statement in which the symbol was defined, and (6) the rest of the line contains 4 or 5-character fields giving the numbers of the statements whose operand fields refer to the symbol. The fields are to be separated by spaces. In addition, we are to write the definition of the print line so it will work with printers that accept 121 or 133 characters (both are common print-line lengths).

First, we will define the symbols \texttt{LineLen} to give the line length (121 or 133), and \texttt{StNoLen} to give the number of characters needed to print a statement number (4 or 5). Then, space is reserved for
the “fixed” parts of the line. Finally, we divide the amount of space remaining in the line by the width needed for each reference entry, to determine the number of entries that will fit.

LineLen EQU 133
Assume 133-character print line

StNoLen EQU 4
Assume 4-character statement numbers

*

StLine DS OCL(LineLen)
Start of line

StCC DS C
Carriage control character

StSymb DS CL8,C
Symbol and trailing space

StLenAt DS CL4,C
Length attribute and a space

StRA DS CL2,C
Relocatability attribute and a space

StDefn DS CL(StNoLen),C
Space for defining statement number

*

NXrefs EQU ((StLine+LineLen-*)/(StNoLen+1))
Number of entries that will fit on rest of line

*

StRefs DS (NXrefs)CL(StNoLen+1)
That’s all

Figure 60. Describing an Assembler symbol cross-reference listing line

The program that uses this print line definition will probably need a constant containing the number of cross-reference entries in the line, so we should also define a constant like

MaxRefs DS Y(NXrefs)
Maximum number of references

to be used while the line is being formatted by the program.

This symbolic technique is important for several reasons.

1. The dependence of individual instructions and constants on the number and length of the data items is more evident when we examine them.

2. If any change must be made to such EQU-dependent quantities, only one statement—the defining EQU statement—needs to be changed, and the Assembler will re-calculate all the other quantities depending on it.

3. Statements using the EQU-defined symbols will appear in the Assembler’s symbol cross-reference listing.

Experience shows that

Programs are simpler when the definition of data objects is cleanly separated from the instructions that manipulate those objects.

Exercises

13.6.1.(2) Suppose the example above that defines the group of words named **FGroup** was written

NWords Equ 5
Five-word group this time

FGroup DS (NWords-1)F
Space for group

LastWord DS F
Reserve space for LastWord

Determine if this definition gives the same or different results.

13.7. Constants Depending on the Location Counter

We often define address constants with the name of a data item, particularly when we need to provide that address to another program, as in

DC A(MyData)
Address of “MyData”

While it’s rare to need the address of a position in a program, as in
we often need the offset of one part of a program relative to another. For example, sometimes it is useful to define constants whose values depend on one another in some regular way. For example, suppose we need a table of 32 bytes containing the binary values 31, 30, 29, ..., 2, 1, 0. We can define the table with an A-type constant:

```
DownTbl DC 32A(DownTbl+31-*)
```

When the first byte is to be generated, * has the same value as the symbol DownTbl1, so the expression in the constant has value 31. The Assembler does not generate 32 copies of this constant: when a Location Counter Reference appears in an expression in the nominal value of A-type and Y-type constants, the expression is re-evaluated before generating each constant.

As each byte is generated, the value of * increases by 1 because the explicit length modifier specifies length 1. Thus the last (32nd) byte will be at DownTbl+31, and the expression will evaluate to 0 as desired.

As another example, suppose we want to build a table of halfword binary integers containing the squares of the integers from 1 to 40. We can write

```
Sqrs DC 40Y(*-Sqrs+2)*(*-Sqrs+2)/4
```

where the division by 4 is needed because halfword constants are being generated, so each Location Counter Reference * increases by 2 for each constant generated.

We will find other uses for LC-dependent constants when we discuss data structures in Chapter XI.

Exercises

13.7.1.(3) The Assembler lets you specify an Exponent Modifier for some types of constant, as described in Section 11.8. It is written with the letter E and the value of the modifier immediately preceding the delimiter before the nominal value of the constant. It specifies a power of ten multiplying the nominal value of the constant.

Suppose you want to generate a table of the first ten powers of 10 (starting at 10^0) and you write the statements

```
POWERS DS 0F
  DC 10FE((*-POWERS)/4)’1’
```

What do you think will happen? Can the Assembler generate the desired constants? If not, what would have to be done to make the Assembler do what you want?

13.7.2.(3) Assume the Assembler’s Location Counter is X’12345’ when it reads each of the following sets of statements. For each of the five symbols, give its value and Length Attribute, and show the generated constants (omitting any initial zero bytes inserted by the Assembler for alignment).

- A DC C’U&I’
- B DC A(*)
- D DC OXL7C
- C DC H’137’
- D DC (B’10’)(A(B’10’)(B’10’))
- E DC C’A(‘), A(C’ ‘)
- F Equ * DC 2Y(*-F)

13.7.3.(2) Analyze the DC statement named Sqrs above to determine how it correctly generates a table of squares. Then, write a short program to assemble the statement.

13.7.4.(3) Suppose you want to create a table of 256 bytes in which each byte contains the number of 1-bits in the number representing the byte’s offset from the start of the table. For
example, the byte at offset 19 should contain 3, the number of 1-bits in B’10011′. Consider the following:

\[T \text{ DC } 256\text{AL1}(*-T-(*-T)/2-(*-T)/4-(*-T)/8-(*-T)/16-(*-T)/32-(*-T)/64-(*-T)/128) \]

Assemble the statement and verify that it generates the correct values. Then, explain why they are correct.

13.8. Assembly Time and Execution Time, Revisited (*)

We will soon investigate many z System instructions that manipulate data, so it is worth reviewing some concepts relating assembly and execution times. Suppose we have an area of a program

```
area of program

┌────────────────┐ ┌───────┐
│ │/SM630000─────┤ FDATA │
└────────────────┘ └───────┘
```

that will eventually contain some data. At assembly time, we give the area a name,

```
area of program name of area

┌────────────────┐ ┌───────┐
│ │/SM630000─────┤ FDATA │
└────────────────┘ └───────┘
```

and the Assembler assigns a location.

```
assembly-time location

12468
```

We might also specify a bit pattern for the initial contents of the area.

```
assembly-time location contents

12468 DC F’12′
```

The name of the area has attributes such as value, length, and relocatability, all of which are distinct from the value we assign to the bit pattern that is the contents of the area.
When the program is executed, this assembly-time information is gone. During loading by the Program Loader, the area of the program is assigned an address in memory. Its contents may have changed as the program is executed.

```
<table>
<thead>
<tr>
<th>execution-time address</th>
<th>execution-time contents of memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>9470A0</td>
<td>X'4040405C'</td>
</tr>
</tbody>
</table>
```

The “value” of the contents of the area now depends on the context in which it is used. The contents might be treated as instructions, as data of various types, or as commands to be obeyed by an input-output device. The interpretation of the bit pattern depends only on how those bits are used, and is not inherent in the bits themselves, nor in any characteristics you assigned to them at assembly time. In this example, the contents of the area of memory may be validly interpreted as (1) an instruction, (2) a word binary integer, (3) a floating-point number, (4) a 9-digit packed decimal number, (5) a character string, and (6) a four-byte bit pattern, among others!

Ideally, the execution-time interpretation of the bit pattern will be the same as the assembly-time interpretation. Instructions will be interpreted only as instructions and not as data, character strings will be used as character strings and not as floating-point numbers, and so on. Assembler Language programming does not always achieve this ideal in practice; but it also gives you much more flexibility.85

13.9. Summary Observations

As mentioned in the footnote on page 139, the name of the assembler instruction “Define Constant” can be misleading, because the generated machine language data may not be constant during the execution of your program. And even if you intended the data to remain constant, your program may accidentally change its value. (Review the example in Figure 42 on page 124!)

In fact, you can define a “constant” that is actually a machine instruction. For example, if the data generated by the statement

```
DC X'1A22'
```

is executed as an instruction, it will add the contents of GR2 to itself.

Another source of confusion may be the fact that you can specify a nominal value in a DS statement, as in

```
NoData DS C'This won’t generate any machine language data'
```

There are other contexts where DC statements generate no machine language data, such as Dummy Control Sections (“DSECTs”) and Common (“COM”) sections that we’ll discuss in Chapter XI.

There are also potentially misleading names for machine instructions. For example the MVC instruction’s name is “Move Characters”, but its operation actually copies bytes that may or not be character data.

In summary: don’t take the names of Assembler and machine instructions too literally. Follow the old advice to “Watch what they do, not what they say”.

85 Some say Assembler Language gives you more “rope you can use to hang yourself”, but that’s part of what makes Assembler Language programming fun.
Terms and Definitions

zero duplication factor
A duplication factor that causes LC alignment without generating a constant. Skipped bytes are zeroed for DC instructions if the immediately preceding byte contains object code.

EQU Extended Syntax
Additional operands on EQU instructions that provide additional information about the attributes of the symbol defined by the EQU statement.

ORG Extended Syntax
Additional operands on ORG statements that allow LC alignment to a specific power-of-two boundary, and an offset from that position.

parameterization
A valuable technique for adding flexibility and generality to program definitions, typically by defining assembly-time constants in EQU statements.

Programming Problems

Problem 13.1.(2)+ Write a program to assemble the DC statements in Section 13.7 on page 173, and verify that the expected constants are generated.

Problem 13.2.(1)+ Write a program in which you define this set of four four-byte binary integers:

Ints DC F’ -1046306171,-1803381883,-1723823710,1082565781’

Then, define a 16-byte character string named Chars occupying the same storage as the four integers. Then, display the 16 bytes of the character string as EBCDIC characters.
Chapter V: Basic Instructions

The six sections of this chapter treat instructions basic to almost all Assembler Language programs.

- Section 14 discusses typical instructions that move data between memory and the general registers, and among the general registers. (We’ll explore instructions that use data in the Floating-Point Registers in Chapter IX.)
- Section 15 describes the important “Branch on Condition” instructions that let you make decisions about alternate execution paths in your program.
- Section 16 introduces the instructions that perform binary addition, subtraction, and comparison using signed and unsigned binary integer operands.
- Section 17 examines instructions that shift binary numbers in the general registers.
- Section 18 continues our investigation of binary arithmetic operations, examining instructions that multiply and divide numbers in the general registers.
- Section 19 describes instructions performing the logical operations AND, OR, and Exclusive OR on bits in the general registers.

The instructions in this chapter operate on binary data in the general registers, except those in Section 15, which do not involve data.

A comment on terminology: we have used terms like “halfword” and “word” (or “fullword”) to mean data items 2 bytes or 4 bytes long. This has been common usage for many years. However, the z/Architecture Principles of Operation uses these terms much more precisely: a halfword must be aligned on a 2-byte boundary, and a word must be aligned on a 4-byte boundary, and similarly for doublewords and quadwords. Please understand that we may use terms like “word” and “halfword” inexacty. Very few instructions require strict alignment of their operands; we will point out those instructions that do require operand alignment.

86 Correct alignment is always a recommended practice, so our less-than-precise usage isn’t usually harmful.
This section introduces instructions that transmit data among the general registers, and between the registers and memory. We will see instructions that handle data in the 32-bit portion of a 64-bit register, and in the full length of a 64-bit register. (You will remember from Figure 9 in Section 3.3 that data items in general registers are frequently manipulated in 32-bit or 64-bit lengths.)

The instructions described here transfer data:
• between the rightmost 32 bits of general registers and memory
• among the rightmost 32 bits of general registers
• between 64-bit general registers and memory
• among the 64-bit general registers.

We’ll sample some typical instructions here; there are other we’ll see later. The first two groups of instructions leave the high-order half of a 64-bit register unchanged, as illustrated in Figure 61.

Figure 61. 32-bit portion of a 64-bit general register

The high-order half is “invisible” to the first groups of instructions described here. The z System architects wanted to ensure compatibility with programs that use only 32-bit registers, so that the presence of the high-order bits of the 64-bit register would have no effect on existing programs.

Note: The terms and notations used for various portions of a general register can sometimes be confusing. The z/Architecture Principles of Operation uses “High” and “Low” to refer to the

87 We will occasionally use the older term “32-bit general register” to mean “the rightmost 32 bits of a 64-bit general register.” In z System, all general registers are 64 bits long; before z/Architecture was introduced, general registers were 32 bits long, so the older terminology is still useful for instructions introduced prior to z/Architecture.
left/top/upper and right/bottom/lower portions respectively; but the letters H and L are also used in other contexts with (sometimes) different meanings.

We will use “GR R_1” to mean the general register referenced by the “R_1” operand of a machine instruction statement, and “GRn” to mean “general register n”.

The next several sections will describe instructions that affect only the rightmost 32 bits of a 64-bit general register. We’ll examine instructions that affect all 64 bits of a register starting in Section 14.7 on page 192.

14.1. Load and Store Instructions

We first examine instructions that transmit data between general registers and memory. The most important are L (Load) and ST (Store), shown in Table 34.

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>58</td>
<td>L</td>
<td>RX</td>
<td>Load</td>
</tr>
<tr>
<td>50</td>
<td>ST</td>
<td>RX</td>
<td>Store</td>
</tr>
</tbody>
</table>

Table 34. Load/Store instructions for 32-bit general registers

We saw these two instructions in several earlier examples; the operand’s Effective Address should be divisible by 4, indicating a word operand. Neither instruction changes the Condition Code.

As a reminder, an RX-type instruction has the form shown in Table 35.

<table>
<thead>
<tr>
<th>opcode</th>
<th>R_1</th>
<th>X_2</th>
<th>B_2</th>
<th>D_2</th>
</tr>
</thead>
</table>

Table 35. Format of an RX-type instruction

- The Load instruction L copies 4 bytes of data from memory, starting at the Effective Address, to bits 32-63 of a general register. When executed,
 \[
 L \\ R_1, D_2(X_2, B_2)
 \]
 places a copy of the word at the Effective Address of the assembler instruction statement’s second operand from memory into GR R_1. The original contents of GR R_1 are lost, and the word in memory is unchanged. (Remember, “operand” here means both (1) the assembly time operand field in the assembler instruction statement, and (2) the data referenced at execution time by the instruction.)

 For example, to set the contents of GR9 to zero, we could write
 \[
 L \\ 9, =F'0'
 \]
 (this is definitely not the best way to zero a register, as we will see). To set it to the maximum negative number, we could write
 \[
 L \\ 9, =F'-2147483648'
 \]

- The Store instruction ST copies data from a general register to memory. It is written explicitly as
 \[
 ST \\ R_1, D_2(X_2, B_2)
 \]
 When executed, it causes a copy of the contents of bits 32-63 of GR R_1 to replace the word in memory at the Effective Address of the second operand. The contents of the register are unchanged, and the original contents of the word area are lost.

88 In the original System/360 systems, correct boundary alignment was required. This requirement was annoying or inconvenient to many programmers, so IBM introduced the “Byte-Oriented Operand Facility” (or “BOOF”) to relax the stringent alignment requirement. Correct alignment is still recommended because misaligned operands can sometimes cause programs to run much slower.
For example, to put a copy of the contents of the word at \(A \) into the word at \(B \), we could write

\[
\text{L 0,A} \\
\text{ST 0,B}
\]

and to exchange the contents of the words at \(A \) and \(B \), we could write

\[
\begin{align*}
\text{L 1,B} & \quad \text{L 0,A} \\
\text{L 0,A or L 1,B or L 1,B but ST 0,B} & \\
\text{ST 0,B} & \quad \text{ST 0,B} \quad \text{ST 1,A} \quad \text{not L 0,B} \\
\text{ST 1,A} & \quad \text{ST 1,A} \quad \text{ST 0,B} \quad \text{ST 0,A}
\end{align*}
\]

assuming that GR1 is not being used as the program’s base register!

L and ST, like other instructions referencing addresses in memory, are subject to interruptions due to addressing and memory protection, which provides some control over the areas of memory accessible to a program.

Exercises

14.1.1.(1) What is the difference at assembly and execution times between

\[
\begin{align*}
\text{L 5,BBB} & \quad \text{BBB EQU 8} \\
\text{L 5,BBB} & \quad \text{BBB DC F'8'}
\end{align*}
\]

14.2. Multiple Loads and Stores

We sometimes want to transmit groups of 32-bit words between memory and the right halves of several registers. This can be done with a sequence of L or ST instructions, as in

\[
\begin{align*}
\text{L 1,A} & \quad \text{ST 1,B} \\
\text{L 2,A+4} & \quad \text{and ST 2,B+4} \\
\text{L 3,A+8} & \quad \text{ST 3,B+8}
\end{align*}
\]

If we use more than a very few registers, this is cumbersome and slow. Instead, we use the LM (Load Multiple) and STM (Store Multiple) instructions shown in Table 36. Neither instruction changes the Condition Code.

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>98</td>
<td>LM</td>
<td>RS</td>
<td>Load Multiple</td>
</tr>
<tr>
<td>90</td>
<td>STM</td>
<td>RS</td>
<td>Store Multiple</td>
</tr>
</tbody>
</table>

Table 36. Multiple load/store instructions for 32-bit general registers

Each is RS-type, for which three operands must be specified in the operand field of the assembler instruction statement, as follows:

\[
\begin{align*}
\text{LM (or STM) } & \quad R_1,R_3,D_2(B_2) \quad \text{(explicit address)} \\
\text{LM (or STM) } & \quad R_1,R_3,S_2 \quad \text{(implied address)}
\end{align*}
\]

The components of the assembled instruction are pictured in Table 37.

<table>
<thead>
<tr>
<th>opcode</th>
<th>(R_1)</th>
<th>(R_3)</th>
<th>(B_2)</th>
<th>(D_2)</th>
</tr>
</thead>
</table>

Table 37. RS-type instruction format
As usual, the assembler instruction statement’s R₁ and R₃ operands must be absolute expressions between 0 and 15. The base and displacement may be given explicitly, or derived by the Assembler from an implied address.

Beginning with GR R₁, the CPU stores the contents of registers (for STM) or loads the contents of registers (for LM) in order of increasing register number into or from successive words in memory starting at the Effective Address of the second operand, until GR R₃ has been stored or loaded. If R₃ is less than R₁, then registers GR R₁ through GR15 will be stored/loaded followed by registers GR0 through GR R₃. Thus, register 0 may be considered to “follow after” register 15, so that the general registers “wrap around” from highest to lowest numbered.

Thus, STM 15,0,X will store c(GR15) at X and c(GR0) at X+4, and LM 15,0,X will load GR15 from c(X) and GR0 from c(X+4).

For example,

\[
\text{LM} \ 2,6,=5F'0' \]

will cause the contents of general registers 2, 3, 4, 5, and 6 to be set to zero. Similarly,

\[
\text{STM} \ 0,15,\text{SAVE} \]

will cause the contents of all sixteen registers to be stored beginning at SAVE. The symbol SAVE could have been defined in a statement such as

\[
\text{SAVE} \ \text{DS} \ 16F \]

This DS instruction ensures correct boundary alignment for the second operand address of the STM instruction. If we assume that GR1 contains the address of a list of four words, we can load them into registers 7 through 10 by executing

\[
\text{LM} \ 7,10,0(1) \]

Similarly, if we assume that register 13 contains the address of a block of 18 contiguous words, then

\[
\text{STM} \ 14,12,12(13) \]

will store registers 14, 15, 0, ..., 12 in successive words, beginning with the fourth word of the given area. While these last two examples may seem contrived, they illustrate parts of common conventions for communicating with subprograms.

As a final example of LM and STM, suppose we wish to exchange the contents of GR0 through GR7, as a group, with the contents of GR8 through GR15. We could write

\[
\begin{align*}
\text{STM} & \ 0,15,\text{SAVE} \\
\text{LM} & \ 8,7,\text{SAVE} \quad \text{or} \quad \text{STM} \ 8,7,\text{SAVE} \\
\text{SAVE} & \ \text{DS} \ 16F \quad \text{SAVE} \ \text{DS} \ 16F \\
\end{align*} \]

This ignores one important detail: one of the general registers must have been specified as a base register so that the symbol SAVE can be addressed. The STM and LM instructions will work correctly, because the CPU calculates the Effective Address before the execute phase of the LM instruction cycle begins. When execution is completed, however, the base register has probably been changed, so either we must inform the Assembler that the base register is changed (with a DROP statement, or a new USING statement), or the correct value must somehow be put back in the original base register.

Exercises

14.2.1.(1)+ Describe the differences between these two instructions:

\[
\begin{align*}
\text{STM} & \ 0,0,\text{XXX} \\
\text{ST} & \ 0,\text{XXX} \\
\end{align*} \]

14.2.2.(2) In describing the STM instruction, we said that
stores registers 14 through 12 beginning with the fourth word of the save area. Explain why it isn’t the third, as the displacement value 12=3*4 might imply.

14.2.3.(1) What is the maximum number of general registers whose contents can be modified by a single instruction?

14.2.4.(1) Describe the effect of each of the following instructions:

(1) LM 15,15,X
(2) STM 0,0,X
(3) LM 0,0,X

14.2.5.(5) Suppose two symbols have been defined with the statements

A EQU 4
B EQU 9

Then, the instruction STM A,B,X stores registers GR4 through GR9 starting at X, and we can compute the number of registers stored with the statement

NREGS EQU B-A+1

On the other hand, if we had defined A and B with

A EQU 9
B EQU 4

then the instruction STM A,B,X would store registers GR9 through GR15 and GR0 through GR4. We can then compute the number of registers stored with the statement

NREGS EQU B-A+17

Thus, the value assigned to NREGS depends on what values are assigned to the symbols A and B. Write an expression in the operand field of the EQU statement that defines NREGS such that its value will always tell how many registers were stored by the STM, no matter what values (between 0 and 15) are assigned to the symbols A and B.

14.3. Halfword Data

Table 38 shows the two instructions described in this section; neither instruction changes the Condition Code.

<table>
<thead>
<tr>
<th>Op</th>
<th>Mнем</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mнем</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td>LH</td>
<td>RX</td>
<td>Load Halfword</td>
<td>40</td>
<td>STH</td>
<td>RX</td>
<td>Store Halfword</td>
</tr>
</tbody>
</table>

Table 38. Halfword load/store instructions for 32-bit general registers

Transmitting halfword data between memory and registers is somewhat more complicated, because a 16-bit halfword requires only half of a 32-bit general register. This may seem obvious, but we need to know (1) which half of the register, and (2) what happens to the other half of the register.

The instructions LH (Load Halfword) and STH (Store Halfword) are similar to L and ST; both are RX-type instructions, and the operand field entry is exactly the same.

STH is simpler: the rightmost 16 bits of GR R1 replace the halfword in memory at the Effective Address of the second operand, and GR R1 remains unchanged. If the 32-bit contents of the register is an integer too large to be correctly represented as a 16-bit two’s complement integer, the high-order 16 bits are truncated, and significance is lost. No indication is made that the halfword in memory may not have the desired value!

When LH transmits data from memory to a general register, the CPU assumes you want to perform arithmetic operations on it, so the result should occupy the entire 32-bit register with the
least significant bit at the right-hand end. To give a correct representation in the 32-bit register, copies of the sign bit of the 16-bit halfword are sign-extended to the left to occupy the left half of the first-operand general register. This is illustrated in Figure 62.

```
┌───────────────────┬───────────────────┐
│/SM630000─ sign─extended /SM630000─┼s │ GR R1
└───────────────────┴───────────────────┘
```

Figure 62. Sign extension by LH instruction

For example, the two statements

\[
\text{LH } 0,=H'1' \quad (=H'1' = X'0001'), \quad c(GR0) = X'00000001'
\]

and

\[
\text{LH } 0,=H'-1' \quad (=H'-1' = X'FFFF'), \quad c(GR0) = X'FFFFFFFF'
\]

set the contents of GR0 to X'00000001' and X'FFFFFFFF', as indicated. So long as the value of a halfword operand \(X \) from memory satisfies

\[-2^{15} \leq c(X) < 2^{15}\]

it can be represented correctly in 16 bits, it will be correctly transmitted by LH and STH instructions. Otherwise, the problems illustrated in the next two examples can occur.

Suppose we execute the instructions in Figure 63. The contents of the registers is given in the remarks fields of the instruction statements.

```
L 0,=F'65537' \quad c(GR0)=X'00010001' +65537 = 2^{16}+1
STH 0,A \quad c(A) = X'0001' Lost high-order bit!
LH 1,A \quad c(GR1)=X'00000001' Lost significance!
```

Figure 63. Loss of significant digits using STH/LH

The contents of GR0 and GR1 will be different because the quantity in GR0 stored by the second instruction is too large.

A more awkward result is illustrated in Figure 64.

```
L 0,=F'65535' \quad c(GR0)=X'0000FFFF' +65535
STH 0,A \quad c(A) = X'FFFF' No lost bits, but wrong sign
LH 1,A \quad c(GR1)=X'FFFFFFFF' (-1!) Worse lost significance!
```

Figure 64. Loss of significant digits using STH/LH

In this case, the result in GR1 has sign and magnitude different from the original operand.

You can see that when you use halfword data, you must be careful to understand what might happen when storing, loading, or doing (implicitly word) arithmetic with such quantities.

We will see many uses of sign extension—copying the sign bit into the higher-order bit positions of a general register—so it’s important to understand its behavior.
Exercises

14.3.1.(3) Suppose the STH instruction was modified so that it stored the sign bit and the rightmost 15 bits of the 32-bit R1 register, so the result contains bits 0 and 17-31 of the original operand. By considering operands like those in Figures 63 and 64, determine whether this form of the instruction will solve some of the problems in using halfword data we’ve discussed here.

14.3.2.(2) Suppose GR1 contains X’12345678’. What will be in GR2 after executing these instructions?

\[
\begin{align*}
\text{ST} & \quad 1,A \\
\text{LH} & \quad 2,A+2
\end{align*}
\]

Now, suppose GR1 contains X’FEDCBA98’; what will be in GR2 after executing the same instructions?

14.3.3.(2) Suppose an area of memory contains X’4040405C’. Is it an instruction or data? Explain.

14.3.4.(1) What similarities can you find among the opcodes assigned to L, LH, and LM compared to those of ST, STH, and STM?

14.3.5.(3) The inequality following Figure 62 on page 185 says that values \(\geq 2^{15} \) or \(-2^{15} - 1 \) can cause problems when used as operands of LH and STH instructions. Write and execute program segments like that in Figure 63 on page 185 to test this assertion.

14.4. Insert and Store Character

The IC (Insert Character) and STC (Store Character) instructions shown in Table 39 transmit a single byte between a general register and memory.

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>43</td>
<td>IC</td>
<td>RS</td>
<td>Insert Character</td>
</tr>
<tr>
<td>42</td>
<td>STC</td>
<td>RS</td>
<td>Store Character</td>
</tr>
</tbody>
</table>

Table 39. Character insert/store instructions for 32-bit general registers

The operand field entry is written as for L and ST, but you need not worry about boundary alignment for the address of the second operand, since only a single byte of data is being moved.

The instruction

\[
\text{STC} \quad R_1,D_2(X_2,B_2)
\]

stores the rightmost byte of GR R1 in memory at the Effective Address of the second operand. The contents of GR R1 and the Condition Code are both unaffected.

The reverse operation, IC, is called “Insert Character” rather than “Load Character”, because the byte from memory is inserted into the rightmost byte of the register without disturbing the other bytes. No sign extension is done.

Figure 65 illustrates the actions of IC and STC.
As an example, the instructions in Figure 66 can be used to copy the two characters in the character constant at X, and store them in reverse order at Y.

![Figure 65](image)

Figure 65. Action of IC and STC instructions

IC $0,X$ Get 1st byte of constant
STC $0,Y+1$ Store at 2nd byte of Y
IC $0,X+1$ Get 2nd byte of constant
STC $0,Y$ Store byte at Y

![Figure 66](image)

Figure 66. Interchanging two bytes with IC and STC

If memory space is at a premium, you can use a single byte to contain a small integer constant. It can be placed in a register using these instructions:

![Figure 67](image)

Figure 67. Inserting a small number into a register

Exercises

14.4.1.(3) Write an instruction sequence that will replace the byte at XX with a byte that contains in binary the number of one-bits that were present in the original byte. For example, if the initial contents of XX was $X'48'$, the final contents should be $X'02'$. (Hint: define a carefully-constructed 256-byte constant, and use an indexed IC instruction. Show only enough of the constant to clarify how you constructed it.)

14.5. ICM and STCM Instructions

ICM and STCM are very flexible RS-type instructions. They are generalizations of the normal load/store and insert/store character instructions, because you can specify exactly which bytes of a register participate in the “insert” or “store” operation. Table 40 lists the two instructions:

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>BF</td>
<td>ICM</td>
<td>RS</td>
<td>Insert Characters Under Mask</td>
<td>BE</td>
<td>STCM</td>
<td>RS</td>
<td>Store Characters Under Mask</td>
</tr>
</tbody>
</table>

Table 40. Insert/Store characters under mask instructions for 32-bit general registers

The final “M” character on these two mnemonics does not mean “Multiple” as in LM and STM, but “Mask” instead.
The instruction format of ICM and STCM is very similar to that of LM and STM, as shown in Table 37 on page 182, but the R₃ digit is now interpreted as a mask digit M₃, as illustrated in Table 41. The M₃ operand is a bit pattern, not a register number.

<table>
<thead>
<tr>
<th>opcode</th>
<th>R₁</th>
<th>M₃</th>
<th>B₂</th>
<th>D₂</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 41. RS-type instruction format for ICM and STCM

The machine instruction statement operand formats for ICM and STCM are like those of LM and STM:

- ICM (or STCM) \(R₁, M₃, D₂(B₂) \) (explicit address)
- ICM (or STCM) \(R₁, M₃, S₂ \) (implied address)

The four bits in the mask digit correspond to the four bytes of the rightmost 32 bits of the general register designated by GR \(R₁ \). The leftmost bit of the mask \(M₃ \) (bit 12 of the instruction) corresponds to the leftmost byte of the 32-bit register, the next bit corresponds to the second byte, and so forth. If all mask bits are zero, nothing is inserted or stored.

The CPU executes the STCM instruction by first calculating the Effective Address. Then, where one-bits in the mask appear, the corresponding bytes in GR \(R₁ \) are stored into memory in contiguous bytes, starting at the Effective Address. Even though separate bytes in GR \(R₁ \) may be stored, they are not separated in memory. STCM does not change the Condition Code, and no boundary alignment is required for the second operand.

Suppose the four-byte area of memory named \(AA \) contains \('01020304' \), GR12 contains \('FFD0A061' \), and we execute this STCM instruction:

\[\text{STCM } 12, B'^0101', AA \]

Then, if we execute the instruction

\[\text{STCM } 12, B'^0101', AA \]

we get

\[AA \quad \text{DC } '01020304' \]

The \(M₃ \) mask specifies that the second and fourth bytes of GR12 are to be stored into the first two bytes starting at \(AA \), so the contents of memory will become \('D0610304' \).

STCM can be considered a generalization of the STC, STH, and ST instructions: the three instructions

- \(\text{STC } 12, AA \)
- \(\text{STH } 12, BB \)
- \(\text{ST } 12, CC \)

behave just like these three STCM instructions:

- \(\text{STCM } 12, B'^0001', AA \)
- \(\text{STCM } 12, B'^0011', BB \)
- \(\text{STCM } 12, B'^1111', CC \)

except that now the data areas named by the symbols \(BB \) and \(CC \) are not expected to be halfword and word aligned, as recommended for STH and ST. A possible disadvantage of STCM is that it cannot be indexed, since it is not an RX-type instruction.

The ICM instruction performs the inverse operation to STCM, and also does not expect the second operand to be aligned; however, ICM does set the Condition Code. As above, suppose the contents of the four bytes in memory in an area named \(AA \) contain \('01020304' \), and GR12 initially contains \('FFD0A061' \). Then if we execute the instruction

\[\text{ICM } 12, B'^0101', AA \]

we get

\[AA \quad \text{DC } '01020304' \]

the contents of GR12 will become \('FF01A002' \).

If all the mask bits are zero, or if all the inserted bytes are zero, the CC is set to zero. Otherwise, the leftmost bit of the first byte inserted anywhere into GR \(R₁ \) is inspected: if the leftmost bit is a
one-bit, the CC is set to 1; otherwise the CC is set to 2. The settings are summarized in Table 42.

<table>
<thead>
<tr>
<th>CC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$M_3 = 0$, or all inserted bytes are zero</td>
</tr>
<tr>
<td>1</td>
<td>Leftmost bit of first inserted byte = 1</td>
</tr>
<tr>
<td>2</td>
<td>Leftmost bit of first inserted byte = 0</td>
</tr>
</tbody>
</table>

Table 42. CC settings after ICM instruction

This method of setting the CC is easier to understand if we consider the case when the mask digit is all one-bits, meaning that four bytes are brought from memory and placed into GR R_1. If we execute these three instructions, the CC settings are as indicated.

- $ICM \ 1,15,=F \ '0' \ CC \ set \ to \ 0, \ c(GR1) \ is \ zero$
- $ICM \ 2,15,=F \ '-1' \ CC \ set \ to \ 1, \ c(GR2) \ is \ negative$
- $ICM \ 3,15,=F \ '+1' \ CC \ set \ to \ 2, \ c(GR3) \ is \ positive$

Exercises

14.5.1.(2) Write a sequence of two instructions (using ICM and STCM) that will set the CC to zero if the middle two bytes of GR1 are zero. For example, if $c(GR1) = X' A2000064'$, the CC should be set to zero.

14.6. RR-Type Data Transmission Instructions

We now examine RR-type instructions that transmit data among the 32-bit right halves of the general registers; four of them set CC. The instructions are LR (Load Register), LTR (Load and Test Register), LCR (Load Complement Register), LNR (Load Negative Register), and LPR (Load Positive Register). We saw the LR instruction in the machine instruction statement in Figure 30 on page 80; it and LHR are the only ones that do not set the CC.

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>LR</td>
<td>RR</td>
<td>Load Register</td>
<td>10</td>
<td>LPR</td>
<td>RR</td>
<td>Load Positive Register</td>
</tr>
<tr>
<td>11</td>
<td>LNR</td>
<td>RR</td>
<td>Load Negative Register</td>
<td>12</td>
<td>LTR</td>
<td>RR</td>
<td>Load and Test Register</td>
</tr>
<tr>
<td>13</td>
<td>LCR</td>
<td>RR</td>
<td>Load Complement Register</td>
<td>B927</td>
<td>LHR</td>
<td>RRE</td>
<td>Load Halfword</td>
</tr>
</tbody>
</table>

Table 43. Register/register instructions for 32-bit general registers

The RRE instruction format will be described in Section 14.8.

The operand field entry of all six instructions is written

$$LCR \ 0,0$$

where R_2 need not differ from R_1. For example,

$$LCR \ 0,0 \ \text{Complement} \ c(GR0)$$

forms the two’s complement of the contents of GR0 without affecting any other register.

The action of the first five instructions is summarized in Table 44, where the arrow means “replaces” and the vertical bars $[\ldots]$ mean “absolute value”. As noted above, only the right-most 32 bits of the registers are involved.
Table 44. Action of five RR-type general register instructions

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Action</th>
<th>CC Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>LR</td>
<td>c(GR R₁) ←→ c(GR R₂)</td>
<td>Not changed</td>
</tr>
<tr>
<td>LTR</td>
<td>c(GR R₁) ←→ c(GR R₂)</td>
<td>0,1,2</td>
</tr>
<tr>
<td>LCR</td>
<td>c(GR R₁) ←→ −c(GR R₂)</td>
<td>0,1,2,3</td>
</tr>
<tr>
<td>LPR</td>
<td>c(GR R₁) ←→</td>
<td>c(GR R₂)</td>
</tr>
<tr>
<td>LNR</td>
<td>c(GR R₁) ←→ −</td>
<td>c(GR R₂)</td>
</tr>
</tbody>
</table>

Table 45. Condition Code settings

<table>
<thead>
<tr>
<th>CC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Result is zero</td>
</tr>
<tr>
<td>1</td>
<td>Result is negative</td>
</tr>
<tr>
<td>2</td>
<td>Result is positive</td>
</tr>
<tr>
<td>3</td>
<td>Result has overflowed</td>
</tr>
</tbody>
</table>

The CC is set to indicate the status of the result in GR R₁, as shown in Table 45.

You can see in Table 44 that the actions of LR and LTR are identical except that LTR sets the CC. We often test the contents of a register by writing instructions like

\[
\text{LTR} \quad 4,4
\]

that has no effect other than setting the CC. We test the CC with the important “Branch on Condition” instructions we’ll see in Section 15.

For LCR, LPR, and LNR, the arithmetic operations use 32-bit two’s complement representation. Overflow can occur during execution of LCR or LPR only if \(c\) (GR R₂) is the maximum negative number \(-2^{31}\). (It may help to review the discussion of overflow in Section 2.8 on page 29.)

If the overflow condition causes a program interruption, the Interruption Code is set to 8, indicating a Fixed-Point Overflow[^90]. No overflow can occur executing LNR because all representable positive values have valid two’s complement representations of their negative values.

This example illustrates possible uses of these instructions.

* First, initialize GR2 and GR3

\[
\begin{align*}
\text{LM} & \quad 2,3,=F'1,0' \quad c(\text{GR}2)=1, \quad c(\text{GR}3)=0, \quad \text{CC not set} \\
\text{LR} & \quad 7,3 \quad c(\text{GR}7)=0, \quad \text{CC not set} \\
\text{LTR} & \quad 2,2 \quad c(\text{GR}2)=1, \quad \text{CC}=2 \\
\text{LNR} & \quad 1,3 \quad c(\text{GR}1)=0, \quad \text{CC}=0 \\
\text{LCR} & \quad 4,2 \quad c(\text{GR}4)=-1, \quad \text{CC}=1 \\
\text{LPR} & \quad 0,4 \quad c(\text{GR}0)=+1, \quad \text{CC}=2 \\
\text{LNR} & \quad 5,2 \quad c(\text{GR}5)=-1, \quad \text{CC}=1
\end{align*}
\]

Figure 68. Examples of some RR-type instructions

We saw in Section 14.5 on page 187 that these three ICM instructions set the Condition Code as indicated in the comment fields:

\[
\begin{align*}
\text{ICM} & \quad 1,15,=F'0' \quad \text{CC set to 0, } c(\text{GR}1) \text{ is zero} \\
\text{ICM} & \quad 2,15,=F'-1' \quad \text{CC set to 1, } c(\text{GR}2) \text{ is negative} \\
\text{ICM} & \quad 3,15,=F'+1' \quad \text{CC set to 2, } c(\text{GR}3) \text{ is positive}
\end{align*}
\]

[^90]: This condition is called “fixed-point overflow”, to distinguish it from floating-point and decimal overflow. It is one of four program interruptions you can allow or disallow by setting bits in the Program Mask sketched in Figure 12 on page 49. We sometimes say that such disallowed interruption conditions are “masked” or “disabled”, and when allowed they are “unmasked” or “enabled”. We’ll see in Section 16.2.1 how the SPM instruction lets you control these four program interruptions.
These CC settings are exactly what we would have obtained if we had written the six instructions

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L 1,=F’0’</td>
<td>CC unchanged</td>
</tr>
<tr>
<td>LTR 1,1</td>
<td>CC set to 0, c(GR1) is zero</td>
</tr>
<tr>
<td>L 2,=F’-1’</td>
<td>CC unchanged</td>
</tr>
<tr>
<td>LTR 2,2</td>
<td>CC set to 1, c(GR2) is negative</td>
</tr>
<tr>
<td>L 3,=F’+1’</td>
<td>CC unchanged</td>
</tr>
<tr>
<td>LTR 3,3</td>
<td>CC set to 2, c(GR3) is positive</td>
</tr>
</tbody>
</table>

That is, an ICM instruction whose mask is all one-bits is equivalent to a L instruction followed by an LTR instruction.

Unfortunately, this parallel is invalid for the LH instruction, because ICM does not extend the sign bit to the left to fill the register as does LH. The ICM instruction in

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L 1,=F’0’</td>
<td>Set GR1 to zero, CC unchanged</td>
</tr>
<tr>
<td>ICM 1,B’0011’,=H’-1’</td>
<td>Sets GR1 to X’0000FFFF’, CC = 1</td>
</tr>
</tbody>
</table>

sets the CC to 1 (indicating a one-bit at the left end of the first inserted byte), but the leftmost two bytes of GR1 are still zero. Conversely, the instruction

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LH 1,=H’-1’</td>
<td>Set GR1 to X’FFFFFFF’</td>
</tr>
</tbody>
</table>

does not affect the CC, but GR1 will contain all one-bits.

LHR is similar to LR, and their operand field entries are the same. It takes the rightmost 16 bits of the R2 register, extends the sign bit to the left to form a 32-bit result, and places the result in the R1 register. This is illustrated in Figure 69; note its similarity to Figure 62 on page 185. The R1 and R2 registers need not be distinct.

![Figure 69. Sign extension by LHR instruction](image)

For example:

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L 1,=X'456789AB’</td>
<td></td>
</tr>
<tr>
<td>LHR 2,1</td>
<td>c(GR2)=X’FFFB89AB’</td>
</tr>
</tbody>
</table>

We saw in Figure 63 on page 185 that large fullword values can be yield incorrect values if truncated to halfwords. The same problem can occur with LHR:

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L 0,=F’65537’</td>
<td>c(GR0)=X’00010001’</td>
</tr>
<tr>
<td>LHR 1,0</td>
<td>c(GR1)=X’00000001’ Lost significance!</td>
</tr>
</tbody>
</table>

Exercises

14.6.1.(2) What changes to the Assembler would be needed to let you use a (nonexistent) “STR” opcode (that is, “Store Register”, in the same sense as “Load Register”)?

14.6.2.(2) For each instruction in Table 43 on page 189, what operands in GR R2 can result in the CC being set to 3?

14.6.3.(2) Can you think of a reason why an LHR instruction would be used with identical register operands?

14.6.4.(2) Suppose GR1 contains X’12345678’. What will be in GR2 after executing this instruction?
Now, suppose GR1 contains X'FEDCBA98'$; what will be in GR2 after executing the same instruction?

14.7. Load, Store, and Insert for 64-bit General Registers

We'll now look at instructions that manage data using the full 64 bits of a general register. Contrast Figure 70 below with the 32-bits-only view in Figure 61 on page 180.

![Figure 70. 64-bit general register](image)

The instructions are shown in Table 46:

<table>
<thead>
<tr>
<th>Op</th>
<th>Mнеме</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mнеме</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>E304</td>
<td>LG</td>
<td>RXY</td>
<td>Load</td>
<td>E324</td>
<td>STG</td>
<td>RXY</td>
<td>Store</td>
</tr>
<tr>
<td>E315</td>
<td>LGH</td>
<td>RXY</td>
<td>Load Halfword (64→16)</td>
<td>B907</td>
<td>LGHR</td>
<td>RRE</td>
<td>Load Halfword (64→16)</td>
</tr>
<tr>
<td>EB04</td>
<td>LMG</td>
<td>RSY</td>
<td>Load Multiple</td>
<td>EB24</td>
<td>STMG</td>
<td>RSY</td>
<td>Store Multiple</td>
</tr>
<tr>
<td>EB96</td>
<td>LMH</td>
<td>RSY</td>
<td>Load Multiple High</td>
<td>EB26</td>
<td>STMH</td>
<td>RSY</td>
<td>Store Multiple High</td>
</tr>
<tr>
<td>EB80</td>
<td>ICMH</td>
<td>RSY</td>
<td>Insert Characters Under Mask (High)</td>
<td>EB2C</td>
<td>STCMH</td>
<td>RSY</td>
<td>Store Characters Under Mask (High)</td>
</tr>
</tbody>
</table>

Table 46. Register/storage instructions for 64-bit general registers

The letter “G” is used in almost all the instructions involving 64-bit registers. For example, LG and STG are the 64-bit equivalents of L and ST.91

Here, we introduce two variations on the RX and RS formats. RXY-type instructions behave just like RX-type instructions, except that they provide a longer, and signed, displacement field, as shown in Table 47.

<table>
<thead>
<tr>
<th>opcode</th>
<th>R_1</th>
<th>X_2</th>
<th>B_2</th>
<th>DL_2</th>
<th>DH_2</th>
<th>opcode</th>
</tr>
</thead>
</table>

Table 47. RXY-type instruction format

Another instruction type is RSY. Its format and behavior are very similar to RS-type instructions, and it shares the “long-displacement” format with RXY-type instructions.

<table>
<thead>
<tr>
<th>opcode</th>
<th>R_1</th>
<th>R_3</th>
<th>B_2</th>
<th>DL_2</th>
<th>DH_2</th>
<th>opcode</th>
</tr>
</thead>
</table>

Table 48. RSY-type instruction format

For now, we'll treat both RXY-type and RSY-type instructions as though they are identical to RX-type and RS-type instructions, because they do very similar things. Also note that the first four bytes of RX-type and RS-type instructions have the same format as the first four bytes of RXY-type and RSY-type instructions, respectively.

91 In my opinion, “G” was chosen for two reasons. First, it was the least-used letter among the nearly 500 instruction mnemonics supported by Enterprise System/390 architecture, the predecessor of z System. Second (and anecdotally), the largest size latte sold at a coffee shop near IBM in Poughkeepsie, New York was called a “Grande”, so it seemed natural to say the new large registers were similarly “Grande”. Other more descriptive letters like “L” (meaning “Long”) were already used in many other mnemonics, where “L” can mean “Logical”, or “Long”, or “Low”.

We’ll investigate the added usefulness of the “long-displacement” instructions and their “DL₂” and “DH₂” fields (and how the Assembler handles them) in Section 20.1 on page 302.

We’ve seen instructions that manipulate data only in the low-order 32 bits of a general register, while others deal with all 64 bits. To help us distinguish these two views of a general register, we introduce another notation, GR Gₙ. Thus, GG R₁ will mean the 64-bit general register referenced by an R₁ operand, while GR R₁ will continue to mean the 32-bit general register referenced by an R₁ operand. Similarly, GGn will mean the specific register referenced by GR Gₙ, and GRn will mean the specific register referenced by GR Rₙ.

The LG, STG, LMG, and STMG instructions do for 64-bit registers exactly the same actions as their 32-bit equivalents L, ST, LM, and STM.

1. To illustrate STMG, suppose we save 64-bit general registers GG0 through GG3 at Save0123:

```
STMG 0,3,Save0123 Save 64-bit GG0 through GG3
```

In memory, these would appear like this:

<table>
<thead>
<tr>
<th>Address</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Save0123+0</td>
<td>c(GG0)</td>
</tr>
<tr>
<td>Save0123+8</td>
<td>c(GG1)</td>
</tr>
<tr>
<td>Save0123+16</td>
<td>c(GG2)</td>
</tr>
<tr>
<td>Save0123+24</td>
<td>c(GG3)</td>
</tr>
</tbody>
</table>

Then, to restore the contents of the registers, we execute

```
LMG 0,3,Save0123 Restore GG0 through GG3
```

2. The other two LM/STM instructions in Table 46 end in “H”, referring to the 32-bit high-order half of a 64-bit general register. They do the same actions for the high-order halves of 64-bit general registers that LM and STM do for the low-order halves. LMH and STMH might seem unnecessary, since LMG and STMG manage both halves of a 64-bit register in one operation. The reason they exist is “history”.

For example, to store and load only the high-order halves of general registers 5 and 6, we can write

```
STMH 5,6,High56 Save high-order half of GG5 and GG6
```

```
LMH 5,6,High56 Restore high-order half of GG5 and GG6
```

```
High56 DS 2F Save area for two 32-bit words
```

3. LGH is the 64-bit equivalent of LH: it sign-extends the 16-bit integer at the Effective Address in memory to 64-bits, and and places the result into GG R₁; LGHR uses the rightmost 16 bits of the second operand register. Sign extension is indicated by the notation (64←16) in Table 46. Figure 71 shows its resemblance to LH seen in Figure 62 on page 185.

92 The letter “H” is used in mnemonics with many meanings, such as “High”, “Halfword”, etc.

93 Because 64-bit general registers were introduced after many years of program development using only 32-bit general registers, conventions for saving and restoring the 32-bit registers are embedded in many programs. To minimize the changes needed, programs can save the low-order register halves using existing conventions, and then save the high-order halves elsewhere using STMH. The LMD instruction, as we will see, lets you restore both halves of 64-bit registers from two separate save areas in one operation.
4. The remaining two instructions in Table 46 are ICMH and STCMH. They behave exactly like ICM and STCM, except that the four \(M_3 \) mask bits now refer to the four bytes in the high-order or left half of GG \(R_1 \). The Condition Code settings are the same as in Table 42 on page 189.

To illustrate, suppose you want to swap the first and fourth bytes of GG0 — that is, the high-order and low-order bytes of the high-order half of the register.

These three instructions show one way to do this:

\[
\text{STCMH 0,B'1001','Temp} \\
\text{ICMH 0,B'1000','Temp+1} \\
\text{ICMH 0,B'0001','Temp} \\
\text{Temp DS XL2 Two-byte temporary storage}
\]

Exercises

14.7.1.(1)+ There is a LGH instruction, but no STGH instruction. Why not?

14.7.2.(2) Write a sequence of instructions to exchange the high-order and low-order halves of GG0.

14.8. RR-Type Data Transmission Instructions for 64-bit General Registers

As the original System/360 architecture evolved, there were not enough one-byte RR-type opcodes available for new register-to-register instructions, so new two-byte opcodes were assigned using a new instruction type, RRE. RRE-type instructions are four bytes long (while “traditional” RR-type instructions are two bytes long). The 8-bit “unused” field is set to zero by the Assembler.

<table>
<thead>
<tr>
<th>opcode</th>
<th>unused</th>
<th>R1</th>
<th>R2</th>
</tr>
</thead>
</table>

Table 49. RRE-type instruction format

The instructions in Table 50 are RRE-type.
Table 50. Register/register instructions for 64-bit general registers

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>B904</td>
<td>LGR</td>
<td>RRE</td>
<td>Load Register (64)</td>
<td>B902</td>
<td>LTGR</td>
<td>RRE</td>
<td>Load and Test Register (64)</td>
</tr>
<tr>
<td>B903</td>
<td>LCGR</td>
<td>RRE</td>
<td>Load Complement Register (64)</td>
<td>B900</td>
<td>LPGR</td>
<td>RRE</td>
<td>Load Positive Register (64)</td>
</tr>
<tr>
<td>B901</td>
<td>LNGR</td>
<td>RRE</td>
<td>Load Negative Register (64)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 50. Register/register instructions for 64-bit general registers

The actions of the instructions in Table 51 are the same as for their 32-bit equivalents in Table 44 on page 190.

Table 51. Action of five RR-type 64-bit general register instructions

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Action</th>
<th>CC Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>LGR</td>
<td>$c(GG R_1) \leftarrow c(GG R_2)$</td>
<td>Not changed</td>
</tr>
<tr>
<td>LTGR</td>
<td>$c(GG R_1) \leftarrow c(GG R_2)$</td>
<td>0,1,2</td>
</tr>
<tr>
<td>LCGR</td>
<td>$c(GG R_1) \leftarrow -c(GG R_2)$</td>
<td>0,1,2,3</td>
</tr>
<tr>
<td>LPGR</td>
<td>$c(GG R_1) \leftarrow</td>
<td>c(GG R_2)</td>
</tr>
<tr>
<td>LNGR</td>
<td>$c(GG R_1) \leftarrow -</td>
<td>c(GG R_2)</td>
</tr>
</tbody>
</table>

Table 51. Action of five RR-type 64-bit general register instructions

The instructions in Figure 68 on page 190 dealt with data in 32-bit registers; their equivalents for 64-bit registers are shown in Figure 72.

* First, initialize GG2 and GG3 (all 64 bits)
 LMG 2,3,=FD,0′,1,0′
 LGR 7,3
 LTGR 2,2
 LNGR 1,3
 LG 4,2
 LTR 0,4
 LNGR 5,2

Figure 72. Examples of some RR-type instructions for 64-bit operands

If we compare Figures 72 and 68, we see that these equivalent instructions behave similarly and produce identical CC settings.

14.9. The Load and Test Instructions

In Section 14.6 on page 189, we saw two ways to transfer a data item from memory to a general register and set the CC depending on its sign:

ICM $R_1,B'1111',dataname$

and

L $R_1,dataname$

LTR R_1,reg

ICM cannot be indexed nor can it be used for 64-bit operands, because ICM and ICMH set the CC separately for the low-order and high-order halves of GG R_1, respectively. The L/LTR and LG/LTGR instruction pairs can be indexed, but two instructions are needed.

To eliminate these inconveniences, z System provides the LT and LTG instructions, as shown in Table 52:

Table 52. Load and Test instructions

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>E312</td>
<td>LT</td>
<td>RXY</td>
<td>Load and Test (32)</td>
<td>E312</td>
<td>LTG</td>
<td>RXY</td>
<td>Load and Test (64)</td>
</tr>
</tbody>
</table>

Table 52. Load and Test instructions
Their behavior is identical to the instruction pairs L/LTR and LG/LGTR, respectively.

Exercises

14.9.1.(1) How can the L/LTR and LG/LTGR instruction pairs be “indexed”?

14.9.2.(1) What operand values can cause LT or LTG to set CC=3?

14.10. Mixed 32- and 64-bit Operands

To make it easy to use 32-bit binary operands in 64-bit operations, z System provides a set of instructions that automatically sign-extend a 32-bit operand to 64 bits. In Table 53, the LGF instruction is RXY-type and the others are RRE-type. The notation \((64 \leftarrow 32)\) indicates the extension of the 32-bit second operand to a 64-bit first operand.

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>E314</td>
<td>LGF</td>
<td>RXY</td>
<td>Load ((64 \leftarrow 32))</td>
<td>B914</td>
<td>LGFR</td>
<td>RRE</td>
<td>Load Register ((64 \leftarrow 32))</td>
</tr>
<tr>
<td>B912</td>
<td>LTGFR</td>
<td>RRE</td>
<td>Load and Test Register ((64 \leftarrow 32))</td>
<td>B913</td>
<td>LCGFR</td>
<td>RRE</td>
<td>Load Complement Register ((64 \leftarrow 32))</td>
</tr>
<tr>
<td>B910</td>
<td>LPGFR</td>
<td>RRE</td>
<td>Load Positive Register ((64 \leftarrow 32))</td>
<td>B911</td>
<td>LNGFR</td>
<td>RRE</td>
<td>Load Negative Register ((64 \leftarrow 32))</td>
</tr>
</tbody>
</table>

Table 53. Register/register instructions for 64-bit general registers

The actions of these instructions are *almost* the same as their 64-bit equivalents that we saw in Table 51, except that no instruction sets the CC to 3.

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Action</th>
<th>CC Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>LGF</td>
<td>(c(GG_{R1}) \leftarrow c(\text{Word in memory}))</td>
<td>Not changed</td>
</tr>
<tr>
<td>LGFR</td>
<td>(c(GG_{R1}) \leftarrow c(GR_{R2}))</td>
<td>Not changed</td>
</tr>
<tr>
<td>LTGFR</td>
<td>(c(GG_{R1}) \leftarrow c(GR_{R2}))</td>
<td>0,1,2</td>
</tr>
<tr>
<td>LCGFR</td>
<td>(c(GG_{R1}) \leftarrow -c(GR_{R2}))</td>
<td>0,1,2</td>
</tr>
<tr>
<td>LPGFR</td>
<td>(c(GG_{R1}) \leftarrow</td>
<td>c(GR_{R2})</td>
</tr>
<tr>
<td>LNGFR</td>
<td>(c(GG_{R1}) \leftarrow -</td>
<td>c(GR_{R2})</td>
</tr>
</tbody>
</table>

Table 54. Action of 32-bit-to-64-bit general register instructions

In each case, the 32-bit second operand is first sign-extended internally, and then treated as a 64-bit operand. For example, the single instruction

\[
\text{LCGFR 0,1} \\
\text{Sign extend, complement GR1 to GG0}
\]

is equivalent to the two instructions

\[
\begin{align*}
\text{LGFR 0,1} & \quad \text{Sign extend GR1 to GG0} \\
\text{LCGR 0,0} & \quad \text{Two’s complement of GG0}
\end{align*}
\]

(See Exercise 14.10.2!)
Exercises

14.10.1.(1) Compare the opcodes of the five RRE-type instructions in Table 53 to those in Table 50. What similarities and differences do you see?

14.10.2.(2)+ What would happen in the (64→32) instructions in Table 53 if complementation is done before sign extension?

14.10.3.(2)+ The Condition Code values shown in Table 51 are not the same as those shown in Table 54. How and why are they different?

14.10.4.(2) Consider the 32-bit maximum negative number $X'80000000'$. Show the contents of general register 0 and the CC setting after each of these instruction sequences:

(1) $L \ 0_1=X'80000000'$
$LPR \ 0_0$

(2) $L \ 0_1=X'80000000'$
$LGFR \ 0_0$

(3) $L \ 0_1=X'80000000'$
$LPGFR \ 0_0$

(4) $L \ 0_1=X'80000000'$
$LNGFR \ 0_0$

14.10.5.(2)+ Why can none of the instructions in Table 53 set the CC to 3?

14.11. Other General Register Load Instructions (*)

The previous sections examined the most frequently used load instructions; z System supports many others. For example, many programs need to insert a byte into the rightmost 8 bits of a general register; a common instruction pattern is

$L \ 1_1=F'0'$
$IC \ 1_{,Byte} \ c(GR1) = X'000000xx'$

or

$SR \ 1_1 \ Set \ c(GR1) \ to \ zero \ (subtract \ from \ itself)$
$IC \ 1_{,Byte} \ c(GR1) = X'000000xx'$

An extra instruction is needed to set GR1 to zeros before the IC instruction. (The SR instruction subtracts c(GR1) from itself; we’ll review it in more detail in Section 16.2.)
The LLC instruction (“Load Logical Character”) does both operations: the byte is loaded into the last 8 bits of the GR1 operand, and the rest of GR1 is cleared to zero:

\[
\text{LLC } 1, \text{Byte } \quad c(\text{GR1}) = X'000000xx'
\]

Table 55 gives a summary of the instructions we’ll review. We’ll see that they are arranged in simple groups with repeating patterns.

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>E376</td>
<td>LB</td>
<td>RXY</td>
<td>Load Byte (32←8)</td>
<td>B924</td>
<td>LBR</td>
<td>RRE</td>
<td>Load Byte (32←8)</td>
</tr>
<tr>
<td>E377</td>
<td>LGB</td>
<td>RXY</td>
<td>Load Byte (64←8)</td>
<td>B906</td>
<td>LGBR</td>
<td>RRE</td>
<td>Load Byte (64←8)</td>
</tr>
<tr>
<td>E394</td>
<td>LLC</td>
<td>RXY</td>
<td>Load Logical Character (32←8)</td>
<td>B994</td>
<td>LLCR</td>
<td>RRE</td>
<td>Load Logical Character (32←8)</td>
</tr>
<tr>
<td>E390</td>
<td>LLGC</td>
<td>RXY</td>
<td>Load Logical Character (64←8)</td>
<td>B984</td>
<td>LLGCR</td>
<td>RRE</td>
<td>Load Logical Character (64←8)</td>
</tr>
<tr>
<td>E395</td>
<td>LLH</td>
<td>RXY</td>
<td>Load Logical Halfword (32←16)</td>
<td>B995</td>
<td>LLHR</td>
<td>RRE</td>
<td>Load Logical Halfword (32←16)</td>
</tr>
<tr>
<td>E391</td>
<td>LLGH</td>
<td>RXY</td>
<td>Load Logical Halfword (64←16)</td>
<td>B985</td>
<td>LLGHR</td>
<td>RRE</td>
<td>Load Logical Halfword (64←16)</td>
</tr>
<tr>
<td>E317</td>
<td>LLGT</td>
<td>RXY</td>
<td>Load Logical Thirty One Bits (64←31)</td>
<td>B917</td>
<td>LLGTR</td>
<td>RRE</td>
<td>Load Logical Thirty One Bits (64←31)</td>
</tr>
<tr>
<td>E316</td>
<td>LLGF</td>
<td>RXY</td>
<td>Load Logical (64←32)</td>
<td>B916</td>
<td>LLGFR</td>
<td>RRE</td>
<td>Load Logical (64←32)</td>
</tr>
</tbody>
</table>

Table 55. Other general register load instructions

For example, the four instructions in the first two rows are arithmetic loads: the high-order bit of the second operand is sign-extended to the length of the first operand (as illustrated in Figure 62 on page 185 and Figure 71 on page 194); the others are logical load instructions that zero-extend the second operand to the length of the first.

None of the instructions in Table 55 change the Condition Code.

14.11.1. Load Byte Instructions

The LB, LBR, LGB, and LGBR instructions treat the second operand as a signed 8-bit number, and sign-extend it to the 32- or 64-bit length of the R1 general register operand. For the LGB and LGBR instructions, this is illustrated in Figure 74.

For the LB and LBR instructions, the R1 first operand is a 32-bit general register, and the high-order 32 bits of the 64-bit register are unchanged. For example:

\[
\text{LB } \ 3, = FL1' -7' \quad \quad c(\text{GR3}) = X'FFFFFFF9' \\
\text{LGB} \ 5, = FL1' -7' \quad \quad c(\text{GR5}) = X'FFFFFFFF FFFFFFF9'
\]

14.11.2. Load Logical Character Instructions

The second operand of these instructions is called an unsigned “character” to distinguish it from the (signed) “byte” operand of the Load Byte instructions. Each of LLC, LLCR, LLGC, and LLGCR does the same as the “Byte” instructions above, except that the rest of the R1 first operand register is set to zeros. To illustrate LLGC and LLGCR:
14.11.3. Load Logical Halfword Instructions

The four instructions LLH, LLHR, LLGH, and LLGHR all load the 16-bit halfword operand into the low-order 16 bits of the R1 register, and clear the preceding 16 bits of the 32-bit register (for LLH and LLHR) or the preceding 48 bits of the 64-bit register (for LLGH and LLGHR).

14.11.4. Load Logical (Word) Instructions

The LLGF and LLGFR instructions load the 32-bit second operand from memory or from GR R2 into the low-order 32 bits of the 64-bit GG R1 register, as illustrated in Figure 77:

14.11.5. Load Logical Thirty One Bit Instructions

The LLGT and LLGTR instructions are unusual: the second operand is 32 bits long, but its high-order bit is ignored! This is illustrated in Figure 78:
Figure 78. Operation of Load Logical Thirty One Bits instructions

The \(R_1 \) operand is always a 64-bit register.

Why ignore the high-order bit of the 32-bit second operand? When we discuss “addressing modes” and instructions that both change and depend on addressing mode in Section 20, we’ll see that the high-order bit of a 32-bit address was often used to indicate which mode was desired; it can be important to set that bit to zero.\(^4\)

Exercises

14.11.1.(1) How would you simulate the action of the Load Logical Character instructions with other instructions already described?

14.11.2.(1) How would you simulate the action of the Load Logical (Word) instructions with other instructions already described?

14.12. Misunderstandings to Avoid

Two common errors made by beginning programmers are

1. confusing the LR and L instructions, and
2. trying to use a “Store Register” or “STR” instruction to “store” one register into another.

First: by substituting L for LR, you can occasionally create an error that can’t be detected by the Assembler, and sometimes is difficult to find. For example, suppose you intended to load GR5 from GR8 with a LR instruction. If the symbols R5 and R8 have values 5 and 8, then both

\[
\text{L 5,8 Load GR5 with value 8 (??)}
\]

and

\[
\text{L R5,R8 Load GR5 from GR8 (??)}
\]

are valid instructions referring to memory at address 8. This is probably not what was intended for the second instruction, even though it looks like it is “loading” GR5 from GR8. This can be seen by checking the machine language object code generated for the two instructions:

```
000000 5850 0008  L 5,8  Load GR5 with value 8 (??)
000004 5850 0008  L R5,R8 Load GR5 from GR8 (??)
```

Exactly the same instruction will be executed.

\(^4\) This unusual behavior is difficult to justify now, but we’ll see in Section 37 that there are good reasons to have these instructions.
To help you remember the difference between related instructions of different types, note that almost all RR-type instruction mnemonics end in the letter “R”, while the RX-, SI-, and RS-type instruction mnemonics end in other letters.

Second: there is no “STR” instruction. To “store” data from one general register to another, you must use a LR-like instruction. (See Exercise 14.6.1.)

14.13. Summary

You can think of load-type instruction statements as moving data from right to left: that is, the second operand replaces the first operand. For example, consider this assembler instruction statement:

\[
\text{L 0, X} \quad c(\text{gr0}) \leftarrow c(\text{x}) \quad \text{Right to left}
\]

This way of visualizing actions applies to most instructions. The primary exceptions are the store-type instructions, where you can visualize data moving from the first operand to the second, or from left to right in the assembler instruction statement. For example:

\[
\text{ST 0, X} \quad c(\text{gr0}) \rightarrow c(\text{x}) \quad \text{Left to right}
\]

It also helps to remember how short operands are extended to the length of the target operand.

Operand Extension

When a source operand in a register or in memory is moved to a target register longer than the operand, the operand is extended to the length of the target register. Arithmetic loads extend the sign bit, and logical loads extend with zero bits.

Examples of arithmetic load instructions are LH, LGH, and LGFR; examples of logical load instructions are LLH, LLGH, and LLGFR.

We’ve seen a lot of new instructions in this section, and keeping track of them can be difficult. The following table provides a compact summary to help you understand how they are grouped and related.

Don’t try to memorize!

The z System processors are very complex, and you’ll learn the instruction mnemonics a few at a time. The tables at the end of each section summarizing the mnemonics and their opcodes are primarily for reference (and to help you in solving some of the Exercises).
We’ll use tables like this to summarize other instructions as they are introduced. (This one is more complex than most!)

In Table 56 you might say that the ICM/ICMH and STCM/STCMH instructions deal with one byte at a time; but because they might move up to 4 bytes, they are shown in the column with 32-bit second operands.

It is difficult to remember all these mnemonics, but they will become more familiar with regular use. You might ask why the z System architects didn’t choose more descriptive mnemonics like LoadRegister and InsertCharactersUnderMask. Here are two reasons why not.

1. When you write Assembler Language programs, long mnemonics would require a lot of extra work that is saved by using short abbreviations.
2. In the early years of System/360, programs were prepared on 80-column punched cards, of which only 71 columns were available for Assembler Language statements. This meant that shorter mnemonics provided more space for name-field symbols, operands, and comments.

The instruction mnemonics and opcodes are shown in the following table:

<table>
<thead>
<tr>
<th>Function</th>
<th>Oprnd1 8 bits</th>
<th>8 bits</th>
<th>16 bits</th>
<th>32 bits</th>
<th>64 bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load Arithmetic (from memory)</td>
<td>LB</td>
<td>LH</td>
<td>L_</td>
<td>LT_</td>
<td>LM_</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load Arithmetic (from register)</td>
<td>LBR</td>
<td>LHR</td>
<td>LR_</td>
<td>LTR_</td>
<td>LPR_</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load Logical (from memory)</td>
<td>LLC</td>
<td>LLH</td>
<td>LLGC</td>
<td>LLGH</td>
<td>LLGT</td>
</tr>
<tr>
<td>Load Logical (from register)</td>
<td>LLCR</td>
<td>LLHR</td>
<td>LLGCR</td>
<td>LLGHR</td>
<td>LLGTR</td>
</tr>
<tr>
<td>Store</td>
<td>STC</td>
<td>STH</td>
<td>ST_</td>
<td>STM_</td>
<td></td>
</tr>
<tr>
<td>Insert</td>
<td>IC</td>
<td>ICM</td>
<td>ICMH</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 56. Summary of instructions discussed in this section
<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Opcode</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC</td>
<td>43</td>
</tr>
<tr>
<td>ICM</td>
<td>BF</td>
</tr>
<tr>
<td>ICMM</td>
<td>EB80</td>
</tr>
<tr>
<td>L</td>
<td>58</td>
</tr>
<tr>
<td>LB</td>
<td>E376</td>
</tr>
<tr>
<td>LBR</td>
<td>B926</td>
</tr>
<tr>
<td>LCGFR</td>
<td>B913</td>
</tr>
<tr>
<td>LCGR</td>
<td>B903</td>
</tr>
<tr>
<td>LCR</td>
<td>13</td>
</tr>
<tr>
<td>LG</td>
<td>E304</td>
</tr>
<tr>
<td>LGB</td>
<td>E377</td>
</tr>
<tr>
<td>LGBR</td>
<td>B906</td>
</tr>
<tr>
<td>LGF</td>
<td>E314</td>
</tr>
<tr>
<td>LGFR</td>
<td>B914</td>
</tr>
<tr>
<td>LGH</td>
<td>E315</td>
</tr>
<tr>
<td>LGHR</td>
<td>B907</td>
</tr>
<tr>
<td>LGR</td>
<td>B904</td>
</tr>
<tr>
<td>LH</td>
<td>48</td>
</tr>
<tr>
<td>LHR</td>
<td>B927</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Opcode</th>
</tr>
</thead>
<tbody>
<tr>
<td>LLC</td>
<td>E394</td>
</tr>
<tr>
<td>LLCR</td>
<td>B994</td>
</tr>
<tr>
<td>LLGC</td>
<td>E390</td>
</tr>
<tr>
<td>LLGCR</td>
<td>B984</td>
</tr>
<tr>
<td>LLGF</td>
<td>E316</td>
</tr>
<tr>
<td>LLGFR</td>
<td>B916</td>
</tr>
<tr>
<td>LLGH</td>
<td>E391</td>
</tr>
<tr>
<td>LLGHR</td>
<td>B985</td>
</tr>
<tr>
<td>LLGT</td>
<td>E317</td>
</tr>
<tr>
<td>LLGTR</td>
<td>B917</td>
</tr>
<tr>
<td>LLH</td>
<td>E395</td>
</tr>
<tr>
<td>LLHR</td>
<td>B995</td>
</tr>
<tr>
<td>LM</td>
<td>98</td>
</tr>
<tr>
<td>LMG</td>
<td>EB04</td>
</tr>
<tr>
<td>LMH</td>
<td>EB96</td>
</tr>
<tr>
<td>L NGFR</td>
<td>B911</td>
</tr>
<tr>
<td>L NGR</td>
<td>B901</td>
</tr>
<tr>
<td>L NR</td>
<td>11</td>
</tr>
<tr>
<td>L NGFR</td>
<td>B910</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Opcode</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPGR</td>
<td>B900</td>
</tr>
<tr>
<td>LPR</td>
<td>10</td>
</tr>
<tr>
<td>LR</td>
<td>18</td>
</tr>
<tr>
<td>LT</td>
<td>E312</td>
</tr>
<tr>
<td>LTG</td>
<td>E302</td>
</tr>
<tr>
<td>LTGFR</td>
<td>B912</td>
</tr>
<tr>
<td>LTGR</td>
<td>B902</td>
</tr>
<tr>
<td>LTR</td>
<td>12</td>
</tr>
<tr>
<td>ST</td>
<td>50</td>
</tr>
<tr>
<td>STC</td>
<td>42</td>
</tr>
<tr>
<td>STCM</td>
<td>BC</td>
</tr>
<tr>
<td>STCMH</td>
<td>EB2C</td>
</tr>
<tr>
<td>STG</td>
<td>E324</td>
</tr>
<tr>
<td>STH</td>
<td>40</td>
</tr>
<tr>
<td>STM</td>
<td>90</td>
</tr>
<tr>
<td>STMG</td>
<td>EB24</td>
</tr>
<tr>
<td>STMH</td>
<td>EB26</td>
</tr>
</tbody>
</table>
The instruction opcodes and mnemonics are shown in the following table:

<table>
<thead>
<tr>
<th>Opcode</th>
<th>Mnemonic</th>
<th>Opcode</th>
<th>Mnemonic</th>
<th>Opcode</th>
<th>Mnemonic</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>LPR</td>
<td>B907</td>
<td>LGHR</td>
<td>E314</td>
<td>LGF</td>
</tr>
<tr>
<td>11</td>
<td>LNR</td>
<td>B910</td>
<td>LGFGR</td>
<td>E315</td>
<td>LGH</td>
</tr>
<tr>
<td>12</td>
<td>LTR</td>
<td>B911</td>
<td>LNGFR</td>
<td>E316</td>
<td>LLGF</td>
</tr>
<tr>
<td>13</td>
<td>LCR</td>
<td>B912</td>
<td>LGFR</td>
<td>E317</td>
<td>LLGT</td>
</tr>
<tr>
<td>18</td>
<td>LR</td>
<td>B913</td>
<td>LCGFR</td>
<td>E324</td>
<td>STG</td>
</tr>
<tr>
<td>40</td>
<td>STH</td>
<td>B914</td>
<td>LGF</td>
<td>E376</td>
<td>LB</td>
</tr>
<tr>
<td>42</td>
<td>STC</td>
<td>B916</td>
<td>LLGF</td>
<td>E377</td>
<td>LGB</td>
</tr>
<tr>
<td>43</td>
<td>IC</td>
<td>B917</td>
<td>LLGTR</td>
<td>E390</td>
<td>LLGC</td>
</tr>
<tr>
<td>48</td>
<td>LH</td>
<td>B926</td>
<td>LBR</td>
<td>E391</td>
<td>LLGH</td>
</tr>
<tr>
<td>50</td>
<td>ST</td>
<td>B927</td>
<td>LHR</td>
<td>E394</td>
<td>LLC</td>
</tr>
<tr>
<td>58</td>
<td>L</td>
<td>B984</td>
<td>LLGCR</td>
<td>E395</td>
<td>LLH</td>
</tr>
<tr>
<td>90</td>
<td>STM</td>
<td>B985</td>
<td>LLGHR</td>
<td>EB04</td>
<td>LMG</td>
</tr>
<tr>
<td>98</td>
<td>LM</td>
<td>B994</td>
<td>LLCR</td>
<td>EB24</td>
<td>STMG</td>
</tr>
<tr>
<td>B900</td>
<td>LPGR</td>
<td>B995</td>
<td>LLHR</td>
<td>EB26</td>
<td>STMH</td>
</tr>
<tr>
<td>B901</td>
<td>LNRGR</td>
<td>BC</td>
<td>STCM</td>
<td>EB2C</td>
<td>STCMH</td>
</tr>
<tr>
<td>B902</td>
<td>LTGR</td>
<td>BF</td>
<td>ICM</td>
<td>EB80</td>
<td>ICMH</td>
</tr>
<tr>
<td>B903</td>
<td>LCGR</td>
<td>E302</td>
<td>LTG</td>
<td>EB96</td>
<td>LMH</td>
</tr>
<tr>
<td>B904</td>
<td>LGR</td>
<td>E304</td>
<td>LG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B906</td>
<td>LGBR</td>
<td>E312</td>
<td>LT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We will use tables like these to summarize instruction mnemonics and their operation codes as they are introduced.

Terms and Definitions

GR R_n
A notation referring to the rightmost 32 bits of the general register specified by R_n.

GR G_n
A notation referring to the full 64 bits of the general register specified by R_n.

GRn
A notation referring to the rightmost 32 bits of general register “n”.

GGrn
A notation referring to 64-bit general register “n”.

insert
Place one or more bytes into a register without changing other bytes.

load operation
Replace the contents of a register with a copy of data from a memory address or from another register. Other parts of the register may contain sign-extended bits (for arithmetic loads), or zero-extended bits (for logical loads). The original contents of the target register are not preserved.

M_n
The field of a machine instruction designating a mask.
\(R_n \)

The field of a machine instruction designating the number of a general register.

sign extension

The process of making copies of the sign bit of a shorter operand and extending it to the left, to the length of a target field.

store operation

Place a copy of part or all of a register’s contents into memory.

zero extension

The process of adding zero bits to the left of a shorter operand, to extend it to the length of a target field.
15. Testing the Condition Code: Conditional Branching

Branch instructions let you choose alternative actions in your program, depending on tests or computed results whose status was indicated in the Condition Code.

The Condition Code is a two-bit field in the PSW (see Figure 12 on page 49), so its value is 0, 1, 2, or 3. To test the CC value we use a “Branch on Condition” instruction. The most common are the RX-type instruction BC and the RR-type instruction BCR. The result of testing the value of the CC determines whether or not the branch condition is met.

We’ll start with the basic forms of conditional branch instructions; newer forms are discussed in Section 22. Other instructions whose actions depend on the value of the Condition Code are described later.

15.1. The Branch Address

If the condition for branching is not met (we’ll see how to determine this in a moment), no action is taken and execution proceeds normally to the next sequential instruction following the Branch on Condition instruction.

If the branch condition is met, the branch address is determined:

1. For the BC instruction, the branch address is the Effective Address, determined from the displacement, base, and index fields of the instruction.
2. For the BCR instruction, the branch address is contained in the general register specified by the R2 digit of the instruction. However, if the R2 digit is zero, no branch ever occurs: that is, if R2=0, the branch condition is never met.

To complete execution of a branch instruction, the IA portion of the PSW is replaced by the branch address. The next instruction to be fetched then comes from the address specified by the branch address. Branch instructions are also called “transfer” instructions, in the sense that control is transferred to the instruction at the branch address.

A successful branch instruction alters the normal sequencing of instruction fetching. If the IA is not changed by the branch instruction, the next instruction fetched follows the branch instruction, and we say that the branch was “not taken.”
15.2. The Branch Mask and Branch Condition

The branch condition is determined by examining a single bit of the third hex digit of the instruction denoted “R₃” in Table 17 on page 109 and in Table 19 on page 110. For the BCR and BC instructions this digit does not refer to GR_{R1}, but is treated as a bit pattern called a mask, M₁, as we saw in Section 14.5 for the ICM and STCM instructions. The instructions have these formats:

<table>
<thead>
<tr>
<th>07</th>
<th>M<sub>1</sub></th>
<th>R<sub>2</sub></th>
</tr>
</thead>
</table>

Table 57. BCR instruction

<table>
<thead>
<tr>
<th>47</th>
<th>M<sub>1</sub></th>
<th>X<sub>2</sub></th>
<th>B<sub>2</sub></th>
<th>D<sub>2</sub></th>
</tr>
</thead>
</table>

Table 58. BC instruction

For both the RR and RX instructions, M₁ is the mask digit. Thus, we could write

- \textbf{BCR} 9,4 M₁ = B’1001’
- \textbf{BC} 7,4(8,2) M₁ = B’0111’

Figure 79. Examples of conditional branch instructions

where the mask fields are B’1001’ and B’0111’ respectively.

The CPU matches the value of the CC to one of the mask bits, as shown in Table 59. If a 1-bit in the mask field position corresponds to the value of the CC, the branch condition is met; if the CC value matches a 0-bit in the mask, the branch condition is not met and no branch occurs.

<table>
<thead>
<tr>
<th>CC value tested</th>
<th>Instruction bit position</th>
<th>Mask bit position</th>
<th>Mask bit value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>8</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>9</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 59. Mask bits and corresponding CC values

Thus in Figure 79, the BCR 9,4 instruction would branch if the CC had values of 0 or 3, and the BC 7,4(8,2) instruction would not branch if the CC had value 0.

Exercises

15.2.1.(2) Show how the value of the CC can be used as a bit index in determining which bit of the mask digit to test.

15.2.2.(1)+ Why does a mask value of 15 imply an unconditional branch?

15.2.3.(1)+ What happens when BC 15,0 is executed?

15.2.4.(3) If 0 ≤ n ≤ 15, what will be the result of executing this instruction?

\textbf{BC} n,n(n,n)

15.2.5.(1)+ Using the information in Table 59, create a table with four rows of Condition Code values (0, 1, 2, and 3) and columns of 16 BC mask values that show at each intersection whether or not a branch will occur. (Feel free to transpose rows and columns if necessary.)
15.3. Examples of Conditional Branch Instructions

Here are some examples of conditional branching:

1. Branch to **XX** if the CC is zero.

 The BC instruction mask field has value B’1000’, so the branch condition will be met only if the CC is zero.

2. Branch to **XX** if the CC is not 0.

 \[\text{BC } 7,XX \quad M_1 = B'0111' \]

 The mask has value B’0111’, so the branch condition will be met if the CC is 1, 2, or 3.

3. Branch to the instruction whose address is contained in GR14.

 \[\begin{align*}
 &\text{BCR } 15,14 \quad M_1 = B'1111' \\
 &\text{or} \quad \text{BC } 15,0(0,14) \quad M_1 = B'1111' \\
 \end{align*} \]

 When all mask bits are one, the CC value must match a one-bit in the mask, so a branch always occurs: this is called an **unconditional branch**. We could also have written the BCR instruction as

 \[\begin{align*}
 &\text{BCR } X'F',14 \\
 &\text{or} \quad \text{BCR } B'1111',14 \quad M_1 \text{ is very clear here!} \\
 \end{align*} \]

4. Branch to **XX** if the CC is 1 or 3.

 \[\text{BC } 5,XX \quad M_1 = B'0101' \]

15.4. No-Operation Instructions

We noted in example 3 above that a mask of all 1-bits means the branch is unconditional, because the branch condition is always met. Sometimes it is useful to execute an instruction that has *no* effect, so we usually use a conditional branch instruction with a zero mask field. Thus,\[\text{BC } 0,x \]
and\[\text{BCR } 0,\text{any} \]
have no effect, because the branch condition can never be met. They are sometimes called *no-operation* or *no-op* instructions, and the Assembler provides special *extended mnemonics* for them. The instructions

\[\begin{align*}
&\text{NOP } S_2 \\
&\text{NOPR } R_2 \\
\end{align*} \]

are treated by the Assembler as being the same as

\[\begin{align*}
&\text{BC } 0,S_2 \\
&\text{BCR } 0,R_2 \\
\end{align*} \]

respectively. Only a single operand is specified for each NOP or NOPR instruction, and the Assembler automatically provides the zero mask digit.

15.4.1. Special No-Operation Instructions (*)

One special type of no-operation instruction has an unusual side-effect. It has the form

\[\text{BCR } 15,0 \quad M_1 \text{ is B'1111'} \]
Modern processors are highly “pipelined”. That is, the fetch, decode, and execute phases are processed internally in many smaller steps called “stages”.

Pipelining allows one instruction to begin its execution phase while the next is being decoded, and the instruction after that is being fetched.\(^{95}\) Occasionally, it may be necessary to prevent this overlapped type of execution; this form of BCR instruction blocks execution of the following instruction until all preceding instructions have completed execution. This is sometimes called “draining” or “flushing” the pipeline, and it can cause programs to execute more slowly.

BCR operands can be interpreted this way:\(^{96}\)

<table>
<thead>
<tr>
<th>BCR</th>
<th>0,0</th>
<th>Branch never nowhere</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCR</td>
<td>15,0</td>
<td>Branch always nowhere (pipeline synchronization)</td>
</tr>
<tr>
<td>BCR</td>
<td>0,x</td>
<td>Branch never somewhere (when (x > 0))</td>
</tr>
<tr>
<td>BCR</td>
<td>x,0</td>
<td>Branch sometimes nowhere (when (0 < x < X'F'))</td>
</tr>
<tr>
<td>BCR</td>
<td>x,y</td>
<td>Branch sometimes somewhere (when (0 < x,y < X'F'))</td>
</tr>
</tbody>
</table>

Exercises

15.4.1.(2) In trying to ensure that a BASR instruction was followed immediately by a word address constant, a programmer wrote the following instructions as part of his program:

- DS 0F Align to fullword boundary
- NOPR 0 2-byte No-op
- BASR 8,11 2-byte BASR instruction
- DC A(Anywhere) Properly aligned fullword constant

Explain why this might create an unexpected problem.

15.4.2.(2) What other instructions could be used in place of NOPR and NOP?

15.4.3.(1) Suppose you execute the instruction

\[
\text{BCR } 15,0
\]

Will an unconditional branch occur? If so, from what address will the next instruction be fetched?

15.4.4.(2) Explain the execution-time differences between these two pairs of instructions:

- L \(1,=F'0'\) BCR 15,1
- L \(0,=F'0'\) BCR 15,0

15.5. Conditional No-Operation

An important use of “no-operation” instructions is to ensure a desired boundary alignment for a particular instruction in a stream of other executable instructions. (We have already seen how to obtain boundary alignments for *data.*) For example, we may require that an RR-type instruction such as

\[
\text{BASR } 8,11
\]

\(^{95}\) The CPU is designed so that exception conditions at any stage are correctly recognized and handled as though each instruction is completely processed (or prevented from executing) before the next is fetched. Early pipelined processors couldn’t always do this, and were subject to what were called “imprecise” interruptions. The CPU set the Instruction Length Code (ILC) to zero, meaning that both it (and you) weren’t certain which instruction caused the interruption.

\(^{96}\) This is not an official description.
be followed immediately (with no wasted space) by an aligned word constant such as an address constant. While it is best not to mix instructions and data this way, there are times where such a technique is useful.\footnote{Modern CPUs maintain high-speed buffers known as ‘caches’, one for fast access to instructions and another for fast access to data items. If data items appear in the instruction cache, the CPU must stop pre-processing instructions, load the data into the data cache (probably displacing useful data already there), and resume processing. This can cause significantly slower execution, so you should avoid “close” mixing of instructions and data.}

Since BASR is an RR-type instruction, we need to ensure that its location lies on a halfword boundary between two word boundaries. In a small program, it may be easy to determine the location of the BASR by counting LC values: if the BASR falls on a word boundary, insert a

\[\text{NOPR } 0\]

instruction just before it. But if the program is large or if changes must be made somewhere preceding the BASR, it is difficult to know whether the NOPR should be inserted or not.

To do this automatically, the Assembler provides the CNOP (Conditional No-Operation) assembler instruction. If the LC is already on the desired boundary, nothing is inserted. Otherwise, CNOP inserts as many “NOPR 0” and “NOP 0” instructions as are needed to give the desired alignment.

The operand field entry of a CNOP instruction is written

\[\text{CNOP} \quad \text{boundary},\text{width}\]

where “boundary” and “width” are absolute expressions. The “boundary” operand may have any multiple-of-two value between 0 and 14, and its value must be less than the value of “width”, which is 4, 8, or 16. A name field symbol is allowed, and its Length Attribute is always 1.

The “width” operand specifies the boundary relative to which alignment is performed, and “boundary” specifies the desired halfword relative to that boundary, as shown in Table 60.\footnote{More precisely, \[\text{CNOP} \quad \text{boundary},\text{width}\] causes the Assembler to insert enough “NOPR 0” or “NOP 0” instructions as may be needed to increment the LC (if necessary) so that the new value of the LC satisfies \[\text{boundary} \equiv \text{LC} \pmod{\text{width}}\].}

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Location Counter Alignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNOP 0,4</td>
<td>beginning of a word</td>
</tr>
<tr>
<td>CNOP 2,4</td>
<td>middle of a word</td>
</tr>
<tr>
<td>CNOP 0,8</td>
<td>beginning of a doubleword</td>
</tr>
<tr>
<td>CNOP 2,8</td>
<td>second halfword of a doubleword</td>
</tr>
<tr>
<td>CNOP 4,8</td>
<td>middle of a doubleword</td>
</tr>
<tr>
<td>CNOP 6,8</td>
<td>fourth halfword of a doubleword</td>
</tr>
<tr>
<td>CNOP 0,16</td>
<td>beginning of a quadword</td>
</tr>
<tr>
<td>CNOP 2,16</td>
<td>second halfword of a quadword</td>
</tr>
<tr>
<td>CNOP 4,16</td>
<td>second word of a quadword</td>
</tr>
<tr>
<td>CNOP 6,16</td>
<td>fourth halfword of a quadword</td>
</tr>
<tr>
<td>CNOP 8,16</td>
<td>second doubleword of a quadword</td>
</tr>
<tr>
<td>CNOP 10,16</td>
<td>sixth halfword of a quadword</td>
</tr>
<tr>
<td>CNOP 12,16</td>
<td>third word of a quadword</td>
</tr>
<tr>
<td>CNOP 14,16</td>
<td>eighth halfword of a quadword</td>
</tr>
</tbody>
</table>

Table 60. CNOP operands

To achieve the alignment desired for the BASR in our example, we would write
Note that we should not write

DS 0H
BASR 8,11
DC A(AnyWhere) No intervening bytes

because alignment to a halfword boundary is automatically performed by the Assembler for instructions. Thus, the BASR could still fall on a word boundary, and the Assembler would then zero-fill the two bytes between the BASR and the address constant (because A-type constants have an implied word alignment). Similarly, we could not write

BASR 8,11
DS 0F
DC A(AnyWhere)

since the BASR could again fall on a word boundary, leaving two bytes between it and the constant that would be skipped by the Assembler. The contents of the two skipped bytes at execution time are arbitrary, since the Supervisor does not always clear or otherwise initialize the area into which a program is about to be loaded.

Name field symbols on CNOP instructions are rarely used, because branch-target symbols typically are given to instructions immediately preceding or following the CNOP. Thus, you could write a symbol that is the name of “nothing”:

DS 0F Align on word boundary
CNopName CNOP 0,4 Align on word boundary (again?)
CallSub BASR 14,15 Go to a subroutine

The two symbols CNopName and CallSub will have the same LC value even though CNopName doesn’t name anything different; it will have length attribute 1.

Figure 80 illustrates the alignment action of CNOP.

<table>
<thead>
<tr>
<th>halfword1</th>
<th>halfword2</th>
<th>halfword3</th>
<th>halfword4</th>
<th>halfword5</th>
<th>halfword6</th>
<th>halfword7</th>
<th>halfword7</th>
</tr>
</thead>
<tbody>
<tr>
<td>word1</td>
<td>word2</td>
<td>word3</td>
<td>word4</td>
<td>word5</td>
<td>word6</td>
<td>word7</td>
<td>word7</td>
</tr>
<tr>
<td>doubleword1</td>
<td>doubleword2</td>
<td>word4</td>
<td>word4</td>
<td>word4</td>
<td>word4</td>
<td>word4</td>
<td>word4</td>
</tr>
<tr>
<td>quadword</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,4</td>
<td>2,4</td>
<td>0,4</td>
<td>2,4</td>
<td>0,4</td>
<td>2,4</td>
<td>0,4</td>
<td>2,4</td>
</tr>
<tr>
<td>0,8</td>
<td>2,8</td>
<td>4,8</td>
<td>6,8</td>
<td>0,8</td>
<td>2,8</td>
<td>4,8</td>
<td>6,8</td>
</tr>
<tr>
<td>0,16</td>
<td>2,16</td>
<td>4,16</td>
<td>6,16</td>
<td>8,16</td>
<td>10,16</td>
<td>12,16</td>
<td>14,16</td>
</tr>
</tbody>
</table>

Figure 80. CNOP alignments and operands

Exercises

15.5.1.(2)+ Suppose the Location Counter value is X'0246' when each of these CNOP instructions is processed by the Assembler. Determine the value of the LC after each CNOP is processed.

(1) CNOP 2,4
(2) CNOP 0,4
(3) CNOP 6,8
(4) CNOP 10,16
(5) CNOP 4,16
(6) CNOP 2,8
15.5.2.(3)+ For each of these sets of statements the value of the Location Counter is $X'000743'$ when the first statement is read by the Assembler. Give the length and value attributes of all symbols.

1. A DC AL3(A)
 CNOP 2,4
 B DC A(B)
2. C DC C'DS C''&'&''
 CNOP 0,4
 D DC C'D DC D'DC''
3. CNOP 2,8
 E DC 2F'100'
 F DC ($X'F'$) $X'F'$

15.5.3.(1) In Exercise 15.5.2, what machine language data is generated by the statement named D?

15.5.4.(2)+ For each of the following, assume that the Location Counter value is $X'345'$ when the initial statement is processed by the Assembler. Give the value and length attributes of the symbol A.

1. CNOP 2,4
 A LM 2,6,0(1)
2. CNOP 2,8
 A BC 10,Smith

15.5.5.(2)+ What will be generated by a CNOP 6,8 statement?

15.6. Extended Mnemonics

Conditional branch instructions are used frequently. It can be difficult to remember the Condition Code values and mask bit values associated with possible branch conditions, so the Assembler provides extended mnemonics for conditional branch instructions. They let you imply the value of the mask field M_1 of a BC or BCR instruction by using an extended mnemonic. For example, an unconditional branch to an instruction named XX can be written

```
B XX
```

which is easier and clearer than writing

```
BC 15,XX
```

Table 61 gives the extended mnemonics associated with the BC and BCR instructions. The notations “(A)”, “(C)”, and “(T)” refer to the contexts in which each extended mnemonic is most often used. The “A” mnemonics are typically used after Arithmetic instructions, “C” after Comparisons, and “T” after Tests.

<table>
<thead>
<tr>
<th>RX Mnemonic</th>
<th>RR Mnemonic</th>
<th>Mask</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>BR</td>
<td>15</td>
<td>Unconditional Branch</td>
</tr>
<tr>
<td>BNO</td>
<td>BNOR</td>
<td>14</td>
<td>Branch if Not Ones (T)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Branch if No Overflow (A)</td>
</tr>
<tr>
<td>BNH</td>
<td>BNHR</td>
<td>13</td>
<td>Branch if Not High (C)</td>
</tr>
<tr>
<td>BNP</td>
<td>BNPR</td>
<td>13</td>
<td>Branch if Not Plus (A)</td>
</tr>
<tr>
<td>BNL</td>
<td>BNLR</td>
<td>11</td>
<td>Branch if Not Low (C)</td>
</tr>
<tr>
<td>BNM</td>
<td>BNMR</td>
<td>11</td>
<td>Branch if Not Minus (A)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Branch if Not Mixed (T)</td>
</tr>
</tbody>
</table>
As this table indicates, the RR forms of the extended mnemonics are formed by adding the letter "R" to the equivalent RX mnemonic.

Each of these instructions needs only a single operand field entry. Because the mask digit is implied by the extended mnemonic, the operand may take any of the forms allowed for the second operand of an RX- or RR-type instruction.

For example, we could write example 1 of Section 15.3 on page 208 as

$$\text{BZ XX}$$

and example 2 could be written

$$\text{BNZ XX}$$

There is no extended mnemonic corresponding to a mask value of 5, so there is no convenient way to rewrite example 4.

Exercises

15.6.1.(2)+ Programmers sometime write programs that contain instruction sequences like this:

```
Loop       - - -       Do something in the loop
           - - -       Now make a test, set the CC
BNE Finish Exit the loop if something's nonzero
B Loop    Otherwise repeat the loop
Finish     - - -       Rest of program
```

Why is this wasteful? How can it be made shorter, simpler, and (very probably) faster?

15.6.2.(1) Sometimes the conditional branch instructions are described as follows: “The operation code for an unconditional branch is X’47’, for a branch-on-zero is X’478’, etc.” Is this an accurate description?

15.6.3.(2) The word at VAL contains a 32-bit binary integer. Write an instruction sequence that will branch to POS if c(VAL) is greater than zero, to NEG if c(VAL) is less than zero, and to ZERO if c(VAL) is zero.

15.6.4.(2) A programmer accidentally wrote the operand of a branch instruction so that the branch target was a constant containing a string of space characters:
15.7. A Comment on Programming Style

For short instruction sequences, it is sometimes tempting to avoid the effort of writing the name of a target symbol. For example, sometimes a programmer may write

```
LTR 0,0
BZ *+6 instead of BZ Next
LR 0,5
```

The operand *+6 means the programmer knows that the lengths of BZ and LR are 4 and 2 bytes respectively, and this has saved him the “task” of writing the symbol Next in two places.

However: suppose the logic of these statements needs to be updated, and extra instructions must be added following the BZ instruction. If the operand of BZ (which was not the cause of the change) isn’t updated, it will branch into the added instructions and not to the intended target.

A Programming Practice to Avoid

Do NOT write operands of branch instructions using the Location Counter value ± number.

Exercises

15.7.1.(2) A programmer wanted to be sure that the target of his branch instruction was at the correct location, so he wrote

```
BZ *+18 Branch to known target location
- - - More instructions
*+18 EQU * Define the target location.
```

Can he now be sure his BZ instruction will branch to the intended target?

15.8. A Design Oversight and a Modern “Correction” (*)

Due to a peculiarity in the original design of System/360 and System/370, invalid branch addresses were not detected during the execute phase of the instruction cycle at the time the CPU finds the branch condition is met. (Odd addresses produce specification errors, and excessively large addresses can produce addressing exceptions.) The error is found only when the bad address is presented, as the IA portion of the PSW, at the next instruction’s fetch cycle. The error is duly detected and an interruption results, but the IA then contains the invalid address rather than the address of the instruction that attempted the improper branch. This means that looking at the “Old” PSW can’t tell you where the error was caused, so such errors in a program are often very difficult to correct. You must specify branch addresses accurately to avoid this particular error.

The “Breaking Event Address Register” (sometimes called the “BEAR”) was added to z/Architecture. Whenever an instruction causes a break in normal sequential execution (such as a successful branch), the address of the instruction causing the “break” or discontinuity is placed in the BEAR. If the “break” causes a program interruption, the contents of the BEAR are stored in a fixed address where error detection and diagnosis routines can use the break address to help you find the instruction that caused the interruption.

99 A clever programmer knew instruction lengths so well that he avoided writing name-field symbols on statements by coding instructions like B *+24 and BNZ *-20. Fixing errors in his code was very tedious.
Unfortunately, although the BEAR is accessible to ordinary problem-state programs, its contents aren’t of much use unless its contents are captured at the moment an interruption occurs. So, to answer questions like “How did my program start executing instructions here?”, we must depend on the operating system’s Supervisor to save the BEAR’s contents so the information can be used for problem diagnosis.

Exercises

15.8.1.(1) Explain why an odd branch address is invalid.

15.9. Summary

This section described the BC and BCR instructions and their forms as extended mnemonics. There are many other types of branch instructions, but their most important features are based on the concepts we’ve seen here; the others can be thought of as “variations” on the theme of this section. Newer forms of conditional branch instructions will be described in Section 22.1.

Exercises

15.9.1.(1) How could you design a CPU without a Condition Code or similar indicators?

15.9.2.(1) Can an instruction generate multiple CC values in a single execution?

The instruction mnemonics and opcodes are shown in the following table:

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Opcode</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC</td>
<td>47</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Opcode</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCR</td>
<td>07</td>
</tr>
</tbody>
</table>

The instruction opcodes and mnemonics are shown in the following table:

<table>
<thead>
<tr>
<th>Opcode</th>
<th>Mnemonic</th>
</tr>
</thead>
<tbody>
<tr>
<td>07</td>
<td>BCR</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Opcode</th>
<th>Mnemonic</th>
</tr>
</thead>
<tbody>
<tr>
<td>47</td>
<td>BC</td>
</tr>
</tbody>
</table>

Terms and Definitions

- **branch condition**
 The CPU’s decision whether to alter the normal sequential execution of instructions by fetching instructions at the branch address.

- **branch address**
 The address from which the next instruction will be fetched if the branch condition is met.

- **branch mask**
 A 4-bit field in a Branch on Condition instruction used to test the value of the Condition Code. If a 1-bit in the branch mask matches the CC value, the branch condition is met.

- **no-operation instruction**
 An executable instruction having no effect other than to occupy space.

- **conditional no-operation**
 An Assembler CNOP instruction that may generate NOP and NOPR instructions, causing the Location Counter to be aligned on a specified even boundary.

- **extended mnemonic**
 An instruction mnemonic provided by the Assembler allowing you to specify a branch mask implicitly.
pipeline
A technique used in modern CPUs to speed instruction execution by dividing the fetch, decode, and execute phases into smaller stages that can be occupied by more than one instruction.
This section describes instructions for fixed-point two’s complement binary addition, subtraction, and comparison in the general registers, and between the general registers and memory. Because the instructions occur in very regular groups and patterns, understanding their basic behavior makes it easier to understand related instructions.

16.1. Signed-Arithmetic Add and Subtract Instructions

As we noted in Section 2.14 on page 39, logical addition and subtraction produce exactly the same bit patterns as arithmetic addition and subtraction, but the resulting CC settings have different meanings. We’ll investigate logical-arithmetic instructions in Section 16.5 on page 225.

The instructions are shown in Table 62. The first six generate 32-bit results, and the others produce 64-bit results.

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>5A</td>
<td>A</td>
<td>RX</td>
<td>Add (32)</td>
<td>1A</td>
<td>AR</td>
<td>RR</td>
<td>Add Register (32)</td>
</tr>
<tr>
<td>5B</td>
<td>S</td>
<td>RX</td>
<td>Subtract (32)</td>
<td>1B</td>
<td>SR</td>
<td>RR</td>
<td>Subtract Register (32)</td>
</tr>
<tr>
<td>4A</td>
<td>AH</td>
<td>RX</td>
<td>Add Halfword (32←16)</td>
<td>4B</td>
<td>SH</td>
<td>RX</td>
<td>Subtract Halfword (32←16)</td>
</tr>
<tr>
<td>E308</td>
<td>AG</td>
<td>RXY</td>
<td>Add (64)</td>
<td>B308</td>
<td>AGR</td>
<td>RRE</td>
<td>Add Register (64)</td>
</tr>
<tr>
<td>E309</td>
<td>SG</td>
<td>RXY</td>
<td>Subtract (64)</td>
<td>B309</td>
<td>SGR</td>
<td>RRE</td>
<td>Subtract Register (64)</td>
</tr>
</tbody>
</table>

Table 62. Frequently used add and subtract instructions
16.2. Signed-Arithmetic Operations Using 32-Bit Registers

All the instructions in Table 62 set the Condition Code as indicated in Table 63.

Table 63. CC settings for arithmetic add and subtract instructions

<table>
<thead>
<tr>
<th>Operation</th>
<th>CC Setting and Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>$c(\text{GR R}_1) = c(\text{GR R}_1) \pm c(\text{GR R}_2)$</td>
<td>0: Result is zero</td>
</tr>
<tr>
<td>$c(\text{GR R}_1) = c(\text{GR R}_1) \pm c(\text{Word in memory})$</td>
<td>1: Result is < zero</td>
</tr>
<tr>
<td></td>
<td>2: Result is > zero</td>
</tr>
<tr>
<td></td>
<td>3: Result has overflowed</td>
</tr>
</tbody>
</table>

Table 63 shows that these add and subtract instructions (like the LCR and LPR instructions in Table 44 on page 190) can cause a fixed-point overflow exception. We’ll see in Section 16.9 on page 235 how to set the Program Mask to enable or disable an interruption.

We begin with the six add/subtract instructions A/AR, S/SR, and AH/SH. In each case, the second operand is added to or subtracted from the first operand, and the result replaces the first operand.

For the halfword operations AH and SH, the 16-bit second operand is brought from memory to an internal register, extended to a word in length, and then used for the indicated operation (as we saw in the description of LH in Section 14.3 on page 184). The notation (32←16) in Table 62 means that the 16-bit operand is extended to 32 bits.

To illustrate arithmetic addition and subtraction, suppose we must store at ANS the sum of $c(X)$ and $c(Y)$, unless the sum is negative, in which case we must also add $c(Z)$ and subtract 17. If we assume that X, Y, and Z name word areas of the program, then the following instructions will calculate the required value (assuming no overflows occur).

```
L 6,X Copy c(X) into GR6
A 6,Y c(GR6) = c(X) + c(Y)
BNM ST Branch if sum is not negative
A 6,Z It was negative; add c(Z)
SH 6,=H‘17’ Subtract 17
ST ST 6,ANS Store answer at ANS
```

- - -

```
X DC F’71’
Y DC F’-220’
Z DC F’284’
```

Computed answer

```
ANS DS F
```

Figure 81. Calculate a sum with an intermediate test

All the machine instructions are RX-type, and all but BNM refer to data operands in memory. The characters “ST” are used both as a symbol and as an instruction mnemonic. No confusion is possible, since the Assembler identifies a mnemonic only by its appearance as an operation field entry.

Now, suppose we want to store the sum of the first N odd numbers at the word named Sum where the positive integer N is stored in the halfword integer at NN.
In this example, the calculations inside the “loop”100 (the AR and SR instructions beginning at
AddUp) are RR-type instructions; no memory references are needed. This technique is useful in
programs where processing speed is important, and enough registers are available to allow fre-
quently referenced operands to be carried in registers instead of in memory.101

To give another simple example of using some of these instructions, suppose we wish to compute
the quantity NewStock from the formula

NewStock = OldStock + Received - Sold

where all quantities are word integers small enough in value to guarantee that no overflows will
occur. These statements will compute the desired result.

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>2</td>
<td>Get c(OldStock) in GR2</td>
</tr>
<tr>
<td>A</td>
<td>2</td>
<td>Add number of items received</td>
</tr>
<tr>
<td>S</td>
<td>2</td>
<td>Subtract number of items sold</td>
</tr>
<tr>
<td>ST</td>
<td>2</td>
<td>Store result at NewStock</td>
</tr>
</tbody>
</table>

Figure 83. Example of arithmetic addition and subtraction

Although we assumed that no overflows can occur, it may be possible that values calculated else-
where in the program could cause an overflow here. Thus, to be careful, the above code sequence
might continue with the instructions

- - - (As above)

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST</td>
<td>2</td>
<td>(As above)</td>
</tr>
<tr>
<td>BZ</td>
<td></td>
<td>ReOrder None left, must order more!</td>
</tr>
<tr>
<td>BM</td>
<td></td>
<td>OverSold Reorder now! Sold more than stock!</td>
</tr>
<tr>
<td>BO</td>
<td></td>
<td>Disaster Error! More than 2**31 items??</td>
</tr>
</tbody>
</table>

Figure 84. Testing the result of arithmetic instructions

The instructions at ReOrder and OverSold will probably do similar things, except that at OverSold
the order for new items would likely be given higher priority so our customers can receive their
previously ordered products more promptly.

Exercises

16.2.1.(2) In Figure 81, what will be stored at ANS if overflow occurs?

16.2.2.(3) Show that the sum of the first N odd integers is the same as N².

100 A loop is a sequence of instructions executed repeatedly until some condition is satisfied. We’ll see in Section 22 how
other instructions help us write efficient loops.

101 Don’t be too impressed, however: the example is mathematically futile, because we have expended all this effort to
calculate the square of N, when a single multiply instruction would have worked just as well. (See Exercise 16.2.2 for
some mathematical background.)
16.2.3.(2)+ In Figure 82, we assumed that the positive integer N in c(NN) is 2 or greater. Rewrite the instructions to handle the possibility that N may be as small as 1.

16.2.4.(2)+ In a large program, a programmer wanted to decrement the value of an integer variable at VARBL by 1, so he wrote the instructions

```
Load L 2,VARBL
S 2,ONE
ST 2,ONE  (Error! Meant to use 'VARBL'!)
---
B Load   Try again
---
VARBL DC F'4'
ONE DC F'1'
```

Unfortunately, the ST instruction stores the result in the wrong place! The program went into an infinite loop that included the three instructions above. What sequence of values appeared in the word named ONE?

16.2.5.(3)+ Given a word integer stored at Data, write an instruction sequence that will count the number of 1-bits in the word, and store the result in the halfword named NBits.

16.2.6.(3)+ Given a word integer stored at Data, write an instruction sequence that will determine the maximum power of 2 in the word, and store the result in the halfword named MaxPow. For example, the largest power of 2 in 9=8’1001’ is 3. If c(Data) is zero, store −1, and if c(Data) is negative, store −31.

16.2.7.(2) In Figure 82, what would happen if we had written

```
NN DC F’6’
```

16.2.8.(3)+ Complete the “assembly” of this program segment by showing the generated object code and its locations.

<table>
<thead>
<tr>
<th>Loc</th>
<th>Object Code</th>
<th>Assembler Language Statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>5000</td>
<td>0D40________</td>
<td>Ex16_2_8 Start X’5000’</td>
</tr>
<tr>
<td></td>
<td>- - -</td>
<td>BASR 4,0</td>
</tr>
<tr>
<td></td>
<td>- - -</td>
<td>Using *,4</td>
</tr>
<tr>
<td></td>
<td>- - -</td>
<td>SR 2,2</td>
</tr>
<tr>
<td></td>
<td>- - -</td>
<td>IC 2,XX+3</td>
</tr>
<tr>
<td></td>
<td>- - -</td>
<td>LTR 0,2</td>
</tr>
<tr>
<td></td>
<td>47_________</td>
<td>BZ Looper</td>
</tr>
<tr>
<td></td>
<td>- - -</td>
<td>STH 0,XX</td>
</tr>
<tr>
<td></td>
<td>- - -</td>
<td>Looper B *</td>
</tr>
<tr>
<td></td>
<td>- - -</td>
<td>Loop forever here</td>
</tr>
<tr>
<td></td>
<td>- - -</td>
<td>YY DC CL4’Ugh’</td>
</tr>
<tr>
<td></td>
<td>- - -</td>
<td>XX DC F’-10’</td>
</tr>
</tbody>
</table>

16.2.9.(4) When the “program” in Exercise 16.2.8 is stopped (because it is in an unending loop), what will be the hexadecimal contents of the word at XX?

16.2.10.(2)+ Can an arithmetic operation using AH or SH cause fixed-point overflow? Explain.

16.2.11.(3)+ Suppose two constants are defined as follows:

```
X DC FL3’1234567’
Y DC FL3’7654321’
```

Write a sequence of instructions that will add the two numbers and store their sum as a 24-bit two’s complement number in the three-byte field starting at W. If the sum overflows (it can’t be represented correctly in 24 bits), branch to Over.

16.2.12.(2) In Exercise 16.2.11, what data is generated for the constant named Y?

16.2.13.(2) Explain the differences between these instruction pairs:
16.2.14.(3)+ Complete the “assembly” of this (nonsensical) program segment by showing the generated object code and its locations.

<table>
<thead>
<tr>
<th>Loc</th>
<th>Object Code</th>
<th>Assembler Language Statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>8000</td>
<td>Ex16.2_E Start X'8000'</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BASR 4,0</td>
<td>Using *,4</td>
</tr>
<tr>
<td></td>
<td>LM 1,2,Value</td>
<td>STCM 2,'B'111',First</td>
</tr>
<tr>
<td></td>
<td>BC 10,*+8</td>
<td>STH 0,Last(1)</td>
</tr>
<tr>
<td></td>
<td>BCR 15,14</td>
<td>Value DC F'4'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DC F'-6'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>First DS F</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Last DS H'-10'</td>
</tr>
</tbody>
</table>

16.2.15.(2)+ Show the contents of GR2 and the Condition Code setting after executing each of the following instruction sequences:

1. L 2,=A(X'89ABCDEF') AR 2,2
2. L 2,=F'2' A 2,=A(X'7FFFFFFF')
3. L 2,=F'2' A 2,=A(X'123345') ICM 2,2,=X'12345'

16.3. Signed-Arithmetic Operations Using 64-Bit Registers

We now investigate the instructions in the second group pictured in Table 62 on page 218. The AG/AGR and SG/SGR instructions are 64-bit analogs of the 32-bit instructions A/AR and S/SR illustrated above. To illustrate, suppose we revise the example in Figure 81 to use 64-bit operands:

```
LG 6,XX
AG 6,YY  c(G66) = c(XX) + c(YY)
BNM ST  Branch if sum is not negative
AG 6,ZZ  It was negative; add c(ZZ)
SG 6,=FD'17'  Subtract 17 (doubleword literal)
ST  STG 6,DAnswer  Store result
-- --
XX DC FD'7569241038'
YY DC FD'-94226701151'
ZZ DC FD'137'
DAnswer DS FD  Computed result
```

Figure 85. Calculate a 64-bit sum with an intermediate test

In this example, we cannot use the literal =H'2' because the z System instruction set does not (now) provide the AGH and SGH instructions.102 (See Exercises 16.3.1 and 16.3.2.)

102 At the time of this writing. But new instructions like AGHI (that we’ll see in Section 21) are added regularly to the z System architecture, so check the Principles of Operation.
Suppose we add these two large numbers:

<table>
<thead>
<tr>
<th>LG 0,A</th>
<th>Get c(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AG 0,B</td>
<td>... and c(B)</td>
</tr>
<tr>
<td>STG 0,C Store sum at C</td>
<td></td>
</tr>
</tbody>
</table>

A DC FD "9223372036854775807" = 2**63-1
B DC FD "9223372036854775807"'
C DS FD Result =X'FFFFFFFFFFFFFFFE' = -2, CC=3

Figure 86. Adding two 64-bit numbers

Because a fixed-point overflow has occurred, the result is arithmetically invalid.

Exercises

16.3.1.(2) Suppose you need to add a halfword value stored in memory at HW to a 64-bit value in GG0, and the CPU has no AGH instruction. What alternative instruction sequences could you use?

16.3.2.(2) Do the same as in Exercise 16.3.1, but now consider subtracting the HW operand from the 64-bit operand in GG0.

16.4. Signed-Arithmetic Compare Instructions

Table 64 lists the arithmetic compare instructions we’ll examine:

<table>
<thead>
<tr>
<th>Op</th>
<th>Mmem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mmem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>49</td>
<td>CH</td>
<td>RX</td>
<td>Compare Halfword (32←16)</td>
<td>E379</td>
<td>CHY</td>
<td>RXY</td>
<td>Compare Halfword (32←16)</td>
</tr>
<tr>
<td>59</td>
<td>C</td>
<td>RX</td>
<td>Compare (32)</td>
<td>19</td>
<td>CR</td>
<td>RR</td>
<td>Compare (32)</td>
</tr>
<tr>
<td>E359</td>
<td>CY</td>
<td>RXY</td>
<td>Compare (32)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E320</td>
<td>CG</td>
<td>RXY</td>
<td>Compare (64)</td>
<td>B920</td>
<td>CGR</td>
<td>RRE</td>
<td>Compare (64)</td>
</tr>
</tbody>
</table>

Table 64. Arithmetic compare instructions

These instructions compare the magnitudes of two arithmetic operands. Thus, all positive numbers are greater than all negative numbers, and −2 is greater than −4. (We will see that logical comparisons behave differently.) The results of an arithmetic comparison are indicated in the CC setting, as shown in Table 65.

<table>
<thead>
<tr>
<th>CC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Operand 1 = Operand 2</td>
</tr>
<tr>
<td>1</td>
<td>Operand 1 < Operand 2</td>
</tr>
<tr>
<td>2</td>
<td>Operand 1 > Operand 2</td>
</tr>
</tbody>
</table>

Table 65. CC settings after arithmetic comparisons

The CC cannot be set to 3 as a result of a compare instruction.

For the CR, C, and CH instructions, the CC setting is the same as would result from performing SR, S, and SH instructions with the same operands, assuming that no overflow occurs. In fact, this is how the comparison is done by the CPU: a subtraction is performed internally, and the CC is set to reflect the sign and magnitude of the difference (that would then have been placed back in GR R_1 or GG R_1 for a subtract instruction). Further analysis of the original operands is required in the CPU if the internal result overflows. (See Exercise 16.4.2.)

To illustrate arithmetic comparisons, consider these instructions and their comment fields:
As an example of the use of a compare instruction, let us recalculate the sum of the first N odd integers, using a different scheme from the one in Figure 82 on page 220.

```
LH 4,=H'1' c(GR4) = accumulated sum
LR 7,4 c(GR7) = count of additions
Test CH 7,NN Compare count to c(NN)
    BE Store Branch if equal, N terms added
    LR 0,7 Compute next odd integer
    AR 0,0 Counter + counter = 2N
    AH 0,=H'1' Add 1, giving next odd term
    AR 4,0 Add term to sum
    AH 7,=H'1' Increment count by 1
B Test Branch back to see if finished
Store ST 4,Sum Store result
```

Figure 88. Calculate the sum of N odd integers

This example is cumbersome but yields the desired result.103

The arithmetic comparison instructions for 64-bit registers do exactly the same operations as the equivalent instructions do for 32-bit registers. If the second operand is shorter than the R1 register, it is sign-extended internally to the length of the first operand before doing the comparison.

Exercises

16.4.1. (1) Why can the CC not be set to 3 in a comparison operation?

16.4.2. (3) In executing arithmetic compare instructions, the CPU performs an internal subtraction. By examining the possible combinations of signs and magnitudes for the two operands, determine (1) when an internal overflow might occur as a result of the internal subtraction, and (2) what the CPU must do to set the CC correctly in such cases.

16.4.3. (2) Suppose a programmer had written the last instruction in Figure 87 as

```
CH 1,=F'5'
```

(Rather than \(\text{=H'5'}\))

What would the CC setting be?

16.4.4. (2) In the following program, some pieces of data are missing, as indicated by the _____ spaces. Using the available information, fill in those spaces.

103 There are often many ways to perform the same computation. Programming is as much an art as a science, since you can write many different programs of varying degrees of efficiency, effectiveness, or elegance to achieve a given objective. A key consideration is that your program be understandable by others who may have to enhance (or fix) it in the future.
Ex16_4_4 Start X’4800’

<table>
<thead>
<tr>
<th>Loc</th>
<th>Object Code</th>
<th>Assembler Language Statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>4800</td>
<td>_____________</td>
<td>BASR 10,0</td>
</tr>
<tr>
<td>4802</td>
<td>_____________</td>
<td>Using *,10</td>
</tr>
<tr>
<td>4802</td>
<td>A056</td>
<td>Loop L 0,_______</td>
</tr>
<tr>
<td>4806</td>
<td>_____________</td>
<td>A 0,One</td>
</tr>
<tr>
<td>480A</td>
<td>5000</td>
<td>ST 0,Number</td>
</tr>
<tr>
<td>480E</td>
<td><other ops></td>
<td>PrintOut Number</td>
</tr>
<tr>
<td>4824</td>
<td>59</td>
<td>C 0,Ten</td>
</tr>
<tr>
<td>4828</td>
<td>47</td>
<td>BL Loop</td>
</tr>
<tr>
<td>482C</td>
<td><other ops></td>
<td>PrintOut *</td>
</tr>
<tr>
<td>4854</td>
<td>00000000</td>
<td>Number DC F’0’</td>
</tr>
<tr>
<td>4858</td>
<td>00000001</td>
<td>One DC F’1’</td>
</tr>
<tr>
<td>485C</td>
<td>_____________</td>
<td>Ten DC F’10’</td>
</tr>
</tbody>
</table>

16.5. Logical-Arithmetic Add and Subtract Instructions

Logical-arithmetic instructions are used less often than signed-arithmetic instructions. They are typically used for extended-length or multiple-precision arithmetic (we’ll see some examples), and on occasions when a sum or difference must be found without any possibility of a fixed-point overflow interruption. (The CPU calculates Effective Addresses using logical arithmetic, but does not set the Condition Code.)

Table 66 lists the logical arithmetic instructions we examine here:

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnen</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnen</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>5E</td>
<td>AL</td>
<td>RX</td>
<td>Add Logical (32)</td>
<td>1E</td>
<td>ALR</td>
<td>RR</td>
<td>Add Logical (32)</td>
</tr>
<tr>
<td>5F</td>
<td>SL</td>
<td>RX</td>
<td>Subtract Logical (32)</td>
<td>1F</td>
<td>SLR</td>
<td>RR</td>
<td>Subtract Logical (32)</td>
</tr>
<tr>
<td>E30A</td>
<td>ALG</td>
<td>RXY</td>
<td>Add Logical (64)</td>
<td>B90A</td>
<td>ALGR</td>
<td>RRE</td>
<td>Add Logical (64)</td>
</tr>
<tr>
<td>E30B</td>
<td>SLG</td>
<td>RXY</td>
<td>Subtract Logical (64)</td>
<td>B90B</td>
<td>SLGR</td>
<td>RRE</td>
<td>Subtract Logical (64)</td>
</tr>
</tbody>
</table>

Table 66. Logical arithmetic instructions

The CC settings we saw in Table 62 on page 218 for signed arithmetic are different for logical arithmetic. The Condition Code settings shown in Table 67 apply to all logical arithmetic instructions, so that references to c(GR R₁) also apply to c(GG R₁).

<table>
<thead>
<tr>
<th>Operation</th>
<th>CC Setting and Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>c(GR R₁) = c(GR R₁) ± c(GR R₂)</td>
<td>0: Zero result, no carry</td>
</tr>
<tr>
<td>c(GR R₁) = c(GR R₁) ± c(Word in memory)</td>
<td>1: Nonzero result, no carry</td>
</tr>
</tbody>
</table>

Table 67. CC settings for logical add and subtract instructions

In Table 67, the CC settings for the logical arithmetic instructions depend only on whether a carry occurs out of the leftmost position of the R₁ register, and whether the result is zero. (Note that CC3 does not mean an overflow has occurred!) By referring to the examples in Sections 2.6 and 2.14, we see that the following rules hold:

1. A CC zero setting is possible for AL and ALR, and for ALG and ALGR, only if the first and second operands are both zero.

2. It is not possible to have a CC setting of zero for SL and SLR, or for SLG and SLGR. After the ones’ complement of the second operand and a low-order 1-bit are added to the first operand, a carry must have occurred if the result is zero.
To illustrate the differences between arithmetic and logical addition and subtraction, consider examples 1 and 2 of Section 2.11 on page 34.

- **Example 1.** For unsigned operands, the result of 5−3=2 is representable.

 \[
 \begin{array}{c}
 \text{5-3:} \\
 0000 \ 0101 \\
 -0000 \ 0011 \\
 \text{becomes} \\
 0000 \ 0101 \\
 +1111 \ 1101 \\
 \text{(carry lost)} \\
 0000 \ 0010 = 2 \\
 \end{array}
 \]

 When we logically subtract unsigned operands, the presence of a carry means that the result was valid, and that there was no need to “borrow” from any higher-order digit positions.

- **Example 2.** For unsigned operands, the result of 3−5 cannot be correctly represented without “borrowing” from higher-order digit positions (negative values don’t exist in this 8-bit representation).

 \[
 \begin{array}{c}
 \text{3-5:} \\
 0000 \ 0011 \\
 -0000 \ 0101 \\
 \text{becomes} \\
 0000 \ 0011 \\
 +1111 \ 1011 \\
 \text{(no carry)} \\
 1111 \ 1110 = -2 \text{ (arithmetically, not logically!)} \\
 \end{array}
 \]

 Thus, when logically subtracting unsigned operands, the absence of a carry means that we need to “borrow” from a higher-order digit position.

Table 68 summarizes these observations:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Carry</th>
<th>No Carry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logical Addition</td>
<td>Carry to higher-order position</td>
<td>No carry to higher-order position</td>
</tr>
<tr>
<td>Logical Subtraction</td>
<td>No borrow from higher-order position</td>
<td>Borrow from higher-order position</td>
</tr>
</tbody>
</table>

Table 68. CC indications for logical addition and subtraction

As in Figure 86, we can use logical arithmetic to add the same two numbers:

```
LG 0,A Get c(A)
ALG 0,B ... and c(B)
STG 0,C Store sum at C
---
A DC FD'9223372036854775807'
B DC FD'9223372036854775807'
C DS FD Result =X'FFFFFFFFFFFFFFE', CC=3
```

Figure 89. Adding two 64-bit numbers logically

The result at C is the same as before, but now there is no fixed-point overflow.

In the next section we will see how the presence or absence of a carry condition is used when we add and subtract “long” or “multiple-precision” numbers.

To illustrate a typical use of logical arithmetic, suppose we must add and subtract 64-bit integers represented by pairs of 32-bit integers: that is, double-length integers two words long. (Double-length integers are also encountered as products and dividends.) That is, we must do integer arithmetic with operands longer than a single general register.

First, consider how we find the two’s complement (the negative) of such a 64-bit number. Since we know that the two’s complement is found by adding a low-order 1-bit to the ones’ complement of the number, we might proceed as follows. The number to be complemented is stored in a
doubleword at \(\text{ARG}\), and \(c(\text{GR0},\text{GR1})\) means the contents of the double-length register pair formed by \(\text{GR0}\) and \(\text{GR1}\).

\[
\begin{align*}
\text{L} & \quad 0,=F'\overline{-1}' \quad \text{All one bits in GR0} \\
\text{LR} & \quad 1,0 \quad c(\text{GR0},\text{GR1}) \text{ is now all } 1\text{-bits} \\
\text{SL} & \quad 0,\text{ARG} \quad \text{Ones' complement of high-order part} \\
\text{SL} & \quad 1,\text{ARG}+4 \quad \text{Ones' complement of low-order part} \\
\text{AL} & \quad 1,=F'\!\overline{1}' \quad \text{Now add the low-order } 1\text{-bit} \\
\text{BC} & \quad \text{B}'1100',\text{NoCarry} \quad \text{Branch if no carry out of GR1 occurs} \\
\text{AL} & \quad 0,=F'\!\overline{1}' \quad \text{Propagate the carry bit to GR0} \\
\text{NoCarry ST} & \quad 0,1,\text{ARG} \quad \text{Store final result back at ARG} \\
\end{align*}
\]

\[
\begin{align*}
\text{ARG} & \quad \text{DC} \quad \text{FD}'123456787654321' \quad 64\text{-bit integer}
\end{align*}
\]

Figure 90. Double-length complementation

The first AL instruction must be used rather than an A instruction because the high-order bit of GR1 is not a sign bit, but an arithmetically significant bit with weight \(2^{31}\). If a carry out of GR1 occurs, it must be detected and propagated into the low-order bit of GR0.

The same complementation is performed by the following code sequence, but more directly (and less obviously).

\[
\begin{align*}
\text{LM} & \quad 0,1,\text{ARG} \quad \text{Get double-length operand} \\
\text{LCR} & \quad 0,0 \quad \text{Complement high-order half} \\
\text{LCR} & \quad 1,1 \quad \text{Complement low-order half} \\
\text{BZ} & \quad \text{XX} \quad \text{Jump if } c(\text{GR1}) \text{ was 0} \\
\text{SL} & \quad 0,=F'\overline{1}' \quad \text{Subtract 1 from GR0} \\
\text{XXX STM} & \quad 0,1,\text{ARG} \quad \text{Store result at ARG} \\
\end{align*}
\]

\[
\begin{align*}
\text{ARG} & \quad \text{DC} \quad \text{FD}'123456787654321' \quad 64\text{-bit integer}
\end{align*}
\]

Figure 91. Double-length complementation, a simpler way

The first LCR instruction forms the two's complement of the high-order 32 bits in \(c(\text{GR0})\); that is, we have already added a low-order 1-bit to the ones' complement of \(c(\text{GR0})\). The following LCR complements the low-order 32 bits, and sets the CC. If \(c(\text{GR1})\) had been zero, its ones' complement would have been all 1-bits, and adding a low-order one would cause a carry out the left end of R1; the first LCR has already “propagated” a carry into GR0. For any other bit pattern, no such carry would have occurred, so we must correct \(c(\text{GR0})\) by subtracting off the low-order bit that was automatically added during the execution of the first LCR.\(^{104}\)

Adding the two double-length integers at \(A\) and \(B\) is straightforward: the instructions are explained in the comments.

\[
\begin{align*}
\text{LM} & \quad 0,1,A \quad \text{Load } A \text{ into } c(\text{GR0},\text{GR1}) \\
\text{AL} & \quad 1,B+4 \quad \text{Add low-order part of } B \\
\text{BC} & \quad \text{B}'1100',\text{NoCarry} \quad \text{Branch if no carry} \\
\text{AL} & \quad 0,=F'\!\overline{1}' \quad \text{Propagate carry to high-order word} \\
\text{NoCarry AL} & \quad 0,B \quad \text{Add high-order part of } B \\
\text{STM} & \quad 0,1,\text{Sum} \quad \text{Store the double-length sum} \\
\text{Sum} & \quad \text{DS} \quad \text{FD} \quad 8 \text{ bytes, aligned} \\
\text{A} & \quad \text{DC} \quad \text{FD}'888777666555' \\
\text{B} & \quad \text{DC} \quad \text{FD}'222333444555'
\end{align*}
\]

\[
\begin{align*}
\text{Sum DC} & \quad \text{FD} \quad 8 \text{ bytes, aligned} \\
\text{A} & \quad \text{DC} \quad \text{FD}'888777666555' \\
\text{B} & \quad \text{DC} \quad \text{FD}'222333444555'
\end{align*}
\]

Figure 92. Double-length addition

\(^{104}\) This instruction sequence has a minor defect: if either of the LCR instructions complements the maximum negative number \(X'80000000'\), a fixed-point overflow exception could occur. (See Exercise 16.6.5.)
Subtracting 64-bit operands is done the same way, except that the condition code setting after the first logical subtraction requires explanation.

```
LM 0,1,A          Get first operand as c(GR0,GR1)
SL 1,B+4          Subtract low-order parts
BC B'0011',NoBorrow Branch if there's a carry
SL 0,=F'1'        Reduce c(GR0) by 1 (i.e., borrow 1)
NoBorrow SL 0,B   Subtract high-order parts
STM 0,1,Diff      Store 64-bit difference

---

Diff   DS   FD
A      DC    FD'234567898765432'
B      DC    FD'123456787654321'
```

Figure 93. Double-length subtraction

In performing a subtraction, the ones' complement of the second operand and a low-order 1-bit are added to the first operand. If a carry occurs out of the high-order bit position of the low-order register, then the result is correctly represented. If a carry does not occur the result is not correctly represented, in the sense that we have tried to generate a “negative” integer in the logical representation. Hence we must “borrow” a 1-bit from the next higher bit position, so we subtract =F'1' if the branch condition is not met.

It might help to review the examples in Section 2.11 on page 34 to clarify the relationship between carries and overflow in the arithmetic and logical representations. The instructions in Section 16.6 greatly simplify these operations.

Using 32-bit registers to calculate 64-bit results is unnecessary if you need only 64-bit results, because you can use 64-bit operations instead. But if you need to calculate the 128-bit sum of two 64-bit operands, these techniques are useful. (See Exercise 16.7.4.)

To see how logical arithmetic can provide possibly misleading arithmetic results, consider the example in Figure 83 on page 220, revised to use logical add and subtract instructions:

```
L 2,OldStock     Get (OldStock) in GR2
AL 2,Received    Add number of items received
SL 2,Sold        Subtract number of items sold
ST 2,NewStock    Store result at NewStock
```

Figure 94. Example of logical addition and subtraction

These instructions (using logical add and subtract) are not recommended, for two reasons. First, although the result stored at NewStock is the same in both cases, the CC setting is not; if we follow the ST instruction by conditional branch instructions that depend on the arithmetic sign of the result (as in Figure 84 on page 220), the branch instructions may not go to the intended targets.

Exercises

16.5.1.(2) Suppose the instruction sequence in Figure 94 is followed by the three branch instructions in Figure 84 on page 220. What results will cause branching to each of the three target symbols?

16.5.2.(2)+ In the complementation instructions shown in Figures 90 and 91, what additional instructions would be needed to cause a branch to Overflow if the 64-bit result of the complementation overflowed?

16.5.3.(3)+ In the addition instructions shown in Figure 92, what additional instructions would be needed to cause a branch to Overflow if the 64-bit result of the addition overflowed?
16.5.4.(2) In the subtraction instructions shown in Figure 93, what additional instructions would be needed to cause a branch to \texttt{Overflow} if the 64-bit result of the subtraction overflowed?

16.5.5.(2) In Figure 91, if either 32-bit operand is the maximum negative number, complementation by the LCR instructions will cause a fixed-point overflow condition. Revise the instructions to produce the 64-bit two’s complement without any overflow condition.

16.5.6.(3) Examine the instructions in Figures 92 and 93. Make a short table indicating all the possible CC settings, and the operands that produce them.

16.5.7.(3) Examine the instructions in Figures 92 and 93. Revise them to set the contents of the word at \texttt{CCode} to contain the correct CC setting after addition and subtraction. If you can make the actual CC setting correct, so much the better.

16.5.8.(3) Write a sequence of instructions that form the two’s complement of a 64-bit integer represented as a pair of 32-bit words, that also set the CC to the same value as LCGR does for the same 64-bit integer.

16.5.9.(3) In the examples of the addition and subtraction of double-length numbers in Figures 92 and 93, make modifications to the code such that if the final double-length result overflows, control will be transferred to \texttt{OVER}. The register contents need not be correct if such a transfer is made.

16.5.10.(4) Do the same as for Exercise 16.5.9, but after the addition or subtraction, the word named \texttt{CCode} should reflect the condition of the double-length result, which should also be correctly represented to 64 bits. That is, using 32-bit registers, compute the 64-bit sum as though a 64-bit addition is performed. Extra credit: make the actual CC setting correct.

16.5.11.(2) Write an instruction sequence using ALC to add two 128-bit numbers represented as two groups of four fullwords each.

16.5.12.(2) For the logical add and subtract instructions, each bit of the CC has a particular meaning. Make a table with two rows and two columns summarizing the meanings of the four possible CC values as a function of the values of its two bits.

16.5.13.(1) If a logical subtraction is performed with two operands that are identically zero, why is the resulting CC setting not zero?

16.6. Add With Carry, Subtract With Borrow (*)

Referring to Table 67, we can represent the Condition Code settings for logical addition in a different way, as shown in Table 69.

<table>
<thead>
<tr>
<th>CC bit</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left</td>
<td>No carry</td>
<td>Carry</td>
</tr>
<tr>
<td>Right</td>
<td>Zero result</td>
<td>Nonzero result</td>
</tr>
</tbody>
</table>

Table 69. CC settings after logical addition

Thus, the leftmost bit of the CC can be thought of as the “carry bit”. Similarly, referring to Table 68, another way to represent the CC settings for logical subtraction is provided in Table 70.

<table>
<thead>
<tr>
<th>CC bit</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left</td>
<td>Borrow (no carry)</td>
<td>No borrow (carry)</td>
</tr>
<tr>
<td>Right</td>
<td>Zero result</td>
<td>Nonzero result</td>
</tr>
</tbody>
</table>

Table 70. CC settings after logical subtraction
The instructions in Table 71 take advantage of the leftmost CC bit to minimize the number of instructions needed to do double-length (or multiple-length) arithmetic\(^{105}\) by using the CC bit to propagate a carry or borrow to the next higher-order operand.

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>E398</td>
<td>ALC</td>
<td>RXY Add Logical with Carry (32)</td>
<td>B998</td>
<td>ALCR</td>
<td>RRE Add Logical with Carry (32)</td>
</tr>
<tr>
<td>E388</td>
<td>ALCG</td>
<td>RXY Add Logical with Carry (64)</td>
<td>B988</td>
<td>ALCSR</td>
<td>RRE Add Logical with Carry (64)</td>
</tr>
<tr>
<td>E399</td>
<td>SLB</td>
<td>RXY Subtract Logical with Borrow (32)</td>
<td>B999</td>
<td>SLBR</td>
<td>RRE Subtract Logical with Borrow (32)</td>
</tr>
<tr>
<td>E389</td>
<td>SLBG</td>
<td>RXY Subtract Logical with Borrow (64)</td>
<td>B989</td>
<td>SLBGR</td>
<td>RRE Subtract Logical with Borrow (64)</td>
</tr>
</tbody>
</table>

Table 71. Logical arithmetic instructions with carry/borrow

Now, we can use these instructions to improve the examples of double-length addition and subtraction shown in Figures 92 and 93. First, consider addition: now, the intermediate branch and addition of a low-order 1 are unneeded.

```
LM 0,1,A
AL 1,B+4
ALC 0,B
STM 0,1,Sum

Sum DS FD 8 bytes, aligned
AD C F D '888777666555'
BD C F D '222333444555'
```

Figure 95. Double-length addition with carry

Similarly, the double-length subtraction can be rewritten:

```
LM 0,1,A
SL 1,B+4
SLB 0,B
STM 0,1,Diff

Diff DS FD
A DC FD '234567897654321'
B DC FD '123456787654321'
```

Figure 96. Double-length subtraction with borrow

Exercises

16.6.1.(2) Repeat Exercise 16.5.9, using Add Logical With Carry and Subtract Logical With Borrow instructions as appropriate.

16.6.2.(3) Repeat Exercise 16.5.9, using Add Logical With Carry and Subtract Logical With Borrow instructions as appropriate, this time storing the proper Condition Code value at CCode.

16.6.3.(3)+ Suppose two 256-bit integers are stored as eight consecutive words (or four consecutive doublewords) in memory starting at A256 and B256 respectively. Using Add Logical With Carry and Subtract Logical With Borrow instructions, write instructions to store their sum and difference at Sum256 and Diff256 respectively.

\(^{105}\) Multiple-precision arithmetic is used intensively in cryptographic applications for data security.
16.6.4.(3) In Exercise 16.6.3, the add and subtract instructions do logical arithmetic. How would you detect an arithmetic overflow?

16.7. Operations With Mixed 64-Bit and 32-Bit Operands

The instructions in Table 72 all involve a 64-bit first operand and a 32-bit second operand.

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>B318</td>
<td>AGF</td>
<td>RXY</td>
<td>Add (64←32)</td>
<td>B318</td>
<td>AGFR</td>
<td>RRE</td>
<td>Add Register (64←32)</td>
</tr>
<tr>
<td>B309</td>
<td>SGF</td>
<td>RXY</td>
<td>Subtract (64←32)</td>
<td>B319</td>
<td>SGFR</td>
<td>RRE</td>
<td>Subtract Register (64←32)</td>
</tr>
<tr>
<td>E31A</td>
<td>ALGF</td>
<td>RXY</td>
<td>Add Logical (64←32)</td>
<td>B91A</td>
<td>ALGFR</td>
<td>RRE</td>
<td>Add Logical (64←32)</td>
</tr>
<tr>
<td>E31B</td>
<td>SLGF</td>
<td>RXY</td>
<td>Subtract Logical (64←32)</td>
<td>B91B</td>
<td>SLGFR</td>
<td>RRE</td>
<td>Subtract Logical (64←32)</td>
</tr>
<tr>
<td>E330</td>
<td>CGF</td>
<td>RXY</td>
<td>Compare (64←32)</td>
<td>B930</td>
<td>CGFR</td>
<td>RRE</td>
<td>Compare (64←32)</td>
</tr>
</tbody>
</table>

Table 72: Instructions for mixed-length operands

The AGF and SGF instructions are similar to AH and SH, except that instead of sign-extending a 16-bit memory operand to 32 bits, a 32-bit memory operand is extended to 64 bits before participating in the 64-bit operation, as illustrated in Figure 97.

![Figure 97. Sign extension for instructions with mixed 32- and 64-bit signed operands](image)

Using SGF, we can modify the example in Figure 85 to use a word literal:

\[
\begin{align*}
\text{LG} & \ 6,XX \\
\text{AG} & \ 6,YY \quad c(GG6) = c(XX) + c(YY) \\
\text{BNM} & \ \text{ST} \quad \text{Branch if sum is not negative} \\
\text{AG} & \ 6,ZZ \quad \text{It was negative; add } c(ZZ) \\
\text{SGF} & \ 6,=F'17' \quad \text{Subtract } 17 \text{ (word literal)} \\
\text{ST} & \ \text{STG} \ 6,\text{DAnswer} \quad \text{Store result} \\
\end{align*}
\]

Figure 98. Calculate a 64-bit sum with an intermediate test

The AGFR and SGFR instructions use the same sign-extension process for 32-bit second operands in general registers as AGF and SGF do for 32-bit second operands in memory. For example, if we must use only a halfword operand such as \(=H'17'\), we can rewrite Figure 98 as follows:

\[
\begin{align*}
\text{LG} & \ 6,XX \\
\text{AG} & \ 6,YY \quad c(GG6) = c(XX) + c(YY) \\
\text{BNM} & \ \text{ST} \quad \text{Branch if sum is not negative} \\
\text{AG} & \ 6,ZZ \quad \text{It was negative; add } c(ZZ) \\
\text{LH} & \ 0,=H'17' \quad \text{Load } 17 \text{ into } \text{GR0 (32 bits)} \\
\text{SGFR} & \ 6,0 \quad \text{Extend; then subtract } \text{GR0 from } GG6 \\
\text{ST} & \ \text{STG} \ 6,\text{DAnswer} \quad \text{Store result} \\
\end{align*}
\]

Figure 99. Calculate a 64-bit sum with an intermediate test
This approach requires an additional register (GR0) as a “temporary” register, which may be inconvenient. Figure 99 is also one instruction and two bytes longer (counting the literal) than Figure 98, so we could have used a word operand such as $=F'17$.

Because logical arithmetic uses unsigned nonnegative operands, all bits have positive weight. Thus, when an instruction requires unsigned operands with mixed lengths, the shorter operand is always “sign-extended” with zero bits, as shown in Figure 100.

Figure 100. Sign extension for instructions with mixed 32- and 64-bit unsigned operands

For example:

1. \(\text{LG} \ 0, = \text{AD}(X'0123456789\text{ABCDEF}') \)
 \(\text{ALG} \ 0, = \text{AD}(X'123456789\text{ABCD}) \)
 \(c(\text{GG0})=X'13579BE02468\text{ACDF}', \ CC=1 \)

 Adding the two operands causes no overflow and the result is nonzero, so CC=1.

2. \(\text{LG} \ 0, = \text{AD}(X'0123456789\text{ABCDEF}') \)
 \(\text{ALGF} \ 0, = \text{A}(X'87654321') \)
 \(c(\text{GG0})=X'0123456811111110', \ CC=1 \)

 As in (1), but the second operand is first extended with zeros.

3. \(\text{LG} \ 0, = \text{AD}(X'0123456789\text{ABCDEF}') \)
 \(\text{SLGF} \ 0, = \text{A}(X'87654321') \)
 \(c(\text{GG0})=X'0123456702468\text{ACE}', \ CC=3 \)

 Subtracting the second operand causes a carry and the result is nonzero, so CC=3.

4. \(\text{SR} \ 1,1 \)
 \(c(\text{GR1})=0 \)
 \(\text{SGR} \ 0,0 \)
 \(c(\text{GG0})=0 \)
 \(\text{SLGFR} \ 0,1 \)
 \(c(\text{GG0})=X'000000000000000', \ CC=2 \)

 Subtracting the second operand causes a carry and the result is zero, so CC=2.

Exercises

16.7.1.(2) Revise the instructions shown in Figure 91 on page 227 to complement a pair of 64-bit integers, giving a 128-bit result.

16.7.2.(2) Revise the instructions shown in Figure 92 on page 227 to add a pair of 64-bit integers, giving a 128-bit sum.

16.7.3.(2) Revise the instructions shown in Figure 93 on page 228 to subtract a pair of 64-bit integers, giving a 128-bit difference.

16.7.4.(3) Write instructions to form the 128-bit sum and difference of the pair of 64-bit integers stored starting at Two64s. Store the sum at Sum128 and the difference at Diff128.

16.7.5.(1) Show the CC values after executing

\(\text{SLR} \ 0,0 \)
and
\(\text{SLGR} \ 0,0 \)
and after executing
16.8. Logical-Arithmetic Compare Instructions

The logical compare instructions are shown in Table 73.

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>55</td>
<td>CL</td>
<td>RX Compare Logical (32)</td>
<td>15</td>
<td>CLR</td>
<td>RR Compare Logical (32)</td>
</tr>
<tr>
<td>E321</td>
<td>CLG</td>
<td>RXY Compare Logical (64)</td>
<td>B921</td>
<td>CLGR</td>
<td>RRE Compare Logical (64)</td>
</tr>
<tr>
<td>E331</td>
<td>CLGF</td>
<td>RXY Compare Logical (64<–32)</td>
<td>B931</td>
<td>CLGFR</td>
<td>RRE Compare Logical (64<–32)</td>
</tr>
<tr>
<td>BD</td>
<td>CLM</td>
<td>RS Compare Logical Characters under Mask (32)</td>
<td>EB20</td>
<td>CLMH</td>
<td>RSY Compare Logical Characters under Mask (32)</td>
</tr>
<tr>
<td>EB21</td>
<td>CLMY</td>
<td>RSY Compare Logical Characters under Mask (32)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 73. Arithmetic compare instructions

As we saw in Section 14.7 on page 192, RXY- and RSY-type instructions behave the same way as RX- and RS-type instructions.

The logical compare instructions test the relative magnitudes of two operands, using an unsigned comparison instead of the signed-arithmetic comparison used for arithmetic comparisons. The results of all logical comparisons are indicated in the CC setting, as shown in Table 74 (you’ll note that it’s identical to Table 65 on page 223).

<table>
<thead>
<tr>
<th>CC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Operand 1 = Operand 2</td>
</tr>
<tr>
<td>1</td>
<td>Operand 1 < Operand 2</td>
</tr>
<tr>
<td>2</td>
<td>Operand 1 > Operand 2</td>
</tr>
</tbody>
</table>

Table 74. CC settings after logical comparisons

Logical comparisons do not give the same results as arithmetic comparisons, since numbers in the logical representation are always nonnegative. The following instruction sequence may help to show the differences. (Following the LM instruction, the contents of R3 will be X’80000001’.)

The 64-bit logical comparison instructions behave the same way as their 32-bit equivalents. Carefully compare the CC settings in Figure 101 with those in Figure 87 on page 224.

Figure 101. Examples of logical comparisons

The CLM and CLMH instructions are unlike the other compare instructions, because the entire first operand might not be used. Instead, they operate on selected bytes in the register, as determined by 1-bits in the M3 mask field of the instruction (just as we saw for the ICM/ICMH instructions in Section 14.5 on page 187). The selected bytes in the register are compared to the string of bytes in memory beginning at the second operand address. The comparison is performed...
by considering the two strings to be unsigned logical numbers of length 8, 16, 24, or 32 bits. If the mask digit \(M_3 \) is zero, the CC is set to zero and no comparison is performed.

- CLM and CLMY compare selected bytes in the first operand register (either in a 32-bit register or in the rightmost 32 bits of a 64-bit register) to the storage operand. For example:

\[
\begin{align*}
L 0,=&A(X'00010203') &\text{Initialize GRO} \\
CLM 0,B'0000',=&X'0123' &CC = 0, \text{ because mask is 0} \\
CLM 0,B'0001',=&X'0123' &CC = 2, \text{ because } X'03' > X'01' \\
CLM 0,B'0100',=&X'0123' &CC = 0, \text{ because } X'01' = X'01' \\
CLM 0,B'0110',=&X'0123' &CC = 1, \text{ because } X'0102' < X'0123'
\end{align*}
\]

- CLMH does exactly the same as CLM, except that it compares bytes in the high-order half of a 64-bit register to bytes in memory. For example:

\[
\begin{align*}
LG 0,=&AD(X'0001020304050607') &\text{Initialize GGO} \\
CLMH 0,B'0000',=&X'0123' &CC = 0, \text{ because mask is 0} \\
CLMH 0,B'0001',=&X'0123' &CC = 2, \text{ because } X'03' > X'01' \\
CLMH 0,B'0100',=&X'0123' &CC = 0, \text{ because } X'01' = X'01' \\
CLMH 0,B'0110',=&X'0123' &CC = 1, \text{ because } X'0102' < X'0123'
\end{align*}
\]

The bytes in the low-order half of the 64-bit register are ignored.

Sometimes the logical compare instructions are used to test the ordering of values that are regularly incremented. For example, if Value has been saved at different times, we could find that

\[
\begin{align*}
\text{Oldest} & \quad \text{DC } X'789ABCDE' &\text{Oldest value} \\
\text{Later} & \quad \text{DC } X'89ABCD'E' &\text{A later value} \\
\text{Newest} & \quad \text{DC } X'9ABCD'E0' &\text{Most recent value}
\end{align*}
\]

and we can use logical comparisons to determine their ordering, as in

\[
\begin{align*}
L & \quad 0,\text{Oldest} \\
L & \quad 1,\text{Later} \\
L & \quad 2,\text{Newest} \\
- & \quad - \\
CLR & \quad 1,0 \quad \text{Compare Later to Oldest} \\
CLR & \quad 2,1 \quad \text{Compare Newest to Later}
\end{align*}
\]

Figure 102. Comparing logically ordered values

then both CLR instructions will give the correct ordering of the three values.

But if the values can “wrap around” from \(X'FFFFFFF' \) to zero, we must be more careful. For example, suppose the three values are

\[
\begin{align*}
\text{Oldest} & \quad \text{DC } X'FFFFFFFE' &\text{Oldest value} \\
\text{Later} & \quad \text{DC } X'FFFFFFFF' &\text{A later value} \\
\text{Newest} & \quad \text{DC } X'00000001' &\text{Most recent value}
\end{align*}
\]

Then if we compare them as previously, the second comparison will fail, because the value at \text{Newest} will be logically less than the value at \text{Later}.

To avoid this problem, we can write instead

\[
\begin{align*}
LR & \quad 3,1 \quad \text{Copy Later value to GR3} \\
SLR & \quad 3,0 \quad \text{Subtract Oldest value} \\
LTR & \quad 3,3 \quad \text{Test result}
\end{align*}
\]

and the Condition Code will indicate that \(c(\text{Later}) \) is indeed greater than \(c(\text{Oldest}) \). Similarly, if we write

\[
\begin{align*}
LR & \quad 3,2 \quad \text{Copy Newest value to GR3} \\
SLR & \quad 3,1 \quad \text{Subtract Later value} \\
LTR & \quad 3,3 \quad \text{Test result}
\end{align*}
\]

the CC will again indicate the correct ordering.
Exercises

16.8.1.(2) Show how the CC settings after SL and SLR are related to those after CL and CLR.

16.8.2.(2) Suppose GG0 contains \(X'1122334455667788\)', and you must compare bytes 2 through 5 (containing \(X'33445566\)) to a 4-byte memory operand named StgOp. Write an instruction or sequence of instructions to do this.

16.8.3.(2) Suppose c(GR0) is \(X'87654321\) and c(GR1) is \(X'01234567\). What is the CC setting and the apparent ordering of the operands after executing each of these two instructions?

\[\begin{align*}
\text{CR} & \quad 0,1 \quad \text{Compare c(GR0) to c(GR1)} \\
\text{CLR} & \quad 0,1 \quad \text{Compare c(GR0) to c(GR1)}
\end{align*}\]

Now, suppose the sign bit of each operand has been inverted, so that c(GR0)=\(X'07654321\) and c(GR1)=\(X'81234567\). What is the CC setting and the apparent ordering of the operands after executing each of the two instructions? Why might this sign-bit inversion be useful?

16.8.4.(2) Make a table showing the first and second comparison operands in Figures 87 and 101, and the CC settings from their arithmetic and logical comparisons. For which operands are they the same, and why?

16.8.5.(2) What differences will occur if two binary numbers are compared using arithmetic and then logical compare instructions?

16.8.6.(2) Write a small program to verify the assertions about correctly-ordered logical comparisons in the examples starting with Figure 102 on page 234.

16.9. Retrieving and Setting the Program Mask (*)

The IPM and SPM instructions in Table 75 let you retrieve and set the value of the Condition Code and the Program Mask:

<table>
<thead>
<tr>
<th>Op</th>
<th>Mнем</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mнем</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>B222</td>
<td>IPM</td>
<td>RRE</td>
<td>Insert Program Mask</td>
<td>04</td>
<td>SPM</td>
<td>RR</td>
<td>Set Program Mask</td>
</tr>
</tbody>
</table>

Table 75. IPM and SPM instructions

Both instructions have a single operand:

- IPM \(R_1\) Insert CC and Program Mask into GR \(R_1\)
- SPM \(R_1\) Set CC and Program Mask from GR \(R_1\)

IPM inserts the Condition Code and Program Mask into bits 34-39 of register \(R_1\), in the positions shown in Figure 103; the remaining bits of the \(R_1\) register are unchanged. Conversely, SPM sets the Condition Code (CC) and Program Mask from the same bit positions, and ignores the rest of the \(R_1\) register.

![Figure 103. Bit positions used by IPM and SPM instructions (System/360 PSW sketch)](image)

The four mask bits in the Program Mask (“FDUS” in Figure 103) control the behavior of the four exceptions described in Section 4.6 on page 57 correspond to the bit positions shown in Table 76:
Table 76. Program Mask bits

<table>
<thead>
<tr>
<th>Bit</th>
<th>Exception Condition Controlled</th>
<th>Int. Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>36 (F)</td>
<td>Fixed-point overflow</td>
<td>8</td>
</tr>
<tr>
<td>37 (D)</td>
<td>Decimal overflow</td>
<td>A</td>
</tr>
<tr>
<td>38 (U)</td>
<td>Hexadecimal floating-point underflow</td>
<td>D</td>
</tr>
<tr>
<td>39 (S)</td>
<td>Hexadecimal floating-point lost significance</td>
<td>E</td>
</tr>
</tbody>
</table>

Setting a mask bit to 1 enables the corresponding interruption. If the mask bit is 0, the CPU takes a default action without an interruption.

In practice, many programmers choose to set the Program Mask to zero initially, and trust to luck that nothing goes wrong. For example:

SR 0,0
Set c(GRO) to zero

SPM 0
Set CC and Program Mask bits to zero

Careful placement of tests for overflow can help justify such faith, but it is generally better to test in advance for possible errors, and let a program interruption catch the unexpected and truly exceptional cases.

For now, we are concerned only with fixed-point overflow. The result of an instruction causing a fixed-point overflow is the same whether or not an interruption occurs; the Condition Code is set to 3.

Exercises

16.9.1.(4) For each of the conditions controlled by a bit in the Program Mask, determine what actions are taken by the CPU (including CC settings) when the PM bit is zero or one. (You may need to consult the z/Architecture Principles of Operation.)

16.9.2.(2) Write instructions that will turn off the Lost-Significance mask bit in the Program Mask, without affecting the settings of the other mask bits.

16.9.3.(2) Assume you are executing in 24-bit addressing mode. The fullword integer at CCode has a value of 0, 1, 2, or 3. Set the Condition Code to that value, without affecting the setting of the Program Mask.

16.9.4.(2) Assume you are executing in 24-bit addressing mode. Store the current value of the program mask in the rightmost four bits of the byte at PMask the remaining 4 bits of the byte should be zero.

16.9.5.(2) Assume you are executing in 24-bit addressing mode. Store the current value of the Condition Code in the word at CCode without changing the Condition Code.

16.10. Summary

Operands used in arithmetic and logical operations may be extended, as we noted in Sections 14.10 and 16.7.

Operand Extension

When a source operand in a register or in memory is used as an operand in an arithmetic instruction whose target register is longer than the operand, the operand is extended internally to the length of the target register:

- arithmetic operands are sign-extended
- logical operands are extended with zeros.
Examples of arithmetic instructions doing sign extension are AH, AGH, CGFR, and SGFR; examples of logical instructions that extend with zeros are ALGF, CLGF, and CLGFR.

In this section we examined some frequently-used instructions for addition, subtraction, and comparison; they are summarized in Table 77.

<table>
<thead>
<tr>
<th>Function</th>
<th>Operand1</th>
<th>4 bytes</th>
<th>8 bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Operand2</td>
<td>2 bytes</td>
<td>4 bytes</td>
</tr>
<tr>
<td>Arithmetic Add and Subtract (from memory)</td>
<td>AH</td>
<td>SH</td>
<td>AGF</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>S</td>
<td>SGF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AR</td>
<td>AGFR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SR</td>
<td>SGFR</td>
</tr>
<tr>
<td>Logical Add and Subtract (from memory)</td>
<td>AL</td>
<td>SL</td>
<td>ALGF</td>
</tr>
<tr>
<td></td>
<td>SL</td>
<td>ALC</td>
<td>SLGF</td>
</tr>
<tr>
<td></td>
<td>SLB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logical Add and Subtract (from register)</td>
<td>ALR</td>
<td>SLR</td>
<td>ALGFR</td>
</tr>
<tr>
<td></td>
<td>SLR</td>
<td>ALCR</td>
<td>SLGFR</td>
</tr>
<tr>
<td></td>
<td>SLBR</td>
<td></td>
<td>ALG</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arithmetic Compare (to memory)</td>
<td>CH</td>
<td>C</td>
<td>CGF</td>
</tr>
<tr>
<td>Arithmetic Compare (to register)</td>
<td>CR</td>
<td>CGFR</td>
<td>CGR</td>
</tr>
<tr>
<td>Logical Compare (to memory)</td>
<td>CL</td>
<td>CLM</td>
<td>CLGF</td>
</tr>
<tr>
<td>Logical Compare (to register)</td>
<td>CLR</td>
<td>CLGR</td>
<td></td>
</tr>
</tbody>
</table>

Table 77. Summary of instructions discussed in this section

The instruction mnemonics and opcodes are shown in the following table:

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Opcode</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5A</td>
</tr>
<tr>
<td>AG</td>
<td>E308</td>
</tr>
<tr>
<td>AGF</td>
<td>E318</td>
</tr>
<tr>
<td>AGFR</td>
<td>B918</td>
</tr>
<tr>
<td>AGR</td>
<td>B908</td>
</tr>
<tr>
<td>AH</td>
<td>4A</td>
</tr>
<tr>
<td>AL</td>
<td>5E</td>
</tr>
<tr>
<td>ALC</td>
<td>E398</td>
</tr>
<tr>
<td>ALCG</td>
<td>E388</td>
</tr>
<tr>
<td>ALCGR</td>
<td>B988</td>
</tr>
<tr>
<td>ALCR</td>
<td>B998</td>
</tr>
<tr>
<td>ALG</td>
<td>E30A</td>
</tr>
<tr>
<td>ALGF</td>
<td>E31A</td>
</tr>
<tr>
<td>ALGFR</td>
<td>B91A</td>
</tr>
<tr>
<td>ALGR</td>
<td>B90A</td>
</tr>
<tr>
<td>ALR</td>
<td>1E</td>
</tr>
<tr>
<td>AR</td>
<td>1A</td>
</tr>
<tr>
<td>C</td>
<td>59</td>
</tr>
<tr>
<td>CG</td>
<td>E320</td>
</tr>
<tr>
<td>CGF</td>
<td>E330</td>
</tr>
<tr>
<td>CGFR</td>
<td>B930</td>
</tr>
<tr>
<td>CGR</td>
<td>B920</td>
</tr>
<tr>
<td>CH</td>
<td>49</td>
</tr>
<tr>
<td>CL</td>
<td>55</td>
</tr>
<tr>
<td>CLG</td>
<td>E321</td>
</tr>
<tr>
<td>CLGF</td>
<td>E331</td>
</tr>
<tr>
<td>CLGFR</td>
<td>B931</td>
</tr>
<tr>
<td>CLGR</td>
<td>B921</td>
</tr>
<tr>
<td>CLM</td>
<td>BD</td>
</tr>
<tr>
<td>CLMH</td>
<td>E820</td>
</tr>
<tr>
<td>CLR</td>
<td>15</td>
</tr>
<tr>
<td>CR</td>
<td>19</td>
</tr>
<tr>
<td>S</td>
<td>5B</td>
</tr>
<tr>
<td>SG</td>
<td>E309</td>
</tr>
<tr>
<td>SGFR</td>
<td>E319</td>
</tr>
<tr>
<td>SGR</td>
<td>B919</td>
</tr>
<tr>
<td>SH</td>
<td>B909</td>
</tr>
<tr>
<td>SL</td>
<td>4B</td>
</tr>
<tr>
<td>SLB</td>
<td>E399</td>
</tr>
<tr>
<td>SLBG</td>
<td>E389</td>
</tr>
<tr>
<td>SLBGR</td>
<td>B989</td>
</tr>
<tr>
<td>SLBR</td>
<td>B999</td>
</tr>
<tr>
<td>SLG</td>
<td>E30B</td>
</tr>
<tr>
<td>SLGF</td>
<td>E31B</td>
</tr>
<tr>
<td>SLGFR</td>
<td>B91B</td>
</tr>
<tr>
<td>SLGR</td>
<td>B90B</td>
</tr>
<tr>
<td>SLR</td>
<td>1F</td>
</tr>
<tr>
<td>SR</td>
<td>1B</td>
</tr>
</tbody>
</table>

Chapter V: Basic Instructions 237
The instruction opcodes and mnemonics are shown in the following table:

<table>
<thead>
<tr>
<th>Opcode</th>
<th>Mnemonic</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>CLR</td>
</tr>
<tr>
<td>19</td>
<td>CR</td>
</tr>
<tr>
<td>1A</td>
<td>AR</td>
</tr>
<tr>
<td>1B</td>
<td>SR</td>
</tr>
<tr>
<td>1E</td>
<td>ALR</td>
</tr>
<tr>
<td>1F</td>
<td>SLR</td>
</tr>
<tr>
<td>49</td>
<td>CH</td>
</tr>
<tr>
<td>4A</td>
<td>AH</td>
</tr>
<tr>
<td>4B</td>
<td>SH</td>
</tr>
<tr>
<td>55</td>
<td>CL</td>
</tr>
<tr>
<td>59</td>
<td>C</td>
</tr>
<tr>
<td>5A</td>
<td>A</td>
</tr>
<tr>
<td>5B</td>
<td>S</td>
</tr>
<tr>
<td>5E</td>
<td>AL</td>
</tr>
<tr>
<td>5F</td>
<td>SL</td>
</tr>
<tr>
<td>B908</td>
<td>AGR</td>
</tr>
<tr>
<td>B909</td>
<td>SGR</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Opcode</th>
<th>Mnemonic</th>
</tr>
</thead>
<tbody>
<tr>
<td>B90A</td>
<td>ALGR</td>
</tr>
<tr>
<td>B90B</td>
<td>SLGR</td>
</tr>
<tr>
<td>B918</td>
<td>AGFR</td>
</tr>
<tr>
<td>B919</td>
<td>SGFR</td>
</tr>
<tr>
<td>B91A</td>
<td>ALGFR</td>
</tr>
<tr>
<td>B91B</td>
<td>SLGFR</td>
</tr>
<tr>
<td>B920</td>
<td>CLGR</td>
</tr>
<tr>
<td>B921</td>
<td>CLGR</td>
</tr>
<tr>
<td>B930</td>
<td>CGFR</td>
</tr>
<tr>
<td>B931</td>
<td>CLGFR</td>
</tr>
<tr>
<td>B988</td>
<td>ALCGR</td>
</tr>
<tr>
<td>B989</td>
<td>SLBGR</td>
</tr>
<tr>
<td>B998</td>
<td>ALCR</td>
</tr>
<tr>
<td>B999</td>
<td>SLBR</td>
</tr>
<tr>
<td>BD</td>
<td>CLM</td>
</tr>
<tr>
<td>E308</td>
<td>AG</td>
</tr>
<tr>
<td>E309</td>
<td>SG</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Opcode</th>
<th>Mnemonic</th>
</tr>
</thead>
<tbody>
<tr>
<td>E30A</td>
<td>ALG</td>
</tr>
<tr>
<td>E30B</td>
<td>SLG</td>
</tr>
<tr>
<td>E318</td>
<td>AGF</td>
</tr>
<tr>
<td>E319</td>
<td>SGF</td>
</tr>
<tr>
<td>E31A</td>
<td>ALGF</td>
</tr>
<tr>
<td>E31B</td>
<td>SLGF</td>
</tr>
<tr>
<td>E320</td>
<td>CG</td>
</tr>
<tr>
<td>E321</td>
<td>CLG</td>
</tr>
<tr>
<td>E330</td>
<td>CGF</td>
</tr>
<tr>
<td>E331</td>
<td>CLGF</td>
</tr>
<tr>
<td>E388</td>
<td>ALCG</td>
</tr>
<tr>
<td>E389</td>
<td>SLBG</td>
</tr>
<tr>
<td>E398</td>
<td>ALC</td>
</tr>
<tr>
<td>E399</td>
<td>SLB</td>
</tr>
<tr>
<td>EB20</td>
<td>CLMH</td>
</tr>
</tbody>
</table>

Terms and Definitions

addend

see **augend**

augend

When two numbers are added, the number being augmented (the first operand) is the *augend*, to which the *addend* (the second operand) is *added*.

logical arithmetic

Binary arithmetic and comparison operations with unsigned operands.

minuend

see **subtrahend**

subtrahend

When one number is subtracted from another, the number being diminished (the first operand) is the *minuend*, and the number being *subtracted* (the second operand) is the *subtrahend*.

Programming Problems

Problem 16.1. Write a program that computes three word quantities X, Y, and Z that occupy successive words in memory. Also define a 12-byte character string to occupy the same storage. Compute the contents of the three words as follows:

\[
c(X) = B'1000000000000000' + X'C7A8'B - 231471192,
\]

\[
c(Y) = X'C0FFE' - C'@#$' - 694895668, \text{ and}
\]

\[
c(Z) = 1073741823 + X'F194F6'B + X'ABCD'B.
\]
Treat all the quantities as *words* whose values are self-defining terms. A hint: this means that the simplest way to create them is as A-type constants.

Print the hexadecimal and character forms of the 12-byte result (using the PRINTOUT macro, for example).

Problem 16.2. Write a program that computes four values stored in successive words at W, X, Y, and Z. The values are to be computed according to the relations

\[
c(W) = c(WA) + c(WB) - 929065920, \text{ where } \\
c(WA) = B'100000000000000' \text{ and } \\
c(WB) = X'1230000'.
\]

\[
c(X) = c(XA) + 50344169 + c(XB), \text{ where } \\
c(XA) = X'1261F02' \text{ and } \\
c(XB) = C'0000'.
\]

\[
c(Y) = c(YA) + c(YB) + c(YC), \text{ where } \\
c(YA) = B'111111111' \text{, } \\
c(YB) = X'1261F02', \text{ and } \\
c(YC) = C'ABCD'.
\]

\[
c(Z) = c(ZA) + c(ZB) - c(ZC), \text{ where } \\
c(ZA) = X'CAF75A', \text{ } \\
c(ZB) = B'1000011', \text{ and } \\
c(ZC) = 511686493.'
\]

All the quantities used in the calculations are four-byte word-aligned constants in memory. Define symbols having length attribute 16 and types C and X to name the same 16 bytes of memory. Calculate W, X, Y, and Z, and print the results of your calculation in character and hexadecimal form (using the PRINTOUT macro, for example).

Problem 16.3. Do as in Problem 16.2, but the four quantities W, X, Y, and Z are defined this time by

\[
c(W) = c(WA) + c(WB) - 759375551, \text{ where } \\
c(WA) = B'1000000000000000' \text{, and } \\
c(WB) = X'CBA98'.
\]

\[
c(X) = c(XA) - c(XB) + 1386388536, \text{ where } \\
c(XA) = X'C0FFEE', \text{ and } \\
c(XB) = C'@#$'.
\]

\[
c(Y) = c(YA) + c(YB) + c(YC), \text{ where } \\
c(YA) = B'1111111111', \text{ } \\
c(YB) = X'1F7C05', \text{ and } \\
c(YC) = C'ABCD'.
\]

\[
c(Z) = c(ZA) + c(ZB) - 975583924, \text{ where } \\
c(ZA) = X'FFFF', \text{ and } \\
c(ZB) = -65536.'
\]

As before, print the 16 bytes of the result as a character string and as a string of 32 hexadecimal digits.

Problem 16.4. Consider the sequence of integers starting

0, 1, 2, 3, 6, 11, 20, 37, ..., where (after starting with 0, 1, and 2) each successive term is generated by adding the previous three terms together.

Write a program that will compute and print the first 25 terms of this sequence. (A hint: an appropriate choice of starting values will make it unnecessary to take special actions to print the first few terms.)

Problem 16.5. Suppose you are given three integers A, B, and C, and you are told that they are three successive terms in a sequence. Each term of the sequence was generated by adding the previous three terms together.
Write a program that will generate the previous 25 terms of the sequence, for various values of A, B, and C. As a check, you might start with values you found in solving Problem 16.4.

Problem 16.6. Write a program to do the calculations in Figures 92 through 96 for various values of the operands. Use the PRINTOUT macro to display the values of the 64-bit results. For example,

```
PRINTOUT 17,18
```
displays c(GG1) and c(GG2) in both hex and decimal.

Problem 16.7. The Fibonacci series is defined by the relation

\[F(n+1) = F(n) + F(n-1) \quad \text{with} \quad F(0)=0 \quad \text{and} \quad F(1)=1 \]

Write a program to calculate and display the numbers in the Fibonacci series starting with F(1) up to the largest value that does not exceed one million.

Problem 16.8. Do the same as in Problem 16.7, but now calculate and display the Fibonacci series up to the largest positive value representable in a signed 32-bit binary fullword.

Problem 16.9. Do the same as in Problem 16.8, but format and print the results using the CONVERTO and PRINTLIN macros.

Problem 16.10. Calculate the numbers in the Fibonacci series (described in Problem 16.7) up to the maximum positive value representable using 64-bit binary arithmetic, and format and print the results using the CONVERTO and PRINTLIN macros.

Problem 16.11. Assemble the following program:

```
P16_11 CSect ,
    Using *,12
    LR 12,15
    A 15,X
    BASR 12,15
    X DC F'18'
    DC F'4'
Exit BR 14
    L 10,X-4
    B X-4(10)
End P16_11
```

Study the object code carefully, and explain what each instruction does and how it does it.

106 Named after Leonardo of Pisa, known as Fibonacci.
The multiplication and division instructions in Section 18 are often combined with shift operations, so we'll start with instructions that shift data within a single general register or pair of general registers.

The general register shift instructions are summarized in Table 78. Nine operate on data in 32-bit registers, and five operate on 64-bit registers. The notation "(32+32)" means that 64 bits are shifted in an even-odd pair of 32-bit general registers. There are no double-length shifts of 128-bit operands "(64+64)" in an even-odd pair of 64-bit general registers.\(^\text{107}\)

We say that single-length shifts operate on bits in a single 32- or 64-bit register, and double-length shifts operate on bits in an even-odd pair of registers.

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>88</td>
<td>SRL</td>
<td>RS</td>
<td>Shift Right Logical (32)</td>
<td>89</td>
<td>SLL</td>
<td>RS</td>
<td>Shift Left Logical (32)</td>
</tr>
<tr>
<td>8A</td>
<td>SRA</td>
<td>RS</td>
<td>Shift Right Arithmetic (32)</td>
<td>8B</td>
<td>SLA</td>
<td>RS</td>
<td>Shift Left Arithmetic (32)</td>
</tr>
<tr>
<td>8C</td>
<td>SRDL</td>
<td>RS</td>
<td>Shift Right Double Logical (32+32)</td>
<td>8D</td>
<td>SLDL</td>
<td>RS</td>
<td>Shift Left Double Logical (32+32)</td>
</tr>
<tr>
<td>8E</td>
<td>SRDA</td>
<td>RS</td>
<td>Shift Right Double Arithmetic (32+32)</td>
<td>8F</td>
<td>SLDA</td>
<td>RS</td>
<td>Shift Left Double Arithmetic (32+32)</td>
</tr>
<tr>
<td>EB0C</td>
<td>SRLG</td>
<td>RSY</td>
<td>Shift Right Logical (64)</td>
<td>EB0D</td>
<td>SLLG</td>
<td>RSY</td>
<td>Shift Left Logical (64)</td>
</tr>
<tr>
<td>EB0A</td>
<td>SRAG</td>
<td>RSY</td>
<td>Shift Right Arithmetic (64)</td>
<td>EB0B</td>
<td>SLAG</td>
<td>RSY</td>
<td>Shift Left Arithmetic (64)</td>
</tr>
<tr>
<td>EB1C</td>
<td>RLLG</td>
<td>RSY</td>
<td>Rotate Left Logical (64)</td>
<td>EB1D</td>
<td>RLL</td>
<td>RSY</td>
<td>Rotate Left Logical (32)</td>
</tr>
</tbody>
</table>

Table 78. General register shift instructions

These RS-type instructions differ from other RS-type instructions: the shaded portion of the instruction (where the R\(_3\) register specification digit would be) in Table 79 is ignored when the instructions are executed.

\(^{107}\) At the time of this writing. But new instructions are added regularly to the z System architecture, so check the Principles of Operation.
Table 79. RS-type shift instruction

Thus, the Assembler makes no provision for specifying a value in that field, and sets it to zero. The operand field entry for shift instructions is written in either of the two forms

\[R_1, D_2(B_2) \] (explicit address)
\[R_1, S_2 \] (implied address)

and no \(R_3 \) operand is specified.

The RSY-type shift instructions do have an \(R_3 \) operand, as shown in Table 80. For these instructions, the source operand is in the \(R_3 \) register and the result goes into the \(R_1 \) register. We’ll see examples using the \(R_3 \) operand when we discuss these instructions.

Table 80. RSY-type instruction format

When executed, none of the logical shift instructions change the CC setting, while all of the arithmetic shifts treat the shifted data as signed, and set the CC to indicate the status of the result.

For all shift instructions, the number of bit positions to be shifted is determined from the low-order six bits of the Effective Address; this allows actual shift amounts only between 0 and 63. That is, the shift count is the remainder obtained when the Effective Address is divided by 64:

\[\text{shift count} = \text{Effective Address} \mod 64. \]

This means, for example, that a shift amount specified by an Effective Address of 66 actually shifts only 2 positions when executed.

Shift Amounts

Shift instructions can specify at most 63 shifts.

First, we’ll describe the unit shift, and then look at the eight RS-type instructions, all of which involve 32-bit registers.

17.1. Unit Shifts

To illustrate the behavior of various shift instructions, we’ll assume that the source register starts with the contents illustrated in Figure 104.

![Figure 104. Register contents before shifting](image)

The bit positions are numbered from 0 to \(n-1 \), where \(n \) is the number of bits participating in the shift.

The basic shift operation is the unit shift, in which each bit moves right or left by one bit position. The digit position at the right (low-order) end of the register behaves identically for logical and arithmetic left and right shifts, but the bit at the left (high-order) end of the register is treated differently.

For logical shifts, the vacated bit position at either end of a register is always set to zero, and the bit shifted off the opposite end is lost and ignored. This is illustrated in Figures 105 and 106.
The "bit bucket" doesn’t really exist; it just means that the lost bit vanishes.108

For arithmetic right shifts, the rightmost bit is lost and ignored, and the sign bit is \textit{duplicated} to preserve the arithmetic integrity of the operand. This is illustrated in Figure 107.

For arithmetic left shifts, the vacated bit position at the right end is set to zero, and the sign bit is \textit{not} shifted; it doesn’t move. However, the bit immediately to the right of the sign bit is lost. This is illustrated in Figure 108.

108 When I took my first programming class, we were all taken to see the computer; its operation was slowed so we could watch it shift, add, etc. After showing the shifts the instructor paused, because a student always asked "What happens to the bits shifted off the end?" An engineer would then open a door on the end of the machine and hold up a small silver bucket, saying gravely that the bits had to be emptied after every 8 hours of operation. Some of us never realized it was a joke.
The execution of a shift instruction is simple: it simply performs the number of unit shifts specified by the low-order 6 bits of its Effective Address.

Exercises

17.1.1.(1) What shift amounts are represented by each of the following Effective Addresses?

1. \`X'EDCBA987`'
2. \`X'12345678`'
3. \`X'87654321`'
4. \`X'00000FED`'
5. \`X'FFFFFFFF`'
6. \`X'27A49FC1`'
7. \`X'6789ABCD`'

17.2. Single-Length Logical Shifts

The simplest shifting instructions are SRL (Shift Right Logical) and SLL (Shift Left Logical). In most of the following examples, bit patterns will be represented in hexadecimal.

To perform a unit logical left shift of the contents of R8, we can execute the instruction

\[
\text{SLL } 8,1(0) \quad \text{Shift GR8 left 1 bit position}
\]

Suppose GR8 again contains \`X'87654321`' and GR3 contains \`X'82F3A2B5`', executing the logical right-shift instruction

\[
\text{SRL } 8,16(3)
\]

first causes the Effective Address to be computed as

\[\text{X'82F3A2B5} + \text{X'010} = \text{X'82F3A2C5} \]

of which the rightmost six bits are \`B'000101`'. Thus it shifts right five bit positions, leaving

\[0000\ 0100\ 0011\ 1011\ 0010\ 1010\ 0001\ 1001\]

in binary, or \`X'043B2A19`' as the result in GR8.

In these examples, we saw that the original contents of GR8 were not preserved: that is, the shifts can be thought of as “destructive”. All the RS-type shifts use the same register (or register pair) as the source and target of the operation. The RSY-type shifts let you preserve the original source operand if you like.

The SLL instruction is the most commonly used logical shift. It is often used to multiply index values by a power of two (such as the length of an operand in memory) prior to executing an RX-type instruction for which the shifted register is the index register. We will see many such uses in discussing looping and indexing in Section 22.

- Suppose the word at \textbf{Index} contains a small positive integer \textbf{N} that is to be used to index into a table of words starting at the word named \textbf{Tab}. To load the \textbf{N}-th of those words into \textbf{GR0}, we could write a sequence of instructions like the following:

\[
\begin{align*}
\text{L} & \quad 1,\text{Index} \quad \text{Get index word} \\
\text{SLL} & \quad 1,2 \quad \text{Shift left 2 bits (multiply by 4)} \\
\text{L} & \quad 0,\text{Tab-4}(1) \quad \text{Load N-th word into GR0}
\end{align*}
\]

The shift left by two bit positions is needed so that we access the \textbf{N}-th \textit{word} (not the \textbf{N}-th \textit{byte}) in the table; and we must address the table at \textbf{Tab-4} because if the integer at \textbf{Index} is 1, we should access the first word at \textbf{Tab}. If \textbf{N} is 1, indexing will add 4 to \textbf{Tab-4}, giving the address of \textbf{Tab} as desired.
• Suppose we want to set the leftmost seven bits of register 8 to zero, leaving the other bits unchanged. Then we could execute the two instructions

\[
\begin{align*}
\text{SLL} & \ 8,7 \quad \text{Shift left 7 places, drop off bits} \\
\text{SRL} & \ 8,7 \quad \text{Shift right 7 places, bring in zeros}
\end{align*}
\]

and the leftmost 7 bits are replaced by zeros.

• As another example, suppose we need to align the address in GR6 to a doubleword boundary. That is, we will force the value in GR6 to be a multiple of 8 in such a way that if it is not already so, the next higher multiple of 8 will be chosen.

This can be done very simply:

\[
\begin{align*}
\text{AL} & \ 6,=F’7’ \quad \text{Force carry if possible} \\
\text{SRL} & \ 6,3 \quad \text{Drop off three bits} \\
\text{SLL} & \ 6,3 \quad \text{Multiply by 8}
\end{align*}
\]

Figure 109. Rounding an integer to the next higher multiple of 8

The presence of any 1-bit in the three rightmost bits of the original number in GR6 will cause a carry into the 23 bit position (bit number 28 of GR6).

• Suppose we have a large table of six-byte data items containing a mix of integer and character data. Each table entry is aligned on a halfword boundary. Suppose also that the data is arranged so that the first three bytes contain a signed 24-bit two’s complement integer, and the remaining three bytes contain the character data (see Figure 110).

Figure 110. A 6-byte data entry

Space for typical table entry might have been reserved with DS statements such as

<table>
<thead>
<tr>
<th>Entry</th>
<th>DS</th>
<th>Define name of 6-byte data entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>IntPart</td>
<td>DS</td>
<td>Give name to integer part</td>
</tr>
<tr>
<td>CharPart</td>
<td>DS</td>
<td>And to the character part</td>
</tr>
</tbody>
</table>

Figure 111. Storage definitions for a 6-byte data entry

We want to retrieve the integer value from a data entry and place it into GR5 where it will be used for some purpose in the program, and then store it from GR5 back into memory in the format illustrated in Figure 110. We can see that L and ST instructions cannot be used, because the operands are neither 4 bytes long nor correctly aligned in memory; similarly, LH and STH handle only two of the three bytes.

Now, suppose GR12 contains the address of the first byte of a data entry. The instructions needed to load the integer value into GR5 are shown in Figure 112. (Assume for the moment that the data entry contains X’F01234xyyyzz’; for now, we’ll ignore the three characters represented by “xyyyzz”.)

\[
\begin{align*}
\text{LH} & \ 5,0(0,12) \quad c(\text{GR5}) = X’FFFFFF012’, \text{leftmost 16 bits} \\
\text{SLL} & \ 5,8 \quad c(\text{GR5}) = X’FFFF01200’, \text{move left 8 bits} \\
\text{IC} & \ 5,2(0,12) \quad c(\text{GR5}) = X’FFFF01234’, \text{insert last 8 bits} \\
\text{- - -} & \quad \text{-- do some calculations with the value} \\
\text{STC} & \ 5,2(12) \quad \text{Store rightmost 8 bits} \\
\text{SRL} & \ 5,8 \quad \text{Position remaining 16 Bits} \\
\text{STH} & \ 5,0(0,12) \quad \text{Store high-order part}
\end{align*}
\]

Figure 112. Using shift instructions for a 6-byte data item
The arrangement of data in memory usually depends on the requirements of the application, as well as on considerations of ease of programming or speed of execution.

This example might tempt you to manipulate characters by inserting and shifting them in the general registers. Resist that temptation until after we have examined instructions designed specifically for managing character data in Section 25.

17.2.1. Three-Operand Shift Instructions

SRLG and SLLG are the 64-bit equivalents of SRL and SLL. They behave exactly as the 32-bit shifts, with a useful extension: rather than specifying only a single operand register (as in Table 79 on page 243), these two RSY-type instructions specify separate source and target registers. The source operand is taken from GG R_3, shifted by the specified amount, and placed into the target operand, GG R_1. The operand field is is written

- $R_1, R_3, D_2(B_2)$ (explicit address)
- R_1, R_3, S_2 (implied address)

Table 80 on page 243 shows the format of an RSY-type instruction.

If you specify different register numbers for R_3 and R_1, the shift is “nondestructive” because the source operand in GG R_3 is unchanged. If you specify the same register number for both R_3 and R_1, the shift is “destructive”, just like the shifts in 32-bit general registers.

To illustrate, consider these instructions:

1. **L 0, =A(X′12345678′)**
 - $c(GR0)$ initialized
2. **SLL 0, 9**
 - $c(GR0) = X′68ACF000′$

and the contents of GR0 is changed. For these instructions:

1. **LG 1, =XL8′123456789ABCDE0′**
 - $c(GG1)$ initialized
2. **SLLG 0, 1, 9**
 - $c(GG0) = X′68ACF135 79BDE000′$
3. **LG 1, =XL8′123456789ABCDE0′**
 - $c(GG1)$ initialized
4. **SRLG 0, 1, 9**
 - $c(GG0) = X′00091A2B 3C4D5E6F′$

in both cases, the contents of the GG1 source register is unchanged. Otherwise, the instructions for shifting operands in 64-bit registers behave the same way as their equivalents for 32-bit registers.

Exercises

17.2.1.(2)+ Suppose the string of bytes beginning at BStrg is to be considered as a string of bits. Given an integer K stored in the word at KK, write a code sequence to place in GR0 the value of bit K of the string. (Remember to start numbering the bits at zero.)

17.2.2.(2) A word integer at K has value between 0 and 7. Write a code sequence using shifts that will store at KthBit a byte containing a single 1-bit at a position determined by the integer at K. That is, if $c(K)=6$, then $c(KthBit)=X′02′$. (Remember that bits in a byte are numbered from 0 to 7!)

17.2.3.(2) Rewrite Exercise 17.2.2 to use no shifts, but define an appropriate 8-byte table. Which code sequence is shorter? Simpler?

17.2.4.(1)+ The SLL instruction shifts data in a 32-bit general register. How many bit positions will be shifted if you specify

- **SLL 0, 33**

17.2.5.(2) The word at DPG contains 4 bytes; write instructions to put those four bytes into GR1 in reverse order. Thus, if $c(DPG)$ is $X′12345678′$, $c(GR1)$ will be $X′78563412′$.

Chapter V: Basic Instructions 247
17.2.6.(2)+ GR0 contains a positive, nonzero number. Write a set of instructions that will shift the number to the left until there is a 1-bit in bit position 1 of GR0 (the bit immediately to the right of the sign bit). In GR1, put the number of positions shifted. Remember that the number in GR0 must be positive when the instruction sequence terminates.

17.2.7.(2)+ Given these two constants at X and Y:

\[
\begin{align*}
X & \text{ DC FL3’1234567’} \\
Y & \text{ DC FL3’7654321’}
\end{align*}
\]

Write instructions to add the two numbers and store their sum as a 24-bit number at W. If the sum overflows and cannot be represented correctly, branch to OverFl0.

What are the hexadecimal representations of the constants at X and Y? What is the representation of the result stored at W, and does the sum overflow?

17.2.8.(2) What will be the result of executing this instruction?

\[
\text{SLL } n,n(n)
\]

17.2.9.(2)+ In the example following Figure 109 on page 246, does it matter if the 3-byte integer data is signed or unsigned? Explain.

17.3. Double-Length Logical Shifts

The double-length logical shift instructions SLDL (Shift Left Double Logical) and SRDL (Shift Right Double Logical) work in exactly the same way as SLL and SRL, except they shift the 64 bits in a pair of even-odd 32-bit registers. The register specified by the first operand (R1) must be an even-numbered register; otherwise a specification exception will occur. The next higher-numbered register is the low-order half of the double-length register pair. Bits right-shifted out of the right end of GR R1 enter the left end of GR R1+1, and vice versa for left shifts. (Figure 10 on page 48 shows paired general registers.)

Revisiting the example in Figure 109, here is another way to round an integer to the next higher multiple of 8 if it is not already a multiple of 8.

\[
\begin{align*}
\text{SR} & \quad 7,7 \quad \text{Clear GR7 to zero} \\
\text{SRDL} & \quad 6,3 \quad \text{Shift three bits into GR7 from GR6} \\
\text{LTR} & \quad 7,7 \quad \text{Test whether the bits are zero} \\
\text{BZ} & \quad A \quad \text{Branch if yes} \\
A & \quad 6,=F’1’ \quad \text{If not, add 1 to GR6} \\
\text{A } \text{ SLL} & \quad 6,3 \quad \text{Finally, multiply GR6 by 8}
\end{align*}
\]

First, we clear GR7 by subtracting it from itself, a fast and simple way to do this. Then, we use a shift instruction to divide by 8. The double-length shift moves the three “remainder” bits into the three high-order bit positions of GR7. The BZ instruction branches only if the remainder bits are all zero: that is, if the number in GR6 was already a multiple of 8. If any remainder bit is nonzero, 1 is added to GR6. Finally, GR6 is shifted left 3 bit positions to give the correct multiple of 8.

As another example, suppose a positive nonzero integer word at N is to be shifted right as many places as necessary to ensure that its rightmost bit is nonzero. Here are two ways we might do this:

1. Shift left from GR5 into GR4, until only zero-bits remain in GR5. That is, if two right shifts of the integer at N were actually needed, we will do 30 double-length left shifts.
L 5,N Get integer from N
L 4,"F0" Clear GR4
ShiftL SLDL 4,1 Shift left one bit position
LTR 5,5 Test remaining bits in GR5
BNZ ShiftL Repeat if not zero
ST 4,N Store result

Figure 113. Shifting to make the low-order bit one (1)

2. This time, we shift right, testing “lost” bits:

L 4,N Get integer from N
ShiftR SRDL 4,1 Shift right once
LTR 5,5 Test sign bit of GR5
BNM ShiftR Branch if not minus
SLDL 4,1 Move the bit back
ST 4,N Store result

Figure 114. Shifting to make the low-order bit one (2)

This second example will also work for negative integers if arithmetic shift instructions are used.

These examples illustrate simple loops, instructions that are repeated as many times as necessary to obtain a desired result or condition. Loops are an important aspect of programming; special z System branch instructions simplify coding of loops.109

Suppose that in a certain application we need to store some integer data in a very compact format. The integer values are unsigned and are small enough that we can squeeze four integers into a 32-bit word as shown in Figure 115. (Section 17.6 will describe how you can define these four values in a word.)

<table>
<thead>
<tr>
<th>9 bits</th>
<th>4 bits</th>
<th>13 bits</th>
<th>6 bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>aaaaaaa</td>
<td>bbbb</td>
<td>cccccccccccc</td>
<td>ddddd</td>
</tr>
</tbody>
</table>

Figure 115. Four integers packed in a 32-bit word

Suppose the four packed integers are stored at DataWord and we want to extract the second integer (the four bbbb bits) and store their value in the word at BVal. We can do this with the instructions in Figure 116:

L 0,DataWord Load 32 bits
SLL 0,9 c(GR0)=bbbbccccccccccccccddd000000000
SRL 0,28 c(GR0)=0000000000000000000000000000bbbb
ST 0,BVal Store value of b-bits

Figure 116. Extracting one packed integer from a 32-bit word

The SLL instruction shifts all the a bits off the left end of GR0, and the SRL instruction shifts all but the four b bits off the right end of GR0, leaving only the four bbbb bits right-adjusted in GR0.

To illustrate a more general technique, we will write instructions that extract the integers from their compacted word format in a memory area named DataWord, separating them into individual words named First, Second, Third, and Fourth. In Figure 117, the comment statements show the binary contents of registers GR0 and GR1; the integers to be unpacked are named A, B, C, and D as shown in Figure 115. In Figure 117, a letter “x” represents a bit whose value is

109 These special “Branch on Index” and “Branch on Count” instructions neither examine nor change the CC. We will investigate them in Section 22.
unknown, and 0 is a zero bit. We will shift each integer from the right end of GR0 into GR1, where it will be right-justified in GR1 and stored. This example uses only right shifts.

As mentioned in Section 13.3 on page 164, the EQU instruction assigns the value of the operand to the name-field symbol. This symbolic technique is very useful if the sizes of the fields must be changed, because the shift instruction operands will be adjusted automatically by the Assembler.

```
LA EQU 9 Define bit length of integer A
LB EQU 4 Length of B
LC EQU 13 Length of C
LD EQU 6 Length of D
L 0,DataWord Load data fullword into GR0
* c(GR0) = B'aaaaaaaabbbccccccccccddddd'
* c(GR1) = B'xxxxxxxxxxxxxxxxxxxxxxxxxx'
SRDL 0,LD Shift 6 bits in both registers
* c(GR0) = B'000000aaaaaaaabbbcccccccccc'
* c(GR1) = B'ddddddxxxxxxxxxxxxxxxxxxxxxxxxx'
SRL 1,32-LD Move D to right end of GR1
* c(GR1) = B'000000000000000000000000000diddidd'
ST 1,Fourth Store fourth integer D at FOURTH
SRDL 0,LC Shift 13 bits in both registers
* c(GR0) = B'00000000000000000000000000000000aaa'
* c(GR1) = B'cccccxxxxxxxxxxxxxxxxxxxxxxxxxx'
SRL 1,32-LC Move C to right end of GR1
* c(GR1) = B'0000000000000000000000000000cddddccc'
ST 1,Third Store third integer C at THIRD
SRDL 0,LC Shift 4 bits in both registers
* c(GR0) = B'000000000000000000000000000000000aaa'
* c(GR1) = B'bbbb0000000000000000000000ccccc'
ST 0,First Store first integer A from GR0
SRL 1,32-LB Position second integer B in GR1
* c(GR1) = B'00000000000000000000000000000000bbb'
ST 1,Second Store second integer B at Second
```

Figure 117. Unpacking four unsigned integers using right shifts

We can also shift the integers left, from the left end of GR1 into the right end of GR0, but we must clear GR0 each time before shifting.

```
SR 2,2 Constant zero for clearing GR0
L 1,DataWord Get data fullword in GR1
LR 0,2 Clear GR0
SLDL 0,LA Shift 9 bits into GR0 from GR1
ST 0,First Store first integer
LR 0,2 Clear GR0
SLDL 0,LB Shift 4 bits into GR0
ST 0,Second Store second integer
LR 0,2 Clear GR0
SLDL 0,LC shift 13 bits into GR1 into GR0
ST 0,Third store third integer
SRL 1,LA+LB+LC Reposition fourth integer in GR1
ST 1,Fourth Store fourth integer
```

Figure 118. Unpacking four unsigned integers using left shifts

We have used LR instructions to clear GR0, rather than subtracting it from itself. Similarly, in this example the final "SRL 1,LA+LB+LC" shift replaces the LR and SLDL used in the first three steps, because it results in less code and faster execution. The overall saving is quite small, but this illustrates a small economy that could result in significant savings if this sequence is frequently executed.
Exercises

17.3.1.(2)+ Suppose your CPU has only single-length logical shift instructions (SLL, SRL). A word at DataWord is to be shifted logically to the left, as though it was the high-order word of a pair of general registers. Write an instruction sequence that simulates a double-length left shift of N bit positions, where N is a halfword integer at NShifts. Assume 0 ≤ N < 32, and that the simulated low-order “register” contains zero. Store the result at a doubleword named DWord.

17.3.2.(2) Do the same as in Exercise 17.3.1, and again assume you must do a double-length logical left shift of a 32-bit word in the high-order half. This time, assume 0 ≤ N ≤ 64.

17.3.3.(2)+ Do the same as in Exercise 17.3.1, but simulate a double-length logical right shift of N places, where 0 ≤ N < 32, again assuming that the low-order half of the original 64-bit operand is zero.

17.3.4.(2) Do the same as in Exercise 17.3.3, but now assume 0 ≤ N ≤ 64.

17.3.5.(3)+ Do the same as in Exercise 17.3.1, but now assume the initial data is in a doubleword at DWord, and store the left-shifted result at DWord.

17.3.6.(3)+ Do the same as in Exercise 17.3.5, but now assume the initial data is in a doubleword at DWord, and store the right-shifted result at DWord. (Remember that 0 ≤ N ≤ 32.)

17.3.7.(2) Do the same as in Exercise 17.3.5, but now assume 0 ≤ N ≤ 64.

17.3.8.(2) Do the same as in Exercise 17.3.6, but now assume 0 ≤ N ≤ 64.

17.3.9.(3) There is a word at OLD into which four positive integers have been packed as illustrated in Figure 115 on page 249. Write a code sequence to rearrange the four unsigned integers into a new word format, in which the first integer occupies the first seven bits, the second integer occupies the next two, the third is expanded to occupy the next fifteen bits, and the fourth integer occupies the last eight bits. Store the result at NEW.

17.3.10.(3)+ Suppose four unsigned integers are stored in the words named FIRST, SECOND, THIRD, and FOURTH. Write a code sequence that will pack the integers from those words into a word at NEW in the format illustrated in Figure 115.

17.3.11.(3) As in Exercise 17.3.10, assume we wish to pack the four integers at FIRST, SECOND, THIRD, and FOURTH into a word at NEW. The number of bits to be allocated to each integer in its packed form is given as the value of the four positive halfword integers stored at L1, L2, L3, and L4 respectively. We know that

\[c(L1) + c(L2) + c(L3) + c(L4) = 32. \]

The integers to be packed are stored in the logical representation.

17.3.12.(3) Rewrite Exercise 17.3.11 assuming that the values are to be stored in the arithmetic representation.

17.3.13.(2) What will happen in Figures 113 and 114 if c(N)=0?

17.3.14.(3)+ A common mathematical notation is the “ceiling” function. If a number x has integer part p and fraction part q, we write “p.q” to represent x. The “ceiling” function is defined as:

\[
\begin{align*}
\text{Ceiling}(x) &= p, & \text{if } q = 0, \\
\text{Ceiling}(x) &= p+1, & \text{if } q > 0.
\end{align*}
\]

Suppose there is a nonnegative integer N stored in the word at NN. Write a code sequence that will leave Ceiling(N+N/2) in GR1.
17.3.15.(4)+ Rewrite Exercise 17.3.10 to repack the four unsigned integers into a new word, but include tests to check that the values will fit into the fields provided for them in the packed word. To indicate whether or not each of the integers fits into its allotted field, set the bytes at FLAG1, FLAG2, FLAG3, and FLAG4 zero if the value will fit, and to nonzero if the value will not fit.

17.3.16.(2) GR0 contains a 32-bit number considered as a bit pattern. Write a code sequence that will place the same bit pattern into GR1, but reversed from right to left within the register.

17.3.17.(2)+ The word at Data contains information to be shifted circularly: that is, bits shifted off one end of the register should reappear at the other end. For example, a circular left shift of the operand \(X'12345678' \) by 12 bit positions would produce \(X'45678123' \). Write instructions (not using RLL!) to shift c(Data) circularly to the left by N places, where N is a nonnegative word integer stored at NShifts. Can you do this using only single-length shifts?

17.3.18.(2)+ Modify the coding of Exercise 17.3.17 so that if N is negative, the shift is a circular right shift instead.

17.3.19.(3)+ A programmer wanted to display the hex digits in a byte string starting at Hex as a string of EBCDIC characters starting at Chars, with each EBCDIC character representing a single hexadecimal digit. The length of the byte string with the hex digits is stored as a halfword binary integer stored at Len. He wrote:

```
LH 0,Len          Get length of source string
LA 2,Hex          Addr of start of hex string
LA 3,Chars        Addr of start of character string
GetAByte SR 4,4    Clear GR4
IC 4,0,(,2)        Get a byte from hex string
SRDL 4,4          Move high-order hex digit in GR4
SRL 5,28          And low-order hex digit in GR5
IC 4,Chars(4)     Get character form of high digit
IC 5,Chars(5)     Get character form of low digit
SLL 4,8           Make room in GR4 for second byte
ALR 4,5           Now have both characters in GR4
STOM 4,B'0011',0(3) Store both chars in output string
LA 2,1,(2)        Increment input pointer
LA 3,2,(3)        Increment output pointer
SH 0,=H'1'        Reduce input byte count by 1
BP GetAByte       If count > 0, do another byte
```

Chars DC C'0123456789ABCDEF' EBCDIC form of hex digits

Does this work? Explain.

17.4. Arithmetic Shift Instructions

The arithmetic shift instructions are similar to the logical shift instructions, except for the setting of the CC and the treatment of the sign bit. The instructions are SLA (Shift Left Arithmetic), SRA (Shift Right Arithmetic), SLDA (Shift Left Double Arithmetic), and SRDA (Shift Right Double Arithmetic). The CC settings after arithmetic shift instructions are the similar to those for arithmetic add and subtract instructions:
Table 81. CC settings for arithmetic shift instructions

<table>
<thead>
<tr>
<th>Operation</th>
<th>CC Setting and Meaning</th>
</tr>
</thead>
</table>
| Left shift | 0: Result is zero
| | 1: Result is < zero
| | 2: Result is > zero
| | 3: Result has overflowed |
| Right shift | 0: Result is zero
| | 1: Result is < zero
| | 2: Result is > zero
| | 3: Cannot occur |

As we saw in Figure 107 on page 244, for right shifts the sign bit is duplicated (or extended) in the vacated sign position after each unit shift, to preserve the arithmetic integrity of the shifted operand.

To illustrate the difference between logical and arithmetic shifts, suppose a right shift of two bits is performed on a register containing \(X'\text{FFFFFFF}8' \):

\[
\begin{align*}
\text{L} & \quad 0,=F'-8' \\
\text{SRL} & \quad 0,2 \\
\text{SRA} & \quad 0,2
\end{align*}
\]

After the SRL logical shift, \(c(\text{GR0})=X'3\text{FFFFFE}' \), because two zero bits were inserted at the left; after the SRA arithmetic shift, \(c(\text{GR0})=X'\text{FFFFFFFE}' \), because the sign bit has been duplicated. For positive operands, the SRL and SRA instructions will leave identical results in the register; SRA will set the CC as shown in Table 81, but SRL will leave the CC unchanged. The SRDA instruction is similar to SRA, except that an even-odd register pair is shifted as a single 64-bit entity.

A typical use of SRDA is to create a correctly-signed 64-bit dividend for a fixed-point divide instruction, as we will see in Section 18:

\[
\begin{align*}
\text{L} & \quad 0,\text{Dividend} \\
\text{SRDA} & \quad 0,32 \\
\text{D} & \quad 0,\text{Divisor}
\end{align*}
\]

The sign bit of the word at Dividend has been extended by the SRDA instruction to fill GR0.

For arithmetic left shifts, the situation is a little more complicated, as we saw in Figure 108 on page 244. When an operand is shifted left one or more significant bits may be lost; though lost, they are not ignored! An arithmetic left shift (1) always retains the original sign bit, and (2) indicates an overflow if any bit shifted out of the position just to the right of the sign is different from the sign bit. This is a fixed-point overflow, and may cause a program interruption with the Interruption Code set to 8.

The following instructions will produce the results indicated in the remarks fields:

\[
\begin{align*}
\text{L} & \quad 0,=F'-8' \\
\text{SRL} & \quad 0,2 \\
\text{SLA} & \quad 0,4
\end{align*}
\]

When executing the SLA instruction, one 0-bit and three 1-bits are shifted out of the bit position immediately to the right of the sign bit. Because the sign bit is zero after the SRL instruction, the first one-bit to be shifted out of the bit position just to the right of the sign signals the overflow condition, since it differs from the sign.

We can use the ICM, STCM, and SRA instructions to simplify the example in Figure 112 on page 246:
As indicated in Table 81, a CC value of 3 is not possible after the SRA and SRDA instructions, because there can be no overflow. For SLDA and SRDA, the result tested is a double-length operand, so these instructions provide a simple way to test whether both registers contain zero. Both SRDA 0,0 and SLDA 0,0 will set the CC to zero if the register pair (GR0,GR1) both contain zeros.

An important use of the arithmetic shift operations is to multiply by positive and negative powers of two. Since the bits of an operand shifted left by a unit shift appear with a weight (in the sum forming the value of the operand) that has increased by two, so long as no significant bits are lost and no overflow occurs, an arithmetic left shift of n places corresponds to multiplication by 2^n. Similarly, for a unit right shift, each bit has a weight that has decreased by two, so that an arithmetic right shift of n places corresponds to division by 2^n. Because such a “division” might seem to produce fractional results, we must check what happens when bits are lost. Consider these sequences:

\[
\begin{align*}
\text{L 3} &= \text{F'}5' & c(GR3) &= 00000005 = +5 \\
\text{SRA 3,1} &= c(GR3) = 00000002 = +2 \text{ (1-bit lost)} \\
\text{L 3} &= \text{F'}-5' & c(GR3) &= \text{FFFFFFFF} = -5 \\
\text{SRA 3,1} &= c(GR3) = \text{FFFFFB} = -3 \text{ (1-bit lost)}
\end{align*}
\]

As we expect, the lost bit in the first case results in the fractional part of $(5/2)$ being discarded, so the result is simply 2. In the second case the result is -3, not -2; this is because the truncation of the fraction part of a number in the two’s complement representation has the effect of always forcing the result to the next algebraically lower integer value. (See Exercises 17.4.9 and 17.4.14.)

As a simple example, suppose we wish to truncate the integer in GR9 to the next algebraically lower multiple of 16, unless it is already a multiple of 16. Both of the following achieve the desired result.

\[
\begin{align*}
\text{SRA 9,4} & & \text{SRL 9,4} \\
\text{SLA 9,4} & & \text{SLL 9,4}
\end{align*}
\]

Either the logical or arithmetic shifts can be used, because whatever bit is shifted out of the sign position by the SRL instruction will be put back by the SLL. If a CC setting is desired to indicate the status of the result, arithmetic shifts must be used.

To conclude our discussion of shifting, we revisit the problem of retrieving the data packed in the word pictured in Figure 115 on page 249, but now assuming that each of the four integers is signed rather than logical. The following code segment separates and stores the four signed integers as required; we again use the symbols LA, LB, LC, and LD to represent the bit lengths of the fields, as in Figure 117.

\[
\begin{align*}
\text{L 0,DataWord} & & \text{Get data word into GR0} \\
\text{SRDA 0,LD} & & \text{Shift 6 bits into GR1} \\
\text{SRA 1,32-LD} & & \text{Sign-extend to right} \\
\text{ST 1,Fourth} & & \text{Store fullword result D} \\
\text{SRDA 0,LC} & & \text{Shift off 13 more bits into GR1} \\
\text{SRA 1,32-LC} & & \text{Shift with sign extension} \\
\text{ST 1,Third} & & \text{Store signed result of C} \\
\text{SRDA 0,LB} & & \text{Shift off next 4 bits for B} \\
\text{SRA 1,32-LB} & & \text{Sign-extend second integer} \\
\text{ST 1,Second} & & \text{Store final result of B} \\
\text{ST 0,First} & & \text{Store correct first integer A}
\end{align*}
\]

Figure 119. Unpacking four signed integers

As noted in Section 17.2, the instructions for shifting operands in 64-bit registers behave just like the equivalent instructions for shifting operands in 32-bit registers. To illustrate, consider these right shift instructions:

\[
\begin{align*}
\text{L 0} &= \text{A(X'12345678')} & c(GRO) \text{ initialized} \\
\text{SRA 0,9} & & c(GRO) = X'000091A2'
\end{align*}
\]
The contents of GR0 is changed. For these instructions,

\[
\begin{align*}
&\text{LG } 1 = \text{AD}(X_{123456789}^7) \quad \text{c(GG1) initialized} \\
&\text{SRAG } 0, 1, 9 \quad \text{c(GG0) = } X_{00001234}^7 3C4D5E6F \\
\end{align*}
\]

the contents of the source register, GG1, is unchanged. If we initialize the source register with a negative number, the sign bit is propagated:

\[
\begin{align*}
&\text{L } 0 = \text{A}(X_{87654321}^7) \quad \text{c(GRO) initialized} \\
&\text{SRA } 0, 9 \quad \text{c(GRO) = } X_{FFC3B2A1}^7 \\
\end{align*}
\]

and the contents of GR0 is changed. For these instructions,

\[
\begin{align*}
&\text{LG } 1 = \text{XL8'} \text{FEDCBA987654321' } \quad \text{c(GG1) initialized} \\
&\text{SRAG } 0, 1, 9 \quad \text{c(GG0) = } X_{FFFF6E5D}^3 4C3B2A19 \\
\end{align*}
\]

GG1 is again unchanged.

Left arithmetic shifts may cause overflow:

\[
\begin{align*}
&\text{L } 0 = \text{A}(X_{87654321}^7) \quad \text{c(GRO) initialized} \\
&\text{SLA } 0, 9 \quad \text{c(GRO) = } X_{CA864200}^7 \text{, CC=3} \\
&\text{LG } 1 = \text{XL8'} \text{FEDCBA987654321' } \quad \text{c(GG1) initialized} \\
&\text{SRAG } 0, 1, 9 \quad \text{c(GG0) = } X_{B97530EC}^3 \text{ A8642000' } \text{, CC=3} \\
\end{align*}
\]

Double-Length Shifts

The double-length shift instructions (SRDA, SLDA, SRDL, SLDL) always require an even-odd pair of general registers.

Exercises

17.4.1.(2) Suppose your CPU has only single-length arithmetic shift instructions (SLA, SRA). There is a word at \textbf{DataWord} that is to be shifted arithmetically to the left, as though it was the high-order word of a pair of general registers. Write an instruction sequence that simulates a double-length arithmetic left shift of \(N\) bit positions, where \(N\) is a halfword integer at \textbf{NShifts}. Assume \(0 \leq N < 32\), and that the simulated low-order “register” contains zero. Store the result at a doubleword named \textbf{DWord}. If you can, show whether or not the CC setting is correct at the end of your instruction sequence.

17.4.2.(3) Do the same as in Exercise 17.4.1, and again assume you must do a double-length arithmetic left shift of a 32-bit word in the high-order half. This time, assume \(0 \leq N < 64\).

17.4.3.(3) Do the same as in Exercise 17.4.1, but simulate a double-length arithmetic \textit{right} shift of \(N\) places, where \(0 \leq N < 32\), and still assuming that the low-order half of the original operand is zero.

17.4.4.(3) Do the same as in Exercise 17.4.3, but now assume \(0 \leq N < 32\).

17.4.5.(3) Do the same as in Exercise 17.4.1, but now assume the initial data is in a doubleword at \textbf{DWord}, and store the \textit{left-shifted} result at \textbf{DWord}.

17.4.6.(3) Do the same as in Exercise 17.4.5, but now assume the initial data is in a doubleword at \textbf{DWord}, and store the \textit{right-shifted} result at \textbf{DWord}. (Remember that \(0 \leq N < 32\).)

17.4.7.(3) Do the same as in Exercise 17.4.5, but now assume \(0 \leq N < 64\).

17.4.8.(3) Do the same as in Exercise 17.4.6, but now assume \(0 \leq N < 64\).

17.4.9.(3) In mathematics it is occasionally useful to define the “integer-part-of” or “floor” function, that yields the largest integer not exceeding its argument. It is usually written with square brackets like this:
is the largest integer \(\leq X \).

Show that in the two's complement binary representation, the result of arithmetically right-shifting a number \(Z \) by \(n \) bit positions gives the result \([Z/(2^\ast n)] \).

17.4.10.(3) Rewrite the code sequence of Exercise 17.3.9 assuming that the integers may be positive or negative (that is, they are stored in the arithmetic representation rather than the logical representation).

17.4.11.(2)+ Suppose there is a positive nonzero word integer stored at the word at \(\text{NUM} \). Write an instruction sequence that leaves a number in GR0 that is the largest power of two less than or equal to the given number. That is, compute \(2^\ast N \) such that \(2^\ast N \leq c(\text{NUM}) \). (For example, if \(c(\text{NUM})=9 \), \(c(\text{GR0}) \) will be 8.)

17.4.12.(3) In Exercise 17.4.11, you wrote instructions to leave a number in GR0 that was the largest power of two less than or equal to the nonzero positive number at \(\text{NUM} \). Write another instruction sequence, assuming that the number at \(\text{NUM} \) may be positive or negative. Leave a number in GR0 that is either zero (if \(c(\text{NUM}) \) is), or is the largest power of two less than or equal to the magnitude of \(c(\text{NUM}) \).

17.4.13.(3) In Exercise 17.4.11, you wrote instructions to leave a number in GR0 that was the largest power of two less than or equal to the nonzero positive number in the word at \(\text{NUM} \). Write another code sequence that will leave the exponent of that power of two in GR0. (That is, if the number left in GR0 in Exercise 17.4.11 is \(2^\ast N \), \(c(\text{GR0}) \) is \(N \).)

17.4.14.(3)+ In describing the shift instructions on page 254, it was stated that a right shift of \(N \) places was equivalent to a division by \(2^\ast N \). This is sometimes true, and sometimes not true. When is it true, and when not?

17.4.15.(2) Rewrite Exercise 17.3.15 assuming that the values are to be stored in the arithmetic representation.

17.4.16.(2) Write a sequence of instructions that will count the number of 1-bits in the byte at \(XX \) and replace the byte with its bit count.

17.4.17.(2) Suppose the initial contents of \(GG0 \) is \('X' \text{FE0CBA9876543210'} \) before executing each of these instructions:

(a) \(\text{SRAG} \) 0,0,20
(b) \(\text{SLAG} \) 0,0,28
(c) \(\text{SRA} \) 0,18
(d) \(\text{SRLG} \) 0,18

What result will be in \(GG0 \) after executing each instruction, and what will be the resulting CC setting?

17.4.18.(2)+ Suppose \(GR0 \) contains \('X' \text{87654321'} \) before executing each of these instructions. What will be in \(GR0 \) after it is executed, and what will be the CC setting?

1. \(\text{SRA} \) 0,20
2. \(\text{LPR} \) 0,0
3. \(\text{SLA} \) 0,28

17.4.19.(2) Suppose you want to display the individual bits in a byte at \(\text{Byte} \) in character form. Write a program segment that will “spread out” the bits into eight EBCDIC characters starting at \(\text{Char} \) so that the eight characters faithfully represent the bits in the byte.

17.4.20.(3)+ Suppose your CPU supports logical but not arithmetic shifts. Write instructions using logical shift instructions to perform the functions of \(\text{SRDA} \), including setting the Condition Code correctly. The double-length operand to be shifted is in \((GR0,GR1) \) and the shift amount is in \(GR2 \). Other registers may be used as needed.
17.4.21.(2)+ You can use SRA to divide a number by 2. But if the number is negative, the result isn’t always what you expect. For example:

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Source</th>
<th>Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>L 0,=F’+5’</td>
<td>c(GRO)</td>
<td>X’00000005’ = +5</td>
</tr>
<tr>
<td>SRA 0,1</td>
<td>c(GRO)</td>
<td>X’00000002’ = +2</td>
</tr>
<tr>
<td>L 0,=F’-5’</td>
<td>c(GRO)</td>
<td>X’FFFFFFFB’ = -5</td>
</tr>
<tr>
<td>SRA 0,1</td>
<td>c(GRO)</td>
<td>X’FFFFFFFD’ = -3</td>
</tr>
</tbody>
</table>

In both cases the result is “rounded” downward, toward \(\neg \infty \). What should you do to be sure right-shifting a negative number will give the same result (except for sign) when you divide by 2 as for positive numbers?

17.4.22.(1)+ Show how you can use a shift instruction to test the sign of the contents of a general register without affecting its value.

17.4.23.(2)+ An arithmetic right shift of a binary number makes it smaller in magnitude, except for two values. What are they?

17.5. Rotating Shifts

Unlike the shift instructions we’ve seen, the rotating shift instructions RLL and RLLG neither lose nor introduce bits. A rotate unit shift takes the leftmost bit of the register, shifts all the other bits left one position, and inserts the previous leftmost bit at the right end of the register, as illustrated in Figure 120.

![Figure 120. Logical rotate unit shift](image)

As shown in Table 80 on page 243, the source operand in R3 and the target operand in R1 can be the same or different registers. If they are the same, the shift does not preserve the original operand.

The rotating shift instructions are sometimes used in data compression algorithms. In applications where speed of rotation is not important, their functions can be “emulated” using logical shifts. (See Exercises 17.5.1 and 17.5.2.)

To illustrate a rotating shift, suppose we rotate the 32-bit operand X’56789ABC’ left by 10 bit positions:

\[
\begin{align*}
&\text{L } 0,=A(X'56789ABC') \quad \text{Load initial data into GRO} \\
&\text{RLL } 1,0,10 \quad \text{Rotate 10 bits, result in GR1}
\end{align*}
\]

Then \(c(\text{GR1}) \) will be X’E26AF159’. Similarly, if we rotate the 64-bit operand X’56789ABCDEF01234’ left by 10 bit positions:

\[
\begin{align*}
&\text{LG } 0,=AD(X'56789ABCDEF01234') \quad \text{Initialize GG0} \\
&\text{RLLG } 1,0,10 \quad \text{Rotate 10 bits, result in GG1}
\end{align*}
\]

Then \(c(\text{GG1}) \) will be X’E26AF37BC048D159’.

Exercises

17.5.1.(2)+ Suppose your CPU has only single-length logical shift instructions (SLL, SRL). A 32-bit word at DataWord is to be rotated. Write an instruction sequence that simulates the RLL instruction by doing a logical rotation of N bit positions, where N is any nonnegative number stored in a halfword at NN. Store the result at RotateWd.
17.5.2.(3) Do the same as in Exercise 17.5.1, but now simulate the RLLG instruction using SLDL and SRDL to do a double-length rotating shift of N places. Assume the initial data is in a doubleword at \texttt{DWData}, and store the rotated double-length result at \texttt{RotatDWd}.

17.5.3.(1) Show how you can use a rotating shift to exchange the halves of a 64-bit general register.

17.6. Calculated Shift Amounts

As we saw in Section 17.2, the number of bit positions shifted can be specified during program execution, because the number of shifts in any shift instruction is determined from its Effective Address. For example,

\begin{verbatim}
SLL 9,0(4)
\end{verbatim}

will shift GR9 by an amount determined by the rightmost six bits of the contents of GR4.

Suppose GR1 contains a nonnegative integer less than 31; call it “n”. Then, to leave 2^n in GR0, we could write

\begin{verbatim}
L 0,=F'1' Put $2^{**0} = 1$ in GR0
SLL 0,0(1) Shift left ‘n’ places to form 2^{**n}
\end{verbatim}

The shift amount in GR1 could have been previously calculated or loaded into GR1 from memory.

We can use shifts to illustrate an amusing (but not recommended!) application of the USING statement. As with relocatable implied addresses, the Assembler computes displacements and assigns base registers for absolute implied addresses. If we write the statements below, the instructions would be assembled as indicated in the remarks fields of the last three statements.

\begin{verbatim}
USING 6,2 Absolute expression for base in GR2
A EQU 10 Symbol with absolute value
* Assembled instructions:
 SLL 9,12 8990 2006 (implied address) 12 shifts
 SLL 9,12(0) 8990 000C (explicit address) 12 shifts
 SLL 9,A 8990 2004 (implied address) 10 shifts
\end{verbatim}

Thus we can vary the number of shifts at execution time by placing appropriate values in the “base” register, GR2. This is a very poor programming technique; it’s far better to use an instruction like

\begin{verbatim}
SLL 9,0(2)
\end{verbatim}

There are very few occasions where an absolute expression is used as the first operand in a USING instruction. The need for caution is apparent when you consider what would happen to a program with the implied-address shift instructions above, and then someone changed the contents of GR2.

Exercises

17.6.1.(2)+ What will happen at both assembly and execution times if the following sequence of three statements appears in a program:

\begin{verbatim}
USING *,2
A EQU *
SLL 9,A
\end{verbatim}

17.6.2.(2)+ What number of shifts is specified by

\begin{verbatim}
SLL 9,* ?
\end{verbatim}

Is that number fixed within any one program?
17.6.3.(2) What number of shifts is specified by these instructions?

\[
\begin{align*}
\text{SLL} & \quad 9, \text{AAA} \\
\text{AAA} & \quad \text{DC} \quad \text{F'12'}
\end{align*}
\]

17.6.4.(2) Describe and evaluate the usefulness of each of the following methods for clearing a 32-bit general register \(x \) to zero:

1. SLL \(x, 32 \)
2. LH \(x, =F'0' \)
3. SRL \(x, 32 \)
4. SRDL \(x, 32 \)
5. SRDA \(x, 32 \)
6. SLDA \(x, 32 \)
7. SRLD \(x, 32 \)
8. SLDA \(x, 32 \)

17.6.5.(1) In the mnemonics for the 32-bit (single-length) shift instructions, a consistent convention is used to indicate (1) the type, (2) the direction, and (3) the length of the shift. Make a table that displays this convention.

17.6.6.(1) Can you think of any reason to perform a logical shift of more than 31 bit positions in a single register? An arithmetic shift?

17.6.7.(2) We wish to generate a pair of bytes containing the EBCDIC characters corresponding to the 2 hex digits in the byte at \(\text{DATA} \). That is, if \(c(\text{DATA}) = X'4A' \), the generated pair of bytes will contain \(X'F4C1' \). Write a code sequence that will store the two characters at \(\text{CH} \) and \(\text{CH+1} \), for any values in the byte at \(\text{DATA} \). (Hint: construct a 16-byte character table, and access it with an indexed IC instruction.)

17.6.8.(2) Most z System instructions expect that their operands will be found in memory at addresses satisfying a specific boundary alignment. This usually means that the Effective Address of an instruction should be divisible by some number. For each of the following instructions, show the number by which the Effective Address should be divisible.

1. L
2. BC
3. LH
4. ICM
5. LR
6. SRDA
7. STM
8. STC

17.6.9.(1) How many bit positions are shifted by this instruction?

\[
\text{SRL} \quad 7, =F'15'
\]

17.7. Bit-Length Constants (*)

In Figures 117, 118, and 119 we saw examples of using shift instructions to extract and insert small binary constants in various fields within a 32-bit word. You can define constants with such lengths using bit-length constants.

We first encountered length modifiers for binary constants in Section 11.4 on page 142, where we defined constants like

\[
\text{DC FL3'8'}
\]

Such length modifiers determine the byte length of the constant.

You can also define the bit length of a constant by writing a length modifier specifying the number of bits allotted to its assembled value; follow the modifier letter L with a period and the number of bits. For example:

\[
\begin{align*}
\text{DC FL3'8'} & \quad \text{can also be written} \\
\text{DC FL.24'8'}
\end{align*}
\]
The same constant will be generated in both cases, aligned on the current location counter boundary (not necessarily a word boundary).

The general form of a length modifier is either

\[L_{\text{ByteLength}} \] as in \(L_3 \)

or

\[L(\text{ByteLengthExpr}) \] as in \(L(2+1) \)

or

\[L_{\text{BitLength}} \] as in \(L.24 \)

or

\[L(\text{BitLengthExpr}) \] as in \(L.(16+8) \)

but unfortunately you cannot combine the two by writing

\[L_{\text{ByteLength}}.\text{BitLength} \] as in \(L2.5 \)

The length modifier must be either byte or bit length, not both.

For both byte- and bit-length modifiers, the length value may be written either as a positive decimal constant or as a positive absolute expression in parentheses.

A nominal value need can be any length (subject to normal truncation and padding rules)

\[DC \ FL.12'2047',FL.8'64',XL.4'D' \text{ generates } X'7FF40D' \]

Incomplete bytes are padded with zero bits:

\[DC \ FL.12'2047' \text{ generates } X'7FF0' \]

Now we can see how to generate the “packed” unsigned binary integers in Figure 115. Suppose the four integers \(A, B, C, \) and \(D \) have values 432, 12, 5001, and 47 respectively. We can define a word containing these values as shown in Figure 121:

\[\text{UnsdVals DC } 0F,FL.9'U432',FL.4'U12',FL.13'U5001',FL.6'U47' \]

Figure 121. Packing four unsigned bit-length constants in a 32-bit word

Similarly, if the four values could be signed, with values \(-232, -8, -4001, \) and \(-31 \) respectively, we could define a word containing their values as shown in Figure 122:

\[\text{SgndVals DC } 0F,FL.9'-232',FL.4'-8',FL.13'-4001',FL.6'-31' \]

Figure 122. Packing four signed bit-length constants in a 32-bit word

Exercises

17.7.1.(1) What differences might you find for these constants?

\[A \text{ DC } F' -97' \]

\[B \text{ DC } FL4'-97' \]

\[C \text{ DC } FL.32'-97' \]

17.7.2.(2)+ In Figure 121, What constant is generated? What constant would be generated if the letter “U” is omitted?

17.7.3.(2)+ In Figure 122, What constant is generated?

17.7.4.(3)+ Rewrite the constant definitions in Figures 121 and 122 to use the symbolic definitions of the four field lengths named \(LA, LB, LC, \) and \(LD \) respectively, as shown in Figure 117.

17.7.5.(2)+ If you can't write a bit-length constant with a length modifier of the form \(LA.B \) (where \(A \) is the byte length and \(B \) is the bit length), how can you write it to achieve equivalent results?
17.8. Summary

Table 82 summarizes the shift instructions discussed in this section. As mentioned above, the notation “32+32” means that the shift is in a pair of 32-bit general registers.

<table>
<thead>
<tr>
<th>Function</th>
<th>Operand length (bits)</th>
<th>32</th>
<th>32 + 32</th>
<th>64</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arithmetic shift</td>
<td></td>
<td>SLA</td>
<td>SLD A</td>
<td>SLAG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SRA</td>
<td>SRDA</td>
<td>SRAG</td>
</tr>
<tr>
<td>Logical shift</td>
<td></td>
<td>SLL</td>
<td>SLDL</td>
<td>SLLG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SRL</td>
<td>SRDL</td>
<td>SRLG</td>
</tr>
<tr>
<td>Rotating shift</td>
<td></td>
<td>RLL</td>
<td></td>
<td>RLLG</td>
</tr>
</tbody>
</table>

Table 82. Summary of shift instructions discussed in this section

The instruction mnemonics and opcodes are shown in the following table:

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Opcode</th>
</tr>
</thead>
<tbody>
<tr>
<td>RLL</td>
<td>EB1D</td>
</tr>
<tr>
<td>RLLG</td>
<td>EB1C</td>
</tr>
<tr>
<td>SLA</td>
<td>8B</td>
</tr>
<tr>
<td>SLAG</td>
<td>EB0B</td>
</tr>
<tr>
<td>SLDA</td>
<td>8F</td>
</tr>
<tr>
<td>SLL</td>
<td>89</td>
</tr>
<tr>
<td>SLLG</td>
<td>EB0D</td>
</tr>
<tr>
<td>SRA</td>
<td>8A</td>
</tr>
<tr>
<td>SRAG</td>
<td>EB0A</td>
</tr>
<tr>
<td>SRDL</td>
<td>8C</td>
</tr>
<tr>
<td>SRL</td>
<td>8B</td>
</tr>
<tr>
<td>SRLG</td>
<td>EB0C</td>
</tr>
</tbody>
</table>

The instruction opcodes and mnemonics are shown in the following table:

<table>
<thead>
<tr>
<th>Opcode</th>
<th>Mnemonic</th>
</tr>
</thead>
<tbody>
<tr>
<td>88</td>
<td>SRL</td>
</tr>
<tr>
<td>89</td>
<td>SLL</td>
</tr>
<tr>
<td>8A</td>
<td>SRA</td>
</tr>
<tr>
<td>8B</td>
<td>SLA</td>
</tr>
<tr>
<td>8C</td>
<td>SRDL</td>
</tr>
<tr>
<td>8D</td>
<td>SLDL</td>
</tr>
<tr>
<td>8E</td>
<td>SRDA</td>
</tr>
<tr>
<td>8F</td>
<td>SLDA</td>
</tr>
<tr>
<td>EBOA</td>
<td>SRAG</td>
</tr>
<tr>
<td>EBOB</td>
<td>SLA</td>
</tr>
<tr>
<td>EB0C</td>
<td>SRLG</td>
</tr>
<tr>
<td>EB0D</td>
<td>SLLG</td>
</tr>
<tr>
<td>EB1C</td>
<td>RLLG</td>
</tr>
<tr>
<td>EB1D</td>
<td>RLL</td>
</tr>
</tbody>
</table>

Terms and Definitions

arithmetic shift
A movement of bits in a general register to the left or right, preserving the arithmetic sign of the operand.

logical shift
A movement of bits in a general register to the left or right, inserting zero bits into any vacated bit positions.

rotating shift
A movement of bits in a general register to the left in such a way that bits moved out of the high-order bit position are inserted into the low-order bit position. (Also called a “circulating” shift.)

Programming Problems

Problem 17.1. Write a program that takes a positive word integer from the memory area named Data and shifts it left until its next-to-highest-order bit (that is, bit number 1) is nonzero. Store the result in a word area named Norm, and store at the halfword area Count the number of
shifts required. Print the contents of **Data**, **Norm**, and **Count**. Run the program with several different values at **Data** such as 1, 999, 2147483647, and others.

Problem 17.2. (2) A programmer suggested using these instructions to convert the eight bits in a byte to eight EBCDIC characters representing their value.

```assembly
ICM 1,8'B1000',DataByte Put the byte at the left end of GR1
LHI 2,8 Set the bit count to 8
Loop SLLG 3,3,8 Make room in GG3 for the character
    SR 0,0 Clear GR0
    SLDL 0,1 Shift a low-order bit into GR0
    A 0,=A(X'F0') Add X'F0' to make a character
    ALR 3,0 Insert the character into GG3
    SH 2,=H'1' Count down by 1
BP Loop Repeat for all 8 bits
STG 3,BitChars Store the 8 characters
```

- - -

BitChars DS D 8 EBCDIC 0 and 1 characters

Write a program with several data values to test her assertion.

Problem 17.3. (1) Using the instructions in Figure 119 on page 254, write a program to unpack the four signed integers of Figure 122 on page 260 at the word named **SgndVals** and display the unpacked values at **First**, **Second**, **Third**, and **Fourth** as fullword integers.
18. Binary Multiplication and Division

When we multiply two numbers, the product can be as long as the sum of their lengths. For example, multiplying the three-digit decimal number 999 by itself, 999×999 gives 998001: six digits long. Thus, we will need double-length registers if our products of single-length numbers can be longer than a single register.

The terminology used for the operands is from mathematics:

\[
\text{multiplicand} \quad \times \quad \text{multiplier} \quad \rightarrow \quad \text{product}
\]

18.1. Overview of Multiplication Instructions

The instructions we’ll examine are summarized in Table 83. The notation “32×32” means the product of two 32-bit integers, and similarly for “32×16”, “64×64”, and “64×32”.

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>5C</td>
<td>M</td>
<td>RX</td>
<td>Multiply (32+32→32×32)</td>
<td>1C</td>
<td>MR</td>
<td>RR</td>
<td>Multiply Register (32+32→32×32)</td>
</tr>
<tr>
<td>4C</td>
<td>MH</td>
<td>RX</td>
<td>Multiply Halfword (32→32×16)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>MS</td>
<td>RX</td>
<td>Multiply Single (32→32×32)</td>
<td>B252</td>
<td>MSR</td>
<td>RRE</td>
<td>Multiply Single Register (32→32×32)</td>
</tr>
<tr>
<td>E351</td>
<td>MSY</td>
<td>RXY</td>
<td>Multiply Single (32→32×32)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E30C</td>
<td>MSG</td>
<td>RXY</td>
<td>Multiply Single (64→64×64)</td>
<td>B90C</td>
<td>MSGR</td>
<td>RRE</td>
<td>Multiply Single Register (64→64×64)</td>
</tr>
<tr>
<td>E31C</td>
<td>MSGF</td>
<td>RXY</td>
<td>Multiply Single (64→64×32)</td>
<td>B91C</td>
<td>MSGFR</td>
<td>RRE</td>
<td>Multiply Single Register (64→64×32)</td>
</tr>
<tr>
<td>E396</td>
<td>ML</td>
<td>RXY</td>
<td>Multiply Logical (32+32→32×32)</td>
<td>B996</td>
<td>MLR</td>
<td>RRE</td>
<td>Multiply Logical Register (32+32→32×32)</td>
</tr>
<tr>
<td>E386</td>
<td>MLG</td>
<td>RXY</td>
<td>Multiply Logical (64+64→64×64)</td>
<td>B986</td>
<td>MLGR</td>
<td>RRE</td>
<td>Multiply Logical Register (64+64→64×64)</td>
</tr>
</tbody>
</table>

Table 83. Binary integer multiply instructions
The result of each multiply instruction is a 32-bit, 64-bit, or 128-bit product, as indicated by “32←...” (for a single 32-bit register), “32+32←...” (for a 64-bit product in a pair of 32-bit registers), “64←...” (for a single 64-bit register), and “64+64←...” (for a 128-bit product in a pair of 64-bit registers). As we saw for signed and logical addition and subtraction, signed multiplications sign-extend short operands, and logical multiplications zero-extend short operands.

As Table 83 indicates, there are no instructions giving a 128-bit arithmetic product of two signed 64-bit operands. None of these instructions change the CC setting.

Signed multiply instructions are the most frequently used, so we’ll discuss them first.

18.2. Arithmetic (Signed) Multiplication Instructions

The two types of arithmetic multiplication instructions give either single-length or double-length products. Because double-length products are more often used, we’ll start with those.

18.2.1. Double-Length Arithmetic Products

The instructions yielding arithmetic 64-bit double-length products are:

<table>
<thead>
<tr>
<th>Op</th>
<th>Mmem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mmem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>5C</td>
<td>M</td>
<td>RX</td>
<td>Multiply (32+32←32×32)</td>
<td>1C</td>
<td>MR</td>
<td>RR</td>
<td>Multiply Register (32+32←32×32)</td>
</tr>
</tbody>
</table>

Table 84. Double-length arithmetic multiply instructions

M and MR form the 64-bit product of two 32-bit operands. The first operand, the multiplicand, is in the odd-numbered register of an even-odd register pair. The second operand, the multiplier, is either in a register or a word in memory, as illustrated in Figure 123. Note that the initial contents of the even-numbered register, GR R₁, are ignored (unless GR R₁ contains the second operand).

<table>
<thead>
<tr>
<th></th>
<th>R₁ (even)</th>
<th>R₁+1 (odd)</th>
<th>Multiplicand</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>63</td>
<td>32</td>
<td>63</td>
</tr>
</tbody>
</table>

Figure 123. General layout of multiplication operands

After the operation completes, the 64-bit product is in the register pair, as shown in Figure 124.

110 At the time of this writing. But new instructions are added regularly to the z System architecture, so check the *Principles of Operation*. However, you can generate signed products using the unsigned multiply instructions; see Exercises 18.3.2 and 18.3.3.
For M and MR, no fixed-point overflow is possible. As with the double-length shift instructions, the even-numbered register is the high-order half of an even-odd register pair, and the next higher odd-numbered register is the low-order half. The CPU takes the multiplicand from the odd-numbered register and the multiplier from the address or register specified by the second operand. The product replaces the original contents of the pair of registers, and the high-order bit of the odd-numbered register is a part of the product, not necessarily a sign bit. The following instructions produce the indicated results.

\[
\begin{align*}
&\text{MR 2,7} & c(\text{GR2,GR3}) = c(\text{GR3}) \times c(\text{GR7}) \\
&\text{* Square the number in GR1} \\
&\text{MR 0,1} & c(\text{GR0,GR1}) = c(\text{GR1}) \times c(\text{GR1}) \\
&\text{MR 8,8} & c(\text{GR8,GR9}) = c(\text{GR9}) \times c(\text{GR8}) \\
&\text{M 4,XX} & c(\text{GR4,GR5}) = c(\text{GR5}) \times c(\text{XX}) \\
&\text{M 12,} = F'932' & c(\text{GR12,GR13}) = c(\text{GR13}) \times 932 \\
&\text{* Square the number in GR4} \\
&\text{LR 5,4} & \text{Move multiplicand to GR5} \\
&\text{MR 4,4} & c(\text{GR4,GR5}) = c(\text{GR5}) \times c(\text{GR4})
\end{align*}
\]

The last two instructions show how to square the integer in GR4: the LR instruction copies the multiplier to the odd-numbered register. The presence of the multiplier in the even-numbered register does not cause it to be lost when that register is cleared at the beginning of the multiply sequence; the multiplication takes place after the CPU has saved a copy of the multiplier. After the LR we could also have used "MR 4,5", giving \(c(GR5) \times c(GR5) \).

The product generated by the M and MR instructions is 64 bits long. If we perform these instructions:

\[
\begin{align*}
&\text{L 1,=A(X'10000')} & c(\text{GR1}) = 65536 = 2^{16} \\
&\text{MR 0,1} & \text{Square it to get } 2^{32} \\
&\text{ST 1,Product} & \text{Store low-order half} \\
\end{align*}
\]

we would find that the word stored at Product was zero, and that \(c(GR0) = 1 \). Similarly, if we execute these instructions (where \(32768 = 2^{15} \)):

\[
\begin{align*}
&\text{L 1,=A(X'10000')} & c(\text{GR1}) = 65536 \\
&\text{M 0,=A(X'8000')} & \text{Multiply by 32768; result = } 2^{31} \\
&\text{ST 1,Product} & \text{Store } 2^{31} \text{ (??)}
\end{align*}
\]

we would find that \(c(GR0)=0 \), and \(c(\text{Product}) = -2^{31} \! \)!

There are two situations needing caution. First, the product may be so long that significant bits occupy more than the low-order register. Second, whether or not the high-order register contains significant bits, the leftmost bit of the low-order register can be interpreted as a sign bit only if the product lies in the range

\[-2^{31} \leq \text{product} < +2^{31}\]

Otherwise, the low-order sign bit contains an arithmetically significant digit with positive weight.

As an example using a multiply instruction, suppose we want to evaluate \(A = B + G \times D \), a typical expression in a high-level language. All quantities are word integers, and we assume all results are small enough so that no overflows occur.
We have used the symbols A, B, G, and D to denote both the names of word areas of memory and the values of the contents of those areas (that is, as “variables”). This usage is typical of high-level languages, where little distinction is made among the name associated with an area of memory, the contents of that area, the value associated with the contents, and the name of the value.\(^{111}\)

Suppose we wish to compute the sum of the cubes of the first \(N\) integers, where \(N\) is stored in the word at NBR. We assume that \(N\) is a small enough positive integer that the sum of the cubes is representable in a single word. The quantity called “K” is a counter that runs from 1 to \(N\) in steps of 1.

\[
\text{SR 5,5 \quad \text{Sum carried in GR5}} \\
\text{L 4,=F'1' \quad \text{Initialize K in GR4}} \\
\text{Repeat LR 1,4 \quad c(GR1) = K} \\
\quad \text{MR 0,1 \quad c(GR0,GR1) = K * K} \\
\quad \text{MR 0,4 \quad c(GR0,GR1) = K cubed} \\
\quad \text{AR 5,1 \quad Accumulate sum} \\
\quad \text{A 4,=F'1' \quad Increment K} \\
\quad \text{C 4,NBR \quad Compare to upper limit at NBR} \\
\quad \text{BNH \quad Repeat if K is not bigger} \\
\quad \text{ST 5,Sum \quad Store sum of first N cubes}
\]

Figure 125 shows a slightly different version of this example; it counts from \(N\) down to 1:

\[
\text{SR 5,5 \quad \text{initialize sum to zero}} \\
\text{L 4,NBR \quad Initialize K from c(NBR) = N} \\
\text{Repeat LR 1,4 \quad c(GR1) = K} \\
\quad \text{MR 0,4 \quad c(GR0,GR1) = K * K} \\
\quad \text{MR 0,4 \quad c(GR0,GR1) = K cubed} \\
\quad \text{AR 5,1 \quad Add to sum} \\
\quad \text{S 4,=F'1' \quad Decrement K by 1} \\
\quad \text{BP \quad Repeat if K is still positive} \\
\quad \text{ST 5,SUM \quad Store sum of first N cubes}
\]

Figure 125. Calculate the sum of the first 10 cubed integers

18.2.2. Single-Length Arithmetic Products

The instructions generating single-length arithmetic products are shown in Table 85.

When you know a product will be small enough to fit correctly in a single-length register, or if you don’t care that some high-order bits may be lost, these instructions avoid needing an even-odd register pair, and may also execute faster than the instructions generating double-length products.

\(^{111}\) These distinctions are very important in Assembler Language, and can be very confusing to people whose first programming experiences were with high-level languages.
The MH instruction produces a *single-length* (word) result, the low-order 32 bits of the product of \(c(GR, R_1)\) and the halfword second operand. Because only a word result is retained, \(R_1\) need not be even. For example,

\[
\text{MH} 5,=H'100' \quad \text{Multiply } c(GR5) \text{ by } 100
\]

is a simple way to multiply the contents of GR5 by 100 without affecting the contents of the lower even-numbered register, GR4. If \(X\) and \(Y\) are both halfword operands, their product may be found by writing

\[
\text{LH} 8,X \quad \text{Multiplicand in GR8 (even register!)}
\]
\[
\text{MH} 8,Y \quad \text{Multiply by } c(Y), \text{ product in GR8}
\]

and GR9 remains undisturbed. To square the halfword integer at \(N\), we could write

\[
\text{LH} 1,N \quad c(N) \text{ in GR1}
\]
\[
\text{MH} 1,N \quad N \text{ squared in GR1}
\]

Because both operands are halfwords with at most 15 significant bits, the product will always fit in a single register. The only halfword whose magnitude requires 16 bits \((-2^{15})\) when squared yields \(2^{30}\), requiring only 31 bits.

As we’ve seen for MH, all the “Multiply Single” instructions place the product in a single-length register. The register may be either even- or odd-numbered; the other register of the pair is not changed. Other instructions generating a product in a 32-bit register are MS and MSR. For example:

\[
\text{L} 1,=F'12345' \quad c(GR1) = 12345
\]
\[
\text{MS} 1,=F'12347' \quad c(GR1) = 152423715
\]
\[
\text{L} 1,=F'12345' \quad c(GR1) = 12345
\]
\[
\text{MSR} 1,7 \quad c(GR1) = 152423715
\]

and the product is small enough to be held correctly in GR1.

MSG and MSGR, and MSGF and MSGFR produce a 64-bit product in a single 64-bit register. MSG and MSGR are exact analogs of MS and MSR;

\[
\text{L} 1,=FD'12345678' \quad c(GG1) = 12345678
\]
\[
\text{MSG} 1,=FD'23456789' \quad c(GG1) = 289589963907942
\]
\[
\text{LG} 1,=FD'12345678' \quad c(GG1) = 12345678
\]
\[
\text{LG} 7,=FD'23456789' \quad c(GG7) = 23456789
\]
\[
\text{MSGR} 1,7 \quad c(GG1) = 289589963907942
\]

MSGF and MSGFR generate a 64-bit product of a 64-bit first operand and a 32-bit second operand by first internally sign-extending the 32-bit second operand to 64 bits.
Exercises

18.2.1.(1) What is the value of the largest 64-bit product that can be generated by signed multiplication of 32-bit operands?

18.2.2.(4) Given two unsigned 32-bit integers stored in the words at \(X \) and \(Y \), show first how you can generate their unsigned 64-bit product using the arithmetic multiplication instructions \(M \) and \(MR \). Then, write a sequence of instructions that will store the product in the doubleword at \(LogProd \).

Let \(X \) be the logical (unsigned) representation corresponding to the arithmetic representation \(x \) of some integer, and similarly for \(Y \) and \(y \). To form the logical product of the operands \(X \) and \(Y \), we must modify the product \(xy \) given by the processor operation of multiplication, which assumes that the operands are in the arithmetic representation. It will help to remember (from Section 2.7) that

\[
XY = (2^{32}x)(2^{32}+y) = 2^{64} + 2^{32}(x+y) + xy \text{ (modulo } 2^{64})
\]

18.2.3.(2) What is the value of the largest 48-bit product that can be generated by signed multiplication of 32-bit and 16-bit operands? The largest 96-bit value generated by signed multiplication of 32-bit and 64-bit operands?

18.2.4.(3) Write a sequence of instructions that forms the product of the positive word integers at \(A \) and \(B \), leaves the result in \(GR0,GR1 \), and transfers to \(Overflow \) if the result is too large to be represented in a word.

18.2.5.(4) Do the same as in Exercise 18.2.4, but make no restrictions on the signs of the operands.

18.2.6.(4) Rewrite your solution to Exercise 18.2.5 to branch to \(OverPos \) if the result is too large and positive, and to \(OverNeg \) if the result is too large and negative.

18.2.7.(3) Suppose \(GR11 \) and \(GR12 \) contain the addresses of the first items in two tables of ten consecutive halfword integers each. Write a code sequence that computes the “inner product” of the two tables; that is, compute the product of the first elements from each table, add to it the product of the second items, etc. Store the final sum as a double-length integer beginning at the word named \(DwSum \). The addresses in \(R11 \) and \(R12 \) may be modified. Since there are ten products, the accumulated sum could overflow the capacity of a single register. Be sure to handle negative products correctly.

18.2.8.(3) Simplify the coding of Exercise 18.2.2 assuming that the arithmetic representation corresponding to \(x \) is known to be positive at all times.

18.2.9.(2) When we use the \(M \) and \(MR \) instructions, the first operand specifies an even-numbered register. However, the multiplicand is actually in the next higher odd-numbered register. Can you think of any reasons why the designers of \(z \) System did not require that the actual (odd) multiplicand register be specified?

18.2.10.(2) Write a simple sequence of instructions that will determine whether the 64-bit product in \((GR0,GR1) \) is too large to be carried in a single register.

18.2.11.(2) If all values are positive, what is the value of the largest 48-bit product that can be generated by multiplication of 32-bit and 16-bit operands? The largest 96-bit value generated by multiplication of 32-bit and 64-bit operands?
18.2.12.(3) Given a signed 32-bit operand A and an unsigned 32-bit operand B, write instructions that will generate their signed 64-bit product.

18.2.13.(2) A programmer wanted to test whether the product of two positive 32-bit binary integers was too large to fit in a 32-bit register. Will these instructions do what he wants?

\[
\begin{align*}
L & \quad 1, X \\
M & \quad 0, Y \\
LTR & \quad 0, 0 \\
BZ & \quad \text{ProdOK}
\end{align*}
\]

If they're zero, product fits
- - - Not OK

18.2.14.(3) You have created a signed binary product in (GR0,GR1) using instructions like

\[
\begin{align*}
L & \quad 1, X \\
M & \quad 0, Y
\end{align*}
\]

and you want to determine whether its value can be stored correctly in the 32-bit field \texttt{Prod32} or (to be stored correctly) must be stored in the 64-bit field \texttt{Prod64}. Write instructions to make that determination and store the result.

18.2.15.(2) What would be stored at \textit{Z} by these instructions?

\[
\begin{align*}
L & \quad 3, X \\
M & \quad 2, Y \\
SR & \quad 2, 3 \\
ST & \quad 2, Z
\end{align*}
\]

18.3. Logical (Unsigned) Multiplication Instructions

Table 86 lists the logical multiplication instructions:

<table>
<thead>
<tr>
<th>Op</th>
<th>Mнем</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mнем</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>E396</td>
<td>ML</td>
<td>RXY</td>
<td>(32 + 32 \times 32)</td>
<td>B996</td>
<td>MLR</td>
<td>RRE</td>
<td>(32 + 32 \times 32)</td>
</tr>
<tr>
<td>E386</td>
<td>MLG</td>
<td>RXY</td>
<td>(64 + 64 \times 64)</td>
<td>B986</td>
<td>MLGR</td>
<td>RRE</td>
<td>(64 + 64 \times 64)</td>
</tr>
</tbody>
</table>

Logical multiply instructions are similar to arithmetic multiply instructions, except that the operands and results are unsigned. All four instructions generate a double-length product in an even-odd register pair. Logical multiplication is frequently used when high- or multiple-precision calculations are required\(^{112}\). Although you can use arithmetic multiplication instructions to generate logical products, and logical multiplication instructions to generate arithmetic products, extra instructions and time are needed.\(^{113}\) It’s simplest to use whichever instruction is best suited to the type of operand.

\(^{112}\) Some encryption and decryption algorithms use multiple-precision arithmetic extensively.

\(^{113}\) Try Exercises 18.2.2 and 18.3.2.
For example, suppose you multiply the maximum negative 32-bit number by itself using arithmetic and logical multiply instructions:

* **Arithmetic multiplication**

 L 1, =X’80000000’
 GR1 = -2147483648

 MR 0,1 c(GR0,GR1) = X’40000000 00000000’

* **Logical multiplication**

 L 1, =X’80000000’
 GR1 = +2147483648

 MLR 0,1 c(GR0,GR1) = X’40000000 00000000’

The result is the same in both cases. Arithmetically, the maximum negative number has value \(-2^{31}\), and the same bit pattern as an unsigned number has value \(2^{31}\). Thus, the product in both cases is \(2^{62}\). Now, let’s try squaring a different operand, \(-1\):

* **Arithmetic multiplication:** \((-1)\)(\(-1\)) = \(+1\)

 L 1, =F’-1’
 GR1 = X’FFFFFFF’

 MR 0,1 c(GR0,GR1) = X’00000000 00000001’

* **Logical multiplication:** \((2^{**32}-1)\)(\(2^{**32}-1\)) = 18446744066519617025

 L 1, =F’-1’
 GR1 = X’FFFFFFF’

 MLR 0,1 c(GR0,GR1) = X’FFFFFFFE 00000001’

These results are very different! The bit pattern X’FFFFFFF’ represents \(-1\) arithmetically, but \(2^{32}-1\) logically.

The MLG and MLGR instructions generate 128-bit products in an even-odd pair of 64-bit registers:

```
LG 1,=FD’74296604373’
MLG 0,=FD’9876543210’
LG 3,=FD’74296604373’
MLGR 0,3
```

These instructions can generate very large products!

Exercises

18.3.1.(1) What is the value of the largest 64-bit product that can be generated by logical multiplication of 32-bit operands?

18.3.2.(3) Given two signed 32-bit integers stored in the words at \(P\) and \(Q\), show first how you can generate their signed 64-bit product using the logical multiplication instructions ML and MLR. Then, write a sequence of instructions that will store the product in the doubleword at \(ArProd\).

18.3.3.(4) Do the same as in Exercise 18.3.2, but this time form the 128-bit signed product of two 64-bit signed operands at \(DP\) and \(DQ\) using the logical multiplication instructions MLG and MLGR. Store the result in the pair of doublewords at \(ArProd2\).

18.3.4.(4) As in Exercise 16.6.3 on page 230, form the product of the two 256-bit integers at \(A256\) and \(B256\) to form a 512-bit product stored at \(Prod256\).
18.4. How Multiplication Is Done (*)

To illustrate the method used in multiplication, we’ll first use an example in decimal arithmetic. Suppose we have a “processor” with registers that hold 3-digit decimal numbers that we assume are positive, and we multiply 213 and 126. Since we are multiplying two 3-digit numbers, the product can be 6 digits long. Thus, we assume there is a double-length 6-digit register whose right and left halves hold a 3-digit number.

When working with pencil and paper, we form the product of the multiplier and each of the multiplicand digits in succession, and generate a series of partial products that must be properly aligned and then added:

```
Multiplicand 213
Multiplier × 126
partial 1278
products 426
213
Product 26838
```

We’ll now see how this manual process can be broken down into steps that are more like the method used in a computer.

1. We place the multiplicand in the right half of the double-length register, and clear the left half to zero.

 Initial register contents 000 213

2. By examining the rightmost digit of the multiplicand we know how many times to add the multiplier to the left half of the double-length register. As an aid in counting how many times to add the multiplier, we decrement the rightmost multiplicand digit by 1 for each addition. When the rightmost digit has been counted down to zero, the partial product of that digit and the multiplier has been added to the accumulating result.

 Initial register contents 000 213
 Add multiplier to upper end +126
 that’s 1 time 126 212, count down at right
 Add multiplier +126
 that’s 2 times 252 211, count down at right
 Add multiplier +126
 that’s 3 times 378 210, count down at right

3. The entire double-length register is shifted right one digit position, at which time the (now) zero digit at the right-hand end is lost, and a zero digit is inserted in the vacated position at the left.

 Shift right one place 037 821
 Add multiplier +126
 that’s 1 time 163 820, count down at right

4. After the second shift, the final multiplicand digit is 2:

 Shift right one place 016 382
 Add multiplier +126
 that’s 1 time 142 381, count down at right
 Add multiplier +126
 that’s 2 times 268 380, count down at right
 Shift right one place 026 838

This process of adding the multiplier and counting down on the multiplicand digit continues until the proper partial product has been added to the accumulated result. This process is repeated for as many steps as there are multiplicand digits. When completed, the product is in the double-length register, and all multiplicand digits have been shifted off the right-hand end.

The main points are:

- the multiplicand is initially placed in the right half of the double-length register;
• the left half is initially cleared to zero (after saving the multiplier if it was in the left half);
• the multiplier is added to the left end a number of times determined by the multiplicand digit at the far right; and
• the least significant digit of the result is at the right-hand end of the double-length register, because the number of right shifts was the same as the number of positions in a single-length register.

When used for multiplying binary numbers, the above scheme is very easy to implement, because testing the rightmost bit determines whether or not the multiplier is to be added, and no counting is required. Suppose we have 5-digit binary numbers and registers, and wish to multiply $B'00110'$ (=6) by $B'01001'$ (=9) to obtain a 10-bit product in a double-length register. The sequence of steps in Figure 126 shows how this is done.

Initialize 00000 01001 Multiplicand, in right half of double-length register
00110 Multiplier, in separate register

Step 1: Rightmost bit = 1,
 Add multiplier 00110 01001
 Shift right 1 place 00011 00100 (The 1-bit is lost)
Step 2: Rightmost bit = 0,
 Shift right 1 place 00001 10010
Step 3: Rightmost bit = 0,
 Shift right 1 place 00000 11001
Step 4: Rightmost bit = 1,
 Add multiplier 00110 11001
 Shift right 1 place 00011 01100 (The 1-bit is lost)
Step 5: Rightmost bit = 0,
 Shift right 1 place 00001 10110 Final product (=54)

Figure 126. Illustration of binary multiplication

It is important to observe that the product really is a double-length number, and not just two single-length numbers joined end to end. If we consider the contents of the left and right halves of the double-length register as ordinary single-length two's complement operands, we might believe the result in the right, or low-order half, was negative! Since a product of two positive numbers must be positive, a double-length register means that no special significance can be attached to the sign bit of the low-order half of the result, unless we know in advance that the product is correctly representable in a single register. The leftmost bit of the right-hand register is therefore not a sign bit; it has positive weight in the double-length result, and the product's sign bit is the leftmost bit of the high-order register.

Modern processors gain speed by considering not just the rightmost bit of the multiplicand, but groups of two, three, or even four bits. In cases where the arithmetic can be considered to be base 4, 8, or 16, the “proper multiple” is not found by counting down by ones on the multiplicand bits, but by having internal shifting or table look-up circuits generate the proper factor of the multiplier in many fewer steps. This increases the speed of multiplication, since a separate addition is not required for each 1 bit in the multiplicand.

114 Because many multiplications involve small numbers not needing a double-length product, the various “Multiply Single” instructions were created. They can be faster than instructions generating double-length products.
18.5. Division Instructions

As with multiplication, the terminology is taken from mathematics:

\[
\begin{array}{c}
\text{Quotient} \\
\text{Divisor} \\
\text{Dividend} \\
\text{Remainder}
\end{array}
\]

While multiplying two n-digit numbers usually gives a 2n-digit product, dividing a 2n-digit dividend by an n-digit divisor does not necessarily produce an n-digit quotient. If for example we use 3-digit decimal numbers, \(999 \times 999 = 998001\); but \(998001 \div 100\) gives quotient 9980 and remainder 1, with a 4-digit quotient.

If the divisor is zero, or if the quotient is too large to fit in a single-length register, a Fixed-Point Divide interruption will occur, with Interruption Code 9. This condition cannot be suppressed (as can Fixed-Point Overflow). It is important to be careful when preparing for division!

The divide instructions we’ll consider are shown in Table 87.

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>5D</td>
<td>D</td>
<td>RX</td>
<td>Divide ((32,32 \leftarrow 32+32+32))</td>
<td>1D</td>
<td>DR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RR</td>
<td>Divide Register ((32,32 \leftarrow 32+32+32))</td>
</tr>
<tr>
<td>E30D</td>
<td>DSG</td>
<td>RXY</td>
<td>Divide Single ((64,64 \leftarrow 64+64))</td>
<td>B90D</td>
<td>DSGR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RRE</td>
<td>Divide Single Register ((64,64 \leftarrow 64+64))</td>
</tr>
<tr>
<td>E31D</td>
<td>DSGF</td>
<td>RXY</td>
<td>Divide Single ((64,64 \leftarrow 64+32))</td>
<td>B91D</td>
<td>DSGFR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RRE</td>
<td>Divide Single Register ((64,64 \leftarrow 64+32))</td>
</tr>
<tr>
<td>E397</td>
<td>DL</td>
<td>RXY</td>
<td>Divide Logical ((32,32 \leftarrow 32+32+32))</td>
<td>B997</td>
<td>DLR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RRE</td>
<td>Divide Logical Register ((32,32 \leftarrow 32+32+32))</td>
</tr>
<tr>
<td>E387</td>
<td>DLG</td>
<td>RXY</td>
<td>Divide Logical ((64,64 \leftarrow 64+64+64))</td>
<td>B987</td>
<td>DLGR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RRE</td>
<td>Divide Logical Register ((64,64 \leftarrow 64+64+64))</td>
</tr>
</tbody>
</table>

Table 87. Binary divide instructions

The notation describing the operands and results of these instructions shows the general register results to the left of the “\(\leftarrow\)” character, and the dividend and divisor to the right. For example, for the D instruction, \((32,32 \leftarrow 32+32+32)\) means that the quotient and remainder 32, 32 are both 32-bit words; the dividend 32+32 is a pair of 32-bit registers, and the divisor is a 32-bit integer. Similarly, for DSGF, \((64,64 \leftarrow 64+32)\) means that the quotient, remainder, and dividend are 64-bit integers, and the divisor is a 32-bit sign-extended integer.

As Table 87 indicates, there are no instructions (like DG, DGR) for dividing 128-bit arithmetic operands by a signed 64-bit divisor of the form \((64,64 \leftarrow 128+64)\), nor instructions (like DS, DSR) for dividing 32-bit signed operands by 32-bit divisors.115

When any division instruction completes without interruption, the quotient is found in the odd-numbered register of the pair, and the remainder in the even-numbered register, as illustrated in Figure 127.

![Figure 127. General result of divide operation](image)

115 At the time of this writing. But new instructions are added regularly to the z System architecture, so check the Principles of Operation.
None of the divide instructions changes the CC setting, and an even-odd register pair is always required, even for the “Divide Single” instructions.

<table>
<thead>
<tr>
<th>Register Pairs for Division</th>
</tr>
</thead>
<tbody>
<tr>
<td>All z System binary integer divide instructions require an even-odd register pair.</td>
</tr>
</tbody>
</table>

Exercises

18.5.1.(2)+ If you divide an ND-digit dividend (numerator) by a DD-digit divisor (denominator), what are the minimum and maximum numbers of digits QD in the quotient and RD in the remainder? Assume a valid division, and that zero is a valid result.

18.6. Arithmetic (Signed) Division Instructions

Table 88 summarizes the arithmetic division instructions:

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>5D</td>
<td>D</td>
<td>RX</td>
<td>Divide (32,32→32+32+32)</td>
<td>1D</td>
<td>DR</td>
<td>RR</td>
<td>Divide Register (32,32→32+32+32)</td>
</tr>
<tr>
<td>E30D</td>
<td>DSG</td>
<td>RXY</td>
<td>Divide Single (64,64→64+64)</td>
<td>B90D</td>
<td>DSGR</td>
<td>RRE</td>
<td>Divide Single Register (64,64→64+64)</td>
</tr>
<tr>
<td>E31D</td>
<td>DSGF</td>
<td>RXY</td>
<td>Divide Single (64,64→64+32)</td>
<td>B91D</td>
<td>DSGFR</td>
<td>RRE</td>
<td>Divide Single Register (64,64→64+32)</td>
</tr>
</tbody>
</table>

Table 88. Arithmetic divide instructions

The Divide Single instructions (DSG, DSGR, DSGF, and DSGFR) have only a single-length dividend; we’ll examine them shortly.

18.6.1. Double-Length Division

The most commonly used divide instructions are D and DR. The 64-bit double-length dividend (the first operand) is placed in an even-odd pair of 32-bit registers, and the second operand (the divisor) is in another register or a word in memory. This is illustrated in Figure 128.

Figure 128. Operands of double-length division

This type of division uses a double-length dividend and a single-length divisor, yielding single-length quotient and remainder. The sign of the quotient is determined from the usual rules of algebra; the sign of the remainder is the same as the sign of the original dividend, except that a zero quotient or remainder always has a zero sign bit.

As with the double-length multiply instructions, the R₁ digit is always even, and specifies the register pair containing the double-length dividend. The quotient replaces the low-order half of the dividend in the odd-numbered register, and the remainder replaces the high-order part of the dividend in the even-numbered register. If a valid quotient cannot be computed, a Fixed-Point Divide interruption occurs. (An improper division is shown in Figure 133 on page 277.)
To illustrate, we divide the double-length number in (GR8,GR9) by the number in GR13.

\[
\text{DR 8,13 \quad Divide c(GR8,GR9) by c(GR13)}
\]

To divide the same number by 10 we could write

\[
\text{D 8,=F'10' \quad Divide c(GR8,GR9) by 10}
\]

The most common use of division occurs when dividing a 32-bit word operand by another. For double-length dividends that must be 64 bits long, you can't just load the dividend operand into an odd-numbered register and immediately divide, because the even-numbered register is treated by the CPU as containing the most significant bits of the dividend. We must first extend the sign bit of the single-length dividend to form its correct double-length representation.

There are two ways to do this:

1. Multiply the 32-bit dividend (in the odd-numbered register) by 1:

\[
\begin{align*}
\text{L 7,NN} & \quad \text{Load 32-bit dividend in GR7} \\
\text{M 6,=F'1'} & \quad \text{Times 1 gives 64-bit signed dividend}
\end{align*}
\]

While easy to understand, this method may be slower than the next.

2. The most common method is to load the 32-bit dividend into the even-numbered register, and then use an SRDA instruction:

\[
\begin{align*}
\text{L 6,NN} & \quad c(GR6) = c(NN) \\
\text{SRDA 6,32} & \quad c(GR6,GR7) = 64-bit signed dividend
\end{align*}
\]

Suppose we want to divide the positive or negative word integer at G by three, and store the quotient at G_Over_3.

\[
\begin{align*}
\text{L 8,G} & \quad \text{Put numerator into even register} \\
\text{SRDA 8,32} & \quad \text{Sign-extend to double length} \\
\text{D 8,=F'3'} & \quad \text{Divide by three} \\
\text{ST 9,G_Over_3} & \quad \text{Store quotient}
\end{align*}
\]

Figure 129. Example of division by 3

Suppose we want to compute the product of the integers in the words named A and B and force the result to the next larger multiple of 29 if it is not already an exact multiple. (We assume that the product is small enough that a fixed-point divide interruption will not occur when dividing by 29, and that the final result fits in a single word.)

\[
\begin{align*}
\text{L 3,A} & \quad c(GR3) = c(A) \\
\text{M 2,B} & \quad c(GR2,GR3) = c(A) \ast c(B) \\
\text{D 2,=F'29'} & \quad \text{Quotient in GR3} \\
\text{LTR 2,2} & \quad \text{Test remainder in GR2} \\
\text{BZ Multi} & \quad \text{Branch if c(GR2) is zero} \\
\text{A 3,=F'1'} & \quad \text{Increase quotient by 1} \\
\text{Multi M 2,=F'29'} & \quad \text{Form correct multiple of 29} \\
\text{ST 3,Result} & \quad \text{Store proper result}
\end{align*}
\]

This example assumes the final product is correctly represented in the 32 bits of GR3.

Here are two examples of division with rounding.

1. Suppose we want to divide the positive integer at NN by 10, and store the rounded quotient at QQ. This means that if the remainder is 5 or larger, the quotient must be increased by 1.

\[
\begin{align*}
\text{L 7,NN} & \quad \text{Low-order part of positive dividend in GR7} \\
\text{SR 6,6} & \quad \text{Set high-order part to zero} \\
\text{D 6,=F'10'} & \quad \text{Divide by 10} \\
\text{C 6,=F'5'} & \quad \text{Compare remainder to 5} \\
\text{BL NoRound} & \quad \text{Branch if smaller than 5} \\
\text{A 7,=F'1'} & \quad \text{Otherwise round up} \\
\text{NoRound ST 7,QQ} & \quad \text{Store rounded result}
\end{align*}
\]

Figure 130. Example of rounded integer division

\[
\text{Figure 130. Example of rounded integer division}
\]
2. Now, suppose the integer at NN can be either positive or negative. The above instruction sequence will not work, for two reasons. First, the initial value of the dividend would not have a correctly extended sign bit for negative arguments (because we used SR to set the high-order register to zero). Second, because the sign of the remainder is always the same as the sign of the original dividend, if $c(NN)$ is negative the compare instruction will always cause the following branch instruction to transfer control to NoRound, independent of the magnitude of the remainder.

Here’s an example of rounding the quotient of a signed dividend:

```
L   1,=F'1'
L   6,NN
SRDA 6,32
BNM Divide
LCR 1,1
Divide D 6,=F'10'
LPR 6,6
C 6,=F'5'
BL NoRound
AR 7,1
ST 7,QQ
```

Figure 131. Example of rounded integer division with signed dividend

See Exercise 18.6.13 for a more general technique for calculating a rounded quotient.

A simple check can be made to ensure that a fixed-point divide interruption does not occur: if the inequality

$$|\text{dividend}| < |\text{divisor}| \times 2^{31}$$

Figure 132. Ensuring a valid arithmetic division

is satisfied, then the quotient will be computed correctly. If an equality occurs in comparing these two quantities, we must also check for the possibility that the quotient might be exactly equal to -2^{31}.

To illustrate this relationship, suppose we want to divide the double-length dividend

$X'0000000100000000' = 2^{32}$

by two. Comparing dividend and divisor, the dividend might appear to be small enough to produce a valid quotient:

$X'0000000100000000' = 2^{32}$ (dividend)

$X'00000002' = 2$ (divisor; high-order part of dividend is smaller?)

The divisor 2 multiplied by 2^{31} is actually equal to the dividend, so that the inequality in Figure 132 is not satisfied. Since both dividend and divisor are positive, the quotient must also be positive; but the quotient is actually $X'80000000'$, which is not representable as a positive number for signed division.

Thus, a fixed-point divide interruption can be thought of as indicating a “quotient overflow”. To show how this might occur in a program, consider the segment below.

```
L   1,=A(X'40000000')
MR 0,1
D 0,=F'10'
```

Figure 133. Causing a fixed-point divide interruption

Because 2^{36} is not less than 10×2^{31}, a fixed-point divide interruption will occur.
18.6.2. Single-Length Division

The arithmetic division instructions using a single-length dividend in a 64-bit register are DSG, DSGR, DSGF, and DSGFR. Even though the dividend occupies a single 64-bit register (unlike double-length dividends that require a register pair), a single-length dividend is always placed in the odd-numbered register. (It’s easiest to think of it as being extended internally to double length before division begins.)

Even though the dividend is in the odd-numbered register, the instruction must specify the even-numbered register as the R_1 operand. This is illustrated in Figure 134.

```
R_1 (even)    R_1+1 (odd)
-------------
\         /\
| Dividend |
\         /
-------------

Divisor

R_2 or D_2(X_2,B_2) (in register or memory)
```

Figure 134. Operands of single-length division before division

After division, the results appear as in Figure 135.

```
R_1 (even)    R_1+1 (odd)
-------------
\         /\
| Remainder |
\         /
-------------

Quotient
```

Figure 135. Operands of single-length division after division

For example, suppose you want to divide 12345678901 by 777:

```
LG 5,=FD'12345678901' c(GG1) = 12345678901
DSG 4,=FD'777' Divide by 777 (64-bit divisor)
* c(GG4) = 493 (remainder), c(GG5) = 15888904 (quotient)
```

```
LG 5,=FD'12345678901' c(GG1) = 12345678901
LG 9,=FD'777' c(GG9) = 777 (64 bits)
DSGR 4,9 Divide by 777
```

The same divisions using DSGF and DSGFR with 32-bit divisors are very similar:

```
LG 5,=FD'12345678901' c(GG1) = 12345678901
DSGF 4,F'777' Divide by 777 (32-bit divisor)
```

```
LG 5,=FD'12345678901' c(GG1) = 12345678901
L 9,F'777' c(GR9) = 777 (32 bits)
DSGFR 4,9 Divide by 777
```

and the 32-bit second operands are internally sign-extended to 64 bits.

Exercises

18.6.1.(2) In the inequality in Figure 132 that assures that a division will be correct, explain the factor of 2^{31}. Why isn’t it a factor of 2^{32}?

18.6.2.(4) Suppose n is the number of some register. Under that circumstances will DR n,n not cause a program interruption?

18.6.3.(2)+ Write a sequence of instructions to simulate a “Divide Halfword” operation. That is, given a word dividend at W_{Dividen} and a halfword divisor at H_{Divisor}, store the halfword quotient and remainder at H_{Quotient} and H_{Remaind} respectively.
18.6.4.(2)+ Suppose the dividend in a signed fixed-point division can be correctly represented in a word. Can division by a nonzero word divisor cause a fixed-point divide interruption?

18.6.5.(2) Under what circumstances can a fixed-point divide interruption occur in Figure 129?

18.6.6.(2) Rewrite the example in Figure 130 to round the result by adding 5 before dividing by 10. Determine carefully whether or not there might be a carry from the addition into the high-order register.

18.6.7.(2) Rewrite the example in Figure 131 to round the dividend before dividing by adding or subtracting 5. Determine carefully how to handle a possible carry or borrow from the low-order to the high-order register.

18.6.8.(4) Consider the problem of simulating logical division by using arithmetic divide instructions. Sketch a code sequence that will do this.

18.6.9.(2) Suppose the SRDA instruction is not available, and you want to divide the word integer in GR1 by another in GR2. Show how you can set up the double-length dividend without multiplying by 1.

18.6.10.(2)+ Figure 131 illustrates a rounded division with positive divisor and signed dividend. Show what changes are needed if the divisor can also be negative.

18.6.11.(3)+ Figure 130 shows a way to compute a rounded quotient. The rounding factor 5 is half the divisor, 10. Write a sequence of instructions to generalize this by computing

\[
\text{quotient} = (\text{dividend} / \text{divisor}) + 1/2
\]

18.6.12.(1)+ A programmer wanted to divide the positive number in GR5 by 2, and wrote

\[
\begin{align*}
\text{SR} & \quad 4,4 \\
\text{D} & \quad 4,=F'Z' \\
\end{align*}
\]

Find a simpler way to do this.

18.6.13.(3)+ Write an instruction sequence showing how to calculate a rounded integer quotient using 32-bit operands, without knowing the magnitude of the divisor.

18.6.14.(2)+ A table of 15 reasonably small halfword grades is stored starting at Grades. Write instructions to compute their average value and store it at AvgGrade.

18.7. Logical (Unsigned) Division Instructions

The logical division instructions are shown in Table 89:

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>E387</td>
<td>DLG</td>
<td>RXY</td>
<td>Divide Logical (64,64<--64+64+64)</td>
<td>B987</td>
<td>DLGR</td>
<td>RRE</td>
<td>Divide Logical Register (64,64<--64+64+64)</td>
</tr>
</tbody>
</table>

Table 89. Binary divide instructions

These four instructions divide a double-length unsigned dividend by a single-length unsigned divisor, giving a single-length unsigned quotient in the odd-numbered register and the unsigned single-length remainder in the even-numbered register.

If both dividend and divisor are positive, logical and arithmetic division generate the same results. For example, dividing 'X'00000000 FFFFFFFF' by 3 generates quotient 'X'55555555' and remainder 0 for both types of division.
As you might expect, negative signed operands can produce very different results when used as logical operands in unsigned division. For example, an arithmetic division of the maximum negative number (X’80000000’) by -1 (X’FFFFFFF’) is invalid; but a logical division using the same operands gives quotient zero and remainder X’80000000’ (because 2^{31} is smaller than 2^{32}-1).

Here is a case that succeeds for arithmetic division but fails for logical division:

```
L 0,=X’80000001’                   Set GR1 to -2**31+1
SRDA 0,32  Extend to 64 bits in (GR0,GR1)
D 0,=F’-1’                        Arithmetic division
```

The remainder is 0 and the quotient is +2^{31}-1, as you would expect. For a logical division, the dividend is (2^{64}-2^{31}+1) and the divisor is 2^{32}-1, which leads to a fixed-point divide interruption because the quotient is greater than 2^{32}-1. As another example, consider:

```
L 0,=F’-2’                        Set GR0 to X’FFFFFFFFE’
SR 1,1                            Set GR1 to X’00000000’
DL 0,=F’-1’                       Divide logically by X’FFFFFFFF’
```

Figure 136. Example of logical division

and both quotient and remainder are X’FFFFFFFFE’!

As a final example:

```
L 0,=X’FFFFFFFF8’                  Initialize GR0
LR 1,0                            And GR1, with the same bits
DL 0,=X’FFFFFFFF’                  Divide by 2**32-1
```

The quotient is X’FFFFFFFF9’ and the remainder is X’FFFFFFFF1’.

Exercises

18.7.1.(4) Show how you can use logical division instructions to generate the results that would be obtained by using arithmetic division instructions with the same operands.

18.7.2.(2) By evaluating the expression quotient × divisor + remainder = dividend, show that the results of the division in Figure 136 are valid.

18.8. How Division Is Done (*)

Division works much like multiplication, only in reverse. Instead of adding onto the high-order half of the accumulating product, we subtract; instead of counting down in the rightmost digit position, we count up; instead of shifting right, we shift left. As before, an example using decimal arithmetic illustrates the process.

Since we start with a dividend and divisor and wish to find a quotient and remainder that satisfy the equation

\[
dividend = quotient \times divisor + remainder
\]

The dividend must be a double-length number.

Supposing again that our basic register length is three decimal digits, a requirement on the dividend is clear: because (a) the quotient, to fit in a register, can be at most three digits long (that is, not exceeding 999) and (b) the remainder must be less than the divisor, we must not have a dividend larger than

\[
999 \times divisor + (divisor-1) = 10^3 \times divisor - 1.
\]

The factor of 10^3 is the base (10) raised to the power of the number of available digits (3). Since multiplication by 10^3 in this example is equivalent to shifting left three places, the above relation means that if the division is to produce a valid quotient, the high-order half of the dividend must be less than the divisor. To illustrate: if the divisor is 456, then any dividend not smaller than 4560000 = 10^3 \times 456 would produce a 4-digit quotient; if the dividend is less than or equal to
\[455999 = 10^3 \times 456 - 1,\] the quotient can be held in three digits. Note that the three high-order digits, 455, are now less than the divisor.

Suppose we want to divide 162843 by 762. In ordinary long division, at each step we determine how many multiples of the divisor can be subtracted from the leftmost part of the dividend, and enter that number as the quotient digit. When the subtraction process has been completed, the remainder, from which no further subtractions can be made, is 537, and the quotient is 213.

\[
\begin{array}{c}
+ 213 \\
\hline
762)162843 \\
1524 \\
1044 \\
762 \\
2823 \\
2286 \\
537
\end{array}
\]

Just as a check, we find that 762 \times 213 + 537 = 162843. Using decimal registers, the division works like this:

\[
\begin{array}{c}
162843 \\
762
\end{array}
\]

High-order part of dividend less than divisor, division may proceed.

\[
\begin{array}{c}
1628430 \\
762
\end{array}
\]

Shift dividend left; save leftmost digit in an “overflow digit” position.

\[
\begin{array}{c}
0 \ 866 \ 431 \\
- 762
\end{array}
\]

Since dividend \(\geq\) divisor, subtract, and count up at right end.

\[
\begin{array}{c}
0 \ 104 \ 432 \\
1 \ 044 \ 320 \\
- 762
\end{array}
\]

Dividend \(\geq\) divisor; subtract again, count up.

\[
\begin{array}{c}
0 \ 282 \ 321 \\
2 \ 823 \ 210 \\
- 762
\end{array}
\]

Dividend < divisor, no subtraction.

\[
\begin{array}{c}
2 \ 061 \ 211 \\
1 \ 299 \ 212 \\
- 762
\end{array}
\]

Dividend \(\geq\) divisor; subtract and count up by 1.

\[
\begin{array}{c}
537 \ 213
\end{array}
\]

Dividend now < divisor; stop.

As the successive digits of the quotient were developed, they appeared at the right end of the double-length register, and were shifted left as the division progressed. Thus at the completion of the division, the quotient is found in the right half of the register pair, and the remainder, from which no further subtractions could be made, is in the left half.

As in multiplication, binary division is simplified by the fact that at most one subtraction need be made for each quotient digit generated. To illustrate, consider an example using a five-bit divisor and a ten-bit dividend. Let the dividend be \(B'00001 \ 11011' (=59),\) and let the divisor be \(B'00110' (=6).\) (Remember, the two halves of the double-length dividend are not two signed five-bit numbers joined end to end: the leftmost bit of the right half of the dividend is not a sign bit but an ordinary arithmetic digit.) If we make allowance for the sign bits of the quotient and remainder, we actually need an extra shift at the beginning, to align the dividend correctly. This leads to the following division scheme.

1. Shift the dividend left once. If the high-order (left) part of the dividend is not smaller than the divisor, an illegal division is being attempted.
2. Shift left one bit position. If the high-order part of the dividend is greater than or equal to the divisor, subtract the divisor from the dividend, and insert a 1 bit in the rightmost digit position. Otherwise, do nothing.
3. Return to step 2 until a total of 5 shifts has been done, including the shift of step 1.

Chapter V: Basic Instructions 281
We now illustrate the binary division of 59 by 6 in Figure 137, with less detail than in the multiplication example.

```
00011 10110 Shift left once and compare
(00110) Dividend < divisor, okay to continue
00111 01100 Shift left once (second shift)
00001 01101 Subtract divisor, insert 1
00010 11010 Shift left once (third shift)
Dividend < divisor; no subtraction
00101 10100 Shift left once (fourth shift)
Dividend < divisor; no subtraction
01011 01000 Shift left once (fifth and last shift)
00101 01001 Subtract divisor, insert 1.
```

Figure 137. Illustration of binary division

Thus the remainder \(B'00101' (=5) \) is in the left half, and the quotient \(B'01001' (=9) \) is in the right half, as expected.

This example of binary division is meant to illustrate the general process. Many improvements involving multiple dividend and divisor bits make division faster on modern processors than testing single bits.

Division in \(z \) System involves a double-length register, either a pair of general registers or an internal double-length register holding the extended single-length dividend. Since the high-order register of the pair must be even-numbered, the quotient is found in the odd-numbered register, and the remainder is found in the even-numbered register.

Exercises

18.8.1.(4) The results of a division operation must satisfy the relation

\[
\text{dividend} = (\text{quotient} \times \text{divisor}) + \text{remainder}.
\]

However, this relation does not uniquely determine the quotient and remainder obtained from a given divisor and dividend. Even requiring the magnitude of the remainder to be smaller than the magnitude of the divisor,

\[
|\text{remainder}| < |\text{divisor}|
\]

does not lead to uniqueness! Consider the following choices:

1. sign(remainder) = sign(dividend) \((z \) System\)
2. remainder \(\geq 0 \) \(("modulo") \)
3. \(-|\text{divisor}/2| \leq \text{remainder} < |\text{divisor}/2| \) \(("rounding") \)

For cases (2) and (3), show how the \(z \) System rules concerning signs and magnitudes would have to be modified.

18.8.2.(4) Suppose \(n \) is the number of a general register. For each of these instructions, answer the questions (1) Under what circumstances will this instruction cause an interruption? and (2) What kind or kinds of interruption?

1. \(\text{AR} \ n,n \)
2. \(\text{MR} \ n,n \)
3. \(\text{DR} \ n,n \)
18.9. Summary

Table 90 summarizes the multiply instructions we've discussed here.

Table 90. Summary of multiply instructions discussed in this section

<table>
<thead>
<tr>
<th>Function</th>
<th>Product length (bits)</th>
<th>32</th>
<th>32 + 32</th>
<th>64</th>
<th>64 + 64</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operand 1 length</td>
<td></td>
<td>32</td>
<td></td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Operand 2 length</td>
<td></td>
<td>16</td>
<td>32</td>
<td>32</td>
<td>64</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arithmetic ×</th>
<th>MH</th>
<th>MS</th>
<th>MR</th>
<th>MSGF</th>
<th>MSG</th>
<th>MLG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logical ×</td>
<td>ML</td>
<td>MRL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The divide instructions discussed in this section are shown in Table 91.

Table 91. Summary of divide instructions discussed in this section

<table>
<thead>
<tr>
<th>Function</th>
<th>Dividend length (bits)</th>
<th>32 + 32</th>
<th>64</th>
<th>64 + 64</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Divisor length</td>
<td></td>
<td>32</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>Quotient & remainder length</td>
<td>32</td>
<td>64</td>
<td>64</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arithmetic ÷</th>
<th>D</th>
<th>DR</th>
<th>DSG</th>
<th>DSGR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logical ÷</td>
<td>DL</td>
<td>DLR</td>
<td>DSGF</td>
<td>DSGFR</td>
</tr>
<tr>
<td></td>
<td>DLG</td>
<td>DLGR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The instruction mnemonics and opcodes are shown in the following table:

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Opcode</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>5D</td>
</tr>
<tr>
<td>DL</td>
<td>E397</td>
</tr>
<tr>
<td>DLG</td>
<td>E387</td>
</tr>
<tr>
<td>DLGR</td>
<td>B987</td>
</tr>
<tr>
<td>DLR</td>
<td>B997</td>
</tr>
<tr>
<td>DR</td>
<td>1D</td>
</tr>
<tr>
<td>DSG</td>
<td>E30D</td>
</tr>
<tr>
<td>DSGF</td>
<td>E31D</td>
</tr>
<tr>
<td>MR</td>
<td>1C</td>
</tr>
<tr>
<td>MS</td>
<td>71</td>
</tr>
<tr>
<td>MSG</td>
<td>E30C</td>
</tr>
<tr>
<td>MSGF</td>
<td>E31C</td>
</tr>
<tr>
<td>MSGFR</td>
<td>B91C</td>
</tr>
<tr>
<td>MSGR</td>
<td>B90C</td>
</tr>
<tr>
<td>MSR</td>
<td>B252</td>
</tr>
</tbody>
</table>

The instruction opcodes and mnemonics are shown in the following table:
Terms and Definitions

multiplicand
- In a multiplication, the number that is to be multiplied (the first operand) by another, the multiplier (the second operand).

multiplier
- See *multiplicand*

arithmetic multiplication
- Multiplication of two signed operands, generating a signed product.

logical multiplication
- Multiplication of two unsigned operands, generating an unsigned product.

dividend
- A number to be divided by a divisor; the first operand; the numerator.

divisor
- A number to be divided into the dividend; the second operand; the denominator.

quotient
- The primary result of a division operation.

remainder
- The residual portion of a division left over when a dividend cannot be evenly divided by a divisor. Smaller in magnitude than the divisor.

arithmetic division
- Division of two signed operands, generating a signed quotient and signed remainder.

logical division
- Division of two unsigned operands, generating an unsigned quotient and unsigned remainder.

Programming Problems

Problem 18.1. (2) Write an Assembler Language program that finds the largest integer divisor x of the integer function

\[f(n) = n^3 - 1, \]

for values of n running from 2 to 8 in steps of 1, and such that “x” is less than f(n). Your program should search for the divisor, and not compute it from the known factors of f(n).

Problem 18.2. (3) Write an Assembler Language program to compute and print the values of Xn and the quotient and remainder of the fraction

\[\frac{(Xn)^{**}2 + 10727*Xn - 14}{2*Xn - 5} \]

where Xn is given by Xn = 2**(3*n), for n = 1, 2, ..., 10.

<table>
<thead>
<tr>
<th>Opcode</th>
<th>Mnemonic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1C</td>
<td>MR</td>
</tr>
<tr>
<td>1D</td>
<td>DR</td>
</tr>
<tr>
<td>4C</td>
<td>MH</td>
</tr>
<tr>
<td>5C</td>
<td>M</td>
</tr>
<tr>
<td>5D</td>
<td>D</td>
</tr>
<tr>
<td>71</td>
<td>MS</td>
</tr>
<tr>
<td>B252</td>
<td>MSR</td>
</tr>
<tr>
<td>B90C</td>
<td>MSGR</td>
</tr>
<tr>
<td>B90D</td>
<td>DSGR</td>
</tr>
<tr>
<td>B91C</td>
<td>MSGFR</td>
</tr>
<tr>
<td>B91D</td>
<td>DSGFR</td>
</tr>
<tr>
<td>B986</td>
<td>MLGR</td>
</tr>
<tr>
<td>B987</td>
<td>DLGR</td>
</tr>
<tr>
<td>B996</td>
<td>MLR</td>
</tr>
<tr>
<td>B997</td>
<td>DLR</td>
</tr>
<tr>
<td>E30C</td>
<td>MSG</td>
</tr>
<tr>
<td>E30D</td>
<td>DSG</td>
</tr>
<tr>
<td>E31C</td>
<td>MSGF</td>
</tr>
<tr>
<td>E31D</td>
<td>DSGF</td>
</tr>
<tr>
<td>E386</td>
<td>MLG</td>
</tr>
<tr>
<td>E387</td>
<td>DLG</td>
</tr>
<tr>
<td>E396</td>
<td>ML</td>
</tr>
<tr>
<td>E397</td>
<td>DL</td>
</tr>
</tbody>
</table>
Problem 18.3. (4) In the early 17th century, Mersenne conjectured that the number

\[M(p) = (2^{**p}) - 1 \]

is prime for a particular sequence of prime values of \(p \). Though the conjecture is now known to be false, several efficient tests for the primality of \(M(p) \) have been devised; we will use one (due to the French mathematician Lucas) for testing a set of such “Mersenne Numbers”, as follows:

1. Compute \(M(p) \), and set \(S(1) \) (the initial term of a series) to the value 4. (Note that \(M(p) \) can be calculated very simply by shifting.)
2. Compute the next term \(S(n+1) \) of the series as the remainder of the division of \((S(n)*S(n) - 2) \) by \(M(p) \).
3. Stop when \(S(p-1) \) has been calculated, and print the values of \(p \), \(M(p) \), and \(S(p-1) \). If \(S(p-1) \) is zero, \(M(p) \) is prime.

Write a program that tests \(M(p) \) for values of \(p = 3, 5, 7, 11, 13, 17, 19, 23, 29, \) and 31.

Problem 18.4. (3) For values of the integer variable \(X \) running from 0 to 12 in steps of 1, compute and print the quotient and remainder of the quantity

\[\frac{(X^4 + 7X^2 - 11)}{(X^3 - 21X^2 + 131X - 231)} \]

If you find that the denominator is zero for any value of \(X \), print the largest negative magnitude for both quotient and remainder (that is, the word integer with hex representation \(X'\text{80000000}' \)).

Problem 18.5. (2) Write a program to compute a table of factorials. (Remember that we use the notation \(N! \) for the factorial of \(N \); define \(0! = 1 \), and \(N! = N*(N-1)! \).) Print the values of \(N \) and \(N! \) until \(N! \) will not fit into a word; print a value of \(-1\) for that factorial, and stop.

Problem 18.6. (4) Write a program to calculate the day and month of Easter for the year \(Y \), using these steps:\(^{116}\)

1. Divide \(Y \) by 19; keep remainder \(A \)
2. Divide \(Y \) by 100; keep quotient \(B \) and remainder \(C \)
3. Divide \(B \) by 4; keep quotient \(D \) and remainder \(E \)
4. Divide 8\(B+13 \) by 25; keep quotient \(G \)
5. Divide 19\(A+B-D-G+15 \) by 30; keep the remainder \(H \)
6. Divide \(A+11H \) by 319; keep quotient \(M \)
7. Divide \(C \) by 4; keep quotient \(J \) and remainder \(K \)
8. Divide 2\(E+2J-K-H+M+32 \) by 7; keep remainder \(L \)
9. Divide \(H-M+L+90 \) by 25; keep quotient \(N \)
10. Divide \(H-M+L+N+19 \) by 32; keep remainder \(P \)

Then, Easter Sunday is the \(P \)-th day of the \(N \)-th month of year \(Y \). (Note that this applies to the Gregorian calendar, for years after 1582.)

Problem 18.7. (2) Write a program to print a hexadecimal addition table, like the one you created in your solution to Exercise 2.2.4.

Problem 18.8. (2) Write a program to print a hexadecimal multiplication table, like the one you created in your solution to Exercise 2.2.4.

Problem 18.9. (4) The constant “\(e \)” (2.718...) is the base of natural logarithms. Its value is defined by

\[e = \sum_{k=0}^{\infty} \frac{1}{k!} \]

Evaluating \(e \) by calculating the terms of this sequence is very slow (and difficult to do with fixed-point binary arithmetic, because the third and following terms are less than one). If you rewrite the value as

\(^{116}\) From *Scientific American*, March 2001, page 82.
\[e^{-2} = \frac{1}{2} \times \frac{1}{1 + \frac{1}{3} \times \frac{1}{1 + \frac{1}{4} \times \frac{1}{1 + \frac{1}{5} \times \frac{1}{1 + \frac{1}{6} \times \frac{1}{1 + \frac{1}{k}}}}}} \ldots \ldots \ldots \ldots \]

there’s an easy way to generate successive digits:

1. Multiply the rightmost (k-th) numerator term (initially 1) by 10 and divide by k.
2. Retain the remainder as the numerator for generating the next digit.
3. Multiply the next higher-order numerator by 10, add the quotient from the previous term, and divide by \((k-1)\).
4. Repeat until \(k=2\). At this point, the final quotient is a digit of \(e\).
5. Repeat from the first step to generate successive digits of \(e\).

As a general rule, the number of digits to be generated is the same as the number of terms you evaluate.

Write a program to generate the first 50 fraction digits of \(e\), and print the value of the constant.

Problem 18.10. (2) Write a program that searches for and prints the 25 prime numbers less than 100.

Problem 18.11. (2) Write a program that creates a base-seven multiplication table like the one you made for Exercise 2.4.6.
19. Logical Operations

In this section we’ll examine instructions that perform logical operations, and give examples of their use. These operations are very different from logical (unsigned) arithmetic. Here, “logical” is used in the sense of the symbolic logic of truth and falsehood; the operations are often called “Boolean” operations.117

The basic capabilities of a computer are derived from interconnections of basic circuits performing logical functions. Some of the same logical functions are also performed by the CPU on operands in memory and in the general registers using “logical” instructions. The instructions in this section are shown in Table 92.

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>44</td>
<td>N</td>
<td>RX</td>
<td>AND (32)</td>
<td>14</td>
<td>NR</td>
<td>RR</td>
<td>AND Register (32)</td>
</tr>
<tr>
<td>E380</td>
<td>NG</td>
<td>RXY</td>
<td>AND (64)</td>
<td>B980</td>
<td>NGR</td>
<td>RRE</td>
<td>AND Register (64)</td>
</tr>
<tr>
<td>46</td>
<td>O</td>
<td>RX</td>
<td>OR (32)</td>
<td>16</td>
<td>OR</td>
<td>RR</td>
<td>OR Register (32)</td>
</tr>
<tr>
<td>E381</td>
<td>OG</td>
<td>RXY</td>
<td>OR (64)</td>
<td>B981</td>
<td>OGR</td>
<td>RRE</td>
<td>OR Register (64)</td>
</tr>
<tr>
<td>57</td>
<td>X</td>
<td>RX</td>
<td>Exclusive OR (32)</td>
<td>17</td>
<td>XR</td>
<td>RR</td>
<td>Exclusive OR Register (32)</td>
</tr>
<tr>
<td>E382</td>
<td>XG</td>
<td>RXY</td>
<td>Exclusive OR (64)</td>
<td>B982</td>
<td>XGR</td>
<td>RRE</td>
<td>Exclusive OR Register (64)</td>
</tr>
</tbody>
</table>

Table 92. Logical operations involving general registers

There is no difference between operations involving 32- and 64-bit registers, so we’ll describe only the 32-bit forms. You can easily extend the 32-bit operations to their 64-bit equivalents.

117 George Boole (1815-1864) was a British mathematician and philosopher who wrote extensively on logic, especially in his book An Investigation of the Laws of Thought (1854).
19.1. Logical Operations

Unlike logical arithmetic, in which carries and borrows may propagate from a bit position to one or more of its higher-order neighbors, boolean logical operations always operate on pairs of bits, with no interactions among neighboring bits.

The three logical operations provided by z System are AND, OR, and Exclusive OR, abbreviated “XOR”. These operations between pairs of bits produce a result depending only on the values of the two bits participating in the operation. The effect of the three operations is given in Figure 138. In each box, the two bits participating in the operation are given in the left column and the top row; the result bit is at the intersection of the corresponding row and column.

\[
\begin{array}{c|c|c}
\text{AND} & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 1 \\
\end{array}
\quad
\begin{array}{c|c|c}
\text{OR} & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 1 \\
\end{array}
\quad
\begin{array}{c|c|c}
\text{XOR} & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 0 \\
\end{array}
\]

Figure 138. Logical operations AND, OR, and XOR

- In the first case, the result bit is 1 only if the first AND the second operand bits are 1.
- In the second case, the result bit is 1 if either the first OR the second operand bit is 1.
- In the last case, the result bit is 1 if either the first OR second operand bits is 1, Exclusive of the case where both are 1 (that is, one but not both bits are 1).\[118\]

The AND operation is often used to set bits to zero; OR is used to set them to one; and XOR is used to change bits from zero to one and vice versa.

Sometimes the notation for logical operators is shorter, and text descriptions and formulas may use other symbols: AND is represented by “∧” (or “×” or “.”), OR is represented by “∨” (or “+”), and XOR is represented by “⊕”. In high-level languages, there are many different representations for each operation. We will use the more readable forms in Figure 138.

Exercises

19.1.1.(1) Taking 1 to represent true and 0 to represent false, rewrite the three diagrams in Figure 138 as truth tables.

19.2. Register-Based Logical Instructions

In practice, the RR and RX forms of the logical operations are not used frequently. Logical operations are often used to examine and manipulate individual bits in memory, typically using the SI-type instructions that we’ll see in Section 24.

For the operations in Table 93, the CC is always set. We will discuss each operation in the next three sections.

\[118\] The distinction between OR and XOR often causes problems in English, where the word “or” is often interpreted one way when the other was intended. “Question: “Are you tired or hungry?” Answer: “Yes”, usually implying “both”.

Chapter V: Basic Instructions 289
Unlike logical arithmetic, the result of each of these logical operations is obtained by matching the corresponding bits of each operand, without interactions between neighboring bits. For example, suppose \(c(\text{GR4}) = 'X'01234567' \), and \(c(\text{GR9}) = 'X'EDA96521' \). Then if each of the following instructions is executed, the final contents of GR4 will be as shown.

<table>
<thead>
<tr>
<th>Operation</th>
<th>NR 4,9</th>
<th>OR 4,9</th>
<th>XOR 4,9</th>
</tr>
</thead>
<tbody>
<tr>
<td>c(\text{GR4})</td>
<td>'X'01234567'</td>
<td>'X'01234567'</td>
<td>'X'01234567'</td>
</tr>
<tr>
<td>c(\text{GR9})</td>
<td>'X'EDA96521'</td>
<td>'X'EDA96521'</td>
<td>'X'EDA96521'</td>
</tr>
<tr>
<td>Result</td>
<td>'X'01214521'</td>
<td>'X'EDAB6567'</td>
<td>'X'EC8A2046'</td>
</tr>
</tbody>
</table>

To see in more detail how these results are obtained, examine the fourth hexadecimal digit (3 and 9) for each case:

<table>
<thead>
<tr>
<th>AND</th>
<th>OR</th>
<th>XOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 0011</td>
<td>9 1001</td>
<td>1 0001</td>
</tr>
<tr>
<td>3 0011</td>
<td>9 1001</td>
<td>9 1001</td>
</tr>
<tr>
<td>3 0011</td>
<td>1011</td>
<td>A 1010</td>
</tr>
</tbody>
</table>

To see in more detail how these results are obtained, examine the fourth hexadecimal digit (3 and 9) for each case:

Exercises

19.2.1.(1) The CC settings after the logical operations indicate whether or not the result is or is not completely zero. Can you think of any reason why a CC setting to indicate a result of all 1-bits was not provided in the design of System/360?

19.3. Logical AND

The most important use of the N and NR instructions is for “masking” operations where we need to isolate or extract portions of a word. For example, suppose we want only the third of the four positive integers packed in the data word illustrated in Figure 115 on page 249. As we saw in Section 17, we can extract it by shifting in an even-odd register pair:

- \(\text{L} 0, \text{DataWord} \) Get data word with integers
- \(\text{SRL} 0, 6 \) Drop off fourth one
- \(\text{SRDL} 0, 13 \) Move third one into GR1
- \(\text{SRL} 1, 19 \) Position for storing
- \(\text{ST} 1, \text{Third} \) Store

Or, we can use a only single register:

- \(\text{L} 0, \text{DataWord} \) Get data word
- \(\text{SLL} 0, 13 \) Drop off first and second
- \(\text{SRL} 0, 19 \) Drop off fourth, and reposition
- \(\text{ST} 0, \text{Third} \) Store

If the integers could have negative values, the SRL instructions would be replaced by SRA.

The following instruction sequences use Logical AND, and may be faster. (The bits of the four integers are represented by “a”, “b”, “c”, and “d”, respectively.)
Of the operand in the DC statement ensures that the bit pattern at Mask1 falls on a word boundary; type B constants have no implied alignment, and are padded on the left with zero bits.

We can do the same extraction by shifting first and then ANDing:

Both masks have 1-bits only in positions corresponding to the bits of the third integer of the data word (named “c”). When the N instruction is executed, all of the bit positions where a mask bit is zero are set to zero, since a 0-bit ANDed to any other bit gives a zero result. In all of the mask’s 1-bit positions, the result is the same as the original bit from the data word, because a 1-bit ANDed to any other bit gives a result identical to the other bit, as we saw in Figure 138.

Exercises

19.3.1.(1) In the second example in Section 15.2 on page 207, shifts were used to set the leftmost 7 bits of GR8 to zero. Show how to do this with a logical AND operation.

19.4. Logical OR

In Figure 115 on page 249, we wanted to insert a new value for the third integer into the proper part of the data word. We could do this by shifting the various pieces into place:

Using the AND and OR instructions, we can use logical operations:

The N instruction zeros all the bit positions into which the third integer will be placed. The OR instruction then forms the logical OR of all the bits of GR0 and GR1. Since the only bits in GR1 that might be ones are in the 13 positions corresponding to the space provided in the word
in GR0, and because the result of ORing a zero bit to any other bit is the value of the other bit, the effect is to insert the new value of the third integer in its proper position in GR0. This of course assumes that the contents of NewThird is a positive integer of at most 13 significant bits; if not, an

\[N \ 1, \text{Mask1} \]

instruction should be inserted before the OR instruction to ensure that no extraneous bits are ORed into GR0.

Exercises

19.4.1.(2) The word at Data contains information to be shifted circularly: that is, bits shifted off one end of the register should reappear at the other end. For example, a circular left shift of the operand X'12345678' by 12 bit positions would produce X'45678123'. Without using a rotating shift, write a code sequence using logical operations to shift c(Data) circularly to the left by N places, where N is a nonnegative word integer stored at NShifts. Compare your solution to the solution you found for Exercise 17.3.17.

19.4.2.(2) Modify the coding of exercise 19.4.1 so that if N is negative, the shift is a circular right shift instead. Again, don’t use a rotating shift. Compare your solution to the solution you found for Exercise 17.3.18.

19.4.3.(2) What will happen if the instructions OR 3,3 and NR 3,3 are executed? what is the difference between these two and LTR 3,3?

19.4.4.(2) Write a code sequence using logical instructions to unpack each of the four integers illustrated in Figure 115 on page 249.

19.4.5.(2) Now that you have completed Exercise 19.4.4, rewrite your solution to Exercise 17.3.10 to pack the four integers into the word illustrated in Figure 115 on page 249, but now use logical instructions.

19.5. Logical Exclusive OR

The X and XR instructions are used to invert bits. We saw in Figure 138 on page 289 that the effect of XORing a 0-bit to any other bit is to leave it undisturbed, and the effect of XORing a 1-bit is to invert it from 1 to 0 or from 0 to 1. Any bit XORed with itself gives a zero bit. This gives a simple way to set a register to zero.\(^\text{119}\)

\[\text{XR} \ 1,1 \quad \text{Set GR1 to zero} \]

We can rewrite Figure 140 (in a somewhat roundabout way) to use an X instruction:

\[
\begin{align*}
\text{L} \ 0, \text{DataWord} & \quad \text{Get integers} \\
\text{O} \ 0, \text{Mask3} & \quad \text{Set third-integer space to all 1's} \\
\text{X} \ 0, \text{Mask3} & \quad \text{Now set them to zeros} \\
\text{L} \ 1, \text{NewThird} & \quad \text{Etc., as before} \\
\text{SLL} \ 1,6 & \quad \text{Etc.} \\
\text{N} \ 1, \text{Mask3} & \quad \text{Make sure there are no extra bits} \\
\text{OR} \ 0,1 & \quad \text{Etc.} \\
\text{ST} \ 0, \text{DataWord} & \quad \text{Store updated result} \\
\end{align*}
\]

\[
\begin{align*}
\text{DS} \ & \text{OF} \\
\text{Mask3} \ & \text{DC} \ \text{X'0007FFC0'}
\end{align*}
\]

Figure 141. Data masking using Exclusive OR

\(^{119}\) This is a very efficient way to zero a general register, because (unlike subtracting the register’s contents from itself), the CPU need not check for a possible overflow.
The O instruction first sets all bits in the third integer’s position to 1-bits, and the X instruction then resets them all to zero. We’ll see another use of this technique in Figure 143.

As another example of the use of the Exclusive OR instruction, suppose we want to force the integer in GR7 to be the next larger multiple of 8 if it is not already a multiple of 8. (We saw a different way to do this in Figure 109 on page 246.) Consider the two following code segments.

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 7,=F’7’</td>
<td>Force carry if any 1s in low 3 bits</td>
</tr>
<tr>
<td>N 7,=F’-8’</td>
<td>Now, set last 3 bits to zero</td>
</tr>
</tbody>
</table>

Figure 142. Rounding to the next multiple of 8

That is a faster method, but space is required for the two constants. We can also use the “OR then XOR” technique:

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA 0,7</td>
<td>c(RO) = 7 = alignment mask</td>
</tr>
<tr>
<td>AR 7,0</td>
<td>Force carry if any 1’s in low 3 bits</td>
</tr>
<tr>
<td>OR 7,0</td>
<td>Now force those three bits to 1</td>
</tr>
<tr>
<td>XR 7,0</td>
<td>And now set them to zero</td>
</tr>
</tbody>
</table>

Figure 143. Rounding to the next multiple of 8

This method is more economical of total instruction length than those illustrated previously.

As a more detailed example, suppose we need to shift the (nonzero) integer contents of GR6 to the left so that the most significant bit is immediately to the right of the sign bit, and store the number of positions shifted at Norm. The most significant bit is the leftmost bit that differs from the sign bit.

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>XR 8,8</td>
<td>Set shift count in GR8 to zero</td>
</tr>
<tr>
<td>Shift SLA 6,1</td>
<td>Shift left one bit position</td>
</tr>
<tr>
<td>BO</td>
<td>Finish Branch if overflowed</td>
</tr>
<tr>
<td>AH 8,=H’1’</td>
<td>Increment shift count</td>
</tr>
<tr>
<td>B</td>
<td>Shift Try again</td>
</tr>
<tr>
<td>Finish SRA 6,1</td>
<td>Reposition</td>
</tr>
<tr>
<td>X 6,Digit</td>
<td>Restore the lost bit</td>
</tr>
<tr>
<td>ST 8,Norm</td>
<td>Store shift count</td>
</tr>
</tbody>
</table>

Norm DS F Storage space and alignment
Digit DC X’40000000’ Mask bit for lost bit

We shift left until the overflow condition indicates that a bit different from the sign bit has been shifted out of bit position 1. The following right shift moves everything back in place, but instead of restoring the lost bit, extends the sign bit into the second bit position of R6, from which the most significant bit was just lost. Since the sign is known to be the opposite of the lost bit, the X operation inverts the second bit to give the correct result.

We can form the ones’ complement of the number in GR7 by subtracting it from a word of all 1-bits, or by executing

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>X 7,=F’-1’</td>
<td>that does the same thing more simply. Thus, we can use the X instruction to form the two’s complement of a double-length integer, as in Figures 90 and 91 on page 227.</td>
</tr>
</tbody>
</table>
This is definitely not the most efficient way to form a complement, but does show one use of XOR.

Exercises

19.5.1.(2) Show by examining the possible bit patterns that the sequence of instructions given below exchanges the contents of GR1 and GR2 without using any other register.

```
XR 1,2
XR 2,1
XR 1,2
```

Can the same be done between a register and a word in memory, using three instructions?

19.5.2.(2) What is the result of replacing the XR instructions in Exercise 19.5.1 with SR instructions?

19.5.3.(4) Suppose you are programming on a processor that has addition and subtraction operations, a logical AND operation, but no OR or Exclusive OR.\(^{120}\) By examining various bit combinations (particularly at the left end of a register), show that you can compute the missing logical functions from

\[
A \text{ OR } B = (A + B) - (A \text{ AND } B)
\]

\[
X \text{ XOR } B = (A \text{ OR } B) - (A \text{ AND } B)
\]

19.5.4.(2) Consider these four logical expressions:

1. \(A \text{ XOR } (A \text{ XOR } B)\)
2. \(A \text{ XOR } (B \text{ XOR } A)\)
3. \((A \text{ XOR } B) \text{ XOR } A\)
4. \((B \text{ XOR } A) \text{ XOR } A\)

What is the result of each operation?

19.5.5.(2) Figure 141 was rewritten by a student as follows:

```
L 0,DataWord          Get old packed integers in GR0
L 1,NewThird          Get new third integer in GR1
SLL 1,6              Position new value correctly
XR 1,0                XOR with old data in GR0
N 1,Mask3             Mask all but 3rd integer’s GR1 bits
XR 0,1                XOR those bits back into GR0
ST 0,DataWord         Store updated packed result
```

where Mask3 defines the same bit pattern. By suitable examples, prove that this program segment either does or does not work.

\(^{120}\) This was true of some very early “Von Neumann” or “Institute-type” processors like the ILLIAC 1.
19.5.6.(2) Rewrite Figure 142 to use a single literal. Are any new problems created in testing the Condition Code?

19.5.7.(2) Write a DC statement with an A-type constant to specify the mask in Figure 141.

19.5.8.(2) Write code sequences using logical instructions to extract the first, second, and fourth integers packed in a word at DataWord in the format illustrated in Figure 115 on page 249, and store the resulting values in the words at First, Second, and Fourth.

19.5.9.(3) The word at Pack contains four positive integers in the format illustrated in Figure 115 on page 249. Write a code sequence that will retrieve and store at DataItem the first, second, third, or fourth of the packed binary integers, depending on the value of the halfword binary integer stored at ItemNbr, which may have value 1, 2, 3, or 4. (It may help to use tables of masks and shift counts.)

19.6. Interesting Uses of Logical Instructions (*)

The examples of logical instructions in the previous sections show “normal” uses. You can do some other interesting things with them; we will illustrate a few.121

1. Test a nonzero, nonnegative number to see if it’s a power of 2:

 \[Y = ((2^x - 1) \text{ AND } X) \text{ XOR } X \]

 If Y is zero, X is a power of 2. (Note that if X is zero or is the maximum negative number, Y=0.) To illustrate:

 \[
 \begin{array}{ll}
 L & 0,=F'5' \\
 LR & 1,0 \\
 SLL & 1,1 \\
 S & 1,=F'1' \\
 NR & 1,0 \\
 XR & 1,0 \\
 JZ & \text{PowerOf2}
 \end{array}
 \]

 so that 5 is not a power of 2.

2. Isolate a number’s rightmost 1-bit. If X is a nonzero, nonnegative number:

 \[Y = (((X-1) \text{ XOR } X)+1)/2 \]

 then Y is the rightmost 1-bit of X. To illustrate:

 \[
 \begin{array}{ll}
 L & 0,=F'6' \\
 LR & 1,0 \\
 S & 1,=F'1' \\
 XR & 1,0 \\
 A & 1,=F'1' \\
 SRL & 1,1
 \end{array}
 \]

 which is the rightmost bit of 6 = B00...0110'. If X is zero or the maximum negative number, Y will be zero.

3. Turn off the rightmost 1-bit of a positive binary number X:

 \[Y = X \text{ AND } (X-1) \]

 To illustrate:

121 Some of these examples are based on IBM Thomas J. Watson Research Center Report RC 5809 Functions Realizable with Word-Parallel Logical and 2's-Complement Addition Instructions by Henry S. Warren, Jr.
If this process is repeated, the number of iterations is determined by the power of two represented by the leftmost 1-bit.

4. Right-propagate the rightmost 1-bit of a nonzero word:

\[Y = X \text{ OR } (X-1) \]

To illustrate:

\[
\begin{align*}
L & \ 0,=F'12' \quad X \text{ in GR0} \quad X'0000000C' \\
LR & \ 1,0 \quad \text{Copy X to GR1} \quad X'0000000C' \\
S & \ 1,=F'1' \quad (X-1) \quad X'0000000B' \\
OR & \ 1,0 \quad (X-1) \text{ OR } X \quad X'0000000F'
\end{align*}
\]

5. Isolate the rightmost 1-bit of a word:

\[Y = X \text{ AND } (-X) \]

To illustrate:

\[
\begin{align*}
L & \ 0,=F'12' \quad X \text{ in GR0} \quad X'0000000C' \\
L & \ CR 1,0 \quad \text{Copy } -X \text{ to GR1} \quad X'FFFFFFF4' \\
NR & \ 1,0 \quad (X-1) \text{ OR } X \quad X'00000004'
\end{align*}
\]

6. Turn off the rightmost contiguous string of 1-bits in a word:

\[Y = [(X \text{ OR } (X-1)) + 1] \text{ AND } X \]

To illustrate:

\[
\begin{align*}
L & \ 0,=F'23' \quad X \text{ in GR0} \quad X'00000017' \\
LR & \ 1,0 \quad \text{Copy X to GR1} \quad X'00000017' \\
S & \ 1,=F'1' \quad (X-1) \quad X'00000016' \\
OR & \ 1,0 \quad (X-1) \text{ OR } X \quad X'00000017' \\
A & \ 1,=F'1' \quad ((X-1) \text{ OR } X)+1 \quad X'00000018' \\
NR & \ 1,0 \quad (((X-1) \text{ OR } X)+1) \text{ AND } X \quad X'00000010'
\end{align*}
\]

and \(B'00.010111\) becomes \(B'00.010000\).

7. Left-propagate the bit at position \(k\) in a word:

\[Y = [(X \text{ AND } (2^k+1)) \text{ XOR } 2^k] - 2^k \]

A more “natural” way to program this might be to write:

\[
\begin{align*}
L & \ 0,X \\
SLL & \ 0,K \\
SRA & \ 0,K
\end{align*}
\]

but that wouldn’t be as interesting.

8. Test if a number is a power of 2, minus 1:

\[Y = [(X \text{ OR } (X+1))] \]

if \(Y\) is zero, \(X\) is of the form \(2^N - 1\).

To illustrate:

\[
\begin{align*}
L & \ 0,=F'31' \quad X \text{ in GR0} \quad X'0000001F' \\
LR & \ 1,0 \quad \text{Copy X to GR1} \quad X'0000001F' \\
A & \ 1,=F'1' \quad (X+1) \quad X'00000020' \\
XR & \ 1,0 \quad (X+1) \text{ OR } X \quad X'00000000'
\end{align*}
\]

so 31 is a power of 2 minus 1.
Exercises

19.6.1.(2) In example 1 of this section, it is stated that if X is 0 or the maximum negative number, Y=0. Verify this statement.

19.6.2.(3) In example 1 of this section, what result Y is obtained if X is a negative number and a power of 2?

19.6.3.(3) In example 2 of this section, what result Y is obtained if X is zero? What result is obtained if X is a negative number?

19.6.4.(2) In example 3 of this section, what will happen if X is a negative number?

19.6.5.(2) In example 3 of this section, what will happen if X is zero?

19.6.6.(2) In example 4 of this section, what will happen if X is zero? If X is negative?

19.6.7.(2) In example 5 of this section, what will happen if X is zero? If X is negative?

19.6.8.(2) In example 6 of this section, what will happen if X is zero? If X is negative?

19.6.9.(2) Example 7 above shows how to left-propagate a bit in a general register. Suppose there is an integer K between 1 and 31 stored in the word at KWord. Write a code sequence that will left-propagate the bit in position K of the word in GR5, using the detailed formula (not the “natural” solution).

19.6.10.(2) Use the technique of example 3 of this section to count the number of 1-bits in the word in GR0, and leave the result in GR2.

19.6.11.(2) In example 8 of this section, will the technique work if the value of X is unsigned?

19.6.12.(3) It is claimed that this formula:
\(\text{(NOT } X \text{ AND } (X+1) \)
will create a mask that isolates the rightmost zero bit of X. That is, if X=7, the resulting mask is \(X'00000008' \). Write instructions testing a range of negative and positive values of X to validate or invalidate this claim. What will be the result if X=0?

19.6.13.(3) It is claimed that all three of these formulas:
\(\text{(NOT } X \text{ AND } (X-1), \text{ NOT}(X \text{ OR } -X), \text{ and } (X \text{ AND } -X)-1 \)
will form a mask matching all trailing zero bits. That is, if X=12, the resulting mask is \(X'00000003' \). Write instructions testing a range of negative and positive values of X to validate or invalidate this claim for all three formulas. What will be the result if X=0?

19.6.14.(3) It is claimed that this formula:
\(X \text{ XOR } (X-1) \)
will form a mask matching the rightmost one bit of X, and all trailing zero bits. That is, if X=8, the resulting mask is \(X'0000000F' \). Write instructions testing a range of negative and positive values of X to validate or invalidate this claim. What will be the result if X=0?
19.7. Summary

Table 94 gives a compact summary of the three logical operations:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Anything with One</th>
<th>Anything with Zero</th>
<th>Anything with Itself</th>
</tr>
</thead>
<tbody>
<tr>
<td>AND</td>
<td>It remains unchanged</td>
<td>It is changed to zero</td>
<td>It remains unchanged</td>
</tr>
<tr>
<td>OR</td>
<td>It is changed to one</td>
<td>It remains unchanged</td>
<td>It remains unchanged</td>
</tr>
<tr>
<td>XOR</td>
<td>It is inverted</td>
<td>It remains unchanged</td>
<td>It is changed to zero</td>
</tr>
</tbody>
</table>

Table 94. Summary of the logical operations AND, OR, XOR

The instructions discussed in this section are summarized in Table 95.

<table>
<thead>
<tr>
<th>Function</th>
<th>Operand length (bits)</th>
<th>32</th>
<th>64</th>
</tr>
</thead>
<tbody>
<tr>
<td>AND (memory)</td>
<td>N</td>
<td>NG</td>
<td></td>
</tr>
<tr>
<td>AND (register)</td>
<td>NR</td>
<td>NGR</td>
<td></td>
</tr>
<tr>
<td>OR (memory)</td>
<td>0</td>
<td>OG</td>
<td></td>
</tr>
<tr>
<td>OR (register)</td>
<td>OR</td>
<td>OGR</td>
<td></td>
</tr>
<tr>
<td>XOR (memory)</td>
<td>X</td>
<td>XG</td>
<td></td>
</tr>
<tr>
<td>OR (register)</td>
<td>XR</td>
<td>XGR</td>
<td></td>
</tr>
</tbody>
</table>

Table 95. Logical-operation instructions discussed in this section

Instructions Discussed in this Section

The instruction mnemonics and opcodes are shown in the following table:

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Opcode</th>
<th>Mnemonic</th>
<th>Opcode</th>
<th>Mnemonic</th>
<th>Opcode</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>54</td>
<td>0</td>
<td>56</td>
<td>X</td>
<td>57</td>
</tr>
<tr>
<td>NG</td>
<td>E380</td>
<td>OG</td>
<td>E381</td>
<td>XG</td>
<td>E382</td>
</tr>
<tr>
<td>NGR</td>
<td>B980</td>
<td>OGR</td>
<td>B981</td>
<td>XGR</td>
<td>B982</td>
</tr>
<tr>
<td>NR</td>
<td>14</td>
<td>OR</td>
<td>16</td>
<td>XR</td>
<td>17</td>
</tr>
</tbody>
</table>

The instruction opcodes and mnemonics are shown in the following table:

<table>
<thead>
<tr>
<th>Opcode</th>
<th>Mnemonic</th>
<th>Opcode</th>
<th>Mnemonic</th>
<th>Opcode</th>
<th>Mnemonic</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>NR</td>
<td>56</td>
<td>0</td>
<td>B982</td>
<td>XGR</td>
</tr>
<tr>
<td>16</td>
<td>OR</td>
<td>57</td>
<td>X</td>
<td>E380</td>
<td>NG</td>
</tr>
<tr>
<td>17</td>
<td>XR</td>
<td>B980</td>
<td>NGR</td>
<td>E381</td>
<td>0G</td>
</tr>
<tr>
<td>54</td>
<td>N</td>
<td>B981</td>
<td>OGR</td>
<td>E382</td>
<td>XG</td>
</tr>
</tbody>
</table>

122 Courtesy of Michael Stack.
Exercises

19.7.1.(5) Given the four logical operations AND, OR, XOR, and NOT, where (NOT A) is equivalent to (1 XOR A): which of each can be expressed in terms of two of the other three?

Terms and Definitions

AND operation
A logical (boolean) operation between two bits, whose result is 1 only if both operand bits are 1.

OR operation
A logical (boolean) operation between two bits, whose result is 1 if either operand bit is 1.

XOR operation
A logical (boolean) operation between two bits, whose result is 1 if either operand bit is 1 while the other is zero. If the operand bits are identical, the result is zero.

Programming Problems

Problem 19.1.(4) In binary addition, the sum S of two binary digits A and B is

$$S = A \ XOR \ B,$$

and the carry bit is

$$c = A \ AND \ B.$$

Thus, to add two numbers composed of a string of binary digits, we must form the sum bit $S(i)$ of the appropriate digits $A(i)$ and $B(i)$, as well as the carry bit from the next lower-order digit position, $c(i-1)$. The logical formulas for the sum and carry digits then become

$$S(i) = A(i) \ XOR \ B(i) \ XOR \ c(i-1)$$

and the new carry bit is

$$c(i) = (A(i) \ AND \ B(i)) \ OR \ (B(i) \ AND \ c(i-1)) \ OR \ (A(i) \ AND \ c(i-1))$$

That is, $c(i)$ is 1 if two or more of $A(i)$, $B(i)$, and $c(i-1)$ are 1.

Write a program that computes the logical sum of several pairs of words A and B by performing the above operations 32 times, once on each bit position in the word in succession. Save or calculate enough information during this process so that when the operation is complete, store a byte at CCL whose value is the same as the CC setting that would result if the AL or ALR instructions had been used to add the same operands. Your sample values should generate all four possible CC values.

If you can, store at CCA a byte whose value is the same as the CC setting that would result if the A or AR instructions had been used to add the same operands.

Thus, you should detect the presence or absence of a final carry, and whether the result is zero or nonzero and positive or negative, by examining the bits as the operation progresses.

Problem 19.2.(3) Write a code sequence that forms the logical sum of two word operands A and B, using the same logical formulas as in Problem 19.1. In this case, however, the operations should be performed on all 32 bits at once. (Show that there is no interference between neighboring bit positions.) One method is to generate a word containing

$$S(1) = A \ XOR \ B$$

and a word

$$c(1) = A \ AND \ B.$$
by ANDing and XORing S to c, generating a new sum $S(2)$ and a new set of carries $c(2)$. Repeat the process until either $c(n)$ is zero for some n, or 32 steps have been done. That is,

$$S(n+1) = S(n) \text{ XOR } (2 \times c(n))$$
$$c(n+1) = S(n) \text{ AND } (2 \times c(n))$$

Store the final sum at Sum, and set the word at CCodeL to contain the value of the Condition Code setting as it would have been produced by the AL or ALR instructions.

Problem 19.3 (2) Modify the logical operation sequences in Problem 19.2 (or in Problem 19.1) to perform additions or subtractions, as indicated by whether the word at SubFlag is or is not zero. Test your program on a representative set of values for A and B.

Problem 19.4 (3) There are two parts to this problem. First, a small table of prime numbers is computed using a method called the “Sieve of Eratosthenes”, and then the table is condensed for printing.

To construct the table of primes, lay out in memory a table area of 400 units of any convenient size; the choice of size is up to you. Consider them to be numbered from 1 to 400. Then, beginning with table entry number 2, mark in some way each multiple of 2 (other than 2 itself), up to 400. Then find the next unmarked quantity in the table (which will be 3), and mark each multiple of that number. Then search for the next unmarked number (which will be 5), and continue in this fashion.

Only prime numbers will remain unmarked. You need not make passes over the table marking multiples of any number greater than 19, since the first unmarked number to be marked in this “sieving” process will be the square of the number whose multiples are being marked.

From this table, produce a condensed version in a string of 400 bits (80 bytes) such that 1-bits indicate that the corresponding number is unmarked (and therefore prime). Define the string in a statement such as

```
PrimeBts DC XL50’00’ Space for 400 bits
```

so that an appropriate single statement will print the entire string of 100 hexadecimal digits, that should start with ‘EA28’, representing 1, 2, 3, 5, 7, 11, 13,

If you wish, you may compute the final bit string directly, without having to go through the intermediate steps of forming a byte table.

Problem 19.5 (3) In Problem 19.4, you produced a string of bits indicating whether the number that gave its position in the string was a prime number. Half the bits in the table are wasted, since all even numbers except 2 cannot be prime.

Write a program that will produce a string of 200 bits (25 bytes) indicating which of the odd numbers less than 400 are prime. That is, if the k-th bit of the string is a 1-bit, the number $2k-1$ is prime. Your string of 200 bits should start with ‘F6D32D’, representing 1, 3, 5, 7, 11, 13,

If you had a string of 2^{30} bytes (1GB) available for storing the bits, what is the largest prime whose primality you could indicate in that bit string?

Problem 19.6 (2) Choose an example from Section 19.6 on page 295 and write a program to test the given formula for a range of values.
The previous chapters have described many different types of instructions. Recent additions to the original System/360 architecture include extensions to those basic types that can make your programs more efficient, and often much easier to write.

- Section 20 describes different types of address generation and the important concept of addressing modes and the very useful “Load Address” instruction.
- Section 21 introduces instructions with immediate operands that operate on data in the general registers.
- Section 22 examines old and new forms of branch instructions, some of which have immediate operands. These instructions help manage loops efficiently for iterative processing.
20. Address Generation and Addressing Modes

20.1. Address Generation

z System provides three forms of Effective Address generation:

1. base-displacement with unsigned 12-bit displacements;
2. base-displacement with signed 20-bit displacements; and
3. relative-immediate.

The next three subsections will describe them.

20.1.1. Address Generation With 12-Bit Displacements

We saw in Sections 5.1 and 5.3 on pages 64 and 65 how Effective Addresses are generated from instructions using base-displacement addressing: the CPU adds the displacement to the contents of the base register (and the index register, if any is specified). Figures 19 and 21 illustrate the process.

In this form, 12-bit displacements are limited to the range

\[0 \leq \text{displacement} \leq +2^{12} - 1, \text{ or } 0 \leq \text{displacement} \leq +4095. \]

20.1.2. Address Generation With 20-Bit Displacements

In Section 14.7 we saw examples of RXY-type instructions (like LG and STG) that use a 20-bit signed displacement. Table 96 illustrates the RXY- and RSY-type instruction formats:

<table>
<thead>
<tr>
<th>opcode</th>
<th>R₁</th>
<th>X₂</th>
<th>B₂</th>
<th>DL₂</th>
<th>DH₂</th>
<th>opcode</th>
</tr>
</thead>
</table>

Table 96. Format of RXY- and RSY-type instructions

For RSY-type instructions the X₂ field is replaced by an R₃ field, but that doesn’t affect address generation other than not supporting indexing.
An Effective Address is generated for these “long-displacement” instructions in much the same way it is generated for RX and similar types with an unsigned 12-bit displacement. In this case the displacement is a signed 20-bit number; the displacement fields are rearranged and combined as shown in Figure 145.

![Figure 145. Effective Address generation for long-displacement instructions](image)

In these instructions, the traditional 12-bit unsigned displacement field (named “D”) is now named “DL”, and the high-order 8-bit signed displacement extension is named “DH”. A 20-bit signed displacement is formed from DH and DL: DH is concatenated at the left end of DL, and then sign-extended to 64 bits. This gives a displacement value in the range

\[-2^{19} \leq \text{displacement} \leq +2^{19} - 1, \text{ or } -524288 \leq \text{displacement} \leq +524287.\]

rather than the limited 12-bit displacement range (0,4095). If the DH field is zero, the result is generated from the familiar 12-bit unsigned displacement.

If the instruction is RXY-type, the address calculation adds both the base and index register contents, if applicable.

The Assembler uses the same resolution rules described in Sections 10.9 (on page 129) and 10.13 (on page 134) with one added step:

5. If no nonnegative displacement can be assigned, choose the register giving a negative displacement with the smallest magnitude.

To illustrate, suppose X has value X'2468A0'. With traditional 16-bit addressing halfwords, these statements would fail:

Using X,3

L 9,X-4 \hspace{1em} \text{Addressability error}

The operand X-4 is not addressable, because the RX-type instruction L provides only an unsigned 12-bit displacement. The LY instruction has an extended 3-byte base-displacement, so that

Using X,3

LY 9,X-4

will resolve the implied address with an extended 3-byte base-displacement X'3 FFC FF', where the “true” displacement from the base location in GR3 to the operand location is X' FFFFC'. That is, B_2 = 3, DL_2 = X' FFC', and DH_2 = X' FF'.

The instructions

Using X,3

LY 9,X+4

will resolve the implied address with an extended 3-byte base-displacement X'300400', where the traditional 16-bit addressing halfword X'3004' is in the first two bytes and DH_2 = X'00'.
Long displacements provide far greater addressability than the traditional 12-bit displacements, which are limited to 4KB:

![Figure 146. Addressability range with 12-bit displacements](image)

You can address very large data areas with a single base register, by setting the base address at (or near) the “middle” of the area:

![Figure 147. Addressability range with 20-bit displacements](image)

With 12-bit unsigned displacements, addressing 1MB could require 256 base registers.

Many RX-type and SI-type instructions have equivalent forms with long displacements. They are shown in the Summary in Section 20.5.

20.1.3. Address Generation With Relative-Immediate Operands

The formats of the two relative-immediate instruction types are shown in Tables 97 and 98:

<table>
<thead>
<tr>
<th>Opcode</th>
<th>R₁</th>
<th>Op</th>
<th>RI₂</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 97. Format of R-I instructions with 16-bit immediate operands

<table>
<thead>
<tr>
<th>Opcode</th>
<th>R₁</th>
<th>Op</th>
<th>RI₂</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 98. Format of R-I instructions with 32-bit immediate operands

Unlike the arithmetic and logical immediate operands we’ll see in Sections 21.1 through 21.3, these RI₂ relative-immediate operands do not involve data in memory or in a general register. Instead, they are used to form the Effective Address:

1. Sign-extend the immediate operand to 64 bits, and shift it left once, giving 2×RI₂.
2. Add the address of the current relative-immediate instruction (not the address in the IA of the PSW); the result is the Effective Address. Thus, the Effective Address is relative to the address of the current instruction.

This process is illustrated in Figure 148:
In effect, you have added or subtracted the number of halfwords specified by the RI₂ operand to the address of the instruction.\(^{123}\) The signed RI₂ value means that the Effective Address can either precede or follow the address of the instruction. For 16-bit RI₂ fields,

\[
\text{Instruction's address } - 65536 \leq \text{Effective Address} \leq \text{Instruction's address } + 65534,
\]

and for 32-bit RI₂ fields,

\[
\text{Instruction's address } - 4294967296 \leq \text{Effective Address} \leq \text{Instruction's address } + 4294967294.
\]

Both these “offsets” from the instruction’s address are adequate for most programs.

To resolve the implied addresses of instructions with relative addressing, the Assembler calculates the difference between the locations of the operand and the instruction and divides the result by 2. The target operand must

- be aligned on a halfword boundary, and
- have the same relocation attribute as the instruction. (This rule can be relaxed if the target operand is an external symbol, as we’ll see in Section 38.)

For example, a “Branch Relative on Condition” instruction (we’ll discuss it in Section 22.1) might look like this:

```
BRC 8, Target
--
Target L 0, NewValue
```

and the Assembler will calculate the correct RI₂ offset from the BRC instruction to the Target instruction.

Exercises

20.1.1.(1) The RI-type instruction at address X'174629C' generates an Effective Address. For each of the four following RI₂ operands, show the generated Effective Address. Assume the generated address is 32 bits long.

1. -1
2. 6845
3. -65536

\(^{123}\) The RI₂ operand is doubled because the Effective Address usually forms a branch address, which must always refer to a halfword boundary. For some other processor architectures, the Instruction Address is called the “Program Counter”, and Effective Addresses calculated relative to the address of the instruction are then called “PC-relative”.

Chapter VI: Addressing, Immediate Operands, and Loops
20.1.2.(1) The RIL-type instruction at address X’7B1EF0’ generates an Effective Address. For each of the following RI₂ operands, show the generated Effective Address. Assume the generated address is 32 bits long.

1. −1
2. 384593
3. −512044
4. 3

20.1.3.(2) Suppose c(GR4)=X’FFFFFF7C’ and c(GR7)=X’961B6C0’’. Show the Effective Address generated by each of these instructions. Assume the generated address is 32 bits long.

1. L 0,0(4,7)
2. L 0,3624(4,7)
3. LG 0,4(4,7)
4. LG 0,-8194(4,7)

20.1.4.(1) In Figure 148, there is a comment saying “(Not the PSw’s IA!)”. Why?

20.1.5.(1) Relative address offsets can be either 2 or 4 bytes long. What is the maximum allowed distance to an operand from a referencing instruction with (a) a 2-byte offset, (b) a 4-byte offset?

20.1.6.(1) Suppose a relative-immediate instruction is at address X’27B9AE’’. For each of the following four 2-byte immediate operands, what is the Effective Address of the instruction?

(a) X’0003’
(b) X’FFE4’
(c) X’700F’
(d) X’8000’

20.1.7.(2) How can you generate an odd Effective Address using relative-immediate operands?

20.1.8.(1) Some coders refer to operands like “A+8” and “*+6” as “relative addressing”. How would you describe such operands?

20.2. Addressing Modes

We’ve seen how an Effective Address is generated; what happens when we use it? The answer depends on the CPU’s current addressing mode, often abbreviated “AMode”. All the instructions we’ve discussed have ignored AMode considerations; we now consider some basic aspects of this important topic.

z. System supports three addressing modes: 24-bit, 31-bit, and 64-bit. 24-bit addressing was used in the original System/360, when memory was very expensive: a large processor may have had as much as 256K bytes of storage, and many had far less.²²⁴ 24-bit addresses could reference up to 2²⁴ (16 million) bytes, which seemed so large that 24-bit Effective Addresses were expected to be enough for a very long time. Continued application growth was managed by adding virtual addressing facilities in the early 1970s, but addresses were still limited to 24 bits.²²⁵

²²⁴ Some of the most popular System/360 models had only 32K bytes of storage, of which 14K was needed for the operating system, leaving 18K bytes for applications. Programs were written very carefully, and often in Assembler Language!

²²⁵ Another memory-saving technique was overlay, which we’ll describe briefly in Section 38.9.
In the late 1970s and early 1980s, rapid application growth required more addressability; 31-bit addressing was introduced, which provided addressability up to 2G bytes. Because existing applications usually needed to continue executing using 24-bit addressing, great care was taken to ensure that addressing extensions were compatible with older applications.

The growth demands on applications and operating systems continued. Techniques like partitioning allowed some relief, but it was soon clear that more than 31-bit addressing was needed, at least to manage physical memories much larger than 2G. Thus, in the early 2000s, 64-bit addressing and 64-bit general registers were introduced with z/Architecture.

When 31-bit addressing was introduced, it was necessary to distinguish areas of memory addressable with 24-bit Effective Addresses—that is, addresses between 0 and $2^{24} - 1$—from addresses requiring 31-bit Effective Addresses. The separation between these areas was called the "line", so that the first 2^{24} bytes were "below the line" and the rest were "above the line". Similarly, when 64-bit Effective Addresses were provided with z System, the separation of areas having addresses less than 2^{31} and those having larger addresses was called the "bar", so that bytes having addresses between 0 and $2^{31} - 1$ were "below the bar" and those with greater addresses were "above the bar".

Each of the three addressing modes affects the generation of z/Architecture Effective Addresss:

- in 24-bit mode, the leftmost 40 bits of the Effective Address (0-39) are set to zero, leaving the rightmost 24 bits intact.

- in 31-bit mode, the leftmost 33 bits of the Effective Address (0-32) are set to zero, leaving the rightmost 31 bits intact.

- in 64-bit mode, all 64 bits form the Effective Address.

Remember: An Effective Address is not the same as the contents of a register, even though it may be derived from the contents of one or more registers.

The areas of addressability for the three addressing modes are sketched in Figure 149 on page 308.

126 Partitioning uses address translation to allow more than one operating system to run in a single physical memory, each behaving as if its set of “real” addresses starts at zero.
Instructions that place or update addresses in the general registers are called “modal” instructions, because the result depends on the addressing mode. We’ll see some examples in Section 20.3.

Effective Address addressing-mode considerations

- In 24-bit or 31-bit addressing modes, 40 or 33 high-order bits of the 64-bit Effective Address (respectively) are set to zero.
- If a value in a general register is used for addressing, its high-order bits are not set to zero (as for generated addresses), but are ignored.

The CPU’s current addressing mode is determined by two bits in the Program Status Word, “Basic addressing mode” and “Extended addressing mode”, illustrated in Figure 150.

![Diagram of Program Status Word (PSW)](image)

Figure 150. z System PSW showing addressing-mode bits

The meanings of the E and B bit settings are:

<table>
<thead>
<tr>
<th>E</th>
<th>B</th>
<th>Addressing mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>24-bit mode</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>31-bit mode</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Invalid combination</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>64-bit mode</td>
</tr>
</tbody>
</table>

Table 99. PSW addressing-mode bits

Almost all instructions that reference operands in memory depend in some way on the current addressing mode; and instructions that update addresses in registers also depend on the addressing mode. These are called modal instructions. Other instructions (like AR) are called non-modal because their results are independent of addressing modes.

In Section 38 we will see instructions used to change addressing modes, and show why attention to addressing modes can be very important—and very useful.
Exercises

20.2.1.(1) Suppose \(c(GG1) = X'00000000 \ 82006A04' \) and \(c(GG2) = X'00000000 \ 0FFFF8200' \). An RXY-type instruction at address \(X'629D58' \) looks like this:

<table>
<thead>
<tr>
<th>opcode</th>
<th>A</th>
<th>2</th>
<th>1</th>
<th>(X'A06')</th>
<th>(X'04')</th>
<th>opcode</th>
</tr>
</thead>
</table>

What Effective Address does it generate in 24-bit addressing mode? In 31-bit addressing mode? In 64-bit addressing mode?

20.2.2.(2) Repeat Exercise 20.1.3, showing how the generated Effective Addresses depend on the addressing mode.

20.3. Load Address Instructions

The name “Load Address” is misleading: the instruction loads a register (but not from memory or another register), and its operand may or may not be an address: the Effective Address of the second operand is loaded into the \(R_1 \) register. Thus, it might more properly be named “Load Effective Address”.

Although we normally wouldn’t consider it a logical instruction, Load Address is often classified that way. The three instructions are listed in Table 100.

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td>LA</td>
<td>RX</td>
<td>Load Address</td>
<td>E371</td>
<td>LAY</td>
<td>RXY</td>
<td>Load Address</td>
</tr>
<tr>
<td>C00</td>
<td>LARL</td>
<td>RIL</td>
<td>Load Address Relative Long</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 100. Load Address instructions

LA and LAY are RX- and RXY-type instructions, and LARL generates the Effective Address from its address and the 32-bit \(R_1 \) operand, as described in Section 20.1.3 on page 304. In each case, the Effective Address replaces the contents of GR \(R_1 \).

The affected parts of GR \(R_1 \) depend on the CPU’s current addressing mode. As noted in Section 20.2, some of the high-order bits of the Effective Address may be set to zero.

Suppose a LA instruction is at address \(X'54386D0E' \), and addressability has been established. Then if we execute

\[
\text{LAY 0,-1 Put -1 in register 0 (?)}
\]

the result depends on the addressing mode:

- in 24-bit mode, the Effective Address is \(X'00FFFF' \), and the high-order 32 bits of GG0 are unchanged.
- in 31-bit mode, the Effective Address is \(X'7FFFFF' \), and the high-order 32 bits of GG0 are unchanged.
- in 64-bit mode, the Effective Address is \(X'FFFFFF000000000000' \), and the high-order 32 bits of GG0 are changed.

<table>
<thead>
<tr>
<th>Modal Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA, LAY, and LARL are modal instructions: the resulting Effective Address depends on the addressing mode.</td>
</tr>
</tbody>
</table>

In any addressing mode, a nonnegative integer “n” between 0 and 4095 can be placed in a register by executing...
LA \(r, n(0,0) \)

where the displacement contains the constant “\(n \)”. Instead of writing

L \(2,=F'1' \)

requiring 8 bytes (4 for the instruction and 4 for the constant generated by the literal), or

LH \(2,=H'1' \)

requiring 6 bytes, we can write either

LA \(2,1 \) or LA \(2,1(0,0) \)

This requires only 4 bytes and less execution time, because no memory access is required.

Large signed integer values can be placed in a 64-bit register using LAY if the addressing mode is 64-bit:

\[
\begin{align*}
\text{LAY} & \ 0,500000 \quad c(\text{GR0}) = +500000 \\
\text{LAY} & \ 1,-500000 \quad c(\text{GR1}) = -500000 \text{ (64-bit mode only!)}
\end{align*}
\]

Figure 151. Loading integer constants with the LAY instruction

You can also use values assigned to absolute symbols:

\[
\begin{align*}
\text{HalfMiln} & \ \text{Equ} \ 500000 \quad \text{Value} = +500000 \\
\text{LAY} & \ 2,\text{HalfMiln} \quad c(\text{GR2}) = +500000 \\
\text{LAY} & \ 2,-\text{HalfMiln} \quad c(\text{GR2}) = -500000 \text{ (64-bit mode only!)}
\end{align*}
\]

This can often eliminate the need for constants in memory and the storage references needed to access them.

For signed arithmetic values, it can be safer to initialize a register with one of the arithmetic immediate instructions described in Section 21.2 on page 322.

Be Very Careful!

The Effective Address will depend on the addressing mode! LAY \(0,-1 \) generates \(X'00000000' \) in 24-bit addressing mode, and \(X'7FFFFFFFFFF' \) in 31-bit mode.

For example, see Exercise 20.3.8.

Because LA and LAY do not affect the CC, we can clear a register without disturbing a CC setting that may be required at a later point in the program. For example, suppose we wish to add \(c(A) \) and \(c(B) \) and clear the result to zero if it overflows, without changing the CC set by the addition. These two instruction sequences will work:

\[
\begin{align*}
\text{L} & \ 0,A \\
\text{A} & \ 0,B \\
\text{BNO} & \ \text{ST} \\
\text{LA} & \ 0,0 \\
& \ 0,=F'0' \\
\text{ST} & \ 0,\text{Answer} \\
\text{ST} & \ 0,\text{Answer}
\end{align*}
\]

Because the LA instruction computes an Effective Address, it also provides a simple way to increment a number in a register (other than register 0) by a small positive amount. We put the increment into the displacement, and use the same register for the \(R_1 \) and \(B_2 \) digits. For example,

LA \(4,17(0,4) \)

increases the contents of GR4 by 17, if the original value in GR4 is not corrupted. For example, in 24-bit addressing mode, \(c(\text{GR4}) \) must lie between \(-17 \) and \(2^{24} - 18 \). Using LA to increment register contents is usually limited to cases where the quantity being incremented is an address or a reasonably small integer.
Be Careful!

Don’t use a Load Address instruction to increment a negative number, or a number large enough that the result might be affected by the current addressing mode.

Suppose we want to perform the shifting operation described in Figures 113 and 114 on page 249, where we wanted to shift the word at N to the right enough places so that its rightmost bit is a 1-bit. Now, however, we also require that the number of positions shifted be stored at the halfword named Count.

L 4,N Get integer to shift
LA 3,1 Set GR3 to 1
LCR 3,3 Initial shift count set to -1
Shift SRDL 4,1 Shift a bit into GR5
LTR 5,5 Test sign of GR5
LA 3,1(0,3) Increment GR3 by 1
BNM Shift Branch if GR5 not negative
SLDL 4,1 Move bit back into place
STH 3,Count Store shift count

Figure 152. Counting number of shifts to make rightmost bit a 1-bit

By setting the shift count to −1 initially, we guarantee that the correct value will be in GR3 when we exit from the loop. The first time the LA instruction is executed, the result in GR3 will be zero. The placement of the LA instruction between the LTR and the ensuing BNM shows that no change is made to the CC; normally, we would place the LTR just before the BNM because the relation between the two is then clearer to the program’s readers.

A third use of the LA instruction, and possibly the most important, is to generate addresses for operands in memory. For example, we may require the address of some operand to be in a given register while executing a segment of code. Suppose we want to add three integers, and branch after all additions are completed to NoErr if no overflow occurs, and to Err1 if one or more overflows occur. Let the integers to be added be stored in successive words beginning at QQ.

LA 9,NoErr Set branch address for no errors
L 2,QQ Get first integer
A 2,QQ+4 Add second integer
BNO OK1 Branch if no overflow
LA 9,Err1 Set branch address for overflow
OK1 A 2,QQ+8 Add third integer
BNOR 9 Branch if no or one overflow
B Err1 Branch, some addition overflowed

Figure 153. Using LA to set a branch address

The last unconditional branch instruction could also be written

BO Err1

without affecting the operation of the code, since that instruction is reached only if the branch condition for the immediately preceding instruction is not met. By specifying an unconditional branch it is clear that the branch must always be taken if it is reached.

There is an important assumption in Figure 153 regarding the two LA instructions: the locations named NoErr and Err1 must be addressable, since the LA instruction simply performs the address computation specified by the base and displacement assigned by the Assembler. It’s sometimes easy to forget that symbols used in LA instructions must be addressable, since no direct reference is being made to a memory location: only an Effective Address is being generated, and no checks are made for the validity of that address.

The addressability limitations of LA can often be overcome using LAY or LARL.
Exercises

20.3.1.(1) The LARL instruction has a signed 32-bit RI immediate operand. Why can LARL not be used to load the R register with a large even integer value?

20.3.2.(1) If the CPU is executing in 24-bit addressing mode, show how the LA instruction can be used as a masking instruction, producing the same result in a register as

\[\text{N reg} = \text{A}(X'\text{FFFFFF}') \]

20.3.3.(1) Can the first machine instruction in Figure 153 on page 311 be written

\[\text{LA 9,A(NoErr)} \] ?

20.3.4.(1) Can the first machine instruction in Figure 153 on page 311 be written

\[\text{LA 9,=A(NoErr)} \] ?

20.3.5.(2) The following two instructions usually have an equivalent effect:

\[\text{LA 9,NoErr c(GR9) = A(NoErr)} \]
\[\text{L 9,=A(NoErr) c(GR9) = A(NoErr)} \]

Under what circumstances would you use one in preference to the other? Under what circumstances would the two not be equivalent?

20.3.6.(2) Suppose there is a number between 0 and 7 in GR5, and you want to place into GR8 a single bit whose position within the low-order byte of that register is given by the number in GR5. Thus, if GR5 contains X'00000006', GR8 should contain X'00000002'. A student claimed that the following code sequence does the job; prove or disprove that claim.

\[\text{LA 8,X'100'(0,5)} \]
\[\text{SRL 8,1(8)} \]

20.3.7.(2) Discuss the differences between

\[\text{LA x,number(0,x)} \]
and
\[\text{AH x,'H number'} \]
as techniques for incrementing the contents of register GRx by a small positive integer “number”. Under what circumstances would the result be different, and in what ways? Will it work for all values of GRx? Which values will work, and which values won’t? What differences may be required if “number” is defined by an EQU statement like this?

\[\text{number EQU 29} \]

20.3.8.(3) In Figure 151, what will the assembled instructions look like? How will the results depend on the current addressing mode?

20.3.9.(2) Suppose you execute these two instructions in 24-bit addressing mode:

\[\text{L 6,=A(X'FFFFFF')} \]
\[\text{LA 6,2(6)} \]

What value will be in GR6?
What value will be in GR6 if the first instruction had been written

\[\text{L 6,=A(X'FFFFFF00')} \] ?

20.3.10.(2) In Figure 152, we might want to initialize GR3 to -1 using

\[\text{LAY 3,-1} \]

What reasons might be given for not using LAY?

20.3.11.(2) If x and y are numbers between 1 and 15, what are the differences between
these two instructions?

\[\text{LR } x, y \quad \text{and} \quad \text{LA } x, 0(0, y) \]

20.3.12.(3)+ Suppose GR15 contains one of the values 0, 4, 8, or 12. Depending on \(c(\text{GR15}) \), you want to branch to \(\textbf{A} \), \(\textbf{B} \), \(\textbf{C} \), or \(\textbf{D} \) respectively.\(^{127}\) For a program with a base register providing addressability to the code, you might write

\[
\begin{align*}
\text{B} & \quad \text{BList}(15) \quad \text{Branch into table of branches} \\
\text{BList} & \\
\text{B} & \quad \text{Branch if } c(\text{GR15}) = 0 \\
\text{B} & \quad \text{Branch if } c(\text{GR15}) = 4 \\
\text{B} & \quad \text{Branch if } c(\text{GR15}) = 8 \\
\text{B} & \quad \text{Branch if } c(\text{GR15}) = 12 \\
\end{align*}
\]

Suppose your program has no base register to provide addressability for the code. How can you accomplish this task?

20.3.13.(1) Why can’t use \text{LA} or \text{LAY} to increment a small nonnegative number in GR0?

20.3.14.(2)+ We are given these two definitions of the symbol \text{Number}:

1. \text{Number \ DC \ X’1234’}
2. \text{Number \ DC \ X’ABCD’}

Assuming 24-bit addressing mode: what hexadecimal value is left in GR10 by this instruction sequence?

\[
\begin{align*}
\text{LH} & \quad 10, \text{Number} \\
\text{SLL} & \quad 10, 8 \\
\text{LA} & \quad 10, 0(10, 0) \\
\text{SRL} & \quad 10, 8 \\
\end{align*}
\]

Now, in 31-bit addressing mode, what hexadecimal value is left in GR10 for each definition of \text{Number}?

20.3.15.(2)+ Suppose the contents of general registers 0, 1, and 2 are given by \(c(\text{GR0}) = \text{X’21126F08’} \), \(c(\text{GR1}) = \text{X’9B017822’} \), and \(c(\text{GR2}) = \text{X’00FF0000’} \). What Effective Address is generated in 24-bit addressing mode for each of the following addressing halfwords?

1. \text{X’00FE’}
2. \text{X’1AF9’}
3. \text{X’2109’}

Now, find the Effective Addresses generated in 31-bit addressing mode.

20.3.16.(2)+ Suppose this instruction is at address \text{X’54386D0E’}:

\[
\text{LAY } 0, *
\]

What Effective Address will be generated in (a) 24-bit, (b) 31-bit, and (c) 64-bit addressing mode?

20.3.17.(3)+ A programmer claims that you can test whether adding a length in GR1 to an existing address in GR2 will cross a known power-of-two boundary with these instructions: write a test program with various input values to test his assertion.

\(^{127}\) This is a common convention for handling a “return code” from a called subroutine.
20.4. 64-Bit Virtual Addresses

We saw in Figure 22 on page 70 how 31-bit virtual addresses are divided into shorter components for mapping with translation tables into real addresses. The same technique is used for 64-bit virtual addresses, except that an additional 33 high-order bits must be mapped. This is illustrated in Figure 154:

![Figure 154. 64bit Virtual Address](image)

Because a 33-bit translation table would be extremely large, the region index is subdivided into three portions, called “region first”, “region second”, and “region third” indexes, for which the mapping tables are more manageable. This is sketched in Figure 155.

![Figure 155. 64-bit Virtual Address with Region Indexes](image)

Fortunately, these details are handled by the operating system so we can focus on our applications.

20.5. Summary

In this section, we discussed addressing modes and the three instructions shown in Table 101.

<table>
<thead>
<tr>
<th>Function</th>
<th>Instruction</th>
<th>AMode = 24</th>
<th>AMode = 31</th>
<th>AMode = 64</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load Address (based)</td>
<td>LA</td>
<td>Effective Address in bits 40-63; zero in bits 32-39; bits 0-31 unchanged.</td>
<td>Effective Address in bits 33-63; zero in bit 32; bits 0-31 unchanged.</td>
<td>Effective Address in bits 0-63.</td>
</tr>
<tr>
<td>Load Address (relative)</td>
<td>LAY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LARL</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 101. Load Address instructions described in this section

Instructions Discussed in this Section

The instruction mnemonics and opcodes are shown in the following table:
The instruction opcodes and mnemonics are shown in the following table:

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Opcode</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA</td>
<td>41</td>
</tr>
<tr>
<td>LARL</td>
<td>C00</td>
</tr>
<tr>
<td>LAY</td>
<td>E371</td>
</tr>
</tbody>
</table>

The long-displacement instructions that have equivalent forms using 16-bit long-displacement addressing halfwords are summarized in the following table.

<table>
<thead>
<tr>
<th>12-bit displacement</th>
<th>20-bit displacement</th>
<th>12-bit displacement</th>
<th>20-bit displacement</th>
<th>12-bit displacement</th>
<th>20-bit displacement</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>AY</td>
<td>LA</td>
<td>LAY</td>
<td>SH</td>
<td>SHY</td>
</tr>
<tr>
<td>AH</td>
<td>AHY</td>
<td>LH</td>
<td>LHY</td>
<td>SL</td>
<td>SLY</td>
</tr>
<tr>
<td>AL</td>
<td>ALY</td>
<td>LM</td>
<td>LMY</td>
<td>STCM</td>
<td>STCMY</td>
</tr>
<tr>
<td>C</td>
<td>CY</td>
<td>M</td>
<td>MY</td>
<td>STC</td>
<td>STCY</td>
</tr>
<tr>
<td>CH</td>
<td>CHY</td>
<td>MS</td>
<td>MSY</td>
<td>STH</td>
<td>STHY</td>
</tr>
<tr>
<td>CL</td>
<td>CLY</td>
<td>MVI</td>
<td>MVIY</td>
<td>STM</td>
<td>STMY</td>
</tr>
<tr>
<td>CLI</td>
<td>CLIY</td>
<td>N</td>
<td>NY</td>
<td>ST</td>
<td>STY</td>
</tr>
<tr>
<td>CLM</td>
<td>CLMY</td>
<td>NI</td>
<td>NIY</td>
<td>TM</td>
<td>TMY</td>
</tr>
<tr>
<td>IC</td>
<td>IC</td>
<td>O</td>
<td>OY</td>
<td>X</td>
<td>XY</td>
</tr>
<tr>
<td>ICM</td>
<td>ICMY</td>
<td>OI</td>
<td>OIY</td>
<td>XI</td>
<td>XIY</td>
</tr>
<tr>
<td>L</td>
<td>LY</td>
<td>S</td>
<td>SY</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

There are many other instructions with long displacements that are not direct extensions of other RX-type and SI-type instructions.

Terms and Definitions

addressing mode
One of three modes supported by z System that determines the length of an Effective Address.

AMode
An abbreviation for “addressing mode”.

DH
In an instruction supporting 20-bit displacements, the 5th byte of the instruction containing the signed High-order 8 bits of the displacement.

DL
In an instruction supporting 20-bit displacements, the unsigned Low-order 12 bits of the displacement.

modal instruction
An instruction that places or updates addresses in the general registers, with results that depend on the addressing mode.

relative address
An Effective Address determined by an offset relative to an instruction containing an RI₂ operand.
In Section 4.2 on page 53 we saw the five basic instruction classes introduced with System/360. The only class with immediate data was the SI-type instructions, where a byte of data in the instruction operated on, or was stored into, a byte in memory, as sketched in Figure 14 on page 54. We’ll learn more about those in Section 23.

Many new instructions include “immediate” data that is part of the instruction, rather than being in memory. Thus, it is “immediately” available. Most immediate operands work with data in the general registers, rather than memory: Figure 156 shows how immediate operands in RI- and RIL-type instructions interact with data in registers. You may want to compare it to Figure 14 on page 54.

Figure 156. Instruction classes, including RI, RIL

In early processors, the relative speeds of memory accesses and instruction execution using memory operands were nearly the same. As processor speeds have increased, instructions can often be completed in much less time than it takes to access memory operands. As this speed difference has grown, the relative cost of memory accesses has also grown, despite many methods

128 Because z/Architecture continues to evolve, you should check the z/Architecture Principles of Operation regularly; some newer instructions operate on immediate data in the instruction and data in memory.
providing intermediate stages of “buffering”, using special internal cache memories. Caches can help reduce, but not eliminate, the speed difference.

Because memory accesses in many applications refer to constant data, instructions containing these constants provide immediate access to the data without additional memory references. The resulting improvements in application performance have shown the value of these relative-immediate instructions.

Two immediate-operand lengths are supported. In RI-type instructions, the I_2 immediate operand occupies a halfword, the last 16 bits of the 32-bit instruction.

<table>
<thead>
<tr>
<th>opcode</th>
<th>R_1</th>
<th>Op</th>
<th>I_2</th>
</tr>
</thead>
</table>

Table 102. RI-type instruction

In RIL-type instructions, the immediate operand I_2 occupies a word, the last 32 bits of the 48-bit instruction.

<table>
<thead>
<tr>
<th>opcode</th>
<th>R_1</th>
<th>Op</th>
<th>I_2</th>
</tr>
</thead>
</table>

Table 103. RIL-type instruction

Several of the instructions we’ll examine use the last two letters of the instruction mnemonic to indicate a specific portion of the R_1 register, with combinations of “H” and “L”. The first letter refers to the High half of a 64-bit register or the Low half of the register. Similarly, the second letter refers to the High halfword or the Low halfword of the half of the register specified by the first letter.\(^{129}\) This is illustrated in Figure 157.

Another way of describing this:

- **HH**: High Half’s High Half (bits 0-15)
- **HL**: High Half’s Low Half (bits 16-31)
- **LH**: Low Half’s High Half (bits 32-47)
- **LL**: Low Half’s Low Half (bits 48-63)

Other instructions with 32-bit immediate operands end in the letters “H” or “L” meaning the H or Low half of the register, followed by “F” to indicate that the immediate operand is a fullword.

We’ll now investigate these instructions in three groupings: insert and load, arithmetic, and logical.

\(^{129}\) See the comments at the start of Section 14, on page 180.
21.1. Insert and Load Instructions with Immediate Operands

21.1.1. Logical-Immediate Insert Instructions

The insert group of logical-immediate instructions is summarized in Table 104.

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>C08</td>
<td>IIHF</td>
<td>RIL</td>
<td>Insert Logical Immediate</td>
<td>C09</td>
<td>IILF</td>
<td>RIL</td>
<td>Insert Logical Immediate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(high) (64←32)</td>
<td></td>
<td></td>
<td></td>
<td>(low) (64←32)</td>
</tr>
<tr>
<td>A50</td>
<td>IIHH</td>
<td>RI</td>
<td>Insert Logical Immediate</td>
<td>A51</td>
<td>IILH</td>
<td>RI</td>
<td>Insert Logical Immediate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(high high) (64←16)</td>
<td></td>
<td></td>
<td></td>
<td>(high low) (64←16)</td>
</tr>
<tr>
<td>A52</td>
<td>IILH</td>
<td>RI</td>
<td>Insert Logical Immediate</td>
<td>A53</td>
<td>IILL</td>
<td>RI</td>
<td>Insert Logical Immediate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(low high) (64←16)</td>
<td></td>
<td></td>
<td></td>
<td>(low low) (64←16)</td>
</tr>
</tbody>
</table>

Table 104. Insert-Immediate instructions

The sketch in Figure 158 shows the operation of these six instructions. For example, IIHF inserts its 32-bit (Fullword) immediate operand into the high half of GG R1.

![Figure 158. Operation of six Insert Immediate instructions](image)

The insert-immediate operations are similar to the capabilities of the ICM and ICMH instructions that refer to storage operands. For example, these two instructions have the same result:

- ICM 5,B′1100′,=C′LH′ Insert ‘LH’ into bits 0-15 of GR5
- IILH 5,C′LH′ The same with an immediate operand

except that IILH avoids a memory reference. Similarly, these two are equivalent:

- ICMH 3,B′1111′,=F′-3′ Insert -3 into bits 0-31 of GG3
- IILH 3,-3 The same with an immediate operand

You can think of the IILF instruction as though it’s a “Load Immediate” instruction:

- IILF 11,123456789 has the same result as...
- L 11,=F′123456789′ so you could even think of it as L
- *** LI 11,123456789 ...but not as LI!

These instructions let you insert 16- or 32-bit operands into any halfword or word portion of a general register without disturbing other parts of the register.

21.1.2. Arithmetic- and Logical-Immediate Load Instructions

These instructions are listed in Table 105.

130 But you could implement your own LI macro-instruction using the macro-instruction capabilities of the Assembler.
The LHI, LGHI, and LGFI instructions are arithmetic load operations, where the I2 immediate operand is sign-extended from 16 to 32 bits or from 32 to 64 bits, as required by the R1 register length. They operate just like the corresponding LH, LGH, and LGF instructions, except that the second operand is found in the I2 field of the instruction rather than in memory. For example, compare the operation of the LHI instruction in Figure 159 with the operation of LH in Figure 62 on page 185:

```
┌───────────────────┬───────────────────┐
│/SM630000─ sign─extended /SM630000─ │s │ GR R1
└───────────────────┴───────────────────┘
0/SM600000 3 1

LHI Instruction │s │ Halfword in LHI instruction
└───────────────────┴───────────────────┘
16 31
```

Figure 159. Operation of LHI instruction

A valuable application of instructions like LHI involves symbolically-defined constants. Suppose you have a table of data items, and you define a symbol NIItems whose value is the number of items:

<table>
<thead>
<tr>
<th>Table</th>
<th>DS</th>
<th>OF</th>
<th>Start of table</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item1</td>
<td>DS</td>
<td>CL(ItemLen)</td>
<td>Each item has length 'ItemLen'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Space for more similar items</td>
</tr>
<tr>
<td>TableEnd</td>
<td>DS</td>
<td>OX</td>
<td>End of the table</td>
</tr>
</tbody>
</table>

* NIItems Equ ((TableEnd-Table)/ItemLen) Number of items in table

Then, you can place the count of data items into GR8 using LHI:

```
LHI 8,NIItems Initialize item counter
```

Defining symbols like NIItems symbolically means that if the table expands or contracts, you need only to reassemble the program and the value of NIItems will be recalculated automatically.

LGHI extends its 16-bit operand to 64 bits in GG R1, as shown in Figure 160.

```
┌─────────────────────────────────────────────────────────┬───────────────────┐
│/SM630000────────────────── sign─extended /SM630000────────────────────── │s │ GG R1
└─────────────────────────────────────────────────────────┴───────────────────┘
0/SM600000 6 3

LGHI Instruction │s │
└───────────────────┴───────────────────┘
16 31
```

Figure 160. Operation of LGHI instruction
Similarly, the LGFI instruction extends its 32-bit operand to 64 bits, as shown for LGF in Figure 73 on page 197.

Suppose \(c(GG9) = X'1234567800000000' \); then

\[
\begin{align*}
& \text{LHI} \ 9, X'CBA9' \\
& \text{Load a halfword-immediate operand}
\end{align*}
\]

will set the rightmost 32 bits of GR9 to \(X'FFFFCBA9' \), leaving the high-order 32 bits of GG9 unchanged. Now suppose \(c(GG9) = X'123456789ABCD0' \); the other two load-immediate instructions give the sign-extended results shown in Figure 161:

\[
\begin{align*}
& \text{LGHI} \ 9, X'CBA9' \\
& c(GG9) = X'FFFFFFFF FFFFCBA9' \text{ extend 1-bit} \\
& \text{LGFI} \ 9, X'789ABCDE' \\
& c(GG9) = X'00000000 789ABCDE' \text{ extend 0-bit}
\end{align*}
\]

Figure 161. Examples of load-immediate instructions

The other six logical instructions have an unusual property: the \(I_2 \) immediate operand is placed in the proper 16 or 32 bits of the 64-bit general register, and (unlike the insert-immediate instructions) the rest of the entire register is set to zero! The Load Logical instructions we discussed in Section 14.11 on page 197 did zero-extension only on the left, rather than also zeroing bits to the right of the loaded operand.

The following figure pictures the operation of these six logical load instructions.

![Figure 162. Operation of six logical load instructions](image)

In each case, after the \(I_2 \) operand has been loaded into the specified part of GG \(R_1 \), the rest of the register is set to zero. For example, if \(c(GG9) = X'FEDCBA9876543210' \), executing each of the following instructions will change GG9 as indicated:

\[
\begin{align*}
& \text{LLIHF} \ 9, X'13579BDF' \\
& c(GG9) = X'13579BDF 00000000' \\
& \text{LLILF} \ 9, X'FDB97531' \\
& c(GG9) = X'00000000 FDB97531' \\
& \text{LLIHH} \ 9, X'2468' \\
& c(GG9) = X'24680000 00000000' \\
& \text{LLILH} \ 9, X'2468' \\
& c(GG9) = X'00002468 00000000' \\
& \text{LLILL} \ 9, X'2468' \\
& c(GG9) = X'00000000 24680000'
\end{align*}
\]

The Load Logical Immediate instructions are useful whenever you need to place a value into part of a general register and set the rest of the register to zero, and they help you avoid unnecessary clearing of the target register. For example, if the LLIHF instruction was not available and you wanted to load \(X'13579BDF' \) into the high-order 32 bits of GG9 (as in the first instruction above), you would have to do something like

\[
\begin{align*}
& L \ 9, =F'13579BDF' \\
& c(GR9) = X'13579BDF' \\
& \text{SLLG} \ 9, 9, 32 \\
& c(GG9) = X'13579BDF 00000000'
\end{align*}
\]

requiring both a memory reference and an extra instruction. Similarly, to get the result of the LLILH instruction above, you would have to do either

\[
\begin{align*}
& \text{SGR} \ 9, 9 \\
& \text{Set GG9 to zero} \\
& \text{IIH} \ 9, X'2468' \\
& c(GG9) = X'00000000 24680000'
\end{align*}
\]

which uses one of the immediate-operand instructions. Another use could have been
Set GG9 to zero again requiring an extra instruction and a memory access.

Exercises

21.1.1. (1) What will the Assembler do if you write LHI 0,76543? What will be placed in GR0?

21.1.2. (1) What is the difference between an I2 operand and an RI2 operand?

21.2. Arithmetic Instructions with Immediate Operands

The arithmetic instructions with immediate operands can be arranged in three groups:

- add and subtract instructions
- compare instructions
- multiply instructions

These instructions can be arranged into very regular patterns, like the related RX-type instructions we saw in Section 16.

21.2.1. Arithmetic-Immediate Add and Subtract Instructions

The four arithmetic and four logical instructions in this group are shown in Table 106.

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>A7A</td>
<td>AHI</td>
<td>RI</td>
<td>Add Halfword Immediate (32→16)</td>
<td>A7B</td>
<td>AGHI</td>
<td>RIL</td>
<td>Add Halfword Immediate (64→16)</td>
</tr>
<tr>
<td>C29</td>
<td>AFI</td>
<td>RIL</td>
<td>Add Immediate (32)</td>
<td>C28</td>
<td>AGFI</td>
<td>RIL</td>
<td>Add Immediate (64→32)</td>
</tr>
<tr>
<td>C2B</td>
<td>ALFI</td>
<td>RIL</td>
<td>Add Logical Immediate (32)</td>
<td>C2A</td>
<td>ALGFI</td>
<td>RIL</td>
<td>Add Logical Immediate (64→32)</td>
</tr>
<tr>
<td>C25</td>
<td>SLFI</td>
<td>RIL</td>
<td>Subtract Logical Immediate (32)</td>
<td>C24</td>
<td>SLGFI</td>
<td>RIL</td>
<td>Subtract Logical Immediate (64→32)</td>
</tr>
</tbody>
</table>

Table 106. Arithmetic-immediate add and subtract instructions

These instructions are very useful: they can replace most memory references to constants and literals. Consider the example in Figure 88 on page 224 where we add the first N odd numbers, but now we use immediate values instead of literals. Three storage references have been replaced by immediate operands in the statements marked with * in the comment field.

LHI	4,1	* c(GR4) = accumulated sum
LR	7,4	c(GR7) = count of additions
Test	CH	7,NN
BE	Store	Compare count to c(NN)
LR	0,7	Compute next odd integer
AR	0,0	Counter + counter = 2N
AHI	0,1	* Add 1, giving next odd term
AR	4,0	Add term to sum
AHI	7,1	* Increment count by 1
B	Test	Branch back to see if finished
Store	ST	4, SUM
		Store result

Almost every previous example using a halfword or word literal can be replaced by an immediate operand. This saves both execution time and the bytes needed for the storage operand.
21.2.2. Arithmetic-Immediate Compare Instructions

The four arithmetic and two logical instructions in this group are shown in Table 107.

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>A7E</td>
<td>CHI</td>
<td>RI</td>
<td>Compare Halfword Immediate (32→16)</td>
<td>A7F</td>
<td>CGHI</td>
<td>RI</td>
<td>Compare Halfword Immediate (64→16)</td>
</tr>
<tr>
<td>C2D</td>
<td>CFI</td>
<td>RIL</td>
<td>Compare Immediate (32)</td>
<td>C2C</td>
<td>CGFI</td>
<td>RIL</td>
<td>Compare Immediate (64→32)</td>
</tr>
<tr>
<td>C2F</td>
<td>CLFI</td>
<td>RIL</td>
<td>Compare Logical Immediate (32)</td>
<td>C2E</td>
<td>CLGFI</td>
<td>RIL</td>
<td>Compare Logical Immediate (64→32)</td>
</tr>
</tbody>
</table>

Table 107. Arithmetic-immediate compare instructions

Suppose you must examine a character in storage to see if it is a special character, or a letter or digit, and retain the character in GR0 for further processing. (Remember that letters and digits in the EBCDIC representation have values greater than $X'80'$.) You could write the test like this:

```
LLC 0,Char Get character, clear rest of GR0
CHI 0,X'80' Test for special character
BNH Special if representation <= X'80'
```

The LLC instruction was illustrated in Figure 75 on page 199.

It helps to remember that these compare-immediate instructions always refer to operands in registers, never in memory:

```
* CH 2,NN Compare to halfword in memory...
  CHI 2,NN ... but this would fail if assembled
  - - -
  NN DC H'42'
```

21.2.3. Arithmetic-Immediate Multiply Instructions

Table 108 lists the two arithmetic multiply-immediate instructions:

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>A7C</td>
<td>MHI</td>
<td>RI</td>
<td>Multiply Halfword Immediate (32→16)</td>
<td>A7D</td>
<td>MGHI</td>
<td>RI</td>
<td>Multiply Halfword Immediate (64→16)</td>
</tr>
</tbody>
</table>

Table 108. Arithmetic-immediate multiply instructions

There are no multiply-immediate instructions with 32-bit operands.\footnote{At the time of this writing. But new instructions are added regularly to the z System architecture, so check the Principles of Operation.} This is rarely a problem, because you can use instructions like IILF or LGFI to put a 32-bit operand into a temporary register. For example, if the product and operands are small enough you can use MHI:

```
L 1,Operand1 Get a number to be multiplied
MHI 1,36 Multiply by 36, product in GR1
```

and if the product and operands are larger, you can use IILF:

```
L 1,Operand2 Get another number to be multiplied
IILF 15,629036721 Put multiplier temporarily in GR15
MR 0,15 Form long product in (GR0,GR1)
```
Exercises

21.2.1.(1) Why is there a SLFI instruction, but no SFI instruction?

21.2.2.(2) Do Exercise 18.2.7 on page 269, using immediate-operand instructions and no literals.

21.3. Logical Operations with Immediate Operands

As we have seen, the last two letters of these instruction mnemonics refers to a word or halfword in part of a 64-bit general register. The three logical operations are AND, OR, and XOR.

The portions of the first operand in GG R₁ not involved in the operation of these instructions is not affected, and remain unchanged. This was shown in Figure 158 on page 319, where the “Insert Immediate” instructions involve either 16 or 32 bits of the register, and the remaining bits are unchanged. (The “Load Immediate” instructions do clear the remaining fields of the register!)

21.3.1. Logical-Immediate AND Instructions

The AND group of logical-immediate instructions is summarized in Table 109.

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>C0A</td>
<td>NIHF</td>
<td>RIL</td>
<td>AND Immediate (high) (64→32)</td>
<td>C0B</td>
<td>NILF</td>
<td>RIL</td>
<td>AND Immediate (low) (64→32)</td>
</tr>
<tr>
<td>A54</td>
<td>NIHH</td>
<td>RI</td>
<td>AND Immediate (high high) (64→16)</td>
<td>A55</td>
<td>NIHL</td>
<td>RI</td>
<td>AND Immediate (high low) (64→16)</td>
</tr>
<tr>
<td>A56</td>
<td>NILH</td>
<td>RI</td>
<td>AND Immediate (low high) (64→16)</td>
<td>A57</td>
<td>NILL</td>
<td>RI</td>
<td>AND Immediate (low low) (64→16)</td>
</tr>
</tbody>
</table>

Table 109. AND-immediate instructions

The last example in Section 19.3 uses a bit mask in memory. We can improve it by using an immediate operand in a NILL instruction:

L 1,DataWord
SRL 1,6
NILF 1,X
SLL 1,6
OR 0,1
ST 0,DataWord

Figure 163. Extracting an unsigned integer value using AND Immediate

The last example in Section 19.4 uses a bit mask in memory. We can also improve it using an NILL immediate operand:

L 0,DataWord
NILF 0,X
L 1,NewThird
SLL 1,6
OR 0,1
ST 0,DataWord

Figure 164. Inserting a new integer value using AND Immediate

21.3.2. Logical-Immediate OR Instructions

The OR group of logical-immediate instructions is summarized in Table 110.
Table 110. OR-immediate instructions

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>C0C</td>
<td>OIHF</td>
<td>RIL</td>
<td>OR Immediate (high) (64←32)</td>
<td>C0D</td>
<td>OILF</td>
<td>RIL</td>
<td>OR Immediate (low) (64←32)</td>
</tr>
<tr>
<td>A58</td>
<td>OIHH</td>
<td>RI</td>
<td>OR Immediate (high high) (64←16)</td>
<td>A59</td>
<td>OIHL</td>
<td>RI</td>
<td>OR Immediate (high low) (64←16)</td>
</tr>
<tr>
<td>A5A</td>
<td>OILH</td>
<td>RI</td>
<td>OR Immediate (low high) (64←16)</td>
<td>A5B</td>
<td>OILL</td>
<td>RI</td>
<td>OR Immediate (low low) (64←16)</td>
</tr>
</tbody>
</table>

Suppose you want to set the sign bit of GG8 to a 1-bit. You can use either of these:

- **OIHF**: `8,X'80000000` Set sign bit to 1
- **OIHH**: `8,X'8000` Set sign bit to 1

but OIHF is 6 bytes long while OIHH is only 4 bytes long.

21.3.3. Logical-Immediate XOR Instructions

The XOR group of logical-immediate instructions is summarized in Table 111.

Table 111. XOR-immediate instructions

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>C06</td>
<td>XIXF</td>
<td>RIL</td>
<td>XOR Immediate (high) (64←32)</td>
<td>C07</td>
<td>XILF</td>
<td>RIL</td>
<td>XOR Immediate (low) (64←32)</td>
</tr>
</tbody>
</table>

You might wonder why there are no XIHH, XIHL, XILH, and XILL instructions, like those for the 16-bit operands of the logical-immediate AND and OR instructions. (See Exercise 21.3.1.)

The example in Figure 141 on page 292 uses AND, OR, and XOR instructions referring to operands in memory. We can rewrite it to use immediate operands:

```assembly
L 0,DataWord Get integers
OILF 0,X'0007FFCO' * Set third-integer space to all 1's
XILF 0,X'0007FFCO' * Now set them to zeros
L 1,NewThird Load new value for third integer
SLL 1,6 Move to correct position
NILF 1,X'0007FFCO' * Make sure there are no extra bits
OR 0,1 Insert the new third value
ST 0,DataWord Store updated result
```

Figure 165. Data masking using immediate operands

We can improve this example to reduce the possibility of typographic errors, by defining the mask symbolically:

```assembly
Int3Mask Equ X'0007FFCO' Mask for isolating the 3rd integer
L 0,DataWord Get integers
OILF 0,Int3Mask Set third-integer space to all 1's
XILF 0,Int3Mask Now set them to zeros
L 1,NewThird Load new value for third integer
SLL 1,6 Move to correct position
NILF 1,Int3Mask Make sure there are no extra bits
OR 0,1 Insert the new third value
ST 0,DataWord Store updated result
```

Figure 166. Data masking using a symbolically defined immediate operand

This technique is recommended whenever one value must be used in several instructions. If you mistype the mask value, it needs correcting in only one place.
Exercises

21.3.1.(2)+ Explain why there is actually no need for the four XOR halfword-immediate instructions XIHH, XIHL, XILH, and XILL.

21.3.2.(2)+ Show why the “Halfword” forms of the AND-immediate logical NIxx instructions (like NILH, etc.) are unnecessary.

21.3.3.(2)+ Show why the “Halfword” forms of the OR-immediate logical OIxx instructions (like OIHL, etc.) are unnecessary.

21.3.4.(1) Use instructions with immediate operands to set the high-order byte of GR1 to zero.

21.3.5.(1) Use instructions with immediate operands to invert the sign bit of GG7.

21.3.6.(1) Use instructions with immediate operands to round c(GR2) to the next higher multiple of 16, if it is not already a multiple of 16.

21.3.7.(2) A programmer wanted to test the value of some bits in GR3, and wrote these instructions:

\[
\begin{align*}
\text{NILL} & \quad 3,^\prime 00F0^\prime \quad \text{Isolate the 4 interesting bits} \\
\text{BZ} & \quad \text{AllZeros} \quad \text{Branch if all 4 bits were zero} \\
\text{CH} & \quad 3,=X^\prime 0070^\prime \quad \text{Check if leftmost bit is 1} \\
\text{BNL} & \quad \text{BitWas1} \quad \text{Branch if that bit was 1} \\
\text{---} & \quad \text{Test other values}
\end{align*}
\]

What value will be in GR3 when control arrives at the instruction named BitWas1?

21.3.8.(2)+ A programmer wanted to extract the six low-order bits of GR4, and considered these three sequences of instructions:

(1) \[\text{N} \quad 4,=X^\prime 0000003F^\prime \]

(2) \[\text{SLL} \quad 4,26 \\
\text{SRL} \quad 4,26 \]

(3) \[\text{SRDL} \quad 4,26 \\
\text{SR} \quad 4,4 \\
\text{SLDL} \quad 4,26 \]

Criticize each sequence in terms of its simplicity and/or efficiency, and suggest a single instruction to use in place of each.

21.3.9.(2)+ A friend of the programmer in Exercise 21.3.8 suggested using an instruction with an immediate operand:

\[\text{NILL} \quad 4,^\prime 003F^\prime \]

Is his solution acceptable? Explain why or why not.

21.4. Summary

The immediate-operand instructions described in this section can provide savings in three ways:

1. they eliminate the need to access operands from storage,
2. they save the space that those operands needed, and
3. they help eliminate the need for base registers that might have been required to address those operands.
The load- and insert-immediate instructions are summarized in Table 112. The insert-immediate instructions don’t affect any part of the R₁ register other than the bit positions where the immediate operand has been inserted.

<table>
<thead>
<tr>
<th>Operation</th>
<th>32 bits</th>
<th>64 bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 bits</td>
<td>32 bits</td>
<td>16 bits</td>
</tr>
<tr>
<td>Arithmetic Load</td>
<td>LHI</td>
<td>LGHI</td>
</tr>
<tr>
<td>Logical Load</td>
<td>LLIHH</td>
<td>LLIHL</td>
</tr>
<tr>
<td>Insert</td>
<td>IHHH</td>
<td>IHL</td>
</tr>
</tbody>
</table>

Table 112. Load and insert instructions with immediate operands

The arithmetic-immediate instructions are summarized in Table 113.

<table>
<thead>
<tr>
<th>Operation</th>
<th>32 bits</th>
<th>64 bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 bits</td>
<td>32 bits</td>
<td>16 bits</td>
</tr>
<tr>
<td>Arithmetic Add/Subtract</td>
<td>AHI</td>
<td>AFI</td>
</tr>
<tr>
<td>Logical Add/Subtract</td>
<td>ALFI</td>
<td>SLFI</td>
</tr>
<tr>
<td>Arithmetic Compare</td>
<td>CHI</td>
<td>CFI</td>
</tr>
<tr>
<td>Logical Compare</td>
<td>CLFI</td>
<td>CLGFI</td>
</tr>
<tr>
<td>Multiply</td>
<td>MHI</td>
<td>MGHI</td>
</tr>
</tbody>
</table>

Table 113. Arithmetic instructions with immediate operands

The logical-immediate instructions don’t affect any part of the R₁ register other than the bit positions where the immediate operand has been ANDed, ORed, or XORed.

<table>
<thead>
<tr>
<th>Operation</th>
<th>32 bits</th>
<th>64 bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 bits</td>
<td>32 bits</td>
<td>16 bits</td>
</tr>
<tr>
<td>AND</td>
<td>NIHH</td>
<td>NIHF</td>
</tr>
<tr>
<td></td>
<td>NIHL</td>
<td>NLF</td>
</tr>
<tr>
<td>OR</td>
<td>OIHH</td>
<td>OIH</td>
</tr>
<tr>
<td></td>
<td>OIHL</td>
<td>OILF</td>
</tr>
<tr>
<td>XOR</td>
<td>XIHF</td>
<td>XIF</td>
</tr>
</tbody>
</table>

Table 114. Logical instructions with immediate operands

Instructions Discussed in this Section

The instruction mnemonics and opcodes are shown in the following table:
The instruction opcodes and mnemonics are shown in the following table:

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Opcode</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFI</td>
<td>C29</td>
</tr>
<tr>
<td>AGFI</td>
<td>C28</td>
</tr>
<tr>
<td>AGHI</td>
<td>A7B</td>
</tr>
<tr>
<td>AHI</td>
<td>A7A</td>
</tr>
<tr>
<td>ALFI</td>
<td>C2B</td>
</tr>
<tr>
<td>ALGFI</td>
<td>C2A</td>
</tr>
<tr>
<td>CFI</td>
<td>C2D</td>
</tr>
<tr>
<td>CGFI</td>
<td>C2C</td>
</tr>
<tr>
<td>CGHI</td>
<td>A7F</td>
</tr>
<tr>
<td>CHI</td>
<td>A7E</td>
</tr>
<tr>
<td>CLFI</td>
<td>C2F</td>
</tr>
<tr>
<td>CLGFI</td>
<td>C2E</td>
</tr>
<tr>
<td>I1HF</td>
<td>C08</td>
</tr>
<tr>
<td>I1HH</td>
<td>A50</td>
</tr>
<tr>
<td>I1HL</td>
<td>A51</td>
</tr>
<tr>
<td>I1HF</td>
<td>C09</td>
</tr>
<tr>
<td>I1LH</td>
<td>A52</td>
</tr>
<tr>
<td>I1LL</td>
<td>A53</td>
</tr>
<tr>
<td>LGGI</td>
<td>C01</td>
</tr>
<tr>
<td>LGHI</td>
<td>A79</td>
</tr>
<tr>
<td>LHI</td>
<td>A7B</td>
</tr>
<tr>
<td>LLIHF</td>
<td>C0E</td>
</tr>
<tr>
<td>LLIHH</td>
<td>A5C</td>
</tr>
<tr>
<td>LLIHL</td>
<td>A5D</td>
</tr>
<tr>
<td>LLILF</td>
<td>C0F</td>
</tr>
<tr>
<td>LLILH</td>
<td>A5E</td>
</tr>
<tr>
<td>LLILL</td>
<td>A5F</td>
</tr>
<tr>
<td>MGGI</td>
<td>A7C</td>
</tr>
<tr>
<td>MHI</td>
<td>A7D</td>
</tr>
<tr>
<td>NIHF</td>
<td>C0A</td>
</tr>
</tbody>
</table>

In general, these immediate-operand instructions don’t do anything you can’t do with operands in memory. But on modern CPUs, they will execute much faster and will help reduce the size of your program.
immediate operand

An operand contained in a field of the instruction itself.

Programming Problems

Problem 21.1. (2) Rewrite Problem 18.7 to generate a hexadecimal addition table, using immediate operands wherever possible.

Problem 21.2. (2) Rewrite Problem 18.8 to generate a hexadecimal multiplication table, using immediate operands wherever possible.
Programs often process data repetitively or iteratively under the control of a counter or some other condition. In this section we examine several instructions that simplify coding “loops”, sequences of instructions executed repeatedly.

First, we’ll describe a newer form of branch instruction, the relative-immediate branch.

22.1. Branch Relative on Condition Instructions

The conditional relative branch instructions BRC and BRCL calculate their branch address by adding twice the immediate operand to the address of the branch instruction, as described in Section 20.1.3 on page 304. They have the formats shown in Tables 115 and 116.

Table 115. Format of the BRC instruction

<table>
<thead>
<tr>
<th>A7</th>
<th>M1</th>
<th>4</th>
<th>R12</th>
</tr>
</thead>
</table>

RI-type branch instructions for which the value of the RI2 operand lies in the range

\[-2^{15} \leq RI2 \leq 2^{15} - 1, \quad \text{or}\]
\[-32768 \leq RI2 \leq 32767\]

allow the relative offset to the branch target to lie as far as –65536 and +65534 bytes away.

Table 116. Format of the BRCL instruction

<table>
<thead>
<tr>
<th>C0</th>
<th>M1</th>
<th>4</th>
<th>R12</th>
</tr>
</thead>
</table>

For RIL-type branch instructions the value of the RI2 operand lies in the range

\[-2^{31} \leq RI2 \leq 2^{31} - 1, \quad \text{or}\]
\[-2147483648 \leq RI2 \leq 2147483647\]
This means the offset of the branch target can be more than 4 billion bytes away from the RIL-type instruction, in either direction.132

Relative branch instructions can help you reduce or even eliminate the need for base registers to address your instructions. We will describe conditional relative branches here, and examine other forms of relative branch shortly.

In almost every situation where you use an RX-type conditional branch (introduced in Section 15) you can replace it with a branch relative on condition instruction. For example, if you want to branch to the instruction named \textit{Equal} if $c(GR3)=c(GR12)$, you might have written a based-branch instruction like

$$CR \ 3,12 \quad \text{Compare } c(GR3) \text{ to } c(GR12)$$
$$BC \ 8,\text{Equal} \quad \text{Branch if they're equal}$$

or, you could use a relative branch by writing

$$CR \ 3,12 \quad \text{Compare } c(GR3) \text{ to } c(GR12)$$
$$BRC \ 8,\text{Equal} \quad \text{Branch if they're equal}$$

While this may seem extra effort for no obvious gain, the relative branch has one major advantage: the target of any relative branch can be very distant from the branch instruction, while a based branch target can be at most $+4094$ bytes from the address of the based branch. The only (and usually minor) disadvantage is that relative branch instructions can’t be indexed.

Like the extended mnemonics shown in Table 61 on page 212, the Assembler supports a similar set of extended mnemonics for branch relative on condition instructions, listed in Table 117. Because the most-used forms of these extended mnemonics begin with the letter “J”, they are often called “Jump” instructions.

<table>
<thead>
<tr>
<th>RI Mnemonic</th>
<th>RIL Mnemonic</th>
<th>Mask</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRC</td>
<td>JC</td>
<td>M_1</td>
<td>Conditional Branch</td>
</tr>
<tr>
<td>BRU</td>
<td>J</td>
<td>15</td>
<td>Unconditional Branch</td>
</tr>
<tr>
<td>BRNO</td>
<td>JNO</td>
<td>14</td>
<td>Branch if Not Ones (T)</td>
</tr>
<tr>
<td>BRNH</td>
<td>JNH</td>
<td>13</td>
<td>Branch if Not High (C)</td>
</tr>
<tr>
<td>BRNP</td>
<td>JNP</td>
<td>13</td>
<td>Branch if Not Plus (A)</td>
</tr>
<tr>
<td>BRNL</td>
<td>JNL</td>
<td>11</td>
<td>Branch if Not Low (C)</td>
</tr>
<tr>
<td>BRNM</td>
<td>JNM</td>
<td>11</td>
<td>Branch if Not Minus (A)</td>
</tr>
<tr>
<td>BRE</td>
<td>JE</td>
<td>8</td>
<td>Branch if Equal (C)</td>
</tr>
<tr>
<td>BRZ</td>
<td>JZ</td>
<td>8</td>
<td>Branch if Zero(s) (A,T)</td>
</tr>
<tr>
<td>BRNZ</td>
<td>JNZ</td>
<td>7</td>
<td>Branch if Not Zero (A,T)</td>
</tr>
<tr>
<td>BRNE</td>
<td>JNE</td>
<td>7</td>
<td>Branch if Not Equal (C)</td>
</tr>
<tr>
<td>BRL</td>
<td>JL</td>
<td>4</td>
<td>Branch if Low (C)</td>
</tr>
<tr>
<td>BRM</td>
<td>JM</td>
<td>4</td>
<td>Branch if Minus (A)</td>
</tr>
<tr>
<td>BRH</td>
<td>JH</td>
<td>2</td>
<td>Branch if High (C)</td>
</tr>
<tr>
<td>BRP</td>
<td>JP</td>
<td>2</td>
<td>Branch if Plus (A)</td>
</tr>
<tr>
<td>BRO</td>
<td>JO</td>
<td>1</td>
<td>Branch if Ones (T)</td>
</tr>
<tr>
<td>JNOP</td>
<td>JLNOP</td>
<td>0</td>
<td>No Operation</td>
</tr>
</tbody>
</table>

132 That ought to be enough for most programs. But on second thought, that’s what they said at one time about 24-bit addressing.
Table 117. Extended branch relative on condition mnemonics and their branch mask values

| CR 3,12 | Compare c(GR3) to c(GR12) |
| JE Equal | Branch if they’re equal |

The previous example could be rewritten as

and no base register is needed for the JE instruction.

The Assembler checks that the branch target is within the current control section, so that you won’t accidentally branch to an instruction that isn’t part of the program containing the branch. (Such a branch is allowed if the target is an external symbol; we’ll discuss this case in Section 38.)

Using explicit offsets from the current instruction is generally a poor practice:

This will cause maintenance problems if another instruction is added or removed between the JE and whatever instruction is 10 bytes away. The assembler generates X’A784 0005’, where the offset value 10 has been halved at assembly time so that the Effective Address at execution time will be correct.

An even poorer coding technique is writing the RI₂ operand explicitly:

The Assembler will issue a warning and then generate the instruction with the explicit absolute operand in the RI₂ field, X’A784 000A’ so that the branch target is actually 20 bytes away!

Branch relative instructions can be very helpful in programs larger than 4K bytes, where using based branch instructions may require more than one base register to provide addressability. With relative branches, you can often reduce the number of “program base” registers (or even eliminate them entirely), freeing registers for other productive uses.

Exercises

22.1.1.(1) The extended mnemonic for the “Long” relative branch instructions is formed by adding the letter L after the initial letter “J”. But the Long unconditional relative branch mnemonic is JLU, not JL. Why?

22.1.2.(1) Can you think of situations where JNOP and JLNOP will be useful?

22.1.3.(2)+ What machine instruction is generated by each of these statements?

(a) J *-10
(b) J *+2046
(c) J -40
(d) JL *+2

What will happen if the last of these is executed?
22.2. A Simple Example of a Loop

We will use variations on a simple example to illustrate some basic principles. Suppose a *string* — a one-dimensional array — of 80 bytes containing character data in the EBCDIC representation begins at `Str` and ends at `Str+79`. The character string could represent data read from an 80-character record.

We want to scan the string and replace all special (non-alphanumeric) characters by blanks. That is, any character with EBCDIC representation less than \(C' \text{a}' (X'81') \) should be replaced by \(C'' (X'40') \). Thus, letters and digits will be unchanged.

We begin with the example in Figure 167. It performs the required processing in a straightforward but perhaps clumsy way. This "problem" will be used for several more examples, so try to understand the basic idea here.

![Figure 167](image)

The character comparisons are made in the rightmost bytes of registers GR0 and GR2.\(^{134}\) The address of the byte being examined is in GR4, and is incremented by 1 at each step, and was initialized to the address of the first character before entering the loop. The branch instruction at the end of the loop must branch if the contents of GR1 is *less* than 80, not if it is less than *or equal* to 80: otherwise, the final test would cause the byte at `Str+80` to be examined and possibly changed. The string ends at `Str+79`.

Exercises

22.2.1.(2) Show the result at `Str` after the program segment in Figure 167 completes execution.

22.2.2.(1) Revise the program in Figure 167 to use extended relative branch mnemonics and no literals.

\(^{133}\) Table 13 on page 89 shows that in the EBCDIC character representation, all letters and numeric digits have encodings greater than \(X'80' \).

\(^{134}\) LA (and not LHI) was used to load GR2 and GR3 with \(C' \text{a}' \) and \(C' \). LA and LHI are both very fast instructions; the CPU pays special attention to LA, because address generation is a fundamental operation. Basically, there's no detectable difference in speed.
22.3. Simple Tables and Array Indexing

The next version of this program uses the indexing capabilities of the IC and STC instructions. Assume that the character string at \texttt{Str} has been defined as in Figure 167.

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{SR 0,0}</td>
<td>Clear GR0 for character insertion</td>
</tr>
<tr>
<td>\texttt{SR 1,1}</td>
<td>Initialize index to 0</td>
</tr>
<tr>
<td>\texttt{LA 3,C'}</td>
<td>c(GR3) = blank at right end</td>
</tr>
<tr>
<td>\texttt{GetChar IC 0,Str(1)}</td>
<td>Get a character from string</td>
</tr>
<tr>
<td>\texttt{C 0,=A(C'}</td>
<td>Compare to letter 'a'</td>
</tr>
<tr>
<td>\texttt{JNL Okay}</td>
<td>Jump if not less than 'X'81'</td>
</tr>
<tr>
<td>\texttt{STC 3,Str(1)}</td>
<td>Replace by a blank</td>
</tr>
<tr>
<td>\texttt{Okay LA 1,1(,1)}</td>
<td>Increment index by 1</td>
</tr>
<tr>
<td>\texttt{C 1,=F'80'}</td>
<td>Compare to length of string</td>
</tr>
<tr>
<td>\texttt{JL GetChar}</td>
<td>Branch if not done</td>
</tr>
</tbody>
</table>

Figure 168. A simple loop, using indexing

The byte being examined is now addressed using GR1 as an index register. The first time the IC instruction named \texttt{GetChar} is executed, the contents of GR1 is zero and the Effective Address generated will be the address of \texttt{Str}. On the last execution of the IC instruction, the contents of GR1 is 79, and the last byte of the string is inserted into GR0 for examination. Then, after the LA instruction named \texttt{Okay} is executed, the contents of GR1 is 80, the branching condition for the final JL instruction is not met, and control will pass to the following instruction.

A minor difference in this version is that the 32-bit word containing the EBCDIC representation of the letter 'a' is now a word in memory, specified by the literal =A(C' a'), rather than in GR2 as before.

Figure 169 illustrates another use of indexing. Three fullword integers stored beginning at \texttt{QQ} are added with tests for overflow. In this case, however, after the sum is complete, a branch to \texttt{NoErr} is made if no overflows occurred, to \texttt{Err1} if exactly one overflow occurred, and to \texttt{Err2} if two.

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{SR 1,1}</td>
<td>Set overflow count in GR1 to zero</td>
</tr>
<tr>
<td>\texttt{L 0,QQ}</td>
<td>Load first integer into GR0</td>
</tr>
<tr>
<td>\texttt{A 0,QQ+4}</td>
<td>Add second integer</td>
</tr>
<tr>
<td>\texttt{JNO A1}</td>
<td>Branch if no overflow</td>
</tr>
<tr>
<td>\texttt{LA 1,4(,1)}</td>
<td>Indicate one overflow</td>
</tr>
<tr>
<td>\texttt{A 0,QQ+8}</td>
<td>Add third integer</td>
</tr>
<tr>
<td>\texttt{JNO A2}</td>
<td>Branch if no overflow</td>
</tr>
<tr>
<td>\texttt{LA 1,4(,1)}</td>
<td>Indicate an overflow</td>
</tr>
<tr>
<td>\texttt{A2 B BrTbl(1)}</td>
<td>Indexed(!) branch into branch table</td>
</tr>
<tr>
<td>\texttt{BrTbl J NoErr}</td>
<td>0-overflow branch</td>
</tr>
<tr>
<td>\texttt{J Err1}</td>
<td>1-overflow branch</td>
</tr>
<tr>
<td>\texttt{J Err2}</td>
<td>2-overflow branch</td>
</tr>
</tbody>
</table>

Figure 169. Indexing into a branch table

When the instruction named \texttt{A2} is reached, GR1 contains the number of overflows multiplied by four. This is used as an index in computing the Effective Address of the BC instruction at \texttt{A2}, which will be \texttt{BrTbl}, \texttt{BrTbl+4}, or \texttt{BrTbl+8}. The appropriate branch instruction will then transfer control to the desired location. The symbol \texttt{BrTbl} need not be on a fullword boundary: the index in GR1 is incremented by 4 for each overflow to account for the length of the J instructions.

Branch tables provide a fast and efficient way to route control to different parts of a program.

\footnote{Review Sections 5.3 and 9.5 for a quick summary of indexing.}

\footnote{While =F'129' and =A(X'81') would give identical results, using the fullword integer literal is a poor practice, because your reader can't tell that the literal is intended for use in a character comparison.}
Exercises

22.3.1.(2) A list of N halfword integers is stored beginning at \text{DATA} and the number N is a halfword integer at \text{NBR}. Write a code sequence that will store at the fullwords \text{POS}, \text{NEG}, and \text{NZT} respectively the sum of the positive terms, the sum of the negative terms, and the number of zero terms.

22.3.2.(1) What will happen if the conditional branch instruction named \text{A2} in Figure 169 is changed to a relative branch instruction?

22.3.3.(2) + Revise Figure 168 to use immediate operands to replace references to operands in memory.

22.4. Branch on Count Instructions

The branch on count instructions are shown in Table 118. None of them changes the CC setting.

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>46</td>
<td>BCT</td>
<td>RX</td>
<td>Branch on Count (32)</td>
<td>06</td>
<td>BCTR</td>
<td>RR</td>
<td>Branch on Count Register (32)</td>
</tr>
<tr>
<td>E346</td>
<td>BCTG</td>
<td>RXY</td>
<td>Branch on Count (64)</td>
<td>B946</td>
<td>BCTGR</td>
<td>RRE</td>
<td>Branch on Count Register (64)</td>
</tr>
<tr>
<td>A76</td>
<td>BRCT</td>
<td>RI</td>
<td>Branch Relative on Count (32)</td>
<td>A77</td>
<td>BRCTG</td>
<td>RI</td>
<td>Branch Relative on Count (64)</td>
</tr>
</tbody>
</table>

Table 118. Branch on count instructions

Like the conditional relative branches, the Assembler provides extended mnemonics for the two branch relative on count instructions:

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Extended Mnemonic</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRCT</td>
<td>JCT</td>
</tr>
<tr>
<td>BRCTG</td>
<td>JCTG</td>
</tr>
</tbody>
</table>

Table 119. Extended mnemonics for branch relative on count instructions

The Branch on Count instructions simplify counting and branching operations like those in Figures 167 and 168 above. As with the BCR and BC instructions, the branch address is obtained either from R_2 for BCTR and BCTRG (unless the R_2 digit is zero, in which case no branch is ever taken); or from the Effective Address for BCT and BCTG.

The branch address is computed first. Then, the branching condition is determined by first arithmetically reducing the contents of R_1 by one, and branching only if the resulting contents of R_1 is not zero. That is, the branch does not occur only when the result is zero.

The CC is unchanged, and has no effect on the branching condition. An interruption condition is never recognized, even if an internal fixed-point overflow occurs (that is, if the new contents of R_1 “wraps around” from the largest negative number to the largest positive number).

We can rewrite our original example in Figure 167 to use a JCT instruction, by stepping backwards along the string of characters starting at \text{Str+79} and ending at \text{Str}. This lets us use the same quantity both as an index and a counter.
SR 0,0 Clear GR0
LA 1,80 Set GR1 to number of characters
LA 2,'c'a' c(GR2) = letter 'a'
LA 3,'c' c(GR3) = blank
Next IC 0,Str-1(1) Get a character
CR 2,0 Compare 'a' to character
JNH Okay Branch if 'a' is low or equal
STC 3,Str-1(1) Otherwise blank it out
Okay JCT 1,Next Count down by 1, jump if not 0

Figure 170. A backward loop to scan and replace characters

We used the implied address Str-1 in the second operand of the IC and STC instructions because the possible values in GR1 now run from 80 to 1, rather than from 0 to 79 as before. The range of values is different, but the direction of incrementation makes no difference in this example. This can be thought of as reflecting a difference in numbering the bytes in the string: if we number them from 0 to 79 they are addressed by writing the operand as Str(1); but if the bytes are numbered from 1 to 80, they must be addressed by writing the operand as Str-1(1).

On the final pass through the loop, the contents of GR1 will be 1; when the BCT instruction is executed, the contents of GR1 is reduced to zero, the branching condition is finally not met, and control passes to the next sequential instruction. We see an immediate gain in program efficiency over the example in Figure 168: if we count the instructions inside the loop, we have reduced them from 7 to 5, and we would expect about the same reduction in processing time.

The Branch on Count instructions are especially useful when a predetermined number of loop iterations is needed, and no special attention must be paid to indexing quantities. The count of loop iterations is often set at execution time rather than at assembly time.

To illustrate several uses of these instructions, consider these examples taken from previous sections.

1. The word at Nbr contains a positive integer N; compute the sum of the cubes of the first N integers. (See Figure 125 on page 267)
 L 4,Nbr c(GR4) = index 'K', initially N
 SR 5,5 Initialize sum to zero
 Next LR 1,4 c(GR1) = K
 MR 0,1 K * K
 MR 0,4 K cubed
 AR 5,1 Add to sum
 JCT 4,Next Decrease K by 1, and loop
 ST 5,Sum Store sum

2. The halfword at NN contains a positive integer N; store at NSq the sum of the first N odd integers. (See Figure 82 on page 220)
 SR 0,0 Clear sum to zero
 LH 1,NN Get N from memory
 Loop LA 2,0(1,1) (Count + Count) in GR2
 BCTR 2,0 (2 * Count) - 1
 AR 0,2 Add to sum
 JCT 1,Loop Reduce count and branch
 ST 0,NSq Store result

Figure 171. Calculate the sum of the first N odd integers

Because N is positive and at most 15 bits long, we can use the LA instruction to compute (N+N) in one step, since we know the result will fit in the rightmost 24 bits of GR2 for any addressing mode (so long N is less than 2^22). The following BCTR instruction does not branch, because the R2 digit is zero; its only effect is to reduce the contents of GR2 by one, as required. (The K-th odd integer is 2K−1.)

3. Find the two’s complement of the double-length integer stored in the pair of words at Arg. (See Figure 91 on page 227)
LM 6,7,Arg Double-length number in (GR6,GR7)
LCR 6,6 Complement high-order part
LCR 7,7 Complement low-order part
JZ XXX Branch if carry out of GR7
BCTR 6,0 Otherwise reduce c(GR6) by 1
XXX STM 6,7,Arg Store complemented result

This is identical to the example in Figure 91 except that the BCTR instruction replaces

SL 6,=F'1'
or

AHI 6,-1

so the CC setting may be different when the STM is executed. The BCTR instruction with R₂=0 may be used this way anywhere in a program; it is shorter than subtracting a constant “1” from memory, but has the possible (minor) disadvantage that the CC is not set.¹³⁷

As a further example of the BCT instruction, the program segment in Figure 172 stores the cubes of the integers from 1 to 10 in a table of ten successive fullwords starting at the word named Cube, in descending order.

NCubes Equ 10 Number of table entries
LA 4,NCubes c(GR4) = number to be cubed
Mult LR 3,4 Move it to GR3
MR 2,3 Square it
MR 2,4 And cube it
LR 1,4 Set up index in RX
SLL 1,2 Multiply by 4 for word length
ST 3,Cube-4(1) Store in correct table position
JCT 4,Mult Branch back (NCubes-1) times
-C-C-
Cube DS (NCubes)F Space for 'NCubes' Words

Figure 172. Store the cubes of the first 10 integers

In this case we used the integer argument in GR4 to index the desired word in the table. Since the table entries are 4-byte words, the index must be multiplied by four for each item, so we use SLL to multiply. Because the first entry in the table corresponds to “1 cubed”, the implied address of the ST instruction must be Cube-4 so that the address of each entry will be calculated correctly.

Exercises

22.4.1.(2)+ In Figure 171, show how you can eliminate one instruction from the body of the loop.

22.4.2.(1)+ In the BCT and BCTR instructions, what initial values of GR R₁ will cause a fixed-point overflow when the instruction is executed?

22.4.3.(2) A string of N bytes is stored beginning at String, and N is a halfword integer stored at NN. Store the string at Gnirts in reversed order.

22.4.4.(3) Suppose there is a nonnegative integer K whose value is stored in memory at the word integer KK. Starting at Str is a string of bytes whose bits are a random assortment of zeros and ones. Write a code sequence that will find the K-th one-bit in the string, and store its bit offset in the word at BitOff. For example, if the string starts with ‘X’C607…’, then if K=1 the bit offset is 0; if K=4 the bit offset is 6; and if K=6, the bit offset is 14.

22.4.5.(2)+ If b is the number of a register, what will happen if you execute these instructions?

¹³⁷ AHI and BCTR are both very fast, and AHI sets the condition code.
BCT b,0(,b) or BCT b,0(,b,0)

22.4.6.(3) A list of 100 fullword integers is stored beginning at the word named IntList. Write a code sequence that moves the integers into a list beginning at NewList, but do not move an item if it is identical to its predecessor. Store the number of items in the new list at NumNews. For example, if the first six values at IntList are 3, 5, 5, 5, 4, 3, then the list at NewList would begin with 3, 5, 4, 3.

22.4.7.(2) The following code sequence is supposed to calculate the same sum of N odd integers as in Figure 171. Why doesn’t it? What does it calculate?

```assembly
LH 7,NN
LA 1,1
XXX LA 0,1(7,7)
AR 1,0
JCT 7,XXX
ST 1,Nsq
```

22.4.8.(3) For the program below, determine first the code assembled for each of the instruction statements. Then when (at execution time) control reaches the SVC instruction, determine c(GR2). (Don’t try to assemble and then execute the program, since the SVC will undoubtedly do something undesirable.)

Ex22_4_8 START 0
USING *,8 Establish addressability
BASR 8,0 Set base register
LA 4,4 Initialize counter
LA 7,AA Initialize address
SR 2,2 Set sum box to zero
Loop NOPR 0 Let the CPU catch its breath
AH 2,0(,7) Add a data item to the sum
LA 7,2(0,7) Increment address by 2
BCT 4,Loop Branch back if not done
SVC 3 Do something unforgettable
AA DC H’1,2,3,4,5,6,7,8,9’ Table of numbers
END Ex22_4_8

22.4.9.(4) Repeat Exercise 22.4.6, but this time the results at NewList may not contain any duplicate items. For example, if the six initial values at IntList are 2, 3, 2, 4, 2, 3, NewList would begin with the values 2, 3, 4.

22.4.10.(2) Write a sequence of instructions that will count the number of 1-bits in GG1 and leave the count in GG0. The original contents of GG1 need not be preserved.

22.4.11.(2) Repeat Exercise 17.2.6 using a BCT instruction to count the number of shifts.

22.4.12.(3) These instructions are intended to form the sums C(J)=A(J)+B(J) for values of J from 1 to 64. Show the generated object code, assuming that the PrintOut instruction generates exactly 32 bytes on the first available halfword boundary.
<table>
<thead>
<tr>
<th>Loc</th>
<th>Object Code</th>
<th>Assembler Language Statements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>BASR 12,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Using *,12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LA 3,64</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LA 7,A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Using A,7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Loop L 0,A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A 0,B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ST 0,C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BCT 3,Loop</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Drop 7</td>
</tr>
<tr>
<td></td>
<td><32 bytes></td>
<td>PrintOut *</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>DS 64F</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>DS 64F</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>DS 64F</td>
</tr>
</tbody>
</table>

22.4.13.(2)+ In Exercise 22.4.12, the instructions don’t perform the expected calculation. Explain what happens, and what needs to be fixed.

22.4.14.(3)+ An exercise required writing instructions to count the number of 1-bits in GR1 and leave the count in GR0. A student wrote:

```
SR 0,0     Set count to zero
LA 2,32    Count 32 bits
Loop SLL 1,1 Shift a bit into sign position
LTR 1,1    Test sign bit
BZ Next Branch if sign bit is zero
LA 0,1,(0) Add 1 to count of 1-bits
Next BCT 2,Loop Repeat for all 32 bits
```

The instructions didn’t work. Find and fix the errors.

22.4.15.(3)+ Write instructions to count the number of 1-bits in GR1, leave the count in GR0, and leave GR1 unchanged without saving and then restoring its contents.

22.4.16.(2)+ State the cases in which each of the following five instruction sequences give different results, and explain the differences.

(1) LCR 0,0 (2) X 0,=F'-1' (3) X 0,=F'1'
 A 0,=F'1' AL 0,=F'1'
(4) BCTR 0,0 (5) S 0,=F'1'
 X 0,=F'-1' X 0,=F'-1'

22.4.17.(2)+ Consider these three instructions:

```
LCR 1,1
BCTR 1,0
LCR 1,1
```

1. What do these instructions do?
2. What instruction(s) do they imitate?
3. How do final Condition Code settings differ between these three instructions and the instruction(s) they imitate? For at least these initial values in GR1:

(1) X'00000000'
(2) X'00000001'
(3) X'7FFFFFFF'
(4) X'80000000'
(5) X'FFFFFFFF'

determine the resulting c(GR1) and the CC setting from executing the three instructions, and compare the results to what you get by executing the “imitated” instruction.
22.5. Looping in General

Most of these programming examples used loops to perform some iterative task, and the termination condition depended on a counting operation. More generally, many applications require that

- some quantity be established as an index
- whose value is changed regularly by an increment
- and is then compared to some comparand;
- a branch may then be made depending on some condition determined by the comparison.

These four terms — index, increment, comparand, and condition — will appear in several forms when we look at the branch on index instructions in Section 22.6.

The term “index” means the variable quantity that controls or determines completion of the loop; it may or may not be related to a value used as an index in an RX-type instruction (that is, specified by an index register specification digit).

If the increment is negative it might be more appropriate to call it a decrement. Rather than using special names to distinguish the sign of the increment, we will assume the increment can be either positive or negative.

Loops have many forms; here are two of the most common. The loops we have seen tested for loop completion at the end of the loop; this is called a “Do-Until” loop, because the loop is executed until the termination condition is reached. This is illustrated in Figure 173.

As this figure indicates, a Do-Until loop is always executed once.¹³⁸

The other form is called a “Do-While” loop, because the loop is executed only while the termination condition has not been reached. This is illustrated in Figure 174.

For the Branch on Count instructions, the four loop-control items are all implied by the instruction: the index is in register R₁, the increment is −1, the comparand is zero, and the condition for branching is inequality. This rather limited set of possibilities may be sufficient for you to code your loop effectively.

¹³⁸ For many years, this was the characteristic behavior of loops in the FORTRAN programming language.
Note!

The terminology for Do-While and Do-Until loops can be misleading. Such a loop is not executed until the precise moment when the test condition becomes true, or only while the test condition remains true.

Figure 175 shows another method to calculate a table of the first 10 cubes. The difference from Figure 172 is that an address, rather than a subscripting index, is used as the varying quantity controlling execution of the loop.

<table>
<thead>
<tr>
<th>NCubes</th>
<th>Equ 10</th>
<th>Number of table entries</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA 1,Cube+0*4</td>
<td>Address of first table entry</td>
<td></td>
</tr>
<tr>
<td>LA 2,Cube+(NCubes-1)*4</td>
<td>Address of last table entry</td>
<td></td>
</tr>
<tr>
<td>LA 3,1</td>
<td>c(GR3) = number to be cubed</td>
<td></td>
</tr>
</tbody>
</table>

Mult

LR 5,3	Move multiplicand to GR5
MR 4,3	Square
ST 5,0(,1)	Store in table
LA 3,1(,3)	Increment number to be cubed
LA 1,4(,1)	Increment table address
CR 1,2	Compare to end address
JNH Mult	Jump back if not past end of table

Cube

| DS (NCubes)F | Table of resulting values |

Figure 175. Store the cubes of the first 10 integers in a different way.

In this case an explicit address in the ST instruction is used, rather than an implied address as in Figure 172. This means that the loop termination condition is determined from address arithmetic, not from tests on any of the quantities being calculated in the loop. It’s often convenient to perform such addressing calculations explicitly, rather than rely on the Assembler to assign all bases and displacements. The “index” of the entries in the table can be thought of as running from 0 to (NCubes − 1)*4 = 36 in steps of 4.

We used indexing in Figures 172 and 175 to compute a table of cubes. In Figure 172, the “index” of the loop in GR4 is also used in GR1 to “index” the ST instruction; in Figure 175, the “index” of the loop is the address contained in GR1, but no RX-style “indexing” is done in any of the RX instructions.

Do-Until and Do-While loops are examples of “Structured Programming” forms, but other types of loop structures are often used. For example, you can test for a loop-exit condition in the body of the loop:

Exercises

22.5.1.(2) A table of N halfword integers is stored beginning at HH, and N is a halfword integer at NHwds. Store the integers into the table starting at RR in reverse order.

22.5.2.(2) Your solution to Exercise 22.4.9 will probably contain two loops. What are their types?

22.5.3.(1) What type of loop is illustrated in Figure 175?
22.6. Branch on Index Instructions

Because indexed loops are a key part of many programs, z System provides the Branch on Index High and Branch on Index Low or Equal instructions shown in Table 120. They can greatly simplify coding of loops.

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>86</td>
<td>BXH</td>
<td>RS</td>
<td>Branch on Index High (32)</td>
<td>84</td>
<td>BRXH</td>
<td>RSI</td>
<td>Branch Relative on Index High (32)</td>
</tr>
<tr>
<td>87</td>
<td>BXLE</td>
<td>RS</td>
<td>Branch on Low or Equal (32)</td>
<td>85</td>
<td>BRXLE</td>
<td>RSI</td>
<td>Branch Relative on Low or Equal (32)</td>
</tr>
<tr>
<td>84</td>
<td>BRXH</td>
<td>RSI</td>
<td>Branch Relative on Index High (32)</td>
<td>85</td>
<td>BRXLE</td>
<td>RSI</td>
<td>Branch Relative on Low or Equal (32)</td>
</tr>
<tr>
<td>87</td>
<td>BXLE</td>
<td>RS</td>
<td>Branch on Low or Equal (32)</td>
<td>EB44</td>
<td>BXHG</td>
<td>RSY</td>
<td>Branch on Index High (64)</td>
</tr>
<tr>
<td>84</td>
<td>BRXH</td>
<td>RSI</td>
<td>Branch Relative on Index High (32)</td>
<td>EB45</td>
<td>BXLEG</td>
<td>RSY</td>
<td>Branch on Index Low or Equal (64)</td>
</tr>
<tr>
<td>85</td>
<td>BRXLE</td>
<td>RSI</td>
<td>Branch Relative on Low or Equal (32)</td>
<td>EC44</td>
<td>BRXHG</td>
<td>RIE</td>
<td>Branch Relative on Index High (64)</td>
</tr>
<tr>
<td>85</td>
<td>BRXLE</td>
<td>RSI</td>
<td>Branch Relative on Low or Equal (32)</td>
<td>EC45</td>
<td>BRXLG</td>
<td>RIE</td>
<td>Branch Relative on Index Low or Equal (64)</td>
</tr>
</tbody>
</table>

Table 120. Branch on index instructions

As there are no essential differences between BXH/BXLE and BXHG/BXLEG other than using 32-bit registers for the former and 64-bit registers for the latter, our examples will use the 32-bit forms. None of the instructions changes the CC setting.

As with Branch on Count, these instructions provide the three functions of incrementation, comparison, and conditional branching, but with much greater flexibility. BXH and BXLE are RS-type instructions requiring two register specification digits \(R_1 \) and \(R_3 \), as indicated in Tables 121 and 122.

<table>
<thead>
<tr>
<th>opcode</th>
<th>(R_1)</th>
<th>(R_3)</th>
<th>(B_2)</th>
<th>(D_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 121. RS-type BXH and BXLE instructions

BXHG and BXLEG are RSY-type instructions that also require \(R_1 \) and \(R_3 \) operands:

<table>
<thead>
<tr>
<th>opcode</th>
<th>(R_1)</th>
<th>(R_3)</th>
<th>(B_2)</th>
<th>(D_2)</th>
<th>(DL_2)</th>
<th>(DH_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 122. RSY-type BXHG and BXLEG instructions

The relative-immediate forms of the branch on index instructions use two different instruction formats, RSI and RIE:

<table>
<thead>
<tr>
<th>opcode</th>
<th>(R_1)</th>
<th>(R_3)</th>
<th>(RI_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 123. RSI-type BRXH and BRXLE instructions

<table>
<thead>
<tr>
<th>opcode</th>
<th>(R_1)</th>
<th>(R_3)</th>
<th>(RI_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 124. RIE-type BRXHG and BRXLEG instructions

Like the STM and LM instructions, the use of registers other than GR \(R_3 \) may be implied. First, note that all of the loop-control quantities (index, increment, and comparand) are carried in registers. The index is always in GR \(R_1 \), and the increment is always in GR \(R_3 \). The comparand is contained either in (GR \(R_3+1 \)) (if \(R_3 \) is even), or in GR \(R_3 \) (if \(R_3 \) is odd).

Thus, if we write

\[\text{BXLE } 7,4,\text{NEXT} \]

then the index is in GR7, the increment is in GR4, and the comparand is in GR5. On the other hand, if we write

\[\text{BXLE } 7,5,\text{NEXT} \]
the index is again in GR7, but both the increment and the comparand are in GR5. Using an odd-numbered register for both the increment and the comparand will be discussed in Section 22.9.

We use a simple notational device to illustrate the fact that the comparand is always in an odd-numbered register: that is, if the \(R_3 \) operand is even, the comparand is in GR\((R_3+1)\), and if the \(R_3 \) operand is odd, the comparand is in GR \(R_3 \). We write \(R_3|1 \) to mean that the register containing the comparand is determined by ORing a low-order 1 bit into the \(R_3 \) digit. Thus, GR8|1 refers to GR9, and GR9|1 is the same as GR9.\(^{139}\)

The operation of Branch on Index instructions, as sketched in Figure 176, is:

1. The sum of the index and increment is computed internally, and any overflow occurring in forming the sum is ignored.
2. The sum is then compared algebraically to the comparand. Whether or not the branching condition is met is noted: for “Branch on Index High” this means that the sum is algebraically greater than the comparand, and for “Branch on Index Low or Equal” that the sum is algebraically less than or equal to the comparand.
3. The sum then replaces the index, and the branch is taken if the branching condition is met.

\[\text{Branch on Index} \]

\[\text{Decide:} \quad \text{Compute branch address} \]

\[\text{Compute index + Increment} \]

\[\text{Compare sum to Comparand} \]

\[\text{Is Branch condition met?} \]

\[\text{No} \rightarrow \text{Sum replaces index} \rightarrow \text{Br.Addr to IA} \]

\[\text{Yes} \rightarrow \text{Fetch next instruction} \]

Figure 176. Operation of BXH and BXLE instructions

The branching condition is *not* reflected in the CC setting: neither of the “Branch on Index” instructions changes the CC.

Because the branch address is computed during the “Decode” portion of the instruction cycle before incrementation takes place, the Effective Address may not be as expected if the \(R_1 \) and \(B_2 \) digits are the same (unless both are zero, which is very unlikely.)

It’s important to note that the comparison takes place before the sum replaces the index; we will see examples of situations where this is important. (Exercise 22.9.8 is recommended!) Figure 177 shows another way to visualize the execution of BXH and BXLE.

\[\text{Branch on Index} \]

\[\text{Sum = index + increment} \]

\[\text{ opcode?} \]

\[\text{ Br.addr to IA} \]

\[\text{ sum to index} \]

\[\text{sum \leq \ comparand \ ?} \]

\[\text{sum > comparand \ ?} \]

Figure 177. Operation of BXH and BXLE instructions

\(^{139}\) We are using the PL/I-language notation for the logical “OR” operation, represented by the vertical-bar character “\(|\)”.
The Branch on Index instructions are powerful and useful, though they sometimes seem difficult. Normal uses require three general registers, of which two must be an even-odd register pair.

The placement of the comparand in R₃|1 rather than in R₃+1 (as would seem more useful and natural) is undoubtedly due to a design requirement for the original models of System/360: it was simpler to OR than to add a low-order one-bit to the register specification digit. Also, other double-length instructions such as M, D, and SLDA specify an even-numbered R₁ register, and the corresponding odd-numbered register may be “addressed” in the CPU by forcing a low-order one-bit into the register specification digit R₁.

Like the conditional relative branches, the Assembler provides extended mnemonics for the four branch relative on index instructions:

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Extended Mnemonic</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRXH</td>
<td>JXH</td>
</tr>
<tr>
<td>BRXHG</td>
<td>JXHG</td>
</tr>
<tr>
<td>BRXLE</td>
<td>JXLE</td>
</tr>
<tr>
<td>BRXLG</td>
<td>JXLEG</td>
</tr>
</tbody>
</table>

Table 125. Extended mnemonics for branch relative on index instructions

Exercises

22.6.1.3) In the execution of the BXH and BXLE instructions, any overflow in forming the sum of the index and the increment is ignored. However, the comparison of the sum and the comparand requires an internal subtraction, in which an overflow might occur.

Make a table that includes all of the eight possible combinations of (1) BXH or BXLE, (2) sign of result of subtraction is + or −, and (3) an internal overflow did or did not occur during the subtraction. Determine for each of the eight combinations whether or not a branch will occur.

22.7. Examples Using BXLE

To illustrate BXH and BXLE, consider the example given in Figure 167 in Section 22.2, where we want to replace non-alphanumeric characters by blanks. We’ll rewrite the code sequence to use a BXLE instruction.

```
LM 0,3,=F'0,0,1,79'
* Preset registers GRO-GR3
* Chars inserted in GRO, index in GR1,
* increment in GR2, comparand in GR3.
* LM 4,5,=A(C’a’,C’ ’)  Letter ‘a’ in GR4, blank in GR5.
GetChar IC 0,Str(1)  Get a character from the string
CR 0,4 Compare to letter ‘a’ in GR4
BNL Alpha Branch if alphanumeric
STC 5,Str(1) Otherwise, store a blank
Alpha BXLE 1,2,GetChar Increment, test, and branch
```

Figure 178. Replacing special characters with blanks, using BXLE

The values of the index run from 0 to 79; when control reaches the BXLE instruction, the increment (+1) in GR2 is added to c(GR1). Because GR2 is an even-numbered register, the sum is compared to the comparand in the next higher-numbered register, GR3. If the sum is less than or equal to 79, the branching condition is met, and control will be transferred to the instruction named GetChar after the sum is placed back into GR1. When control finally passes to the instruction following the BXLE, c(GR1) will be 80.
To give an example where BXLE appears in a more normal context, we will rewrite Figures 172 and 175 to compute a table of the cubes of the first 10 integers, stored starting at Cube.

<table>
<thead>
<tr>
<th>NCubes</th>
<th>Equ</th>
<th>10</th>
<th>Number of table entries</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA</td>
<td>7,1</td>
<td>Initial integer = 1</td>
<td></td>
</tr>
<tr>
<td>SR</td>
<td>4,4</td>
<td>Set index to zero</td>
<td></td>
</tr>
<tr>
<td>LA</td>
<td>2,4</td>
<td>Increment of +4 for indexing</td>
<td></td>
</tr>
<tr>
<td>LA</td>
<td>3,4*(NCubes-1)</td>
<td>Comparand (=36) in GR3</td>
<td></td>
</tr>
<tr>
<td>Mult</td>
<td>LR</td>
<td>1,7</td>
<td>N in GR1</td>
</tr>
<tr>
<td></td>
<td>MR</td>
<td>0,1</td>
<td>N * N</td>
</tr>
<tr>
<td></td>
<td>MR</td>
<td>0,7</td>
<td>N cubed</td>
</tr>
<tr>
<td></td>
<td>ST</td>
<td>1,Cube(4)</td>
<td>Store in table</td>
</tr>
<tr>
<td></td>
<td>AHI</td>
<td>7,1</td>
<td>Increase N by 1</td>
</tr>
<tr>
<td></td>
<td>BXLE</td>
<td>4,2,Mult</td>
<td>Increase index by 4 and loop</td>
</tr>
</tbody>
</table>

Figure 179. Creating a table of cubed integers using BXLE

This segment uses fewer instructions inside the loop, at the expense of some extra instructions outside the loop: this is often a valuable technique, especially for loops executed many times. The following two code segments do the same calculation, but are set up slightly differently.

<table>
<thead>
<tr>
<th>NCubes</th>
<th>Equ</th>
<th>10</th>
<th>Number of table entries</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA</td>
<td>7,1</td>
<td>Initial value of N = 1</td>
<td></td>
</tr>
<tr>
<td>LA</td>
<td>4,4</td>
<td>Set increment in GR4 to 4</td>
<td></td>
</tr>
<tr>
<td>LR</td>
<td>2,4</td>
<td>Initial index in GR2 is 4</td>
<td></td>
</tr>
<tr>
<td>LA</td>
<td>5,4*NCubes</td>
<td>Comparand in GR5 = 40</td>
<td></td>
</tr>
<tr>
<td>Mult</td>
<td>LR</td>
<td>1,7</td>
<td>c(GR1) = N</td>
</tr>
<tr>
<td></td>
<td>MR</td>
<td>0,1</td>
<td>N squared</td>
</tr>
<tr>
<td></td>
<td>MR</td>
<td>0,7</td>
<td>N cubed</td>
</tr>
<tr>
<td></td>
<td>ST</td>
<td>1,Cube-4(2)</td>
<td>Store in table</td>
</tr>
<tr>
<td></td>
<td>AHI</td>
<td>7,1</td>
<td>Increment N by 1</td>
</tr>
<tr>
<td></td>
<td>BXLE</td>
<td>2,4,Mult</td>
<td>Count and loop</td>
</tr>
</tbody>
</table>

Figure 180. Creating a table of cubed integers using BXLE

In this example, the index runs from 4 to 40 in steps of 4, rather than from 0 to 36 as in Figure 179. There is no significant difference between the methods illustrated in Figures 179 and 180, except that the second can be simpler: since the integer N runs from 1 to 10 in steps of 1, the multiplication by 4 to account for the length of the fullword result makes it natural to have the index run from 4 to 40 in steps of 4. In Section 23 we will examine cases where such considerations are important, when we access tables of data stored in array form.

Another variation of this example is given in Figure 181, where the index and comparand quantities are addresses.

<table>
<thead>
<tr>
<th>NCubes</th>
<th>Equ</th>
<th>10</th>
<th>Number of cubes</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA</td>
<td>4,Cube+0*4</td>
<td>Index set to initial table address</td>
<td></td>
</tr>
<tr>
<td>LA</td>
<td>2,4</td>
<td>Increment = 4 for fullwords</td>
<td></td>
</tr>
<tr>
<td>LA</td>
<td>3,Cube+(NCubes-1)*4</td>
<td>Comparand = final table address</td>
<td></td>
</tr>
<tr>
<td>LA</td>
<td>7,1</td>
<td>Initial value of N = 1</td>
<td></td>
</tr>
<tr>
<td>Mult</td>
<td>LR</td>
<td>11,7</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>MR</td>
<td>10,11</td>
<td>N * N</td>
</tr>
<tr>
<td></td>
<td>MR</td>
<td>10,7</td>
<td>N * N * N</td>
</tr>
<tr>
<td></td>
<td>ST</td>
<td>11,0(,4)</td>
<td>Store in table</td>
</tr>
<tr>
<td></td>
<td>AHI</td>
<td>7,1</td>
<td>Increment N by 1</td>
</tr>
<tr>
<td></td>
<td>BXLE</td>
<td>4,2,Mult</td>
<td>Increment address by 4 and loop</td>
</tr>
</tbody>
</table>

Figure 181. Creating a table of cubed integers with addresses as controls
Exercises

22.7.1.(3)+ Examine these two instructions, and determine (1) whether the branch to XX will be taken, and (2) what will be the contents of GR3 after both instructions have been executed.

```
LA 3,1
BXLE 3,3,XX
```

Then, answer the same two questions, assuming that the second instruction is BXH instead.

22.7.2.(3)+ Suppose we execute the following two instructions:

```
LA 3,3
BXLE 3,3,*
```

Next - - -

What will be in GR3 when the next instruction is executed? Make the same determination for BXH.

22.7.3.(3) A positive 64-bit dividend in registers GR6 and GR7 is divided by a positive divisor, using the D instruction. What will happen if the instruction following the divide is

```
BXLE 6,7,WhatNext
```
How many times will the BXLE instruction be executed? How many times will it branch? What will be the sequence of values in GR1?

22.7.10.(2)+ Suppose A, B, and C are three positive integers used to initialize the index, increment, and comparand registers of a BXLE instruction that controls the iterations of a loop. How many times will the body of the loop be executed?

22.8. Examples Using BXH

To illustrate the use of the BXH instruction, Figures 179 and 181 will be rewritten so that the indexing runs in the opposite direction. First, we calculate the table of cubes using “normal” indexing.

```
LA 7,10    Initial value of N
LHI 8,-1 c(GR8) = -1 for incrementing N
LA 4,40 Initial index = 40
LHI 2,-4 Increment = -4
SR 3,3 Comparand = 0
```

```
Mult LR 1,7 N
MR 0,7 N * N
MR 0,7 N * N * N
ST 1,Cube-4(4) Store in table
AR 7,8 Add -1 to N
BXH 4,2,Mult Count and loop
```

Figure 182. Creating a table of cubed integers using BXH

When the instruction following the BXH is reached, the index in GR4 will be zero.

We can use the value −4 for both the increment and the comparand and carry them in the same register, as in Figure 183.

```
LA 7,10    Initial value of N is 10
LA 4,36 Initial index = 36
LHI 5,-4 Increment and comparand are -4
```

```
Mult LR 1,7 N
MR 0,7 N squared
MR 0,7 N cubed
ST 1,Cube(4) Store in table
BCTR 7,0 Decrease N by 1
BXH 4,5,Mult Count down and loop
```

Figure 183. Creating a table of cubed integers, using BXH in a special way

In this case the R₃ digit 5 is odd, so R₃|₁ is the same as R₃; the BXH will increment the index in GR4 by −4, compare it to −4 (the comparand, also in GR5), and branch until the resulting sum becomes equal to −4, when control will pass to the following instruction.

Exercises

22.8.1.(3) Suppose we execute the instructions

```
SRL 1,1
BXH 1,1,*-4
```

Describe the behavior of this code segment as it depends on the initial contents of GR1. Then do the same, but with BXLE instead of BXH.
22.9. Specialized Uses of BXH and BXLE (*)

Some specialized uses of BXH and BXLE involve unusual combinations of register specification digits.

1. Suppose the contents of an odd-numbered register such as GR9 is zero. Then the instruction

\[
\text{XR } 9,9 \quad \text{Set GR9 to zero}
\]

\[
\text{BXLE } 4,9,XXX \quad \text{Branch to XXX if c(GR4) is } \leq 0
\]

will branch to XXX only if the contents of GR4 is less than or equal to zero. Similarly,

\[
\text{BXH } 4,9,YYY \quad \text{Branch to YYY if c(GR4) is } > 0
\]

would branch to YYY only if the contents of GR4 is greater than zero.

Since BXH and BXLE neither set nor test the condition code, this technique can be used in situations where a condition code reflecting the state of the contents of GR4 is not available, the current CC setting must be undisturbed, or if we want to avoid using instructions such as LTR followed by a conditional branch.

2. Suppose we want to perform the inverse of the BCT instruction: that is, we want to increment the positive contents of a register by +1, and then branch. If we set c(GR7) to +1, and c(GR2) is greater than zero, then

\[
\text{LHI } 7,1 \quad \text{Initialize GR7 to +1}
\]

\[
\text{BXH } 2,7,XXX \quad \text{Increment c(GR2), branch to XXX}
\]

will branch to XXX after incrementing c(GR2) by 1, unless the sum overflows. (There will be no indication of the overflow in the CC setting!) Similarly, if there is a negative integer in GR2,

\[
\text{BXLE } 2,7,YYY \quad \text{Branch to YYY if c(GR2) not } > +1
\]

will increment c(GR2) and branch to YYY so long as the resulting sum does not exceed +1.

3. If c(GR4) is +1, then the instruction

\[
\text{BXH } 5,4,ZZZ
\]

will increment c(GR5) by 1 and then branch if the sum does not overflow. The index and comparand are in the same register: if the comparison was made after the sum was placed in GR5, equality would always be indicated, and the BXH would never branch.

Such special uses of the Branch on Index instructions are rare; they are used mostly in applications such as table searching and loop control. Try these exercises and the Programming Problems; you'll more fully appreciate the power of the branch on index instructions.

Exercises

22.9.1.(3) Suppose c(GR2)=5 and c(GR3)=73. What will be left in GR2 after executing these two instructions?

\[
\text{BXLE } 2,2,*
\]

\[
\text{SRL } 2,1
\]

More generally, if GR2 contains a small positive integer and GR3 contains a larger positive integer, what will be in GR2? Are there limits on the value of c(GR3)?

22.9.2.(3) What will be left in GR5 after executing these instructions?

\[
\text{LHI } 5,1 \quad \text{Initialize GR5 to +1}
\]

\[
\text{BXLE } 5,5,* \quad \text{Do something interesting}
\]

Now, answer the same question for BXH.

22.9.3.(4) As in Exercise 22.7.6, the following code sequence tries to place in GR0 the number of the leftmost bit in the positive nonzero number in GR1. Prove that it works correctly. (Hint: consider the possible values of the two leftmost bits in GR1.)
LA 0,1 Initialize bit counter
LR 2,0 ... and bit count increment
SR 3,3 Zero comparand
Loop BXH 1,1,ZBit Skip if zero bit
B Done Exit with bit number in GR0
ZBit BXH 0,2,Loop Increment bit count and try again
Done -- Bit number now in GR0

22.9.4.(4) What values in GR1 will cause the instruction
BXH 1,1,Yes
to branch to the location named Yes?

22.9.5.(4) Repeat Exercise 22.9.4, but with a BXLE instruction.

22.9.6.(4) What values in GR0 and GR1 will cause the instruction
BXH 0,1,Yes
to branch to the location named Yes?

22.9.7.(4) Repeat Exercise 22.9.6, but with a BXLE instruction.

22.9.8.(2)+ The operation of the branch on index instructions has often been described as follows:
1. The increment is added to the index, and the sum replaces the index.
2. The new index is compared to the comparand to determine the branch condition.

How is this description different from ours, and when and why is this description incorrect? Give an example showing how it would affect the actual operation of the branch on index instructions.

22.9.9.(4)+ This instruction sequence evaluates X**N (X^N) for 32-bit integer values of X and N. The base value X is in GR3, and the exponent value N is in GR0. Determine the algorithm used to evaluate the exponential; assume that no overflows occur.

XR 1,1 Clear GR1 to zero
SRDL 0,1 Shift low-order exponent bit to GR1
BXH 1,1,OneBit Branch if it was a 1-bit
ZeroBit MR 2,3 Was a 0-bit, square work value
SRDL 0,1 Shift another low-order bit for test
BXLE 1,1,ZeroBit Branch if it’s zero to square again
OneBit BXLE 0,1, Finished Br if remaining exponent bits all 0
LR 5,3 More bits to do. Copy work value
Square MR 4,5 Square work value
SRDL 0,1 Move another bit for testing
BXLE 1,1,TestMore Branch if it’s zero
MR 2,5 Otherwise multiply work into answer
TestMore BXH 0,1,Square Branch if any 1-bits remaining
Finished -- -- Result is in GR3

You will find it very instructive to follow this instruction sequence for several values of the exponent such as 1, 5, 8, 11, and 15.
22.10. Summary

The loop-control instructions discussed in this section are summarized in Table 127.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Relative-Immediate Operand Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Branch on Condition (Relative)</td>
<td>BCR</td>
</tr>
<tr>
<td></td>
<td>BCRL</td>
</tr>
</tbody>
</table>

Table 126. Branch relative on condition instructions

<table>
<thead>
<tr>
<th>Operation</th>
<th>Register Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Branch on Count (Register)</td>
<td>BCTR</td>
</tr>
<tr>
<td>Branch on Count (Indexed)</td>
<td>BCT</td>
</tr>
<tr>
<td>Branch on Count (Relative)</td>
<td>BRCT</td>
</tr>
<tr>
<td>Branch on Index</td>
<td>BXH</td>
</tr>
<tr>
<td></td>
<td>BXLE</td>
</tr>
<tr>
<td>Branch on Index (Relative)</td>
<td>BRXH</td>
</tr>
<tr>
<td></td>
<td>BRXL</td>
</tr>
</tbody>
</table>

Table 127. Branch instructions for loop control

Instructions Discussed in this Section

The instruction mnemonics and opcodes are shown in the following table:

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Opcode</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCT</td>
<td>46</td>
</tr>
<tr>
<td>BCTG</td>
<td>E346</td>
</tr>
<tr>
<td>BCTGR</td>
<td>B946</td>
</tr>
<tr>
<td>BCTR</td>
<td>06</td>
</tr>
<tr>
<td>BRC</td>
<td>A74</td>
</tr>
<tr>
<td>BRCL</td>
<td>C04</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Opcode</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRCT</td>
<td>A76</td>
</tr>
<tr>
<td>BRCTG</td>
<td>A77</td>
</tr>
<tr>
<td>BRXH</td>
<td>84</td>
</tr>
<tr>
<td>BRXHG</td>
<td>EC44</td>
</tr>
<tr>
<td>BRXLE</td>
<td>85</td>
</tr>
<tr>
<td>BRXLG</td>
<td>EC45</td>
</tr>
</tbody>
</table>

The instruction opcodes and mnemonics are shown in the following table:

<table>
<thead>
<tr>
<th>Opcode</th>
<th>Mnemonic</th>
</tr>
</thead>
<tbody>
<tr>
<td>06</td>
<td>BCTR</td>
</tr>
<tr>
<td>46</td>
<td>BCT</td>
</tr>
<tr>
<td>84</td>
<td>BRXH</td>
</tr>
<tr>
<td>85</td>
<td>BRXLE</td>
</tr>
<tr>
<td>86</td>
<td>BXH</td>
</tr>
<tr>
<td>87</td>
<td>BXLE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Opcode</th>
<th>Mnemonic</th>
</tr>
</thead>
<tbody>
<tr>
<td>A74</td>
<td>BRC</td>
</tr>
<tr>
<td>A76</td>
<td>BRCT</td>
</tr>
<tr>
<td>A77</td>
<td>BRCTG</td>
</tr>
<tr>
<td>B946</td>
<td>BCTGR</td>
</tr>
<tr>
<td>C04</td>
<td>BRCL</td>
</tr>
<tr>
<td>E346</td>
<td>BCTG</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Opcode</th>
<th>Mnemonic</th>
</tr>
</thead>
<tbody>
<tr>
<td>EB44</td>
<td>BXHG</td>
</tr>
<tr>
<td>EB45</td>
<td>BXLEG</td>
</tr>
<tr>
<td>EC44</td>
<td>BRXHG</td>
</tr>
<tr>
<td>EC45</td>
<td>BRXLG</td>
</tr>
</tbody>
</table>

Terms and Definitions
R₃|1
A notation referring to the general register containing the comparand of a branch on index instruction. If the R₃ operand is even, R₃|1 is the next higher odd-numbered register; and if the R₃ operand is odd, R₃|1 is that odd-numbered register.

index
A varying quantity used to control each iteration of a loop.

increment
A (normally) constant value used to update the value of the index for each iteration of a loop.

comparand
A quantity to which the incremented index is compared to determine whether a loop should be repeated.

Programming Problems

Problem 22.1. Write a program to print a formatted hexadecimal multiplication table.

Problem 22.2. Each section of this text starts with large “block numbers” showing the section number. The blocks are 12 characters wide and 12 characters high.

Write a program that reads a single record containing up to 72 numeric digits, and print up to 10 “block number” digits at a time across the page, each separated from the preceding by 2 spaces. If more than 10 digits are provided on the input record, print 2 blank lines before each succeeding group. If a space appears in the input record, leave that 10-character position blank in the printed output.

Thus, if your input record contained only the three characters ‘1 2’ (with a space between the two digits), your printed output would look like this:

```
  11             22222222222
111              22222222222
1111             22  22
11               22
11               22
11               22
11               22
11               22
11               22
11               22
11               22
11111111111      222222222222
11111111111      222222222222
```

Some other sections are headed with “block letters”. You will enjoy extending your program to handle letters as well as digits.∗

∗ Such block-lettered pages were called “banner pages”, and were often used to separate fan-folded printer outputs for one job from another.
In previous chapters we discussed instructions that manipulated data in byte, halfword, word, and doubleword formats. The four sections of this chapter examine some more basic z System instructions.

- Section 23 shows how we can manipulate data consisting of single bytes and individual bits within a byte.
- Section 24 first introduces important concepts in using SS-type instructions. It then describes frequently-used instructions used to process data involving large or variable numbers of bytes, and introduces the powerful “Execute” instructions.
- Section 25 examines instructions that process very long byte strings, and strings containing a special character.
- Section 26 discusses other character representations such as ASCII, Unicode and other multiple-byte characters, and instructions to handle them.
23. Bit Data and Instructions

Instructions having an operand in the instruction itself are called *immediate* instructions: the operand is immediately available from the Instruction Register, rather than from another register or (more slowly) from memory. We saw examples of register-immediate operands in Section 21. Here, the target operand is in *memory*, whereas the RI-type and RIL-type instructions in Section 21 refer to target operands in the general registers.

23.1. SI-Type Instructions

SI- and SIY-type instructions let you manipulate byte and bit data. They use an 8-bit immediate operand contained in the second (\(I_2\)) byte of the instruction, in the two formats shown in Tables 128 and 129.

<table>
<thead>
<tr>
<th>opcode</th>
<th>(I_2)</th>
<th>(B_1)</th>
<th>(D_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 128. SI-type instruction format

<table>
<thead>
<tr>
<th>opcode</th>
<th>(I_2)</th>
<th>(B_1)</th>
<th>(DL)</th>
<th>(DH)</th>
<th>opcode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 129. SIY-type instruction format

The actions of the corresponding SI-type and SIY-type instructions are the same, so we’ll describe only the SI forms. (Remember: the SIY-type instructions support a signed 20-bit displacement, while the SI-type instructions use an unsigned 12-bit displacement.)

The operand field is written as either

\[D_1(B_1), I_2 \quad \text{or} \quad S_1, I_2 \]

showing the explicit and implied forms of address for the first operand.

The first operand of SI-type machine instruction statements typically refers to the name of a byte in memory. The second operand must be a nonnegative absolute expression of value less than 256, so that it will fit into the \(I_2\) byte of the instruction.

Table 130 describes the behavior of the instructions; the first operand is the single byte at the Effective Address.
Table 130. SI-type instruction actions

<table>
<thead>
<tr>
<th>Operation</th>
<th>Mnemonic</th>
<th>Action</th>
<th>CC set?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Move</td>
<td>MVI, MVIY</td>
<td>Operand 1 ← I₂</td>
<td>No</td>
</tr>
<tr>
<td>AND</td>
<td>NI, NIY</td>
<td>Operand 1 ← Operand 1 AND I₂</td>
<td>Yes</td>
</tr>
<tr>
<td>OR</td>
<td>OI, OIY</td>
<td>Operand 1 ← Operand 1 OR I₂</td>
<td>Yes</td>
</tr>
<tr>
<td>XOR</td>
<td>XI, XIY</td>
<td>Operand 1 ← Operand 1 XOR I₂</td>
<td>Yes</td>
</tr>
<tr>
<td>Compare</td>
<td>CLI, CLIY</td>
<td>Operand 1 Compared to I₂</td>
<td>Yes</td>
</tr>
<tr>
<td>Test Under Mask</td>
<td>TM, TMY</td>
<td>Test Selected Bits of Operand 1</td>
<td></td>
</tr>
</tbody>
</table>

Table 130. SI-type instruction actions

23.2. MVI Instructions

Table 131 lists the two Move Immediate instructions:

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>92</td>
<td>MVI</td>
<td>SI</td>
<td>Move Immediate</td>
<td>EB52</td>
<td>MVIY</td>
<td>SIY</td>
<td>Move Immediate</td>
</tr>
</tbody>
</table>

Table 131. Move Immediate instructions

MVI stores its I₂ operand into the byte at the Effective Address.

- **MVI X,0**
 Set the byte at X to zero
- **MVI X,255**
 Set the byte at X to all 1-bits
- **MVI X,'Y'**
 Store EBCDIC character ‘Y’ at X
- **MVI X,C’**
 Store EBCDIC blank at X

Figure 184. Examples of the MVI instruction

MVI is often used to initialize a byte whose bits will be used as bit flags, or to store a character. For example:

- **MVI FlagByte,0**
 Set all flag bits to zero
- **MVI CrrgCtrl,C’1’**
 Printer carriage control for new page

Exercises

23.2.1.(1) What do you expect will happen if you write these instructions?

- **MVI 0(4),B’000000000001010101’**
- **MVI 0(4),B’000000000010101010’**
- **MVI 0(4),-1**

23.3. NI, OI, and XI Instructions

Table 132 summarizes these six Storage-Immediate instructions:

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>94</td>
<td>NI</td>
<td>SI</td>
<td>AND Immediate</td>
<td>EB54</td>
<td>NIY</td>
<td>SIY</td>
<td>AND Immediate</td>
</tr>
<tr>
<td>96</td>
<td>OI</td>
<td>SI</td>
<td>OR Immediate</td>
<td>EB56</td>
<td>OIY</td>
<td>SIY</td>
<td>OR Immediate</td>
</tr>
<tr>
<td>97</td>
<td>XI</td>
<td>SI</td>
<td>XOR Immediate</td>
<td>EB57</td>
<td>XIY</td>
<td>SIY</td>
<td>XOR Immediate</td>
</tr>
</tbody>
</table>

Table 132. Logical Storage-Immediate instructions
The CC settings after NI, OI, and XI are shown in Table 133:

<table>
<thead>
<tr>
<th>Operation</th>
<th>CC setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>AND</td>
<td>0: all result bits are zero</td>
</tr>
<tr>
<td>OR</td>
<td>1: result bits are not all zero</td>
</tr>
<tr>
<td>XOR</td>
<td></td>
</tr>
</tbody>
</table>

Table 133. CC settings by SI-type logical instructions

The logical operations of the NI, OI, and XI instructions are between corresponding bits of the first and second operands, as we saw in Section 19. (You might want to review Figure 138 on page 289.)

(1) NI X,0 Same as 'MVI X,0' except CC set to 0
(2) NI X,253 Sets bit 6 at X to 0 (see below)

Figure 185. Examples of the NI instruction

Sometimes it is better to use other types of self-defining term for the second operand; example (2) could be written

NI X,B′11111101′

which more clearly shows that bit 6 will be zeroed.

(3) OI X,255 Same as 'MVI X,255' except CC set to 1
(4) OI X,B′00000010′ Sets bit 6 at X to 1

(5) OI LowerA,C′ c(LowerA) now is C′A′
 LowerA DC C′a′ Lower case letter 'a'

Figure 186. Examples of the OI instruction

XI X,B′00000010′ Inverts bit 6 at X

Figure 187. Example of the XI instruction

Exercises

23.3.1.(1) Example (5) in Figure 186 claims that the OI instruction changes C′a′ to C′A′. Is this true? Why or why not?

23.3.2.(1) Write one instruction that will set the high-order and low-order bits of the byte at Flags to zero without affecting any of the other six bits.

23.3.3.(1) Write one instruction that will set the high-order and low-order bits of the byte at Flags to one without affecting any of the other six bits.

23.4. CLI Instructions

Table 134 shows the two Compare Immediate instructions:

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>95</td>
<td>CLI</td>
<td>SI</td>
<td>Compare Immediate</td>
<td>EB55</td>
<td>CLIY</td>
<td>SIY</td>
<td>Compare Immediate</td>
</tr>
</tbody>
</table>

Table 134. Compare Immediate instructions

The CLI instruction logically compares the byte in memory to the eight-bit I operand as unsigned integers. The result is indicated by the CC setting, shown in Table 135.
You’ll remember that the same settings are generated by the CL and CLR instructions, in Table 74 on page 233.

The following statements would result in the indicated CC settings. We use literals for the first operand so that both operand values are immediately visible.

<table>
<thead>
<tr>
<th>CLI</th>
<th>CC</th>
<th>Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLI =C'A',X'C1'</td>
<td>CC = 0:</td>
<td>c(Operand 1) = I₂</td>
</tr>
<tr>
<td>CLI =X'00',0</td>
<td>CC = 0:</td>
<td>c(Operand 1) = I₂</td>
</tr>
<tr>
<td>CLI =C',B'01000000'</td>
<td>CC = 0:</td>
<td>c(Operand 1) = I₂</td>
</tr>
<tr>
<td>CLI =X'1','X'2'</td>
<td>CC = 1:</td>
<td>c(Operand 1) < I₂</td>
</tr>
<tr>
<td>CLI =C'A',250</td>
<td>CC = 1:</td>
<td>c(Operand 1) < I₂</td>
</tr>
<tr>
<td>CLI =C'X',C'X'-1</td>
<td>CC = 2:</td>
<td>c(Operand 1) > I₂</td>
</tr>
<tr>
<td>CLI =X'1','X'0'</td>
<td>CC = 2:</td>
<td>c(Operand 1) > I₂</td>
</tr>
</tbody>
</table>

Remember:

The first operand in a CLI comparison is always the byte in memory at the Effective Address.

We can rewrite the example in Figure 167 on page 333 (and its variations) to blank out the special characters in the string at Str, now using CLI and MVI instructions. We’ll start at the right (high-addressed) end and scan from right to left.

```
LA 1,80 Initialize loop count to string len
Next LA 2,Str-1(1) Increment by one
CLI 0(2),C'a' Compare addressed character with 'a'
JNL AlfaNum Skip blanking if not less than 'a'
MVI 0(2),C' Blank out if not alphanumeric
AlfaNum JCT 1,Next Count down and loop
```

Figure 188. A simpler loop to scan and replace characters

Because SI-type instructions cannot be indexed, the LA instruction named Next generates the memory address for the character to be tested. The CLI instruction then compares the byte in memory at that address to the immediate operand C’a’. If the byte in memory contains a bit pattern with value greater than or equal to C’a’, the following JNL instruction will branch around the MVI instruction. If the branching condition is not met, the MVI stores an EBCDIC blank character into the character string. These two SI-type instructions have simplified the previous examples of the same process.

Exercises

23.4.1.+(1) Suppose the length of a string of bytes starting at Data is not known, but we know that the end of the string is marked with a byte of all 1-bits. Write a code sequence which will leave the length of the string in GR1.

23.4.2.(1)+ In solving Exercise 23.4.1, a student wrote these instructions:

```
SR 1,1 Initialize index
Loop LA 1,1(1) Increment by one
CLI Data-1(1),X'FF' Test the byte
BNE Loop Branch if not all 1-bits
```

Will this work?
23.4.3.(2)+ An 80-byte record starts at Record. Using CLI, find the address of the last non-
blank character; store its address at LastChAd and store the length of the “initial” character
string (from the first character to the last nonblank) at DataLen.

23.4.4.(2) Write an instruction that will set the Condition Code to 1 without changing any data
or referencing any register, and without referencing any constants in storage.

23.4.5.(2) Write an instruction that will set the Condition Code to 2 without changing any data
or referencing any register, and without referencing any constants in storage.

23.4.6.(1)+ A programmer tested a byte at Char for the lower case letter f, and wrote

\>

He wasn’t satisfied with the result; find two ways to help him.

23.4.7.(2) Write an instruction that will set the Condition Code to 0 without changing any data
or referencing any register, and without referencing any constants in storage.

23.5. Test Under Mask Instructions

Table 136 shows the two Test Under Mask instructions:

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>91</td>
<td>TM</td>
<td>SI</td>
<td>Test Under Mask</td>
<td>EB51</td>
<td>TMY</td>
<td>SIY</td>
<td>Test Under Mask</td>
</tr>
</tbody>
</table>

Table 136. Storage-Immediate instructions

The Test Under Mask instruction is very useful in applications that examine bits. Because the
CPU cannot directly address individual bits, data in bit form must be treated differently from data
in byte or word form.

The I₂ (immediate) operand of a TM instruction is a mask indicating which bits of the addressed
byte are examined: wherever a 1-bit appears in the mask, the corresponding bit position in the
first operand is examined, and wherever a 0-bit appears in the mask, the corresponding bit of the
memory operand is ignored. The result of the examination is indicated in the Condition Code, as
shown in Table 137.

<table>
<thead>
<tr>
<th>CC</th>
<th>Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Bits examined are all zero, or mask is zero</td>
</tr>
<tr>
<td>1</td>
<td>Bits examined are mixed zero and one</td>
</tr>
<tr>
<td>3</td>
<td>Bits examined are all one</td>
</tr>
</tbody>
</table>

Table 137. CC settings after TM instruction

If the I₂ mask is zero (meaning that no bits are tested), the CC is set to zero. The following
examples illustrate uses of the TM instruction:

1. Branch to Minus if the fullword integer at Num is negative. (This technique can be used to
avoid loading anything into a register.)

 TM Num,X '80' Test leftmost bit at Num
 JO Minus Branch if a 1-bit

2. Branch to Even if the fullword integer at Num is even.

 TM Num+L'Num-1,1 Test rightmost bit of the word
 JZ Even Branch if bit is zero

3. Branch to Mixed if the bits of the byte at BB are not all zeros or all ones.

 TM BB,255 Test all eight bits
 JM Mixed Branch if mixed zero and one
4. Branch to **Small** if the value of the halfword integer at **HNum** is between -512 and $+511$: that is, if the leftmost seven bits of the integer are all 0’s or all 1’s.

\[
\begin{array}{ccc}
\text{TM} & \text{HNum,}X \text{ FE'} & \text{Test leftmost seven bits} \\
\text{BC} & 9, \text{Small} & \text{Branch if bits all zero or all one}
\end{array}
\]

The NI, OI, XI, and TM instructions let you set and test “on-off” and “yes-no” indicators in a program. For example, as in Figure 169 on page 334, suppose we wish to add the three fullword integers stored beginning at **Q**, and after all additions are done, branch to **NoErr** if no overflows occurred and to **Error** if one or more overflows occurred.

- **NI** Flag,**X** FE’ Set indicator bit for no overflows
- **L** 0,**Q** Get first integer
- **A** 0,**Q+4** Add second integer
- **JNO** NextA Branch if no overflow
- **OI** Flag,1 Set overflow bit to 1 (**on**)
- **NextA** A 0,**Q+8** Add third integer
- **J0** Error Branch if overflow
- **TM** Flag,1 Otherwise examine overflow bit
- **JZ** NoErr If bit was zero, no overflows
- **J0** Error If one, overflow occurred

Flag DS X Overflow flag byte
Q DS 3F Integers to be added

Figure 189. Setting an overflow-indication flag bit

The OI instruction ORs a 1-bit into the rightmost bit position of the byte named **Flag**, setting it to a 1. Only the rightmost bit of the byte is modified, so the remaining seven bits could be used to indicate other conditions in the same program.

As another example of these instructions, suppose we have a list of **N** halfword integers stored at **List**, where the positive nonzero fullword integer **N** is stored at **NN**. We must add the elements of the list, except that alternate elements of the list are added twice. Whether the even-numbered or the odd-numbered elements are added twice is determined by the setting of the rightmost bit of the byte named **Switch**: if the bit is 1, the odd-numbered elements (beginning with the first) are added twice.

\[
\begin{array}{ccc}
\text{LA} & 4,\text{List} & \text{Initial list address in GR4} \\
\text{L} & 3,\text{NN} & \text{Number of elements in GR3} \\
\text{SR} & 6,6 & \text{Initialize sum to zero} \\
\text{Load} & \text{LH} & 5,0,(4) \text{ Get a halfword list element in GR5} \\
\text{AR} & 6,5 & \text{Add to sum once} \\
\text{TM} & \text{Switch,1} & \text{Test switch bit} \\
\text{JZ} & \text{Once} & \text{Branch if zero, add only once} \\
\text{AR} & 6,5 & \text{Add a second time} \\
\text{Once} & \text{LA} & 4,2,(4) \text{ Increment list address by 2} \\
\text{XI} & \text{Switch,1} & \text{Invert switch bit} \\
\text{JCT} & 3,\text{Load} & \text{Get next list element}
\end{array}
\]

NN DS H Number of halfwords in the list
Switch DC B’0’ Byte with the ‘switch’ bit

Figure 190. Adding alternate list elements twice

Since the XOR of a 1-bit and any other bit inverts its value, the XI instruction alternately sets the switch bit to one and zero. The TM instruction examines only the rightmost bit of **Switch**, and the branching condition is met if the bit is zero.
23.5.1.(2) In example 4 following Table 137 on page 358, show that if the leftmost seven bits of a halfword integer are all zeros or all ones, then the value of the integer lies between -512 and $+511$.

23.5.2.(3) Show that the operation of the TM instruction can be correctly described as follows:

1. Form internally the logical AND of the first operand and I_2. If the result is zero, set the CC to zero and go to the next instruction.
2. If the result of step 1 is nonzero, form internally the logical XOR of the result byte from step (1) and I_2. If the new result is zero, set the CC to 3 and go to the next instruction.
3. Otherwise set the CC to 1, and go to the next instruction.

23.5.3.(2) Write an instruction that will set the Condition Code to 3 without changing any data, and without referencing any register.

23.5.4.(2) A programmer needed to test the sign of a 4-byte binary integer stored at BIN without using any registers, and then branch to POS if the number was not negative. He wrote:

```
TUM BIN,80 Test Under Mask for sign bit
BP POS Branch if nonnegative
```

Why didn't this work? Repair his instructions to work correctly.

23.5.5.(1) Use a TM instruction to set the Condition Code to zero without referencing any registers and without referencing any constants in storage.

23.5.6.(1) In example 3 of Section 23.5, can the extended mnemonic BNM be used to mean “Branch if Not Mixed”? Why?

23.6. Bit Data

The above examples illustrated SI-type instructions used mainly for control purposes. Another important application is to manipulate data in bit form, data that takes only two values. For example, suppose that the record of a person carrying automobile insurance requires the following “yes-no” information: (1) age less than 25? (2) male? (3) driver-training course completed? (4) married? (5) any previous claims? (6) assigned risk? Let the “yes” answers be represented by 1-bits in the byte named Status. Here are ways we could perform the given tasks.

1. The policy-holder has passed his 25th birthday.

   ```
   Under25 Equ B'10000000' Define the young-person bit
   NI Status,X'FF'-Under25 He's getting older now
   ```

2. The policy-holder has just married.

   ```
   Married Equ B'00010000' Define the married-person bit
   TM Status,Married Did he say he was already married?
   JO Bigamy (You never know!)
   OI Status,Married Indicate he's married now
   ```

3. The policy-holder has submitted a claim. If it is the first, branch to Tsk; otherwise, branch to TskTsk.

   ```
   HasClaim Equ B'00001000' Define the made-a-claim bit
   TM Status,HasClaim Test if he claimed previously
   JO TskTsk Yes, must be accident-prone
   J Tsk Accidents can happen to anyone
   ```
4. If the policy-holder is single, male, under age 25, and has not completed a driver-training course, branch to **HighCost**. As this example shows, you can test more than one bit with a single instruction:

```
Trained  Equ  B'00100000'  Define the driver-trained bit
Male     Equ  B'01000000'  Define the male-driver bit
TM       Status,Married+Trained  Test 'Married' and 'Trained'
JNZ      Next  Branch if both not zero
TM       Status,Male+Under25    Test age and sex
JO       HighCost  If young untrained male, branch
Next     - - -  Rest of program
```

5. If the policy-holder is an assigned risk, indicate that he has previous claims if he also has no driver training.

```
Assigned Equ  B'00000100'  Define the assigned-risk bit
TM       Status,Assigned  Check assignment status
JZ       Next  Branch if not assigned
TM       Status,Trained  Check driver training
JO       Next  Branch if completed
OI       Status,HasClaim  Otherwise set claim bit on
Next     - - -  Rest of program
```

6. If the policy-holder is married, or has completed driver training, branch to **LowRisk**.

```
TM       Status,Married+Trained  Check status
JM       LowRisk  Branch if either but not both
```

These examples use EQU statements to assign symbolic names to values representing bits. Unfortunately, this is not the same as assigning a name to a bit itself; languages like PL/I have a BIT data type, but Assembler Language does not.140

Exercises

23.6.1.(2) Write instructions to format the bits in the byte at `BitData` as eight EBCDIC 0 and 1 characters starting at `BitChars`.

23.6.2.(1)+ In Example 6 of Section 23.6, can the extended mnemonic BNZ be used?

23.6.3.(1)+ Suppose we defined a bit with the statement

```
Over25   EQU  'X'80'
```

How would you modify the statement in Example 1 of Section 23.6 to use this new definition?

23.7. Bit-Naming Problems (*)

To illustrate a common problem using bit data, suppose we have defined two bytes containing flag bits, as follows:

```
Flag1   DS   X  Define a byte containing flag bits
Bit0    Equ  'X'80'  Name the value of bit 0 (leftmost)
Flag2   DS   X  Another flag byte
Bit1    Equ  'X'40'  And a value for bit 1 (next)
```

Under normal circumstances, we would refer to the bits with a code sequence like

140 You can use macro instructions to implement a bit-defining and bit-handling language that names bits and protects against referring to them accidentally.
TM Flag1, Bit0 Test a bit in flag byte
JZ SomeCode Go do something if zero

The result of executing this TM instruction could easily be confused with

TM Flag1, Bit1 Test bit 1 (in the wrong byte!)
JZ MoreCode Branch if zero

or

TM Flag2, Bit0 Test bit 0 (in the wrong byte!)
JZ WhatCode Branch if zero

If there is no way to force the “definitions” of Bit0 and Bit1 to be associated with their “owning” bytes, then if we use the wrong byte name we will test or manipulate the wrong bits. If we execute the instruction

OI Flag2, Bit0

we will set a bit in the wrong byte. Mistakes like this are not uncommon.

Here is a simple technique that avoids this naming problem: define MyBit and HisBit with the following statements:

MyBit DS 0XL(X’80’) Define location and length attribute
DS X Reserve actual storage

HisBit DS 0XL(X’40’) Define location, new length attribute
DS X Reserve actual storage

Figure 191. Defining bit names safely

The zero duplication factors mean that no storage will be reserved by the two bit-definition statements. The symbols MyBit and HisBit have the value attributes of the following byte, and their length attributes can be used to indicate which bit within each byte is desired. We then test the bit with an instruction sequence like

TM MyBit, L’MyBit Test desired bit in correct byte
JZ YourCode Branch if MyBit is zero

Figure 192. Using safely-defined bit names

and no reference will be made to (now nonexistent) symbols naming the bytes containing the MyBit and HisBit bits. Referring to MyBit only by its name and length attribute greatly reduces the chances of incorrectly referencing bit data.

Some IBM macros define bit names by their position in a byte:

Bit0 Equ B’10000000’ Bit 0
Bit1 Equ B’01000000’ Bit 1
Bit2 Equ B’00100000’ Bit 2
Bit3 Equ B’00010000’ Bit 3
Bit4 Equ B’00001000’ Bit 4
Bit5 Equ B’00000100’ Bit 5
Bit6 Equ B’00000010’ Bit 6
Bit7 Equ B’00000001’ Bit 7

If you use definitions like these to set a specific bit at a known position in a byte, the bit name indicates the bit’s position. If, however, the bit is intended to have a meaning like “Initialization Complete” or “End of Input”, it is much better practice give the bit a meaningful name:

InitDone Equ B’00000001’ If 1, initialization completed
EndInput Equ B’00000010’ If 1, no further input exists
Exercises

23.7.1.(2) Suppose the definition of MyBit in Figure 191 on page 362 had been written

\[
\text{DS B}
\]
\[
\text{MyBit Equ *-1,X'80'}
\]

Would the instructions in Figure 192 on page 362 work correctly? Why or why not?

23.7.2.(2) Using the bit-naming technique illustrated in Figure 191 on page 362, define two bits named BitA and BitB in a single unnamed byte. Then, write code sequences to do the following:

1. Set BitA and BitB to zero.
2. Invert the value of BitB.
3. Branch to Both if BitA and BitB are both one.
4. Leave in GR0 the value of BitA+BitB (that is, a number which is 0, 1, or 2 depending on whether neither, either, or both bits are 1).

23.8. A Conversion Example

As a final example using SI-type instructions, suppose there is a fullword integer stored at NN that we want to convert to a character string of printable decimal digits. The sign of the number must precede the first digit; if the number is zero, the characters +0 should be placed at the right-hand end of the character string. Because a fullword integer can contain a value at most ten digits long in its decimal representation, we will reserve eleven bytes at CharVal for the result. We use the conversion method described in “2.3. Converting Integers from One Base to Another (*)” on page 21.

The method shown here works, but is clumsy and complex. We will see when we examine packed decimal data in Section 30 that other instructions greatly simplify this task.

\[
\begin{align*}
\text{D} & \quad \text{EQU 10} & \quad \text{Max number of digits} \\
\text{LA} & \quad 2,D & \quad \text{First, blank out result area} \\
\text{Blank} & \quad \text{LA 3,CharVal-1(2)} & \quad \text{Construct byte address} \\
\text{MVI} & \quad 0(3),C'-' & \quad \text{Store blanks in first 'D' bytes} \\
\text{JCT} & \quad 2,\text{Blank} & \quad \text{Branch back (D-1) times} \\
\text{LA} & \quad 3,\text{CharVal+D} & \quad \text{Set up address of rightmost digit} \\
\text{L} & \quad 1,\text{NN} & \quad \text{Get number to be converted} \\
\text{LTR} & \quad 1,1 & \quad \text{Take its magnitude} \\
\text{CnvtLoop} & \quad \text{SR 0,0} & \quad \text{Clear high-order register} \\
\text{D} & \quad 0,=F'10' & \quad \text{Generate a digit by division} \\
\text{STC} & \quad 0,0(3) & \quad \text{Store the remainder digit} \\
\text{OI} & \quad 0(3),X'F0' & \quad \text{Form correct EBCDIC representation} \\
\text{BCTR} & \quad 3,0 & \quad \text{Move character pointer left by 1} \\
\text{LTR} & \quad 1,1 & \quad \text{If quotient is zero, finished} \\
\text{JP} & \quad \text{CnvtLoop} & \quad \text{If nonzero, generate more digits} \\
\text{MVI} & \quad 0(3),C'-' & \quad \text{Assume value was -, put sign} \\
\text{TM} & \quad \text{NN,X'80'} & \quad \text{Check actual sign of argument} \\
\text{JO} & \quad \text{AllDone} & \quad \text{Branch if it was indeed -} \\
\text{MVI} & \quad 0(3),C'+' & \quad \text{Sign is +, store character} \\
\text{AllDone} & \quad - - - & \quad \text{Rest of program} \\
\text{CharVal} & \quad \text{DS CL(D+1)} & \quad \text{Output character string, with sign} \\
\text{NN} & \quad \text{DS F} & \quad \text{Number to be converted}
\end{align*}
\]

Figure 193. Converting a binary integer to characters
23.9. Instruction Modification (*)

In olden days, it was sometimes thought to be useful (or clever) to change the mask field of a conditional branch instruction, so that it alternately contained \(\text{B}'1111' \) and \(\text{B}'0000' \), causing an unconditional branch to alternate with a no-operation. The example in Figure 190 on page 359 might be rewritten as in Figure 194 to use this technique.

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L 1,NN</td>
<td>Get number of elements to be added</td>
</tr>
<tr>
<td>LA 0,2</td>
<td>Set up increment of 2 in GRO</td>
</tr>
<tr>
<td>AR 1,1</td>
<td>(2 \times N)</td>
</tr>
<tr>
<td>SR 1,0</td>
<td>(2 \times (N-1) = \text{comparand for BXLE})</td>
</tr>
<tr>
<td>SR 2,2</td>
<td>Initialize index in GR2 to zero</td>
</tr>
<tr>
<td>SR 3,3</td>
<td>Same for sum, in GR3</td>
</tr>
<tr>
<td>OI Brnch+1,X'FO'</td>
<td>Set for single add on first pass</td>
</tr>
<tr>
<td>TM Switch,1</td>
<td>Check to see if setup is correct</td>
</tr>
<tr>
<td>JZ Add</td>
<td>Jump if branch setup is correct</td>
</tr>
<tr>
<td>NI Brnch+1,X'OF'</td>
<td>Otherwise set up to add twice</td>
</tr>
<tr>
<td>Add AH 3,List(2)</td>
<td>Add a term from the list</td>
</tr>
<tr>
<td>Brnch BC 0,FlipMask</td>
<td>Mask field alternated by XI inst'n</td>
</tr>
<tr>
<td>AH 3,List(2)</td>
<td>Add again if required</td>
</tr>
<tr>
<td>FlipMask XI Brnch+1,X'FO'</td>
<td>Invert branch mask bits again</td>
</tr>
<tr>
<td>BXLE 2,0,Add</td>
<td>Count and loop</td>
</tr>
<tr>
<td>ST 3,Result</td>
<td>Store answer</td>
</tr>
</tbody>
</table>

Figure 194. Adding alternate list elements twice, with program modification

The mask field of the BC instruction is addressed as \(\text{Brnch+1} \), because \(\text{Brnch} \) is the name of the byte containing the operation code. Then, the instructions that manipulate the mask bits are written to leave unchanged the index register specification digit of the second byte of the instruction at \(\text{Brnch} \), because we do not want to modify the index digit.

Modifying an instruction in memory is now considered a terrible programming practice, for these reasons:

1. The coding tends to be more difficult to understand, because you won’t know with any certainty what is done by a given instruction if it could be modified by other parts of the program.
2. Debugging the program is more difficult, since it is usually easier to keep track of data (such as at \(\text{Switch} \) in Figure 190 on page 359) than parts of instructions. What you see in memory might not match your program listing. (It’s no longer the program you wrote!)
3. If you must rewrite part of a program, it may be difficult to find all the instructions that modify or are modified by others.
4. If, as many programs are, the program must be re-enterable (a property requiring no self-modification), such techniques are forbidden.
5. Modern processors assume that any instruction modifying memory is referring to data, so they prefetch large groups of instructions for faster decoding. If the CPU discovers that you have stored into the part of the program it prefetched, it must discard its initial analysis and re-fetch again. This can slow your program considerably.

Important Advice

Avoid self-modifying programs.

Most instruction modification needs are best handled by the Execute instruction, which we’ll see in Section 24.11.

To show that the example in Figure 194 need not rely on program modification, the code segment in Figure 195 does the same calculation more rapidly and safely.
L 1,NN Set up JXLE comparand N in GR1
BCTR 1,0 N-1
ALR 1,1 2 * (N-1) = 2N-2 in GR1
LA 0,2 Increment in GRO
SR 3,3 Initialize sum to zero
SR 2,2 Same for index
TM Switch,1 Test for first term adding twice
JO Twice Branch if bit is 1, meaning yes

Once AH 3,LIST(2) Add a term once
JXH 2,0,Next Increment index, branch if done
Twice AH 3,LIST(2) Add a term
AH 3,LIST(2) ...twice
JXLE 2,0,Once Increment index and loop
Next - - - Continuation of program

Figure 195. Adding alternate list elements twice, without program modification

Study the actions of the JXH and JXLE instructions carefully!

Exercises

23.9.1.(3) The following fragment of code was discovered in a trash can. By examining the sequence of values contained in R4, determine what the code does.

LA 6,2
LA 4,5 Test number

VA AR 4,6
SLL 6,1
XI *-4,X'01' Flip-flop
- - - Some undecipherable material
B VA

23.9.2.(2) Show that the SI-type OI, NI, and XI instructions in Figure 194 on page 364 do not modify the index register specification digit of the instruction named

23.9.3.(2) A widely used program (HASP) contained an instruction sequence like the following:

OI Flag+1,1 Set a flag bit
- - -

Flag TM Flag+1,0 Test the flag byte
BNZ FlagSet Branch if not zero

Elsewhere in the program, other instructions modified the byte at Flag+1. Why would anyone write a program this way?

23.10. Summary

The instructions we’ve discussed in this section are summarized in Table 138.
Table 138. Storage-Immediate instructions

<table>
<thead>
<tr>
<th>Function</th>
<th>Operand 1</th>
<th>Operand 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12-bit displacement</td>
<td>20-bit displacement</td>
</tr>
<tr>
<td>Move Immediate</td>
<td>MVI</td>
<td>MVIY</td>
</tr>
<tr>
<td>AND Immediate</td>
<td>NI</td>
<td>NIY</td>
</tr>
<tr>
<td>OR Immediate</td>
<td>OI</td>
<td>OIY</td>
</tr>
<tr>
<td>XOR Immediate</td>
<td>XI</td>
<td>XIY</td>
</tr>
<tr>
<td>Compare Immediate</td>
<td>CLI</td>
<td>CLIY</td>
</tr>
<tr>
<td>Test Under Mask</td>
<td>TM</td>
<td>TMY</td>
</tr>
</tbody>
</table>

The instruction opcodes and mnemonics are shown in the following table:

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Opcode</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLI</td>
<td>95</td>
</tr>
<tr>
<td>CLIY</td>
<td>EB55</td>
</tr>
<tr>
<td>MVI</td>
<td>92</td>
</tr>
<tr>
<td>MVIY</td>
<td>EB52</td>
</tr>
<tr>
<td>NI</td>
<td>94</td>
</tr>
<tr>
<td>NIY</td>
<td>EB54</td>
</tr>
<tr>
<td>OI</td>
<td>96</td>
</tr>
<tr>
<td>OIY</td>
<td>EB56</td>
</tr>
<tr>
<td>TM</td>
<td>91</td>
</tr>
<tr>
<td>TMY</td>
<td>EB51</td>
</tr>
<tr>
<td>XI</td>
<td>97</td>
</tr>
<tr>
<td>XIY</td>
<td>EB57</td>
</tr>
</tbody>
</table>

Terms and Definitions

reenterable
A program is reenterable if
- Its execution can be suspended, then executed by other processes, and then resumed by the original process with correct behavior for all processes.
- It can be executed simultaneously by multiple processes, with correct behavior for all processes.

self-modification
A program modifies its instructions or constants. Considered a very poor programming practice with severe execution-time performance penalties, and forbidden if the program must be reenterable.\(^{141}\)

\(^{141}\) Technically, a self-modifying program can be reenterable if every execution instance makes exactly the same modifications. This is considered an even poorer practice.
24. Character Data and Basic Instructions

The instructions we’ve seen thus far have involved at most one memory operand; now we’ll investigate basic SS-type instructions that work with two operands in memory having variable lengths. We will also describe “Execute” instructions that help you handle varying-length data.

24.1. Basic SS-Type Instructions

We’ll start with the instructions in Table 139.

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>D2</td>
<td>MVC</td>
<td>SS</td>
<td>Move [Characters]</td>
<td>E8</td>
<td>MVCIN</td>
<td>SS</td>
<td>Move [Characters] Inverse</td>
</tr>
<tr>
<td>C80</td>
<td>MVCOS</td>
<td>SS</td>
<td>Move [Characters] with Optional Specifications</td>
<td>D5</td>
<td>CLC</td>
<td>SS</td>
<td>Compare Logical [Characters]</td>
</tr>
<tr>
<td>D4</td>
<td>NC</td>
<td>SS</td>
<td>AND [Characters]</td>
<td>D6</td>
<td>OC</td>
<td>SS</td>
<td>OR [Characters]</td>
</tr>
<tr>
<td>D7</td>
<td>XC</td>
<td>SS</td>
<td>XOR [Characters]</td>
<td>DC</td>
<td>TR</td>
<td>SS</td>
<td>Translate</td>
</tr>
<tr>
<td>DD</td>
<td>TRT</td>
<td>SS</td>
<td>Translate and Test</td>
<td>D0</td>
<td>TRTR</td>
<td>SS</td>
<td>Translate and Test Reverse</td>
</tr>
</tbody>
</table>

The word “Characters” is enclosed in square brackets because the z/Architecture Principles of Operation description of those instructions omits that word from the name of the instruction, even though it’s implied by the instruction mnemonics. While often used to manipulate character data, they simply process strings of bytes, whether or not they represent characters.

Because the lengths of the operands are not implied by the instruction (as we saw for instructions like L and LH), the number of bytes to be processed must be specified somehow. The instructions in Table 139 have the format illustrated in Table 140:

<table>
<thead>
<tr>
<th>opcode</th>
<th>L</th>
<th>B1</th>
<th>D1</th>
<th>B2</th>
<th>D2</th>
</tr>
</thead>
</table>

Table 140. Format of single-length SS-type instructions
These instructions are all 6 bytes long, have two Addressing Halfwords, and their second byte ("L") specifies the machine length or Encoded Length\(^{142}\) of the operand or operands; we’ll explain “Encoded Length” shortly.

The Assembler Language syntax of these instructions is shown in Figure 196:

```
  mnemonic D_1(N,B_1),D_2(B_2)
```

Figure 196. Assembler Language syntax of basic SS-type instructions

where \(N \), the Length Expression (LE) (also known as the program length) is the number of bytes the instruction will process. (For some of these instructions, “at most” \(N \) bytes.)

Why do we use \(L \) in the object code format, but \(N \) in the machine instruction statement format? They are different: \(L \) is one less than \(N \) (unless \(N \) is zero, in which case \(L \) is also zero). This is important!

There are good reasons for this difference:

- programmers want to specify \(N \), the true number of bytes involved;
- the CPU must sometimes know the address of the rightmost byte of an operand; that address is the operand’s Effective Address (its starting address) plus \(L \);
- it makes no sense to operate on zero bytes (that’s what NOP instructions are for!).

When you code a value \(N \) in a machine instruction statement, the Assembler converts it to the correct value of \(L \) in the generated object code.

Except for TRT, the only reference to or use of the general registers by these nine instructions is for operand addressing. The result of each operation is found in the first operand location, except for TRT and CLC, which modify no data in memory.

Important Notation Difference!

The \(z/ \)Architecture Principles of Operation illustrates SS-type instructions like MVC this way, where the two uses of \(L \) can be very confusing:

```
  CLC D_1(L,B_1),D_2(B_2)  [SS]
```

<table>
<thead>
<tr>
<th>D_5</th>
<th>L</th>
<th>B_1</th>
<th>D_1</th>
<th>B_2</th>
<th>D_2</th>
</tr>
</thead>
</table>

Both the Assembler Language syntax with operands \(D_1(L,B_1),D_2(B_2) \) and the format of the assembled instruction use the same letter “\(L \)” to indicate the operand length! But the two numbers are not the same: the first “\(L \)” in the Assembler Language statement is the Length Expression (that we call \(N \), the true number of bytes to process), while the second “\(L \)” in the assembled instruction is the Encoded Length, one less than the true length!

When you refer to the \(z/ \)Architecture Principles of Operation, be very careful to distinguish the two uses of \(L \).

\(^{142}\) The Encoded Length byte is sometimes called the “machine length” or “Length Specification Byte”.

368 Assembler Language Programming for IBM z System™ Servers Version 1.00
24.2. Operand Specifications

As illustrated on page 116 in Section 9.9, you could write a typical SS-type instruction as

\[
\text{MVC Field(5), Area}
\]

The operand field specifies three quantities: the implied addresses of the operands named Field and Area, and the number of bytes to be moved, 5.

Because the symbols Field and Area must be resolved into addressing halfwords, we must derive five operand-dependent quantities: the Encoded Length L and the base and displacement of the two addressing halfwords. The base and displacement of each addressing halfword is assigned by the Assembler from an implied address.

The number L in the Encoded Length byte by the Assembler is derived from the Length Expression \((N)\) in your machine instruction statement. The LE may also be explicit or implied; we'll discuss implied Length Expressions in Section 24.3.

You will remember from Section 8.5 on page 104 that machine instruction statement operands can take any of these three forms:

\[
\text{expr expr(expr) expr(expr,expr)}
\]

where the third format can sometimes be written \(\text{expr(expr)}\).

For most of the instructions we've seen so far, these formats are used for the first four instruction types shown in Table 141, where \(S\) is our notation for an implied address, an absolute or relocatable expression. In the last row, we see that SS-type instructions introduce new possibilities:

<table>
<thead>
<tr>
<th>Instruction Type</th>
<th>Operand Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{expr})</td>
<td>(\text{expr(expr)})</td>
</tr>
<tr>
<td>(\text{RR})</td>
<td>register</td>
</tr>
<tr>
<td>(\text{RX})</td>
<td>(S)</td>
</tr>
<tr>
<td>(\text{RS})</td>
<td>(S)</td>
</tr>
<tr>
<td>(\text{SI})</td>
<td>(S) or immediate</td>
</tr>
<tr>
<td>(\text{SS})</td>
<td>(S)</td>
</tr>
</tbody>
</table>

Table 141. Instruction types and operand formats

In particular, notice that for SS-type instructions, the third operand format does \textit{not} resolve to \(D(X,B)\)!

Suppose we want to move 23 bytes from the area of memory beginning at \(\text{AA}\) to the area beginning at \(\text{BB}\). We could write

\[
\text{MVC BB(23),AA Move 23 bytes from AA to BB}
\]

where the addresses of the two operands are implied. For SS-type instructions, the number in parentheses is not an index register specification, but an \textit{explicit} Length Expression. Its value, 23, is the number \(N\) of bytes to be moved.

There are several ways to specify the Length Expression, as shown in Table 142. (Remember that \(S_1\) and \(S_2\) are our notations for the implied addresses of the first and second operands.)

<table>
<thead>
<tr>
<th>Explicit Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S_1(N),S_2)</td>
</tr>
<tr>
<td>(D_1(N,B_1),S_2)</td>
</tr>
<tr>
<td>(S_1(N),D_2(B_2))</td>
</tr>
<tr>
<td>(D_1(N,B_1),D_2(B_2))</td>
</tr>
</tbody>
</table>

Table 142. SS-type instructions with explicit length
An explicit Length Expression is simply an expression you write in your machine instruction statement. Suppose we again want to move 23 bytes from AA to BB and that if GR9 is used as a base register, the displacements for AA to BB will be X’125’ and X’47D’ respectively. Then, Figure 197 shows how we could use any of the following four instructions, corresponding to the four operand formats in Table 142:

MVC BB(23),AA \quad S_1(N),S_2
MVC X’47D’(23,9),AA \quad D_1(N,B_1),S_2
MVC BB(23),X’125’(9) \quad S_1(N),D_2(B_2)
MVC 1149(23,9),293(9) \quad D_1(N,B_1),D_2(B_2)

Figure 197. Examples of SS-type instruction operands

Equivalent decimal and hexadecimal self-defining terms are used for the displacements D_1 and D_2.

Exercises

24.2.1.(1) What is the difference between an implied address and an implicit address?

24.3. Implied Lengths

<table>
<thead>
<tr>
<th>Implied Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_1,S_2</td>
</tr>
<tr>
<td>D_1(B_1),S_2</td>
</tr>
<tr>
<td>S_1,D_2(B_2)</td>
</tr>
<tr>
<td>D_1(B_1),D_2(B_2)</td>
</tr>
</tbody>
</table>

Table 143. SS-type instructions with implied length

Note that if the address of the first operand is specified explicitly and the Length Expression is implied, the comma following the left parenthesis is very important.

As a reminder, the words “explicit” and “implied” that we saw in Section 11.4 were used to define constants with explicit and implied lengths:

IMPLIED DC F’8’ \quad Implied length = 4 bytes
EXPLICIT DC FL5’8’ \quad Explicit length = 5 bytes

and the same words describe addresses:

ImplAddr L 0,=F’6’ \quad Implied address, resolved by Assembler
ExplAddr L 0,X’D4’(0,7) \quad Explicit address, specified by you

In this section, we use the same words to describe Length Expressions: you can provide an explicit Length Expression, or you can let the Assembler derive the value of an implied Length Expression.

We usually don’t want to have to specify an explicit Length Expression, particularly when the number of bytes should be apparent from the operands. For example, suppose the symbol BB is defined in a DC or DS statement like this:

MVC BB,=120C’ \quad Set field at BB to blanks
BB DS CL23 \quad Field of length 23 bytes

Even though the second operand is 120 bytes long, if more than 23 bytes are moved by the MVC instruction, then the data or instructions following the byte at BB+22 could be overwritten! Thus the length of the string of bytes to be moved should be determined from the first, or receiving, operand, rather than the second.
This is what the Assembler does. If no explicit Length Expression is given, the Length Attribute of the first operand is used as the value of the Length Expression: it is \textit{implied} by the operand. In this example, the length attribute of the symbol \texttt{BB} is 23.

If the first operand is an expression rather than a single term, the length attribute is that of the leftmost term in the expression. Thus, with \texttt{BB} defined as above, if we write

\[
\text{MVC } \texttt{BB} + X'5'-1, =_{120C}
\]

then the length attribute of the first operand is 23, but if we write

\[
\text{MVC } X'5'+\texttt{BB} - 5, =_{120C}
\]

the length attribute of the first operand is 1 because the length attribute of a self-defining term is always 1 (see Section 7.6).

Now, suppose we want to use an implied length, but with an \textit{explicit} first operand address. The value of the LE cannot be immediately associated with a symbol that names an area of the program using its length attribute. Unlike the examples in Figure 197, knowing the base and displacement of the symbol \texttt{BB} (9 and \texttt{X'47D'}) does not necessarily give the correct Length Expression when an implied length must be found. If an explicit base and displacement are given, the value of the LE is the length attribute of the displacement expression. Thus

\[
\text{MVC } X'47D'(9), \texttt{AA}
\]

specifies an implied length of 1 rather than 23, because \texttt{X'47D'} is a self-defining term. Using an explicit address and an implied length is very rare; it's much better to use a Length Attribute Reference, which we'll discuss in Section 24.4.

These rules are summarized in Table 144. The last column shows how the Length Expression is determined for the four possible forms of the first operand. ("L.A." is an abbreviation for "Length Attribute", to be described in the following Section 24.4.)

<table>
<thead>
<tr>
<th>First operand form</th>
<th>Address specification</th>
<th>Length Expression</th>
<th>Length used</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{S}_1</td>
<td>implied</td>
<td>implied</td>
<td>L.A. of \texttt{S}_1</td>
</tr>
<tr>
<td>\texttt{S}_1(LE)</td>
<td>implied</td>
<td>explicit</td>
<td>LE</td>
</tr>
<tr>
<td>\texttt{D}_1(\texttt{B}_1)</td>
<td>explicit</td>
<td>implied</td>
<td>L.A. of \texttt{D}_1</td>
</tr>
<tr>
<td>\texttt{D}_1(LE,\texttt{B}_1)</td>
<td>explicit</td>
<td>explicit</td>
<td>LE</td>
</tr>
</tbody>
</table>

Table 144. Determining the Length Specification Byte

\begin{center}
\textbf{Advice: Use Implied Lengths}

Wherever possible, use implied lengths and let the Assembler derive the Length Expression for you. If the length of a data field changes, the Assembler will recalculate the Length Expression; this is safer and much more convenient than updating explicit Length Expressions manually.
\end{center}

\section*{Exercises}

24.3.1.(1) How many bytes will be moved by these instructions? What values will you find in the first operand fields?

\begin{itemize}
 \item[(1)] \textbf{MVC} \texttt{A}_4=\texttt{X'01020304050'}
 \texttt{A} \hspace{1cm} \text{DS} \hspace{1cm} \text{H}
 \item[(2)] \textbf{MVC} \texttt{B}_4=\texttt{CL6'ABCDEF'}
 \texttt{B} \hspace{1cm} \text{DS} \hspace{1cm} \text{BL4}
 \item[(3)] \textbf{MVC} \texttt{C}(3), =\texttt{F'2'}
\end{itemize}

24.3.2.(2) What are the formats of each of these possible operands when used as (a) the first operand, and (b) the second operand of an MVC instruction?
24.4. Symbol Length Attribute References

You can specify an explicit base and displacement, and still use an implied length. We could have written

\[\text{MVC } BB \cdot BB + X'B47D'(, 9), AA \]

and the length attribute of the displacement expression is the length attribute of \(BB \), but this is cumbersome and confusing. We can rewrite this example to use an explicit base and displacement, in the improved form

\[\text{MVC } X'B47D'(L'BBB, 9), AA \quad \text{Length Expression} = L'BBB \]

Figure 198. SS-type instruction using a Length Attribute reference

It is almost always better to use a Symbol Length Attribute Reference, which is one of the terms we described when examining expressions in Section 8.1.

A Symbol Length Attribute Reference is written as the letter L followed by an apostrophe followed by a symbol, as in \(L'BBB \). It is an absolute term with value equal to the length attribute of the symbol. Because symbols can be defined in several ways, the following rules may be helpful:

1. If the symbol was defined in an EQU statement with \(* \) or a self-defining term in the operand field, its length attribute is one. However, as noted in Section 8.4 on page 102, if you specify a second operand in the EQU statement, that value will be used as the Length Attribute of the symbol. For example, if you define the symbol \(XXX \) in this EQU statement,

\[XXX \text{ Equ } *, 13 \]

then \(XXX \) will have the value of the current Location Counter, and length attribute 13.

2. The length attribute of a literal is defined; thus

\[\text{MVC } BB(L' = C' \text{ RAY}'), = C' \text{ RAY}' \]

(while clumsy) is valid; it’s better to define a constant named by a symbol, and then use the length attribute of the symbol:

\[\text{MVC } BB(L' \text{ RAY}), \text{ RAY} \]

\[\text{RAY DC } C' \text{ RAY}' \]

3. The length attribute of a Location Counter Reference \(* \) is the length of the machine instruction in which it appears. Thus \(\text{MVC } BB(L' \cdot *) , AA \) assigns length attribute six, the length of the MVC instruction.

- The length attribute of a symbol naming a macro-instruction depends on the code it generates.

Exercises

24.4.1.(2) Can you find a way to specify an implied Length Expression whose value is zero?

24.4.2.(2) Is it possible to specify the length attribute of an expression using the \(L' \) notation?
24.5. The Encoded Length “L” (*)

Now that we know how to write SS-type instruction statements with any Length Expression we need, we will review what actually goes into the machine language instruction. As we noted in Section 24.2, the value of the Encoded Length isn’t necessarily the same as the value of the Length Expression. Here’s why.

Because the Length Specification Byte is a single byte, it can have any value between 0 and 255; these actually specify operand lengths between 1 and 256. This is due to two factors:

- Every SS-type instruction always operates on at least one byte.
- All the instructions in Table 139 on page 367 except MVCIN and TRTR process data from left to right in order of increasing addresses.
 - For left-to-right instructions, the CPU must calculate the address of the last byte of each operand to check for possible memory-access violations.
 - Similarly, MVCIN, TRTR, and some other instructions process data from right to left, in order of decreasing addresses, starting at the rightmost byte.

In both cases, the CPU must compute the addresses of the leftmost and rightmost bytes of the operand. It is simplest to locate the rightmost byte by adding the Encoded Length \(L \) to the effective address of the operand; if there are \(N \) bytes in a string starting at address \(A \), its rightmost byte is at address \(A+N-1 = A+L \).

That’s why the Encoded Length has the value of the Length Expression minus 1.

We usually don’t care about this distinction, because we let the Assembler determine the needed quantities from the operands of the instruction statement. However, at execution time we may need to calculate the number of bytes to be manipulated, so it’s important to understand this relationship between the Encoded Length and the actual number of bytes involved. An illustration (showing a bad way to do this) is given in Example 4 of Section 24.6; the right way to do this is discussed in Section 24.11.

Thus, the Encoded Length is a number one less than the value of the Length Expression, unless an explicit length of zero is given, in which case the Encoded Length is also zero.

<table>
<thead>
<tr>
<th>Encoded Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Encoded Length is one less than the Length Expression, unless the LE is zero.</td>
</tr>
</tbody>
</table>

The instructions in Figure 199 would be assembled as indicated, assuming the same displacements for the symbols \(AA \) and \(BB \) relative to the base address in GR9, as in Section 24.2.

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Assembled form</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVC BB(23),AA</td>
<td>D216 947D 9125 LE=23</td>
</tr>
<tr>
<td>MVC BB(1),AA</td>
<td>D200 947D 9125 LE=1</td>
</tr>
<tr>
<td>MVC BB(0),AA</td>
<td>D200 947D 9125 LE=0</td>
</tr>
<tr>
<td>MVC 0(L’ *,0),29(12)</td>
<td>D205 0000 C01D LE=6 (MVC’s length!)</td>
</tr>
<tr>
<td>MVC 15 (L’ BB-4,3),BB</td>
<td>D212 300F 947D LE=19</td>
</tr>
<tr>
<td>MVC BB,AA</td>
<td>D216 947D 9125 LE=23</td>
</tr>
<tr>
<td>MVC H(L’ H,H),H</td>
<td>D200 8008 0008 LE=1</td>
</tr>
<tr>
<td>MVC H(H,H),H(H)</td>
<td>D207 8008 8008 LE=8</td>
</tr>
<tr>
<td>MVC H+BB-AA(,9),AA</td>
<td>D200 9360 9125 LE=1</td>
</tr>
<tr>
<td>MVC T,BB-4</td>
<td>D216 947D 9479 LE=23</td>
</tr>
<tr>
<td>MVC BB-AA+4(9),AA</td>
<td>D208 035C 9125 LE=9</td>
</tr>
</tbody>
</table>

- - -

BB DS CL23
T EQU BB Length attribute of \(T = 23 \)
H EQU 8 Self-defining term, Len Attr = 1

Figure 199. Examples of Length Specification Bytes
Possible Confusion?

Sometimes people call “the value of the Length Expression” simply “the length”. This can be confusing if “the length” is understood to mean the contents of the Encoded Length, which is sometimes called the “machine length”. That is:

- You provide implicitly or explicitly a Length Expression (a “symbolic length”).
- The Assembler generates the Encoded Length (the “machine” length).

24.6. The MVC and MVCIN Instructions

24.6.1. MVC: Move Characters

MVC moves the specified number of bytes starting at the second operand address, to an area starting at the first operand address. There are no restrictions on overlapping areas, so you can do things like propagate a character through an area, or shift the bytes in an area. We need only remember that almost all SS-type instructions are executed in such a way that each byte is stored before the next source byte is accessed.

Figure 200 shows how MVC can be “emulated” by other instructions. Remember that the length expression LE is not the Length Specification Byte of a “real” MVC.

*Emulate MVC BB(LE),AA Moves LE bytes from AA to BB
 LA 1,BB Address of first operand
 LA 2,AA Address of second operand
 LA 0,LE Length Expression (N)
 LTR 0,0 Check for zero
 JNZ MoveByte Nonzero, OK to move
 LA 0,1 LE=0 means move one byte
MoveByte IC 3,0,(,2) Get a second-operand byte
 STC 3,0,(,1) Store at first operand
 AHI 1,1 Increment first operand address
 AHI 2,1 Increment second operand address
 JCT 0,MoveByte Repeat until LE bytes moved

Figure 200. Emulated operation of MVC instruction

Because MVC has no restrictions on operand overlap, the “byte at a time” emulation in Figure 200 is “faithful” to the execution of MVC. Of course, the MVC instruction doesn’t modify any registers this way.

Here are some examples using MVC instructions.

1. Set the 120-byte area beginning at Line to blanks.

 MVI Line,C’ Store EBCDIC blank at ‘Line’
 MVC Line+1(119),Line Propagate through rest of area

 This is sometimes called a “ripple” move. It requires less storage space than

 MVC Line(120),=120C’

 because extra space is required for the literal string of 120 blanks.

 Another way to set the 120-byte area at Line to blanks:

 MVC Line,Line-1 Requires carefully-ordered DC’s

 Blank DC C’ Single blank
 Line DS CL120 Immediately follows the blank
2. Shift the 80-byte character string beginning at \(\text{Str} \) to the left by two character positions, leaving blanks in the vacated positions.

\[
\begin{align*}
\text{MVC } & \text{Str(78),Str+2} & \text{Move left by 2 bytes} \\
\text{MVC } & \text{Str+78(2),}=C' & \text{Two blanks at end}
\end{align*}
\]

3. Exchange the contents of the halfword integers at A and B.

\[
\begin{align*}
\text{MVC } & \text{Temp,A} & \text{Move A to temporary location} \\
\text{MVC } & \text{A,B} & \text{Move B to A} \\
\text{MVC } & \text{B,Temp} & \text{Move old } c(A) \text{ from Temp to B}
\end{align*}
\]

4. GR8 and GR9 contain respectively the address and length of a message whose length is less than 120 characters. Move the message to the area named Line.

\[
\begin{align*}
\text{BCTR } & 9,0 & \text{Decrease length by 1} \\
\text{STC } & 9,\text{MVC+1} & \text{Store in length byte of MVC (??)} \\
\text{MVC } & \text{MVC Line(0),0(8)} & \text{Move correct number of bytes}
\end{align*}
\]

The BCTR reduces the character count in GR9 from its “true” value to the “machine length” value required by the MVC: one less than the actual number of bytes to be moved. This is a terrible way to do this, because it requires instruction modification (discussed in Section 23.9). A better way to do this uses the Execute instruction, which we’ll see in Section 24.11.

24.6.2. MVCIN: Move Characters Inverse

MVCIN was implemented to support languages written from right to left. It moves characters the same way as MVC, but in reverse order. That is, the bytes of the second operand are fetched in right-to-left order and are stored at the first operand in left-to-right order. The second operand of the machine instruction statement must address the rightmost byte of the string to be moved. For example:

\[
\begin{align*}
\text{MVCIN } & \text{CRev,Chars+L'Chars-1} & \text{Move reversed Chars to CRev} \\
\end{align*}
\]

\[
\begin{align*}
\text{Chars } & \text{DC } C'12345' & \text{Data to be moved} \\
\text{CRev } & \text{DS } CL(L'\text{Chars}) & \text{Moved data } = C'54321'
\end{align*}
\]

Figure 201. Example of Move Inverse instruction

As Figure 200 does for MVC, Figure 202 shows an emulation of MVCIN. The emulation uses GR3 both as an index and as a count of the number of bytes to move.

*Emulate MVCIN BB(LE),AA+L'AA-1 Move inverse: LE bytes from AA to BB

\[
\begin{align*}
\text{LA } & 3,\text{LE} & \text{Number of characters to move in GR3} \\
\text{LTR } & 3,3 & \text{Check for LE } = 0 \\
\text{JNZ } & \text{LENotZro} & \text{Skip if greater than zero} \\
\text{LA } & 3,1 & \text{LE } = 1 \text{ moves one byte} \\
\text{LENotZro } & \text{LA } 1,\text{BB} & \text{Address of first operand} \\
\text{LA } & 2,\text{AA}-1 & \text{A(2nd operand’s leftmost byte)-1} \\
\text{Insert } & \text{IC } 0,0(3,2) & \text{Insert a byte from right end of AA} \\
\text{STC } & 0,0(1) & \text{Store at left end of BB} \\
\text{AHI } & 1,1 & \text{Increment first operand address} \\
\text{JCT } & 3,\text{Insert} & \text{Reduce byte count by one and loop}
\end{align*}
\]

Figure 202. Emulated operation of MVCIN instruction

The emulated addressing seems to reference the byte preceding the leftmost byte of the second operand. However, the indexed IC instruction will start by inserting the rightmost byte and will end with the byte at AA, because GR3 actually contains the Length Expression, not the Length Specification Byte.
Unlike MVC, the z/Architecture Principles of Operation does not guarantee “byte-by-byte” operation for MVCIN, so if the operands overlap by more than one byte, the results may be unpredictable.

24.6.3. MVCOS: Move Characters With Optional Specifications

The MVCOS instruction can simplify character moves. You specify the true length to be moved in a register, set GR0 to zero, and the instruction will move up to 4096 bytes at a time. Its syntax is

\[\text{MVCOS } D_1(B_1),D_2(B_2),R_3 \]

where data is moved from the second operand to the first, and the number of bytes to move is placed in the \(R_3 \) operand register. The number of bytes actually moved is the number in the \(R_3 \) register or 4096, whichever is less. The CC is set to 0 if all bytes have been moved, or to 3 if more than 4096 bytes were specified.

For example, suppose we want to move 10000 bytes from Here to There:

- LA 7, There
 Target address
- LA 4, Here
 Source address
- LHI 12,10000
 Number of bytes to move
- XGR 0,0
 Set GR0 to zero (important!)
- Mover MVCOS 0(7),0(4),12
 Move up to 4096 bytes
- JZ Done
 Branch if all bytes moved
- AHI 7,4096
 Update target address
- AHI 4,4096
 Update source address
- AHI 12,-4096
 Reduce remaining count
- J Mover
 Repeat for more bytes

Figure 203. Example of MVCOS instruction

This example illustrates these important points:

- The source and target addresses, and the remaining byte count, are not updated by MVCOS: you must do that.
- Setting GR0 to zero is very important: MVCOS is a semi-privileged instruction, and any nonzero bits in GR0 may cause a program interruption (unless your program is executing in Supervisor State).

The convenience of MVCOS compared to MVC or MVCL may be outweighed by its slower performance.

Exercises

24.6.1.(2) Suppose MVCIN used predictable “byte-by-byte” steps for any degree of operand overlap. What result would appear in Figure 201 on page 375 if the instruction was

\[\text{MVCIN Chars,Chars+L’Chars-1 } ? \]

24.6.2.(2) The character string at Message has three segments, as defined by these statements:

\[
\begin{align*}
\text{Message} & \text{ DS } 0C \\
\text{Prefix} & \text{ DS } \text{CL43} \\
\text{Insert} & \text{ DS } \text{CL29} \\
\text{Suffix} & \text{ DS } \text{CL67}
\end{align*}
\]

Write instructions that will move the strings at PText, IText, and SText into these fields, but the string at IText must be moved to Insert in reverse order.

24.6.3.(1) What will be in the character string at Result after executing these instructions?
MVC Result,Data

Data DC C’Data’
Result DS CL8

24.6.4.(1) What is in both operands after executing this MVC?

MVC Result2(8),Data2

Result2 DS C’ABCD’
Data2 DC C’PQRSTUVW’

24.6.5.(2) In example 4 of Section 24.6.1, is there any reason (other than very poor style) not to write the last two instruction statements as

STC 9,+5
MVC LINE(0),0(8)

24.6.6.(3) Consider these two examples of an MVCIN instruction with overlapping operands:

(1) MVCIN X,Y+L’-Y-1
X DS CL7
ORG *-1
Y DC CL7’ABCDEFG’

(2) MVCIN Q,P+L’-P-1
P DC CL5’12345’
Q DS CL5

In each case, the target and source operands overlap by one byte. After executing the instructions, what data is at X and Q? Why is this one-byte overlap not a problem?

24.6.7.(2)+ Suppose three character strings are defined by the statements

A DC C’123456’
B DC C’PQRSTUVW’
C DS CL(L’A+L’B)

Write instructions to concatenate the strings at A and B into a single string at C.

24.6.8.(2)+ Suppose three character strings are defined by

D DC C’987654ABCDE’
E DS CL4
F DS CL(L’D-L’E)

Write instructions to split the string at D into two substrings at E and F.

24.6.9.(3)+ You are given a string of characters starting at Str and whose length is stored at N, and are required to extract a substring of characters whose length is at K, starting at a character whose offset from N is stored at P. The extracted substring should be stored at Sub, and its length should be stored in the word at L. (N, K, P, and L are words in your program.)

In case the substring is not fully contained in Str, the values at K and L will differ; and if no valid substring can be extracted (for example, P exceeds N), store zero at L.
The logical instructions NC, OC, and XC perform the AND, OR, and XOR operations described in Section 19 on two strings, byte by byte, leaving the result in the first operand string. The CC is set as in Table 93 on page 290. These examples illustrate the three instructions.

1. Clear the 120-byte area at Line to binary zeros.

 \[
 \text{XC \ Line(120),Line Set 120 bytes to zero}
 \]

 We could have used the same technique here as in example 1 of Section 24.6 (by moving a string of 120 zeroed bytes).

2. Branch to Yes if the fullword integer at Lump is zero.

 \[
 \text{OC \ Lump(4),Lump OR 4 bytes to each other}
 \]

 \[
 \text{JZ \ Yes Branch if all bytes are zero}
 \]

 or

 \[
 \text{NC \ Lump(4),Lump AND 4 bytes to each other}
 \]

 \[
 \text{JZ \ Yes Branch if all bytes are zero}
 \]

 The first and second operands are identical, so only only the CC is set; no data is changed. This technique can sometimes be used when a register is not free.

 Don’t test a string of bytes for zero this way if the operand is memory-protected, because both instructions store into the first operand.

3. Suppose there are two words named \text{XX} and \text{ZZ} that each contain four positive integers, packed as illustrated Figure 115 on page 249. Replace the second integer in the word at \text{XX} by the corresponding value from the word at \text{ZZ}.

 \[
 \text{MVC Temp,ZZ Move new value to temporary location}
 \]

 \[
 \text{NC Temp,Mask Eliminate all but second integer}
 \]

 \[
 \text{OC XX,Mask Set bits in 2d integer position to 1}
 \]

 \[
 \text{XC XX,Mask Now set them to zeros}
 \]

 \[
 \text{OC XX,Temp Insert new value into word at XX}
 \]

 \[
 \text{Temp DS XL4 Temporary workspace}
 \]

 \[
 \text{Mask DC XL4'00780000' Mask bits for 2nd integer position}
 \]

4. Exchange the contents of the halfword integers at A and B. (Compare example 3 on page 375.)

 \[
 \text{XC B,A XOR A to B}
 \]

 \[
 \text{XC A,B XOR B to A}
 \]

 \[
 \text{XC B,A XOR A to B}
 \]

 \[
 \text{AD S H}
 \]

 \[
 \text{BD S H}
 \]

 This technique was used to exchange register contents in Exercise 19.5.1.*

Exercises

24.7.1.(2) Revise the instructions in Figure 204 to use two masks, two NC instructions, and one OC instruction.

24.7.2.(2) A student suggested the following code sequence as a solution to the problem of replacing data items embedded in a larger field:

* Which you solved correctly, of course.
24.7.3.(2) The bits in the byte at BitData are to be converted to a string of eight EBCDIC 0 and 1 characters starting at BitChars. A student suggested using these instructions:

```
LHI 1,8    Count 8 bits in GR0
IC 0,BitData Get the source byte
Repeat STC 0,BitChars-1(1) Store a byte at BitChars
SRL 0,1    Shift right by one bit
JCT 1,Repeat Iterate for all 8 bits
NC BitChars,-8X’1’ AND off all but low-order bit
OC BitChars,-8C’0’ OR makes EBCDIC 0 or 1 characters
```

Verify that his method works, and discover the identity of the student.

```
BitData DC B’10010001’ Sample source byte
BitChars DS CL8 Converted characters
```

Does this work? What will be found at BitChars? Explain your answer.

24.8. The CLC Instruction

CLC compares the first operand to the second operand one byte at a time, until either an inequality is detected or the required number of bytes has been compared. As with CLI, each step of the comparison is between unsigned 8-bit logical integers, and the CC settings are as shown in Table 135 on page 357.

1. If the 120 bytes at Line contain blanks, branch to AllBlank.

   ```
   CLC Line(120),=CL120’ Compare to 120 blanks
   JE AllBlank Branch if equal
   or
   CLC =CL120’,Line Compare to 120 blanks
   JE AllBlank Branch if equal
   ```

 Because compare instructions modify neither operand, a literal can be used as the first operand; this second method uses the Length Attribute of the literal as the Length Expression.

2. Two positive word integers are stored at SS and TT. Branch to TBig if the number at TT is larger than the number at SS. (The restriction to positive integers means that a logical comparison gives the same result as an algebraic comparison.)

   ```
   CLC TT(4),SS Compare (c(TT) to c(SS))
   JH TBig Branch to TBig if greater
   ```

3. Two negative word integers are stored at SS and TT. Branch to TBig if the number at TT is algebraically larger than the number at SS. (Because both integers are algebraically negative, a logical comparison is the same as an algebraic comparison; see Exercise 24.8.1.)

   ```
   CLC TT(4),SS Compare logically, and...
   JH TBig Branch if c(TT) > c(SS)
   ```

4. A list of 100 names and occupations, each contained in a block of 60 bytes, is stored beginning at List. Branch to Found if any of the blocks matches the name and occupation in the block at WhoIsIt.
Exercise

24.8.1.(2) Example 3 above claims that a logical comparison of two negative integers gives the same result as an algebraic comparison. Show that this is or is not true.

24.8.2.(3) Write instructions using CLC to correctly compare arithmetically two signed word integers in memory having arbitrary signs. For example, CLC should show that +10 > −10. (It can be done!)

24.8.3.(2) Suppose we wish to test the string of 220 bytes at R to see if they all contain zero. It is claimed that each of the following instructions will set the CC to zero if and only if the string contains all zero bytes. For which of these instructions is the claim true?

(1) OC R(220),R
(2) NC R(220),R
(3) CLC R+1(219),R
(4) CLC R(220),=220X’0’

24.8.4.(2) A programmer described the operation of the CLC instruction with the phrase “the shorter operand is padded with blanks”. Give two reasons why this is incorrect.

24.8.5.(2) Write instructions to scan a string of 72 bytes at Chars and branch to AllBlank if every character is blank, without using a constant string of 72 blank characters.

24.8.6.(2) In Example 1 above, what would happen if you had written

CLC =120C’ ‘,Line

instead?

24.8.7.(1) What does this instruction do? Is it at all useful? If so, why?

CLC 1(7,4),0(4)

24.9. The TR Instruction

The Translate instruction replaces each byte in a string with any of another 256 possible values. Like MVC, the TR instruction moves bytes from the second operand location to the first operand location, but in a very different and possibly disorderly way. It actually performs a sort of “pseudo-indexing”:

1. An “argument” byte is obtained from the first operand address.
2. The value of that byte (as an eight-bit unsigned integer) is added internally to the second operand address, to access a “function byte” from the second operand.
3. The accessed function byte replaces the argument byte at the first operand address.\footnote{In mathematical terminology, the TR operation can be thought of as replacing the argument bytes x₁, x₂, ..., xₙ by the function bytes f(x₁), f(x₂), ..., f(xₙ).}
4. The first operand address is incremented by one, and the process repeats until all first operand bytes have been translated.

For example, suppose the string of five argument bytes at PP contains X'0201040503', and the character string at GG contains the character constant C'ABCDEF'. If we execute the instruction

```
TR PP(S),GG
```

then the final contents of the five bytes at PP will be C'CBEDF'. The first argument byte taken from the first operand is X'02'; the function byte at GG+X'02' is C'C', and this replaces the first byte at PP. Similarly, the fifth and last argument byte at PP is X'03'; the function byte at GG+X'03' is C'D', which replaces the final byte in the string at PP.

Unlike the SS-type instructions we've seen thus far, the TR instruction can access bytes as far as 255 bytes away from the second operand address, whereas the other instructions accessed only those bytes within the area whose length is determined by the Length Specification Byte.

A sequence of RX-type instructions simulating the TR instruction helps clarify its operation. In Figure 205, the symbols L, B1, D1, B2, and D2 have the values from the TR instruction being simulated. For this example, assume that B1 and B2 are not 1 or 2, because we will use those registers in the simulation.

```
*Emulate TR D1(L,B1),D2(B2) Translate L bytes
LHI 0,L Set counter in GR0 to number of bytes
LTR 0,0 Check for L = 0
JNZ LNotZero Proceed if not zero
LA 0,1 L = 0 always translates one byte
LNotZero SR 1,1 Set first operand index to zero
SR 2,2 Indexes table at 2nd operand
GetArg IC 2,D1(1,B1) Get argument byte from 1st operand
IC 2,D2(2,B2) Use as index to get function byte
STC 2,D1(1,B1) Store in string at 1st operand
AHI 1,1 Increment first operand index by 1
JCT 0,GetArg Loop until L argument bytes done
```

Figure 205. Emulating the TR instruction

You can appreciate the power of TR if you consider the example in Figure 167 on page 333 and its variations. We wanted to replace all special characters with blanks. If we create an appropriate translation or translate table, the entire process can be done with one TR instruction, as in Figure 206.

```
TR Str(80),TRTable Translate all specials to blanks
TRTable DC (C'a') C' Anything less than C'a' is blanked
DC C'abcdefghi' Letters are unchanged
DC 7C' Non-printing characters are blanked
DC C'jklmnopqr' Print letters as is
DC CL8' More non-printing characters
DC C'stuvwxyz' Last of the lower-case letters
DC 23C' Blank anything between 'z' and 'A'
DC C'ABCD[EFGHI] Letters are unchanged
DC 7C' Non-printing characters are blanked
DC C'J[k]LMNPQR' Print letters as is
DC CL8' More non-printing characters
DC C'S[ TU]VWXYZ' Last of the upper-case letters
DC 6C' Blank anything between 'Z' and '0'
DC C'0123456789' Digits print okay
DC 6C' Tail-enders are blanked too
```

Figure 206. TR instruction to change special characters to blanks
As a second example of the TR instruction, suppose we will need to print the contents of the word at \texttt{HexWord} as eight hexadecimal digits, and we must place the eight EBCDIC characters representing the hex digits in a string starting at \texttt{Spred}.

```
L  1,HexWord Get fullword to be converted
LA 2,Spred Address of character being stored
LA 3,8 Digit counter in GR3
Clear SR 0,0 Clear GR0 for shifting
SDDL 0,4 Shift a hex digit into GR0
STC 0,0(2) Store in string at \textquoteleft Spred\textquoteleft
LA 2,1,(2) Increment character address by 1
JCT 3,Clear Loop until 8 digits are stored
TR Spred,=C\textquoteleft0123456789ABCDEF\textquoteleft Translate to EBCDIC

Spred DS CL8 Converted result goes here
```

Figure 207. Translating hex digits to EBCDIC characters (1)

We can also index in the opposite direction, as in Figure 208.

```
L  0,HexWord Get fullword to be converted
LA 2,8 Counter and index in GR2
Shift SRDL 0,4 Shift a digit into GR1
SRL 1,28 Position for storing
STC 1,Spred-1(2) Store in character string
JCT 2,Shift Decrease index and shift again
TR Spred,=C\textquoteleft0123456789ABCDEF\textquoteleft Translate to EBCDIC

Spred DS CL8 Converted result goes here
```

Figure 208. Translating hex digits to EBCDIC characters (2)

This result is sometimes called “spread hex”; the UNPK instruction (in Section 27) does this operation much more easily.

Exercises

24.9.1.(1) Assemble the translation table in Figure 206 on page 381 and verify that all non-blank characters are in positions corresponding to their EBCDIC encodings, and that the translate table is 256 bytes long.

24.9.2.(2)+ Suppose the bits within each byte of a string of bytes are to be rotated to the right by one bit position, so that \texttt{B’10110001’} becomes \texttt{B’11011000’}. Write a code sequence, including a TR instruction and the necessary translate table, to do the rotations.

24.9.3.(2) The translation table in Figure 206 uses hand-counted values for the duplication factors on DC statements that generate blanks. Rewrite the table to use duplication factors calculated by the Assembler based on the hexadecimal representations of the characters.

24.9.4.(4) A certain program needed to place each of the 80 characters in the string at \texttt{InputRec} into an array of 80 words at \texttt{A1Format} in such a way that each successive word contains one character from the string in its leftmost byte, followed by three blanks. Write a program segment to do this using TR instructions.

24.9.5.(2)+ Write a short program segment which will use a TR instruction and an appropriate table to interchange the positions of the two hex digits in a byte. How long must the table be?

24.9.6.(2)+ Rewrite Exercise 22.5.1. to use a TR instruction and an appropriate translate table. Are there any limitations on the length of the list? Explain your conclusion.
24.9.7.(2) Rewrite Exercise 17.4.6 to use a Translate instruction and an appropriate translate table.

24.9.8.(4) Write a program segment to do the reverse of the action performed by your solution to Exercise 24.9.4: the high-order bytes of each of the fullwords in the array at A1Format should be collected into an 80-character string at OutRec.

24.9.9.(3) Assuming that only the valid EBCDIC characters shown in Table 13 on page 89 will appear in the string, write statements to generate a translation table that will set all other characters to blanks. Verify that your translate table is 256 bytes long.

24.9.10.(4) Write a sequence of instructions including TR that will cause the hex digits in a string of bytes at Old to be “shifted right” by one digit position at New. That is, if we start with X’123456’ at Old, we should find X’012345’ at New. Then do the same for a left shift of one digit position; the result (starting with the same data) would then be X’234560’.

24.9.11.(2) Suppose you must translate a very long record to contain all upper-case letters. Assuming the record starts at Record and its length is found in the word at Reclen, write a translate table and instructions that will do the translation.

24.9.12.(2) Suppose you must convert the 8 hex digits of c(GR9) to 8 EBCDIC characters representing those digits, starting at GR9Hex. Will these instructions work? Explain why or why not, and describe the intended function of the instructions named Q1, Q2, and Q3.

24.9.13.(2) The string of characters at Text contains a mixture of lower-case and upper-case letters, and its length in the halfword at TextLen is less than 256. Write instructions including TR that will change the lower-case letters to their upper-case equivalents.

24.9.14.(2) Suppose the two bytes stored at Zone contain arbitrary bit patterns, represented as X’wxyz’. Write a code sequence with one or more TR instructions which will convert the given pair of bytes to the form X’Fzxy’. That is, interchange the two low-order digits, and replace the high-order digit by X’F’, no matter what its original value might have been. (This is similar to the action performed by the UNPK instruction discussed in Section 27.)

24.9.15.(2) If you execute the following TR instruction, what will you find in the operand named OddTable when the instruction completes?

```
TR OddTable,OddTable Identical first and second operands
```

24.9.16.(3) A student suggested the following instructions as a way to convert a string of bytes at InString to pairs of EBCDIC characters at OutString representing the hex values of the source data. That is, if the first source byte contains X’9F’, the first two output characters will be 9F.
XR 0,0 Clear a work register
XR 2,2 Input-byte index
XR 3,3 Output string index
LHI 4, InString Number of bytes to convert

Convert IC 0, InString(2) Get a source byte
SRDL 0, 4 Shift right 4 bits
STC 0, OutString(3) Store leftmost hex digit
SRL 1, 28 Move rightmost hex digit to end
STC 1, OutString+1(3) Store rightmost hex digit
AHI 2, 1 Increment input index
AHI 3, 2 Increment output index
JCT 4, Convert Repeat for all input bytes
TR OutString,-'C0123456789ABCDEF' Translate to EBCDIC

Does this work? What precautions should the student's program take?

24.9.17.(5) In Exercise 17.3.16 you reversed the bits in a 32-bit word, using shift instructions. Now, write a DC statement to create a translate table that will reverse the bits in each byte of a string.

24.9.18.(5) Using your solutions to Exercises 24.9.3 and 24.9.17, write a sequence of instructions using two TR instructions that will reverse both the bytes and the bits of the word at DataWord and store the result at RevData. For example, if c(DataWord)=X'12345678', the resulting c(RevWord) will be X'1E6A2C48' (We'll see in Section 26 that there are easier ways to reverse bytes.)

24.9.19.(3) Suppose you define this translate table:
X1 DC 256AL1(X'FF'-(*)-X))
and the you execute this instruction:
TR X(256), X
What happens? If you repeat the instruction N times, will you ever get the original table at X? If so, how many times?

24.9.20.(3) Repeat Exercise 24.9.19 with this translate table:
X2 DC 256AL1(*-X)
What happens? If you repeat the instruction N times, will you ever get the original table at X? If so, how many times?

24.10. The TRT and TRTR Instructions

Whereas TR converts a sequence of byte values into new values, TRT and TRTR are used to search a string of bytes for one or more specified values. Both instructions are especially useful in scanning for punctuation, delimiters, and erroneous characters.

As we saw for MVC and MVCIN, the first operand of TRT refers to the leftmost byte of the first storage operand, while the first operand of TRTR refers to the rightmost byte of the first storage operand.

The operation of TRT and TRTR is identical to TR through steps 1 and 2 on page 380, and quite different thereafter.

3. The first operand is not modified; the accessed byte from the table addressed by the second operand (the function byte) does not replace the argument byte from the first operand string. Instead, the function byte is examined: if it is zero, we continue with step 4 of the description of TR, incrementing (or decrementing) the first operand address and decrementing the count.

 If the function byte is not zero,
• It is placed in the rightmost byte of GR2 or GG2 (the rest of the register is unchanged);
• The address of the argument byte which caused a nonzero function byte to be accessed is placed in GR1 or GG1, depending on the addressing mode:
 − in 24-bit mode, into the rightmost 24 bits of GR1, and the remaining bits of GR1 are unchanged
 − in 31-bit mode, into the rightmost 31 bits of GR1, and the leftmost bit of GR1 is set to zero
 − in 64-bit mode, into all the bits of GG1.
• The operation terminates, and the CC indicates the result of the operation, as shown in Table 145.

<table>
<thead>
<tr>
<th>CC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>All accessed function bytes were zero.</td>
</tr>
<tr>
<td>1</td>
<td>A nonzero function byte was accessed before the last argument byte was reached.</td>
</tr>
<tr>
<td>2</td>
<td>The nonzero function byte accessed corresponds to the last argument byte.</td>
</tr>
</tbody>
</table>

Table 145. Condition Code settings for TRT and TRTRT instructions

24.10.1. TRT

To illustrate the basic operation of TRT, suppose we must scan a string of characters to find the address of the first numeric character. First, we create a translate table with zero function bytes in all positions except for those corresponding to the EBCDIC representation of decimal digits, where the function bytes are nonzero.

```
NumChar DC (X'F0')X'00',10X'01',6X'00'
```

Then, suppose we test the following strings using TRT:

```
String1 DC C'abc123def' Decimal digit before end of string
String2 DC C'*abcdef*' No decimal digits
String3 DC C'AB7' Decimal digit in final position
```

Then, after executing the following instructions, the contents of GR1, GR2, and the CC are as shown:

<table>
<thead>
<tr>
<th>Instruction</th>
<th>c(GR1)</th>
<th>c(GR2)</th>
<th>CC</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR String1,NumChar</td>
<td>A(String1+3)</td>
<td>X'xxxxxxx01'</td>
<td>1</td>
</tr>
<tr>
<td>TR String2,NumChar</td>
<td>unchanged</td>
<td>unchanged</td>
<td>0</td>
</tr>
<tr>
<td>TR String3,NumChar</td>
<td>A(String3+2)</td>
<td>X'xxxxxxx01'</td>
<td>2</td>
</tr>
</tbody>
</table>

The xxxxxxx characters mean that those portions of GR2 are unchanged when the X'01' function byte is inserted.

As another example, suppose we must scan a string of 80 characters beginning at Record for the punctuation characters period, comma, and apostrophe. When one of them is found, a branch should be made to Period, Comma, or Apost, respectively, with the address of that punctuation character in GR1. If none is found, branch to NoPunct. First, we will write an example using CLI instructions, but not TRT.
LA 1,Record Initialize character address
LA 2,80 Number of characters to examine

TestPunc CLI 0(1),C'. Compare to period
BE Period Branch if found
CLI 0(1),C', Compare to comma
BE Comma Branch if found
CLI 0(1),C'', Compare to apostrophe
BE Apost Branch if found
AHI 1,1 Otherwise increment address by 1
JCT 2,TestPunc Count and loop
B NoPunct Branch if none were found

Figure 209. Searching for punctuation characters using CLI

The TRT instruction does the same processing much more rapidly, but at the cost of memory space for the translate table.

SR 2,2 Clear GR2, to be used as an index
TRT Record(80),PuncTbl Scan for punctuation
JZ NoPunct Branch if none found
B *(2) Function byte is index for branch
J Period Period
J Comma Comma
J Apost Apostrophe

PuncTbl DC (C'.')'X'00'X'04' Function byte 4 for period
DC (C'.'-C'.'-1)'X'00'X'08' 8 for comma
DC (C'---'-C'.'-1)'X'00'X'C' 12 for apostrophe
DC (255-C'---')'X'00' Remainder of table

Figure 210. Searching for punctuation characters using TRT

The three nonzero function bytes are at positions in the table corresponding to the values of the EBCDIC representations of the characters being sought. The function values are multiples of four so they can be used to index the branch instruction B *(2). If the conditional branch to NoPunct had been omitted, GR2 might contain zero and the program could have gone into an infinite loop at the B instruction.

This translate table was constructed by observing that we need not know the values of the EBCDIC representations of the period, comma, and apostrophe, only that their representations are in ascending order. This means that (for example) the number of characters between the period and the comma is the positive quantity (C'.'-C'.'+1).

Suppose your program has received a string of decimal characters into a field named InputNum. Before using the data, it’s a good practice to validate it. (Data validation helps avoid errors and program interruptions that may occur much later in your program.) Figure 211 shows one way to do this.

TRT InputNum,ValidDec Test for all numeric data
JZ Valid Branch to process valid data
JNZ ReEnter Something invalid, ask for re-entry

ValidDec DC (C'0')'X'01' Values < X'F0' are invalid
DC 10'X'00',6'X'01' Values > X'F9' are invalid
InputNum DS CL12 Numeric characters?

Figure 211. Using TRT to validate numeric characters

As another example of the TRT instruction, suppose we are required to scan the quoted character string starting at Sentence for the occurrence of an embedded character string containing either apostrophes (as in "She said, 'Never!'"), or quotation marks (as in 'I said, "I won't"'). As these examples indicate, the other delimiter may appear freely inside the outer string.
If such an embedded string exists, we must store its starting address (excluding the preceding delimiter) at StrAddr and its length in bytes (again excluding the delimiters) at StrLen. (For the first string, the result would be the 10 characters She•said•.) If no string exists, branch to None, and if the apostrophe or quotation mark which would terminate the string is missing, branch to Unfin. Assume the length of the data string to be scanned is stored at SentLen, and is 256 or less.

The program segment in Figure 212 scans first for the starting delimiter; when it is found, the proper table is chosen to search for the ending delimiter.

LA 1,Sentence Starting data address in GR1
L 2,SentLen Fetch length to scan, and...
BCTR 2,0 Decrement by 1 for length byte,
STC 2,TRT1+1 Store in TRT1 instruction.
LA 3,0(2,1) C(GR3) = A(last data byte)
SR 2,2 Clear GR2 for function byte
ST 2,StrLen And set result length to 0
TRT1 TRT 0(*-*1),T Scan for first delimiter
JZ None Exit if nothing useful found
LA 4,1(1) Step over starting delimiter,
ST 4,StrAddr And store string start address.
LastCh JC 2,Unfin Exit if that's all there was
LA 1,1(3) C(GR1) = A(last data byte)+1
SR 3,4 (length-1) of rest of data
STC 3,TRT2+1 Store in length byte of TRT2
L 3,TAdd-4(2) Address of correct table in GR3
SR 2,2 Reset GR2 for function byte
TRT2 TRT 0(*-*,4),0(3) Scan rest of data with new table
SetLen S 1,StrAddr Subtract start address of string
ST 1,StrLen And store result string length
LTR 2,2 Test for closing delimiter found,
JZ Unfin Branch if not found.

StrLen DS F Length of final string
StrAddr DS A Address of final string
TAdd DC A(T2,T3) Table addresses
T DC 125X'0',X'040008',128X'0' Initial TRT table
* Function byte = 4 for apostrophe, 8 for quotation mark
T2 DC 125X'0',X'4',130X'0' Stop on apostrophe
T3 DC 127X'0',X'4',128X'0' Stop on quotation mark

Figure 212. Using TRT to scan for embedded quotations

Several items in Figure 212 deserve comment.

- The two STC instructions modify the TRT instructions at TRT1 and TRT2. The Execute instruction in the next section shows a much better way to do this.

- The expression *-* in the instructions named TRT1 and TRT2 is the Location Counter value subtracted from itself, which is always zero. This notation is often used to indicate that the contents of the field will be provided by the program at execution time.

- By storing zero at StrLen before scanning the string (just preceding TRT1), we have taken care of the possibility that the initial delimiter may have been the last character in the data string; this condition is detected by the conditional branch instruction named LastCh.

- The function byte in the table named T is used by the Load instruction just preceding the second TRT as an index to load into GR3 the address at TAdd of the desired secondary table.

- By presetting GR1 to the address of the byte immediately following the data string, we can complete the scan with the second TRT as follows. If a closing delimiter exists, GR1 will eventually point to it, and the instruction named SetLen will calculate the number of bytes between the delimiters; GR2 will then contain the nonzero function byte X'04'. However, if no closing delimiter is found, GR1 and GR2 are unchanged, and we can still compute a useful string length before exiting to Unfin.

Chapter VII: Bit and Character Data 387
As a final example using TRT to scan variable-length data, suppose a string of characters at Name contains names separated by commas and terminated by a period. We will construct a list a table of fullword addresses of the first character of each name, followed by a word containing the number of characters in that name, which is known to be less than 256. When the table is complete, the number of names is stored in the word at NbrNms. To protect against omitted punctuation or other errors, we will branch to LongName if no comma or period is found within 256 characters of the start of a name. No tests are made for repeated names.

```
MaxNames EQU 50           Assume at most 50 names found
SR 3,3               GR3 contains index for list
SR 2,2               Clear function-byte switch in GR2
LA 1,Names           Initialize scan address
Scan LR 4,1           Save initial character address
TRT 0(256,1),TRTB       Scan for period or comma
JZ LongName          Branch if no punctuation found
ST 4,List(3)        Store address of name in list
SR 1,4               Compute name length
ST 1,List+4(3)       Store length of name, too
LA 3,8,(3)           Increment list address
LA 1,4,(4,1)        Move GR1 to start of next name
JCT 2,Scan          Branch if comma was encountered
SRL 3,3            If period, compute and store
                  ...the number of names found
                  ...
TRTB DC (C′.′)X′00′,X′01′          Function = 1 for period
DC (C′,-C′,-1)X′00′,X′02′          Function = 2 for comma
DC (255-C′,′)X′00′                  Zero otherwise
                  ...
Names DC C′Brown,Green,Wonka,Ofstrand,Jones,Smedley,Doe,
DC C′Apple,Doe,Smithwich,Softnard,Smith,Doelful,
DC C′Lostkind,Jones,Lurp,VonHimmelsBergenSchneider,Doe.
NbrNms DS F          Number of names found
List DS ((2*MaxNames)A Table for addresses and counts
```

Figure 213. Using TRT to scan a string of names and build an occurrence list

The only unusual feature of Figure 213 is using the function byte as a branching switch: if a period is encountered, GR2 will contain +1, and the JCT instruction will not branch.

24.10.2. TRTR

The test in Figure 211 can be done with TRTR and the same translate table:

```
TRTR InputNum+L′InputNum-1,ValidDec Test for numeric data
JZ Valid               Branch to process valid data
JNZ ReEnter         Something invalid, ask for re-entry
```

Figure 214. Using TRTR to validate numeric characters

Programs often must analyze character strings, finding “tokens” to be processed individually. But how do you know when there is no more data in the string, and the rest of the string is blanks? A common technique is to scan backwards from the end of the string, searching for the last non-blank character in the string. This is sometimes done with a CLI instruction:
LA 1,String+L String-1 Address of end of string
Check CLI 0(1),C' Check for a blank
JNE Done Exit loop if nonblank
BCTR 1,0 Reduce address by 1 byte
J Check And check again
Done - - - GR1 points to last nonblank

Figure 215. Scanning a string backward using CLI

This scan can also be done (perhaps more quickly) using a TRTR instruction:

TRTR String+L String-1,BlankTbl Scan backward
JZ AllBlank Problem: string is all blanks
- - - GR1 points to last nonblank
BlankTbl DC (C' ')
X1',X0',(256-C'-1)'X1'

Figure 216. Scanning a string backward using TRTR

While this may appear to use more memory than a CLI loop, translate tables like this are often used in many different places, so a single table can be referenced by many instructions.

Exercises

24.10.1.(1) Verify that the translate table in Figure 210 on page 386 generates exactly 256 bytes, and that the nonzero entries are at offsets corresponding to the EBCDIC representations of the punctuation characters.

24.10.2.(2) Show that the ORG instruction can be used to build the Translate and Test table of Figure 213 on page 388 as follows:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRTB DC XL256'O'</td>
<td>Define table, length 256</td>
</tr>
<tr>
<td>ORG TRTB+C'</td>
<td></td>
</tr>
<tr>
<td>DC 'X'1'</td>
<td>Function byte for period</td>
</tr>
<tr>
<td>ORG TRTB+C',</td>
<td></td>
</tr>
<tr>
<td>DC 'X'2'</td>
<td>Function byte for comma</td>
</tr>
<tr>
<td>ORG TRTB+256</td>
<td>Reset LC to end of table</td>
</tr>
</tbody>
</table>

Use this technique to construct the table in Figure 210 on page 386. Why is this method superior to the one used in Figures 210 and 213? Can the first DC be replaced by DS?

24.10.3.(2) In Figure 212 on page 387, the length byte in the second TRT is calculated by the "SR 3,4" just preceding it. Is there any reason why the result of the subtraction cannot be negative? What would happen if it was?

24.10.4.(2) In Figure 212 on page 387, three distinct translate tables were used: one to scan for an initial apostrophe or quotation mark, and the other two to scan for the matching delimiter at the end of the quoted string. Rewrite the example to use a single translate table, which is suitably initialized for each use by instructions such as

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>XC T(256),T</td>
<td>Set entire table to zero</td>
</tr>
<tr>
<td>MVI T+C'''',4</td>
<td>Set to stop on apostrophe</td>
</tr>
</tbody>
</table>

24.10.5.(4) In Figure 212 on page 387, there are three translate tables. Show how these tables can be overlapped in a way that requires only about one-half as much space.

24.10.6.(2) Write instructions to scan the string of 120 characters at CharData and leave in GR1 the address of the first character that is neither alphabetic nor numeric.

24.10.7.(2) In Exercise 23.4.3 you scanned a character string at Record to locate the last nonblank character. Do the same exercise, but this time use MVCIN and TRT instructions instead of CLI.
24.10.8.(2) In Figure 212 on page 387, why is it necessary to reset GR2 to zero before executing the second TRT?

24.10.9.(2) The translate table in Figure 216 on page 389 is defined with a single DC statement. Verify that it generates the desired data.

24.10.10.(3) Modify the coding in Figure 213 on page 388 to store each name only once, and add a word to each name’s entry in the list giving the number of occurrences of that word.

24.10.11.(2)+ Show the contents of GR2 and the Condition Code setting after executing the following instructions:

\[
\begin{align*}
SR & \quad 2, 2 \\
TRT & \quad XX, =XL5'20100' \\
& \quad = = \\
XX & \quad DC \quad X'0004010203'
\end{align*}
\]

24.10.12.(3)+ Some experiments have shown that trailing blanks can be removed more efficiently than in Figures 215 and 216 by starting at the end of the string and comparing to a doubleword of blanks until a mismatch occurs, and then using a backward CLI scan. Write an instruction sequence to implement this technique to truncate the string starting at \texttt{String} having length \(L\) and store the truncated length of the string in the halfword at \texttt{TruncLen}.

24.10.13.(2) Revise Exercises 24.7.3 and 24.10.7 to use a TRTR instruction.

24.11. The Execute Instructions

While the Execute instructions are not SS-type, they are often used with SS-type instructions to help process character data.

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>44</td>
<td>EX</td>
<td>RX</td>
<td>Execute</td>
<td>C60</td>
<td>EXRL</td>
<td>RIL</td>
<td>Execute Relative Long</td>
</tr>
</tbody>
</table>

Table 146. Execute instructions

The two Execute instructions in Table 146 are unusual, because they specify the execution of another instruction at a different address! We will use some concepts of the basic instruction cycle described in Section 4 and illustrated in Figure 13 on page 52.

These instructions are executed using these steps:
1. The Effective Address is computed, and the \(R_1\) digit of the Execute instruction is saved.
2. The instruction at the Effective Address, the \textit{target} (or \textit{subject}) instruction, is placed into the Instruction Register (IR), replacing the EX or EXRL. The Instruction Address in the PSW is unchanged, and still contains the address of the instruction following the Execute.
3. If the new instruction in the IR is another execute instruction, a program interruption occurs, and the Interruption Code in the old PSW is set to 3. (There is a good reason for this interruption, as we’ll see shortly.)
4. If the \(R_1\) digit of the Execute instruction was zero, proceed to step 5. Otherwise, the rightmost byte of general register \(GR\) \(R_1\) is ORed into the second byte of the IR. Both \(GR\) \(R_1\) and the target instruction in memory remain unchanged.
5. The (possibly modified) target instruction in the IR is now decoded and executed as though it was the original instruction fetched from memory.

If the target instruction in the IR does not change the IA in the PSW (it is not a successful branch instruction), execution continues with the instruction following the Execute. If the target instruction does change the IA in the PSW (it is a successful branch), execution will continue with the instruction at the branch address. The CC is changed only if the target instruction sets the CC.
24.11.1. Execute Instruction Without Target-Instruction Modification

To illustrate uses of EX and EXRL, we first consider examples where the R₁ digit is zero, so that no ORing occurs in the IR.

1. Store at CCC the quantity 2*C(A)-C(B), where A and B are the names of words in memory.

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 1,1</td>
<td>Clear index to zero</td>
</tr>
<tr>
<td>LA 2,4</td>
<td>Increment = 4, instruction length</td>
</tr>
<tr>
<td>LA 3,12</td>
<td>Comparand = 12</td>
</tr>
<tr>
<td>Execute EX 0,Inst(1)</td>
<td>Execute an instruction</td>
</tr>
<tr>
<td>JXLE 1,2,Execute</td>
<td>Increment by 4 and loop</td>
</tr>
<tr>
<td>Inst L 0,A</td>
<td>Load GR0 from A (4-byte instruction)</td>
</tr>
<tr>
<td>AR 0,0</td>
<td>Double c(GR0) (2-byte instruction)</td>
</tr>
<tr>
<td>NOPR 0</td>
<td>2 bytes spacing</td>
</tr>
<tr>
<td>S 0,B</td>
<td>Subtract c(B) (4-byte instruction)</td>
</tr>
<tr>
<td>ST 0,CCC</td>
<td>Store result (4-byte instruction)</td>
</tr>
</tbody>
</table>

 Figure 217. Executing a list of instructions

 This program segment does four simple instructions the hard way, and merely illustrates a way to execute instructions which are “out-of-line”, and not directly in the normal stream of program execution. The list of instructions at Inst could be executed independently of the first five instructions by branching to Inst, giving the same result much more rapidly.

2. Suppose we wish to add the three word integers stored beginning at Q. Depending on the number of overflows: if no overflows occur, multiply the result by 10; if one overflow occurs, do nothing; and if two overflows occur, set the result to 1.

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 1,1</td>
<td>Clear overflow counter in GR1</td>
</tr>
<tr>
<td>L 0,Q</td>
<td>Get first integer</td>
</tr>
<tr>
<td>A 0,Q+4</td>
<td>Add second integer</td>
</tr>
<tr>
<td>JNO NoOfloA</td>
<td>Branch if no overflow</td>
</tr>
<tr>
<td>AHI 1,4</td>
<td>Indicate one overflow</td>
</tr>
<tr>
<td>NoOfloA A 0,Q+8</td>
<td>Add third integer</td>
</tr>
<tr>
<td>JNO NoOfloB</td>
<td>Branch if no overflow</td>
</tr>
<tr>
<td>AHI 1,4</td>
<td>Indicate another overflow</td>
</tr>
<tr>
<td>NoOfloB EX 0,FixIt(1)</td>
<td>Execute correct operation</td>
</tr>
<tr>
<td>ST 0,Result</td>
<td>And store result</td>
</tr>
<tr>
<td>FixIt MH 0,=H’10’</td>
<td>Multiply by 10</td>
</tr>
<tr>
<td>NOP 0</td>
<td>Do nothing</td>
</tr>
<tr>
<td>LA 0,1</td>
<td>Set result to +1</td>
</tr>
</tbody>
</table>

 Figure 218. Executing a list of instructions

3. Suppose we must place in GR6 the address of some byte in memory, and that the desired address is known only to be the Effective Address of some other RX-type instruction. To make matters more complicated, suppose also that the addressing calculation needed by the RX instruction could make use of any registers but R14 and R15; that is, the base and index digits can be anything from 0 to 13. We assume that GR15 is currently being used for a base register, and that GR14 contains the address of the RX instruction in question.

 We will construct a LA instruction in a work area with the same index, base, and displacement fields as the RX instruction, and then execute that LA instruction.
MVC MakeLA(4),0(14) Move original RX inst’n to work area
NI MakeLA+1,X’0F’ Clear old R_1 digit position
OI MakeLA+1,X’60’ Set new R_1 digit to 6
MVI MakeLA,X’41’ Set ‘LA’ opcode into instruction
* Contents of MakeLA is now 416xbddd
EXRL 0,MakeLA Execute the constructed ‘LA’
--- GR6 now has the desired address
MKLA DS 2H 4 bytes on halfword boundary

Figure 219. Constructing an executed instruction

This instruction sequence changes no registers other than GR6, even though R0 could have been used in the instruction sequence without affecting the operation of the EX, because GR0 or G0 could not have been used by the LA as a base or index register. This illustrates a technique you can use when all other register contents must remain unchanged.

24.11.2. Execute Instruction with Target-Instruction Modification

The Execute instructions are most useful when the R_1 digit is not zero, implying modification of the target instruction in the IR.

1. Suppose we wish to move to Line a message whose address and length are in GR8 and GR9 respectively, as in example 4 on page 375.

```
BCTR 9,0 Decrease Length Expression by 1
EX 9,Move Execute the MVC instruction
---
Move MVC Line(*-*) ,0(8) Executed instruction, length = 0
```

The Length Specification Byte in GR9 is ORed into the proper position in the (target) MVC instruction in the IR. In the assembled MVC instruction, the length byte was preset to zero by a zero explicit Length Expression. A major advantage of this method is that the instruction in storage is unmodified, an important consideration in writing re-enterable code.

This is a very typical use of an Execute instruction.

2. Suppose we must branch to Yes if the rightmost byte of GR3 contains $B'00011111'$.

```
EX 3,CLI Execute the comparison
BE Yes Branch if equality is found
---
CLI CLI ChkBits,0 Executed instruction
 ChkBits DC B’00011111’ Comparison quantity
```

The same problem could be solved without using EX, but extra storage accesses would be required:

```
STC 3,Temp Store the byte to be tested
CLI Temp,B’00011111’ Compare to desired pattern
JE Yes Branch if equal
---
Temp DS X Byte from GR3 to be tested
```

3. Store at RegTotal the sum of the contents of registers GR0 through GR10.

```
LA 12,10 Count in GR12
Loop EX 12,Adder Execute add instruction, sum in GR0
JCT 12,Loop Decrease counter and register digit
ST 0,RegTotal Store sum at RegTotal
---
Adder AR 0,0 $R_2$ digit modified by EX
```

The R_2 digit of the AR instruction is modified in the IR to contain values from 10 to 1. It is rare to use Execute instructions to modify register specification or mask digits of executed instructions.

4. The fullword at Mask contains an integer whose value lies between 0 and 15, to be used as the mask digit of a BC instruction branching to CondMet.
To complete execution of the EX instruction, the mask digit in the rightmost byte of GR1 is ORed into the BC instruction in the IR. The branch condition is now determined in the usual way; if it is met, the branch address of CondMet will be placed into the IA in the PSW. The execution of a successful branch instruction causes control to be “taken away” from the EX instruction.

5. Branch to OddVal if the rightmost bit of GR9 is a 1-bit (that is, the number in GR9 is odd).

 EX 9,TMInst Execute a TM instruction
 JNZ OddVal Branch if a 1-bit
 - - -

 TMInst TM OneBit,0 Test all 8 bits of next byte
 OneBit DC B’00000001’ Only rightmost bit = 1

 In the IR, the rightmost byte of GR9 becomes the mask byte (the immediate operand, I2) of the TM instruction. This mask then tests whatever bits of the byte at OneBit correspond to 1-bits in the mask. If the rightmost bit of GR9 is a 1-bit, the tested bits will not be all zero, and the branch to OddReg will occur. (There are much easier ways to do this test!)

6. As a final (and more practical) example, suppose GR5 contains an integer specifying the number of bytes to be moved from a string beginning at AA to an area whose address is contained in GR7. The number of bytes may be greater than 256.

 LTR 5,5 Test number of bytes to be moved
 BNP Finis Exit if not greater than zero
 LA 1,AA GR1 contains ‘from’ address
 Test CHI 5,256 See if byte count exceeds 256
 JL Last If not, do last part of move
 MVC 0(256,7),0(1) Move 256 bytes
 AHI 1,256 Increment ‘from’ address
 AHI 7,256 Increment ‘to’ address
 AHI 5,-256 Decrease byte count by 256
 JNZ Test If not zero, go try again
 J Finis If count is zero, all done
 LMVC MVC 0(0,7),0(1) Move last part of byte string
 Last BCTR 5,0 Decrease byte count by 1 for ex
 EX 5,LMVC Move last part of string
 Finis - - - Rest of program goes here

 Figure 220. Moving a string of bytes of unknown length

In Section 25, we will see how the MVCL and MVCLE instructions can handle such “long” moves more simply.

Using an EX instruction to supply the length byte for an SS-type instruction is its most common application.

24.11.3. Comments on the Execute Instructions (*)

1. The reason that an Execute instruction may not be the target of an Execute instruction (as stated in step 3 on page 390) is that the CPU could remain in a Fetch-Decode loop (comprising steps 1 through 4 of the Execute-instruction description) if the Execute instruction tried to execute itself, or if a chain of Execute instructions was circular. That is, consider what could happen if the instruction

 EX 0,* What are we doing, and why???
is allowed. This loop is very awkward for a CPU to stop, and is avoided simply by not allowing Executes of Execute instructions.\footnote{This is a fact of computing life that was learned the hard way: on some early processors, the only “fix” was to turn off power and restart the machine. I knew a graveyard-shift computer operator on an older machine who discovered how to create an Execute loop. Then, he would file a “Computer Trouble Report” for the engineers, and go home early.}

2. When possible, place the target of an Execute instruction close to the EX.\footnote{Some programmers use an “idiom” like this:}

3. Be \textit{very} careful when executing instructions with 12-bit opcodes, such as AHI. The low-order digit of the \(R_1 \) register should be zero, to avoid changing the opcode of the target.

4. Instructions that form Effective Addresses relative to an executed instruction use the address of the target, not the address of the Execute instruction itself. For example, suppose GR9 contains a branch mask value in the next-to-rightmost hex digit, and we execute a Branch Relative instruction:

\begin{verbatim}
EX 9,GoToXYZ Execute the relative branch
- - -
GoToXYZ BRC *-* XYZ Branch if CC matches the mask bits
\end{verbatim}

The CPU determines the Effective Address of the BRC instruction relative to its address, not the address of the EX.

5. The Execute instruction was sometimes described as a special \textit{branch} instruction! It is said that EX causes an unconditional branch to the target instruction, followed by an unconditional branch back to the instruction following the EX, unless the target instruction is itself a successful branch.

This incorrectly describes the contents of the Instruction Address, which remains at the address of the instruction following the EX, and obscures the modification of the second byte of the target instruction. This is sometimes described by saying “the instruction is modified, but remains unchanged in memory”.

Both descriptions are misleading.

While this discussion of the IR may not be exactly what’s done in \(z \) System processors, it does describe the effect of the instruction, and gives a better feel for the way the CPU executes its instructions. You need not believe in the “magic” of an instruction being simultaneously modified and remaining unmodified.

\subsection*{24.11.4. Modifiable Parts of Instructions}

The highlighted parts of the operands in the instructions listed in Table 147 indicate the modifiable portions of typical instruction types as targets of the Execute instructions.

\footnote{This is not generally recommended, because the CPU must process the MVC instruction twice.}
Exercises

24.11.1.(2) What is the relationship between the USING statements in effect when an EX instruction is assembled, and those in effect when the target instruction is assembled?

24.11.2.(2)+ A programmer believed that EX “branches to the target instruction, and then branches back to the instruction following the EX if the target instruction was not a successful branch”. Consider the following code sequence:

```
EX 0, BASR1

Here  --  --

BASR1  BASR  1, 0

There  --  --
```

What would he claim to be in GR1 after the EX is executed? What will be in GR1?

24.11.3.(2)+ Suppose control passes to the following sequence of instructions:

```
LA 1, BStar
EX 0, BASR1  Execute the BASR instruction
LR 0, 0   Do nothing in particular
BStar  B  *  Wait here for answer
BASR1  BASR  1, 0  Do something, maybe
AR 0, 0   Also do nothing in particular
B  BStar  Branch to waste some cycles
```

When control arrives at BStar, the address of some instruction should be in GR1. What is it? What will be the value of the Instruction Length Code immediately after the EX instruction has completed execution?

24.11.4.(2)+ Rewrite Exercise 17.2.9 to use an EX instruction and eight TM instructions to test the proper bit of the selected byte.

24.11.5.(3) We must move a number of bytes from a string whose starting address is contained in GR1, to a string whose starting address is contained in GR2. The number of bytes to be moved (which can be greater than 256) is in GR3. Write a code sequence to perform the move.

24.11.6.(3)+ Suppose you must scan a string of length L (where L ≤ 200) bytes starting at DCData that may contain paired ampersands and apostrophes (as in a C-type character con-
24.11.7.(2) In Exercise 24.9.13, the string at Text was assumed to be shorter than 256 characters. Repeat the exercise, now assuming that the string’s length may be up to 14000 characters.

24.11.8.(3) A string of M characters at Data is to be moved to an N-byte area named DataPad and extended or “padded” with blanks if N > M. Assume that both M and N are ≤ 256, and have been defined in EQU statements. If N < M, move only N bytes. (Don’t use MVCL or MVCLE!)

24.11.9.(3) In Exercise 24.8.4. you explained why CLC does not pad the shorter operand with blanks. Write an instruction sequence that simulates the operation of a “CLC” instruction that does pad the shorter operand with blanks. Your instructions must set the Condition Code correctly.

24.11.10.(3) Parentheses are used in many programming languages to enclose expressions, denote groupings, and so forth. These parentheses must be balanced: that is, they must “match up” so that (1) each left parenthesis has a matching right parenthesis that follows it somewhere, (2) the leftmost parenthesis must be a left parenthesis, and (3) it must be matched by the rightmost parenthesis. More formally, if L(n) and R(n) are the number of left and right parentheses encountered after scanning n characters, and if there are N characters in the string, then a balanced string must have L(n)≥R(n) for 0<n<N, and L(N)=R(N).

Using appropriate TRT and EX instructions, write a program segment which will test a string of characters for balanced parentheses. Assume initially that GR7 contains the address of the string, and its length in bytes is a 32-bit binary integer in GR8. Branch to Balanced and Unbalanced for successful and unsuccessful scans, respectively.

24.11.11.(2)+ Modify the illustration of the fetch-decode-execute cycle in Figure 16 on page 58 to show how the Execute instruction and its target instruction are fetched and decoded. Indicate explicitly where the test for an Execute exception is made.

24.11.12.(2) Suppose the bits within the byte stored at Rotator are to be rotated to the right N bit positions, where N is defined by the three low-order bits in GR1. Write a code sequence, including the necessary translate table or tables, to do the shift.

Can you devise a table which will accomplish the shift by executing only a single TR instruction?

24.11.13.(2)+ In example 5 on page 393 in Section 24.11.2, we want to test for the presence of a 1-bit in GR9. What will happen if the branch instruction is JO instead of JNZ?

24.11.14.(2) How can the code sequence in example 5 of Section 24.11.2 be modified to test if the contents of some register is a multiple of a given power N of 2? What are the limitations on this technique?

24.11.15.(2)+ A programmer used an EX instruction to load the constant 137 into a general register whose number was determined at execution time. He knew that the number of the target register would be in the rightmost 4 bits of GR1, and wrote

\[
\text{EX 1,LH1Op}
\]

Load the constant into a GPR

\[
\text{LH1Op LH1 0,137}
\]

Executed: load into the target GPR

This won’t do what he wants. Explain why not, and show what he should have written.

24.11.16.(2) Write a code fragment using an Execute instruction that will convert the byte at Byte to 8 EBCDIC characters starting at Char that represent the value of its 8 bits.

24.11.17.(2) Modify the coding in Figure 212 on page 387 to use EX instructions where appropriate.
Suppose your CPU has no MVCIN instruction, and you want to move the string of L characters starting at $Source$ to the string of L characters starting at $Target$ in reverse order. Assuming that $0 < L < 256$ is a number in GR0, create an appropriate translate table and instructions that will move the characters as required.

If $c(GR1) = X'\text{FEDCBA98}'$, and you then execute this instruction:

```
EX  1,Sub
Sub  SR  5,2
```

what SR instruction will the CPU actually execute?

How can an EX instruction choose one of multiple possible target instructions in a single execution?

24.12. Summary

Remember:
The length you code in an SS-type assembler instruction statement (N) specifies how many bytes are involved (unless you code zero, in which case one byte always participates in the operation). The length you specify as the R_1 operand of an EX instruction (L) is one less than the number of bytes involved.

For most instructions, operand overlap is not a problem.

- If neither operand is changed (for example, by CLC and TRT), operand overlap doesn’t matter.
- Most instructions operate as though the bytes of the source operand are fetched one at a time, and the result byte is stored at the target operand before the next source byte is fetched.\(^{146}\)
- For other instructions, operand overlap can lead to unpredictable results.

We’ll note special cases as they arise.

Table 148 summarizes Tables 142 and 143 about explicit and implied length specification in single-length SS-type instructions:

<table>
<thead>
<tr>
<th>Explicit Length</th>
<th>Implied Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S_1(\text{LE}),S_2$</td>
<td>S_1,E_2</td>
</tr>
<tr>
<td>$D_1(\text{LE},B_1),S_2$</td>
<td>$D_1(B_1),S_2$</td>
</tr>
<tr>
<td>$S_1(\text{LE}),D_2(B_2)$</td>
<td>$S_1,D_2(B_2)$</td>
</tr>
<tr>
<td>$D_1(\text{LE},B_1),D_2(B_2)$</td>
<td>$D_1(B_1),D_2(B_2)$</td>
</tr>
</tbody>
</table>

Table 148. Operands of single-length SS-type instructions

The instructions discussed in this section are shown in Table 149.

\(^{146}\) Modern processors may fetch, process, and store groups of several bytes, but the result still appears to be byte-at-a-time operation.
The instruction mnemonics and opcodes are shown in the following table:

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Opcode</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLC</td>
<td>D5</td>
</tr>
<tr>
<td>EX</td>
<td>44</td>
</tr>
<tr>
<td>EXRL</td>
<td>C60</td>
</tr>
<tr>
<td>MVC</td>
<td>D2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Opcode</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVCIN</td>
<td>E8</td>
</tr>
<tr>
<td>MVCOS</td>
<td>C80</td>
</tr>
<tr>
<td>NC</td>
<td>D4</td>
</tr>
<tr>
<td>OC</td>
<td>D6</td>
</tr>
</tbody>
</table>

The instruction opcodes and mnemonics are shown in the following table:

<table>
<thead>
<tr>
<th>Opcode</th>
<th>Mnemonic</th>
</tr>
</thead>
<tbody>
<tr>
<td>44</td>
<td>EX</td>
</tr>
<tr>
<td>C60</td>
<td>EXRL</td>
</tr>
<tr>
<td>C80</td>
<td>MVCOS</td>
</tr>
<tr>
<td>D2</td>
<td>MVC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Opcode</th>
<th>Mnemonic</th>
</tr>
</thead>
<tbody>
<tr>
<td>D4</td>
<td>NC</td>
</tr>
<tr>
<td>D5</td>
<td>CLC</td>
</tr>
<tr>
<td>D6</td>
<td>OC</td>
</tr>
<tr>
<td>D7</td>
<td>XC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Opcode</th>
<th>Mnemonic</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC</td>
<td>TR</td>
</tr>
<tr>
<td>DD</td>
<td>TRT</td>
</tr>
<tr>
<td>E8</td>
<td>MVCIN</td>
</tr>
</tbody>
</table>

Terms and Definitions

IR
Instruction Register; an internal register holding a target instruction so its second byte may be modified by an Execute instruction prior to decoding.

target instruction
An instruction addressed by an Execute instruction.

Length Specification Byte
The second byte (L) of an SS-type instruction, one less than the length of its operand or operands.

Length Expression
A value (N) coded implicitly or explicitly in a machine instruction statement for an SS-type instruction, from which the Assembler derives the Length Specification Byte L.
Programming Problems

Problem 24.1. (2) Using the definitions in Exercise 24.11.10, write a program which will read character strings from records and test for balanced parentheses. Print each string and a message which indicates whether or not it is balanced. Assume that the first blank character ends the character string.

Problem 24.2. (3) A “perfect shuffle” of a deck of 52 playing cards interleaves each card of the top 26 cards with each card of the bottom 26, in exactly the same way for each shuffle. Thus, after a single shuffle the order of the cards is 1, 27, 2, 28, ... 25, 51, 26, 52.

It is claimed that after a small number (less than 10) of perfect shuffles, the original order of the cards is restored. Test this claim by writing a program using a TR instruction to perfectly shuffle the numbers from 1 to 52. The results may be displayed in hexadecimal.

Just for fun, try your program for different (even!) numbers of “cards” to see how many shuffles are needed to recover the original order.

Problem 24.3. (3) Write a program to read 80-character records that should contain only EBDCIC decimal digits or blanks. If any invalid character is found, display the record and the column number where the invalid character was found.

Problem 24.4. (4) In storing data containing large numbers of characters, it is often useful to find some way to “compress” the data. For example, if the data consists of 80-byte records that rarely contain 80 nonblank characters, space might be saved if we discard the trailing blanks (following the last nonblank character on the record, and place a control byte at the beginning that gives the length of the remaining string. Thus, a record containing only an asterisk in column 1 would be stored as the two bytes ‘X015C’, a saving of 78 bytes.

Many such compression schemes exist, and they can be simple or elaborate depending on the needs of a particular situation. One packing method applicable to strings containing many repeated characters is the following:

1. Copy the first character of the record in its exact form.
2. Replace each subsequent character by the binary value (or difference) that when added to the preceding character’s value (ignoring carries) will produce the desired character.
3. When the difference is zero, indicating a redundant (repeated) character, that zero difference is used as a flag, and the next character contains a count of the number of remaining repetitions.
4. Preceding each string of compressed text is a record length byte containing the number of bytes in the string, including itself.
5. A record length byte containing zero indicates the end of the compressed text for that record.

These examples may help:

<table>
<thead>
<tr>
<th>Input String</th>
<th>Compressed Line Record</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAAAAAAAAAA</td>
<td>04 C1 00 08</td>
</tr>
<tr>
<td>AAAAAABBBB</td>
<td>07 C1 00 03 01 00 03</td>
</tr>
<tr>
<td>BBAA</td>
<td>06 C2 00 00 FF 00 (no extra 00!)</td>
</tr>
<tr>
<td>ABCDDDEFFGH</td>
<td>00 C1 01 01 01 00 03 01 01 00 00 01 01</td>
</tr>
</tbody>
</table>

(This compression scheme will require more space than the original text if the longest string of repeated characters is of length 2, as in the third example.)

147 This is also known as an “out-shuffle”.
Write a program that will read 80-byte records and produce a block of compressed text records in memory. For example, if there were only a single compressed text record (a single “line” of text), as in the fourth example above, then the block in memory would contain 14 bytes:

```
00 C1 01 01 00 03 01 01 00 00 01 01 00
```

Then, “de-compress” the block of text, and print it. If you can, write your compressed text onto records and give them to someone else to expand. Compare the expanded results to the original records.

Problem 24.5. (4) A common requirement in scanning character strings is that some character positions must match a “pattern” exactly, while other positions may match any character. For example, suppose a pattern is defined by $C^-'AB%CD'$, meaning that when scanning a test string, AB must match the first two characters of the test string, the $\%$ means that any character in the third position of the test string is acceptable, and CD must match the fourth and fifth characters of the test string. For example, this pattern would match the test string $C^-'AB?CD'$, but not the test string $C^-'ABCDEF'$. Write a program that will accept a pattern string (perhaps on a record with initial characters 'Pattern') followed by records containing test strings. Print the pattern, the test string, and an indication of whether the pattern matches the test string or not.

Problem 24.6. (5) This problem is an extension of Problem 24.5. In addition to a pattern character like $\%$ that will match an arbitrary character in a test string, it is often useful to match some characters while some number of others need not be matched. For example, if a pattern uses the character * to mean “match any number of characters, including none”, then the pattern $C^-'A*B'$ would match test strings like $C^-'AB'$ and $C^-'A123B'$. Similarly, a pattern like $C^-'A*$ would match test strings like $C^-'A'$ and $C^-'A'B'$. As in Problem 24.5, write a program that will accept various patterns followed by test strings, and print the pattern, the test string, and an indication of whether the pattern matches the test string or not.

Problem 24.7. (5) Combine the two pattern types of Problems 24.5 and 24.6, so that a pattern might look like $C^-'A%B*C'$, which would match test strings like $C^-'A.BC'$ and $C^-'AJBRSTUVW'C'$. Write a program to test his claim with a variety of values at Word.

Problem 24.8. (2) A programmer claimed that he can convert the hex digits of a word stored at Word to eight EBCDIC characters stored at HexWord representing the hex digits with these instructions:

```
L 2,Word
L 4,=4X'O'
LR 3,2
SRL 3,4
NR 3,4
NR 4,2
STM 3,4,Temp
TR Temp,=C'0123456789ABCDEF'
MVC HexWord,=X'0004010502060307'
TR HexWord,Temp
```

Temp DS D
HexWord DS CL8
Word DC X'1F2E3D4C' (For example)

Write a program to test his claim with a variety of values at Word.

Problem 24.9. (2) Write a program to simulate the execution of the TR instruction.

Problem 24.10. (3) Write a program to simulate the execution of the TRT instruction, without considering final Condition Code settings.

Problem 24.11. (4) Write a program to simulate the execution of the TRT instruction, with correct settings of the Condition Code when execution completes.
Problem 24.12. Write a program to display on three lines the 80-byte records of any short program you wrote: on the first line, the original record (with double-spacing carriage control); and on the second and third lines, each byte of the original line is shown in “vertical hex”, where the first hex digit of the EBCDIC character is shown on the upper line, and the second hex digit on the lower line. For example, the characters This is a TEST (or $X'E3889A24088A2408140E3A5E2E3$) would be arranged on 3 output records like this:

```
0This is a TEST
E88A484A84EAEE
38920820103523
```

The key to the solution is the translate table. This technique can be very useful for displaying the contents of records (like object modules) that contain a mixture of EBCDIC and binary values.

Problem 24.13. Write a program to read the records shown below. The first record is a title line, the next is blank, and the remaining records contain the name of a student and four exam grades in columns 31-40, 41-50, 51-60, and 61-70. Write a program to read the data and produce a report with the average grade for each student in columns 71-80, and after the last student’s grades and average, skip a line and print the average grade for each exam. For example, the output might be formatted like this:

<table>
<thead>
<tr>
<th>Name</th>
<th>Exam 1</th>
<th>Exam 2</th>
<th>Exam 3</th>
<th>Exam 4</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student 1</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
</tr>
<tr>
<td>Student n</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
</tr>
<tr>
<td>Exam Averages</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
<td>nn</td>
</tr>
</tbody>
</table>

This is some sample data:

<table>
<thead>
<tr>
<th>Name</th>
<th>Exam 1</th>
<th>Exam 2</th>
<th>Exam 3</th>
<th>Final</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doaks, Joe</td>
<td>79</td>
<td>83</td>
<td>88</td>
<td>93</td>
</tr>
<tr>
<td>Queue, Susie</td>
<td>44</td>
<td>91</td>
<td>67</td>
<td>89</td>
</tr>
<tr>
<td>Shakes IV, Pete</td>
<td>97</td>
<td>89</td>
<td>80</td>
<td>73</td>
</tr>
<tr>
<td>Burley, Hurley</td>
<td>61</td>
<td>71</td>
<td>85</td>
<td>97</td>
</tr>
<tr>
<td>Throckmorton, Chauncey</td>
<td>90</td>
<td>90</td>
<td>88</td>
<td>92</td>
</tr>
<tr>
<td>Doaks, Jonathan</td>
<td>79</td>
<td>83</td>
<td>88</td>
<td>47</td>
</tr>
</tbody>
</table>

Problem 24.14. Write a program to read the records shown below, that contain the text of Lincoln’s “Gettysburg Address” as a string of characters in fixed-format 80-byte records. You will need a work area of about 2000 bytes. Count and print the number of words. These are the records for you to read:
Four score and seven years ago our fathers brought forth on this continent a new nation, conceived in liberty, and dedicated to the proposition that all men are created equal. Now we are engaged in a great civil war, testing whether that nation, or any nation, so conceived and so dedicated, can long endure. We are met on a great battle-field of that war. We have come to dedicate a portion of that field, as a final resting place for those who here gave their lives that that nation might live. It is altogether fitting and proper that we should do this.

But, in a larger sense, we can not dedicate, we can not consecrate, we can not hallow this ground. The brave men, living and dead, who struggled here, have consecrated it, far above our poor power to add or detract. The world will little note, nor long remember what we say here, but it can never forget what they did here. It is for us the living, rather, to be dedicated here to the unfinished work which they who fought here have thus far so nobly advanced. It is rather for us to be here dedicated to the great task remaining before us -- that from these honored dead we take increased devotion to that cause for which they gave the last full measure of devotion -- that we here highly resolve that these dead shall not have died in vain -- that this nation, under God, shall have a new birth of freedom -- and that government of the people, by the people, for the people, shall not perish from the earth.

Problem 24.15. (4) Write a program to read the same records as in Problem 24.14. Now, create a table of distinct words, ignoring differences between lower and upper case forms of the same word. Sort the words into alphabetical order, and print the words and the number of occurrences of each.

Problem 24.16. Write a program to read the same records in Problem 24.14.

Your program should then create a readable version of the text on lines of 60 characters, with words correctly joined where they were split across the original records. No characters may go past the end of the 60-character output line. For example, if two input records contain something like this:

```
/SM630000────────────────────────────────── 80 characters ─────────────────────────────/SM590000
word1 word2 word3 word4 word5 word6 word7 word8 word9 wordiness wordA wordB wordC wordD wordE ...
```

then your formatted line would contain something like this:

```
/SM630000──────────────────────── 60 characters ───────────────────/SM590000
word1 word2 word3 word4 word5 word6 word7 word8 word9 wordiness wordA wordB wordC wordD wordE ...
```

If you encounter a completely blank line in the input, leave a blank line in the formatted output.

You might enjoy making the width of the output line depend only on a symbol defined by an EQU statement; try values such as 60, 80, and 100.

Problem 24.17. (4) Write a program to read the data in Problem 24.14. Create an output area of the same size as your input area. Now, you will encrypt the records from the input to the output areas. Create a "key" by defining a suitably random binary fullword from a 9-digit decimal value. Then, encrypt the input message as follows:

1. XOR your key with the first word of the input message, and store the result in the output buffer.
2. XOR that result with the second word of the input message, and store the result in the second word of the output buffer.
3. Continue in this way until the entire message has been encrypted.
Then, create a third buffer of the same length as the input buffer. Using your key, decrypt the message in the output into this third buffer, using the same technique. Then, compare your decrypted result with the original. (They should be identical!)

Problem 24.18. Write a program to read records with blank-terminated strings of octal (base 8) digits. Assuming the octal digits represent a right-adjusted binary number, convert the digits to binary represented as a string of hexadecimal digits. Then, display the original octal digit string followed by the converted hex string.

Remember that the rightmost octal digit contains the three low-order bits of the binary number, so that octal 76543 (O’76543′? What’s its value in decimal?) is the same as X’7D63′.
25. Character Data and Extended Instructions

All the instructions discussed thus far complete their task before the next instruction is processed. In this section, we’ll look at some instructions that may take much longer to complete. This means that if the CPU is interrupted by a high-priority request, something must be done about the current instruction. The CPU handles this in one of two ways:

- Method A: Save enough information in the general registers about the intermediate state of the instruction, reset the Instruction Address back to the address of the interrupted instruction, and then process the interrupt. When execution of your program resumes, the interrupted instruction continues from its intermediate state as though it had not been interrupted.

- Method B: Process a portion of the operands, update registers appropriately, and set the Condition Code to 3 to indicate that the operation was only partially completed. Any pending interruptions can then occur. The Instruction Address is not reset, so the following instruction should test for CC=3 and branch back to the interrupted instruction so it can complete the operation.

We’ll see each “method” in the instructions in this section.

The processed portion of the operands can vary greatly from instruction to instruction, and for repeated executions of the same instruction.

25.1. Move Long and Compare Logical Long

These instructions also use a special “padding” character, or an “end” (or “stop”, “test”, “search”, “special”, “terminating”) character. All the instructions in Table 150 use a padding character.

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0E</td>
<td>MVCL</td>
<td>RR</td>
<td>Move Long</td>
<td>A8</td>
<td>MVCLE</td>
<td>RS</td>
<td>Move Long Extended</td>
</tr>
<tr>
<td>0F</td>
<td>CLCL</td>
<td>RR</td>
<td>Compare Logical Long</td>
<td>A9</td>
<td>CLCLE</td>
<td>RS</td>
<td>Compare Logical Long</td>
</tr>
</tbody>
</table>

Table 150. Character-handling instructions using padding characters

The appropriate name for the “end” character depends on how it’s used; some names are more descriptive than others for a given instruction.
We begin by examining the Move Long (MVCL) and Compare Logical Long (CLCL) instructions in a general way. Both are RR-type instructions with the usual format, and they both use four general registers! The instruction formats are

\[
\begin{align*}
\text{MVCL} & \quad R_1, R_2 \\
\text{CLCL} & \quad R_1, R_2
\end{align*}
\]

where both \(R_1 \) and \(R_2 \) designate an even-odd pair of registers. (A specification exception occurs if either \(R_1 \) or \(R_2 \) is odd.) The even-numbered registers contain the operand addresses, and the next-higher odd-numbered registers contain the operand lengths; each length is treated as a 24-bit unsigned number. The high-order byte of \(R_2 + 1 \) contains the padding byte, as sketched in Figure 221. (Register lengths and addressing modes are ignored for a moment.)

![Diagram of register use by CLCL and MVCL](image)

Figure 221. Register use by CLCL and MVCL

MVCL and CLCL simplify moving and comparing long strings of bytes, which would otherwise require lengthy loops.

These instructions are unlike MVC and CLC in several respects.

- **Two** lengths are specified; the operands may have different lengths, and the instructions depend on both lengths.
- Much longer strings of bytes may be compared or moved in a single instruction. Instead of a limit of 256 bytes, MVCL and CLCL can specify up to \(2^{24} - 1 \) bytes.\(^{150}\)
- All four registers may be changed by the instructions. The addresses in the even-numbered registers depend on the addressing mode.
- The lengths are true lengths rather than “machine lengths” (the true length minus 1). Only the 24 low-order bits of \(R_1 + 1 \) and \(R_2 + 1 \) (containing the operand lengths) are updated, and the remaining bits are unchanged.
- The high-order byte of \(R_2 + 1 \) holds a “pad byte” used to extend certain operands, if necessary.
- The MVCL instruction sets the Condition Code, and no data movement takes place if there is any possibility of “destructive overlap” of the operands.
- Either \(R_1 \) or \(R_2 \) may be zero, so that GR0 may contain an operand address!
- Both instructions are interruptible: if an interrupt occurs before the operation is complete, “Method A” is used: the registers are updated appropriately, and the Instruction Address in the the PSW is “backed up” by 2 bytes from the address of the following instruction to the address of the CLCL or MVCL instruction. When control is returned to the interrupted program, execution of the instruction resumes with the remnants of the operands.

\(^{150}\) At the time MVCL and CLCL were implemented, The operand length of \(2^{24} - 1 \) bytes seemed sufficient for many years. But memory sizes grew rapidly, so MVCLE and CLCLE were added to handle longer compare and move operations. We’ll see them in Section 25.2.
25.1.1. MVCL

In the absence of special conditions, MVCL operates by moving bytes from the second (source) operand field to the first (target) operand field. As noted in our discussion of implied lengths in Section 24.3, the number of bytes moved is controlled by the first (receiving) operand length. Thus, if the first operand length is zero, no bytes are moved.

Unlike MVC, MVCL tests for the possibility of destructive overlap, which occurs when any part of the first operand field is used for a source after data has been moved into it. If destructive overlap could occur, the CPU sets the Condition Code to 3, and moves no data.

Execution of MVCL proceeds (conceptually) as follows:

1. Bytes are moved one by one from the second to the first operand field; the counts are decremented by 1 and the addresses are incremented by 1 for each byte moved.

2. If both operand counts reach zero at the same time, the CC is set to 0.

3. If the first operand count reaches zero before the second operand count, the CC is set to 1. That is, the target length in R1+1 less than the source length in R2+1.

4. If the second operand count reaches zero first, the pad character is used as a source byte until the first operand count reaches zero; the CC is then set to 2. That is, the target length in R1+1 greater than the source length in R2+1.

5. On termination, the operand 1 length is zero, and the operand 1 address has been updated by the corresponding length. The operand 2 address has been incremented by the number of bytes moved from the second operand field whether or not padding has occurred, and the second operand count has been decreased by the same amount.

6. On termination (even for destructive overlap),
 - in 24-bit addressing mode, the leftmost byte of GR R1 and GR R2 are zeroed, and the high-order half of GG R1 and GG R2 are unchanged;
 - in 31-bit addressing mode, the leftmost bit of GR R1 and GR R2 is zeroed, and the high-order half of GG R1 and GG R2 are unchanged;
 - in 64-bit addressing mode, both GG R1 and GG R2 are updated.

MVCL sets the Condition Code as shown in Table 151.

<table>
<thead>
<tr>
<th>CC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Operand 1 length = Operand 2 length</td>
</tr>
<tr>
<td>1</td>
<td>Operand 1 length < Operand 2 length; part of operand 2 not moved</td>
</tr>
<tr>
<td>2</td>
<td>Operand 1 length > Operand 2 length; operand 1 was padded</td>
</tr>
<tr>
<td>3</td>
<td>Destructive Overlap, no data movement</td>
</tr>
</tbody>
</table>

Table 151. CC settings after MVCL

Figure 222 may help you to visualize the operation of MVCL, assuming there is no destructive overlap. The figure uses these notations:

- **A1**: Address of a first-operand byte, c(R1)
- **c(A1)**: The first-operand byte at address A1
- **L1**: Remaining length of the first operand, c(R1+1)
- **A2**: Address of a second-operand byte, c(R2)
- **c(A2)**: The second-operand byte at address A2, c(R2+1)
- **L2**: Remaining length of the second operand
- **Pad**: Padding byte
To illustrate some uses of MVCL, suppose we want to set the area at Line to blanks (as in example 1 of Section 24.6).

LineLen Equ 120 Number of blanks to move
SR 1,1 Operand 2 length = 0
ICM 1,8,=C ' Pad character is blank
LA 2,Line Set address of first operand in GR2
L 3,=A(LineLen) And first operand length in GR3
MVCL 2,0 Move pad characters to 'Line'

Figure 224. Moving a message with padding and length checking

No Execute instruction (or STC, to store a length byte into an MVC) was needed to supply the Length Specification Byte for the move.
25.1.2. CLCL

The two operand byte strings are compared byte by byte as unsigned binary numbers (just as for CLC), starting at the low-addressed end and proceeding toward higher addresses. The comparison stops when an inequality is detected, or when the end of the longer operand is reached (not the shorter!). Unlike MVCL, where only the first operand might be padded, CLCL can pad either operand! The CC is set in the usual way to indicate the result of the comparison. If both operand lengths are zero, or if R₁ and R₂ designate the same register, the CPU simply sets the CC to zero, indicating equality.

The comparison can be considered as proceeding in the following way:

1. Bytes are compared one by one: the operand addresses are incremented by 1 and the operand lengths are decremented by 1 for each step.
2. If an inequality is detected before either length becomes zero, the CC is set, registers R₁ and R₂ contain the addresses of the unequal bytes, and the counts in the rightmost 24 bits of the respective odd-numbered registers tell how many bytes remain to be compared. The CC setting indicates the larger or smaller operand.
3. If one of the lengths becomes zero, the comparison continues with the padding character being compared to bytes from the longer operand. For the shorter operand, the even register contains the address of the first byte past the end of the operand string, and the odd register contains zero.
4. If an inequality is detected between the padding character and a byte from the longer operand, the address and count for that operand are set as in step 2 (the address and count for the shorter operand were set in step 3).
5. If no inequality is detected before the longer count becomes zero, the even-numbered register points to the first byte past the end of the longer operand string.
6. The register contents on termination are the same as shown for MVCL in step 6.

If the two operands are completely equal (including the padding character, if needed), both counts will be zero, and the corresponding addresses will have been incremented by the original count values.

CLCL sets the Condition Code as shown in Table 152.

<table>
<thead>
<tr>
<th>CC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Operand 1 = Operand 2, or both 0 length</td>
</tr>
<tr>
<td>1</td>
<td>First operand low</td>
</tr>
<tr>
<td>2</td>
<td>First operand high</td>
</tr>
</tbody>
</table>

Table 152. CC settings after CLCL

Figure 225 may help clarify this description. The figure uses notations similar to those preceding Figure 222 on page 407:

- A₁ Address of a first-operand byte, c(R₁)
- c(A₁) The first-operand byte at address A₁
- L₁ Remaining length of the first operand, c(R₁+1)
- A₂ Address of a second-operand byte, c(R₂)
- c(A₂) The second-operand byte at address A₂
- L₂ Remaining length of the second operand, c(R₂+1)
- Pad Padding byte
- x:y x is compared to y
The greater power of CLCL compared to CLC is seen in the changes to the four registers at the end of the operation. Not only do you know exactly how many bytes were compared, but the precise position of the inequality is known, which is impossible with CLC unless the bytes are compared one at a time.151 By testing the lengths for zero, you can tell whether an inequality occurred between bytes in memory, or between the padding character and a byte in memory.

To illustrate CLCL, suppose we want to see if all 120 bytes at \texttt{Line} contain blanks, and branch to \texttt{AllBlank} if so.

\begin{verbatim}
LA 2,Line First operand address in GR2
LA 3,120 First operand length in GR3
SR 1,1 Second operand length = 0
ICM 1,8,=C' Pad character is blank
CLCL 2,0 Compare first operand to blank
JE AllBlank Branch if all blanks at 'Line'
- - - GR2 points to first nonblank char
\end{verbatim}

Because the length of the second operand in GR1 is zero, no address is needed in GR0.

Suppose we have read two records into memory, and want to determine if they are equal; let the addresses and lengths of the records be stored in fullwords at \texttt{Addr1}, \texttt{Len1}, \texttt{Addr2}, and \texttt{Len2} respectively.

\begin{itemize}
 \item If the records are unequal up to the length of the shorter record, we will branch to \texttt{UnEqual}.
 \item We branch to \texttt{Equal} if their lengths and contents are identical.
 \item We branch to \texttt{Equal1} or \texttt{Equal2} respectively if the operands are equal up to the shorter length, but operand 1 or operand 2 is longer.
 \item Neither operand may be padded.
\end{itemize}

151 For long strings of bytes, this could be painfully slow.
L 2,Addr1 Set first operand address
L 3,Len1 And length of first record
L 6,Addr2 Set second operand length
L 7,Len2 And length of second operand
LA 1,Equal Assume lengths are equal
CLR 3,7 Compare lengths
JE Compare Go compare if equal lengths
JH Op1Long Branch if operand 1 longer
LA 1,Equal2 Operand 2 longer, set equality exit
LR 7,3 2nd operand length = shorter value
J Compare And compare
LA 1,Equal1 Operand 1 longer, set equality exit
LR 3,7 1st operand length = shorter value
Compare CLCL 2,6 Compare operands with equal lengths
JNE UnEqual Branch if inequality detected
BR 1 Branch to desired equality routine

Figure 227. Comparing two records without padding

The preliminary effort in this example ensures that GR3 and GR7 will both contain the shorter operand length when the CLCL is executed. This illustrates precautions we must take if we don’t want the shorter operand to be extended with a padding character.

Exercises

25.1.1.(1) Why does using GR0 for an operand address not violate the rules given in Section 10, where GR0 can’t be used to generate an Effective Address?

25.1.2.(2)+ What do you think will happen if MVCL is the target of an EX instruction, and an interruption occurs before the MVCL operation is completed?

25.1.3.(1) Using MVCL, is there any possibility of destructive overlap if the length of the second operand is 1?

25.1.4.(1) Suppose the operand 1 length of an MVCL instruction is zero. What will be the CC setting?

25.1.5.(2)+ A 3500-byte area at Field contains a value in its first byte that is to be propagated through the rest of the area (all 3500 bytes are to contain that value). Write a code sequence using MVCL to perform the task.

25.1.6.(3)+ It is claimed that destructive overlap will not occur with MVCL if

- operand 1 address ≤ operand 2 address, or
- operand 1 address > operand 2 address + MINLEN − 1

where MINLEN is the smaller of the two operand lengths. Is this true? Why?

25.1.7.(2)+ Suppose we execute this instruction sequence:

LA 0,STR1 Address of first operand string
LA 1,L’STR1 Length of first operand string
LA 2,STR2 Address of second string
LA 3,L’STR2 Length of second string
ICM 3,8,PAD Padding character in GR3
CLCL 0,2 Compare STR1 to STR2

For each of the following sets of definitions of the symbols STR1, STR2, and PAD, show what will be in GR0 through GR3 and the CC setting after the CLCL is executed. (Assume that the address of the symbol STR1 is X’7421200’ in each case.)
25.1.8.(2) Sketching MVCL operands and their lengths sometimes helps you understand when destructive overlap may occur. For example, in this sketch,

```
│ Source operand │ No destructive overlap │ Target operand │
```

no destructive overlap occurs because no target operand byte is used as a source operand byte if data is moved one byte at a time. Sketch other possibilities to determine when destructive overlap will and will not occur.

25.1.9.(3) As in Exercise 24.11.15, use one or more MVC instructions to move a string of bytes whose address is in GR1 to an area whose address is in GR2; the number of bytes in GR3 is greater than zero and less than \(X' \text{FFFFF} \). Perform these additional tests:

1. If the strings overlap destructively branch to **Destroy** with no data having been moved.
2. If the data strings overlap, but no data is destroyed, perform the move and then branch to **Overlap**.

25.1.10.(3) What factors must be considered if you write instructions to emulate the behavior of CLCL?

25.1.11.(2) Rewrite the example in Figure 226, reversing the operands: that is, make the first operand have zero length.

25.1.12.(1) Revise Exercise 24.8.5 to use a CLCL instruction.

25.1.13.(1) Can you do a “ripple” move with MVCL, as you can with MVC?

25.1.14.(1)+ Revise Figure Figure 223 on page 407 to initialize to zero the 8192 bytes starting at **New**.

25.1.15.(4) Suppose you are using a CPU that does not support the MVCL instruction. Write instructions (not using MVCL!) to simulate MVCL, including correct Condition Code settings.

25.2. Move Long and Compare Logical Long Extended

These two instructions are only slightly more complicated than MVCL and CLCL. Both instructions use “Method B” to allow the CPU to process interruption conditions. Table 153 gives their format:

<table>
<thead>
<tr>
<th>opcode</th>
<th>(R_1)</th>
<th>(R_3)</th>
<th>(B_2)</th>
<th>(DL_2)</th>
<th>(DH_2)</th>
<th>opcode</th>
</tr>
</thead>
</table>

Chapter VII: Bit and Character Data 411
Table 153. Format of MVCLE and CLCLE instructions

There are three operands: the operands in the even-numbered registers \(R_1 \) and \(R_3 \) are analogous to the \(R_1 \) and \(R_2 \) operands of MVCL and CLCL. The second operand is not used as an address; instead, the low-order 8 bits of its Effective Address are used as the padding byte.

<table>
<thead>
<tr>
<th>Padding</th>
<th>Second operand's Effective Address</th>
</tr>
</thead>
</table>

For example, to specify a blank padding character, you could write

\[
\text{MVCLE } 2,8,C' \quad '(0) \\
\text{CLCLE } 4,14,X'40'(0)
\]

Another difference is that the odd-numbered registers hold the 32-bit (or 64-bit) operand lengths, which can be from 0 to \(2^{32} - 1 \) (or from 0 to \(2^{64} - 1 \) for 64-bit addressing mode).

<table>
<thead>
<tr>
<th>Operand 1 address</th>
<th>GPR (R_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operand 1 length</td>
<td>GPR (R_1+1)</td>
</tr>
<tr>
<td>Operand 3 address</td>
<td>GPR (R_3)</td>
</tr>
<tr>
<td>Operand 3 length</td>
<td>GPR (R_3+1)</td>
</tr>
</tbody>
</table>

Figure 228. Register use by MVCLE and CLCLE

If these instructions are executed in 24- or 31-bit addressing modes, the rightmost 24 or 31 bits of the even-numbered registers contain the operand addresses. On termination, the high-order (non-address) bits of the \(R_1 \) and \(R_3 \) registers may or may not be set to zero.\(^\text{152}\)

25.2.1. MVCLE

Unlike MVCL, no overlap test is done for MVCLE; the results of overlapping operands are unpredictable. Its execution is sketched in Figure 229, using similar notations as in Figure 222, except that the source operand address is \(A_3 \) and the source operand length is \(L_3 \).

\(^\text{152}\) This is not just a whim on the part of the CPU; it’s meant to give the CPU designers more freedom to decide how best to implement the instructions. (Maybe it’s a whim on the part of the CPU designers?.)
Figure 229. Execution of the MVCLE instruction

On termination, the register contents are:

1. If the first operand has been completed, the CC is set to 0 if the two operand lengths are equal.
2. If the first operand has been completed, the CC is set to 1 if the first operand is shorter than the second.
3. If the first operand has been completed, the CC is set to 2 if the first operand is longer than the second (meaning that the first operand was padded).
4. If the CPU has moved enough bytes and wants to pause for any pending interruptions, the CC is set to 3. You would then branch back to the MVCLE instruction to resume the move.
5. Whatever the reason for termination, the registers are updated to account for the amount of data that has been moved.
6. Some special padding byte values can be used to improve the performance of MVCLE; see the z/Architecture Principles of Operation for details.

To summarize, MVCLE sets the Condition Code as shown in Table 154.

<table>
<thead>
<tr>
<th>CC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>All bytes moved, operand lengths are equal</td>
</tr>
<tr>
<td>1</td>
<td>All bytes moved, operand 1 shorter; part of operand 2 was not moved</td>
</tr>
<tr>
<td>2</td>
<td>All bytes moved, operand 1 longer; operand 1 was padded</td>
</tr>
<tr>
<td>3</td>
<td>Some bytes moved; end of operand 1 not reached</td>
</tr>
</tbody>
</table>

Table 154. CC settings after MVCLE

We can use MVCLE for the same task as in Figure 223 on page 407, where we again assume that GR8 and GR9 have been initialized already:

```
LA 2, PrintMsg    First operand address
LA 3,L’PrintMsg   First operand length
LA 0, ‘ ’         Set padding character to blank
Move MVCLE 2,8,0   Move the string, pad if necessary
JO Move           Repeat if not finished
```

Figure 230. Using MVCLE to set a field to blanks

As another example, suppose we use MVCLE to initialize a large area of storage starting at Work to zeros:
XR 0,0 Source address will be ignored,
XR 1,1 ...because source length is zero
LA 2,Work Start of area to initialize
L 3,WorkSize Length of work area
Clear MVCLE 2,0,'00' Initialize with '00' padding
JO Clear Repeat if necessary

BlockLen Equ 32000
NBlocks Equ 20000
WorkSize DC A(BlockLen*NBlocks) Large area

Figure 231. Using MVCLE to initialize an area to zero

It’s unlikely that you’d ever need to initialize such a large an area of storage; because the value at WorkSize is larger than 2^{24}, we can’t use MVCL.

It may or may not be important to your application that MVCLE does not check for overlap.

25.2.2. CLCLE

CLCLE operates in much the same way as CLCL, as sketched in Figure 232, using the same notations as in Figure 225, except that the source operand address is A_3 and the source operand length is L_3.

Figure 232. Execution of the CLCLE instruction

On termination, the registers are set as follows:

1. If an inequality is found, the CC is set as shown in Table 157.
2. If the operands are equal (including the padding byte, if used), the addresses and lengths are updated to account for the number of bytes compared.
3. If the CPU has compared enough bytes without an inequality and wants to pause for any pending interruptions, the CC is set to 3. You would then branch back to the MVCLE instruction to resume comparing.

In summary, CLCLE sets the Condition Code as shown in Table 155.

<table>
<thead>
<tr>
<th>CC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>All bytes compared, operands equal, or both zero length</td>
</tr>
<tr>
<td>1</td>
<td>First operand low</td>
</tr>
<tr>
<td>2</td>
<td>First operand high</td>
</tr>
<tr>
<td>3</td>
<td>Some bytes compared without finding an inequality</td>
</tr>
</tbody>
</table>

Table 155. CC settings after CLCLE
To illustrate, we’ll rewrite Figure 221 on page 405 to use CLCLE:

\[
\begin{align*}
 &\text{LA 2,Line} & \text{First operand address in GR2} \\
 &\text{LA 3,120} & \text{First operand length in GR3} \\
 &\text{XR 0,0} & \text{Second operand address is ignored,} \\
 &\text{XR 1,1} & \ldots\text{because its length is zero} \\
 &\text{Compare CLCLE 2,0,C} & \text{Compare first operand to blanks} \\
 &\text{JE AllBlank} & \text{Branch if all blanks at ‘Line’} \\
 &\text{JO Compare} & \text{Repeat if comparison is incomplete} \\
 &\ldots & \text{GR2 points to first nonblank char}
\end{align*}
\]

Figure 233. Using CLCLE to test for all blanks

The similarities of CLCL and CLCLE are close; only the operand lengths and the source of the padding byte are different. But, the differences between CLC and CLCL/CLCLE are more significant:

- CLC requires only one or two base registers to address the operands; CLCL/CLCLE both require four registers.
- CLC is limited to 256-byte operands; CLCL/CLCLE operands can be much longer.
- CLC simply indicates an inequality; CLCL/CLCLE also set R1 and R2 to the addresses of the unequal bytes.
- CLC does no padding; CLCL/CLCLE support a padding character.

Exercises

25.2.1.(2) What do you think will happen if the B2 register of a CLCLE or MVCLE instruction is the same as R1 or R3 or R1+1 or R3+1?

25.2.2.(1) Can both operands of CLCL or CLCLE be padded?

25.2.3.(2) In 24-bit addressing mode, the maximum valid address is \(X’00FFFFFF’\), or \(2^{24}–1\). However, MVCLE allows you to specify operand lengths up to \(X’FFFFFFFFFFFF’\), or \(2^{32}–1\). What do you think will happen if you execute MVCLE with a length longer than \(X’FFFFFFFFFFFF’\)?

25.2.4.(1) In Figure 231 on page 414, what is the hex value of the word at \textbf{WorkSize}?

25.2.5.(2) Let NB2M be the number of bytes to be moved to \textbf{Tgt} from the second operand field at \textbf{Src} by MVCL. Make a table which gives the initial and final register contents, and the value of NB2M, for each of the possible resulting CC values when all bytes have been moved. Then, do the same for MVCLE.

25.3. Special String-Handling Instructions

The four instructions in Table 156 arose from the need to process character strings used by the C and C++ programming languages, where character strings are terminated by a zero byte (\(X’00’\)) called a null byte.\(^{153}\) The instructions have many general uses, whatever the origins of the data, and whether or not it contains a null terminating byte.

We will use a bold italic letter “\(n\)” to represent a null byte, as in “\(n\)”. For example,

\[
\text{DC C’A C-string.’,X’0’} \quad \text{Generates ‘A C-string.n’}
\]

\(^{153}\) The earliest implementations of C were done on machines with instructions that could move bytes and simultaneously test their values, so very few instructions were needed to move null-terminated character strings.
The length of a C-string does not include the terminating null character, so that the single byte 'X’00' represents a C-string of length zero (a “null string”).

Table 156. Character-handling instructions for terminated strings

<table>
<thead>
<tr>
<th>Op</th>
<th>Mнем</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mнем</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>B255</td>
<td>MVST</td>
<td>RRE</td>
<td>Move String</td>
<td>B25D</td>
<td>CLST</td>
<td>RRE</td>
<td>Compare Logical String</td>
</tr>
<tr>
<td>B25E</td>
<td>SRST</td>
<td>RRE</td>
<td>Search String</td>
<td>B2A5</td>
<td>TRE</td>
<td>RRE</td>
<td>Translate Extended</td>
</tr>
</tbody>
</table>

Table 156. Character-handling instructions for terminated strings

These instructions all have RRE format, as shown in Table 157:

Table 157. Format of RRE-type instructions

Each instruction uses a special (end, test, or terminating) character in the rightmost byte of GR0. All but TRE require that the remaining bits of GR0 be zero.

The operation of the MVCL, MVCLE, CLCL, and CLCLE instructions is controlled by a length in a register; the four instructions in Table 156 are controlled by the presence of the special character in one or both operands. Only TRE uses both a length and a terminating character.

Exercises

25.3.1.(1)+ Write DC statements defining C-strings of length zero, one, and ten.

25.4. Search String Instruction

The SRST instruction is the simplest of these four instructions. It scans the second operand string addressed by register R₂, looking for a byte matching the specified “test” character in GR0. If a matching byte is found, the R₁ register is set to its address. Because the second operand string can be very long, the CPU uses “Method B” to process part of the string before checking for interruptions.

For finding a single character, SRST is simpler and faster than a Translate and Test instruction like TRT, or a CLI loop. Unlike TRT, however, it searches for only a single character.

To use SRST, set the test character in GR0, set the R₂ register to the address of the leftmost byte of the string to be scanned, and the R₁ register to the address of the first byte after the end of the string. The CPU uses the address in the R₁ register to know when to stop the scan; otherwise, it could keep scanning bytes in memory until it found a match somewhere, or caused an unexpected interruption. This is summarized in Figure 234.

![Figure 234. Registers bounding the SRST search string](image)

Table 158 gives the Condition Code settings after SRST:

* I know of no programming language named “G”
Table 158. CC settings for SRST instruction

<table>
<thead>
<tr>
<th>CC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Test character found; R<sub>1</sub> points to it</td>
</tr>
<tr>
<td>2</td>
<td>Test character not found before the byte addressed by R<sub>1</sub></td>
</tr>
<tr>
<td>3</td>
<td>Partial search with no match; R<sub>1</sub> unchanged, R<sub>2</sub> points to next byte to process</td>
</tr>
</tbody>
</table>

On completion, either or both of the R₁ and R₂ registers may be updated:

- If the CC is 1, the R₁ register is updated and the R₂ register is unchanged.
- If the CC is 2, both the R₁ and R₂ registers are unchanged.
- If the CC is 3, R₁ is unchanged and R₂ is updated to the address of the next byte to be tested.

You can then branch back to the SRST instruction to continue the search.

When a register is updated, any high-order bits not used for addressing are set to zero. Figure 235 sketches the operation of the SRST instruction. The notation used in the figure is:

- **A1**: Address of the first byte after the end of the string being searched
- **A2**: Address of a byte being checked during the search
- **Test**: Test character in GR0

Figure 235. Execution of the SRST instruction

For example, suppose you want to scan the string at **MyData** to find the first occurrence of a blank character:

```assembly
LA 0,C' ' Search character is a blank
LA 1,MyData Set GR1 to start of the string
LA 5,MyData+L MyData Set GR5 to byte past end of string
Repeat SRST 5,1 Scan the string for a blank
JO Repeat Scan was incomplete, try again
JH NotFound CC2, no blank was found
    - - - GR5 points to the blank
```

If the Condition Code is 3, we simply branch back to the SRST to continue the search.

Exercises

25.4.1.(2) Write a sequence of instructions to find the last nonblank character in a C-string of fewer than 256 characters stored at **CData**. If no nonblank characters are found, branch to **A1Blank**.
25.4.2.(2) The C/C++ programming languages define the `strlen` function to return the length of a C-string argument. Suppose a C-string of unknown length is stored at `WorkArea`. Store its length in the word at `WorkLen`.

25.4.3.(3) The C/C++ programming language function `memchr` searches the first N bytes of a C-string argument to find the first occurrence of a given byte. Suppose a C-string of unknown length is stored at `WorkArea`, and you want to find an occurrence in the string of the byte stored at `FindByte`, and the maximum number of bytes to search is stored in the word at `N`. If the desired character is found, put its address in GR1; if not found, set GR1 to zero.

25.4.4.(2) A single byte is stored at `OddByte`. Write instructions to search for its first occurrence in the C-string stored at `Clutter`. If found, set GR9 to the address of the first occurrence; if not found, set GR9 to zero.

25.4.5.(3) Suppose your program processes words and sentences, and you must alternately search for the blank ending a word and a nonblank starting the next word. Write a sequence of instructions that show how to scan a string at `TextLine` and build arrays containing (a) the length of each word, and (b) its starting address.

25.4.6.(4) Repeat Exercise 25.4.5 but assume that the words might be followed by punctuation characters that should not be stored as part of the word.

25.5. Move String Instruction

The MVST instruction moves bytes from the second operand to the first, testing each source byte for the ending character. If the entire operand (including the ending character) has been moved, the CPU sets Condition Code 1, and sets the R₁ register to the address of the ending character. If some bytes remain to be moved, the addresses in R₁ and R₂ are updated to point to the next bytes to be processed, unused high-order addressing bits are set to zero, and the Condition Code is set to 3.

<table>
<thead>
<tr>
<th>CC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Entire second operand moved; R₁ points to end of first operand</td>
</tr>
<tr>
<td>3</td>
<td>Incomplete move; R₁ and R₂ point to next bytes to process</td>
</tr>
</tbody>
</table>

Table 159. CC settings for MVST instruction

Figure 236 sketches the operation of the MVST instruction.

```
START ───/SM590000 c(A1) ───/SM590000 c(A2) = End Char? ───/SM590000│ Done; Set CC1 │
      └─/SM630000 ─────────────────────────────── Enough ───/SM590000│ Done; Set CC3 │
            A1=A1+1			A2=A2+1
            No
            No
            Yes
            Yes
            Done; Set CC3
```

Figure 236. Execution of the MVST instruction

The following example moves a null-terminated string from `Old` to `New`.
XR 0,0 Ending character is a null byte
LA 1,Old Address of source string
LA 2,New Address of target string
Move MVST 2,1 Move from Old to New
JO Move Repeat if CC=3
-
Old DC C′This is a null-terminated string′,X′0′
New DS CL(L′Old+1) Reserve space for New string

Figure 237. Moving a null-terminated string

It’s important to ensure that the target field is long enough to hold both the characters and the null terminating byte.

Many programs must scan character strings containing tokens separated by commas. Using MVST, you can move the tokens one at a time to a work area for analysis.

LHI 0,C′,′ Ending character is a comma
LA 1,Source Address of source string
NextTok LA 2,WorkArea Address of work area for a token
LR 3,1 Save starting address of token
Move MVST 2,1 Move from Source to WorkArea
JO Move Repeat if CC=3
SR 1,3 Subtract token’s starting address
STH 1,TokenLen Save its length
-
LA 1,1(1,3) Point GR1 past the comma
J NextTok And go scan for the next token
-
Source DC C′LIST,OBJECT,XREF,ADATA,′ String of tokens
WorkArea DS CL20 Reserve space for longest token
TokenLen DS H Length of current token

Figure 238. Using MVST to isolate comma-separated tokens

This example is incomplete because we would expect more tokens to follow the last one (ADATA), and because the length of the entire string should be checked to see if the last token was not followed by a comma.

Exercises

25.5.1.(2) What would happen in Figure 237 if you used an MVC instruction to move the string from Old to New? (Assume the string is less than 250 bytes long.)

25.5.2.(2) In Figure 238, how would you know that you had correctly processed the last token in the source string?

25.5.3.(2) In Figure 238, is the length stored at TokenLen the length of the token, or the length of the token and its terminating comma?

25.5.4.(3) Suppose a C-string is stored at From and you want to move it to Target but with the additional limitation that at most N bytes are moved, where N is stored at NBytes. If the null character terminating the string at From is moved, set GR1 to the address of the byte following the null character; if the null character is not moved, set GR1 to zero.

25.5.5.(2) Write instructions to concatenate the C-string stored at Suffix at the end of the C-string stored at Prefix. Make sure that the resulting C-string is terminated correctly. Assume that the string at Suffix is at most 8000 bytes long.
25.5.6.(3) Repeat Exercise 25.5.5, but assume that the amount of space available for the concatenated string is only 150 bytes. If the result will not fit in the space available, branch to TooLong.

25.5.7.(2)+ Write instructions to copy a C-string from Here to There.

25.5.8.(3) Modify the instructions in Figure 238 to scan and process all the tokens in the character string, given that the total length of the token string is in a word at StrLen and that the string might contain only a single token without a trailing comma.

25.6. Compare Logical String Instruction

As we saw for CLCL and CLCLE, the two operands being compared can have different lengths, and either operand may be padded. CLST, however, requires that the operands have the same terminating character; and neither is padded during comparison.

The operands are compared byte by byte from left to right, until unequal bytes are found or the end of an operand is reached. Unlike SRST, there is no stop address or operand length for either operand, so be sure the strings are properly terminated.

If the end character is found in either operand before being found in the other, the shorter operand is low; if they are found at the same time, the operands are equal.

The Condition Code settings after CLST are the same as those for other compare instructions, except that CC3 indicates an incomplete operation. As with SRST and MVST, if the Condition Code is 3, you can just branch back to repeat the CLST.

<table>
<thead>
<tr>
<th>CC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Entire operands are equal; R₁ and R₂ unchanged</td>
</tr>
<tr>
<td>1</td>
<td>First operand low; R₁ and R₂ point to last bytes processed</td>
</tr>
<tr>
<td>2</td>
<td>First operand high; R₁ and R₂ point to last bytes processed</td>
</tr>
<tr>
<td>3</td>
<td>Operands equal so far; R₁ and R₂ point to next bytes to process</td>
</tr>
</tbody>
</table>

Table 160. CC settings for CLST instruction

Figure 239 on page 421 sketches the operation of the CLST instruction. The notation used in the figure is:

A₁ Address of a first-operand byte, c(R₁)
c(A₁) The first-operand byte at address A₁
A₂ Address of a second-operand byte, c(R₂)
c(A₂) The second-operand byte at address A₂
End End character in GR0
x:y x is compared to y
At termination, the contents of the registers are:

1. If the comparison ends at the End character for both operands, they are equal: the CC is set to 0 and GR R1 and GR R2 point to the End characters.

2. If the comparison ends at unequal bytes, the CC is set to 1 or 2 depending on whether the first operand byte is less than or greater than the second operand byte. GR R1 and GR R2 contain the addresses of the unequal bytes.

3. If the comparison reaches the End character of one operand before the other, that operand is considered the smaller and the CC is set accordingly. GR R1 and GR R2 point to the bytes where the comparison stopped. (Note that no padding occurs!).

4. If the comparison is not complete when the CPU needs to allow for possible interrupts, the CC is set to 3 and GR R1 and GR R2 have the addresses of the next bytes to be compared. You can then branch back to the CLST instruction to continue comparing.

To illustrate, suppose you want to compare the two C-strings at A and B.

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>XR 0,0</td>
<td>Set null ending byte in GR0</td>
</tr>
<tr>
<td>LA 7,A</td>
<td>Set GR7 to start of first operand</td>
</tr>
<tr>
<td>LA 5,B</td>
<td>Set GR5 to start of second operand</td>
</tr>
<tr>
<td>Comp CLST 7,5</td>
<td>Compare the two strings</td>
</tr>
<tr>
<td>JO Comp</td>
<td>Incomplete comparison, repeat</td>
</tr>
<tr>
<td>JE Equal</td>
<td>Strings are equal</td>
</tr>
<tr>
<td>JH A_High</td>
<td>String A compares higher than string B</td>
</tr>
<tr>
<td>J A_Low</td>
<td>String A compares lower than string B</td>
</tr>
</tbody>
</table>

When an inequality is found, the ending characters of the operands are not part of the comparison. However, when R1 and R2 are updated when the Condition Code is 3, they could contain the addresses of either or both ending characters.

Exercises

25.6.1.(2) Write an instruction sequence that will compare the C-string stored at StringA to the C-string stored at StringB. Set GR0 to +1 if StringA is greater than StringB, to zero if they are equal, and to −1 if c(StringA) is less than c(StringB).

25.6.2.(3) Write an instruction sequence that will compare the first N bytes of the C-strings stored at StringA and StringB respectively, where the number of bytes N is stored in the word at NBytes. Set GR0 to +1 if StringA is greater than StringB, to zero if they are equal, and to
–1 if StringA is less than StringB. Be sure to handle cases where either or both strings are shorter than N bytes.

25.6.3.(2)+ Suppose these instructions are used to compare two C-strings:

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>XR 0,0</td>
<td>Ending character is a null byte</td>
</tr>
<tr>
<td>LA 1, X</td>
<td>First operand is at X</td>
</tr>
<tr>
<td>LA 2, Y</td>
<td>Second operand is at Y</td>
</tr>
<tr>
<td>CLST 1,2</td>
<td>Compare first and second operands</td>
</tr>
</tbody>
</table>

For each of the following, assume that the string named X is at address X′26F943′. Give the Condition Code setting and the addresses in GR1 and GR2 after comparing each pair of strings.

1. X DC C′ABCD′, X′0′
 Y DC C′ABJE′, X′0′

2. X DC X′0′
 Y DC X′0′

3. X DC C′ABCD′, X′0′
 Y DC C′ABCD′, X′0′

4. X DC C′BCDEFGH′, X′0′
 X DC C′ABCD′, X′0′

25.6.4.(4) Two strings of bytes begin at A and B and their lengths are stored in the halfwords at LA and LB respectively. Compare the two strings up to the length of the shorter; however, if a mismatch occurs and one of the unmatched bytes is X′FF′, continue comparing. (Thus X′FF′ is a “don’t care” character which can match any other character.) Branch to AB_Equal, A_High, or B_High accordingly.

25.7. Translate Extended Instruction

The TRE instruction is similar in function to TR. In both cases, the first operand is the string of bytes to be translated, scanning from left to right, and the second operand is the translate table. There are several differences:

- Addresses: specified in base-displacement form for TR, but in R1 and R2 for TRE.
- Lengths: for TR, encoded in the instruction’s Length Specification Byte, but in R1+1 for TRE.
- Stop condition: for TR, all first operand bytes are translated; for TRE, either all first operand bytes are translated, or a first operand byte matches the “stop” character in GR0.
- Condition Code: unchanged by TR, but updated by TRE.
- Operands overlap: TR operates byte-by-byte so that operand overlap has no effect; for TRE the results are unpredictable.

One important result of having a stop character is that it can’t be translated, unless you add extra instructions to do your own “translation” after TRE completes.

Table 161 gives the Condition Code settings following execution of a TRE instruction:

<table>
<thead>
<tr>
<th>CC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>All bytes translated; R1 incremented by length, R1+1 set to 0</td>
</tr>
<tr>
<td>1</td>
<td>R1 points to the byte matching the stop character; R1+1 decremented by the number of bytes processed before the match</td>
</tr>
<tr>
<td>3</td>
<td>R1 incremented and R1+1 decremented by the number of bytes processed</td>
</tr>
</tbody>
</table>

Table 161. CC settings for TRE instruction
To illustrate, suppose a sentence of text starting at **Sentence** is known to be at most 800 bytes long. We want to translate all alphabetic characters to upper case, and stop on the first period.

```
LA 1,UpperTbl  Address of translate table
LHI 0,C.'        Stop character in GR0
LHI 3,800       Maximum length
LA 2,Sentence    String to be translated
UpChars TRE 2,1  Translate characters to upper case
JO UpChars      Repeat if not finished
JZ NoPeriod     All characters translated, but ...
*                  ... no stop character was found.
- - - GR2 has address of the stop character
```

Figure 240. Translating characters to upper case with TRE

If we need to translate additional text, we can simply increment GR2, reset the length in GR3, and continue.

The translate table referenced in Figure 240 could be defined with statements like these:

```
UpperTbl DC 256ALL("--UpperTbl") Initialize table to identities
Org UpperTbl+C' a'  Position at C'a'
DC C' ABCDEFGHI' Upper-case equivalents
Org UpperTbl+C' j'  Position at C'j'
DC C' JKLNPQOR' Upper-case equivalents
Org UpperTbl+C' s'  Position at C's'
DC C' STUVWXYZ' Upper-case equivalents
Org , Reposition Location Counter
```

Exercises

25.7.1.(2) What do you think will happen to a TRE instruction if \(R_1 = 0 \) or \(R_2 = 0 \)? If \(R_1 = R_2 \)?

25.7.2.(2)+ Suppose you execute these instructions:

```
LA 0,C.'?
LHI 3,N
LA 2,X
LA 9,Table
TRE 2,9
```

Assuming an appropriate translate table has been defined at **Table**, show the contents of GR2, GR3, and the Condition Code for each of the following values of N and byte strings starting at X which is at address X'7F290C'.

1. \(N \) Equ 7
 X DC C'Who? What?'

2. \(N \) Equ 7
 X DC C'Unknown?'

3. \(N \) Equ 50
 X DC 10C'Possibly? '
25.8. Compare Until Substring Equal Instruction (*)

CUSE is a very complex instruction. It is unusual in another way: it is both interruptible ("Method A") and stops and sets Condition Code 3 to allow interruption processing ("Method B"). Though not widely used, it may be applicable in certain applications.

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>B257</td>
<td>CUSE</td>
<td>RRE</td>
<td>Compare Until Substring Equal</td>
</tr>
</tbody>
</table>

Table 162. Compare Until Substring Equal instruction

In general, there are two types of matching substring, depending on whether the equal substrings are at the same or different offsets:

• In ‘XBCY’ and ‘ABCD’, the equal substrings ‘B’ and ‘BC’ (with lengths 1 and 2 respectively) are at offset 1.
• In ‘XYBC’ and ‘ABCD’, the equal substrings ‘B’ and ‘BC’ are at different offsets.

The CUSE instruction searches only for equal substrings at the same offset, and having the length specified in GR0. It requires six general registers, two of which are fixed: GR0 and GR1. The rightmost byte of GR0 contains the length of the desired matching substrings, and the rightmost byte of GR1 contains a padding byte. The remaining bits of both registers are ignored.

The addresses of the two operands are specified by the even-numbered registers R1 and R2, and their lengths are in R1+1 and R2+1, respectively. And unlike instructions like MVCL and CLCLE, the lengths are signed, and a negative length is treated as zero. It’s important to remember that the substrings must occur at the same offset in both operands. Thus, in the two strings

ABCDEFG and QRSDEFT

the substring DEF occurs at offset 3, so CUSE can identify matching substrings for lengths 1, 2, and 3. However, in the two strings

ABCDEFG and BCDEFGH

the string BCDEFG appears at different offsets, so they will not be considered as equal substrings by CUSE.

The padding character in GR1 is used to extend the shorter string if necessary. For example, if the padding byte is ‘*’ and the two operand strings are

ABC and BCD**

with lengths 3 and 5 respectively, and the substring length is 2, then the matching substring will be the characters **.

The Condition Code and registers are set as indicated in Table 163.

154 Other complex instructions include EDIT and EDMK; we’ll see them when we describe packed decimal arithmetic.
155 At the time of this writing, I know of no other instruction that supports both types of interruption management.
156 A signed length seems strange, as it’s hard to think of uses for strings with negative lengths. Other instructions like MVCL and MVCLE use unsigned lengths. (See Exercise 25.8.7.)
Here are some examples of CUSE: suppose we execute the code sequence in Figure 241 for various values of String1 and String2 and their lengths, with different pad characters, searching for matching 3-byte substrings in each case:

```
LA 0, Substr_Len Desired substring length in R0
LA 1, Pad_Char Pad Character in R1
LM 2, 5, =A(String1, L′ String1, String2, L′ String2)
CUSE 2, 4
```

Figure 241. Examples using the CUSE instruction

The results are shown in Table 164; matching substrings are underlined.

<table>
<thead>
<tr>
<th>String1</th>
<th>L1</th>
<th>String2</th>
<th>L2</th>
<th>Substr Len</th>
<th>Pad Char</th>
<th>CC</th>
<th>L1 after</th>
<th>L2 after</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>CABCEFDEFEAB</td>
<td>12</td>
<td>ACBABCCEFEEAB</td>
<td>12</td>
<td>3</td>
<td>C′ ′</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>Match</td>
</tr>
<tr>
<td>ABCDEF</td>
<td>6</td>
<td>BCDEFA</td>
<td>6</td>
<td>3</td>
<td>C′ ′</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>No match</td>
</tr>
<tr>
<td>ABCBCAC</td>
<td>9</td>
<td>BCABCAC</td>
<td>9</td>
<td>3</td>
<td>C′ ′</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>Match at end</td>
</tr>
<tr>
<td>ABC</td>
<td>3</td>
<td>CABAAA</td>
<td>6</td>
<td>3</td>
<td>C′ A′</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>Match with pad</td>
</tr>
<tr>
<td>ABC</td>
<td>3</td>
<td>ABCAB</td>
<td>6</td>
<td>3</td>
<td>C′ A′</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>No match</td>
</tr>
<tr>
<td>ABCBA</td>
<td>5</td>
<td>BCBA</td>
<td>5</td>
<td>3</td>
<td>C′ A′</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>No match, last bytes equal</td>
</tr>
</tbody>
</table>

Table 164. Results of examples using the CUSE instruction

Searching for matching substrings can be a complex and tedious process, especially if different offsets are allowed. (See Exercise 25.8.1 and Programming Problem 25.1.)

Exercises

25.8.1.(4) Write a sequence of instructions using CLCLE instructions to emulate the function of CUSE.

25.8.2.(2)+ What is the length of the longest matching substring that can be found using CUSE?

25.8.3.(2) Suppose a CUSE instruction detects an inequality following several equal bytes, but the number of equal bytes is less than the required substring length. Should the instruction restart its comparison at the second equal bytes, or at the bytes following the inequality?

25.8.4.(2)+ Suppose your CUSE instruction specifies a substring length 2 with padding character A. If the strings ABCA and DEFA are compared, will it find a matching substring AA?

25.8.5.(2) If the substring length is 1, how is CUSE similar to and different from CLCLE?

25.8.6.(4) Create a flow diagram for CUSE, similar to those in Figures 236 and 239.

25.8.7.(5) Suppose the CUSE instruction supports negative operand lengths, and performs a backward search. For example, if StringA is ABCD and has length +4, while StringB is WCBZ and...
has length \(-4\). If the search starts at the rightmost byte of an operand with negative length, it would find a matching substring \(BC\) in this case.

Write instructions to emulate a CUSE instruction that supports negative operand lengths.

25.9. Summary

Null-terminated C-strings must be handled carefully. If the terminating null byte is omitted, programs scanning or moving such strings may process far more data than intended, possibly overwriting other data or parts of the program.

The instructions discussed in this section are listed in Table 165; all set the Condition Code.

Table 165. Extended instructions for character data

<table>
<thead>
<tr>
<th>Function</th>
<th>Length control</th>
<th>End-char control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Move</td>
<td>MVCL</td>
<td>MVST</td>
</tr>
<tr>
<td></td>
<td>MVCLE</td>
<td></td>
</tr>
<tr>
<td>Compare</td>
<td>CLCL</td>
<td>CLST</td>
</tr>
<tr>
<td></td>
<td>CLCLE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CUSE</td>
<td></td>
</tr>
<tr>
<td>Search</td>
<td>SRST</td>
<td></td>
</tr>
<tr>
<td>Translate</td>
<td>TRE</td>
<td></td>
</tr>
</tbody>
</table>

Instructions Discussed in this Section

The instruction mnemonics and opcodes are shown in the following table:

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Opcode</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLCL</td>
<td>0F</td>
</tr>
<tr>
<td>CLCLE</td>
<td>A9</td>
</tr>
<tr>
<td>CLST</td>
<td>B25D</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Opcode</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUSE</td>
<td>B257</td>
</tr>
<tr>
<td>MVCL</td>
<td>0E</td>
</tr>
<tr>
<td>MVCLE</td>
<td>A8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Opcode</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVST</td>
<td>B255</td>
</tr>
<tr>
<td>SRST</td>
<td>B25E</td>
</tr>
<tr>
<td>TRE</td>
<td>B2A5</td>
</tr>
</tbody>
</table>

The instruction opcodes and mnemonics are shown in the following table:

<table>
<thead>
<tr>
<th>Opcode</th>
<th>Mnemonic</th>
</tr>
</thead>
<tbody>
<tr>
<td>0E</td>
<td>MVCL</td>
</tr>
<tr>
<td>0F</td>
<td>CLCL</td>
</tr>
<tr>
<td>A8</td>
<td>MVCLE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Opcode</th>
<th>Mnemonic</th>
</tr>
</thead>
<tbody>
<tr>
<td>A9</td>
<td>CLCLE</td>
</tr>
<tr>
<td>B255</td>
<td>MVST</td>
</tr>
<tr>
<td>B257</td>
<td>CUSE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Opcode</th>
<th>Mnemonic</th>
</tr>
</thead>
<tbody>
<tr>
<td>B25D</td>
<td>CLST</td>
</tr>
<tr>
<td>B25E</td>
<td>SRST</td>
</tr>
<tr>
<td>B2A5</td>
<td>TRE</td>
</tr>
</tbody>
</table>

Exercises

25.9.1.(3)+ The C/C++ function `strncpy` copies at most N characters from a C-string at `From` to a C-string at `To` and pads it with null bytes if the “From” string has fewer than N characters. Assuming that the number N is stored in a word at `NBytes`, write an instruction sequence to perform this function.

25.9.2.(2)+ The C/C++ function `strcat` concatenates characters from the C-string at `Second` to the end of the C-string at `First`. Write an instruction sequence to perform this function, being sure that the result has only a single null character.
25.9.3.(3) The C/C++ function `strncat` concatenates at most N characters from a C-string at `Second` to the end of the C-string at `First` and terminates the result with a null byte. Assuming that the number N is stored in a word at `NBytes`, write an instruction sequence to perform this function.

25.9.4.(3) The C/C++ function `strncmp` compares at most N characters from the C-string at `A` to the C-string at `B`. Assuming that the number N is stored in a word at `NBytes`, write an instruction sequence to perform this function, setting GR0 to +1 if $A>B$, to 0 if $A=B$, and to $−1$ if $A<B$.

25.9.5.(2) The C/C++ function `strchr` searches a C-string for the first occurrence of a character. Write instructions to perform this function, assuming that the C-string is stored at `CString` and the character to be sought is stored at `FindChar`. If the character is found, set GR3 to its address; otherwise, set GR3 to zero.

25.9.6.(3)+ The C/C++ function `strrchr` searches a C-string for the last occurrence of a character. Write instructions to perform this function, assuming that the C-string is stored at `CString` and the character to be sought is stored at `FindChar`. If the character is found, set GR3 to its address; otherwise, set GR3 to zero.

25.9.7.(3) The C/C++ function `strspn` searches a C-string for any of the characters in a second C-string, and returns the length of the initial portion of the first string containing characters belonging to the second. Assuming that the C-strings are stored at `First` and `Second`, write instructions that will place in GR1 the length of the first part of the first string containing only characters from the second.

25.9.8.(3) The C/C++ function `strcspn` searches a C-string for any of the characters not in a second C-string, and returns the length of the initial portion of the first string containing no characters belonging to the second. Assuming that the C-strings are stored at `First` and `Second`, write instructions that will place in GR1 the length of the first part of the first string containing none of the characters from the second.

25.9.9.(3) The C/C++ function `strpbrk` searches a C-string for the first occurrence of any character in a second C-string, and returns the address of the character if present, or a null (zero) pointer if none is found. Assuming that the C-strings are stored at `First` and `Second`, write instructions that will place in GR1 the address of the first occurrence in the first string of any character from the second, or zero if none is found.

25.9.10.(3) The C/C++ function `strstr` searches a C-string for the first occurrence of a second C-string, and returns the address of the first character of that matching string if present, or a null (zero) pointer if none is found. Assuming that the C-strings are stored at `First` and `Second`, write instructions that will place in GR1 the address of the first occurrence in the first string of the second string, or zero if none is found. If the second string is null, return the address of the first.

25.9.11.(2) The C/C++ function `memchr` searches N bytes in memory for the first occurrence of a character, and returns a pointer to the character if present or a null (zero) pointer if none is present. Write instructions to perform this function, assuming that the data to be searched is stored at `MemData`, the character to be sought is stored at `FindChar`, and the number N is stored in a word at `NBytes`. If the character is found, set GR3 to its address; otherwise, set GR3 to zero.

25.9.12.(2) The C/C++ function `memset` stores a character into the first N bytes of a C-string. Write instructions to perform this function, assuming that the C-string is stored at `CString`, the character to be stored is at `FillChar`, and the number N is stored in a word at `NBytes`. What will happen if the null bytes at the end of the C-string is overwritten, or if no null byte is placed after the N-th byte?

25.9.13.(4)+ A string of EBCDIC characters starting at `Str+2` contains substrings of blanks and nonblanks. The total length of the string is a halfword binary integer in the two bytes at `Str`. Write instructions to replace multiple blanks in the string with a single blank, and update the string length accordingly. (Such a result is sometimes called “blank-compressed”’.)
Terms and Definitions

destructive overlap
 Destructive overlap occurs when any part of a target operand field is used for a source after data has been moved into it.

interruptible
 An instruction is interruptible if the CPU suspends its operation, updates the registers involved in the operation and subtracts the instruction’s length from the Instruction Address in the PSW, so that when the program resumes execution, the instruction will start from the point where it was interrupted.

null byte
 A zero or X’00’ byte, indicated by the character n.

C-string
 A string of zero or more bytes ending with a zero or “null” byte.

Programming Problems

Problem 25.1.(3) Write a program that reads two character strings from two 80-byte records, and searches for the first and longest matching substring at any offset within the two strings. Use a blank for the padding character. Print the original strings, the matching substring and its length, and its offset within each string. Repeat for several pairs of input strings.

For example, if the two strings are ‘XYA12345’ and ‘$12345678’, the longest matching substring is ‘12345’ with length 5, at offsets 3 and 1 respectively. The requirement that you find the longest matching substring means that you shouldn’t report a one-byte substring like ‘1’.

Problem 25.2.(3) Programs must sometimes isolate a string of characters preceded and followed by strings of blanks. For example, if the original string is ‘•••AB●CD••’ (where • means a blank character), the desired result is the string ‘AB●CD’.

Write a program that reads 80-character records and removes leading and trailing blanks. Print the original record, and the “blank-trimmed” result and its length. Repeat for several input records.

Some sample input records might include

<table>
<thead>
<tr>
<th>DC</th>
<th>CL80' AB CD '</th>
<th>As in the example above</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC</td>
<td>80C'*'</td>
<td>No blanks</td>
</tr>
<tr>
<td>DC</td>
<td>CL80' AB'</td>
<td>No leading blanks</td>
</tr>
<tr>
<td>DC</td>
<td>CL78' ',C'YZ'</td>
<td>No trailing blanks</td>
</tr>
<tr>
<td>DC</td>
<td>CL80' '</td>
<td>All blanks</td>
</tr>
</tbody>
</table>

You should create other records to exercise your program.
This section digresses somewhat from the main threads of the previous and following sections. For many programs, you need not be concerned with the details of the character representation used for your programs. There are times, however, when programs need to recognize the encodings used for data they read or create. This section introduces some of the other character encodings you may meet, and instructions to help process them.

26.1. Character Representations

Data is stored as strings of bits; we interpret the meanings of the bits differently for different data types. Every computer system must solve the problem of representing characters as bit patterns.

Many character encodings exist, and many others have been forgotten. As the number of encodings for a given character grew it became much more difficult to exchange data among systems. This led to efforts to standardize on a smaller set of codes; among them are single-byte EBCDIC, ASCII, double-byte EBCDIC, and Unicode. We’ll investigate each in turn.

26.1.1. BCD characters

The EBCDIC code used in z System is a descendant of the older BCD (“Binary Coded Decimal”) encodings used on early IBM processors. Each character was 6 bits wide, and was represented as two octal digits.\(^{157}\)

Table 166 gives the BCD encodings. There are no lower-case characters, and fewer “special” characters than are supported by EBCDIC. (See Exercise 26.1.3.)

\(^{157}\) We mentioned base-8 (octal) encoding in Section 2.2.
Exercises

26.1.1.1 Suppose a string of 60 bytes contains characters encoded in BCD; each byte has two high-order zero bits. Write a sequence of instructions that will convert the BCD characters to EBCDIC.

26.1.2.2 Suppose a string of 72 bytes contains 96 BCD six-bit characters packed together with no padding bits. That is, each group of three bytes contains four BCD characters. Write a sequence of instructions that will “unpack” the BCD characters from the string starting at `BCDChars` into a string of 96 EBCDIC characters starting at `EBCDChar`.

26.1.3.1 If the card image in Table 12 on page 80 uses the BCD coding in Table 166, what 40 octal digits will encode the characters in the first 20 columns?

26.2. EBCDIC Representations and Code Pages

In System/360 processors, the 8-bit byte required a new 8-bit character encoding, EBCDIC. Initially, the character set included mainly the characters used in the United States.

However, these early processors were soon used in many countries where the EBCDIC characters shown in Table 13 did not provide “national” characters. For example, “father” in French ("père") requires e-grave, and “young woman” in German ("Fraulein") requires u-umlaut.

Thus, additional EBCDIC encodings were created; these are grouped in “code pages” giving the characters assigned to each of 256 possible bit patterns. It was difficult to exchange data and programs because the same character encoding was often different among code pages. For example, Table 167 shows some of the varying hexadecimal encodings used in current EBCDIC tables, for these language groupings:

<table>
<thead>
<tr>
<th>Code Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>037</td>
<td>Original EBCDIC: this “ancestral” EBCDIC code page is the code page used for Assembler Language programs</td>
</tr>
<tr>
<td>500</td>
<td>Modern EBCDIC; a few special characters have different encodings than in code page 037</td>
</tr>
<tr>
<td>1047</td>
<td>International-1</td>
</tr>
<tr>
<td>1140</td>
<td>United States, Canada, Netherlands, Australia, New Zealand, Portugal, Brazil</td>
</tr>
<tr>
<td>1141</td>
<td>Austria, Germany</td>
</tr>
<tr>
<td>1142</td>
<td>Denmark, Norway</td>
</tr>
<tr>
<td>1143</td>
<td>Finland, Sweden</td>
</tr>
</tbody>
</table>

Table 166. Old BCD character representation
If you write programs or create data that might be sent to other countries, it helps to remember that many EBCDIC characters have the same encoding across almost all modern EBCDIC code pages. These “invariant” characters are called the Syntactic Character Set:

- blank/space
- decimal digits
- upper-case and lower-case Latin-alphabet letters
- these special characters: + < = > % & * " ' () , _ - . / : ; ?

Using just these 82 characters will also help you avoid the possibility that your program could be difficult to read when printed, or when displayed on a different terminal or workstation. Note that the three “national” characters allowed in Assembler Language symbols (the dollar sign $, the at sign @, and the sharp, hash, or (US) pound sign #) are not invariant across EBCDIC code pages!

Exercises

26.2.1.(3) Suppose your program contains character data written using code page 037, and you must translate the character data to the code page used in Sweden, 1143. Write statements to generate a 256-byte table for translating characters in code page 037 to characters in code page 1143. Assume that all the varying characters are those shown in Table 167. (For extra credit: try to find if there are any other “variant” characters between those two code pages.)

26.2.2.(1) What does your Assembler generate if you code this statement?

```
DC C'@$|{}]'```

---

Table 167 shows why you can’t assume that a given encoding represents an expected character. As your program is moved from region to region (and code page to code page), many of the encodings for the characters are different.
26.3. ASCII

A widely used single-byte character representation is the “American Standard Code for Information Interchange”, or ASCII for short. It started as a 7-bit code and was later extended to 8 bits. The hexadecimal character encodings for 7-bit ASCII are shown in Table 168.158

<table>
<thead>
<tr>
<th>Char</th>
<th>Code</th>
<th>Char</th>
<th>Code</th>
<th>Char</th>
<th>Code</th>
<th>Char</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>blank</td>
<td>20</td>
<td>8</td>
<td>38</td>
<td>P</td>
<td>50</td>
<td>h</td>
<td>68</td>
</tr>
<tr>
<td>!</td>
<td>21</td>
<td>9</td>
<td>39</td>
<td>Q</td>
<td>51</td>
<td>i</td>
<td>69</td>
</tr>
<tr>
<td>”</td>
<td>22</td>
<td>:</td>
<td>3A</td>
<td>R</td>
<td>52</td>
<td>j</td>
<td>6A</td>
</tr>
<tr>
<td>#</td>
<td>23</td>
<td>;</td>
<td>3B</td>
<td>S</td>
<td>53</td>
<td>k</td>
<td>6B</td>
</tr>
<tr>
<td>$</td>
<td>24</td>
<td>&lt;</td>
<td>3C</td>
<td>T</td>
<td>54</td>
<td>l</td>
<td>6C</td>
</tr>
<tr>
<td>%</td>
<td>25</td>
<td>=</td>
<td>3D</td>
<td>U</td>
<td>55</td>
<td>m</td>
<td>6D</td>
</tr>
<tr>
<td>&amp;</td>
<td>26</td>
<td>&gt;</td>
<td>3E</td>
<td>V</td>
<td>56</td>
<td>n</td>
<td>6E</td>
</tr>
<tr>
<td>’</td>
<td>27</td>
<td>?</td>
<td>3F</td>
<td>W</td>
<td>57</td>
<td>o</td>
<td>6F</td>
</tr>
<tr>
<td>(</td>
<td>28</td>
<td>@</td>
<td>40</td>
<td>X</td>
<td>58</td>
<td>p</td>
<td>70</td>
</tr>
<tr>
<td>)</td>
<td>29</td>
<td>A</td>
<td>41</td>
<td>Y</td>
<td>59</td>
<td>q</td>
<td>71</td>
</tr>
<tr>
<td>*</td>
<td>2A</td>
<td>B</td>
<td>42</td>
<td>Z</td>
<td>5A</td>
<td>r</td>
<td>72</td>
</tr>
<tr>
<td>+</td>
<td>2B</td>
<td>C</td>
<td>43</td>
<td>[</td>
<td>5B</td>
<td>s</td>
<td>73</td>
</tr>
<tr>
<td>,</td>
<td>2C</td>
<td>D</td>
<td>44</td>
<td>)</td>
<td>5C</td>
<td>t</td>
<td>74</td>
</tr>
<tr>
<td>-</td>
<td>2D</td>
<td>E</td>
<td>45</td>
<td>]</td>
<td>5D</td>
<td>u</td>
<td>75</td>
</tr>
<tr>
<td>.</td>
<td>2E</td>
<td>F</td>
<td>46</td>
<td>^</td>
<td>5E</td>
<td>v</td>
<td>76</td>
</tr>
<tr>
<td>/</td>
<td>2F</td>
<td>G</td>
<td>47</td>
<td>_</td>
<td>5F</td>
<td>w</td>
<td>77</td>
</tr>
<tr>
<td>0</td>
<td>30</td>
<td>H</td>
<td>48</td>
<td>`</td>
<td>60</td>
<td>x</td>
<td>78</td>
</tr>
<tr>
<td>1</td>
<td>31</td>
<td>I</td>
<td>49</td>
<td>a</td>
<td>61</td>
<td>y</td>
<td>79</td>
</tr>
<tr>
<td>2</td>
<td>32</td>
<td>J</td>
<td>4A</td>
<td>b</td>
<td>62</td>
<td>z</td>
<td>7A</td>
</tr>
<tr>
<td>3</td>
<td>33</td>
<td>K</td>
<td>4B</td>
<td>c</td>
<td>63</td>
<td>{</td>
<td>7B</td>
</tr>
<tr>
<td>4</td>
<td>34</td>
<td>L</td>
<td>4C</td>
<td>d</td>
<td>64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>35</td>
<td>M</td>
<td>4D</td>
<td>4</td>
<td>65</td>
<td>}</td>
<td>7D</td>
</tr>
<tr>
<td>6</td>
<td>36</td>
<td>N</td>
<td>4E</td>
<td>f</td>
<td>66</td>
<td>”</td>
<td>7E</td>
</tr>
<tr>
<td>7</td>
<td>37</td>
<td>O</td>
<td>4F</td>
<td>g</td>
<td>67</td>
<td>(none)</td>
<td>7F</td>
</tr>
</tbody>
</table>

Table 168. 7-bit ASCII character representation

All these characters use only the rightmost 7 bits; the high-order bit is zero. When the high-order bit is 1, more characters are available; many are accented or special. For example, the e-grave character in “père” has ASCII representation X’DB’, and the u-umlaut character in “Fraülein” has ASCII representation X’FC’.

The Assembler generates ASCII character constants if you specify subtype A on a C-type constant. For example:

```
ASCIICon DC ‘CA’ASCII Characters’
```

will generate

158 Different ASCII character encodings are used on other hardware and software systems. This encoding and its 8-bit superset (known as “ASCII Standard 8859-1”) is the representation used for z System applications.
The Assembler treats the nominal value of the constant as EBCDIC characters, and translates each byte (after pairing) to ASCII.

You can also generate ASCII constants by specifying the TRANSLATE(AS) option; this causes all C-type constants (with no subtype) to be translated from EBCDIC to ASCII. Note that character self-defining terms are not translated to ASCII, unless you also specify the COMPAT(TRANSDT) option. It is worth remembering that the ASCII code for a blank space is X'20'.

**Exercises**

26.3.1.(1) If you saw a hexadecimal display of a string of alphanumeric characters (letters and digits), what would help you decide whether they were represented in ASCII or EBCDIC?

26.3.2.(2) What machine language data is generated by these statements?

```
Con1 DC CA '5*(2.236/Denom)+Pi'
Con2 DC CA 'Invalid Expression?'
Con3 DC CA 'Hello, World!
Con4 DC CA 'BitMask&&Byte||Chars''
```

### 26.4. Double-Byte EBCDIC Data (*)

The EBCDIC characters representable by a single 8-bit byte have too few values to handle ideographic languages like Japanese. To solve this problem, the EBCDIC encodings were extended to encodings with pairs of bytes, and two special byte codes allow switching between “double-byte” characters and our familiar single-byte characters.

Single-byte character sets are sometimes abbreviated “SBCS”, and a collection of double-byte characters is a “Double Byte Character Set”, or “DBCS” for short.

DBCS data is a stream of single bytes, grouped in pairs. Groups of DBCS pairs are always delimited by “Shift-Out” (SO) and “Shift-In” (SI) byte codes:

- Shift-Out (X'0E') shifts out of single-byte mode to double-byte mode;
- Shift-In (X'0F') shifts in to single-byte mode from double-byte mode.

Data between the SO and SI byte codes is always treated as byte pairs. The byte codes for ampersand and apostrophe are not treated specially in DBCS data.

A string of bytes mixing single- and double-byte characters is illustrated in Figure 242, where sb represents a single-byte EBCDIC character, db represents one of the two bytes of a double-byte EBCDIC character, and SO and SI represent the Shift-Out and Shift-In byte codes.

```
/ /
sb sb SB db db db db db db db SI sb sb SO db db db db SI sb sb
<-- shift codes
```

Figure 242. Mixed single- and double-byte EBCDIC characters

These 20 bytes represent 6 single-byte characters and 5 double-byte characters.
Because the byte codes used for SO and SI aren’t displayable, we use a special notation for DBCS data.

- It’s customary to represent SO pictorially by <, and SI by >. (Remember that the actual characters “<” and “>” are not in the data!) Sometimes the characters ▲ and ▼ are used instead.

- We represent double-byte characters by Dx. Thus, <Dz> represents a Shift-Out, a double-byte character, and a Shift-In. Its hexadecimal value is represented by 0EDDzz0F. (A confusing notation: the DD characters represent the hex value of the high-order byte of the DBCS pair, and zz represents hexadecimal value of the low-order byte.)

- Latin-alphabet EBCDIC characters in DBCS format are represented by .X, so that the DBCS letter A could be shown as “.A”. These are sometimes called “wide” Latin-alphabet characters, because DBCS-sensitive devices display them that way. For example, the DBCS “A” could be written “<.A>”.

- Single-byte SBCS EBCDIC characters are represented by “e” (or themselves). Thus, the characters in Figure 242 might be described as “ee<DbDbDb>ee<DbDb>ee”. 

- Except for DBCS blanks, which have representation 'X'4040’, both DBCS bytes have values in the range [X'41’,X’FE’]. This is illustrated in Table 170.

Here are some examples of DBCS data:

- <.A> X’0E42C10F’ (pure DBCS)
- <.,&> X’0E427D42500F’ (pure DBCS; & and ’ not paired )
- <Da> X’0E....OF’ (whatever Da represents; e.g. X’0EDDaaOF’)
- a<.A>b X’810E42C10F82’ (mixed SBCS and DBCS data)

Figure 243. Examples of DBCS data

Some DBCS EBCDIC code point assignments for Japanese are given in Table 169. The first byte of a DBCS character selects a ward, a group of DBCS code points having identical first bytes. Each ward can represent up to 192 DBCS characters.

<table>
<thead>
<tr>
<th>First (ward) byte</th>
<th>Second byte</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>X’41’</td>
<td>X’41-FE’</td>
<td>Greek, Cyrillic, Roman numerals</td>
</tr>
<tr>
<td>X’42’</td>
<td>X’41-FE’</td>
<td>Latin alphabets and alphanumerics</td>
</tr>
<tr>
<td>X’43’</td>
<td>X’41-FE’</td>
<td>Katakana: phonetic, foreign loan words</td>
</tr>
<tr>
<td>X’44’</td>
<td>X’41-FE’</td>
<td>Hiragana: grammatical endings and Japanese indigenous words</td>
</tr>
<tr>
<td>X’45-55’</td>
<td>X’41-FE’</td>
<td>Kanji basic set</td>
</tr>
<tr>
<td>X’56-68’</td>
<td>X’41-FE’</td>
<td>Kanji extension set</td>
</tr>
<tr>
<td>X’69-7F’</td>
<td>X’41-FE’</td>
<td>User definable</td>
</tr>
<tr>
<td>X’80-FE’</td>
<td>X’41-FE’</td>
<td>Reserved</td>
</tr>
</tbody>
</table>

Table 169. Japanese DBCS assignments

Thus, the “." in DBCS representations of Latin-alphabet SBCS characters represents the X’42’ ward byte. Table 170 shows the overall structure of DBCS character representations; valid DBCS codings are in the shaded areas.
It helps considerably that the “standard” EBCDIC characters shown in Table 13 on page 89 are represented in DBCS with X′42′ as the first two digits. That is, if a nonblank character’s EBCDIC representation is X′xy′, its DBCS representation is X′42xy′.

### 26.4.1. The DBCS Option (*)

The Assembler’s DBCS option controls recognition of DBCS data. It also allows G-type constants and self-defining terms. The byte codes for SO and SI are recognized as shifts only if the DBCS option is active, and ampersand and apostrophe byte codes are not tested for pairing in either byte of a double-byte character.

If the NODBCS option is active (the Assembler’s default), normal rules apply:
- Shifts (SO and SI) are just data bytes.
- Nothing is recognized as DBCS data.
- Ampersands and apostrophes between SO/SI are recognized for pairing.
- G-type constants and self-defining terms are not allowed.

### 26.4.2. G-Type DBCS Constants and Self-Defining Terms (*)

Like any other form of character data, DBCS data must be enclosed in apostrophes. It is allowed wherever EBCDIC character data is allowed.

You can specify both pure and mixed DBCS data in statement operands. Pure DBCS data is DBCS only, as in C′<Da..Dz>′. Mixed DBCS data may contain both single-byte EBCDIC and DBCS data, as in C′ ee<Da..Dz>ee′.

Both G-type constants and self-defining terms are written G′ \texttt{dbsc.data}' and support only pure DBCS data. The shifts are removed from the generated object code. For example:

\begin{verbatim}
DC G′<DwDxDy>' Generates X'DDwwDDxxDDyy' (6 bytes)
DC G' < .A.&.B>' Generates X'42C1425042C2' (6 bytes)
\end{verbatim}

In addition, redundant SI/SO pairs such as >> are removed, since they have no useful effect in pure DBCS data. For example:

\begin{verbatim}
DC G′<Dx><Dy>' Generates X'DDxxDDyy' (4 bytes)
DC G' < .A><.B>' Generates X'42C142C2' (4 bytes)
\end{verbatim}
Because each DBCS character is two bytes, G-type self-defining terms contain either one or two DBCS characters.

\[
\begin{align*}
\text{DBCSAC} & \quad \text{Equ} \quad G' <\text{DxDy}>' & \quad \text{Has value} \quad X'DDxxDDyy' \\
\text{DBCSB} & \quad \text{Equ} \quad G' <.B>' & \quad \text{Has value} \quad X'000042C2' \\
\text{GNull} & \quad \text{Equ} \quad G' <>' & \quad \text{Causes an error}
\end{align*}
\]

Constants and terms are padded on the right with DBCS blanks:

\[
\text{DC} \quad \text{GL4' <.B>}' \quad \text{Generates} \quad X'42C4040' 
\]

Explicit lengths must be a multiple of 2 bytes, and truncation is done at the right end of the constant.

C-type constants and self-defining terms may contain either pure DBCS or mixed DBCS data. Unlike G-type constants and self-defining terms, the shift bytes are generated. For example:

\[
\begin{align*}
\text{DC} & \quad \text{C'1< DxDy>2'} \quad \text{Generates} \quad X' F10EDDxxDDyy0FF2' \\
\text{DC} & \quad \text{C' <.A.&.B>3'} \quad X'0E42C1425042C20F' \\
\text{DC} & \quad \text{C'1< Dx>2< Dy>3'} \quad X' F10EDDxx0F20EDDyy0FF3'
\end{align*}
\]

Also, redundant SI/SO pairs (> =) are not removed. For example:

\[
\begin{align*}
\text{DC} & \quad \text{C' <Dx>< Dy>}' \quad \text{Generates} \quad X'0E42C10F0E42C20F' \\
\text{DC} & \quad \text{C' <. A><. B>'} \quad X'0E42C10F0E42C20F'
\end{align*}
\]

C-type self-defining terms may contain only one DBCS character, because the shift bytes are included:

\[
\begin{align*}
\text{DBCSJ} & \quad \text{Equ} \quad C' <.J>' & \quad \text{Has absolute value} \quad X'0E42D10F' \\
\text{CNul1} & \quad \text{Equ} \quad C' <>' & \quad \text{Value} \quad X'00000E0F' \quad \text{(not truly DBCS!)}
\end{align*}
\]

Both G-type and C-type constants are padded on the right with EBCDIC blanks:

\[
\text{DC} \quad \text{CL5' <.B>}' \quad \text{Generates} \quad X'0E42C20F40'
\]

and truncation is also on the right. However, truncation into DBCS data not allowed if the DBCS option is specified. For example,

\[
\text{DC} \quad \text{CL3' <.B>}' \quad \text{Generates an error message}
\]

truncates into the DBCS data.

Thus, identical nominal values are treated differently in G-type and C-type constants. For example:

\[
\begin{align*}
\text{GTerm} & \quad \text{Equ} \quad G' <.A>' & \quad \text{Has value} \quad X'000042C1' \quad \text{(no shifts)} \\
\text{CTerm} & \quad \text{Equ} \quad C' <.A>' & \quad \text{Has value} \quad X'0E42C10F' \quad \text{(with shifts)}
\end{align*}
\]

26.4.3. Continuation Rules for DBCS Data (*)

When the DBCS option is active, the SO and SI are not considered continuation indicators! If an SI appears before the continuation-indicator column at the end of a continued line, and is followed by an SO in the continue column of the next line, they are considered redundant, and are removed in the generated constant.

Because G-type DBCS constants might be displayed on devices sensitive to DBCS characters, DBCS characters should not be split at points of continuation. The Assembler provides a special extended continuation rule when the DBCS option is active, a flexible end column on a line-by-line basis. If the continuation indicator is nonblank, then the end column is the first column to the left of the continuation indicator that differs from the continuation indicator. Assuming default end and continuation columns, Figure 244 shows how extended continuation works:
For DBCSA the continuation character * at the end of the first line is extended to the left, so the end column becomes the SI code following Dt. And because the continuation line starts with an SO code, both are eliminated. Similarly, the SI following Dx and the SO on the third line are redundant, so the generated constant will be

\[
\text{′DaDbDcDdDeDfDgDhDiDjDkDlDmDnDoDpDqDrDsDtDuDvDwDx}\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\]
code shown in Table 168 on page 432 is a basic element of the Unicode standard: all 8-bit ASCII codes are used as the 256 lowest UTF-16 values, U+0000 through U+00FF. This is known as the “Basic Multilingual Plane”, or BMP, and is the same as ASCII Standard 8859-1.

Unicode character assignments encompass a truly enormous variety of characters; some subsets are shown (for your amazement) in Table 171.¹⁶¹

<table>
<thead>
<tr>
<th>Range</th>
<th>Block Name</th>
<th>Range</th>
<th>Block Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>U+0000-U+007F</td>
<td>Basic Latin (BMP)</td>
<td>U+0080-U+00FF</td>
<td>Latin-1 Supplement (BMP)</td>
</tr>
<tr>
<td>U+0100-U+017F</td>
<td>Latin Extended-A</td>
<td>U+0180-U+01FF</td>
<td>Latin Extended-B</td>
</tr>
<tr>
<td>U+0250-U+02AF</td>
<td>Phoetics</td>
<td>U+0300-U+0365</td>
<td>Combining Diacritics</td>
</tr>
<tr>
<td>U+0370-U+03FF</td>
<td>Greek and Coptic</td>
<td>U+0400-U+04FF</td>
<td>Cyrillic</td>
</tr>
<tr>
<td>U+0590-U+05FF</td>
<td>Hebrew</td>
<td>U+0600-U+06FF</td>
<td>Arabic</td>
</tr>
<tr>
<td>U+0900-U+097F</td>
<td>Devanagari</td>
<td>U+0980-U+09FF</td>
<td>Bengali</td>
</tr>
<tr>
<td>U+13A0-U+13FF</td>
<td>Cherokee</td>
<td>U+1400-U+167F</td>
<td>Canadian Aboriginal</td>
</tr>
<tr>
<td>U+2070-U+209F</td>
<td>Superscripts and subscripts</td>
<td>U+20A0-U+20CF</td>
<td>Currency Symbols</td>
</tr>
<tr>
<td>U+3040-U+309F</td>
<td>Hiragana</td>
<td>U+30A0-U+30FF</td>
<td>Katakana</td>
</tr>
<tr>
<td>U+4E00-U+9FFF</td>
<td>China/Japan/Korea</td>
<td>U+0E00-U+0F8F</td>
<td>Private Use</td>
</tr>
<tr>
<td></td>
<td>Unified Ideographics</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 171. Sample Unicode assignments

As sometimes happens with international standards, compromises were needed to satisfy the needs of all participants. Originally, Unicode was intended to be a purely 16-bit encoding, but as its popularity grew, more codes were needed to support new characters. This led to a provision for “surrogate” characters: the first 16-bit Unicode character (the “high surrogate”) indicates that the next 16 bits (the “low surrogate”) are an extension of the the first; together, they are called “surrogate pairs”. This allowed including over 1 million new characters without disrupting the basic encoding scheme. (We’ll see surrogate pairs again when we describe the format-conversion instructions in Section 26.6.5.) Surrogate pairs are rarely used in Assembler Language programs.

For the next part of this discussion, we’ll stay with the UTF-16 encoding, and describe the often-used variant encoding, UTF-8, in Section 26.6.5.

26.5.2. Glyphs and Characters

A character is the basic unit of encoding, and UTF-16 is the most commonly used encoding format. It is important to distinguish between “glyphs”and characters. A glyph is what you see when a character is printed or displayed. For example, displayed forms might include a, a, a, and A, A, A, A. All of these are representations of the two characters “a” and “A”, four in lower case and five in upper case forms (normal, italic, bold, bold italic, and “small caps”).

Some “characters” can require more than one 16-bit Unicode character code value. For example, Â has Unicode coding U+00C4 (the same as X’00C4’). Because the base character A has been combined or composed with an accent, it is called a precomposed character. However, Â may also be represented by two separate Unicode characters: the A (with coding U+0041) and a combining mark “ (a diaeresis or umlaut, with coding U+0308). This combination is called a decomposed form.

Similarly, ñ (U+00F1) = n (U+006E) + “ (U+0303) represent composed and decomposed forms.

Fortunately, Assembler programs rarely need to handle decomposed characters.

¹⁶¹ Additional encodings have also been standardized for highly specialized uses such as ancient Phoenecian and Sumero-Akkadian Cuneiform. The Unicode Standard contains the encodings and some interesting history.
26.5.3. Unicode Character Constants

The Assembler generates Unicode constants if you specify constant type CU: that is, type C with type extension U. The nominal value is a string of 8-bit EBCDIC code points.

Because the same character can have different EBCDIC encodings while Unicode provides unique representations for all characters, the Assembler’s CODEPAGE option lets you specify the character representation used for the nominal values in your CU-type constants.

To show why the CODEPAGE option may be important, suppose you live in England. When preparing your program, you enter a byte for the £ “Pound Sterling” character. It has code point X'5B' on code page 1146, the usual code page for the United Kingdom. However, if the CODEPAGE(1146) option is omitted, the Assembler will convert the £ character to U+0024, the Unicode representation of the $ dollar sign! This is because the Assembler assumes a default code page on which $ has code point X'5B'. When the CODEPAGE(1146) option is specified, the Assembler converts the £ correctly to U+00A3.

These constants are scanned using the usual rules for C-type constants (apostrophe and ampersand pairing). Each byte of the result is then mapped from the EBCDIC encoding specified by the CODEPAGE option to the equivalent 2-byte UTF-16 encoding.

The Length attribute of a CU-type constant is always measured in bytes (not “characters”); an explicit length (if specified) must be even. If the explicit length is longer than the implied length, the byte string is padded with EBCDIC blanks, and if shorter, the byte string is truncated on the right. Then, it is translated to UTF-16. Implied lengths are the number of bytes generated: 2×(number of EBCDIC characters after pairing).

SampleCU DC CU'Unicode Characters'

Figure 245. CU-type constant generating Unicode characters

The statement in Figure 245 generates these 36 bytes from the 18 nominal-value characters:
0055006E00690063 006400650020 004300680072 0061006300740065 00720073

Because the characters in the nominal value of the CU-type constant in Figure 245 are members of the invariant EBCDIC character set described on page 431, any of the CODEPAGE option values described on page 430 may be specified to generate the above result.

Notice that each Unicode character starts with nine zero bits (B'0000 0000 0'), meaning that it is representable in the 7-bit portion (U+0000 to U+007F) of the UCS-16 Unicode encoding. The symbol SampleCU has Length Attribute 36.

It’s important to remember that the Assembler’s CODEPAGE option applies only when translating EBCDIC characters to Unicode in CU-type constants. The remaining characters in your program are understood by the Assembler to be represented in the 037 code page.

Exercises

26.5.1.(2) In Figure 245, what changes to the generated object code would occur if your program had been created using code page 1146?

26.5.2.(4) Search the web to find the character encodings used for upper-case letters and decimal digits on old machines like the Control Data Corporation (CDC) 1604, the CDC 6600, the Burroughs 5500, the IBM 7030 “Stretch” computer, and others. Show the differences, and explain why Unicode is an improvement.

26.5.3.(1) What object code is generated by these constants?

---

162 The Assembler actually used the 1148 EBCDIC code page for the EBCDIC-to-Unicode translation.
26.6. Unicode Instructions

We will describe three groups of instructions:

- String search, compare, and move instructions
- Translation instructions
- Format conversion instructions

26.6.1. String Search, Compare, and Move

The three instructions in Table 172 search, compare, and move, Unicode strings. While each has “Unicode” in its name, they actually just search for, compare, and move arbitrary two-byte values; there is no need for the operands to be Unicode characters! They are very similar to their single-byte counterparts: CLCLE, MVCLE, and SRST.

Table 172. Unicode string instructions

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2BE</td>
<td>SRSTU</td>
<td>RRE</td>
<td>Search String Unicode</td>
<td>EB8F</td>
<td>CLCLU</td>
<td>RSY</td>
<td>Compare Logical Long Unicode</td>
</tr>
<tr>
<td>EB8E</td>
<td>MVCLU</td>
<td>RSY</td>
<td>Move Long Unicode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 172. Unicode string instructions

Though each instruction manipulates two-byte operands, there is no requirement that they be halfword aligned.

Search String Unicode: SRSTU scans the second operand string addressed by register R2, looking for a pair of bytes matching the rightmost two bytes of GR0 (the “test” character; the rest of GR0 must be zero). If a match is found, the R1 register is set to its address. Because the second operand string can be very long, the CPU uses “Method B” to process part of the string before checking for interruptions.

To use SRSTU, put the test character in GR0, set the R2 register to the address of the leftmost byte of the string to be scanned, and the R1 register to the address of the first byte after the end of the string. The CPU uses this address to know when to stop the scan; otherwise, it could keep scanning byte pairs in memory until it found a match somewhere, or caused an unexpected interruption.

Table 173 gives the Condition Code settings after SRSTU:

<table>
<thead>
<tr>
<th>CC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Test character found; R1 points to it</td>
</tr>
<tr>
<td>2</td>
<td>Test character not found before the byte addressed by R1</td>
</tr>
<tr>
<td>3</td>
<td>Partial search with no match; R1 unchanged, R2 points to next byte to process</td>
</tr>
</tbody>
</table>

Table 173. CC settings for SRSTU instruction

On completion, either or both of the R1 and R2 registers may be updated:

- If the CC is 1, the R1 register is updated and the R2 register is unchanged.
- If the CC is 2, both the R1 and R2 registers are unchanged.
- If the CC is 3, R1 is unchanged and R2 is updated to the address of the next byte to be tested.

You can then branch back to the SRST instruction to continue the search.
The operation of the SRSTU instruction is very similar to that of SRST, as sketched in Figure 235 on page 417, except that the second operand address is incremented by 2.

For example, suppose you want to scan the string at MyData to find the first occurrence of a Unicode “A” character:

```
UnicodeA Equ X'0041' Unicode capital letter A
LAY 0,UnicodeA Put test character in GR0
LA 1,MyData Set GR1 (R2) to string start
LA 5,MyData+L MyData GR5 (R1) = byte past end
Repeat SRSTU 5,1 Scan the string
 JO Repeat Scan was incomplete, try again
 JH NotFound CC2, no match was found
 - - - CC1, GR5 now points to the A
```

If the Condition Code is 3, we simply branch back to the SRST to continue the search.

**Move Long Unicode:** Like MVCLE, the results of overlapping operands are unpredictable. The execution of MVCLU is the same as in Figure 229 on page 413, except that addresses are incremented by 2 and lengths are reduced by 2, and that two bytes are moved at each step. Also, the low-order 16 bits of the Effective Address are used as the pad “character”.

Normally both operand lengths are even, but MVCLU allows either operand to have odd length. The two-byte padding “character” is then described as the high-order padding byte followed by the low-order padding byte.

- If the operand lengths are equal but odd, MVCLU does the same as MVCLE.
- If the first (target) operand length is odd and is shorter than the third (source) operand, an odd number of bytes is moved.
- If the first operand is longer:
  - If its length is even, padding starts with the even padding byte.
  - If its length is odd, padding starts with the odd padding byte. This means that any additional padding is done with “proper” even-odd pairs of padding bytes.

MVCLU sets the Condition Code as shown in Table 174.

<table>
<thead>
<tr>
<th>CC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>All bytes moved, operand lengths are equal</td>
</tr>
<tr>
<td>1</td>
<td>All bytes moved, operand 1 shorter; part of operand 2 was not moved</td>
</tr>
<tr>
<td>2</td>
<td>All bytes moved, operand 1 longer; operand 1 was padded</td>
</tr>
<tr>
<td>3</td>
<td>Some bytes moved; end of operand 1 not reached</td>
</tr>
</tbody>
</table>

Table 174. CC settings after MVCLU

For example, suppose we use MVCLU to initialize a large area of storage starting at Work to Unicode space characters:

```
XR 0,0 Source address will be ignored,
XR 1,1 ...because source length is zero
LA 2,Work Start of area to initialize
L 3,WorkSize Length of work area
Move MVCLU 2,0,X'020' Initialize with Unicode spaces
 JO Move Repeat until done
- - -
WorkSize DC A(BlockLen*NBlocks) Length of work area
BlockLen Equ 32000 ...containing 32000 blocks,
NBLocks Equ 20000 ...each 20000 bytes long
```

Figure 246. Using MVCLU to initialize an area to Unicode spaces
**Compare Logical Long Unicode:** CLCLU operates in much the same way as CLCLE. However, operand lengths must be even, operand addresses are incremented by 2 and lengths are decremented by 2, and the 16-bit padding “character” is contained in the low-order two bytes of the Effective Address formed from the second operand.

CLCLU sets the Condition Code as shown in Table 175.

<table>
<thead>
<tr>
<th>CC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>All bytes compared, operands equal, or both zero length</td>
</tr>
<tr>
<td>1</td>
<td>First operand low</td>
</tr>
<tr>
<td>2</td>
<td>First operand high</td>
</tr>
<tr>
<td>3</td>
<td>Some bytes compared without finding an inequality</td>
</tr>
</tbody>
</table>

Table 175. CC settings after CLCLU

To illustrate, we’ll rewrite Figure 246 to use CLCLU to test if the same field contains all Unicode spaces:

To illustrate, we’ll rewrite Figure 246 to use CLCLU to test if the same field contains all Unicode spaces:

```
XR 0,0 Source address will be ignored,
XR 1,1 ...because source length is zero
LA 2,Work Start of area to initialize
L 3,WorkSize Length of work area
Compare CLCLU 2,0,X’020’ Compare entirely to pad bytes
JO Compare Repeat until done
```

Figure 247. Using CLCLU to test for Unicode spaces

**Warning!** Comparing and sorting character data in EBCDIC and Unicode can give very different results, because the character encodings are quite different.

### 26.6.3. Optional Operands

The Unicode-related instructions introduce *optional operands*, which have not been used in most of the instructions we’ve seen previously.

Unused fields in instructions are filled with zero bits by the Assembler. But as z System has evolved, the CPU architects have sometimes needed to extend the function of an existing instruction. Rather than create a new instruction, some of these previously unused fields were assigned special bit-mask values.

It was important to avoid the problem that programs containing existing instructions now supporting new fields could need to be rewritten to handle the new operand specifications. To solve this, the new operand was made (a) optional and (b) the last operand of the assembler instruction statement. If the optional operand is omitted, the Assembler sets the optional field to zero, as usual. Thus, programs needing the enhanced function can specify the new operand, and existing programs not specifying the new operand continue to work without modification.

For example, an RRE-type instruction has this format:

```
Table 176. RRE-type instruction
```

```
<table>
<thead>
<tr>
<th>opcode</th>
<th>R1</th>
<th>R2</th>
</tr>
</thead>
</table>
```

The extension of RRE-type instructions to support the new operand required a new instruction type: RRF, shown in Table 177.

```
Table 177. RRF-format instruction with an optional operand
```

```
<table>
<thead>
<tr>
<th>opcode</th>
<th>M3</th>
<th>R1</th>
<th>R2</th>
</tr>
</thead>
</table>
```
where \( M_3 \) is the optional operand; the notation used in the z/Architecture *Principles of Operation* describing the Assembler Language format of such instructions is illustrated in Figure 248, where the square brackets [ ] indicate that the operand is optional.

\[
\text{mnemonic } R_1, R_2[, M_3]
\]

Figure 248. Assembler instruction statement for RRF-type instructions with an optional operand

If the optional operand is omitted, the Assembler fills the \( M_3 \) field of the instruction with zero bits, so that writing

\[
\text{mnemonic } R_1, R_2
\]

is the same as writing

\[
\text{mnemonic } R_1, R_2, 0
\]

We will see examples of optional operands in some of the following Unicode instructions.

### 26.6.4. Translation

The four instructions for Unicode translation are listed in Table 178. Each has an optional operand in the form shown in Table 177 and Figure 248.

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>B993</td>
<td>TROO</td>
<td>RRF</td>
<td>Translate One to One</td>
<td>B992</td>
<td>TROT</td>
<td>RRF</td>
<td>Translate One to Two</td>
</tr>
<tr>
<td>B991</td>
<td>TRTO</td>
<td>RRF</td>
<td>Translate Two to One</td>
<td>B990</td>
<td>TRTT</td>
<td>RRF</td>
<td>Translate Two to Two</td>
</tr>
</tbody>
</table>

Table 178. Unicode translate instructions

These instructions are generalizations of TRE, which was described in “25.7. Translate Extended Instruction” on page 422, but there are interesting and significant differences:

- TRE tests a source-operand character, but these instructions test the function character from the translate table.
- TRE tests the character in GR0 after the result byte has been stored, but these four instructions test the function character against the character in GR0 before completing a character translation.
- If the optional operand is 1, the instruction suppresses the test for a source character matching the test character in GR0, and the translation is controlled only by the length of the first operand.
- The address of the translation table for TRE is specified in \( R_2 \), but is in GR1 for these four instructions. Unlike other translate instructions, you can specify different source and target operands, so the translation can be non-destructive.
- The source, target, and test characters can be either one or two bytes long. This means that the translation tables may be (much) larger:
  - TROO: Translate One to One (256-byte table)
  - TROT: Translate One to Two (512-byte table)
  - TRTO: Translate Two to One (64K-byte table)
  - TRTT: Translate Two to Two (128K-byte table)
- If you are translating characters of the same length (one to one, or two to two), the source and target operands have the same length. Otherwise:
  - If you translate One to Two, the target operand is twice as long as the source operand.
  - If you translate Two to One, the target operand is half as long as the source operand.
- Unlike TR, TRT, and TRE, the translate tables must be aligned on a doubleword boundary.\(^{163}\)

---

\(^{163}\) Originally, the translate tables for TRTO and TRTT had to be on a 4K-byte boundary, but this was quite inconvenient for most programs so the restriction was removed.
If the target operand contains two-byte characters (for TROT and TRTT), the source character is shifted left internally by one bit before being added to the table address from GR1, to correctly address the two-byte translate table entries.

Some of these factors are summarized in Table 179.

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Source</th>
<th>Test Character</th>
<th>Table Entry</th>
<th>Table Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>TROO</td>
<td>1 byte</td>
<td>1 byte</td>
<td>1 byte</td>
<td>256</td>
</tr>
<tr>
<td>TROT</td>
<td>1 byte</td>
<td>1 byte</td>
<td>2 bytes</td>
<td>512</td>
</tr>
<tr>
<td>TRTO</td>
<td>2 bytes</td>
<td>2 bytes</td>
<td>1 byte</td>
<td>65,536</td>
</tr>
<tr>
<td>TRTT</td>
<td>2 bytes</td>
<td>2 bytes</td>
<td>2 bytes</td>
<td>131,072</td>
</tr>
</tbody>
</table>

Table 179. Arguments and translate tables for TRxx instructions

Table 180 summarizes how the registers are used by these four translate instructions:

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>GR0</td>
<td>Test character, unless the optional operand is 1, in which case GR0 can be used for any other purpose.</td>
</tr>
<tr>
<td>GR1</td>
<td>Address of the translation table.</td>
</tr>
<tr>
<td>R1</td>
<td>Address of the target operand where translated characters will be stored.</td>
</tr>
<tr>
<td>R1+1</td>
<td>Length in bytes of the second (source) operand; must be an even number for TRTO, TRTT.</td>
</tr>
<tr>
<td>R2</td>
<td>Address of the source operand to be translated.</td>
</tr>
</tbody>
</table>

Table 180. Registers used by TRxx instructions

All overlaps produce unpredictable results, whether of storage operands or of register assignments.

Table 181 describes the Condition Code settings after executing these instructions:

<table>
<thead>
<tr>
<th>CC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>All characters translated; if the optional operand was 0 (test character comparison was performed), no function character matching the test character was found. R1 points to the byte after the last target character, R1+1 is zero, and R2 points to the byte after the last source character,</td>
</tr>
<tr>
<td>1</td>
<td>If the optional operand was 0 (test character comparison was performed), a function character matching the test character was found. R1+1 is decreased by the number of bytes processed before the character whose function character matched the test character; R2 is incremented by the same number, and R1 is increased by the number of bytes placed in the first operand.</td>
</tr>
<tr>
<td>3</td>
<td>Partial translation; branch back to the instruction to continue. Registers R1, R1+1, and R2 have been adjusted so that translation will continue, eventually ending with CC 0 or 1.</td>
</tr>
</tbody>
</table>

Table 181. Condition Code settings for TRxx instructions

Remember: if the optional M3 operand is 1, the test character is ignored.

To illustrate, suppose TRTT is used to translate a string of DBCS characters to Unicode:
LA 1,MapTbl  Point GR1 to the translation table
LA 2,UtfString  Point GR2 to the Unicode result string
LA 3,L’DBCSCon  Set GR3 to the second operand length
LA 4,DBCSCon  Point GR4 to the DBCS source operand

TrDBCS  TRTT 2,4,1  Translate without a test character
JO  TrDBCS  Repeat until all translations done

DBCSCon  DC  G’.<.A.B ... .Y.Z>’  DBCS character string
UtfString  DS  CL(L’DBCSCon)  Unicode result has same length
DS  OD  Doubleword alignment for table
MapTbl  DC  X’ ... ’  Mapping from DBCS to Unicode

Figure 249. Using TRTT to translate from DBCS to Unicode

Because the translate table at MapTbl could be up to 131,072 bytes long, we could take advantage of the fact that DBCS characters have representations between X’4040’ and X’7FFE’ to define a smaller table.

While these may seem very complex, the TROO instruction can be used in many places where TR would be inconvenient, because it lets you specify separate source and target operands.

To illustrate, suppose you must translate a long string of characters at OldText to another string at NewText while leaving the original string unchanged. Assume the string length is stored in the word at TextLen and that the required translation table starts at TextTbl. Then, Figure 250 shows instructions using MVC and TR compared to instructions using TROO.

* With MVC and TR
L 3,TextLen
LA 2,NewText
LA 4,OldText
LA 1,255
Repeat CHI 3,256
  JNH LastPart
  EX 1,MoveText
  EX 1,TRText
  AHI 2,256
  AHI 4,256
  AHI 3,-256
  J  Repeat
LastPart JNP Done
  BCTR 3,0
  EX 3,MoveText
  EX 3,TRText
Done  - - -

* With TROO
L 3,TextLen
LA 2,NewText
LA 4,OldText
LA 1,TextTbl
Repeat TROO 2,4,1
  JO  Repeat
  Done  - - -

MoveText MVC 0(*-*,2),0(4)
TRText TR 0(*-*,2),TextTbl

Figure 250. Translating a long string with TR and MVC, and with TROO

With TROO, the CPU adjusts the operand registers automatically, while with MVC and TR you must write instructions to do the updates.

26.6.5. Conversion Among Transformation Formats

As mentioned in Section 26.5, the Unicode standard defines 8-, 16-, and 32-bit encoding formats; each is useful in different contexts. One problem in transmitting Unicode data across networks is that some of the byte codes used for the 16-bit or 32-bit Unicode characters also have meaning as network control codes. It may be necessary to transform a UTF-16 or UTF-32 encoding to UTF-8 for transmission over a network, and the receiver can transform the byte stream back to UTF-16 or UTF-32 (or even work directly with the received UTF-8 byte stream).

The bits of a UTF-16 character are sometimes represented as shown in Figure 251 on page 446:
To see why UTF-8 is needed, consider the Cyrillic character “P” with representation \( \text{U+0420} \). If this was transmitted as single byte data, the single byte \( '04' \) could be interpreted as an End of Transmission (EOT) flag! Thus, the UTF-8 encoding transforms a UTF-16 character to one, two, three, or four bytes as follows:

- If the UTF-16 character has the form \( B'00000000 \) \( 0jklmnop \) (it lies between \( \text{U+0000} \) and \( \text{U+007F} \)), it is transformed into a single byte \( B'0jklmnop' \).
- If the UTF-16 character has the form \( B'000000fg\) \( h \) \( ijk\) \( lmnop' \) (it lies between \( \text{U+0080} \) and \( \text{U+07FF} \)), it is transformed into the two bytes \( B'110fg\) \( hij \) \( 10klmnop' \).
- If a UTF-16 character lies between \( \text{U+0800} \) and \( \text{U+07FF} \), or lies between \( \text{U+DC00} \) and \( \text{U+FFFF} \), it is transformed into the three bytes \( B'1110abcd \) \( 10efghij \) \( 10klmnop' \).
- Because the 16 UTF-16 bits were not sufficient to encode all required characters, forms with scalar values greater than or equal to \( \text{U+10000} \) were added; they are represented by surrogate pairs, as illustrated in Figure 252. The four bytes of surrogate pairs have these bit patterns:

\[
\begin{array}{cccccccc}
1 & 1 & 0 & 1 & 1 & 0 & a & b \\
1 & 1 & 0 & 1 & 1 & k & l \\
\end{array}
\]

Given a high surrogate that lies between \( \text{U+D800} \) and \( \text{U+DBFF} \) and a low surrogate that lies between \( \text{U+DC00} \) and \( \text{U+DFFF} \), the pair is transformed into the four UTF-8 bytes \( B'11110uvw \) \( 10xyefgh \) \( 10ijklmn \) \( 10opqrst' \), where \( uvwxy = abcd+1 \).

While this transformation is complicated, it guarantees that no UTF-16 character will be mistaken for a control code, and that the receiver can immediately find where a character encoded in UTF-8 form begins. The initial bits of the first UTF-8 byte indicates how many bytes follow it in a multi-byte sequence.

The Unicode and ISO standards also define a UTF-32 standard that uses 32 bits for each character, and does not need surrogates. The UTF-32 representation of a “normal” UTF-16 character (as shown in Figure 251) with encodings from \( \text{U+0000} \) to \( \text{U+0DBF} \) and from \( \text{U+0DC0} \) to \( \text{U+0FFFF} \), simply append two high-order bytes of zeros to the UTF-16 character.

For UTF-16 surrogate pairs, the mapping is more complex: the four bytes shown in Figure 252 are mapped into the form shown in Figure 253, where the bits named \( uvwxy \) have value \( abcd+1 \).

The \( z \) System instructions that convert among the three UTF encodings are shown in Table 182. Two of the instructions have two names, because CUUTF and CUTFU were implemented before the other four; the original two were then renamed so that all six instruction names are consistent. The old names are retained for compatibility.\(^\text{164}\)

---

\(^{164}\) Originally, only the two instructions CUUTF and CUTFU were defined, meaning “Convert Unicode to UTF” and “Convert UTF to Unicode”, respectively. At that time, “UTF” meant UTF-8, and “Unicode” meant UTF-16.
Table 182. Unicode format conversion instructions

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2A7</td>
<td>CU12, CUUTF</td>
<td>RRF</td>
<td>Convert UTF-8 to UTF-16</td>
<td>B9B0</td>
<td>CU14</td>
<td>RRF</td>
<td>Convert UTF-8 to UTF-32</td>
</tr>
<tr>
<td>B2A6</td>
<td>CU21, CUUTF</td>
<td>RRF</td>
<td>Convert UTF-16 to UTF-8</td>
<td>B9B1</td>
<td>CU24</td>
<td>RRF</td>
<td>Convert UTF-16 to UTF-32</td>
</tr>
<tr>
<td>B9B2</td>
<td>CU41</td>
<td>RRF</td>
<td>Convert UTF-32 to UTF-8</td>
<td>B9B3</td>
<td>CU42</td>
<td>RRF</td>
<td>Convert UTF-32 to UTF-16</td>
</tr>
</tbody>
</table>

The $R_1$ and $R_2$ registers must be even, and contain the addresses of the first and second operands; the next higher-numbered registers $R_1+1$ and $R_2+1$ contain the operand lengths.

The CU41 and CU42 instructions have the form shown in Table Table 176 on page 442, and the CU12, CU14, CU21, and CU24 instructions have the form shown in Table 177.

When these instructions were first implemented, the Unicode Standard did not forbid invalid forms. Further revisions of the Standard made those forms invalid, so an optional operand was added to CU12, CU14, CU21, and CU24 to let you choose whether or not “well-formedness” should be enforced. If the optional operand is one, checking is done for well-formedness. Further details may be found in the z/Architecture Principles of Operation.

Table 183 shows the Condition Code settings after executing these instructions:

<table>
<thead>
<tr>
<th>CC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Entire second operand was processed.</td>
</tr>
<tr>
<td>1</td>
<td>End of the first operand was reached.</td>
</tr>
<tr>
<td>2</td>
<td>An invalid UTF-8 character was found; or an invalid low surrogate was found; or an invalid UTF-32 character was found.</td>
</tr>
<tr>
<td>3</td>
<td>Operation incomplete; branch back to it to complete the operation.</td>
</tr>
</tbody>
</table>

Exercises

26.6.1.(2) What do you think will happen if the $B_2$ register of a CLCLU or MVCLU instruction is the same as $R_1$ or $R_3$ or $R_1+1$ or $R_3+1$?

26.6.2.(1) Can both operands of CLCLU be padded?

26.6.3.(2)+ Write a sequence of instructions to find the last nonblank UTF-16 Unicode character in a string of UTF-16 Unicode characters stored at UData. If no nonblank characters are found, branch to AllBlank.

26.6.4.(1)+ Write instructions to copy a string of Unicode characters from UHere to UThere.

26.6.5.(1) What UTF-16 Unicode characters can be used for padding if you use a CLCLU or MVCLU instruction with $B_2=0$?

26.6.6.(3) In Figure 249 on page 445, what changes to the first LA instruction would be needed if the translate table at MapTbl starts with the DBCS character corresponding to the DBCS character with representation X’4040’?

26.6.7.(2)+ Suppose one of the four TRxx instructions is used with the optional operand set to 1. Can GR0 be used for the $R_2$ operand?

---

165 A well-formed multi-byte UTF-8 character requires that each byte after the first start with B’10’.
26.6.8.(2) Can TRTT be used to simulate TROO?

26.6.9.(2) It was stated that the first byte of the UTF-8 representation of a Unicode character indicates how many bytes follow it. Show that this is true by analyzing the bit patterns in the first byte.

26.6.10.(3) It is claimed that a binary sort of UTF-8 character strings gives the same ordering as a binary sort of UTF-16 scalar values, so long as there are no surrogates. Create examples to show that this is or is not true.

26.6.11.(2) GR5 contains a halfword value that is to be sought in a table of halfwords starting at HWList. Write a sequence of instructions using SRSTU to locate the entry in the table that matches the halfword in GR5.

26.6.12.(4) Create a translation table for mapping EBCDIC code page 037 to UTF-16.

26.6.13.(5) Many programs convert strings of bytes to pairs of EBCDIC characters representing the hexadecimal digits of each byte. (Exercise 15.6.5 is a typical example.) Using a single DC statement, create a translate table to be used by a TROT instruction like

```assembly
LA 1,PH Address of 2-to-2 translation table
LA 2,Target Address of target string
LA 3,L'Source Length of source string
LA 4,Source Address of source string
Repeat TROT 2,4,1 Translate each byte to two
JO Repeat Repeat if incomplete
```

that converts source bytes to their representative pairs of EBCDIC characters. For Example, the table should start with the characters ‘C’00010203’ (that is, X’F0F0F0F2F0F3’), and end with the characters ‘C’FCFDFEFF’ (that is, X’C6C3C6C4C6C5C6C6’).

26.6.14.(2) Suppose the CU24 and CU42 instructions did not exist. How could you translate between UTF-16 and UTF-32?

26.6.15.(1) Show how the bit patterns of the first UTF-8 byte can be used to determine how many following bytes are part of the same Unicode character.

26.7. Byte Reversal and Workstation Data

All our previous examples using binary data have assumed that the most significant bits are found in the byte with the lowest address, with significance decreasing at higher addresses. Some other processor architectures store numeric data in the opposite direction: the byte with the least significant bits are at the lowest address, and significance increases in the bytes at higher addresses.

The significance of bits within a byte is the same in either case: the high-order bit has the greatest significance.

The choice of byte order for binary data is sometimes called the “Endian” question. Because z System stores the most significant bits at the lowest address, it is called a “Big-Endian” processor (i.e., “big end first”). Many early microprocessors could handle only 4 bits or a single byte at a time, and because bits are added starting with the least significant, it was more econom-

---

166 But be careful: data on some processors sometimes numbers bits from right to left, rather than the z System convention from left to right. Right-to-left numbering has the advantage that a bit’s number is the same as the power of 2 it represents.

167 The term “Endian” was taken from Jonathan Swift’s Gulliver’s Travels, where the kingdoms of Lilliput and Blefuscu were permanently at war over the correct way to eat a boiled egg. The Lilliputian “Little-Endians” insisted on opening the egg at the sharp end, and the Blefuscudian “Big-Endians” insisted on the rounded end.
tical to address the (numerically) lowest-order byte (i.e., “little end first”). Many personal computers and workstations are “Little-Endian”.

For example, if a word containing $X'87654321'$ is stored in a Big-Endian processor memory starting at address $A$, we would see the bytes in storage as in Figure 254:

```
A A+1 A+2 A+3 ← Addresses
87 65 43 21
```

Figure 254. Big-Endian storage representation of $X'87654321'$

However, on a processor storing data with the least significant bits at the lowest address (a “Little-Endian” processor) we would see the bytes in storage as in Figure 255:

```
A A+1 A+2 A+3 ← Addresses
21 43 65 87
```

Figure 255. Little-Endian storage representation of $X'87654321'$

When your program manipulates multi-byte data, you’ll want to know where it originated.

### 26.7.1. Byte-Reversing Instructions

The byte-reversing instructions are listed in Table 184. They are provided because z System processors must often exchange data with workstations and personal computers that store some types of data in byte-reversed order.

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>E31E</td>
<td>LRV</td>
<td>RXY</td>
<td>Load Reversed (32)</td>
<td>B91F</td>
<td>LRVR</td>
<td>RRE</td>
<td>Load Register Reversed (32)</td>
</tr>
<tr>
<td>E30F</td>
<td>LRVG</td>
<td>RXY</td>
<td>Load Reversed (64)</td>
<td>B90F</td>
<td>LRVGR</td>
<td>RRE</td>
<td>Load Register Reversed (64)</td>
</tr>
<tr>
<td>E31F</td>
<td>LRVH</td>
<td>RXY</td>
<td>Load Halfword Reversed (16)</td>
<td>E33F</td>
<td>STRVH</td>
<td>RXY</td>
<td>Store Halfword Reversed (16)</td>
</tr>
<tr>
<td>E33E</td>
<td>STRV</td>
<td>RXY</td>
<td>Store Reversed (32)</td>
<td>E32F</td>
<td>STRVG</td>
<td>RXY</td>
<td>Store Reversed (64)</td>
</tr>
</tbody>
</table>

Table 184. Byte-reversing load and store instructions

They behave like normal Load and Store instructions, except that the left-to-right order of the bytes is reversed. This is illustrated in Figure 256.

```
| byte 0 | byte 1 | byte 2 | byte 3 | R₁ |
```

```
| byte 3 | byte 2 | byte 1 | byte 0 | Word in memory or R₂ |
```

Figure 256. Byte reversal by LRV, LRVR, and STRV instructions

These instructions convert two, four, or eight bytes between “Big-Endian” and “Little-Endian” format quickly and efficiently for processing. For example, suppose the word in Figure 254 is stored at $A$. Then, executing

```
LRV 0,A
```

```
c(GRO) = X'21436587'
```
will load GR0 with the pattern shown in Figure 255. Byte reversal can also be done when storing the contents of a general register into memory:

\[
\begin{align*}
L & \quad 0,=X'12345678' & c(GR0) & = X'12345678' \\
STRV & \quad 0,Rev & c(Rev) & = X'78563412' \\
\end{align*}
\]

The LRVR instruction is similar to LRV, except that the second operand comes from GR R2 rather than from memory.

The LRVH and STRVH instructions are similar to LRV and STRV, except that only the two rightmost bytes of GR R1 are involved. This is illustrated in Figure 257.

![Figure 257. Byte reversal by LRVH and STRVH instructions](image)

For example:

\[
\text{LRVH 1,}X'=1234' \\
c(GR1) = X'xxxx3412'
\]

where xxxx is the original data in the two high-order bytes of GR1.

LRVH is unusual in this respect: unlike the other Load Halfword instructions, it does not propagate the sign bit of the leftmost bit of the (reversed) halfword just loaded. Thus, it might better be thought of as the “Insert Halfword Reverse” instruction, because the rest of the R1 register is unchanged.

The 64-bit instructions LRVG, LRVGR, and STRVG are the 64-bit equivalents respectively to LRV, LRVR, and STRV: the operands are 8 bytes long rather than 4. Otherwise, their operation is the same.

Processing halfword, word, and doubleword data with these instructions is straightforward.

If the fields in a data item do not align neatly on byte boundaries, processing “Endian” data can be much more difficult. Suppose a word in memory containing four different binary integers has the format shown (in Big-Endian format) in Figure 115 on page 249. As before, the bits are lettered, but now we must number the individual bits of the integers A, B, C, and D, as in Figure 258. The 9 bits of A are numbered A0-A8; the 4 bits of B are numbered B0-B3; the 13 bits of C are numbered C0-Cc; and the 6 bits of D are numbered D0-D5.

![Figure 258. Four integers packed in a Big-Endian 32-bit word](image)

Thus, the first byte contains bits A0-A7; the second byte contains bits A8, B0-B3, and C0-C2; the third byte contains bits C3-Ca; and the fourth byte contains bits Cb-Cc and D0-D5.

Suppose these four bytes are reversed and sent to a Little-Endian processor; the data would then look like this:
You can imagine the difficulties a program on a Little-Endian processor might have in extracting the four integer values. Conversely, if your program receives a Little-Endian word in which overlapping bit fields are specified as in Figure 258, your z System program would see the word in Figure 259.

**Something to Check**

Before processing data, be sure you know its “Endianness”, as well as its character representation.

**Exercises**

26.7.1.(2) Suppose the two rightmost bytes of GR2 contain a 2-byte Little-Endian integer. What will these two instructions do?

```
LRVR 2,2
SRA 2,16
```

What will happen if the SRA instruction is replaced by SRL?

26.7.2.(3) Suppose the data shown in Figure 258 is actually in Little-Endian format, so you find it on your z System processor in the word at *OddData* in the form shown in Figure 259. Write a sequence of instructions to extract the four (unsigned) integers, and store them in halfwords named *A*, *B*, *C*, and *D*.

26.7.3.(1) Put the 4 bytes of the word at *DPG* into GR1 in reverse order. (See Exercise 17.2.5.)

**26.8. Summary**

The extended instructions for Unicode are summarized in Table 185.

<table>
<thead>
<tr>
<th>Function</th>
<th>Instruction</th>
<th>Stop Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Move</td>
<td>MVCLU</td>
<td>End of first operand</td>
</tr>
<tr>
<td>Compare</td>
<td>CLSTU</td>
<td>End of longer operand, or unequal comparison</td>
</tr>
<tr>
<td>Search</td>
<td>SRSTU</td>
<td>End of second operand, or stop character found</td>
</tr>
</tbody>
</table>

Table 185. Extended instructions for Unicode data

The Unicode-based translation instructions are summarized in Table 186.

<table>
<thead>
<tr>
<th>Function</th>
<th>Operand 1</th>
<th>1 byte</th>
<th>2 bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Operand 2</td>
<td>1 byte</td>
<td>2 bytes</td>
</tr>
<tr>
<td>Translate</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 186. Unicode-based translate instructions

The Unicode format conversion instructions are summarized in Table 187.
The byte-reversing instructions are summarized in Table 188.

<table>
<thead>
<tr>
<th>Function</th>
<th>Operand 1</th>
<th>1 byte</th>
<th>2 bytes</th>
<th>4 bytes</th>
<th>8 bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 bytes</td>
<td>4 bytes</td>
<td>1 byte</td>
<td>4 bytes</td>
<td>1 byte</td>
</tr>
<tr>
<td>Convert Format</td>
<td>CU21</td>
<td>CU41</td>
<td>CU12</td>
<td>CU42</td>
<td>CU14</td>
</tr>
</tbody>
</table>

Table 188. Summary of byte-reversing instructions
The four sections of this chapter discuss the zoned and packed decimal number representations and typical operations on each.

- Section 27 discusses the zoned and packed decimal representations and instructions that convert between them.
- Section 28 gives an overview of the principles of packed decimal arithmetic, to help you understand the operation of the instructions in Sections 29 and 30.
- Section 29 describes the instructions that perform packed decimal arithmetic operations.
- Section 30 describes instructions used to convert data between packed decimal and binary, and between packed decimal and character strings.

The other z System decimal data format, decimal floating-point, will be discussed in the next chapter.
27. Zoned and Packed Decimal Representations

In this section we examine the zoned decimal and packed decimal representations of data, which are useful in applications requiring decimal arithmetic, compactness, selectable precision, and simplicity. (Packed decimal is different from decimal floating-point, which is discussed in the next chapter.) We’ll start with the instructions in Table 189.

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>MVN</td>
<td>SS</td>
<td>Move Numerics</td>
<td>D3</td>
<td>MVZ</td>
<td>SS</td>
<td>Move Zones</td>
</tr>
<tr>
<td>F2</td>
<td>PACK</td>
<td>SS</td>
<td>Pack</td>
<td>F3</td>
<td>UNPK</td>
<td>SS</td>
<td>Unpack</td>
</tr>
<tr>
<td>E9</td>
<td>PKA</td>
<td>SS</td>
<td>Pack ASCII</td>
<td>EA</td>
<td>UNPKA</td>
<td>SS</td>
<td>Unpack ASCII</td>
</tr>
<tr>
<td>E1</td>
<td>PKU</td>
<td>SS</td>
<td>Pack Unicode</td>
<td>E2</td>
<td>UNPKU</td>
<td>SS</td>
<td>Unpack Unicode</td>
</tr>
</tbody>
</table>

The zoned and packed decimal data representations of z System provide simple and economical ways to store decimal data that will not take on a large range of values. There are no instructions that perform arithmetic with zoned decimal data; its main use is as an intermediate step between the internal packed decimal representation (with which arithmetic is possible), and an external representation such as character data.

27.1. Zoned Decimal Representation

First, two definitions. The two hexadecimal digits of a byte are known as the “zone” (high-order) digit and the “numeric” (low-order) digit, represented by $Z$ and $n$ in Figure 260.

![Figure 260. Zone and numeric digits of a byte](image)

The MVN and MVZ instructions are almost identical to MVC: rather than moving entire bytes, they move only the numeric digits or the zone digits, respectively. To illustrate, suppose we define a string of bytes at the constant named RandomF and move the numeric and zone digits to byte strings named Numerics and Zones respectively.
Then, the contents of the two byte strings will be
c(Numerics) = X′0E0CA0B60402F′
c(Zones) = X′F0D0B9070503010′

The two following examples illustrate some simple uses.

1. Convert the non-negative halfword integer at N to a string of five EBCDIC characters beginning at NDec, which give the decimal representation of the contents of the halfword at N.

   LH 1,N       Number to be converted in odd reg
   LA 2,L      Use GR2 to count number of digits
   XXX SR 0,0  Clear high-order (even) register
   D 0,=F′10′  Generate a digit
   STC 0,NDEC-1(2) Store digit in output string
   BCT 2,XXX Count and branch until done
   MVZ NDEC,=(L′NDEC)X′FF′  Attach zones for EBCDIC

   NDec DS CL5  Converted result
   N DC H′12345′  Number to convert

   We could have used literals such as =5C′0′ or =5C′9′ in the MVZ instruction, with the same results.

2. Convert the five-digit decimal number in EBCDIC form at NDec to a fullword binary integer, and store it at MM.

   RW EQU 0 Work register for inserting digits
   RNum EQU 1 Value accumulated in GR1
   RC EQU 2 Count digits in GR2
   RDP EQU 3 Digit pointer
   MVN TEMP,NDEC Move numeric portions of digits
   LA RDP,Temp Address of current digit in RDP
   LA RC,L′NDEC Number of digits to be processed
   SR RW,RW Clear RW for digits
   SR RNum,RNUM And RNum for number being generated
   Mult MH RNum,=H′10′ Multiply accumulated part by 10
   IC RW,0(RDP) Insert digit from input, unzoned
   AR RNum,RW Add to partial sum
   LA RDP,1(RDP) Increment digit address
   BCT RC,Mult Count and loop
   ST RNUM,MM Store result

   Temp DC XL(L′NDEC)′0′ Zones pre-zeroed, digits moved in

   As we will see, the CVD and CVB instructions considerably simplify the conversion of numbers between binary and decimal formats.

These instructions are sometimes used in processing packed decimal data.

Calling the left and right hex digits of a byte the “zone” and “numeric” digits might seem to limit the use of MVZ and MVN to packed and zoned decimal data. However, they simply move the left or right digits of a string of bytes, no matter what data type they represent.

The zoned decimal representation actually differs little from the familiar EBCDIC representation for characters. For example, the EBCDIC representation of the decimal characters 12345 is
The only difference between the zoned decimal and EBCDIC representations of the digits 12345 is in the treatment of the zone digit of the rightmost byte. In the EBCDIC representation, the zone digit is $'F'$, as illustrated above. In the zoned decimal representation, however, this digit may be any of the six hexadecimal digits A, B, C, D, E, or F; they are treated as the sign of the zoned number, as indicated in Figure 262.

<table>
<thead>
<tr>
<th>Sign Digit</th>
<th>Sign</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>+</td>
</tr>
<tr>
<td>B</td>
<td>−</td>
</tr>
<tr>
<td>C</td>
<td>+</td>
</tr>
<tr>
<td>D</td>
<td>−</td>
</tr>
<tr>
<td>E</td>
<td>+</td>
</tr>
<tr>
<td>F</td>
<td>+</td>
</tr>
</tbody>
</table>

Figure 262. Zoned decimal sign conventions

Of the six possible sign digits, the preferred values are $'C'$ for “+” and $'D'$ for “−”. Thus, the zoned decimal representation of +12345 is

Table 190 contains some examples of zoned decimal constants: As these examples illustrate, leading zeros may appear in a zoned decimal number without affecting its value.

<table>
<thead>
<tr>
<th>Value</th>
<th>Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>+12345</td>
<td>$'F1F2F3F4C5'$</td>
</tr>
<tr>
<td>-12345</td>
<td>$'F1F2F3F4D5'$</td>
</tr>
<tr>
<td>+003</td>
<td>$'F0FC3'$</td>
</tr>
<tr>
<td>-0999</td>
<td>$'F9F99D9'$</td>
</tr>
</tbody>
</table>

Table 190. Examples of zoned decimal data

If these byte strings are printed, the last character in each will be a letter!

Figure 263 gives a pictorial representation of a zoned decimal number, where “Z” represents a zone digit, “S” represents a sign digit, and “d” represents a numeric (decimal) digit.

Figure 263. A zoned decimal number

All of the decimal characters we saw in previous sections used $'F'$ for their zone digits Z. Other zone digits are used for ASCII and Unicode numeric character data.
27.1.1. Why Zoned Decimal Is The Way It Is (*)

The reason for the choice of preferred zones comes from the days of punched cards. To save space in the card column containing the last character of a numeric field, by convention a hole corresponding to the desired digit and another zone punch appeared in one of the two top rows of the same card column.

For example, a punched card containing two 10-character fields containing the right-adjusted numbers +12345 and −67890 would appear as shown in Table 191:

<table>
<thead>
<tr>
<th>0000000000000000</th>
<th>0000000000000000</th>
</tr>
</thead>
<tbody>
<tr>
<td>1111111111111111</td>
<td>1111111111111111</td>
</tr>
<tr>
<td>2222222222222222</td>
<td>2222222222222222</td>
</tr>
<tr>
<td>3333333333333333</td>
<td>3333333333333333</td>
</tr>
<tr>
<td>4444444444444444</td>
<td>4444444444444444</td>
</tr>
<tr>
<td>5555555555555555</td>
<td>5555555555555555</td>
</tr>
<tr>
<td>6666666666666666</td>
<td>6666666666666666</td>
</tr>
<tr>
<td>7777777777777777</td>
<td>7777777777777777</td>
</tr>
<tr>
<td>8888888888888888</td>
<td>8888888888888888</td>
</tr>
<tr>
<td>9999999999999999</td>
<td>9999999999999999</td>
</tr>
</tbody>
</table>

Table 191. Punched-card image of two numbers, +12345 and −67890

The technique of using the top two unnumbered “rows” of the card indicated both the end of a field of digits, and the sign of the number: if the number was positive, the 12-row (top row) of the card column containing the numeric digit punch was also was punched, and if the number was negative the 11-row (the next to top row) was punched. This meant that +5 appeared as the letter “E” (with hex representation X′C5′), and −9 appeared as the letter “R” (with hex representation X′D9′). When “numbers” in this representation are read into memory as EBCDIC characters, the presence of a sign punch over the last digit automatically gives the zoned decimal representation of the number. (If a sign is prefixed to the digits, a + sign is a single punch in the 12-row, and a − sign is a single punch in the 11-row.)

Exercises

27.1.1.(2)+ In Figure 261 on page 455, why are Numerics and Zones defined with explicit length 8? Show the results if they had been defined instead by

- Numerics DC 8’0’
- Zones DC 8’0’

27.1.2.(1)+ What will be the result of executing these two instructions?

- MVN Target,Source
- MVZ Target,Source

27.1.3.(3) Write an instruction sequence using TRT to test the validity of the digit and sign in the rightmost byte of the zoned decimal number at ZTest. If the digit portion is invalid, branch to BadDigit; if the sign portion is invalid, branch to BadSign; and if both are invalid, branch to BadByte. If you can also determine the sign of a valid byte, branch to ZPlus for a plus sign and to ZMinus for a minus sign.

27.1.4.(2)+ Write an instruction sequence using TRT to test the validity of all but the rightmost byte of the zoned decimal number at ZTest. If any byte is invalid, branch to BadZDig with GR1 containing the address of the invalid byte.

27.1.5.(1) In Table 190, what will be printed for the rightmost byte of each item?
27.1.6.(2) Find the EBCDIC punched card code for the + and − characters. Now, do the same for the BCD punched card codes.

27.1.7.(1)+ After example 1 of using the MVZ instruction (on page 455), it was stated that the literals =5C′0′ and =5C′9′ could have been used also. Explain why this is so.

27.1.8.(2) Consider the MVZ instruction in the same example as in Exercise 27.1.7. Could the statement have been written in any of the following forms? Explain why or why not.

\[
\begin{align*}
\text{MVZ} & \quad \text{NDec}, =\text{XL(}\text{NDec})X'\text{ FF'} \\
\text{MVZ} & \quad \text{NDec}, =\text{XL}\text{(NDec)}X'\text{ FF'} \\
\text{MVZ} & \quad \text{NDec}, =\text{XL(NDec)}X'\text{ FF'} \\
\text{MVZ} & \quad \text{NDec}, =\text{(NDec)X'}\text{ FF'}
\end{align*}
\]

27.2. Zoned Decimal Constants

Zoned decimal constants are defined with a DC statement with type “Z”. Each digit in the constant is translated into a single byte in storage and the Assembler assigns the preferred sign code to the rightmost byte. For example, the constants in Table 190 on page 456 could be defined with either of these statements:

\[
\begin{align*}
\text{ZoneA} & \quad \text{DC} \quad \text{Z}\'12345', \text{Z'}-\text{12345'}, \text{Z'}+\text{003}', \text{Z'}-\text{0999'} \\
\text{ZoneB} & \quad \text{DC} \quad \text{Z'}\text{12345, -12345, +003, -0999'}
\end{align*}
\]

Figure 264. Zoned decimal constants with implied lengths

When the length of the constant is implied (as in Figure 264), the length of the constant is the same as the number of digits in the nominal value. As usual, the length attribute of the name-field symbol is that of the first constant in the first operand.

A decimal point may be placed anywhere in a zoned decimal constant. Its presence is ignored, and it does not appear in the generated constant.\footnote{168} Thus, both

\[
\begin{align*}
\text{DC} & \quad \text{Z'}\text{12345}. \quad \text{and} \\
\text{DC} & \quad \text{Z'}\text{.12345'}
\end{align*}
\]

generate X’F1F2F3F4C5”.

To specify an explicit length, use a length modifier. If the value of the length modifier is less than the number of digits, the constant will be truncated at the left end to the required length:

\[
\begin{align*}
\text{DC} & \quad \text{ZL3'12345'} \quad \text{Truncated constant} = \text{X'}\text{F3F4C5'} \\
\text{DC} & \quad \text{ZL3'12345'} \quad \text{Padded constant} = \text{X'}\text{F0F0F0F0F0'}
\end{align*}
\]

If the value of the length modifier is greater than the number of digits, the Assembler will pad with high-order (zoned, EBCDIC) zeros, with representation X’F0’:

\[
\begin{align*}
\text{DC} & \quad \text{ZL5'123'} \quad \text{Truncated constant} = \text{X'}\text{F3F4C5'} \\
\text{DC} & \quad \text{ZL5'123'} \quad \text{Padded constant} = \text{X'}\text{F0F0F0F1F2C3'}
\end{align*}
\]

The maximum length of a zoned decimal constant is 16 bytes.

The constants in Table 190 on page 456 could also be defined with explicit lengths:

\[
\begin{align*}
\text{ZoneC} & \quad \text{DC} \quad \text{ZL5'12345', ZL5'-12345', ZL3'3', ZL4'-999'}
\end{align*}
\]

Figure 265. Zoned decimal constants with explicit lengths

Scale and exponent modifiers, and decimal exponents, are not supported for Z-type constants.

\footnote{168} The position of the decimal point is reflected in the integer and scale attributes of the symbol, which are useful mainly in macro instructions. They are rarely if ever used with zoned constants.
Exercises

27.2.1.(1)+ What data would be generated if we wrote the constants in Figure 264 as
Zone0 DC ZL5’12345,-12345,+3,-999’
Is anything different? If so, what and why?

27.2.2.(1) Show the generated data for these zoned decimal constants:
(1) Z’ -1’ (2) Z’ +0’ (3) Z’ -042’ (4) ZL2’5’

27.2.3.(1) What decimal value is represented by the following zoned decimal constants?
(1) X’ F0B9’ (2) X’ F2’ (3) X’ F0FA7’ (4) X’ B0’

27.2.4.(1) Show the generated data for these zoned decimal constants:
(1) ZL16’123456.789’ (2) Z’123456789012345678’
(3) ZL5’.654321’ (4) ZL20’2.20’

27.2.5.(2)+ How many valid zoned decimal values can be represented in a single byte?

27.2.6.(2)+ What data would be generated if we wrote the constants in Figure 264 as
Zone0 DC CL5’12345,-12345,+3,-999’
What is different? Why?

27.2.7.(1)+ What are the length attributes of the symbols in Figure 264?

27.3. Packed Decimal Representation

The packed decimal representation is often used when computing speed is less important than
economy of storage space, and we want speed and simplicity of conversion to and from character
form. Also, because humans calculate in decimal, operations like rounding are more intuitive
than if the same calculation is done using binary data, and can be more accurate than the same
computations in binary.

As its name implies, data is more closely “packed” than in the zoned decimal representation. The
basic data element is the binary coded decimal (BCD) digit\(^{169}\) represented by four bits; these BCD
digits can be packed two to a byte. The six bit combinations corresponding to the hex digits A
through F are invalid data digits in the packed decimal representation. If an invalid data digit
appears in an arithmetic operation, the CPU will generate an interruption for invalid Decimal
Data.

The rightmost digit position of a packed decimal number is reserved for its sign, which obeys the
conventions shown in Figure 262 on page 456. As with zoned decimal data, the preferred values
for the sign digit are X’ C’ for “+”, and X’ D’ for “-”.

of Figure 263 on page 456, a packed decimal number will appear in storage as shown in Figure
266. Note that there are no zone digits in a packed decimal number.

\(^{169}\) This representation, where a decimal digit is encoded in four bits, is often called “binary coded decimal”. To avoid
confusion with the 6-bit character code that was also called “Binary Coded Decimal” (see Section 26.1.1 on page 429
and Table 166 on page 430), we will use the terms “packed decimal digit” or “decimal digit” instead.
Packed decimal numbers look more like numbers we are familiar with, and the sign being at the right end is a small adjustment for us to make. Some examples are shown in Table 192.

<table>
<thead>
<tr>
<th>Value</th>
<th>Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>+12345</td>
<td>X'12345C'</td>
</tr>
<tr>
<td>-0012345</td>
<td>X'0012345D'</td>
</tr>
<tr>
<td>+3</td>
<td>X'3C'</td>
</tr>
<tr>
<td>-09990</td>
<td>X'09990D'</td>
</tr>
<tr>
<td>39</td>
<td>X'039C'</td>
</tr>
</tbody>
</table>

Table 192. Examples of packed decimal data

Any extra digits at the left end will be set to zero. Because the sign always occupies one digit position, a packed decimal number in memory always has an odd number of digits. Packed decimal data may be up to 16 bytes long, so it is possible to have 31-digit numbers; however, some operations on decimal data require shorter operands.

The packed decimal representation has an unusual feature: it is possible to have a negative sign digit and all zero data digits. Thus, packed decimal is an example of a sign-magnitude representation. In most cases, a zero result of an operation is given a positive sign digit, but it is also possible to generate negative zeros in special cases. Thus it is not possible (as is possible in the two's complement binary representation) to determine that a number is strictly negative by examining its sign digit.

There is also an unsigned packed decimal representation used in conjunction with decimal floating point; we'll investigate it in Section 35.

**Exercises**

27.3.1.(2)+ A packed decimal number contains N digits; give a formula for the number of bytes required to hold it in memory.

27.3.2.(2) How many valid packed decimal values can be represented in a single byte?

27.3.3.(4) Test the packed decimal number at Pack for validity with a single TRT instruction and a suitable translate table. If the number is valid and nonzero branch to PPlus or PMinus depending on its sign. Otherwise,

- if the sign is invalid branch to BadSign
- if a byte contains an invalid digit branch to BadDigit
- if a byte contains both an invalid sign and digit branch to BadByte

with the address of the byte containing the invalid data in GR1.

27.3.4.(2)+ Suppose you must force the sign of the packed decimal number at SomeVal to be positive. Show you can do this with one instruction.

27.3.5.(3) A packed decimal operand is known to have a bad numeric digit. Create a translate table that can be used with a TRT instruction to identify both the byte with the bad digit, and whether the first or second digit is invalid.

27.3.6.(3) Suppose you must force the sign of the packed decimal number at SomeVal to be negative. Can you do this with one instruction? (Compare to your answer for Exercise 27.3.4.)
27.4. Packed Decimal Constants

Packed decimal constants are defined using a DC statement with type “P”. For example, we could define the constants in Table 192 with these statements:

```
PackA DC P'12345', P'-0012345', P'+3', P'-9990', P'39'
PackB DC P'12345',-012345,3,-09990,39'
```

Figure 267. Packed decimal constants with implied lengths

When the lengths are implied, the Assembler generates exactly the number of bytes needed to contain the constant, and no more. Remember that the number of packed decimal digits is always odd, so that a value with an even number of digits will have an extra high-order zero digit supplied by the Assembler. As with Z-type constants, the maximum length of a packed decimal constant is 16 bytes, or 31 decimal digits.

Explicit lengths are assigned to packed decimal constants in the usual way, with padding and truncation being performed at the left end of the constant. The constants in Figure 267 could be specified with explicit lengths, as shown in Figure 268.

```
PackC DC PL3'12345',PL4'-12345', PL1'3', PL3'-9990', PL2'39'
```

Figure 268. Packed decimal constants with explicit lengths

As with zoned decimal constants, scale and exponent modifiers are not allowed. An optional decimal point may be placed within a constant, but its presence is ignored in forming the constant. This means that we can write constants such as

```
YourPay DC P'947.24' Stored value = 94724C
MyPay DC P'13.07' Stored value = 01307C
```

and the decimal point can help you to understand an intended use of the data.

Because the position of the decimal point doesn’t affect the generated constant, we can write constants like these, all of which generate the same data:

```
DC P'1307.' Stored value = 01307C
DC P'130.7' Stored value = 01307C
MyPay DC P'13.07' Stored value = 01307C
DC P'1.307' Stored value = 01307C
DC P'.1307' Stored value = 01307C
```

Unfortunately, this means that you must remember where the decimal point lies. Programming financial applications involving fractional quantities like currency and interest rates in packed decimal can be quite difficult if you must know the position of the decimal point for the operands of each arithmetic operation.

Similarly, the same value can have multiple representations:

```
DC P'1307.' Stored value = 01307C
DC PL'1307' Stored value = 0001307C
DC PL5'1307' Stored value = 000001307C
DC PL6'1307' Stored value = 0000001307C
```

We will see in Section 35 on page 667 that decimal floating-point arithmetic is much simpler.

27.4.1. Scale Attributes and Packed Decimal Constants (*)

Although a generated packed decimal constant ignores any decimal point in the nominal value, the Assembler assigns a Scale Attribute to any symbol naming the constant. The value of the scale attribute is the number of decimal digits to the right of the decimal point. For example:
You can retrieve the scale attribute of a symbol using the $S'$ operator, just as the $L'$ operator retrieves its length attribute.

Scale attributes can be very helpful in complex calculations involving numbers with fractional values, but the necessary techniques usually require some practice.

**Exercises**

27.4.1.(2)+ For each of the following zoned and packed decimal constants, state which ones are invalid, and why. For the valid constants, show (in hex) the generated bytes.

- Z1 DC Z'2147483648'
- Z2 DC ZL9'2147483647'
- P3 DC PL6'−9999999999'
- P4 DC P'+123,456,789'
- Z5 DC ZL20'500', PL20'500'
- P6 DC P'3.1415926535'
- P7 DC PL1'40', ZL1'40'
- Z8 DC Z'1,20,400,80000,1600000000'

27.4.2.(1)+ For each of the DC statements in Exercise 27.4.1, determine the length attribute of each symbol that names a valid constant.

27.4.3.(1)+ What sort of constant is generated by the DC operand PL2'−1000'? (Try it with the Assembler.)

27.4.4.(2) Both of these constants will be truncated, since more digits are specified than the explicit length allows.

- DC PL2'0000437'
- DC ZL3'000904'

However, the truncated digits are all zeros; should this condition be considered an error by the Assembler?

27.4.5.(2) The nominal values in Figure 267 on page 461 are different, but they generate the same machine language data. How is this possible?

27.4.6.(3) The packed decimal number at $P$ is from 1 to 4 bytes long. Write instructions to “load” the number into GR6 to form a valid 4-byte packed decimal number. For example, if $c(P)=X'123C'$, the result in GR6 should be $X'0000123C'$.

27.4.7.(3) Repeat Exercise 27.4.6, now assuming the packed operand at $P$ can be from 1 to 8 bytes long, and that it should be “loaded” into GG6.

27.4.8.(2) A four-byte area of memory contains the bit pattern $X'4040405C'$. What is represented by that pattern?

27.4.9.(5) Write (and test!) a single DC statement that generates all 1000 two-byte packed decimal constants from $X'000C'$ through $X'999C'$, representing 000+ through 999+.

27.4.10.(5) Write (and test!) a single DC statement that generates all 1000 three-byte zoned decimal constants from $X'F0F0C0'$ through $X'F9F9C9'$.

27.4.11.(1) Determine the scale attributes of each of these constants:
27.4.12.(3) The Assembler assigns an Integer Attribute to symbols naming packed decimal data. Its value is the number of decimal digits to the left of the decimal point, and the value can be retrieved with the I’ operator.

Given the L’ (Length) and S’ (Scale) attribute values of a symbol X naming a packed decimal constant, derive a formula for the value of its Integer Attribute.

27.4.13.(2) Using your results from Exercise 27.4.12, determine the Length, Integer, and Scale Attributes of the symbols in Exercise 27.4.11.

27.4.14.(2) Using the definitions in Exercise 27.4.12, given the L’ and S’ attribute values of a symbol X naming a zoned decimal constant, derive a formula for the value of its Integer Attribute.

27.5. Converting Between Packed and Zoned

Because packed decimal data is often used in applications needing conversion between external (character) and internal forms, z System provides two instructions that simplify this process.

The PACK instruction converts data from zoned to packed decimal, and the UNPK instruction converts packed decimal data to zoned. (There are two other powerful instructions for converting from packed decimal to character form, ED and EDMK; we’ll discuss them in Section 30.) Both PACK and UNPK are SS-type instructions, as illustrated in Table 9 on page 55.

The Assembler Language syntax for these two instructions is shown in Figure 269:

```
mnemonic D_1(N_1,B_1),D_2(N_2,B_2)
```

Figure 269. Format of typical two-length SS-type instructions

Compared to Figure 196 on page 368, which has only one length field, these have two, N_1 and N_2; and, unlike the SS-type instructions described in Section 25 (compare Table 150 on page 404), the length specification byte requires two four-bit length fields, as in Table 193.

<table>
<thead>
<tr>
<th>opcode</th>
<th>L_1</th>
<th>L_2</th>
<th>B_1</th>
<th>D_1</th>
<th>B_2</th>
<th>D_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implied Length</td>
<td>S_1</td>
<td>S_1(N_1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Explicit Address</td>
<td>D_1(B_1)</td>
<td>D_1(N_1,B_1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 193. Format of two-length SS-type instructions

The length digits L_1 and L_2 take values between 0 and 15, specifying operand lengths N_1 and N_2 of 1 to 16 bytes. (Section 24.1. Basic SS-Type Instructions on page 367 explains the reasons for the differences between N, N_1, N_2, and L, L_1, L_2: the “L” values the CPU sees are one less than the “N” values you specify.)

Because there are six operand-dependent components in these instructions, the operand field of the machine instruction statements may take a great variety of forms. Each operand may have the same form as the first operand of the one-length SS-type instructions discussed in Section 25; that is, both length and address may be implied or explicit for each operand.

The possible forms of either operand are summarized in Table 194. Though the quantities B_1, D_1, and N_1 refer to the first operands, the possible forms of the second operand are identical.
Table 194. Operands of two-length SS-type instructions

These examples illustrate the four forms of a first operand:

- **PACK A,B**: Implied address and length
- **PACK A(7),B**: Implied address, explicit length
- **PACK 24,(9),B**: Explicit address, implied length
- **PACK 24(7,9),B**: Explicit address and length

The form of the first operand in the third example is rarely used, because the implied length of the first operand will usually be 1, the length attribute of the term used for the displacement D_1.

If the length of an operand is implied, the value assigned to the Length Expressions N_1 and N_2 is the length attribute of the leftmost term in the expressions S_1, S_2, D_1 or D_2, as appropriate.

As we saw in Section 24 for the one-length SS-type instructions, the number the Assembler places into the Encoded Length digits L_1 and L_2 is actually one less than the value of the corresponding Length Expressions N_1 and N_2, whether implied or explicit. As with other SS-type instructions, an explicit Length Expression N of value zero is assembled as a zero length digit.

To illustrate, suppose the symbols AA and BB have length attributes 2 and 11, respectively. Then the following statements would be assembled as shown. Only the length digits L_1 and L_2 are important for this example; ignore the bddd base and displacement fields. (The operation codes X’F2’ and X’F3’ are for PACK and UNPK respectively, as shown in Table 189 on page 454.)

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Assembled Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>PACK AA(5),BB(5)</td>
<td>F244 bddd bddd N1=5,N2=5 L1=4,L2=4</td>
</tr>
<tr>
<td>UNPK BB,AA</td>
<td>F3A1 bddd bddd N1=11,N2=2 L1=10,L2=1</td>
</tr>
<tr>
<td>PACK 0(16,9),65(,2)</td>
<td>F2F0 bddd bddd N1=16,N2=0 L1=15,L2=0</td>
</tr>
<tr>
<td>PACK AA(0),BB(0)</td>
<td>F200 bddd bddd N1=0,N2=0 L1=0,L2=0</td>
</tr>
<tr>
<td>UNPK BB-AA,(9),BB(L’AA)</td>
<td>F3A1 bddd bddd N1=11,N2=2 L1=10,L2=1</td>
</tr>
<tr>
<td>PACK AA,BB+11(3)</td>
<td>F212 bddd bddd N1=2,N2=3 L1=1,L2=2</td>
</tr>
</tbody>
</table>

Figure 270. Examples of assembled PACK and UNPK instructions

In each case the L value is one less than the N value, but if the N value is zero, the L value is also zero.

This illustrates another reason why the Encoded Length byte L (in one-length SS-type instructions), and the Encoded Length digits L_1 and L_2 (in two-length SS-type instructions), are one less than the values given for the Length Expressions in machine instruction statements. To obtain the addresses of the starting bytes of the operands of a PACK or UNPK instruction, the CPU simply adds the length specification digits to the Effective Addresses derived from the addressing halfwords.

Even though we’re describing PACK and UNPK in the context of zoned and packed decimal data, the instructions are not sensitive to data types: they simply move data in prescribed ways, whatever their type.

The PACK and UNPK instructions, unlike many of the SS-type instructions we have discussed, process data from right to left. Neither sets the Condition Code.

**Exercises**

27.5.1.(1)+ In Figure 270, determine the bddd values for every explicit address.
27.6. The PACK Instruction

The PACK instruction (and the UNPK instruction to be described in Section 28.7) have the machine instruction format shown in Table 193, and the operands of its assembler instruction statements take any of the forms shown in Table 194.

PACK converts data from zoned to packed form. Its operation is easily visualized by writing a number in both representations. We’ll use +12345 again, which has these zoned and packed forms:

```
F 1 F 2 F 3 F 4 C 5 | 1 2 3 4 5 C
```

Figure 271. Zoned and packed forms of +12345

If we interchange the digits of the rightmost byte of the zoned form, we obtain the rightmost byte of the packed form. The remaining digits are extracted in right-to-left order from the numeric portion of each zoned byte, and placed into the proper positions in the packed operand. This is illustrated in Figure 272.

```
Z d Z d Z d Z d S d
```

Figure 272. PACK instruction operation

If the zoned and packed operands were named ZonOp and PackOp respectively, we could perform the operation pictured in Figure 272 with this instruction:

```
PACK PackOp,ZonOp
```

ZonOp DC ‘12345’
PackOp DS PL3

Figure 273. Converting from zoned to packed decimal using PACK

No checking is done for invalid data digits in the packed operand; the instruction just moves data as illustrated. But, you should ensure that valid packed operands are generated if they are to be used for arithmetic.

In the operation illustrated in Figure 272, the operands were chosen to contain exactly the right number of digits. However, either operand of a PACK instruction might be too long for the other. The rules for such cases are:
1. If the first (packed) operand is completed before the zoned operand is exhausted, the rest of the zoned operand is ignored.
2. If the second (zoned) operand is exhausted before the packed operand is completed, the remaining high-order digits of the packed operand are filled with zeros. (If this was not done, the high-order digit positions of the packed operand might contain unknown values.)

The PACK operation is therefore controlled by the length of the first operand; the result always has the specified length. The second (zoned) operand is unmodified (assuming no overlap).
To illustrate, suppose we execute some PACK instructions with operands of various lengths, as in Figure 274. The result of each operation is shown in the comment field of the statement defining the first operand.

```
Packing P1,Zone(4) Lengths 1, 4
PACK P2,Zone Lengths 2, 5
PACK P3,Zone(2) Lengths 3, 2
PACK P5,Zone Lengths 5, 5

Zone DC Z'12345' Zoned operand = X'F1F2F3F4C5'
P1 DS PL1 Result = X'F'
P2 DS PL2 Result = X'F5C'
P3 DS PL3 Result = X'0012F'
P5 DS PL5 Result = X'00012345C'
```

Figure 274. Examples of the PACK instruction

Note especially the result at P1: because the length of the second operand in the first PACK instruction was explicitly specified as 4 (rather than the correct implied length of 5, as in the second PACK instruction), the rightmost byte of the second operand is X'F4'. You must be careful to specify correct lengths for the operands of PACK instructions because significant data digits can easily be lost, or undesired or unexpected values may be generated.

The first and second operands of a PACK instruction could overlap. While such uses are almost always accidental, this programming trick might be useful in special cases.

- If overlap occurs with PACK operands, the CPU will store the completed first operand (packed) byte after fetching the next two second operand (zoned) bytes (or the next one byte, if that will exhaust the second operand).

We saw in Figure 272 that the two hex digits of the rightmost byte are interchanged. We can use this property of PACK to swap the digits of any byte:

```
Packing A,A Swap digits of A
PACK A,A

A DC X'12' Result = X'21'
```

Figure 275. Digit swap using PACK

Exercises

27.6.1.(1) Suppose a zoned decimal operand containing NZ bytes is to be converted to packed decimal form. Give a formula for NP, the minimum number of bytes required for the packed decimal operand.

27.6.2.(2) Suppose you execute this PACK instruction:

```
PACK PData,XXX

PData DS PL6
```

Show the contents of the field at PData if the data at XXX is defined as follows:

1. XXX DC F'-9'
2. XXX DC C'Hello, World!'
3. XXX DC CA'Hello, World!'

27.6.3.(4) Write a program segment which will simulate the action of the PACK instruction. Assume that the packed and zoned operands are stored at POP and ZOP respectively, and that the length attributes of those symbols are the correct operand lengths. That is, the code should produce the same result as:

```
PACK POP,ZOP From zoned to packed
```

466  Assembler Language Programming for IBM z System™ Servers  Version 1.00
Without using a PACK instruction, of course!

27.6.4.(3) Suppose a PACK instruction specifies operands that overlap. Where must the rightmost byte of the first (target) operand be placed relative to the first byte of the second (source) operand, so that the correct result will be obtained in all cases?

27.6.5.(2) For the zoned decimal constant named $ZData$, show the result of executing each of the following PACK instructions.

\[
\begin{align*}
ZData & \text{ DC } Z'2468', Z'1357' \\
& \text{ PACK P1(2),ZData} \\
& \text{ PACK P2(3),ZData} \\
& \text{ PACK P3(1),ZData+1(2)} \\
& \text{ PACK P4(6),ZData+2(6)} \\
& \text{ PACK P5(5),ZData(L'ZData+3)}
\end{align*}
\]

27.6.6.(3) Suppose a zoned decimal operand is packed “onto itself”. That is, the first and second operands of a PACK instruction are identical. What is the maximum length of the operand such that the result will be correct? The minimum length?

27.6.7.(3) Give the contents of the storage area named $DATA$ after executing the following PACK instruction.

\[
\begin{align*}
& \text{ PACK DATA,DATA} \\
& \text{ DATA DC X'123456789ABCDEF'}
\end{align*}
\]

27.6.8.(2) A common programming convention is that an all-blank field on a data record should be interpreted as a zero value. What will be the result of PACKing a string of blank characters? Need anything be done to the result? If so, what?

27.6.9.(2) Suppose we start with a zoned decimal operand at $Zone$ having length $N$ bytes, and execute the instruction

\[
\text{ PACK PackOp,Zone(K)}
\]

where the length $K$ is always less than or equal to $N$. Consider possible lengths for the first operand $PackOp$: under what conditions will a valid packed result be obtained?

27.6.10.(2) Suppose you need to pack some zoned data at $ZData$ by EXecuting this PACK instruction:

\[
\text{ PACK PackData(*-*),ZData}
\]

The length of the packed decimal field at $PackData$ is contained in GR2, and does not exceed 16. Write a sequence of instructions to do this.

27.6.11.(1) Suppose you execute this PACK instruction:

\[
\begin{align*}
& \text{ PACK P,P} \\
& \text{ P DC X'ABCDEF'}
\end{align*}
\]

What result will be at $P$?

27.6.12.(2) Suppose you execute this PACK instruction:

\[
\begin{align*}
& \text{ PACK Q,P} \\
& \text{ Q DS XL3} \\
& \text{ ORG Q+1} \\
& \text{ P DC X'ABCDEF'}
\end{align*}
\]

What result will be at $Q$?
27.6.13.(2) Suppose you execute this PACK instruction:

```
Packing Q,P
- - -
```

<table>
<thead>
<tr>
<th>Q</th>
<th>DS</th>
<th>XL3</th>
<th>Result field</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORG</td>
<td>Q-1</td>
<td>Source field starts at Q-1</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>DC</td>
<td>'ABCDEF'</td>
<td>Source field</td>
</tr>
</tbody>
</table>

What result will be at Q?

27.6.14.(1+) When you PACK a zoned decimal field, what will be different in the result if the numeric digits are preceded by blanks or by leading zeros?

27.7. The UNPK Instruction

The UNPK instruction performs the inverse of PACK: it transforms a packed decimal operand into zoned decimal form. Like PACK, the UNPK instruction

- does not set the Condition Code,
- does not check for valid data or sign digits in the packed operand, and
- is controlled by the length of the first (zoned) operand.

The digits of the low-order byte of the second (packed) operand are switched, and the result becomes the rightmost byte of the first (zoned) operand. Successive digits are then taken in right-to-left order from the packed operand and placed into the numeric-digit positions of successive bytes in the zoned operand, with X'F' placed in each zone digit.

```
Fig. 276. Operation of the UNPK instruction
```

Figure 277 shows how to convert the packed value +12345 to zoned form.

```
UNPK ZonOp, PackOp
- - -
```

<table>
<thead>
<tr>
<th>ZonOp</th>
<th>DS</th>
<th>ZL5</th>
<th>Zoned operand, length = 5 bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PackOp</td>
<td>DC</td>
<td>'12345'</td>
<td>Packed operand, length = 3 bytes</td>
</tr>
</tbody>
</table>

```
Fig. 277. Example of an UNPK instruction
```

In the PACK operation, the zone digits of the zoned operand were discarded. For the UNPK operation, the zone digits are supplied by the CPU.\(^\text{170}\)

\(^{170}\) On System/360 CPUs, the zone digits were determined by the setting of the “A” bit in the PSW, which is no longer used. If the “A” bit was zero, the CPU assumed that EBCDIC characters are desired, and automatically supplied a zone digit X’F’ where needed; if the “A” bit was 1, the CPU assumed that characters in the USASCII representation are desired, and supplied X’5’ for the zone digits. (This is different from the current definition of ASCII, where the zone digits are X’3’.)

468 Assembler Language Programming for IBM z System™ Servers Version 1.00
When the lengths of the two operands do not correspond exactly, rules like those for PACK apply to UNPK:

1. If the first (zoned) operand is completed before the packed operand is exhausted, the rest of the packed operand is ignored.

2. If the second (packed) operand is exhausted before the zoned operand is completed, the remaining high-order bytes of the zoned operand are completed with zoned zeros.

To illustrate the operation of the UNPK instruction, the result of unpacking a packed decimal number is shown in the comment field of each statement.

```
UNPK Z5, Pack Data lengths 5, 3
UNPK Z7, Pack Data lengths 7, 3
UNPK ZB, Pack Data lengths 3, 3
UNPK ZA, Pack(2) Data lengths 3, 2
UNPK Z4, Pack(1) Data lengths 4, 1
```

```
Pack DC P'12345' 3-byte packed operand, X'12345C'
Z5 DS ZL5 Result = X'F1F2F3F4C5'
Z7 DS ZL7 Result = X'F0F0F1F2F3F4C5'
ZB DS ZL3 Result = X'F3F4F5C'
ZA DS ZL3 Result = X'F1F243C'
Z4 DS ZL4 Result = X'F0F0F021C'
```

Figure 278. Examples of UNPK instructions

If you study the results at ZA and Z4 you will understand the need for care in specifying the lengths of the operands, since possibly invalid zoned decimal results can be generated; we saw similar incorrect results in Figure 274.

As was done with the PACK instruction in Figure 275, we can use UNPK to swap the hex digits of a byte:

```
UNPK A,A Swap digits of A
```

```
A DC X'12' Result = X'21'
```

Figure 279. Digit swap using UNPK

The first and second operands of an UNPK instruction could overlap. While such uses are almost always accidental, this behavior might be useful in special cases.

- If overlap occurs with UNPK operands, the CPU processes the operands by storing two result bytes immediately after the necessary source operand byte has been fetched for the next step.

In Section 30.3 on page 526 we’ll see how the powerful ED and EDMK instructions make it easy to format packed decimal data for printing and display.

**Exercises**

27.7.1.(1) In Figure 273 on page 465, what will be the contents of the memory area named PackOp after executing the PACK instruction? In Figure 277 on page 468, what will be at ZonOp after executing the UNPK instruction?

27.7.2.(2) Suppose the CPU executes this UNPK instruction:

```
UNPK ZData, YYY
```

```
ZData DS ZL9
```

Show the contents of the field at ZData if the data at YYY is defined as follows:

1. YYY DC F'9'
2. YYY DC C'Hello, World!'
27.7.3.(3) Determine the result of executing an UNPK instruction instead of the PACK instruction in Exercise 27.6.7.

27.7.4.(4) Write a program segment like that in Exercise 27.6.3, except that the instruction

```
UNPK ZOP,POP
```

should be simulated.

27.7.5.(4) Suppose the operands of an UNPK instruction overlap, and assume that the address of the last byte of the packed decimal operand is greater than or equal to the address of the last byte of the zoned operand. What rule or rules can you state that will guarantee the same results as if there were no operand overlap? For example, in this sketch the address of the last byte of the packed operand is greater than the address of the last byte of the zoned operand.

```
┌─────────────┐
│ │ packed operand

└───────┴─────────┬───┘
│ │ zoned operand

└─────────────────┘
```

27.7.6.(2) For the given packed decimal constant below, show the result of executing each of the following UNPK instructions.

```
PData DC P'123456'
```

```
- - -
UNPK Z1(6),PData
UNPK Z2(7),PData
UNPK Z3(2),PData
UNPK Z4(6),PData+2(2)
UNPK Z5(4),PData(3)
UNPK Z6(2),PData+3
```

27.7.7.(3) Do the same as in Exercise 27.6.6, but now consider unpacking a packed decimal operand "onto itself" using an UNPK instruction with identical operands.

27.7.8.(2) Suppose a packed decimal operand NP bytes long is to be converted to zoned decimal form. Give a formula for NZ, the minimum number of bytes required for the zoned operand. Is your formula the same (aside from algebraic rearrangement) as the result you obtained in Exercise 27.6.1? If not, why not?

27.7.9.(3) In the PACK and UNPK instructions, the operation is controlled by the length specification digit for the first operand, namely L1. Why not use L2? What would happen if the longer length were chosen? The shorter?

27.7.10.(5) In Exercise 27.7.5 you considered the situation where the operands of an UNPK instruction overlap, and the address of the rightmost byte of the second (packed) operand was not less than the address of the first (zoned) operand. Now, suppose the operands overlap, but the address of the rightmost byte of the packed operand is less than the address of the rightmost byte of the zoned operand: what rule or rules can you state for the relations between operand lengths and addresses that will guarantee the same results as if there were no operand overlap? For example, in this sketch the address of the last byte of the packed operand is less than the address of the last byte of the zoned operand.

```
┌─────────┐
│ │ packed operand

┌────┴─────────┴──┐
│ │ zoned operand

└─────────────────┘
```
27.7.11.(4) Repeat Exercise 27.7.3, but now assume you execute the UNPK instruction twice in succession. What will be in the field named Data when the second instruction completes execution?

27.7.12.(2) Figure 274 on page 466 and Figure 278 on page 469 illustrate how invalid results can be generated when the length supplied for the second operand of the PACK and UNPK instructions is not the same as the length of the datum. Give a general guideline which will generate a valid result in such cases.

27.7.13.(3) Write program segments to perform the functions described in Exercises 27.7.10 and 27.7.11 using shifts, loops, and no translate instructions.

27.7.14.(2) Suppose you execute this UNPK instruction:

```
UNPK U,P
U DC XL6'0'
Org U+2
P DC X'123456'
```

What result will appear at U?

27.7.15.(3) Suppose you execute this UNPK instruction:

```
UNPK U,P
U DC XL6'0'
Org U+3
P DC X'123456'
```

What result will appear at U?

27.7.16.(3) Suppose you execute this UNPK instruction:

```
UNPK U,P
U DC XL6'0'
Org U+4
P DC X'123456'
```

What result will appear at U?

27.7.17.(2) If you execute this UNPK instruction, what will be the result at Answer?

```
UNPK Answer,Start
Answer DS ZL7
Start DC P'76543'
```

27.8. Packing and Unpacking ASCII and Unicode Data (*)

Unlike the PACK and UNPK instructions, the packed decimal operand of the last four instructions in Table 189 on page 454 is always 16 bytes long, and the Length Expression of the instruction gives the length of the “zoned” operand. However, ASCII and Unicode numeric characters are not “zoned” in the same sense as zoned decimal data; there is no special sign code in the rightmost byte.

Overlapping operands always generate unpredictable results.

As with PACK and UNPK, the ASCII pack and unpack instructions are not sensitive to data types; they simply move data fields in a prescribed way. Both process data from right to left.
27.8.1. Packing ASCII and Unicode Data

The PKA and PKU instructions convert numeric characters to packed decimal format. PKA is simpler: like PACK, it extracts the numeric digits from the second operand and packs them into the first operand. Both PKA and PKU have the format shown in Table 195; note that the Encoded Length L refers to the second operand. Because there is no “zone” sign on the low-order character, the CPU automatically inserts a X’C’ plus sign. It’s up to you to know whether the value should actually have a minus sign.

This format is the same as many of the SS-type instructions we’ve seen. However, the assembler instruction statement format is different: the Length Expression N is specified in the second operand:

\[
\text{mnemonic } D_1(B_1), D_2(N, B_2)
\]

Neither PKA nor PKU changes the Condition Code.

<table>
<thead>
<tr>
<th>opcode</th>
<th>L</th>
<th>B₁</th>
<th>D₁</th>
<th>B₂</th>
<th>D₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>PKA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PKU</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 195. Format of PKA and PKU instructions

Figure 280 shows an example of packing the ASCII characters at AChars into 16 bytes starting at PDecA.

```
PKA PDecA,AChars
- - -
PDecA DS PL16 Packed decimal result (16 bytes)
AChars DC C’1234567890123’ ASCII numeric characters (13 bytes)
* Result at PDecA = X’0000000000000001234567890123C’
```

If the zoned operand has too few digits to fill all 31 digit positions of the packed operand, the remaining high-order digits are set to zero, as in Figure 280 where the ASCII operand contains only 13 digits.

PKU operates in much the same way. Since “Unicode” means UTF-16 here, the “zoned” operand is pairs of bytes. Each numeric digit is extracted from the rightmost four bits and placed into the packed operand. For example, if the Unicode operand is the two UTF-16 characters 47, or X’00340037’, the packed decimal result would contain X’00...0047C’. Figure 281 shows how you could pack Unicode characters:

```
PKU PDecU,UChars Pack Unicode characters
- - -
PDecU DS PL16 Packed decimal result (16 bytes)
UChars DC C’1234567890123’ Unicode numeric characters (26 bytes)
* Result at PDecU = X’000000000000000001234567890123C’
```

To avoid the possibility that the zoned operand could be too long, its length is limited:

- For PKA, the zoned operand length N may be at most 32 bytes (0 ≤ L ≤ 31)
- For PKU, the zoned operand length N may be at most 64 bytes (0 ≤ L ≤ 63)

It may seem strange to allow the zoned operand to contain one more character than will fit into the 31-digit packed operand, but if the maximum length is specified the CPU simply ignores the leftmost “zoned” character.
27.8.2. Unpacking ASCII and Unicode Data

The UNPKA and UNPKU instructions convert packed decimal data to ASCII and Unicode characters, respectively. Like PKA and PKU, the packed operand is always 16 bytes long; and unlike them, these unpack instructions set the Condition Code—but in a rather strange way, as we’ll see.

The Assembler Language syntax of these two instructions is

\[ \text{mnemonic } D_1(N,B_1),D_2(B_2) \]

where the Length Expression \( N \) is part of the first operand.

The length field of UNPKA and UNPKU holds \( L \), the Encoded Length of the first operand, as shown in Table 196:

<table>
<thead>
<tr>
<th>opcode</th>
<th>( L )</th>
<th>( B_1 )</th>
<th>( D_1 )</th>
<th>( B_2 )</th>
<th>( D_2 )</th>
</tr>
</thead>
</table>

Table 196. Format of UNPKA and UNPKU instructions

As with PKA and PKU, the length of the first operand is limited:

- For UNPKA, the zoned operand length \( N \) may be at most 32 bytes (so \( 0 \leq N \leq 32 \) and \( 0 \leq L \leq 31 \)).
- For UNPKU, the zoned operand length \( N \) may be at most 64 bytes (so \( 0 \leq N \leq 64 \) and \( 0 \leq L \leq 63 \)).

Because there is no “zoned sign” for ASCII and Unicode characters, the sign digit of the packed operand is used only to set the Condition Code. Instead of the EBCDIC \( X'F' \) zones inserted by UNPK, the CPU inserts \( X'3' \) digits for UNPKA, and inserts \( X'003' \) digits for UNPKU.

The unpacking operation proceeds from right to left, and is controlled by the length of the first operand, so portions of the packed second operand may be ignored. For example:

In this case, the results at \( \text{AChars} \) and \( \text{UChars} \) will be

\[ X'30 30 30 30 39 38 37 36 35 34 33 32' \]

and

\[ X'0030 0030 0030 0039 0038 0037 0036 0035 0034 0033 0032' \]

where spaces were inserted for readability.

However, if the first operand field is not long enough to contain all significant digits, no indication is given.

In this case, the results at \( \text{AChar2} \) and \( \text{UChar2} \) will be
and X'0038 0037 0036 0035 0034 0033 0032'

The Condition Code settings after UNPKA and UNPKU are given in Table 197.

<table>
<thead>
<tr>
<th>CC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Packed operand sign is + (X'A, C, E, F')</td>
</tr>
<tr>
<td>1</td>
<td>Packed operand sign is - (X'B, D')</td>
</tr>
<tr>
<td>3</td>
<td>Packed operand sign is invalid.</td>
</tr>
</tbody>
</table>

Table 197. CC settings after UNPKA, UNPKU instructions

---

**Warning**

Every other instruction that tests a numeric result sets the Condition Code to zero for a zero result. These two instructions set Condition Code zero for a positive operand. If your program depends on the CC setting after these instructions, be very careful.

---

**Exercises**

27.8.1.(2) Show the generated packed decimal data at **APack** after you execute this PKA instruction:

```
PKA APack,AChars
```

```
AChars DC CA'1234567890ABCDEFHJKL'M'
```

(See the ASCII encodings in Table 168 on page 432.)

27.8.2.(2) What will be the result at **PA** of this PKA instruction?

```
PKA PA,A(30)
```

```
A DC 10X'ABCDEF'
```

27.8.3.(2) What will be the result at **PU** of this PKU instruction?

```
PKU PU,U(60)
```

```
U DC 20X'ABCDEF'
```

27.8.4.(2) In Figure 280 on page 472, what will happen if **PDec** is shorter than 16 bytes?

27.8.5.(2)+ How should the Condition Code settings after UNPKA and UNPKU have been set?

27.8.6.(2) In Figure 282 on page 473, show the representation of the packed decimal operand at **PDec**.

27.8.7.(2)+ In Figure 282 on page 473, what will be the Condition Code setting after the UNPKA and UNPKU instructions?
27.9. Printing Hexadecimal Values

Beside its uses in converting from packed to zoned decimal, the UNPK instruction can also help convert a string of hexadecimal digits to “spread hex”, the EBCDIC characters which represent them. (See Figures 207 and 208 on page 382.) Suppose the 8 hex digits in the 4 bytes in memory at Data are to be converted to the 8-byte character string at Chars. Now, we cannot immediately write something like this:

```
UNPK Chars(8),Data(4) Spread hex, first (incorrect) attempt
```

```
Chars DS CL8 Space for character result
Data DC '1234ABCD' Initial data
```

Figure 283. Unpacking hex digits (incorrectly)

because Chars would contain

```
X'F0F1F2F3F4FAFBDC'
```

The two digits in the rightmost byte of the second operand (at Data+3) were simply switched and placed in the byte at Chars+7; the remaining six digits were given zones, and the high-order character contains X’F0’. But X’FAFBDC’ does not correctly represent the hex digits “ABCD” in character form.

To solve these problems, we supply an extra byte after each operand.

```
UNPK Chars(9),Data(5) Spread hex, second (correct) attempt
```

```
Chars DS CL8,C Space for result and 1 extra byte
Data DC '1234ABCD' Data to be unpacked
DS X The extra “source” byte, X’xy’
```

Figure 284. Unpacking hex digits (correctly)

Now, Chars will contain

```
X’F1F2F3F4FABFCFD’, X’xy’
```

where the rightmost (extra) byte contains uninteresting data of some sort, as indicated by X’xy’. These two digits are the switched digits from the byte at Data+4, following the right end of the bytes at Data.

The result shown is not yet in EBCDIC form, because the characters generated for the hex digits A through F have incorrect zones and numerics. For example, the hex digit A produces X’FA’ instead of X’C1’. To complete the conversion, these bytes can be converted using a TR instruction (described in Section 24.9 on page 380). We don’t need a 256-byte translate table because all the result bytes have X’F’ zones. We need only a 16-byte table, as shown in Figure 285.

```
UNPK Char(9),Data(5) Convert to partial EBCDIC
TR Char(8),TRTab-X’FO’ Translate to true EBCDIC
```

```
Chars DS CL8,CL1 Space for result and a junk byte
Data DC 'F’-5026’ Data to be spread
TRTab DC 'C’0123456789ABCDEF’ Translate table
```

Figure 285. Converting hex data to printable characters

This technique is used in many situations when diagnostic information is printed in hexadecimal.

Exercises

27.9.1. (2) In Figure 285, why is the second operand of the TR instruction written TRTab-X’FO’?
27.9.2.(2) In Figure 285, what will appear in the “extra byte” at Char+8 after the instructions are executed?

27.9.3.(3) Using the technique illustrated in Figure 285 on page 475, convert the 16 hex digits in the doubleword at DW to a string of 16 EBCDIC characters representing the original value.

27.9.4.(2) Explain the appearance of the quantity X′F0′ in the leftmost byte of the result shown following Figure 283 on page 475.

27.9.5.(3) In Figure 285 on page 475, we assumed that the expression TRTab-X′F0′ in the second (TR) instruction is addressable. What should be done if it is not?

27.9.6.(5) Suppose you want to print the contents of a byte as eight EBCDIC zero and one characters representing the bits. (This could be called “spread binary”.) For example, a byte containing X′5B′ would be converted to the eight characters 01011011. The technique used in Section 28.8 for printing hexadecimal values can be extended, so that instead of a single UNPK and TR, you can use three UNPK instructions and two TR instructions. Use a translate table whose last 16 bytes contain

X′0001040510114154041444550515455′

First, work through an example to show that your method works for all byte values. Then, write a instruction sequence a to convert the byte at Byte to eight “spread binary” characters starting at BinaryCh.

27.9.7.(5) Suppose you want to convert strings of eight EBCDIC ones and zeros to a bit pattern in a single byte, as represented by the characters. For example, the characters 01011001 would be converted to X′5B′. Write a instruction sequence using three PACK and two TR instructions which will convert the eight characters at BinaryCh to a single byte at Byte. The translate table needed is 86 bytes long, and not all of it contains necessary data.

27.10. Summary

The move instructions we’ve discussed in this section are summarized in table 198.

<table>
<thead>
<tr>
<th>Function</th>
<th>Numeric digits</th>
<th>Zone digits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Move</td>
<td>MVN</td>
<td>MVZ</td>
</tr>
</tbody>
</table>

Table 198. Instructions for moving numeric and zone digits

The packing and unpacking instructions we’ve discussed in this section are summarized in Table 199.

<table>
<thead>
<tr>
<th>Function</th>
<th>Zoned EBCDIC</th>
<th>Zoned ASCII</th>
<th>Zoned Unicode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pack</td>
<td>PACK</td>
<td>PKA</td>
<td>PKU</td>
</tr>
<tr>
<td>Unpack</td>
<td>UNPK</td>
<td>UNPKA</td>
<td>UNPKU</td>
</tr>
</tbody>
</table>

Table 199. Instructions for packing and unpacking data
28. Packed Decimal Arithmetic

In this section we will examine the methods used by the CPU to perform packed decimal arithmetic.

Because we are all familiar with decimal arithmetic, it may seem strange to investigate the way it is done by the CPU. While the broader features of decimal arithmetic are simple, its implementation on a binary machine leads to some unexpected subtleties.

In this and the following sections, we will use a simple notation for numbers in the packed decimal representation. Instead of “−123” we will write “123−”, because this form is closer to the internal decimal representation of −123, namely X′123D′. Thus, if a number is written with a trailing sign, its representation in memory can be visualized by substituting the hex digits C and D for the + and − signs, respectively.

For convenience, we will refer to the packed decimal representation simply as “decimal” whenever “packed decimal” is clearly meant.

### Writing zoned and packed decimal values

Because the sign of zoned and packed decimal numbers is always in the rightmost byte, it is convenient write such values with the sign on the right, as in 12345+ or 09990−.

#### 28.1. General Rules

Before examining decimal arithmetic, we will state some general rules applying to decimal operations and operands.

1. The result of a decimal arithmetic operation (other than comparison) always replaces the first operand, so it has the same length as the first operand. Neither the second operand in memory (assuming no overlap) nor the contents of the General Registers are modified.

2. For z System processors, the preferred EBCDIC signs (X′ C′ and X′ D′) are always attached to results.\[^1\]

---

\[^1\] In System/360, the USASCII sign digits (X′ A′ and X′ B′) were used if the “A” bit in the PSW was 1.
3. Because decimal operands have finite length, results might overflow the allotted space: a decimal overflow exception will occur, and the Condition Code is set to 3.

By setting a bit in the Program Mask (described in Section 16.2.1 on page 235), you can direct the CPU to ignore the exception condition for a decimal overflow. If the interruption does occur, the Interruption Code is set to 10 (X’000A’).

4. Because each decimal digit is represented by four bits, the CPU must guard against the possibility that a decimal digit position might contain one of the six invalid bit configurations. Similarly, a numeric digit may not occur as the lowest order hex digit (the sign digit) of an operand. If either error condition is detected, a Data Exception interruption occurs, and the Interruption Code is set to 7.

This interruption might seem to be an unnecessary nuisance, but it is actually very helpful. Almost all other arithmetic operations don’t (or can’t) check for invalid operands, and can generate meaningless results from invalid data. Because packed decimal operands are validated, your program is more likely to produce valid results, and can take corrective action when it’s needed.

28.1.1. Precision and Accuracy

Packed decimal values are precise, because all values are integers. Their accuracy depends on the validity of the data used for each operation, and the care taken to preserve the inherent accuracy of the data. Inadequate precision can degrade accuracy, so be sure to specify enough digits so that significant digits won’t be lost.

Exercises

28.1.1.(1) If you execute these instructions, would you say that the result at PWord is a valid packed decimal number?

```
XR 1,1 Set GR1 to zero
AHI 1,12 Add 12
ST 1,PWord Store the result
- - -
```

```
PWord DS F
```

28.2. Decimal Addition and Subtraction

Because the CPU works from right to left in adding or subtracting decimal operands, excess digits are lost at the left, or high order, end of the operand.

The rules for adding and subtracting numbers in the packed decimal representation are the usual and familiar rules of arithmetic. There are three minor matters to be considered:

1. If the second operand is shorter than the first, then during its internal arithmetic the CPU will extend the second operand with enough high-order zeros so that its length matches that of the first operand. These extra zero digits are generated internally during the operation; the second operand in memory is never modified.

2. A decimal overflow condition occurs after an addition or subtraction if the first operand field is too short to hold all significant digits of the result. This can be due to one of two causes:
   - If one operand is longer than the other, high-order zeros are supplied internally to extend the shorter operand. For example, 3 added to 999+ becomes 003+ + 999+, and the sum 1002+ overflows either operand used to hold the sum.
   - If the resulting sum or difference causes a nonzero digit or a carry to be lost because the first operand field is too short, an overflow has occurred. For example, 6+ added to 7+ yields 13+ which overflows either operand used to hold the sum.
3. The CPU always attaches a + sign to a valid *non-overflowed* zero result of addition or subtraction.

- The resulting sign might be − in case of overflow! If the rightmost portion of an *overflowed* result has a negative sign and enough low-order zero digits to fill the first operand field, the CPU will generate a negative zero result. For example, adding two one-byte operands such as (5−) + (5−) will yield 0−, and a decimal overflow exception is indicated.

The Condition Code is set to reflect the status of the result, as shown in Table 200.

<table>
<thead>
<tr>
<th>CC</th>
<th>Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Result is zero</td>
</tr>
<tr>
<td>1</td>
<td>Result is less than 0</td>
</tr>
<tr>
<td>2</td>
<td>Result is greater than 0</td>
</tr>
<tr>
<td>3</td>
<td>Decimal overflow</td>
</tr>
</tbody>
</table>

Table 200. CC settings for decimal addition and subtraction

To illustrate these rules, suppose we add the following two operands:

```
00006+ (1st operand)
+ 23497+ (2nd operand)
```

The result, 23503+, replaces the first operand. If the two operands were

```
23497+ (1st operand)
+ 6+ (2nd operand)
```

and the result would be the same. But if the two operands had been defined as

```
006+ (1st operand)
+ 23497+ (2nd operand)
```

then the result at the first operand location would be 503+, and an overflow exception would indicate the loss of significant digits due to truncation. Unlike adding binary integers in the general registers, decimal addition or subtraction overflow can depend on the order of the operands.

Be Careful!
The results of packed decimal addition may depend on the order of the operands.

Addition of two operands of unlike sign follows the same rules. For example, suppose we add 04006+ and 01005−, the result would be 03001+ as expected. (We will see shortly that this result, while expected, is not as easy to obtain). Suppose now that we wish to add these quantities:

```
006+ (1st operand)
+ 01005- (2nd operand)
```

The result, 999−, replaces the first operand. Even though there are nonzero digits in the second operand corresponding to the “internal extension” digit positions in the first operand, no overflow occurs because the result has become short enough to fit into the first operand field.

The rule for subtraction of decimal operands is simple: invert the sign of the second operand, and then add. The change of sign is done internally by the CPU during the subtraction; the second operand is never modified in memory. Thus, the subtraction operation

```
04006+ (1st operand)
- 01005+ (2nd operand, subtracted)
05011+
```

is internally identical to the addition operation

---

172 If the operands overlap, either could be modified.
As noted in Section 16.2.1, we can use the SPM instruction to mask off a decimal overflow interruption. The result will be the same whether or not an interruption occurs, and the CC will be set to 3.

**Exercises**

28.2.1.(1)+ In Section 2.10, we saw that no overflow was possible in adding fixed-point binary operands if their signs differed. Why is it possible to cause a decimal overflow exception when adding decimal operands of unlike sign?

28.2.2.(2)+ For each of the following pairs of numbers, the first operand is given first. Determine (1) the resulting sum or difference, (2) the resulting CC setting, and (3) whether or not an overflow condition will occur.

(a) \(2147483647+ + (2147483648+ \)
(b) \(99999+ + (00002+ \)
(c) \(99999− − (00002+ \)
(d) \(7− − (97+ \)
(e) \(45+ + (66− \)
(f) \(4− − (4− \)
(g) \(745− + (255− \)
(h) \(2+ − (99999+) \)

28.2.3.(3)+ Each of the following pairs of numbers is taken from the same operand in memory; that is, the low-order bytes of both operands coincide. Determine in each case (1) the resulting sum or difference, (2) the CC setting, and (3) whether or not an overflow condition will occur.

(a) \(12345+) + (345+) \)
(b) \(345+) − (12345+) \)
(c) \(000− + (0− \)
(d) \(729+) + (729+) \)
(e) \(476692543− − (6692543− \)
(f) \(12345+) − (12345+) \)

### 28.3. Decimal Comparison

Comparing two decimal operands is simply an internal subtraction; the setting of the Condition Code indicates the result, as shown in Table 201. As in addition and subtraction, all digits and signs are checked for validity.

<table>
<thead>
<tr>
<th>CC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Operand 1 = Operand 2</td>
</tr>
<tr>
<td>1</td>
<td>Operand 1 &lt; Operand 2</td>
</tr>
<tr>
<td>2</td>
<td>Operand 1 &gt; Operand 2</td>
</tr>
</tbody>
</table>

Table 201. CC setting after decimal comparison

The sign of a zero operand doesn’t matter: \(0−\) is considered equal to \(0+.\)

Comparison is actually somewhat simpler than subtraction, because all arithmetic is internal. As many high-order zeros are supplied for the operands as necessary, and no overflow condition is recognized. Thus, comparing \(99999+\) and \(2−\) leads to an *internal* subtraction

\[
\begin{align*}
99999+ & \quad \text{(1st operand)} \\
-2− & \quad \text{(2nd operand)}
\end{align*}
\]
which becomes, after adding extra digit positions and making the necessary sign changes, an addition operation:

\[
\begin{array}{c}
0099999^+ \\
+ 0000002^+ \\
\end{array}
\]

(1st operand)  
(2nd operand)

Because the internal result is positive, the CC will be set to 2 to indicate that operand 1 is greater than operand 2. This result would not have been obtained by directly subtracting the two operands (see Exercise 28.3.1).

Exercises

28.3.1.(1) Give two reasons why the result of comparing 99999+ and 2- would not have been obtained by performing a subtraction instead (aside from the fact that one operand would be modified).

28.3.2.(1) Suppose you compare these two packed decimal operands using a CLC instruction:

```
CLC PDP,PDM Compare operands
- - -
PDP DC P′+0′
PDM DC P′-0′
```

What will be the resulting CC setting?

28.3.3.(2)+ Suppose the operations of addition and subtraction in Exercise 28.2.2 are replaced by comparison operations. Determine the CC setting in each case.

28.3.4.(2)+ Suppose the data in Exercise 28.2.3 is used in a comparison operation. Determine the CC setting in each case.

28.3.5.(2)+ By considering possible operand lengths and addresses for decimal addition, subtraction, and comparison, give a rigorous rule for the conditions under which the two operands may safely overlap.

28.4. Decimal Multiplication

The rules for multiplication of decimal operands obey the usual rules of algebra concerning signs. The product of the first operand (the multiplicand) and the second operand (the multiplier) replaces the first operand, which must be long enough to contain the digits of the result. Remember that the product of a number N1 digits long and another number N2 digits long is at most N1+N2 digits long.

The following rules apply to decimal multiplication:

1. All digits and signs are verified; any invalid digits will cause a data interruption, and the Interruption Code will be set to 7.

2. To ensure that the product will fit into the first operand field without overflow, there must be as many leading zero bytes in the first operand as the number of bytes in the second operand. Violating this requirement causes a data exception.
   - The length of the first (multiplicand) operand must be greater than the length of the second (multiplier) operand.

3. The z System architecture imposes an additional condition: the length of the second operand must not exceed 8 bytes. If this or the previous condition is not met, a specification exception will occur, and the IC will be set to 6.

Rules 2 and 3 avoid a potential multiplication overflow that could corrupt the product (multiplicand) field if the overflow was detected late in the multiplication process. We can usually choose the order of the two operands so that the rules are satisfied, because multiplication is commutative (independent of operand order).
4. The sign of the result is determined from the rules of algebra, even if one or both operands is zero. Thus, \((2+)\times(0-)\) will generate a minus zero.

Because the CPU takes great care to check the validity of both operands, no multiplication overflow can occur. This saves time and avoids data damage, because the multiplication need not be partially executed only to discover that the result is invalid. As with other \(z\) System multiply instructions, the CC setting is unaffected.

To illustrate a decimal multiplication, suppose we wish to multiply 126+ and 213+ (the operands we used in describing binary multiplication in Section 18.4):

\[
\begin{array}{c}
0000213+ \quad \text{(operand 1) (multiplicand, with 2 high-order zero bytes)} \\
\times \quad 126+ \quad \text{(operand 2) (multiplier)} \\
0026838+ \quad \text{(product)}
\end{array}
\]

In this example, the operand lengths were chosen to have the minimum number of bytes needed to contain the given quantities, and still satisfy the above rules. However, the product still contains an “excess” high-order byte of zeros; this is a typical result in decimal multiplication. Multiplying 005+ and 5+ generates the result 025+, and shows that at least one leading zero digit is always found in the product. (See Exercise 28.4.2.)

---

**Be Careful!**

The results of packed decimal multiplication may depend on the order of the operands.

---

**Exercises**

28.4.1.(2) In decimal multiplication rule 2 on page 481, why require the number of leading zero bytes in the first operand to be at least as many bytes as in the second operand?

28.4.2.(3) Show that the requirement that the number of leading zero bytes in a decimal multiplicand be no less than the number of bytes in the multiplier leads to at least one leading zero digit in the product.

28.4.3.(1) Give a reason why the \(z\) System architecture requires the second operand of a decimal multiplication to be no more than 8 bytes long.

28.4.4.(1) What is the largest packed decimal number that can be generated by a single multiplication?

28.4.5.(3)+ Determine the products of each of the following pairs of decimal numbers, assuming that the first number is the multiplier. Then do the same, assuming that the second number is the multiplier. Add enough leading zeros to each multiplicand so that the product will be valid.

\[
\begin{align*}
(a) \ (9+) \times (9-) \\
(b) \ (72-) \times (7+) \\
(c) \ (44+) \times (44+) \\
(d) \ (15-) \times (55+) \\
(e) \ (107+) \times (107+) \\
(f) \ (28+) \times (3-) 
\end{align*}
\]

28.4.6.(2)+ What result will be generated if you multiply \((007+)\) and \((009-)\)?
28.5. Decimal Division

Dividing two decimal numbers is more complicated than multiplying, since the result field must contain both the quotient and the remainder. The dividend (the first operand) is divided by the divisor (the second operand); the quotient and remainder then replace the dividend.

The method used is essentially the same as our familiar process of long division: the divisor is subtracted from the leftmost portion of the dividend, and the number of successful subtractions becomes the first quotient digit. The divisor is then shifted one digit position to the right, and the subtractions continue. This process ends when the rightmost digit of the divisor is aligned with the rightmost digit of the dividend, and no further subtractions can be performed. It is therefore natural that the remainder appears at the right end of the dividend (first operand) field, and the remainder has the same length as the divisor. The quotient is placed in the leftmost portion of the dividend field.\(^\text{173}\)

Suppose \(027+\) (the dividend) is divided by \(4+\) (the divisor); the result that replaces the first operand is \(6+3+\). That is, the quotient is \(6+\) and the remainder is \(3+.\) Note that both operands are signed; this means that there must be enough space in the first operand field for the quotient and remainder digits, and two sign digits.

Now, suppose \(00787−\) is divided by \(094+.\) We see that the result will be \(8−035−;\) the quotient is \(8−\) and the remainder is \(035−.\) If we invert the signs of the dividend and the divisor and divide \(00787+\) by \(094−,\) the result is \(8−035+.\)

The rules for decimal division may be summarized as follows:

1. The sign of the quotient is determined from the usual rules of algebra, and the remainder sign always agrees with the dividend sign. (These rules apply even when the quotient or remainder is zero.)

2. The operands in a successful division always satisfy the relation

\[
\text{dividend} = (\text{quotient} \times \text{divisor}) + \text{remainder},
\]

and the magnitude of the remainder is less than the magnitude of the divisor.

3. The length of the divisor is the length of the remainder, which is found at the right end of the first operand field.

4. The length of the divisor must be less than the length of the dividend so that there will be enough room for both quotient and remainder. Also, the z System architecture requires that the length of the divisor be 8 bytes or less. If either of these conditions is not met, a specification exception occurs.

5. If the divisor is zero, or if the quotient is too large to fit into the available space, the operation is suppressed: the dividend in memory remains unchanged, and a decimal divide interruption always occurs. The Interruption Code is set to 11.

6. Decimal overflow cannot occur, and the CC remains unchanged.

Here is a simple test to determine whether a divide exception will occur: align the divisor and dividend so that the leftmost divisor digit is under the next-to-leftmost dividend digit. If the newly-positioned divisor is now less than or equal to the dividend, the division is improper and a decimal divide interruption will occur. For example, in dividing \(00787+\) by \(094+,\) if we align the two operands as shown,

\[
\begin{align*}
00787+ & \quad \text{(dividend)} \\
094+ & \quad \text{(divisor)}
\end{align*}
\]

we see by comparing leading digits that 09 is greater than 007, so the division is proper. Conversely, if we divide \(123456789+\) by \(987+,\) the alignment

\(^{173}\) This is different from the process described for binary division in Section 18.8, where we visualized the process as shifting the dividend “across” the divisor; here, the divisor is shifted “under” the dividend.
shows that the division is improper, since 9 is less than 12. Thus, the dividend must contain at least one leading zero digit.

The next two topics will concern some fairly technical aspects of packed decimal addition and subtraction on a binary processor. You may safely skip them if you are satisfied that the processor gets its results “somehow”, but the methods don’t interest you.

**Exercises**

28.5.1.(2)+ Give examples which show how to generate a negative zero (1) as a sum, (2) as a product, (3) as a quotient, and (4) as a remainder.

28.5.2.(3) Determine the quotient and remainder for each of the following dividend-divisor pairs, and state any error conditions that might arise.

(a) (0009999+) ÷ (088+)
(b) (09999+) ÷ (099+)
(c) (0271828182845+) ÷ (4−)
(d) (0192519200513+) ÷ (370+)
(e) (012345678+) ÷ (321−)

28.5.3.(2)+ Explain why the result of dividing 00787− by 094+ cannot be 08−035−, rather than 8−035−.

### 28.6. True Decimal Addition (*)

The term “true addition” means the addition of two operands of like sign; we will discuss “complement addition”, the addition of two operands of unlike sign, in Section 28.7. True addition is simpler because the sign of the result is known in advance.

We will omit sign digits in the following examples, and assume that the sign digit of the first operand is left in memory as the sign of the final result.

Suppose we add two decimal digits using the four-bit binary representation for each decimal digit. A sum such as

\[
\begin{array}{c}
2 \\
+ 5 \\
7
\end{array}
\begin{array}{c}
0010 \\
+ 0101 \\
0111
\end{array}
\]

gives the desired result both in decimal and in hexadecimal. However, if we add two digits whose sum exceeds 9, the decimal sum is correct, but the binary sum \(B'1100' = X'C'\) is not a valid packed decimal digit:

\[
\begin{array}{c}
5 \\
+ 7 \\
12
\end{array}
\begin{array}{c}
0101 \\
+ 0111 \\
1100
\end{array}
\]

Because we are using four bits to represent a decimal digit, the six bit combinations \(X'A'\cdot X'F'\) must remain unused. A simple solution to this difficulty is to add 6 to the binary sum whenever it exceeds 9. In the above example, this “correction” process would be done as follows:

\[
\begin{array}{c}
0101 \\
+ 0111 \\
1100 \\
+ 0110 \\
10010
\end{array}
\begin{array}{c}
\text{hex 5} \\
\text{hex 7} \\
\text{hex C} \\
\text{hex 6} \\
\text{hex 12}
\end{array}
\]

= 12 decimal, > 9

Correction
The two BCD digits in the result X’12’ are the correct packed decimal representation of the sum, 12.

There is an obvious problem: how do we know when to add 6? In the first example, it would have been wrong to add 6, because the sum of 2 and 5 did not exceed 9. Furthermore, it will be difficult for the CPU to compare each sum digit to 9 (to see if a correction is needed), since a comparison implies a subtraction. Instead of correcting after adding, we do the following:

1. Add the digits of the two operands, and a corrector digit 6, at each digit position.
2. Note which digit positions generate a carry; the carry should be propagated.
3. In the digit positions from which no carry occurred, correct the sum by subtracting 6 (that is, by adding 10=B’1010’, the two’s complement of 6=B’0110’) without propagating carries.

Here are some examples of this method. Let us add 2 and 5 again, including an extra high-order digit.

```
02 0000 0010 first operand
05 0000 0101 second operand
+ 66 + 0110 0110 corrector digits
6D 0110 1101 intermediate sum, no carries occurred
+ AA + 1010 1010 re-correction, add without carrying
07 0000 0111 final sum
```

In this example, there were no carries out of either digit position in forming the intermediate sum, so that 6 had to be subtracted from both digit positions to arrive at the final sum.

Adding 95 and 87 (=182) would be done as follows:

```
095 0000 1001 0101 first operand
087 0000 1000 0111 second operand
+ 666 + 0110 0110 0110 add corrector digits
782 0111 1000 0010 intermediate sum, two carries
 c c
+ A00 + 1010 0000 0000 add complement of 6
182 0001 1000 0010 final sum
```

At this point, carries have occurred out of both the low-order hex digit positions but not from the high-order digit; the final correction therefore involves a subtraction in only the leftmost digit:

```
782 0111 1000 0010 intermediate sum
+ A00 + 1010 0000 0000 add complement of 6
182 0001 1000 0010 final sum
```

Remember that carries are not propagated during the final re-correction step; otherwise, the sum would have been 1182 instead of 182.

**Exercises**

28.6.1.(3) Show by appropriate examples that true decimal addition can be performed as follows:

1. Perform a true binary addition, propagating carries.
2. In those digit positions from which no carry occurred, add 6, propagating carries.
3. In those digit positions from which no carry occurred in the second addition, subtract 6.

28.6.2.(2) Using the rules for true decimal addition given in this Section, perform the following sums, showing all the intermediate steps:

(a) (007) + (007)
(b) (007) + (009)
(c) (00987) + (00789)
(d) (00885) + (00595)
Signs were omitted because true addition involves like signs.

28.7. Complement Decimal Addition (*)

Complement addition of two decimal operands is more complicated than true addition, since the result may be of either sign. We will review the rules for complement addition first, and then give some examples.

1. The sign of the first operand is saved as the tentative sign of the result. The shorter operand is extended internally with high-order zeros to the length of the longer operand.

2. The numeric digit portion of the second operand (that is, everything but the sign digit) is complemented: this is the usual two’s complement, obtained by inverting each bit, and adding a 1-bit in the low-order position.

3. The two operands are added. Carries are propagated from each 4-bit digit to the next, and whether or not a carry occurred is noted for each digit position.

4. To correct the result of the addition in step 3, subtract 6 (that is, add 10=\(\text{B}'1010\)'\), the two’s complement of \(6=\text{B}'1010\)') in each digit position where no carry occurred in step 3. Carries out of a 4-bit group are not propagated to the next digit position during this decimal correction process.

5. If there was a carry out of the high-order digit position in step 3, the result is now complete. (We say that the result is in true form.)

6. If there was no carry out of the high-order digit position in step 3, the result is said to be in complement form. To obtain a correct result, invert the sign of the first operand (it was saved at step 1).

7. Form the two’s complement of the result by inverting each bit and adding a 1-bit in the low-order digit position. In propagating the carries from this added 1-bit, note which 4-bit groups produce a carry and which do not.

8. This result is decimally corrected by subtracting 6 (adding binary 1010) to those digit positions from which no carry occurred during step 7. Carries generated in this correction process are not propagated.

We will now look at some examples of complement addition in which the result after step 5 is in true form; cases requiring recomplementation will be examined shortly. First, suppose we add 5+ and 2−. After saving the plus sign for the result, we proceed as follows:

\[
\begin{array}{c}
5 & 0101 & \text{first operand} \\
+ \text{E} & +1110 & \text{2’s complement of second operand} \\
c \ 3 & c \ 0011 & \text{sum, with carry indicated by “c”}
\end{array}
\]

Since a carry occurred out of each digit position, no decimal correction is required; and since a carry occurred out of the high-order digit position, the result is in true form. Thus the final result is 3+, as expected.

To give an example in which a decimal correction (but no recomplementation) is needed, suppose we add 043+ and 019−. Saving the + sign for the result, we first form the two’s complement of the second operand:

\[
\begin{array}{c}
1111 \ 1110 \ 0110 & \text{invert all bits of second operand (019)} \\
+ \text{E} & +1110 & \text{2’s complement of second operand} \\
1111 \ 1110 \ 0111 & \text{two’s complement of second operand}
\end{array}
\]

Now, we add this to the first operand:

\[
\begin{array}{c}
043 & 0000 \ 0100 \ 0011 & \text{first operand} \\
+ \text{FE7} & +1111 \ 1110 \ 0111 & \text{2’s complement of second operand} \\
02A & 0000 \ 0010 \ 1010 & \text{uncorrected sum, high-order carry} \\
c \ c & \text{carries}
\end{array}
\]
Since no carry occurred out of the rightmost hex digit position, we must decimally correct by subtracting 6 (adding binary 1010), without carrying:

\[
\begin{array}{c}
02A & 0000 0010 1010 & \text{uncorrected sum} \\
+ 00A & + 0000 0000 1010 & \text{add correction, no propagation} \\
024 & 0000 0010 0100 & \text{final true sum}
\end{array}
\]

The final sum is 024+, as expected.

To illustrate complement decimal additions in which a final recomplementation is required, we use the same two examples, but reverse the order of the operands. Thus, suppose we start by adding 2− and 5+. The tentative sign of the result is −, the sign of the first operand. We then proceed as before:

\[
\begin{array}{c}
2 & 0010 & \text{first operand} \\
+ B & + 1011 & 2\text{'s complement of second operand} \\
D & 1101 & \text{uncorrected sum, no carry}
\end{array}
\]

Because no carry occurred out of any digit position, we must add a decimal correction:

\[
\begin{array}{c}
D & 1101 & \text{uncorrected sum} \\
+ A & + 1010 & \text{decimal correction} \\
7 & 0111 & \text{sum, in complement form}
\end{array}
\]

The carry generated during the correction process is ignored. The result is known to be in complement form because there was no carry from the high-order (and only) digit position during the first addition. Thus, we invert the minus sign being saved for the result, and set it to a plus sign. To perform the final recomplementation, we first form the two’s complement of the above result:

\[
\begin{array}{c}
1000 & \text{invert each bit of result} \\
+ 1 & \text{add 1 in low-order position} \\
1001 & \text{uncorrected 2’s complement of result}
\end{array}
\]

Now, to obtain the final result, we observe that there was no carry out of the digit during the complementation process; we therefore add −6 to obtain the final sum:

\[
\begin{array}{c}
9 & 1001 & \text{uncorrected recomplemented result} \\
+ A & + 1010 & \text{decimal correction} \\
3 & 0011 & \text{final corrected result}
\end{array}
\]

As noted, the carry generated during the final decimal correction is ignored, so the result is 3+, as expected.

As our final example, we add 019− and 043+. After saving the minus sign for the result, we take the two’s complement of the second operand:

\[
\begin{array}{c}
1111 1011 1100 & \text{invert all bits} \\
+ 1 & \text{add a low-order 1-bit} \\
1111 1011 1101 & \text{2’s complement of second operand}
\end{array}
\]

Now, we can do the first addition:

\[
\begin{array}{c}
019 & 0000 0001 1001 & \text{first operand} \\
+ FBD & + 1111 1011 1101 & \text{2’s complement of second operand} \\
FD6 & 1111 1101 0110 & \text{initial sum}
\end{array}
\]

Since there was no carry from the high-order digit position, we know the result is in complement form, and we invert the sign of the result to a plus sign. A carry occurred only out of the right-most digit position, so we must add a decimal correction to the two leftmost digit positions:

\[
\begin{array}{c}
FD6 & 1111 1101 0110 & \text{uncorrected initial sum} \\
+ AA0 & + 1010 1010 0000 & \text{decimal correction digits} \\
976 & 1001 0111 0110 & \text{sum in complement form}
\end{array}
\]

This is the result in complement form. To obtain the final result, we take the two’s complement, and correct it by adding −6 in any position where no carry occurred during complementation:
0110 1000 1001  
bit-wise complement of 976

+ 1  
add low order 1-bit

68A 0110 1000 1010  
complemented uncorrected result: no carries

+ AAA + 1010 1010 1010  
decimal correction digits

024 0000 0010 0100  
final result

As expected, the final result is 024+.

**Exercises**

28.7.1.(2) The three “signs” in an add or subtract operation are (1) the operation (+) or (−), (2) the first operand sign, and (3) the second operand sign. Make a table of the eight possible combinations of signs and verify that an even number of minus signs indicates a true addition, and an odd number of minus signs indicates a complement addition.

28.7.2.(5) Decimal numbers are sometimes represented in binary machines in the “excess-3” representation, whereby each decimal digit is represented by a hex digit whose value is larger by 3. For example, the number 280+ would be represented by 5B3+. Give rules like those in Sections 28.6 and 28.7 for true and complement addition in the excess-3 representation.

28.7.3.(3) Using the rules for complement decimal addition given above, perform each of the following operations.

(a) (004+) + (004−)
(b) (004−) + (004+)
(c) (0391−) + (1715+)
(d) (4837+) − (5537+)

28.7.4.(2) Assuming that recomplementation takes extra time, how could a list of decimal numbers of mixed signs be ordered to reduce the number of recomplementations and the time needed to compute their sum?

28.7.5.(3) In decimal complement addition, a result in complement form must be recomplemented and decimally corrected. During recomplementation, carries may or may not occur out of a 4-bit group. Show that in the low-order positions, a carry may occur only out of zero digits.

28.7.6.(2) Give examples of the possible combinations of digits to show that the addition scheme described above gives a correct decimal sum.

28.7.7.(3) Show by appropriate examples that the final correction of the sum (by subtracting 6 in certain digit positions) cannot cause a “borrow” from the next high-order digit.

28.7.8.(3) Examine the rules for true and complement decimal addition, and determine a general rule for the conditions under which carries are and are not propagated during the various intermediate addition steps.

28.7.9.(3) Determine the maximum number of additions required to add two one-byte decimal operands of any sign.
29. Packed Decimal Instructions

Table 202 lists the decimal arithmetic instructions in this section. MVO has rather specialized uses, and is not used often since SRP was introduced. Except for TP, each instruction has the format of a two-length SS-type instruction, as shown in Table 193 on page 463.

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>FA</td>
<td>AP</td>
<td>SS</td>
<td>Add Decimal</td>
<td>FB</td>
<td>SP</td>
<td>SS</td>
<td>Subtract Decimal</td>
</tr>
<tr>
<td>FC</td>
<td>MP</td>
<td>SS</td>
<td>Multiply Decimal</td>
<td>FD</td>
<td>DP</td>
<td>SS</td>
<td>Divide Decimal</td>
</tr>
<tr>
<td>F9</td>
<td>CP</td>
<td>SS</td>
<td>Compare Decimal</td>
<td>F8</td>
<td>ZAP</td>
<td>SS</td>
<td>Zero and Add Decimal</td>
</tr>
<tr>
<td>F0</td>
<td>SRP</td>
<td>SS</td>
<td>Shift and Round Decimal</td>
<td>F1</td>
<td>MVO</td>
<td>SS</td>
<td>Move with Offset</td>
</tr>
<tr>
<td></td>
<td>EBC0</td>
<td>TP</td>
<td>RSL</td>
<td>Test Decimal</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 202. Packed decimal arithmetic instructions

The previous section sketched how the CPU does packed decimal addition, subtraction, multiplication, division, and comparison. Now, we’ll examine the corresponding instructions.

All decimal operations process their operands from right to left. The operands should not overlap, or (in some cases) their rightmost bytes should coincide. If the operands overlap in any way, the CPU will store the result byte from one step of an operation before fetching the operand bytes to be used in the next step.

**Note!**

All packed decimal arithmetic is integer arithmetic. Section 29.10 shows how you can do packed decimal arithmetic with mixed integer-fraction data (like 123.456×4.07).
29.1. TP Instruction

The TP instruction checks its packed decimal operand for validity. The Assembler Language syntax of a TP instruction is shown in Figure 286:

\[ \text{TP} \quad D_1(N,B_1) \]

Figure 286. Syntax of the TP instruction

where the Length Expression N is the length of the packed decimal operand. The format of the assembled machine instruction is illustrated in Table 203:

<table>
<thead>
<tr>
<th>EB</th>
<th>L</th>
<th>B_1</th>
<th>D_1</th>
<th>C0</th>
</tr>
</thead>
</table>

Table 203. Format of the TP instruction

You will remember from Sections 24.2 and 27.5 that the Encoded Length L is one less than the Length Expression N. The valid forms of the Assembler Language statement operand are shown in Table 204:

<table>
<thead>
<tr>
<th>Explicit Length</th>
<th>Implied Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explicit Address</td>
<td>D_1(N,B_1)</td>
</tr>
<tr>
<td>Implied Address</td>
<td>S(N)</td>
</tr>
</tbody>
</table>

Table 204. Operand formats for TP instruction

TP sets the Condition Code as shown in Table 205.

<table>
<thead>
<tr>
<th>CC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>All digit codes and the sign code are valid.</td>
</tr>
<tr>
<td>1</td>
<td>The sign code is invalid.</td>
</tr>
<tr>
<td>2</td>
<td>At least one digit is invalid.</td>
</tr>
<tr>
<td>3</td>
<td>The sign code and at least one digit are invalid.</td>
</tr>
</tbody>
</table>

Table 205. CC settings for the TP instruction

Some of the examples and exercises in previous sections showed other ways to test the validity of a packed decimal operand. The TP instruction is generally much simpler; its only shortcoming is that it doesn’t indicate which digit(s) or byte(s) may be invalid.

For example, we can test several operands:

<table>
<thead>
<tr>
<th>TP</th>
<th>T0</th>
<th>Test operand T0; CC=0</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP</td>
<td>T1</td>
<td>Test operand T1; CC=1</td>
</tr>
<tr>
<td>TP</td>
<td>T2</td>
<td>Test operand T2; CC=2</td>
</tr>
<tr>
<td>TP</td>
<td>T3</td>
<td>Test operand T3; CC=3</td>
</tr>
<tr>
<td></td>
<td>- -</td>
<td>-</td>
</tr>
<tr>
<td>T0</td>
<td>DC</td>
<td>X’1234567890’</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Valid operand</td>
</tr>
<tr>
<td>T1</td>
<td>DC</td>
<td>X’1234567890’</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Invalid sign code</td>
</tr>
<tr>
<td>T2</td>
<td>DC</td>
<td>X’12345C789C’</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Invalid digit</td>
</tr>
<tr>
<td>T3</td>
<td>DC</td>
<td>X’12345C7890’</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Invalid sign and digit</td>
</tr>
</tbody>
</table>

Exercises

29.1.1.(2)+ For each of these operands, what will be the CC setting after testing it with a TP instruction?
(a) Z′330′
(b) P′-1945′
(c) X′567890′
(d) H′255′
(e) P′314159265358979141235326607977277059′
(f) C′abcd?’

29.1.2.(2) Is there a way to use TP to detect the first of several possible invalid digit codes in a packed decimal operand?

29.1.3.(2) Suppose you know that a packed decimal operand has an invalid digit in the byte at BadByte. Write a short instruction sequence to test whether the left or right digit was bad, and branch to BadLeft or BadRight accordingly.

29.2. ZAP Instruction

The ZAP instruction moves decimal data from the second operand to the first operand field. Its Assembler Language and machine instruction formats are the same as for PACK and UNPK, described in Section 27.

As the name implies, ZAP can be considered as equivalent to (1) setting the first operand field to 0+, and (2) adding the second operand to the newly-zeroed first operand. That is, only the second operand must be a valid packed decimal number. The first operand field may actually contain anything, and is not checked for validity.

- If the second (source) operand is exhausted before the first operand field has been filled, the CPU supplies extra high-order zeros until the first operand is complete.
- If significant (nonzero) high-order digits are lost because the first operand field is too short, a decimal overflow exception is recognized.
- If you use ZAP to initialize a field, sign codes of the second operand are converted in the first operand to the preferred signs, X′C′ and X′D′.
- The sign of a zero result is +, unless there is an overflow; in that case, the zero result has the sign of the second operand.

ZAP isn’t fussy about operand overlap, so long as the rightmost byte of the first (target) operand is not at a lower address than the rightmost byte of the second (source) operand.

ZAP sets the Condition Code as shown in Table 206.

<table>
<thead>
<tr>
<th>CC</th>
<th>Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Result is zero.</td>
</tr>
<tr>
<td>1</td>
<td>Result is less than zero.</td>
</tr>
<tr>
<td>2</td>
<td>Result is greater than zero.</td>
</tr>
<tr>
<td>3</td>
<td>Decimal overflow.</td>
</tr>
</tbody>
</table>

Table 206. CC settings by the ZAP, AP, and SP instructions

---

174 The Principles of Operation calls it just “Zero and Add”, rather than “Zero and Add Decimal”. The “P” in the mnemonic helps to classify ZAP with other packed decimal instructions.

175 The name “Zero and Add” is slightly confusing, because the instruction does not actually zero the first operand and then add the second to it. Initially subtracting the first operand from itself might fail if it’s not a valid packed decimal number!

176 Anything else will cause a data exception interruption.
Remember that a potential interruption for a decimal overflow condition can be masked off using the SPM instruction described in Section 16.9 on page 235.

The following statements show the effect of executing several ZAP instructions, where we use literals for the second (source) operands.

<table>
<thead>
<tr>
<th>2nd Operand</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZAP X,=PL1′1′</td>
<td>X′1′</td>
</tr>
<tr>
<td>ZAP X,=P′-9′</td>
<td>X′9′</td>
</tr>
<tr>
<td>ZAP X,=P′1234′</td>
<td>X′01234′</td>
</tr>
<tr>
<td>ZAP X,=P′0234′</td>
<td>X′00234′</td>
</tr>
<tr>
<td>ZAP X,=P′0′</td>
<td>X′0′</td>
</tr>
<tr>
<td>ZAP X,=X′1234′</td>
<td>X′1234′</td>
</tr>
<tr>
<td>ZAP X,=X′ABCD′</td>
<td>X′ABCD′</td>
</tr>
</tbody>
</table>

- - -

<table>
<thead>
<tr>
<th>2nd Operand</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZAP X,=PL1′1′</td>
<td>X′1′</td>
</tr>
<tr>
<td>ZAP X,=P′-9′</td>
<td>X′9′</td>
</tr>
<tr>
<td>ZAP X,=P′1234′</td>
<td>X′01234′</td>
</tr>
<tr>
<td>ZAP X,=P′0234′</td>
<td>X′00234′</td>
</tr>
<tr>
<td>ZAP X,=P′0′</td>
<td>X′0′</td>
</tr>
<tr>
<td>ZAP X,=X′1234′</td>
<td>X′1234′</td>
</tr>
<tr>
<td>ZAP X,=X′ABCD′</td>
<td>X′ABCD′</td>
</tr>
</tbody>
</table>

- - -

Figure 287. Examples of the ZAP instruction

- The third ZAP instruction illustrates a decimal overflow due to the loss of significant high-order digits. The digits lost in the fourth statement are both zero, so no overflow occurs.
- The sixth ZAP instruction fails because the final digit 4 is not a valid sign, one of A-F.
- The last ZAP instruction fails because the first three digits are not numeric, one of 0-9; because data is accessed from right to left, the invalid digit X′C′ in the first byte (X′CD′) causes the decimal data exception.

If the first and second operand fields have the same length, it may be simpler to use an MVC instruction, assuming the second operand is valid.

To give some examples of the use of ZAP, suppose we must initialize a table of 50 three-byte packed decimal numbers starting at Dec. Each number in the table is three bytes long, and we must set them to zero. We’ll use the “Branch on Count” (BCT) instruction (described in Section 22.4 on page 335) to control the loop:

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDec Equ 50</td>
<td>Number of elements</td>
</tr>
<tr>
<td>LA 1,NDec</td>
<td>Initialize loop counter</td>
</tr>
<tr>
<td>LA 2,Dec</td>
<td>Point to first element</td>
</tr>
<tr>
<td>Loop ZAP 0(3,2),=P′0′</td>
<td>Zero a 3-byte element</td>
</tr>
<tr>
<td>AHI 2,L,Dec</td>
<td>Step pointer to next element</td>
</tr>
<tr>
<td>BCT 1,Loop</td>
<td>Perform ZAP ‘NDec’ times in all</td>
</tr>
</tbody>
</table>

* - - -

Dec DS (NDec)PL3 Table of 3-byte elements

Figure 288. Using ZAP to initialize a table of packed decimal operands

where the ZAP instruction first operand has D1=0, N=3 (so L=2), and B1=2.

In this example, every number in the table has the same length and the entire table is only 150 bytes long, so we could also use an MVC instruction instead of executing a loop:

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDec Equ 50</td>
<td>Number of table elements</td>
</tr>
<tr>
<td>ZAP Dec,=P′0′</td>
<td>Initialize the first element</td>
</tr>
<tr>
<td>MVC Dec+L,Dec((NDec-1)*L′Dec),Dec</td>
<td>Propagate the zero</td>
</tr>
</tbody>
</table>

* - - -

Dec DS (NDec)PL3

Figure 289. Initializing a table of decimal numbers using MVC

where the ZAP instruction uses an implied length, the length attribute of Dec. If the length of the elements starting at Dec changes, we won’t need to update the MVC instruction. Note also that N=(NDec−1)*L′Dec is the number of bytes at Dec after the first element.
This technique may be limited by the size of the table, and can’t be used if the elements have different lengths.

ZAP is often used to move a shorter operand into a longer field; for example, ZAP is typically used to set up the first operand (the multiplicand) for decimal multiplications.

**Exercises**

29.2.1.(1) In Figure 287 on page 492, show the contents of the second byte of each ZAP instruction.

29.2.2.(1) Under what circumstances would it be useful to execute this instruction statement?

\[
\text{ZAP } A, A
\]

29.2.3.(2) Suppose \(x\) is the name of a packed decimal operand two bytes long. Determine the effect of executing the instruction

\[
\text{ZAP } x, y
\]

if \(y\) is the name of each of the following DC operands:

1. \(\text{PL5}\)'-123'
2. \(\text{CL2}\)'*'
3. \(\text{H}13'
4. \(\text{P}0000753'
5. \(\text{X}00000123C'
6. \(\text{X}000123'

29.2.4.(2) Write one or more instructions to invert the sign of the packed decimal value at \(\text{PackVal}\).

29.2.5.(1) As suggested following Figure 287 on page 492, you could use MVC instead of ZAP to initialize a packed decimal operand. Can you think of any reasons to avoid this technique?

29.2.6.(2) In Figure 289 on page 492, what is the maximum value of \(\text{NDec}\) for which the program segment will work correctly?

29.2.7.(2) Write instructions to replace the packed decimal number at \(\text{SomeVal}\) by its absolute value (that is, force the sign to be +), ensuring that the sign is the preferred sign, \(\text{X'C'}\).

29.2.8.(3) Draw a detailed flowchart that describes the digit-by-digit action of ZAP. Take care to check the validity of sign and digits, set the CC and final sign, detect length incompatibilities, possible overflows, and operand overlap. (You will appreciate the complexities of implementing the instruction!)

**29.3. AP and SP Instructions**

Adding and subtracting decimal numbers is straightforward. The sum or difference replaces the first operand, and the usual CC setting (shown in Table 206 on page 491) reflects the status of the result.

AP and SP have the same machine instruction formats as ZAP, PACK, and UNPK, shown in Table 193, and the assembler instruction statement operand formats shown Table in 194, both on page 463.

Unlike binary addition in the general registers, the results of decimal addition may depend on the order of the operands if the first operand field is too small. For example, adding 9+ to 123+ gives 132+, but adding 123+ to 9+ creates a decimal overflow:
The same consideration applies to subtraction, particularly for operands with opposite signs.

To illustrate the AP and SP instructions, Figure 290 assumes that the initial contents of the first operand field at XX is 143+ for each instruction (the instructions are not executed in sequence!). The result of executing each instruction is shown in its comment field.

<table>
<thead>
<tr>
<th>2nd Operand</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP XX,XX</td>
<td>X'143C' c(XX) = 286+, CC=2</td>
</tr>
<tr>
<td>SP XX,XX</td>
<td>X'143C' c(XX) = 000+, CC=0</td>
</tr>
<tr>
<td>SP XX,XX+1(1)</td>
<td>X'3C' c(XX) = 140+, CC=2</td>
</tr>
<tr>
<td>AP XX,=P'−555'</td>
<td>X'555D' c(XX) = 412−, CC=1</td>
</tr>
<tr>
<td>SP XX,=P'−555'</td>
<td>X'555D' c(XX) = 698+, CC=2</td>
</tr>
<tr>
<td>AP XX,=P'1136' X'01136C' c(XX) = 279+, CC=3 (overflow)</td>
<td></td>
</tr>
<tr>
<td>SP XX,=P'1136' X'01136C' c(XX) = 993−, CC=1</td>
<td></td>
</tr>
</tbody>
</table>

XX DC PL2'143' Initial contents for all cases

Figure 290. Examples of the AP and SP instructions

In the third example, the second operand is one byte long, and starts at the second byte of XX.

The operands of SP and AP may overlap only if their rightmost bytes coincide, as in the first, second, and third instructions above. SP is rarely used to clear a field to 0+ as in the second instruction above, because ZAP (or MVC) are simpler and usually faster.

Suppose the table of decimal numbers at Dec that we zeroed in Figure 288 on page 492 now contains 50 data values, and that we wish to add them and place the sum at SumDec.

<table>
<thead>
<tr>
<th>NDec Equ 50</th>
<th>Number of table elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZAP SumDec,=P'0'</td>
<td>Initialize sum to zero</td>
</tr>
<tr>
<td>LA 0,NDec</td>
<td>Counter for number of summations</td>
</tr>
<tr>
<td>LA 1,Dec</td>
<td>Pointer to first table element</td>
</tr>
<tr>
<td>Loop AP SumDec,0(3,1)</td>
<td>Add 3-byte element to sum</td>
</tr>
<tr>
<td>LA 1, L'Dec,(1)</td>
<td>Step pointer to next element</td>
</tr>
<tr>
<td>JCT 0,Loop</td>
<td>Branch until loop is complete</td>
</tr>
</tbody>
</table>

SumDec DS PL4 Accumulated sum
Dec DS (NDec)PL3 Table of 3-byte numbers

Figure 291. Adding a table of 50 packed decimal numbers

where the second operand of the AP instruction has D2=0, N2=3 (so L2=2), and B2=1.

Because each table entry is at most 5 digits long, the space allocated for the sum at SumDec does not have to be more than 7 digits (4 bytes) long. If the sum area is more than 4 bytes long, extra time might be needed each time the AP instruction was executed. Unlike addition and subtraction in the general registers, the time required for decimal addition and subtraction depends on the length of the operands.

Be Careful!

The results of packed decimal addition and subtraction may depend on the order of the operands if there is any possibility of decimal overflow.
Exercises

29.3.1.(2) A devious programmer thought he could ensure his continued employment by
writing obscure code, such as this:

PACK A,(1) Do a packing task
PACK B,UNPK(1) Do another, too
AP A,B Add some things
UNPK UNPK C,A(3) Unpack the things

- - -
A DS CL2
B DS B
C DS XL4

First, what do these instructions place in the fields named A, B, and C? Then rewrite his
instructions without any obscurities, to show that you could easily take over his job.

29.3.2.(3) Suppose the two-byte field at XX initially contains 364+, and that the instruction
AP XX,XX+1(1)
is executed repeatedly until a decimal overflow occurs. How many times will the AP be exe-
cuted?

29.3.3.(1) Compare the use of SP and XC (with identical first and second operands) for setting
a decimal field to zero.

29.3.4.(3) Repeat Exercise 29.3.2 assuming that the field at XX initially contains 365+.

29.3.5.(1) Can a decimal overflow be caused by subtracting one operand from another, if both
have the same sign?

29.3.6.(3) In Figure 290 on page 494, the third instruction uses an SP instruction with overlap-
ping fields to zero a part of a packed decimal number. Devise other ways to do this, making no
restrictive assumptions about the length of the operand or the amount of overlap.

29.3.7.(2)+ For the operands at A and B, show the result of executing these two AP
instructions, assuming the same initial values of the operands.

AP A,B Case 1
AP B,A Case 2

- - -
A DC P’O’
B DC X’075F’

29.3.8.(2)+ An instructor claimed\(^{177}\) that this information came from a program interruption.
Explain why the claim is false.

- Interruption Code = X’000A’, Instruction Length Code = 1

29.3.9.(2)+ In Figure 291, is the length of the SumDec field sufficient to hold the sum without
overflow?

\(^{177}\) On an examination, of course!
### 29.4. CP Instruction

The Compare Decimal instruction CP has the same Assembler Language and machine instruction formats as AP and SP.

Comparing two decimal operands only sets the CC, as shown in Table 207. Overflow cannot occur.

<table>
<thead>
<tr>
<th>CC</th>
<th>Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Operands are equal.</td>
</tr>
<tr>
<td>1</td>
<td>First operand is low.</td>
</tr>
<tr>
<td>2</td>
<td>First operand is high.</td>
</tr>
</tbody>
</table>

Table 207. CC setting by the CP instruction

The CP instruction is illustrated in the following examples; the result of the comparison is shown in the comment field of each statement.

- **CP XX,XX**  
  CC = 0  
  123+ = 123+
- **CP XX+1(1),XX**  
  CC = 1  
  3+ < 123+
- **CP XX,YY**  
  CC = 2  
  123+ > 70493-
- **CP YY,XX**  
  CC = 1  
  70493- < 123+
- **CP XX+1(1),YY+2(1)**  
  CC = 2  
  3+ > 3-
- **CP XX(1),YY(1)**  
  Interruption, invalid data

In the last CP instruction, only the first byte of each operand is accessed, and an interruption will occur because neither byte contains a valid sign in its rightmost digit position.

To illustrate the CP instruction, suppose we must add the items in the same table of 50 decimal numbers as in Figure 291. Now, assume that the positive and negative terms must be added separately, and the sums of their magnitudes are to be stored at **SumPos** and **SumNeg** respectively.

```
NDec Equ 50 Number of table elements
ZAP SumPos,=P’0’ Clear positive sum box
ZAP SumNeg,=P’0’ And negative sum box
LA 0,NDec Initialize term counter
LA 1,Dec Point to start of table
Loop CP 0(L’Dec,1),=P’0’ Check sign of an entry
 JH Plus Branch to add + term
 JE Next Skip if it’s zero
 SP SumNeg,0(L’Dec,1) It’s -, accumulate negative sum
 J Next And go count to next item
 Plus AP SumPos,0(L’Dec,1) Accumulate positive sum
 Next LA 1,L’Dec(1) Step item pointer to next
 JCT 0,Loop Repeat for the next item

SumPos DS PL4 Positive sum
SumNeg DS PL4 Magnitude of negative sum
Dec (NDec)PL3 Table of elements
```

Figure 292. Adding positive and negative items separately

This program segment is straightforward; the JE instruction might save a small amount of time if zero elements are likely to appear in the table. The SP accumulates the magnitudes of the negative terms by subtracting them from **SumNeg**.

As another example, suppose we want to scan the table to find which element is algebraically largest, and leave its address at **BigItemA**.
LA 0,NDec Initialize count
LA 1,Dec And table pointer

Compare CP Max,0(L′ Dec,1) Compare current max to element
JH Next Branch if max is bigger
ZAP Max,0(L′ Dec,1) Save element as new max value
ST 1,BigItemA And save address of that element

Next LA 1,L′ Dec(,1) Step pointer to next element
JCT 0,Compare Count and loop

---

BigItemA DS A Address of largest element
Max DC PL3′-99999′ Initial maximum is a minimum
Dec DS (NDec)PL3 Table of elements

Figure 293. Finding the largest item in a table

Using JH in the fourth instruction rather than JNL may cause extra work to be done, but it
guards against the remote possibility that all the table elements are equal to 99999–.

Exercises

29.4.1.(1) Give two reasons why it might be useful to compare a decimal number to itself.

29.4.2.(2) Suppose the table in Figure 293 contains more than one occurrence of the maximum
value. Which one will the program find?

29.4.3.(2) Suppose you compare these two packed decimal operands using a CP instruction:

\[
\text{CP PDP, PDM}\quad \text{Compare operands}
\]

- - -

\[
PDP \quad DC \quad P^{+0′}
\]

\[
PDM \quad DC \quad P^{-0′}
\]

What will be the resulting CC setting? Now, compare the same operands using a CLC instruc-
tion: what will be the resulting CC setting? How do the results depend on the sign codes of the
operands?

29.4.4.(3) Rewrite the instructions in Figure 293 to eliminate all uses of a field (like the one
named Max) in which the current maximum value is stored. Instead, set GR2 to the address of
the largest element.

29.4.5.(2) What will be the Condition Code after executing these two instructions?

\[
\text{CP } =P^{+10′},=P^{-20′}
\]

\[
\text{CLC } =P^{+10′},=P^{-20′}
\]

Explain your results.

29.5. MP Instruction

Two length digits are provided in the MP instruction. The first digit specifies the length of the
first (multiplicand) operand and of the product; the second digit specifies the length of the second
(multiplier) operand. The two Encoded (machine) Length digits must satisfy the relations

\[
1 \leq L_1 \leq 15, \quad 0 \leq L_2 \leq 7, \quad L_1 > L_2
\]

and their Length Expressions must satisfy

\[
2 \leq N_1 \leq 16, \quad 1 \leq N_2 \leq 8, \quad N_1 > N_2
\]
(Section 24.1 describing basic SS-type instructions on page 367 explains the reasons for the differences between \(N\), \(N_1\), \(N_2\), and \(L\), \(L_1\), \(L_2\): the “L” values the CPU sees are one less than the “N” values you specify.)

It is important to remember that the number of bytes of high-order zeros in the first operand must not be less than the length of the second operand, even though the second operand may already contain enough high-order zeros.

Unlike binary multiplication in the general registers, these length restrictions mean that the results of decimal multiplication depend on the order of the operands. For example, multiplying 000123+ by 456+ gives 0056088+, while multiplying 456+ by 000123+ creates a specification exception, because the product field is too short to contain the result.

\[
\begin{align*}
\text{MP} & \quad \text{DP123,DP456} \quad \text{Result} = 0056088+ \\
\text{MP} & \quad \text{DP456,DP123} \quad \text{Specification exception}
\end{align*}
\]

\[
\begin{align*}
\text{DP123} & \quad \text{DC} \quad \text{PL}'4123' \quad \text{4-byte packed decimal operand} \\
\text{DP456} & \quad \text{DC} \quad \text{PL}'2456' \quad \text{2-byte packed decimal operand}
\end{align*}
\]

The first (multiplicand) operand field for a Multiply Decimal instruction is usually initialized with a ZAP instruction. This automatically sets the high-order digits of the first operand to zero. Thus, we could multiply 213+ by 126+ (as in Sections 18.4 and 28.4) as follows:

\[
\begin{align*}
\text{ZAP} & \quad \text{Prod,=P}'213' \quad \text{Set up multiplicand} \\
\text{MP} & \quad \text{Prod,=P}'126' \quad \text{Form product}
\end{align*}
\]

\[
\text{Prod DS PL4 Space for product}
\]

Figure 294. Example of decimal multiplication

The CC is unchanged by the MP instruction; in this example it will have been set to 2 by the preceding ZAP instruction to indicate the sign of the multiplicand.

To give a more elaborate example, suppose we wish to compute the square of each element of the table of fifty 5-digit numbers at \(\text{Dec}\) and store them in the table starting at \(\text{DecSq}\). Each element of the table of products must be 6 bytes long, because there must be as many bytes of high-order zeros in the multiplicand as there are bytes (3) in the multiplier.

\[
\begin{align*}
\text{NDec Equ 50} & \quad \text{Number of table elements} \\
\text{LD Equ 3} & \quad \text{Length of input table elements} \\
\text{LA 0,NDec} & \quad \text{Initialize counter} \\
\text{LA 1,Dec} & \quad \text{Point to input table} \\
\text{LA 2,DecSq} & \quad \text{Point to output table} \\
\text{Set ZAP} & \quad 0(2*LD,2),0(LD,1) \quad \text{Set up multiplier} \\
\text{MP} & \quad 0(2*LD,2),0(LD,1) \quad \text{Form (2*LD)-byte product} \\
\text{LA 1,LD,(1)} & \quad \text{Step 'Dec' table pointer} \\
\text{LA 2,2*LD,(2)} & \quad \text{Step 'DecSq' table pointer} \\
\text{JCT 0,Set} & \quad \text{Count down and loop}
\end{align*}
\]

\[
\begin{align*}
\text{Dec DS} & \quad (\text{NDec})\text{PL(LD)} \quad \text{Table of input data} \\
\text{DecSq DS} & \quad (\text{NDec})\text{PL(2*LD)} \quad \text{Squares of input elements}
\end{align*}
\]

Figure 295. Using MP to square a table of decimal numbers

In this example, the number of table elements and the length of each element may be varied by modifying the EQU statements.

The MP instruction is easy to use, but there are times when some of its restrictions are annoying. For example, suppose we want to multiply the 4-byte operand 0001234+ by the 2-byte multiplier 101+; the result (0124634+) will fit quite comfortably in the four bytes provided by the original operand. However, because there are not as many bytes of high-order zeros as there are bytes in the multiplier, we must resort to schemes like this:
ZAP  R, MPCand  Move multiplicand
MP  R, =P'101'  Multiply by 101

MP MPCand DC PL4 '0001234'  4-byte multiplicand
R DS PL5 Result must be 1 byte longer

Figure 296. Using ZAP to set correct decimal multiplicand length

The result at R will be 000124634+, but the extra byte of high-order zeros might not be needed for whatever operations are performed next.

Suppose as before that we want to multiply 0001234+ by 101+, but this time we reverse the order of the operands.

ZAP  R, =P'101'  Lengthen the multiplicand
MP  R, MPLier  Now multiply by 0001234+

R DS PL6 Result at least 6 bytes long
MPLier DC PL4 '1234'  4-byte multiplier

Figure 297. Using ZAP to set correct decimal multiplicand length

Because the multiplier is four bytes long, there must be four bytes of high-order zeros at R after the multiplicand 101+ has been placed there. Thus the result field must now be six bytes long, instead of the five required in Figure 296. Situations may arise where the order of the operands in a decimal multiplication is important!\(^\text{178}\) Forgetting to allocate the necessary extra bytes for the product will result in a data exception: a program interruption will occur, and the IC will be set to 7.

A final (but rarely troublesome) feature of decimal multiplication is that a negative zero result can be generated as the product of positive and negative zero operands. This is unlikely to occur in practice, because decimal addition and subtraction place a + sign on zero results (so long as no overflows occur). The generation of a negative zero is illustrated in Figure 298.

MP X,Y Generate a negative zero product

X DC PL2 '0'  Positive zero
Y DC P' -0'  Negative zero

Figure 298. Generating 0− using MP

The product is X’000D’, or 000−.

Be Careful!

Successful decimal multiplication often depends on the order of the operands.

Exercises

29.5.1.(1) Determine the inequalities that must be satisfied by the two Length Expressions in an MP machine instruction statement.

29.5.2.(1) What is the maximum value that may be assigned to the symbol LD in Figure 295 on page 498?

29.5.3.(2) Show why we cannot directly multiply 0001234+ by 100+ using an MP instruction, even though the product would contain a high-order zero digit.

\(^{178}\) Mathematically, this means that the MP instruction might not always be commutative.
29.5.4.(2) What will happen if we write MP X,X ?

29.5.5.(4) Suppose the CPU performed decimal multiplication by fetching one operand byte at a time, and storing a result byte as soon as it is generated. (It doesn't operate that way!) Under what circumstances could the first and second operands of an MP instruction overlap?

29.5.6.(2)+ What result will appear at A after executing the MP instruction?

\[
\text{MP} \quad A,A+1(1)
\]

\[
A \quad \text{DC} \quad \text{PL2'7'}
\]

29.5.7.(2)+ What result will appear at B after executing the MP instruction?

\[
\text{MP} \quad B,B+3(1)
\]

\[
B \quad \text{DC} \quad \text{PL4'567'}
\]

29.5.8.(3) What result will appear at C after executing the MP instruction?

\[
\text{MP} \quad C,C+3(3)
\]

\[
C \quad \text{DC} \quad \text{PL6'84567'}
\]

29.6. DP Instruction

As noted in Section 28.5, the results of a decimal division are found in the first operand field. Unlike binary division in the general registers, however, the quotient of a decimal divide is found in the left, or high-order, portion of the result, and the remainder is found in the right, or low-order portion. Take care in specifying the lengths of the operands: the remainder has the same length as the divisor, so the length of the quotient is the difference between the dividend and divisor lengths.

\[
\text{(quotient length)} = (\text{dividend length}) - (\text{remainder length})
\]

\[
= (\text{dividend length}) - (\text{divisor length})
\]

To avoid a specification error, the Encoded Length digits in the second byte of the instruction must satisfy the same inequalities as for MP:

\[1 \leq L_1 \leq 15, \quad 0 \leq L_2 \leq 7, \quad L_1 > L_2\]

and similarly for the corresponding Length Expressions.

To illustrate, suppose we want to divide 162843+ by 762+ (as in Section 18.8) using packed decimal division, as shown in Figure 299.

\[
\text{ZAP} \quad \text{Dvnd,}=P'162843' \quad \text{Initialize dividend}
\]

\[
\text{DP} \quad \text{Dvnd,}=P'762' \quad \text{Divide by 762+}
\]

\[
\text{Dvnd} \quad \text{DS} \quad \text{PL4} \quad \text{Space for quotient and remainder}
\]

Figure 299. Decimal division using DP

After the ZAP instruction is executed, the area named Dvnd will be initialized to 0162843+. Because the divisor is 762+, the alignment test described in Section 28.5 will be satisfied, and a valid quotient and remainder can be computed. After the DP instruction is executed, the four bytes at Dvnd will contain 213+537+, so the quotient is 213+ and the remainder is 537+.

It's often easier to let the Assembler determine operand lengths by using Symbol Length Attribute References, as shown in Figure 300.
ZAP Dvnd,=P‘162843’ Initialize dividend
DP Dvnd,Dvsr Divide by divisor
ZAP Quot,Dvnd(L’Dvnd-L’Dvsr) Move quotient...
ZAP Rem,Dvnd+L’Dvnd-L’Dvsr(L’Dvsr) ...and remainder

- - -
Dvnd DS PL4 Can be up to 16 bytes long
Dvsr DC P‘762’ Divisor
Quot DS PL5 Space for quotient 000000213C
Rem DS PL4 Space for remainder 0000537C

Figure 300. Decimal division using Length Attribute References for operands

In this example, the areas named Quot and Rem were purposely chosen to be longer than required, to show that extra length makes no difference in the values that will be stored. So long as none of the restrictions on operand lengths are violated, this instruction sequence will give correct results.

As a final example, suppose we must calculate the average of the entries in a table of nonzero 9-digit packed decimal numbers stored beginning at Tbl, and that we don’t know the length of the table, only that the last entry is followed by a zero element.

ELen Equ 5 Length of a table entry (9 digits)
LA 1,Tbl Point to origin of table
ZAP Sum,=P‘0’ Initialize sum box
ZAP Nbr,=P‘0’ Initialize element counter
ZAP Avg,=P‘0’ And set average to zero
Test CP 0(ELen,1),=P‘0’ Check for table end
JE Divide Found end, go compute average
AddUp AP Sum,0(ELen,1) Accumulate sum
AP Nbr,=P‘1’ And increment counter
LA 1,ELen(,1) Step pointer to next entry
J Test And loop
Divide CP Nbr,=P‘0’ Check for no data at all
JE Finish Give up if no entries
DP Sum,Nbr Perform division
ZAP Avg,Sum(L’Sum-L’Nbr) Move result

Finish - - -

Sum DS PL15 Accumulated total of entries
Nbr DS PL4 Count of entries being summed
Avg DS PL(ELen) Average value
Tbl DS 5000PL(ELen) Lots of room for data

Figure 301. Computing the average of a table of decimal numbers

--- Useful Rule of Thumb ---

The field into which you ZAP a dividend prior to a packed decimal division should be at least as long as the length of the dividend plus the length of the divisor. (The symbolic forms in Figure 300 are helpful for valid divisions.)

Exercises

29.6.1.(2)+ Revise Figure 301 on the assumption that the end of the table is signaled by a zero element with a negative sign. Positive zeros are permitted among the table entries.

29.6.2.(1)+ Determine the inequalities that must be satisfied by the Length expressions in a DP instruction statement.

29.6.3.(2)+ What will happen if we write DP X,X?
29.6.4.(1) Give at least two methods for testing whether a packed decimal number is even or odd.

29.6.5.(2) In Exercise 29.6.1, why can we not test for the terminating negative zero element with this statement?

```plaintext
Test ZAP 0(ELen,1),0(ELen,1) Test for -0 element
JM NegZero Jump if -0
```

29.6.6.(2) It is possible to write DP and MP instruction statements that will specify \( L_1 \) digits, where \( L_1 \) has value zero. If this is done, what will happen when the instructions are executed?

29.6.7.(4) Suppose the CPU performs decimal division by fetching one operand byte at a time, and storing a result byte as soon as it is generated. (It doesn’t operate that way!) Under what circumstances could the first and second operands of a DP instruction overlap?

29.6.8.(2)+ What result will appear at \( A \) after executing this DP instruction?

```plaintext
DP A,A+3(1)
```

```plaintext
A DC PL4’67’
```

29.6.9.(2)+ What result will appear at \( B \) after executing this DP instruction?

```plaintext
DP B,B+3(2)
```

```plaintext
B DC PL5’567’
```

29.6.10.(3) What result will appear at \( C \) after executing this DP instruction?

```plaintext
DP C,C+3(2)
```

```plaintext
C DC PL5’9567’
```

29.6.11.(1) Can you think of a reason why the designers of z System required the length of the second operand of a decimal division to be 8 or fewer bytes?

29.6.12.(2)+ Explain why there must be at least one leading high-order zero digit in the dividend of a decimal division.

29.6.13.(3) In a division process, the remainder may be chosen in (at least) three ways: (1) the remainder has the same sign as the dividend, (2) the remainder has the same sign as the quotient, and (3) the remainder is always nonnegative. In all cases, the magnitude of the remainder is less than the magnitude of the divisor.

In z System, the first alternative is used. What modifications would have to be made to the rules for decimal division if the second or third alternatives had been chosen instead?

### 29.7. SRP Instruction

The SRP instruction shifts its operand to multiply or divide a packed decimal number by a power of 10, and to round the quotient of such a power of 10 “division”.

Before SRP was available, shifting a computed number of digit positions was complicated: different coding techniques had to be used for shifting left or right by an even or odd number of digit positions.\(^{179}\) It was also difficult to use the EX instruction to specify the number of digits to be shifted. The CPU architects rectified this unhappy situation by creating the SRP instruction, which shifts in either direction with optional rounding for right shifts.

\(^{179}\) If you’re interested, we’ll see examples in Section 29.9.
The Assembler Language statement format for an SRP instruction statement is shown in Figure 302, where the first operand address is given by $D_1(B_1)$, the Effective Address of the second operand $D_2(B_2)$ specifies the number of digits to be shifted, and $I_3$ is the rounding digit.

$$\text{SRP } D_1(B_1), D_2(B_2), I_3$$

Figure 302. Assembler Language format of SRP machine instruction statement

Table 208 shows the assembled machine instruction format of the SRP instruction:

<table>
<thead>
<tr>
<th>F0</th>
<th>L_1</th>
<th>I_3</th>
<th>B_1</th>
<th>D_1</th>
<th>B_2</th>
<th>D_2</th>
</tr>
</thead>
</table>

Table 208. Format of the SRP instruction

The SRP instruction format has several unusual features.

1. There is a single 4-bit length field, $L_1$.
2. The immediate $I_3$ is used for rounding only when shifting to the right. It must be a valid decimal digit; if not, a decimal data exception occurs, and the IC is set to 7. (The value of the I$_3$ digit is not specified by nor inferred from the length of the second operand.)
3. The decimal number to be shifted is in memory at the Effective Address computed from the first addressing halfword.
4. The Effective Address computed from the second addressing halfword determines both the direction and the amount of the shift. It is not a memory address.

The $L_1$ digit and the first addressing halfword provide the usual method for referring to a packed decimal operand. The effective address computed from the second addressing halfword is evaluated by the CPU, and its rightmost six bits are treated as a signed two’s complement integer. The number of digits to be shifted therefore lies in the range

$$80_{16} \leq \text{shift count} \leq 011111_{2}$$

The shift is to the left if the shift count is positive, and to the right if the shift count is negative. You can think of the shift count as the power of ten $P$ by which the decimal operand will be multiplied. A zero shift count may be specified, but it only causes the decimal operand to be checked for validity, which is done at the start of every SRP operation.

If the shift is to the left, the CPU checks for nonzero high-order digits, and indicates a decimal overflow condition if any are lost. If the shift is to the right, the I$_3$ digit is added decimally to the last digit shifted out of the first operand, and any carry is propagated into the remaining part of the first operand. The I$_3$ digit is considered to have the same sign as the decimal number being shifted. For both left and right shifts, vacated digit positions are set to zero. The CC settings after SRP are the familiar values shown in Table 206 on page 491.

You can specify the second-operand shift amount using the rules for the two’s complement representation: because the shift count is a number $P$ between $-32$ and $+31$, its 6-bit two’s complement representation is simply $2^6 + P$, or $64 + P$. Thus, a right shift of two places with no rounding is specified by this instruction statement:

$$\text{SRP } A, 64-2, 0 \quad \text{Shift right 2, no rounding}$$

Similarly, a left shift of two places is specified by

$$\text{SRP } A, 64+2, 0 \quad \text{Shift left 2 digit positions}$$

When shifting left, the value of the I$_3$ digit is ignored (but it still must be a valid decimal digit!). The extra factor of 64 in the shift count will be ignored when the rightmost 6 bits of the effective second operand address are used; including the factor of 64 ensures that we won’t forget it if it’s needed for right shifts.

Suppose we want to shift the operand 12345+ to the left three places, as in Figure 303.
SRP A,3,0  Left shift causes an overflow
A DC '12345'  Final contents = 45000+

Figure 303. Shifting a decimal operand left 3 places using SRP

The CC will be set to 3 to indicate the decimal overflow condition.

To shift the same operand to the right without rounding, we can use SRP as in Figure 304.

SRP A,64-2,0  Shift right 2 digits, no rounding
A DC '12345'  Final value = 00123+

Figure 304. Shifting a decimal operand right 2 places using SRP

To illustrate rounding, let’s shift 12345+ to the right one digit position with I3 rounding digit 9 (so that “rounding” will occur if the last digit shifted has any nonzero value). We set the rounding digit to 9 to show that it may be any value, not just the value 5 normally used for rounding.

SRP A,64-1,9  Shift right, rounding digit = 9
A DC '12345'  Final value = 01235+

Figure 305. Shifting a decimal operand right 1 place with rounding using SRP

An important property of SRP is that the rounding digit can be provided at execution time by an EX instruction. For example, suppose the rounding digit is contained in the one-byte packed decimal number at RndDigit and the shift amount is stored as a halfword binary integer at ShiftAmt. We can then shift the operand as shown in Figure 306, where the shift amount is contained in GR1, and the rounding digit in GR2 is ORed into the second byte of the SRP instruction in the Instruction Register as the target of EX.

LH 1,ShiftAmt  Get shift amount
XR 2,2  Clear GR2 for rounding digit
IC 2,RndDigit  Get rounding digit and its sign
SRL 2,4  Drop off sign code
EX 2,SRP  Execute the SRP instruction

SRP SRP A,0(1),*-*  Executed instruction
A DC PL16’59365’  Operand to be shifted
RndDigit DC PL1’9’  Rounding digit, packed decimal form
ShiftAmt DC H’-2’  Shift amount

Figure 306. Shifting a decimal operand with an EXecuted SRP

In Section 29.9 we will see examples showing why SRP is such a useful decimal instruction.

### 29.7.1. Biased and Unbiased Rounding with SRP

The rounding provided by SRP is slightly biased. To see why, suppose a bank pays daily interest in cents, and the calculated amounts for four days are 1.5, 2.5, 3.5, and 4.5 cents. If these are rounded to single cents using SRP with rounding digit 5 and a single right shift, the amounts added to the account are 2, 3, 4, and 5 cents, or a total of 14 cents. But the true total of the unrounded amounts is 12 cents, so the bank would be overpaying the customer.¹⁸⁰

We may need to provide unbiased rounding for packed decimal results. Consider this example with a single “rounding digit”, as in 337785+, where the 5 is the digit to be rounded. Using a

¹⁸⁰ Banks don’t like to overpay their customers. (Of course, a bank could truncate the fraction part and keep the accumulated “breakage”.)
single right shift and a SRP rounding digit 5, the biased result would be 33779+. The rule for
unbiased rounding is:

If the value to be rounded lies exactly halfway between two possible rounded values, choose the
rounded value with an even low-order digit.

Thus, in this example, the unbiased rounded value is 33778+. The unbiased rounded daily interest
values would be 2, 2, 4, and 4 cents (a total of 12 cents), and the bank would not be overpaying
its customer.

These instructions show one way to do unbiased rounding of a packed decimal number with a
single rounding digit:

```
MVZ RDigit(1),PDVal+L'PDVal-1 Save rounding digit
CLI RDigit,X'50' Is the rounding digit exactly 5?
JNE RoundUp No, do a normal round up
TM PDVal+L'PDVal-2,1 Is the 'to-be-rounded' digit odd?
JO RoundUp If yes, round up to an even value
SRP PDVal(L'PDVal),64-1,0 No: round down to even
J Done Rounding completed
RoundUp SRL PDVal(L'PDVal),64-1,5 Round up to even
Done -- --
Rdigit DC X'00' Single rounding digit tested here
PDVal DC P'337785' Decimal value, single rounding digit
```

See Exercises 29.7.14 and 29.7.15 for general forms of unbiased rounding.

We'll see in Chapter IX that decimal floating-point provides many more forms of decimal
rounding, and requires many fewer instructions.

**Exercises**

29.7.1.(1)+ A programmer who wanted an SRP instruction to shift an operand two digits to
the right wrote the statement

```
SRP A,-2,0
```

and received a diagnostic message from the Assembler. Attempting to correct the statement, he
wrote

```
SRP A,0-2,0
```

and received the same diagnostic. Why did he receive these diagnostic messages? What is wrong
with these statements? What should be done to fix them?

29.7.2.(2)+ Prove that no overflow exception can occur when executing an SRP instruction
when the shift is to the right.

29.7.3.(2)+ In an SRP instruction performing a right shift, why is the I₃ digit added decimaly
to the last digit shifted out, rather than just added?

29.7.4.(2) What will happen if you execute this SRP instruction on each of the given operands?

```
SRP A,64-1,5
```

```
A DC X'123456' First sample operand
A DC X'ABCDEF' Second sample operand
```

29.7.5.(2) What will be the result at X₁, X₂, and X₃ after executing these SRP instructions?
29.7.6.(1) What shift amount is specified by these instructions, and what resulting data will appear at A?

LHI 2,-2
c(GR2) = -2
SRP A,1(2),3 Shift the data somehow
- - -
A DC PL3' -4567’ Test data

29.7.7.(2) After executing this SRP instruction, what result will appear at XX?

SRP XX,63,+5 Shift data at XX
- - -
XX DC PL3’ -4567’ Sample data

29.7.8.(2) In Figure 306 on page 504, what result will appear at A and what will be in the rightmost 6 bits of GR1? Why is the shift amount in GR1 not reduced by 1, as is done for EXecuted instructions like MVC?

29.7.9.(5) A program contains

1. a packed decimal operand at A whose length is given by its length attribute L’A,
2. a positive one-byte decimal number at RND satisfying 0 ≤ c(RND) ≤ 9, and
3. a halfword binary integer at SHFT satisfying −32 ≤ c(SHFT) ≤ +30.

Write a program segment (not using SRP) to simulate the action of SRP on the operand at A, as illustrated in Figure 306 on page 504.

29.7.10.(2) SRP and the general-register shift instructions discussed in Section 17 all use the low-order six bits of an Effective Address for the shift amount. Why do you think SRP treats this amount as a signed number, while the binary shifts treat it as an unsigned number?

29.7.11.(1) If you thought SRP meant “Shift Right Packed” but found that was incorrect, would you have any reasons to prefer that it be named SLRP, meaning “Shift Left or Right and Round Decimal”? Why might this actually be a better choice?

29.7.12.(2) A careful programmer wanted to be certain that his SRP instruction would correctly round a negative packed decimal operand, so he wrote

SRP NegData,64-1,-5 Round a negative operand correctly
- - -
NegData DC PL4’ -72945’ Negative operand to be rounded

What will this instruction do?

29.7.13.(2)+ What is the result at E of executing this SRP instruction?

SRP E,2,5
- - -
E DC X’075F’

29.7.14.(5) When 5 is used as the rounding digit in an SRP instruction, the rounded result is slightly biased, because values exactly halfway between two possible rounded results are always forced to the larger magnitude.
Write instructions that will round packed decimal numbers \( D \) digits long to \( R \) digits (where \( R < D \); that is, the number of digits to be discarded after rounding is \( D - R \)), in such a way that initial values lying exactly half way between two possible rounded \( R \)-digit results always give a result with an even low-order digit.

For example, if \( D=5 \) and \( R=3 \), two right shifts are required; if the source operand is 12550+ then the rounded result will be 00126+, but 12450+ will be rounded to 00124+, not to 00125+ as SRP would do.

29.7.15.(5) Suppose the packed decimal number at PDVal is \( B \) bytes long, and has \( R \) rounding digits, where \( R < 2B - 1 \). (There will be \( 2B - 1 - R \) digits left after rounding.) Write instructions that will leave an unbiased rounded result at PDVal. For example, if there are \( R=3 \) rounding digits, and the number is 33778529+, then the rounded result should be 00033779+; but if the number is 33778500+, the rounded result should be 00033778+.

29.7.16.(2) It is claimed that a rounded quotient can be formed this way:

1. Shift the dividend left one digit.
2. Divide.
3. Shift the quotient right one place, with rounding digit 5.

Prove or disprove this claim.

29.7.17.(2) Show at least four ways to generate a packed decimal negative zero.

### 29.8. MVO Instruction

MVO simply moves data from the second operand field to the first, with no validity checking and no effect on the CC. MVO moves hex digits from the second operand field to the first operand field in a way similar to ZAP, with one very important difference: the sign digit of the first operand is left in place, and all the digits (including the sign) of the second operand are placed to the left of the first operand sign. Zeros are supplied in the high-order positions of the first operand if the second operand is exhausted.

This process is illustrated in Figure 307, where the digits of the second operand are named “a”, “b”, etc., and the sign digits of the first and second operands are named “s1” and “s2”.

![Figure 307. Operation of the MVO instruction](image)

For most applications, the first and second operands will not overlap. We can visualize the sequence of operations performed by the CPU in executing an MVO instruction this way:

1. Move the second operand to an internal work area, and shift it left (offset it) by one hex digit.
2. Attach the sign digit of the first operand to the right end of this internal digit string, and place as many high-order zero digits at the left end as may be needed to fill all bytes of the first operand.
3. Move the resulting digit string to the first operand area, starting at the right-hand end. Excess high-order digits are lost.

Figure 308 illustrates using MVO with nonoverlapping operands.
MVO A,B Move a shorter to a longer, and...
MVO C,D Move a longer to a shorter.

B DC P'678' Two-byte operand
A DC PL4' -5' Initial contents = X'0000005D',
         Final contents = X'000678CD'

D DC P'987654321' Five-byte operand
C DC PL3'555' Initial contents = X'00555C',
         Final contents = X'4321CC'

Figure 308. Two Examples of MVO results

Figure 308 shows that the result of an MVO instruction can be an invalid decimal operand, because the rightmost byte may contain two sign codes instead of one.

This example does not indicate the contexts in which an MVO instruction might normally appear. The next section contains examples of its most common early application, decimal shifting. You can of course perform a decimal “shift” by multiplying or dividing by an appropriate power of ten, just as a binary shift multiplies or divides by a power of two. However, SRP is faster than the corresponding multiplication and division instructions.

While MVO is rarely used with overlapping operands, the result is as though bytes are processed one at a time with each result byte being stored immediately after fetching the source bytes.

Some examples showing how MVO can be used for shifting are described in Section 29.9.

Exercises

29.8.1.(4) Given that \( N_1 \) and \( N_2 \) are the true lengths of the first and second operands, write instruction sequences to simulate an MVO instruction assuming

1. \( N_1 = N_2 \),
2. \( N_1 < N_2 \), and
3. \( N_1 > N_2 \).

29.8.2.(1)+ What will be the result (in hexadecimal) at New of executing this instruction, for each of the source operands?

MVO New,Old

New DC C'123456' 1.

2. DC X'123456'
3. DC C'ABCD'
4. DC F'123456'

29.8.3.(2)+ What can you say about the number of numeric digits moved by an MVO instruction?

29.8.4.(2)+ If an MVO instruction results in truncated second-operand digits, what can you say about the number of truncated digits?

29.8.5.(3)+ Draw a detailed flowchart that describes the digit-by-digit action of MVO. Be sure you correctly handle operands of unequal lengths, and the possibility of operand overlap. (Can you use the similarities between MVO and ZAP to combine this flowchart with the one you drew for ZAP in Exercise 29.2.8?)

29.8.6.(2)+ You have now encountered several instructions which can be used to move individual hex digits from byte to byte. Let the left and right hex digits of Byte1 be labeled 1L and 1R, respectively, and similarly for digits 2L and 2R of Byte2. Now, make a table which shows all
of the possible ways to move one or both digits from Byte1 to Byte2, and an instruction that will perform the specified movement.

29.8.7.(3)+ A programmer suggested this technique for converting the bits of a byte to eight printable 0 and 1 EBCDIC characters:

- **MVC Out(1),Byte**
- **MVC Out+1(7),Out**
- **NC Out,Mask**
- **MVO Work,Out(4)**
- **MVC Out(4),Work**
- **TR Out,=C'01111111'**

Byte DC B'11010110'
Mask DC X'8040201008040201'
Work DC XL5'7777777777'
Out DC XL8'aaaaaaaaaaaaaaaa'

First, explain how it works. Then, explain why the literal is nine characters long.

**29.9. Decimal Shifting Using MVO (*)**

When we need to multiply or divide packed decimal numbers by a power of ten, it’s easiest to use the SRP instruction. Unfortunately, the original architecture of System/360 provided no basic instruction to shift decimal operands; you had to write an explicit instruction sequence for each shift. We’ll examine some techniques that can be used to shift packed decimal operands “the hard way”.

You will appreciate the power of the SRP instruction by comparing it to what had to be done when it was not available.

**29.9.1. Shift Right an Odd Number of Digits**

To perform a decimal right shift of an odd number of digit positions, only the MVO instruction need be used. For example, to shift 12345+ to the right by three digit positions, we could write instructions as in Figure 309.

- **MVO A,A(1) Shift right 3 decimal digits**
- **A DC P'12345' Initial contents = 12345+**

Figure 309. Shifting a decimal operand right an odd number of digits

Because the contents of the byte at A(1) is X’12’, the final contents of the 3-byte memory area named A would be 00012+, as desired.

To illustrate this technique in greater generality, suppose an operand at A of length L bytes is to be shifted right N decimal digit positions, and we know N is odd and that N < 2L−1. The required MVO instruction can be written as in Figure 310:

- **MVO A(L),A(L-N/2+1) Shift right N decimal digits**

Figure 310. Shifting a decimal operand right an odd number of digits

Although the first and second operands overlap, it’s easy to see how this instruction works, since the data is being shifted to the right: this is the “natural” direction for MVO.
29.9.2. Shift Left an Odd Number of Digits

To perform a decimal left shift of an odd number of decimal places, we need more than one instruction. If we want only to introduce an odd number of zeros at the right end of the number without dropping off any digits at the left, this simple technique can be used. First, we move the sign to the right \(N+1\) digit positions, and then we move the digits themselves to the right one digit position. This effectively introduces \(N\) vacant digits, which can then be set to zeros. To illustrate, suppose the packed decimal operand \(12345+\) at \(A\) is to be shifted left 3 decimal digit positions and placed at \(A_{\text{Shifted}}\).

```
MVN A+4(1),A+2 Move sign 4 digits to right
MVO A(4),A(3) Shift digits right once
NC A+3(2),='000F' Remove unwanted digits
- - -

A_{\text{Shifted}} DS 0PL5 Result = 012345000+
A DC P'12345' Initial operand = 12345+
DS PL2 Space for 3 inserted zeros and sign
```

Figure 311. Shifting a decimal operand left an odd number of digits

The symbol \(A_{\text{Shifted}}\) is defined in such a way that we can refer to the shifted (and extended) operand with the correct address and its new length attribute. (See Exercise 29.9.2.)

If the shifted operand must have the same length as the original operand, the code required is slightly more complicated, unless only a single digit shift is required. This case can be done simply, as illustrated in Figure 312. Suppose the initial operand is again \(12345+\).

```
MVO A,A Shift left one decimal digit
NI A+L='0F' Set duplicated sign to zero
- - -
A DC P'12345' Final contents = 23450+
```

Figure 312. Shifting a decimal operand left by one digit

In this case the operands overlap completely. The rule used by the CPU to handle possible memory conflicts is that any second operand bytes needed for any step of the operation are fetched from memory just before storing the result byte of that step.

If the first and second operands must have the same length for odd left shifts of 3 or more digits, then it is best to use a separate area for the first operand. To illustrate, suppose the packed decimal operand \(12345+\) must be shifted left 3 places, and the result is stored at \(B\). As in Figure 303 on page 504, we’ll shift the operand \(12345+\) to the left three places, as shown in Figure 313.

```
MVN B+2(1),A+2 First, move sign digit
MVO B(2),A Move sign and two digits (45+x)
NC B+1(2),'000F' Set sign and extra digits to zeros
- - -
A DC P'12345' Initial contents = 12345+
B DS PL3 Final contents = 45000+
```

Figure 313. Shifting a decimal operand left by three or more digits

This technique can of course be used for single left shifts, but the method of Figure 312 is simpler. (See Exercise 29.9.3.)

29.9.3. Shifting an Even Number of Digits

Shifting a decimal number an even number of digit positions is usually simpler than for the odd shifts, because the digits retain their relative positions within each byte. Thus, we usually do even shifts with the ordinary move and logical instructions. For example, to “multiply” \(0001234+\) by 100 \((\text{not} \text{ by the packed decimal operand } 100+)\), we need only shift the digits left by two positions, or one byte:
This result can’t be obtained by using an MP instruction, because there are not enough high-order zeros in the operand to be “shifted”.

29.9.4. Shifting Left an Even Number of Digits

To shift left using move and logical instructions, we can use the technique shown in Figure 314.

\[
\begin{align*}
\text{MVC} & \quad A(3), A+1 \quad c(A) = 01234+4+ \\
\text{NI} & \quad A+3, X'0F' \quad c(A) = 01234+0+ \\
\text{NI} & \quad A+2, X'F0' \quad c(A) = 0123400+, \text{ now } 100 \times \text{greater}
\end{align*}
\]

Figure 314. Shifting a decimal operand left an even number of digits

In this example, the length of the operand is the same before and after the operation. If you need a longer result, you can use the technique shown in Figure 315: instead of shifting the data to the left, we shift the sign to the right.

\[
\begin{align*}
\text{MVN} & \quad B+4(1), A+3 \quad \text{Move sign digit only} \\
\text{NI} & \quad B+4, X'0F' \quad \text{Zero out the excess digit} \\
\text{NI} & \quad B+3, X'F0' \quad \text{And the old sign position}
\end{align*}
\]

Figure 315. Shifting a decimal operand left an even number of digits

As these two examples show, extra effort is needed to zero out the positions vacated by the “shift”. It may be simpler in some cases to use an SS-type instruction to set the necessary digit positions to zero, as in Figure 316.

\[
\begin{align*}
\text{MVC} & \quad A(3), A+1 \quad \text{Move first three bytes left} \\
\text{NC} & \quad A+2(2), \text{Mask} \quad \text{Set vacated digits to zero}
\end{align*}
\]

Figure 316. Shifting a decimal operand left an even number of digits

This NC instruction does the same zeroing as the two NI instructions in Figure 315.

29.9.5. Shifting Right an Even Number of Digits

To shift right an even number of places, two techniques are used, depending on whether or not the result must have the same length as the original operand. If the result may have a different length, it is simplest to move the sign digit to the left, and leave the leftover data in place. For example, suppose 12345+ is to be shifted right two digit positions, so 123+ is the desired result.

\[
\begin{align*}
\text{MVN} & \quad A+1(1), A+2 \quad \text{Move sign 2 digits to left} \\
\text{B} & \quad \text{DS} \quad \text{OPL2} \quad \text{For referring to shifted result} \\
\text{A} & \quad \text{DC} \quad \text{PL'12345'} \quad \text{Final contents} = 123+5+
\end{align*}
\]

Figure 317. Shifting a decimal operand right an even number of digits

We must now refer to the result at B with its new name and length attribute, since the original three-byte operand now contains an invalid digit. (See Exercise 29.9.4.)
When the length of the original operand must be preserved (so that the desired number of high-order zeros actually appears in the leftmost bytes), it is difficult to use the move instructions, because they process data from left to right, rather than from right to left.

Surprisingly, it is easiest to shift right an even number of digit positions by doing two odd shifts! To illustrate, we can shift 12345+ to the right by two digit positions using two MVO instructions, as in Figure 318.

```
MVO A(3),A(2) Shift once, result = 01234+
MVO A(3),A(2) Shift again, result = 00123+
```

As these examples show, SRP may be much simpler; it also provides protection against invalid data and unexpected decimal overflow.

**Exercises**

29.9.1.(1)+ At the end of Section 29.9.3, the text states that we can’t use the MP instruction to multiply 0001234+ by 100+. Explain why not.

29.9.2.(3) Generalize the instructions in Figure 311 on page 510 to handle an odd left shift of N digit positions of the L-byte operand at A. State any restrictions that must be imposed on the values of L and N.

29.9.3.(3) Generalize the instructions in Figure 313 on page 510 to an odd left shift of N digit positions of the L-byte operand at A, leaving the shifted result at B. State any restrictions imposed on the values of L and N.

29.9.4.(3) Generalize the technique illustrated in Figure 317 on page 511 to an L-byte operand shifted right an even number N of digit positions. State any restrictions on N and L.

29.9.5.(2) In the discussion preceding Figure 310 on page 509 about using MVO to shift an L-byte operand to the right by an odd number of digit positions N, we said that we required \( N < 2L-1 \). Why can’t this requirement be written \( N \leq 2L-1 \) ?

29.9.6.(2) Write a sequence of instructions using the technique illustrated in Figure 312 on page 510 to perform a single left shift of the L-byte packed decimal operand at A. If the shift causes a decimal “overflow”, branch to Over after the shift is completed.

29.9.7.(3) The decimal operand at A has length L bytes, and is to be shifted left N digit positions, where N is an even number. Generalize the instruction sequence shown in Figure 316 on page 511 to do the shift. State any restrictions that must be placed on N and L.

29.9.8.(3) Do the same as in Exercise 29.9.7, but branch to Over if significant high-order digits are lost.

29.9.9.(3) Using the same conditions as in Exercise 29.9.7, generalize the instruction sequence of Figure 315 on page 511, and state any necessary restrictions on N and L.

29.9.10.(3) Suppose we wish to multiply the decimal number at A by an even power of ten, where the power of ten is defined in an EQU statement such as

```
N Equ 6 Multiply by 10**6
```

Write a sequence of instructions using the techniques illustrated in Figures 314 through 316 to perform the desired multiplication. What restrictions must be placed on the value of N, and how will it depend on the length of the number at A?
29.9.11.(5) Write instruction sequences not using SRP that will shift a decimal number to the right $N$ digit positions, and round the result properly. (Rounding should be done by adding 5 to the most significant digit shifted out of the operand.)

29.9.12.(3) Generalize the technique in Figure 318 on page 512 to shift an $L$-byte operand to the right by an even number $N$ of digit positions. State any restrictions on $L$ and $N$.

29.10. Scaled Packed Decimal Computations: General Rules

All previous examples of packed decimal arithmetic have assumed integer operand values. But decimal arithmetic must often deal with numbers containing fractional parts, such as currency values, percentages, and the like. Packed decimal arithmetic with such values requires some extra considerations.

For example, adding two currency values like $123.45$ and $234.56$ is simple; we can treat them as integers, and remember to insert the decimal point in the right place when the result is formatted for printing or display.

\[
\begin{align*}
\$123.45 & + \$234.56 \\
\$358.01 & 
\end{align*}
\]

Similarly, multiplying a currency value by an integer can be done in much the same way:

\[
\begin{align*}
\$123.45 & \times 12 \\
\$1481.40 & 
\end{align*}
\]

But if our data is more complex, we need to know more.

29.10.1. Precision and Scale

There are two senses of the word “precision”.

- In Assembler Language terms, precision refers to the number of digits a field or register can hold. A 4-byte object can hold 32-bit integers, or 7 packed decimal digits, or 4 zoned decimal digits. This is sometimes called “field” precision. We don’t need to know the values stored in those objects.

- In computational terms, precision refers to the number of significant digits in a number. A value like $3.14159265368979$ has 15 significant digits, so its precision is 15 digits. The number $3.12345678901234$ is also precise to 15 digits.\(^{181}\)

Because we may not know the precision of a value stored in a field at any given time, we must work with the known maximum precision of the value: the precision of the field.

Overflows can also cause inaccuracy in precise values: the sum of two 32-bit integers that causes a fixed-point overflow is still precise to 32 bits, but a very inaccurate representation of the true sum.

We must often do arithmetic with numbers having different numbers of digits before and after the decimal point. For example, suppose we use an AP instruction to directly add two 3-digit packed decimal numbers:

\[
\begin{align*}
A & \text{ DC } P'123.' \\
B & \text{ DC } P'.456' \\
\end{align*}
\]

Because packed decimal arithmetic is integer arithmetic, we find that the sum $P'579'$ has no correct digits. For a correct sum, we must first define a field to hold 6 or more digits:

\[^{181}\text{ The first value is an approximation to pi that is also accurate to 15 decimal digits. However, the second value is accurate to only two digits. There's a big difference between precision and accuracy!}\]
To account for the differences in decimal point positions, we must (1) align the operands and (2) remember the position of the decimal point in the sum:

\[
\text{ZAP Sum,A} \quad c(\text{Sum}) = X'0000123'c' = 123.
\]

\[
\text{SRP Sum,64+3,0} \quad c(\text{Sum}) = X'01230000'c' = 123.000
\]

\[
\text{AP Sum,B} \quad c(\text{Sum}) = X'0123456'c' = 123.456
\]

Figure 319. Ensuring decimal point alignment for packed decimal addition

It is up to you to write instructions that keep track of the position of the decimal in all mixed integer-fraction calculations.\textsuperscript{182}

We will use “I.F” as our notation for a number containing both integer and fraction values, where \(I\) is the number of integer digits and \(F\) is the number of fraction digits.

### 29.10.2. General Rules: Addition and Subtraction

Consider adding these two numbers:

\[
\begin{align*}
123.45 \\
+ 994.7264 \\
\hline
1118.1764
\end{align*}
\]

Because the sum may cause a carry from the high-order digit of the larger operand, the \(I\) value of the result is one larger than the \(I\) value of the larger operand. (For subtraction, the result could have fewer digits.)

If we call 123.45 the first operand, its \(I\) and \(F\) values are \(I_1=3\) and \(F_1=2\); for the second operand, \(I_2=3\) and \(F_2=4\). We see that the result’s \(I\) and \(F\) values are \(F=4\) and \(I=4\).

We can infer a general rule for addition and subtraction:

\[
\begin{align*}
I &= \text{Max}(I_1, I_2) + 1 \\
F &= \text{Max}(F_1, F_2)
\end{align*}
\]

That is, a sum or difference may have one more integer digit than the larger number of integer digits of the operands, and it may have the larger number of fraction digits of the two operands.

### 29.10.3. General Rules: Multiplication

We’ll use another example to illustrate a general rule. Suppose we multiply these two numbers:

\[
\begin{align*}
432.45 \\
\times 6.0743 \\
\hline
2626.831035
\end{align*}
\]

and we see that the product’s number of integer and fraction digits is given by

\[
\begin{align*}
I &= I_1 + I_2 \\
F &= F_1 + F_2
\end{align*}
\]

These values are of course the largest possible; if we multiply 1.25×2.2=2.750 we see that \(I\) for the product can be less than the maximum; and if we omit trailing zeros, \(F\) can also be less than the maximum.

\textsuperscript{182} The Integer (\(I’\)) and Scale (\(S’\)) attributes of packed decimal operands can help; see the example in Section 29.11.4.
29.10.4. General Rules: Division (*)

Division rules are more complicated than those for addition, subtraction, and multiplication. To start, consider the simple division 4/3:

\[ \frac{4}{3} = 1.3333333333333333333333333333333333333333333333... \]

We see that the number of integer digits is limited, but the unending fraction is a problem. So we need a rule to give useful values of \( I \) and \( F \). First, we’ll consider \( I \):

\[ \frac{4}{.3} = 13.3333333333333333333333333333333333333333333333... \]
\[ \frac{4}{.03} = 133.33333333333333333333333333333333333333333333... \]
\[ \frac{4}{.003} = 1333.333333333333333333333333333333333333333333... \]
\[ \frac{4}{.0003} = 13333.3333333333333333333333333333333333333333... \]

so we see that the value of \( I \) is

\[ I = I_1 + F_2 \]

Depending on how many fraction digits we want to keep in the result, the length of the packed decimal quotient field might need to be much larger than \( I \) to accommodate the quotient’s fraction digits.

As another example, suppose we divide 457.9 by 1.23. Since multiplying both terms by the same number doesn’t change the quotient, we can multiply both by 100 to eliminate the fraction parts, so that the divisor (1.23) is now 123 and the dividend is now 45670:

\[ \frac{45790}{123} = 372.276422764227642276422764227642276... \]

The unending quotient is again a problem: how many fraction digits should we keep? Usually we will round the result to a “reasonable” number of digits, being careful to keep correct numbers of integer and fraction digits. But, what is the correct number of digits?

You can consider two ways to handle this question:

1. If the fraction digits aren’t important, you can use the shortest valid lengths for divisor and dividend. For example, in evaluating 4/3 we could write:

   ```
 ZAP Num,=P’4’ Set up dividend
 DP Num,Den Divide by divisor
 -- --
 Num DS PL2 Minimum possible length!
 Den DC P’3’
   ```

   and the result at \( \text{Num} \) will be \( X’1C1C’ \), with quotient 1 and remainder 1.

2. If, however, you want to retain (say, 5) digits of the fraction, you will first need to allocate a longer area for \( \text{Num} \) and then multiply the dividend by 10^5:

   ```
 ZAP Num,=P’4’ Set up dividend
 SRP Num,64+5,0 Scale up by 5 digits (* 10000)
 DP Num,Den Divide by divisor
 -- --
 Num DS PL5 Space for quotient and remainder
 Den DC P’3’
   ```

   and the result at \( \text{Num} \) will be \( X’0133333CI’ \), with quotient 133333 and remainder 1. When you format the result for printing or display, you will have to “unscale” the result by placing the decimal point correctly. For example, you can use the ED (Edit) instruction (to be described in Section 30):

   ```
 MVC W(L’EdM),EdM Copy edit pattern
 ED W,Num Edit the result
 -- --
 EDM DC X’4020214B2020202020’ bds.ddddd 7 quotient digits
 W DS CL9
   ```

   and the result at \( W \) is \( C’••1.33333’ \) (where • represents a space).
As another example, suppose we want to print the quotient of \(479.6/1.23\), rounded to 2 decimal places. Now, \(479.6/1.23 = 389.9186991869918699186991869918699\ldots\) so our final rounded result should be 389.92. First, we must multiply by 100 to change both operands to integers, so the division becomes 47960/123, which has the same result. The quotient and divisor both have 3 digits (which fit in 2-byte packed decimal numbers), so we might try this:

\[
\begin{align*}
\text{ZAP} &\quad \text{Num,} = \text{P'}47960' \quad \text{Set up dividend} \\
\text{DP} &\quad \text{Num,Den} \quad \text{Divide by divisor} \\
\text{Num} &\quad \text{DS PL4} \quad \text{Space for quotient and remainder} \\
\text{Den} &\quad \text{DC P'}123' 
\end{align*}
\]

which gives a result at \(\text{Num}\) of \(X'389C113'\), a quotient of 389 and remainder 113. But this doesn’t have enough digits for both the fraction and the remainder parts (we want 2 rounded fraction digits), so we need at least one additional digit for rounding. So, we first multiply the numerator by 1000, remembering that we must increase the length of the \(\text{Num}\) field by 2 additional bytes:

\[
\begin{align*}
\text{ZAP} &\quad \text{Num,} = \text{P'}47960' \quad \text{Set up dividend} \\
\text{SRP} &\quad \text{Num,}64+3,0 \quad \text{Scale up by 3 digits} \\
\text{DP} &\quad \text{Num,Den} \quad \text{Divide by divisor} \\
\text{SRP} &\quad \text{Num(4)},64-1,5 \quad \text{Shift right one digit and round} \\
\text{Num} &\quad \text{DS PL6} \quad \text{Space for quotient and remainder} \\
\text{Den} &\quad \text{DC P'}123' 
\end{align*}
\]

which gives a result at \(\text{Num}\) of \(X'0389918C086'\). The quotient, \(X'389918C'\), is ready for rounding using an \text{SRP} instruction:

\[
\begin{align*}
\text{ZAP} &\quad \text{Num,} = \text{P'}47960' \quad \text{Set up dividend} \\
\text{SRP} &\quad \text{Num,}64+3,0 \quad \text{Scale up by 3 digits} \\
\text{DP} &\quad \text{Num,Den} \quad \text{Divide by divisor} \\
\text{SRP} &\quad \text{Num(4)},64-1,5 \quad \text{Shift right one digit and round} \\
\text{Num} &\quad \text{DS PL6} \quad \text{Space for quotient and remainder} \\
\text{Den} &\quad \text{DC P'}123' 
\end{align*}
\]

and the rounded result at \(\text{Num}\) is \(X'0038992C086'\), ready for printing to 5 significant digits.

So, the answer to our question “what is the correct number of digits?” depends on how many fraction digits are required for a particular application. So, if we say that the total number of integer and fraction digits needed is \(N=I+F\), and we already know the value of \(I = I_1 + F_2\), so for division the number of fraction digits \(F\) is simply

\[
F = N - I
\]

29.10.5. COBOL and PL/I Notations (*)

High-level languages like COBOL and PL/I keep track of these details for you. Each numeric quantity is explicitly or implicitly declared with a number of integer and fraction digits, and the compiler and its run-time library use that information to produce valid results whenever possible.

They use different terminology than the “I.F” described above:

- COBOL calls the number of integer digits \text{integers} and the number of fraction digits \text{decimals}. Thus,

\[
01 \text{ Number Pic S9(4)V9(2) Packed-decimal Value +1234.56}
\]

declares \text{Number} to have 4 integers and 2 decimals.

- PL/I assigns a \text{precision} \(p\) and a scale \(q\) to fixed-point values: \(p\) is the total number of digits the field can hold, and \(q\) is the number of fraction digits. Thus,
Declare Number Decimal (6,2) Init (1234.56);
assigns p=6 and q=2 to Number. Thus for PL/I, I.F = (p−q).q.

Exercises

29.10.1.(2) Express the I and F values of the three symbols in Figure 319 on page 514 in PL/I notation.

29.11. Example of a Packed Decimal “Business” Computation

To illustrate a “real” packed decimal application, suppose a wholesaler and a retailer complete an order:

1. The retailer orders from the wholesaler 60 high-tech widgets at $74.65 each.
   \( 60 \times 74.65 = 4479.00 \)

2. For this large order, the wholesaler discounts the price by 4.7%.
   \( 4479.00 \times 0.047 = 210.513 \), so the discounted price is \( 4479.00 − 210.51 = 4268.49 \)

3. The wholesaler adds 9.75% local sales tax, and a $4.00 per-item shipping charge.
   \( 4268.49 \times 1.0975 = 4684.67 \); the shipping charge is \( 60 \times 4.00 = 240.00 \), so the total is \( 4684.67 + 240.00 = 4924.67 \).

4. The retailer’s pre-payment of $1000.00 is deducted. The result is the wholesaler’s bill to the retailer.
   \( 4294.67 − 1000.00 = 3294.67 \)

Then, the retailer calculates his necessary markup and the sale price:

5. The retailer calculates his base cost for each item.
   \( 4294.67 \div 60 = 82.07785 \) or \( 82.08 \)

6. He then applies his retail markup (about 37%), adjusted to a sale cost just below one dollar.
   (The markup is \( 82.08 \times 1.37 = 112.4496 \) or \( 112.45 \), and the adjustment is \( 0.54 + 112.45 = 112.99 \))

7. Each item a customer buys must include 9.25% sales tax and a $7.50 recycling fee.
   (The sales tax is \( 112.99 \times 1.0925 = 123.44 \); adding the recycling fee gives the final customer cost: \( 123.44 + 7.50 = 130.94 \))

8. The result is the final cost per item to the customer.

9. The retailer’s gross profit per item is (sale cost)−(base cost).
   \( 112.99 − 82.08 = 30.91 \). The percent gross profit is \( 30.91 \div 82.08 = 0.376 \) or 38%)

We will now see how each step is calculated in packed decimal arithmetic.

29.11.1. The Wholesaler’s Calculation

First, he creates data and work areas, choosing field lengths to hold values and results. The parenthesized values are \( (I.F) \): the number of integer digits and the number of fraction digits. Thus, the width of the field is \( I+\text{f digits} \). (Remember that the number of bytes is \( (I+F) \div 2 + 1 \).)
Next, the wholesaler uses this data and the work areas to calculate the retailer’s bill:

\[
\text{ZAP} \quad \text{WWorkVal,UnitCost} \quad \text{Set up unit cost} \quad X'000000000007465C' \quad (13.2)
\]

\[
\text{*} \quad \text{MP} \quad \text{WWorkVal,WItems} \quad \text{Multiply by no.items ordered} \quad X'000000000447900C' \quad (13.2)
\]

Because the number of items is an integer, there is no change in the number of fraction digits in the product.

\[
\text{ZAP} \quad \text{WDisc,WWorkVal} \quad \text{Copy base cost for bulk discount} \quad \text{X'}00000021051300C' \quad (13.5)
\]

\[
\text{MP} \quad \text{WDisc,Discount} \quad \text{Discounted cost} \quad X'00000000021051C' \quad (13.2)
\]

\[
\text{SRP} \quad \text{WDisc,64-3,5} \quad \text{Rounded bulk discount} \quad X'000000000021051' \quad (13.2)
\]

\[
\text{SP} \quad \text{WWorkVal,WDisc} \quad \text{Calculate discounted cost} \quad X'000000000426849C' \quad (13.2)
\]

The discount has 3 fraction digits, so the number of fraction digits in the product increases to 5, so we shift right 3 places and round to get the correct discount.

\[
\text{ZAP} \quad \text{WSTax,WWorkVal} \quad \text{Copy for calculating sales tax} \quad \text{X'}000000416177775C' \quad (11.6)
\]

\[
\text{*} \quad \text{MP} \quad \text{WSTax,WhlseTax} \quad \text{Wholesaler’s sales tax} \quad \text{X'}00000000041618C' \quad (13.2)
\]

\[
\text{SRP} \quad \text{WSTax,64-4,5} \quad \text{Calculate rounded sales tax} \quad \text{X'}0000004268467C' \quad (13.2)
\]

\[
\text{AP} \quad \text{WWorkVal,WSTax} \quad \text{Add wholesaler’s sales tax} \quad \text{X'}000000000392467C' \quad (13.2)
\]

The sales tax has 4 fraction digits, so the number of fraction digits in the product increases to 6, so we shift right 4 places and round to get the correct tax amount.

\[
\text{ZAP} \quad \text{ShipWork,ShipChrg} \quad \text{Set shipping charge} \quad \text{X'}0024000C' \quad (5.2)
\]

\[
\text{MP} \quad \text{ShipWork,WItems} \quad \text{Times number of items} \quad \text{X'}000000000492467C' \quad (13.2)
\]

\[
\text{AP} \quad \text{WWorkVal,ShipWork} \quad \text{Add shipping charge} \quad \text{X'}000000000392467C' \quad (13.2)
\]

\[
\text{SP} \quad \text{WWorkVal,PrePaid} \quad \text{Subtract retailer’s prepayment} \quad \text{X'}000392467C' \quad (7.2)
\]

Thus, the wholesaler’s bill to the retailer is X’000392467C’, or $3924.67. Note that the instructions must keep track of the decimal point at each step.

### 29.11.2. The Retailer’s Calculation

Now that the retailer has received the widgets and the bill from the wholesaler he must determine what to charge as a retail price, and what his margin of profit will be for each widget he sells.

First, he creates data and work areas, choosing field lengths to hold values and results:
WhlseChg DC PL4′4924.67′ Charge for the full order (5.2)
NItems DC PL2′60′ Number of items ordered (3.0)
BaseCost DS PL4′0′ Base cost per item work area
RMarkup DC PL3′1.37′ Basic retail markup margin (5.2)
RJudge DC PL2′0.54′ Bump up retail price a little (1.2)
Retail DS PL4 Retail advertised price per item
GrossPrf DS PL3′0′ Gross profit per item sold
CustCost DS PL4 Final charge per item to customer
RWorkVal DS PL8 Work area for retail calculations
RetailTx DC PL3′0925′ Sales tax at retailer location (1.4)
Recycle DC PL3′7.50′ Recycling charge per item (3.2)
ItemCost DS PL4 Total customer cost per item

Figure 322. A business calculation in packed decimal, part 3

As in the wholesaler’s calculation, the (precision, scale) of each item are shown.

The retailer can now calculate the retail cost per widget and his expected rate of profit per item.

\[
\begin{align*}
\text{ZAP} & \quad \text{RWorkVal}, \text{WhlseChg} \quad \text{Prepare to calculate base cost} \quad X'000000000447967C' \quad (13.2) \\
\text{DP} & \quad \text{RWorkVal}, \text{NItems} \quad \text{Calculate base cost per item} \quad X'0000000008207C047C' \quad (9.2) \\
\end{align*}
\]

The retailer wants to round the base cost, but SRP won’t work: only if twice the remainder is greater than or equal to the number of items (the divisor) should the quotient be rounded.

\[
\begin{align*}
\text{AP} & \quad \text{RWorkVal}+6(2), \text{RWorkVal}+6(2) \quad \text{Check remainder} \quad X'0000000008207C094C' \quad (1.2) \\
\text{CP} & \quad \text{RWorkVal}+6(2), \text{NItems} \quad 2*\text{Remainder} < \text{NItems} \? \\
\text{JL} & \quad \text{NoRnd} \quad \text{Branch if yes, no roundup} \\
\text{AP} & \quad \text{RWorkVal}(6), =P'1' \quad \text{Round up base cost} \quad X'0000000008208C' \quad (9.2) \\
\text{NoRnd} & \quad \text{ZAP} \quad \text{RWorkVal}, \text{RWorkVal}(L'\text{RWorkVal}-2) \quad \text{Drop remainder} \\
\text{ZAP} & \quad \text{BaseCost}, \text{RWorkVal} \quad \text{Save the base cost per item} \quad X'0000000008208C' \quad (5.2) \\
\text{MP} & \quad \text{RWorkVal}, \text{RMarkup} \quad \text{Find approximate retail price} \quad X'0000000001124496C' \quad (11.4) \\
\text{SRP} & \quad \text{RWorkVal}, 64-2, 5 \quad \text{Round off the two extra digits} \quad X'00000000011245C' \quad (13.2) \\
\text{AP} & \quad \text{RWorkVal}, \text{RJudge} \quad X'000000000011299C' \quad (13.2) \\
\end{align*}
\]

He wants the sales price to seem more “sale-like”, so he adds a value to force the sales price upward to end in .99.

\[
\begin{align*}
\text{ZAP} & \quad \text{Retail}, \text{RWorkVal} \quad \text{Save advertised retail price} \quad X'0011299C' \quad (5.2) \\
\text{MP} & \quad \text{RWorkVal}, \text{RetailTx} \quad \text{Calculate retailer’s sales tax} \quad X'00000000010451575C' \quad (9.6) \\
\text{SRP} & \quad \text{RWorkVal}, 64-4, 5 \quad \text{Round off to dollars/cents} \quad X'000000000001045C' \quad (13.2) \\
\end{align*}
\]

Just as the wholesaler did, the retailer compensates for the four fraction digits in the sales tax by rounding the tax to have two decimal digits.

\[
\begin{align*}
\text{AP} & \quad \text{RWorkVal}, \text{Retail} \quad \text{Add the retail cost} \quad X'000000000012344C' \quad (13.2) \\
\text{AP} & \quad \text{RWorkVal}, \text{Recycle} \quad \text{Add widget recycle charge} \quad X'000000000013094C' \quad (13.2) \\
\text{ZAP} & \quad \text{CustCost}, \text{RWorkVal} \quad \text{Save customer cost/item} \quad X'0013094C' \quad (5.2) \\
\text{ZAP} & \quad \text{RWorkVal}, \text{Retail} \quad \text{Calculate gross profit per item} \\
\text{SP} & \quad \text{RWorkVal}, \text{BaseCost} \quad \text{Subtract base from retail} \quad X'000000000003091C' \quad (13.2) \\
\text{SRP} & \quad \text{RWorkVal}, 3, 0 \quad \text{Position for \% calculation} \quad X'00000000003091000C' \quad (10.5) \\
\text{DP} & \quad \text{RWorkVal}, \text{BaseCost} \quad \text{Percentage gross profit} \quad X'0000376C0004792C' \quad (7.1) \\
\end{align*}
\]

Figure 323. A business calculation in packed decimal, part 4

The third and fourth instructions help calculate a rounded quotient; like binary division, packed decimal quotients are unrounded. If \(2 \times (\text{remainder}) \geq \text{divisor}\), we add 1 to round the quotient.

Finally: the advertised retail cost per widget is $112.99, and with sales tax and recycling charge, total cost per widget to the customer is \(X'0013094C' = $130.94\).

The retailer’s gross profit per item is \(X'0003091C' = $30.91\), and his profit margin is \(X'0000376C' = 37.6\%\).
29.11.3. Comments

As these examples illustrate, doing “realistic” calculations with packed decimal arithmetic can be complicated; you must plan carefully to ensure that field lengths are correct and that edit patterns (described in Section 30) produce correctly formatted results. This “business” calculation can be done much more easily in Assembler Language using decimal floating-point, as we’ll see in Section 35.13; but (for packed decimal arithmetic) many programmers prefer letting a high level language like PL/I or COBOL worry about the details.

Preview of Coming Attractions

Having completed this section, you can understand the difficulties of typical packed decimal arithmetic calculations. Chapter IX will describe Decimal Floating Point arithmetic and data, which greatly simplifies the problems inherent in packed decimal.

29.11.4. Using Integer and Scale Attributes (*)

The assembler can help with packed decimal data containing integer and/or fraction digits, using the Integer Attribute (I’ ) and the Scale Attribute (S’ ) of a symbol. Consider the symbols in Figure 319 on page 514:

ZAP Sum,A c(Sum) = X’0000123C’ = 123.
SRP Sum,64+3,0 c(Sum) = X’0123000C’ = 123.000
AP Sum,B c(Sum) = X’0123456C’ = 123.456

A  DC  P’123.’
B  DC  P’.456’
Sum  DS  PL4  Space for 7 digits

The values of the symbol attributes are shown in Figure 324, where we see that I’ A=3, S’ A=0, I’ B=0, S’ B=3, I’ Sum=7 and S’ Sum=0.

000000  123C  1 A  DC  P’123.’
000002  456C  2 B  DC  P’.456’
000004  Sum  DS  PL4
000008  0300  5  DC  AL1(I’ A,S’ A)
00000A  0003  6  DC  AL1(I’ B,S’ B)
00000C  0700  7  DC  AL1(I’ Sum,S’ Sum)

Figure 324. Integer and Scale Attributes

We could use these values in the SRP instruction to determine the amount of the shift:

ZAP Sum,A c(Sum) = X’0000123C’ (7.0)
SRP Sum,64+(S’ B-S’ A) c(Sum) = X’0123000C’ (4.3)
AP Sum,B c(Sum) = X’0123456C’ (4.3)

Figure 325. Using Scale Attributes in a SRP instruction

In practice, Integer and Scale attributes are used rather rarely, and then mainly in macro instructions.

29.11.1.(2) Show the Integer and Scale Attributes of the following packed decimal data items:

1. P’1024.2048’
2. P’-0.98765’
3. P’+2235058.4’
4. P’72.3456’
29.12. Summary

Some properties of the instructions discussed in this section are summarized in Table 209.

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Generate preferred signs?</th>
<th>Possible interruptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP</td>
<td>Y</td>
<td>Decimal overflow, decimal data</td>
</tr>
<tr>
<td>CP</td>
<td>N</td>
<td>Decimal overflow, decimal data</td>
</tr>
<tr>
<td>DP</td>
<td>Y</td>
<td>Zero divide, decimal data, specification</td>
</tr>
<tr>
<td>MP</td>
<td>Y</td>
<td>Decimal data, specification</td>
</tr>
<tr>
<td>MVO</td>
<td>N</td>
<td>—</td>
</tr>
<tr>
<td>SP</td>
<td>Y</td>
<td>Decimal overflow, decimal data</td>
</tr>
<tr>
<td>SRP</td>
<td>Y</td>
<td>Decimal overflow, decimal data</td>
</tr>
<tr>
<td>TP</td>
<td>N</td>
<td>—</td>
</tr>
<tr>
<td>ZAP</td>
<td>Y</td>
<td>Decimal overflow, decimal data</td>
</tr>
</tbody>
</table>

Table 209. Summary of decimal instruction behavior
The instructions in Table 210 perform useful operations on packed decimal numbers. Along with PACK and UNPK, they are used to convert data among binary, packed decimal, and character formats.

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>4F</td>
<td>CVB</td>
<td>RX</td>
<td>Convert to Binary (32)</td>
<td>4E</td>
<td>CVD</td>
<td>RX</td>
<td>Convert to Decimal (32)</td>
</tr>
<tr>
<td>EB06</td>
<td>CVBY</td>
<td>RXY</td>
<td>Convert to Binary (32)</td>
<td>E30E</td>
<td>CVDY</td>
<td>RXY</td>
<td>Convert to Decimal (32)</td>
</tr>
<tr>
<td>E30E</td>
<td>CVBG</td>
<td>RXY</td>
<td>Convert to Binary (64)</td>
<td>E326</td>
<td>CVDG</td>
<td>RXY</td>
<td>Convert to Decimal (64)</td>
</tr>
<tr>
<td>DE</td>
<td>ED</td>
<td>SS</td>
<td>Edit</td>
<td>DF</td>
<td>EDMK</td>
<td>SS</td>
<td>Edit and Mark</td>
</tr>
</tbody>
</table>

Table 210. Instructions used for converting and formatting packed decimal

The only difference between CVB and CVBY, and between CVD and CVDY, is that the instructions ending with “Y” have signed 20-bit displacements, while the other two have unsigned 12-bit displacements.

30.1. CVD, CVDY, and CVDG Instructions

The CVD and CVDY instructions convert a two’s complement binary number in the rightmost 32 bits of general register R₁ to packed decimal format and store it at the 8-byte second operand in memory. To illustrate, suppose c(GR7)=X‘00000087’, or +135 in decimal. If we execute either of the CVD or CVDY instructions

```
CVD 7,WorkArea
CVDY 7,WorkArea
```

then the packed decimal result at WorkArea will have the value shown.

---

183 On System/360 CPUs, the second operand was required to be aligned on a doubleword boundary; if it wasn’t, a specification exception caused a program interruption. Like many other operand alignment requirements, it was removed in System/370, but doubleword alignment is still a good practice.
Because the second operand field can hold 15 decimal digits, there will always be at least five high-order zeros in the result. The largest magnitude of the first operand is \(-2^{147483648}\), which has ten significant digits. When converted to packed decimal, the result is \(X'00002147483648D'\).

Similarly, CVDG converts the 64-bit binary integer first operand in GG \(R_1\) to a 16-byte packed decimal second operand. Thus, if GG8 contains \(X'4000000000000000'\) (2½),

```plaintext
CVDG 8,WrkArea2 Convert to 16-byte packed decimal
```

- - -

```
WrkArea2 DS 2D Result=X'00000000 00004611 68601842 7387904C'
```

Figure 326. Converting a 64-bit binary integer to packed decimal

then the packed decimal result at \(WrkArea2\) has the value shown.

These three instructions may be thought of as “store” instructions, because the data “moves” from the first operand (a register) to the second (in memory).

Suppose we use CVD to help produce printable decimal values, as in a program that prints a multi-page listing with a page number on each page. Suppose the halfword integer at \(PgNum\) contains the current page number, and we want to put that number (preceded by the characters “Page”) into an area named \(PageNo\).

```
NDigits Equ 5 Max number of digits in page number
LH 0,PgNum Get binary value of page number
CVD 0,WorkArea Convert to decimal
UNPK ZonePgN,WorkArea Unpack to zoned format
OI ZonePgN+1,ZonePgN-1,C'0' Set zone X'F' for last digit
```

- - -

```
WorkArea DS XL8 Conversion work area
PgNum DC H'345' Simulated page number
PageNo DS OCL(5+NDigits) Length for ‘Page nnnnn’
 DC C'Page '
ZonePgN DS ZL(NDigits) Character form of page number
```

Figure 327. Using CVD to format page numbers

UNPK transfers the original sign of the packed operand to the zoned operand, which would be \(X'C'\) in this example. Thus, the OI instruction sets the zone digit in the low-order character of the field, for its correct EBCDIC representation.

This instruction sequence has a minor defect, however: if the number to be printed has fewer significant digits than the size of the field, the result will contain leading zeros. A simple loop can be written to change leading zeros to blanks, but the ED and EDMK instructions provide a more elegant and powerful solution to this problem. (See Exercises 30.1.4 and 30.1.5.)

**Exercises**

30.1.1.(1)+ In Figure 326, the result at \(WrkArea2\) has many leading zero digits. What is the minimum number of zero hex digits in the result from a CVDG instruction?

30.1.2.(1) Why can the 8-byte second operand of a CVD instruction hold 15 digits?

30.1.3.(1) Suppose GR1 contains the maximum negative number \(X'80000000'\), and the instruction

```plaintext
CVD 1,X
```

is executed. Show the contents of 8-byte area named \(X\).

30.1.4.(2)+ Suppose the OI instruction had been omitted in Figure 327. Explain what would happen when the result at \(PageNo\) was printed, given that the page number at \(PgNum\) was first 29, then 30, and then 31.
30.1.5.(2)+ Add a short loop to the instruction sequence in Figure 327 to blank the leading zeros in the page number.

30.1.6.(2)+ For each of these values at Arg,

1. Arg DC F’-1’
2. Arg DC F’2147483321’
3. Arg DC X’77777783’
4. Arg DC C’*’

show the packed decimal result at DecVal after executing these instructions:

L 1,Arg
CVD 1,DecVal
- - -
DecVal DS 0D,XL8

30.1.7.(3)+ For each of these values at Arg2,

1. Arg2 DC FD’-1’
2. Arg2 DC FD’9223372036854775807’
3. Arg2 DC X’B7777783A60D93CA2’
4. Arg2 DC CL8 ‘Ghastly!’

show the packed decimal result at DecVal2 after executing these instructions:

LG 1,Arg2
CVDG 1,DecVal2
- - -
DecVal2 DS 0D,XL16

30.1.8.(4) Write a sequence of instructions to simulate the operation of CVD.

30.2. CVB, CVBY, and CVBG Instructions

The CVB and CVBY instructions perform the inverse operation to CVD and CVDY; similarly, CVBG does the inverse of CVDG. That is, the packed decimal number at the second operand address is converted to two’s complement binary form and the result is placed in general register R1. Thus, they can be thought of as “load” instructions that “move” data from the second operand (in memory) to the first (in a register).

To illustrate, suppose we execute this CVB instruction:

CVB 6,PackNum Result in GR6 = X’FFFFFF79’
- - -
PackNum DC PL8’-135’ X’000000000000135’

The result in GR6 is X’FFFFFF79’, with value −135.

Similarly, if we execute this CVBG instruction

CVBG 9,PackNum2 Convert to 64 bits in GG9
- - -
PackNum2 DC PL16’-123456789012345’

The result in GG9 is X’FFFFFF8FB779F22087’.

All three instructions are subject to two possible program interruption conditions.

- If the second operand field does not contain valid decimal data, a decimal data exception occurs and the Interruption Code is set to 7.
- If the value of the decimal operand is too large to fit in the first operand register, a fixed-point divide exception occurs and the IC is set to 9.
This situation is handled differently for CVB/CVBY and CVBG.

- For CVB and CVBY, the low-order 32 bits of the two’s complement binary result are placed into register R1.
- For CVBG, the operation is suppressed, and register R1 is unchanged.

Suppose an 80-byte record contains numeric data, and we must convert a number on the record from character form to binary and place the result in GR5. Assume the characters are right-justified in an 8-byte field of the record at offset DOff.

DLen    Equ 8  Length of data field
DOff    Equ 72  Offset of start of field
PACK    DWork,Record+DOff(DLen) Pack data to decimal
CVB 5,DWork  Convert to binary value in GR5

- - -

DWork    DS XL8  Conversion area
Record    DC CL75,’,’45678’  80-byte input data record

Figure 328. Converting decimal characters to binary

This technique is adequate for unsigned numbers, or for zoned decimal data in which the sign is “over-punched” in the last digit column of the input field. Greater care is needed when the digits may be preceded by a sign. (See Exercise 30.2.6.)

Exercises

30.2.1.(1)* What will happen if a CVB instruction specifies a second operand containing X’000002147483648C’?

30.2.2.(2)* Suppose we execute the following two instructions. What will happen, and what results will be found at DWork and in GR0?

PACK    DWork,Data
CVB 0,DWork

- - -

DWork    DS D
Data      DC C’123’

30.2.3.(2)* What will happen in the instruction sequence of Exercise 30.2.2 if Data is defined by

Data      DC CL20’123’

30.2.4.(2)* What will happen in the instruction sequence of Exercise 30.2.2 if Data contains four blanks, such as

Data      DC CL4’’

30.2.5.(4) If the binary result of a CVB instruction is too large, an interruption occurs after the low-order 32 bits of the result are put into the first operand register. This means that a certain amount of internal arithmetic apparently had to be performed to a precision of more than 32 bits; what is the minimum number of internal bits required?

30.2.6.(3)* Suppose the datum in the 8-column field in Figure 328 might be preceded by an optional sign character, C’+’ or C’−’. Modify the instruction sequence to place the correctly signed binary result into GR5. (Assume that the number is well-formed: it contains no extra signs, no embedded or trailing blanks, no invalid characters, etc.)

30.2.7.(1) Why do you think the designers of the CVB instruction chose to place the low-order 32 bits of the result into general register R1 even when the fixed-point divide exception indicates that the result is not correct?
30.2.8.(2) Show the resulting value in GR0 for each of these data values at PackData after executing this instruction:

```
CVB 0,PackData
```

1. PackData DC XL8’FFFFFFFC’
2. PackData DC XL8’743915506DF’
3. PackData DC XL8’AFFFFFFFFFFFFFD’
4. PackData DC XL8’9999C’

30.2.9.(3) Write a sequence of instructions to simulate the operation of CVB.

30.2.10.(3) Repeat Exercise 30.2.6, but make no assumptions about correctly formed input data. If an invalid character is found, branch to BadChar with its address in GR1.

### 30.3. Editing Overview

The ED and EDMK instructions are complex. They are related to UNPK: they convert the packed decimal second operand to character form in the first operand. However, that is about all that is similar between UNPK and the editing instructions! Editing can also suppress leading zeros, insert special characters, and do other things that produce readable results.

Both editing instructions are single-length SS-type instructions, as shown in Table 211.

<table>
<thead>
<tr>
<th>opcode</th>
<th>L</th>
<th>B₁</th>
<th>D₁</th>
<th>B₂</th>
<th>D₂</th>
</tr>
</thead>
</table>

Table 211. Format of the ED and EDMK instructions

The length field of these instructions refers only to the length of the first, or pattern, operand (unlike other single-length SS-type instructions in which the lengths of the two operands are considered to be the same). The number of bytes taken from the second operand depends on the contents of both operands.

Editing converts the packed decimal second operand to character (zoned) form under the control of a pattern provided by the first operand, as sketched in Figure 329. The bytes of the pattern provide a picture showing what the edited result should look like; each byte in the pattern represents one character of the result.

![Figure 329. Sketch of an editing operation](image)

This picture is created from four types of information that tell the instruction how to convert the packed decimal second operand into zoned characters. Each byte in a pattern contains one of these five types of information:

1. a Digit Selector (DS) character X’20’;
2. a Digit Selector and Significance Start (SS) character X’21’;
3. a Field Separator (FS) character X’22’;
4. a Message Character (MC), which may have any value other than X’20’, X’21’, or X’22’.
5. a **Fill Character (FC)**, which may have any value.

Each byte in a pattern is called a **Pattern Character (PC)**.\(^{184}\)

The editing process scans the pattern once from left to right, and takes action depending on
- which of the five kinds of pattern byte is encountered, and
- what has happened previously.

To remember what “happened previously”, the CPU uses a single internal bit called the **Significance Indicator (SI)**.\(^{185}\)

The Significance Indicator is not a part of any register or of the PSW, and its value is not accessible to the program except as it influences the progress of an editing operation. It is set OFF at the start of an editing operation, and then it is turned on and off by events that occur during the edit. Its final setting may influence the Condition Code setting when the edit operation completes.

Visualizing patterns is difficult because the three non-message characters (with values X’20’, X’21’, and X’22’) have no printable representation. If we choose a printable character to represent each of them, then we might confuse them with ordinary message characters, because any printable character in a pattern is normally a message character!

We will use this convention: the lower-case letters d, s, and f represent the Digit Selector (DS), Digit Selector and Significance Start (SS), and Field Separator (FS) characters respectively. As before, we’ll use “•” to represent a blank space.

Thus, we might represent the pattern

\[
X’402020202020202120C3D922202120’
\]

by

\[
C’\cdot dd_5sdCRf_0d’
\]

Figure 330. Representation of an editing pattern

The first byte in a pattern is the **Fill Character (FC)**. The CPU saves a copy of this first pattern character for the duration of the editing operation. It is used in various situations to replace other pattern characters. A common choice for a fill character is a blank, as in Figure 330.

To summarize the features described thus far:
1. The first operand is a pattern containing the Fill Character, and one or more Digit Selector, Digit Selector and Significance Start, Field Separator, and Message Characters.
2. The second operand is one or more packed decimal numbers to be converted to zoned format in a manner controlled by (and pictured by) the pattern.
3. The result replaces (overwrites) the pattern with Message Characters, Fill Characters, and zoned decimal digits. Thus the pattern is usually copied first to an editing area.

**Exercises**

30.3.1.(2) For each of the following patterns, identify (1) the Fill Character, (2) Digit Selectors, (3) Significance Start and Digit Selectors, (4) Field Separators, and (5) Message Characters.

1. X’4020202020202120’
2. X’5C2020202020202021202020202020’
3. X’5C402020202020202020202020202020’
4. C’Hello, World!’

30.3.2.(2) An early programming convention represented the DS, SS, and FS characters by ‘,’ (, and ) respectively. Rewrite the pattern of Figure 330 using this convention, and assess its readability.

---

\(^{184}\) z System has had a “PC” since 1966.

\(^{185}\) In some older books and manuals, it was called the *S-Trigger.*
30.4. Simple Examples of Editing

We begin by illustrating the simplest forms of the editing process with a “plausible” example, and then give some more general rules. While the overall operation of ED and EDMK will turn out to be fairly straightforward, it may be difficult initially to understand why and how things are happening.

Suppose we are printing a report having titles and page numbers on each page, and we know there will be at most 900 pages in a report. This means that the two-byte packed decimal number at PgNo can hold the page number without overflow. We could use UNPK to produce a printable character string of the form “Page nnn” with these instructions.

```
UNPK TtlPgN(3),PgNo(2) Convert to zoned format
OI TtlPgN+2,'C'0' Set correct zone on last digit
PgNo DC PL2 '7' 3-digit page number 007+
TtlP DC 'C'Page ' Start of page-number string
TtlPgN DS ZL3 Zoned page number
```

Figure 331. Convert a packed decimal integer to characters using UNPK

This has a defect: small page numbers will have leading zeros, as in “Page 007”. We can use the ED instruction to both unpack the digits and suppress the leading zeros, as shown in Figure 332:

```
MVC TtlPgN(4),PgNPat Move a copy of pattern
ED TtlPgN(4),PgNo Convert to zoned format
PgNo DC PL2 '7' Page number 007+
TtlP DC 'C'Page ' Start of page-number string
TtlPgN DS CL4 Edited result = 'C'***7'
PgNPat DC 'C',3 '20' Pattern = 'C' ddd'
```

Figure 332. Convert a packed decimal integer to characters using ED

Because we will want to print the page number more than once, we must use the MVC instruction to copy the unmodified pattern from PgNPat each time, where it will be replaced by the edited result.

The ED instruction converts the packed operand at PgNo as follows:

1. The first character of the pattern (a blank) is saved as the Fill Character, and the Significance Indicator is set OFF.
2. When the first Digit Selector character is encountered, the first digit of the second operand is examined: if it is zero (as in this case) and the Significance Indicator is OFF, the Fill Character replaces the pattern character.
3. The next pattern character and the next source digit are examined; because no significant (nonzero) digits have been encountered, the Fill Character again replaces the pattern character.
4. Finally, the last pattern character and second operand digit are examined. Because the latter is nonzero, it is converted to zoned format (X'F7'), and the zoned result replaces the pattern character. The Significance Indicator is set ON to show that a significant digit has been found.

The result 'C'***7' contains three blanks: the first is the original Fill Character, and the other two are the suppressed leading zeros.

Now, suppose the page number at PgNo is 700+ instead of 007+. When the ED instruction is executed, the first digit examined is nonzero. The Significance Indicator will be set ON, and
X’F7’ will replace the first Digit Selector character. When the second and third pattern characters are examined, the status of the Significance Indicator shows that the zero digits from the second operand are now significant. They are therefore zoned, and replace the pattern characters. The result will be “Page 700” as desired.

From this simple example, we infer some simple rules about how editing works:

1. If the pattern character is a Digit Selector, the next decimal digit is taken from the second operand.
2. If the Significance Indicator is ON, go to step 5.
3. If the SI is OFF, examine the decimal digit. If it is not zero, set the SI ON and go to step 5.
4. If the SI is OFF and the decimal digit is zero, replace the pattern character (DS) by the Fill Character, and go to step 6.
5. Attach a zone to the decimal digit, and replace the (DS) pattern character with the result.
6. Step to the next pattern character and decimal digit, and repeat until the pattern is exhausted.

This description omits some important considerations, but it shows the basic features of the editing process. The number of decimal digits examined from the second operand is exactly the number of selector characters (DS and SS) in the pattern.

Suppose you now want to print any nonnegative 3-digit decimal number using the technique shown in Figure 332. Everything works unless you try to print 000+: in the figure we assumed that page numbers start at 1, not at zero, so we didn’t have to worry about this case. From the above description it is clear that using the pattern X’40202020’ to edit 000+ gives an all-blank result! If we actually wanted to blank out a zero field, fine: we just discovered how to do it (by accident).

You will normally want to print at least one zero character in such cases. The “Digit Selector and Significance Start” (SS) character is used to force digit significance to begin.

The SS character works exactly like the DS character, except that it also turns the Significance Indicator ON if it was not already on. However, the Significance Indicator is set ON after the source digit has been examined, so significant digits will start (if they haven’t already) in the next digit position! Thus, the SS character actually indicates not the start of significance, but more correctly the “end of insignificance”, the rightmost limit of zero suppression.

Step 4 of the preceding “simple rules” can be revised as follows:

4’. If the SI is OFF and the decimal digit is zero, replace the pattern character (DS or SS) by the Fill Character. Set the SI ON if the pattern character was SS, and go to step 6.

Suppose you need to print the value of the nonnegative binary integer fullword at Num. If the value is zero, a single 0 digit should be printed. Since a fullword integer can be at most 10 decimal digits long, we might plan to use an edit pattern with 10 digit selectors. With a fill character, the pattern would be 11 bytes long.

However, after converting the binary value to packed decimal, we find that the 8-byte decimal field always contains a minimum of 5 high-order zero digits that we want to ignore. We can adjust the second operand address to skip four of the leading zeros, but because the digits taken by the editing instruction always start with the leftmost digit of the second operand, the pattern must contain 11 digit selectors to account for the remaining leading zero.
L 0,Num               Get nonnegative number  
CVD 0,WorkArea        Convert to packed decimal  
MVC LineX,Pat         Move pattern to print line  
ED LineX,WorkArea+2   Start edit with high-order digits

Num     DC   F'1234567890'   Number to be printed  
WorkArea DS   D 8-byte work area for CVD  
Pat     DC   C' .9X'20',X'2120' Pattern = C'•dddddddddsd'  
Line    DC   C' Num=' Start of printable text  
LineX   DS   CL12 Edited result here

Figure 333. Converting a 32-bit binary integer to characters

The pattern at Pat contains 11 digit selector bytes; the next-to-last also starts significance, so the result will have at least one significant digit. The implied length (12) of the symbol LineX supplies the length byte in the MVC and ED instructions.

Exercises

30.4.1.(2)+ In Figure 333, what result will appear at LineX if the pattern at Pat contains only 10 digit selectors?

30.4.2.(2) Suppose a pattern is L bytes long. What is the maximum number of bytes that might be taken from the second operand? The minimum?

30.4.3.(2)+ Suppose we execute these instructions for each of the three indicated values of the pattern. What results will be generated?

\[
\array{c}{MVC \text{ Output,Pattern}} \quad \text{ED Output,Work8+2} \\
\]

Work8 DC X'000000000729413C'  
Output DS CL12

The patterns are defined by

1. Pattern DC C' .11X'20'
2. Pattern DC C'*',X'21',10X'20'
3. Pattern DC C'*',3X'20',X'21',7X'20'

30.4.4.(2) In Exercise 30.4.3, what would have been generated if the second operand of the ED instruction was Work8+1 instead?

30.4.5.(1) What will result in Figure 333 if c(Num) = 0?

30.4.6.(2)+ Which DS characters in the pattern in Figure 333 will always be replaced by the Fill Character?

30.4.7.(2)+ What will happen if the length byte of an ED instruction contains 0 (the pattern is 1 byte long), and the pattern byte is not a DS or SS character, and the operand 2 address is invalid? What will happen if the pattern is longer than one byte but still contains no digit selectors?
30.5. Single-Field Editing

Now that we have a general idea of how editing works, we can give a more detailed description. We’ll investigate the function of the Field Separator (FS) pattern character in Section 30.7.

Each step of an edit operation always gives one of three possible results:

1. a source digit from the second operand is zoned and stored into the pattern in place of a DS or SS character; or,
2. the Fill Character replaces the pattern character; or,
3. the pattern character is left unchanged.

Which of these three results occurs depends on the state of the Significance Indicator and the type of pattern character. If the pattern character is a Digit Selector of either type, the result also depends on whether the source digit is zero.

Message Characters in the pattern are either left unchanged (if the SI is ON) or replaced by the Fill Character (if the SI is OFF). They can be thought of as being “significant” or “not significant” Message Characters.

Suppose we want to print the nonnegative fullword integer at Num as in Figure 333 on page 530, and we want commas to separate every group of three digits (counting from the right). Thus, the binary integer 1234567890 should be edited to form the characters 1,234,567,890. This is done just as before, except that the pattern is now C’•dd,ddd,ddd,dsd’. (Remember from Section 1 on page 15 that we use the • character to represent a blank.)

```
L 0,Num Get number to be printed
CVD 0,WorkArea Convert to packed decimal
MVC LineX,Pat Move pattern to print line
ED LineX,WorkArea+2 Edit 11 decimal digits
- - -
Num DC F’1234567890’ Number to be printed
WorkArea DS XL8 Work area for CVD
Pat DC C’•’,3X’20206B20’,X’2120’ X’6B’ is a comma
Line DC C’ Num=’ Start of printable text
LineX DS CL(Line-Pat) Edited result here
```

Figure 334. Editing a binary integer with separating commas

The Message Character “comma” was written in its hexadecimal form, X’6B’.

Until a nonzero source digit (or the SS pattern character) is encountered, the SI will be OFF, and all pattern characters including the commas will be replaced by the Fill Character, a blank. Thus, if the value at Num is 4095, the first two commas in the pattern will be suppressed, leaving 4,095 as the nonblank part of the result.

30.5.1. Editing Negative Values

We have deferred considering the sign of the second operand, assuming that it was always nonnegative. When the sign code at the end of the packed decimal operand is encountered, the Significance Indicator is set OFF if the sign code is +. This can be used to “fill” characters following the last digit.

For example, suppose you must print the balance in a charge-card account. If the balance is negative, indicating that the customer has a “credit” balance, you should print the word “CREDIT” following the amount. Let the packed decimal number at Balance represent the account balance in cents, so a decimal point must precede the last two digits of the edited result.
Figure 335. Editing a signed number

When the sign code at the end of the second operand is encountered, the SI will be ON because nonzero digits were found in the second operand. Thus, the Message Characters following the last DS in the pattern are significant, and they will not be replaced by the Fill Character. Using • to represent a blank, the result would be

Your•Account•Balance•is•123.45•CREDIT

Now, suppose the customer’s balance is 0032109+, where the + sign code indicates he owes that amount: the word “CREDIT” should not be printed. In this case, the same instructions would produce

Your•Account•Balance•is•321.09

Finally, suppose the customer’s balance is 0000002−, indicating he has a credit of two cents. The SS character in the pattern immediately preceding the decimal point (X’4B’) sets the SI ON, so the decimal point and the two following digits remain in the edited line. The printed result would then be

Your•Account•Balance•is•0.02•CREDIT

30.5.2. Protecting High-Order Fields

When printing negotiable items like paychecks, it is important to “protect” the high-order portion of the field. If we changed the contents of Line to read “Your pay is”, an enterprising programmer could run his paycheck through his own printer and insert some extra “significant” digits to the left of the decimal point, perhaps to make it look like

Your•pay•is•$4,960.02•CREDIT

This is usually prevented by using a nonblank Fill Character such as * to protect the edited result.

Figure 336. Using field protection with ED

and the printed result will be “Dollars•987.65”.

Exercises

30.5.1.(1)+ Which Message Characters set the Significance Indicator ON? Which ones set it OFF?

30.5.2.(1)+ In Figure 335, how would you modify the pattern to ensure that at least one digit appears before the decimal point?
30.5.3.(2) If a packed decimal number is P bytes long, how many Digit Selector and/or Significance Start characters should be in the edit pattern used to format it?

30.5.4.(4) Suppose a packed decimal operand is P bytes long, but you only want to edit N digits. Determine

1. the number of d and s selectors that must be in the pattern, and
2. the offset D from the start of the packed decimal operand that should be specified in the second operand of the ED instruction.

30.5.5.(2) What will result in Figure 334 on page 531 if c(Num) = 0? If c(Num) = 512, will there be a leading comma in the result? Explain.

30.6. The EDMK Instruction

It is often useful to know where the most significant digit of an edited result occurs. For example, a minus sign customarily precedes negative results in integer arithmetic, and a currency symbol ($) might be placed immediately before the first significant digit of a dollar amount. The EDMK instruction may put the address of the first significant digit into general register 1, and then only if the SI is OFF when the first significant digit is stored into the pattern. If the first significant digit is stored after the first SS character in the pattern—that is, if significance is forced—register 1 will remain unchanged. (The flow diagram in Figure 342 on page 537 may help.)

The example in Figure 337 shows one way to insert a currency symbol, but it is incomplete:

```
MVC LPat,PayPat Move pattern to Line
EDMK LPat,PayAmt Edit and Mark result
AHI 1,-1 Decrement GR1 (move left one byte)
MVI 0(1),C'$' Put $ sign before first digit

PayAmt DC P'0098765' Amount to print = $987.65
PayPat DC C',X'20206B2020214B2020' C'•dd,dds.dd'
Line DC C'Pay Exactly' Precedes the 'Amount:' area
LPat DS CL(Line-PayPat) Result = C'•••$987.65'
```

Figure 337. Edited result with a floating currency symbol

This example will not work the way we want if the packed decimal number at PayAmt is 99 or less, because the pattern contains a Significance Start character just before the decimal point which will force significance of the last three pattern characters. Because GR1 would then be unchanged by the EDMK, we must preset its contents to the address of the byte following the Significance Start pattern character, which will be the first significant result character if significance is forced.

```
MVC LPat,PayPat Move pattern to print area
LA 1,LPat+7 Point to 1st significant pat'n char
EDMK LPat,PayAmt Edit and mark result
AHI 1,-1 Move to left of 1st significant char
MVI 0(1),C'$' Put the $ in the result

PayAmt DC P'0000002' Two cents pay for all this work?
PayPat DC C',X'20206B2020214B2020' Same pattern
Line DC C'Pay Exactly' Start of print line
LPat DS CL(Line-PayPat) Result = C'•••••••.02'
```

Figure 338. Edited result with a properly placed floating currency symbol

If we want to print edited integer results with leading signs, we must know which of the “+” and “−” characters to place before the first significant digit. This can be determined by testing the Condition Code at the end of the edit:
The CC can be relied on to give a valid sign indication only if the last source byte taken from the second operand contained a sign code in its right digit.

Suppose we now revise Figure 334 on page 531 to allow values of either sign, with the added requirement that zero values are to be printed with no sign character. (The PrintLin macro is described in “Appendix B: Simple I/O Macros” on page 1001.)

<table>
<thead>
<tr>
<th>CC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>All source digits 0, or no digit selectors in pattern</td>
</tr>
<tr>
<td>1</td>
<td>Nonzero source digits, and SI is ON (result &lt; 0)</td>
</tr>
<tr>
<td>2</td>
<td>Nonzero source digits, and SI is OFF (result &gt; 0)</td>
</tr>
</tbody>
</table>

Table 212. CC settings after ED, EDMK

Exercises

30.6.1.(3) Packed decimal numbers can represent minus zero, but the CC setting after an EDMK instruction only indicates that all source digits are zero. Write an instruction sequence using EDMK to display a correctly signed 4-byte packed decimal number at PackVal even if its value is zero.

30.6.2.(2)+ What CC setting will result from editing the packed decimal operand 000− with the pattern X’C1212020’?

30.7. Editing Multiple Fields (*)

More than one edited result can be produced by a single execution of an ED or EDMK instruction. The fields of the result are separated in the pattern by the Field Separator (FS) character, X’22’. The FS character (a) resets the zero-digits test that will be used to determine the final CC setting (essentially, it resets the CC to 0), (b) sets the SI OFF, and (c) is replaced by the Fill Character. Thus, each field of the pattern can be considered separately from the others; however, only the last field can be “marked” by an EDMK instruction, since the address in general register 1 will refer to the last significant digit stored while the SI was OFF.
To illustrate, suppose there are three packed decimal numbers in successive fields named Hours, Rate, and PayAmt to be edited into a single print line.

<table>
<thead>
<tr>
<th>MVC</th>
<th>LPat,Pat</th>
<th>Move pattern to line</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED</td>
<td>LPat,Hours</td>
<td>Edit all 3 fields at once</td>
</tr>
<tr>
<td></td>
<td>- - -</td>
<td></td>
</tr>
<tr>
<td>Hours</td>
<td>DC PL2′35.5′</td>
<td>Hours worked, in tenths</td>
</tr>
<tr>
<td>Rate</td>
<td>DC PL3′7.50′</td>
<td>Pay rate in dollars/hour</td>
</tr>
<tr>
<td>PayAmt</td>
<td>DC PL4′26625′</td>
<td>Pay amount = $266.25</td>
</tr>
<tr>
<td>Pat</td>
<td>DC X′20204B20′</td>
<td>C′ *dd.d′</td>
</tr>
<tr>
<td></td>
<td>X′22′, X′2020214B2020′</td>
<td>C′ fdds.dd′</td>
</tr>
<tr>
<td></td>
<td>X′22′, X′202020214B2020′</td>
<td>C′ fdddds.dd′</td>
</tr>
<tr>
<td>Line</td>
<td>DC C′ Hours Rate Pay' title line</td>
<td></td>
</tr>
<tr>
<td>LPat</td>
<td>DS CL(Line-Pat)</td>
<td>Space for edited pattern</td>
</tr>
</tbody>
</table>

Figure 3.40. Editing multiple values

And the two lines would then contain

<table>
<thead>
<tr>
<th>Hours</th>
<th>Rate</th>
<th>Pay</th>
</tr>
</thead>
<tbody>
<tr>
<td>35.5</td>
<td>7.50</td>
<td>266.75</td>
</tr>
</tbody>
</table>

While we would like to use EDMK here to insert a “$” character before the first significant digit of the “Pay” field of the result, this may not work. Suppose the amount to be paid is 99 cents or less. Then the address in general register 1 would remain at the address of the first significant digit of the last field in which significance was not forced, which would be the “3” in the “Rate” field of the result!

Even if we had preset register 1 to the address of the decimal point in the last field of the pattern, we could still find ourselves placing the $ sign in the wrong field. Thus, it is rare to use EDMK in editing multiple fields with floating currency symbols unless you can guarantee that no such problems can arise.

**Exercises**

30.7.1.(2) Suppose a pattern contains N digit selectors. What are the maximum and minimum number of bytes that might be taken from the second operand?

30.7.2.(3) Suppose a Field Separator character is encountered in an edit pattern when the next second operand digit to be examined is in the right half of a source byte. Will the next digit selector in the pattern after the FS cause that source digit to be examined, or will the FS pattern character cause the next source digit to come from the left half of the following second operand byte? (You may want to consult the z/Architecture Principles of Operation!)

30.7.3.(2) Suppose you use EDMK to edit a multiple-field pattern. Under what conditions can you assume that GR1 refers to a character in the last field only?

**30.8. Summary Comments on Editing (*)**

Before we give a complete summary of the actions of the ED and EDMK instructions, there are two minor items to consider:

1. In the source bytes brought from the second operand, only valid decimal digits from 0 to 9 may appear in the left digit of a source byte. If a sign code appears in the left half of a source byte, a program interruption will occur, and the Interruption Code will be set to 7. The contents of the result field (and the contents of general register 1 if the instruction is EDMK) is unpredictable.

2. There is no point in trying to overlap the first and second operand fields in an editing operation, because the results are quite unpredictable.
We will summarize the action of the editing instructions in three different ways:

1. Table 213 shows what happens for each of the four different types of pattern characters.
2. In a set of “logical” relations in Figure 341.
3. In a flow diagram in Figure 342.

The abbreviations used are the same as previously introduced, now including ZD (Zoned Digit) and PC (Pattern Character).

The actions caused by each of the four types of pattern character is described in Table 213, where SI=0 means OFF and SI=1 means ON.

<table>
<thead>
<tr>
<th>Pattern Character (PC)</th>
<th>Get Source Digit?</th>
<th>SI</th>
<th>Source Digit</th>
<th>Result</th>
<th>Set SI</th>
<th>Sign code in right digit?</th>
</tr>
</thead>
<tbody>
<tr>
<td>X’ 20’ (DS)</td>
<td>Yes</td>
<td>1</td>
<td>Any</td>
<td>ZD</td>
<td>1</td>
<td>If +, set SI OFF; otherwise, leave it unchanged</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Nonzero</td>
<td>ZD</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Zero</td>
<td>Fill Char</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>X’ 21’ (SS)</td>
<td>Yes</td>
<td>1</td>
<td>Any</td>
<td>ZD</td>
<td>1</td>
<td>If +, set SI OFF; otherwise, leave it unchanged</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Nonzero</td>
<td>ZD</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Zero</td>
<td>Fill Char</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>X’ 22’ (FS)</td>
<td>No</td>
<td>1</td>
<td>—</td>
<td>Fill Char</td>
<td>0</td>
<td>No source byte is examined</td>
</tr>
<tr>
<td>Other (MC)</td>
<td>No</td>
<td>0</td>
<td>—</td>
<td>Fill Char</td>
<td>0</td>
<td>No source byte is examined</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>—</td>
<td>MC</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Fill Character (FC)</td>
<td>No</td>
<td>N/A</td>
<td>—</td>
<td>Fill Char</td>
<td>0</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 213. ED and EDMK treatment of pattern characters

Using the following logical symbols to represent logical operators:

& ➔ AND, | ➔ OR, ¬ ➔ NOT

we can write a simple set of “logical equations” that describe the action of the editing process in this compact form:

\[
\begin{align*}
SI & \land MC \rightarrow MC \\
FS & \mid (\neg SI) & \land MC \rightarrow FC \\
(DS \mid SS) & \land SD=0 & \neg SI \rightarrow FC \quad \text{(insignificant zero)} \\
((DS \mid SS) & \land SI) & \mid SD\neq0 \rightarrow ZD \quad \text{(significant digit)}
\end{align*}
\]

Figure 341. Logical-operation description of the editing process

This compact notation does not describe the setting and resetting of the Significance Indicator, but those actions were discussed in detail earlier.

A flow diagram of the editing process is given in Figure 342, where “SD” refers to a source digit from the second operand.
Figure 342. ED and EDMK operation
The sections of this chapter discuss floating-point number representations and their uses.

- Section 31 introduces the basic concepts of scaled fixed-point and floating-point data, including the hexadecimal, binary, and decimal floating-point data types supported by z System. Then, it describes the floating-point registers and some basic instructions for moving floating-point operands.

- Section 32 describes some general principles of floating-point arithmetic.

- Section 33 examines the hexadecimal floating-point representation of numbers, and describes hexadecimal arithmetic and instructions.

- Section 34 discusses the binary floating-point representation and instructions for doing binary floating-point arithmetic.

- Section 35 discusses the decimal floating-point representation and instructions for doing decimal floating-point arithmetic.

- Section 36 summarizes the three z System floating-point representations, and describes some important differences between mathematical “real” arithmetic and floating-point arithmetic.
31. Floating-Point Number Representation

Why was floating-point arithmetic invented? How did programmers handle data with both integer and fraction parts when only fixed-point binary arithmetic was available? Before we investigate floating-point numbers and arithmetic, a bit of background may help.

31.1. Scaled Fixed-Point Arithmetic

Up to now, most of our examples involving arithmetic have used only integer values, as illustrated in Figure 343.

As we saw in Section 29.10 on page 513, packed decimal arithmetic may frequently need to manipulate values with both integer and fraction parts, as illustrated in Figure 344, where the decimal point is implied (not actually present).

With fixed-point binary instructions, you can use numbers with fractional parts by assuming that a number is part integer and part fraction, with the position of the implicit radix point defined to be somewhere “inside” the number, as in Figure 345.
31.2. Converting Fractions

In “2.3. Converting Integers from One Base to Another (*)” on page 21 we converted integers from one base to another by successive divisions, generating digits in the new base from least to most significant. For fractions, we do the reverse, using successive multiplications to generate digits from most to least significant.

Let the string of digits

\[ 0 . d_1 \, d_2 \, d_3 \, \ldots \, d_n \]

be the representation in some base \( D \) of the fraction \( X \): that is,

\[ X = \sum_{k=1}^{n} (d_k \times D^{-k}) = d_1 \times D^{-1} + d_2 \times D^{-2} + \ldots + d_n \times D^{-n}. \]

For example, the decimal fraction 0.1234 is

\[ 0 . 1\times10^{-1} + 2\times10^{-2} + 3\times10^{-3} + 4\times10^{-4} \]

Now, suppose we want to convert \( X \) from its known representation in base \( D \) to its representation in a new base \( B \): that is,

\[ X = \sum_{k=1}^{m} (b_k \times B^{-k}) = b_1 \times B^{-1} + b_2 \times B^{-2} + \ldots + b_m \times B^{-m}. \]

We know the old and new bases \( D \) and \( B \), and the digits \( d_k \) of the old representation. To find the digits \( b_k \) in the new representation, we do the following:

1. Multiply \( X \) by the new base \( B \). Save the fraction part of the result, and the integer part is \( b_1 \). This can be seen by writing the product as

\[ B \times X = b_1 + [ b_2 \times B^{-1} + b_3 \times B^{-2} + \ldots + b_m \times B^{(-m+1)} \] \]

2. Multiply the saved fraction part (the term in square brackets) by \( X \) again, and save the new fraction part. The generated integer part will be the second digit \( b_2 \).

3. Repeat the process until you have generated as many digits as you need, or until the saved fraction part is zero. Note that the digits are produced in order of decreasing significance.

There is no automatic terminating condition for fractions as for integers, because there are finite-length fractions in one base which do not have finite representations in another; the decimal representation of the fraction 1/3 is a well-known example. But if the saved fraction part becomes zero, the conversion terminates and the representation in the new base has a finite number of digits. Here are some examples.

1. Give the base two representation of the decimal fraction 0.375.
0.375  0.75  0.5
×  2  ×  2  ×  2
0.750  1.50  1.0
b_1=0  b_2=1  b_3=1

Since the fraction part after three multiplications is zero, the binary representation of 0.375 terminates, and we know that 0.375 (base 10) = 0.011 (base 2).

2. Give the base 16 representation of the decimal fraction 0.1.

0.1  0.6  0.6
× 16  × 16  × 16
1.6  9.6  9.6
b_1=1  b_2=9  b_3=9

In this case, repeated multiplication will continue to generate “9” digits, and the base 16 representation will not terminate. We can therefore write

0.1 (base 10) = 0.19999... (base 16) = X’0.19’

where the underscore indicates that the underscored digit (or group of digits) should be repeated indefinitely.\(^\text{186}\) Thus, 2/3 (base 10) = 0.6 (base 10), 0.1 (base 3) = 0.3 (base 10), and 0.1 (base 10) = 0.00011 (base 2).

When we represent such numbers in a computer we must settle on enough digits to represent the number. This means it is very likely there will be some necessary inaccuracy in the result.

3. Give the decimal representation of X’0.FA’.

First, we note that

X’0.FA’ = 15/16 + 10/256 = 250/256 = 0.9765625

Now, we do the conversion arithmetic in base 16; if we do it in decimal we must convert the fraction to base 10 first, which is the object of the conversion!

0.FA  0.C4  0.A8  0.9  0.A  0.4  0.8
× A  × A  × A  × A
9.C4  7.A8  6.90  5.A  6.4  2.8  5.0
b_1=9  b_2=7  b_3=6  b_4=5  b_5=6  b_6=2
b_7=5

so that 0.FA (base 16) = 0.9765625 (base 10), as expected. Converting between decimal and hexadecimal fractions like these can sometimes be done using the tables in the Appendix at “Conversion Tables for Hexadecimal Fractions” on page 997.

Exercises

31.2.1.(3)+ Perform the indicated conversions. For number bases greater than 10, use the hexadecimal “digits” A, B, C... corresponding to 10, 11, 12....

1. Convert 0.1 (base 10) to bases 2 and 16.
2. Convert 0.3142 (base 10) to bases 3 and 14.
3. Convert 0.BBBBB... (base 16) to bases 10 and 15.
4. Convert 3.6 (base 8) to bases 10 and 16.

31.2.2.(2)+ Convert the following fractions from base 16 to base 10, giving the result to at most 7 decimal digits:

1. X’0.DEFACE’
2. X’0.5’

\(^{186}\) The more common mathematical notation for repeated groups of digits is an over-bar (called a vinculum), but the software formatting these notes insists on unnatural acts to print over-bars.
3. \(0.2854\)
4. \(0.33333\)
5. \(0.000005\)

31.2.3.(2) Convert these decimal fractions to hexadecimal, giving at most six significant digits:

1. 0.063725
2. 0.0001
3. 0.987603
4. 0.000005

31.2.4.(1) What is the binary representation of the fraction 1/3?

31.2.5.(2) Convert the decimal fractions 0.1 through 0.9 in increments of 0.1 to base-8 (octal) format.

31.3. Mixed Integer-Fraction Representation

Early computers provided only integer representations and arithmetic, so values with integer and fraction parts were approximated by scaled fixed-point numbers. Programmers had to keep track of the radix point for each variable, and programmed shifts or other corrections for re-scaling after each operation.

For example, Suppose an importer has received a shipment valued at $11749.49, and import tax must be paid at a rate of 5.147 percent. Your job is to calculate the amount of tax to be paid. (Remember, government auditors will be verifying your work!)

First, you calculate the product of the two numbers:

\[11749.49 \times 5.147\% = 604.7462503\]

But the actual calculation using fixed binary or packed decimal arithmetic would be

\[1174949 \times 5147 = 6047462503\]

Knowing that there are two fraction digits in $11749.49 and five fraction digits in 0.05147 (the percent rate), you know that there will be seven fraction digits in the product:

\[604.7462503\]

You would then round this to the nearest cent:

\[\begin{array}{c}
604.7462503 \\
+5 \\
604.75
\end{array}\]

This is fairly easy to program on a processor with instructions that do decimal arithmetic. For example, you can multiply, shift, and round with just a few packed decimal instructions, as in Figure 346.

```
ZAP PDProd,PDAmt Copy amount to work area
MP PDProd,PDTax Multiply by tax rate
SRP PDProd,64-5,5 Convert to cents and round

PDAmt DC P'11749.49' Amount to be taxed
PDTax DC P'.05147' Tax rate
PDProd DS PL8 Resulting product
```

Figure 346. Calculating a tax amount in scaled fixed decimal arithmetic

The result can then be formatted for printing. (See Programming Problem 31.1.)

But what will you do if your CPU supports only fixed binary arithmetic? This difficulty faced many early programmers.
Our little tax example is relatively easy to solve with fixed-point binary arithmetic. We treat all quantities as integers (noting that the product is more than 31 bits long), and remember how many powers of 10 to divide by to give a quotient that is fewer than 32 bits long. Thus, we could use binary arithmetic as in Figure 347.

L	1, Amount	Put amount in cents in GR1
M	0, Percent	Multiply by integer-ized percent
AL	1, Round	Add a rounding factor
JC	12, NoCarry	Skip if no carry occurred
AHI	0, 1	Propagate the carry bit
NoCarry	D 0, Correct	Divide by some power of 10

Figure 347. Calculating a tax amount in scaled fixed binary arithmetic

The quotient in GR1 can then be converted to decimal and formatted.

The actual values of the four constants are for you to determine: first, solve Exercise 31.3.1 and then do Programming Problem 31.2.

31.3.1. Scaled Fixed-Point Binary Arithmetic (*)

Scaled fixed-point binary arithmetic is rarely used today; it has occasional application to calculating time differences using the CPU clock.

The import-tax example above is fairly straightforward. A common problem with mixed integer-fraction data is choosing the scaling to maximize precision while retaining the maximum range of represented values. When we must do arithmetic with scaled numbers of the form \( \text{Int.Frac} \) (with FD fraction digits), we need to know two things:

1. the largest magnitude of \( \text{Int} \), and
2. the number of bits needed to represent \( \text{Frac} \) to FD significant decimal digits.

The number of bits needed to represent \( \text{Int} \) is

\[
\log_2(\text{Int}) + 1
\]

and the number of bits needed for \( \text{Frac} \) is

\[
\log_2(\text{FD}) + 1
\]

where the logarithm values have been truncated to an integer, which accounts for the +1 in each case. Reserving a single bit for the sign, the word length used to represent a signed value like \( \text{Int.Frac} \) must satisfy

\[
\text{word length} \geq \log_2(\text{Int}) + \log_2(\text{FD}) + 2
\]

This inequality sometimes limits the range or precision of values that can be used in fixed-point arithmetic.

Now, consider a more difficult problem: suppose you must calculate the square root of 2 (1.414213562...) using fixed binary or packed decimal arithmetic, to 8 significant decimal digits (1 integer and 7 fraction digits). This can be done using a “Newton-Raphson” iteration. Let A be the number whose square root \( \sqrt{x} \) is desired; if the initial estimate for \( x \) is reasonable, the value of \( x' \) will converge rapidly to the square root of A:

\[
x' = x + (A/x - x)/2
\]

We can use 1 as our initial estimate.
Because there is only a single digit to the left of the decimal point, we can use a binary representation with just a few bits to the left of the binary point, leaving the remaining 28 bits to represent the fraction. For example, if the leftmost four bits of a word are the integer part, the remaining 28 bits will hold the fraction. The number 2 in this representation will be \( X'20000000' \), and the initial estimate 1 will be \( X'10000000' \).

A problem like finding the square root of a small number like 2 is relatively straightforward, because all quantities have the same scaling. More often, the operands have different scale factors, so it takes more effort—as we saw for packed decimal arithmetic—to manage the operands while preserving enough precision in the intermediate and final results.

The need to manage problems like this led to the development of floating-point data and arithmetic, which maximizes precision and manages scaling automatically.

### 31.3.2. Scaled Fixed-Point Binary Constants (*

The Assembler can do some scaling for you. For example, the values of \( A \) and \( x \) in the Newton-Raphson iteration can be written as scaled fixed-point constants:

\[
A \quad \text{DC} \quad \text{FS}(28)'2' \quad 2, \text{scaled by } 2^{28} \quad X'20000000' \\
X \quad \text{DC} \quad \text{FS}(28)'1' \quad 1, \text{scaled by } 2^{28} \quad X'10000000'
\]

Figure 348. Two binary constants scaled by \( 2^{28} \)

where the letter S following the constant type asks the Assembler to scale the result by shifting the nominal value to the left 28 bits. Other values used in the calculation are then scaled accordingly. In effect, we are defining two constants of this form:

\[
\begin{array}{cc}
\text{Int} & \text{Frac} \\
\hline
4 & 28 \\
\end{array}
\]

Suppose we want to do scaled binary arithmetic with numbers having integer parts between 0 and 1000, which will need about 10 bits. And because we might add two numbers near 1000, we'll allocate 11 bits for the integer value and one bit for a sign. This leaves 20 bits for the fraction part.

How should the constant \(+123.4567\) be represented?

1. The integer part of the constant is 123, or \( X'07B' \), so we know that the first three bytes of the constant will be \( X'07B' \). (The sign bit is 0 for +.)
2. Following the steps in Section 31.2 for converting fractions, we find that 0.4567\text{_{10}} = X'74EA4A8C...' . Because only 20 bits are allocated to the fraction, we must round this to five hex digits, giving \( X'74EA5' \)
3. Combining the integer and fraction parts, we find that the constant is \( X'07B74EA5' \).

The main problem is keeping track of the scaling of intermediate quantities during the iterations, and formatting the decimal digits of the result's fraction part. (See Programming Problem 31.3.)

In addition to scaled fixed-point binary constants like those in Figure 348, you can also define scaled constants where the radix point lies outside the constant! For example, suppose you want to represent \( 10^{12} \) in a 32-bit word. But \( 10^{12} \) is greater than \( 2^{31} \), so it might seem impossible. But because there are 12 low-order zero bits in \( 10^{12} \), we can ask the Assembler to create a constant without those 12 zero bits; we must then remember to compensate for them when doing arithmetic with the constant:

\[
\text{TenTo12 DC FS(-12)'1\text{E12}' 10^{12} \text{ scaled by } -12 \text{ bits}
\]

Figure 349. Defining a scaled binary constant \( 10^{12} \)
where the negative scale factor \(-12\) means that the Assembler will shift the binary constant to the right by 12 bits before generating the machine language constant. Effectively, you will generate a constant of this form:

```
32 ──────────── 12 ───────────────/
 Integer

radix point
```

If we want to multiply the scaled constant 2 in Figure 348 by the scaled constant \(10^{12}\) in Figure 349, we can use instruction like these:

```
L 1,A \hspace{1cm} c(GR1) = 2 \times 10^{28}
M 0,TenTo12 \hspace{1cm} Multiply by \(10^{12} \times 2^{(-12)}\)
SRDA 0,16 \hspace{1cm} Compensate for both scale factors

TenTo12 DC FS(-12)`E12' \hspace{1cm} 10^{12} scaled by 12 bits
```

Figure 350. Multiplying two scaled binary numbers

and the 64-bit result in c(GR0,GR1) will be \(2 \times 10^{*12}, \text{ or } X'000001D1\ A94A2000'.\) If this value will be used in later arithmetic, it will once again need to be scaled by \(2^{*(-12)}\) so that it will fit in a single register: \(X'1D1A94A2'.\)

Programming on processors with only fixed-point arithmetic isn’t easy!

**Exercises**

31.3.1.(2) Write DC statements to define the values named *Amount*, *Percent*, *Round*, and *Correct* in Figure 347 on page 544.

31.3.2.(2) What machine language constant will be generated by the DC statement in Figure 349 on page 545?

31.3.3.(1) What machine language constants will be generated for the two packed decimal constants in Figure 346 on page 543, and how long must the work area named *PDProd* be?

31.3.4.(3) Convert these decimal values to hexadecimal, giving at most six significant fraction digits:

1. 6.3725
2. 987.603
3. 314.1592654

31.3.5.(1) With signed 32-bit words, how many different integer-fraction representations can be created? With unsigned 32-bit words?

31.3.6.(2) Referring to the import-tax example in “31.3. Mixed Integer-Fraction Representation” on page 543, what is the minimum number of bits needed to represent the integer portion of the signed quantity +604.7462503?

31.3.7.(2) Given \(\pi = 3.14159265359\), what is its hexadecimal representation as a 32-bit scaled fixed-point binary number with 28 fraction bits?

31.3.8.(4) The binary representation of each power of 10 has as many trailing zero bits as the power. For example, \(10^2 = X'64' = B'1100100'.\) Determine the largest *scaled* power of 10 that can be held in a 32-bit and a 64-bit signed two’s complement constant. Then, determine the largest *unsigned* values for both lengths.
31.3.9.(2) What would happen if you had written the constant TenTo12 in 350 this way?
TenTo12 DC FS(-12)’10E12’ 10**12 scaled by 12 bits

31.3.10.(3) Given a scaled binary constant at Value representing the decimal value 98.234567, convert its value to EBCDIC characters with 5 digits after the decimal point, and with the last digit rounded.

31.4. Why Use Floating-Point Numbers?

Floating-point arithmetic sometimes seems unusual (or even frightening) compared to fixed-point arithmetic. It is also sometimes thought to be prone to errors; but it is no different in that respect from fixed-point arithmetic—and sometimes, better. The examples of computing import tax in Figures 346 and 347 on page 544 actually introduced errors, because the results had to be rounded and presented to less than full precision.

But you will want to be careful. Most floating-point computations are reliable, simple, fast, and accurate, while others can give misleading (or even wrong!) answers.

Because actual data can take many magnitudes, the floating-point number representation helps us manage data of widely varying values. Figure 351 has examples of various constants:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6022 0000 0000 0000 0000 0000.</td>
<td>Avogadro’s Number</td>
</tr>
<tr>
<td>9 46000 0000 0000 0000.</td>
<td>meters/light-year</td>
</tr>
<tr>
<td>2997 76000.</td>
<td>meters/sec (light)</td>
</tr>
<tr>
<td>33136.</td>
<td>cm/sec (sound)</td>
</tr>
<tr>
<td>745.7</td>
<td>Watts/horsepower</td>
</tr>
<tr>
<td>440.</td>
<td>hertz (Concert A)</td>
</tr>
<tr>
<td>16.3872</td>
<td>cc/cubic inch</td>
</tr>
<tr>
<td>3.14159 26535 8979</td>
<td>π</td>
</tr>
<tr>
<td>kilometers/mile</td>
<td>1.60935</td>
</tr>
<tr>
<td>ln 2</td>
<td>.69314 71805 59945</td>
</tr>
<tr>
<td>Coulombs/electron</td>
<td>.00000 0000 0000 00016</td>
</tr>
<tr>
<td>Planck’s const (Joule-sec)</td>
<td>.00000 0000 0000 0000 0000 0000 0000 000066 26</td>
</tr>
</tbody>
</table>

Figure 351. Examples of data with widely ranging values

Managing these widely varying magnitudes with fixed point binary arithmetic is rather difficult. Like most results in fixed-point arithmetic, we are mainly concerned with the most significant digits, and we use a power of some base such as 2, 10, or 16 by which those digits should be multiplied.

Thus, floating-point data and arithmetic have many advantages:

- Because the most significant digits are retained, values have more uniform precision. Scaled fixed-point representations may need to use less precision for the fraction part of a number so they can correctly represent the largest values of their integer part.
- Our scaled fixed-point examples used 32-bit fullwords, but they were very limited in the range of values they could represent. Floating-point variables give up some bits of precision in order to support a much greater range.
- Precision losses involve the least significant digits, which is how we normally do arithmetic with numbers with many digits.
- Floating-point manages scaling automatically; the CPU keeps track of the radix point for you.

For many problems, floating-point arithmetic is by far the simplest approach.

31.4.1. Precision and Accuracy
Unlike the precision of packed decimal and binary integer values, floating-point values can be imprecise if the number of significant digits exceeds what the representation can provide. Because of the much greater range of floating-point values, they can sometimes retain greater accuracy.

Exercises

31.4.1.(1) In Figure 351, represent Avogadro’s Number and Planck’s constant as numbers with one integer digit and several fraction digits, multiplied by a power of 10.

31.4.2.(2) Suppose you must represent both Avogadro’s Number and Planck’s constant in a fixed-point integer-fraction representation. Estimate the number of bits required.

31.5. Floating-Point Representations

A typical floating-point number representation has four elements: a sign, an exponent, its significant digits, and the base or radix used for the significant digits. Figure 352 shows a typical arrangement:

- one bit for the sign of the number (0 = +, 1 = −)
- some bits representing the exponent
- the remaining bits for the significant digits of the number, usually known as the **significant digits**.187

<table>
<thead>
<tr>
<th>sign</th>
<th>exponent</th>
<th>significant digits</th>
</tr>
</thead>
</table>

Figure 352. A typical floating-point representation

These fields need not be arranged in the order shown in Figure 352, but all z System floating-point representations use this basic format.

Designers of floating-point representations must then make several choices:

1. What base or radix should be used for the significant digits?
2. How should the significant digits be represented? Should they be digits of the radix (like the digits 0-9 for radix 10) or should they be encoded in some way?
3. Should a number like 12.34 be stored as the fraction 0.1234 with an exponent +2, or as the integer 1234 with an exponent −2, or with a single integer digit as in 1.234 with an exponent +1, or as 12.34 with a zero exponent?
4. Must all of the significant digits be present in the “significant digits” field, or can some of them be assumed, or combined with other fields?
5. If different data lengths are supported (such as 32 and 64 bits), should the same or different exponent widths be assigned to each?
6. How large a field should be allotted to the exponent? (A larger exponent field means less room for the significant digits.)

187 The significand was sometimes called the “mantissa”, but that word had long been used for logarithms, where the meaning is quite different.
7. Should the exponent’s value be represented in binary or some other radix? (The answer seems always to have been “binary”.)

8. How should the sign of the exponent be represented?

z System supports three sets of answers to these questions: hexadecimal, binary, and decimal, which we’ll investigate in Sections 33, 34, and 35.

To illustrate some possible choices, consider a floating-point representation of a number X, using 4 significant decimal digits. (We’ll ignore what to do about the exponent for a moment.)

First, suppose the significant digits are stored as integers, with the radix point understood to follow the rightmost digit. In Figure 353, X is the value represented, and k is the exponent, a power of 10.

```
X = 123 X = 234 X = 73 X = 7300 X = 0.073
k = 0 k = -1 k = 0 k = 2 k = -3
```

Figure 353. An example of a floating-point representation using 4 decimal digits

Other digit strings and exponents can be used to represent the same value for X; for example, X=123 could be represented by the digits 1230 and exponent -1.

Now, suppose the significant digits are stored as fractions, with the radix point understood to precede the leftmost digit. In Figure 354, X is again the value represented and k is the exponent as a power of 10.

```
X = 123 X = 123 X = 73 X = 73 X = 73
k = 3 k = 4 k = 2 k = 3 k = 4
```

Figure 354. Another example of a floating-point representation using 4 decimal digits

The three representations of the number 73 show how the same number can have different representations.

Many floating-point representations viewing the significant digits as fractions expect the leftmost fraction digit to be nonzero: this means that as many significant digits as possible are kept with the number. This is called normalization: the leftmost significand digit of a nonzero number is nonzero. Thus, some values in Figure 354 are normalized and some are not:

```
Normalized Unnormalized Normalized Unnormalized Unnormalized
.1 2 3 0 .0 1 2 3 .7 3 0 0 .0 7 3 0 .0 0 7 3
k = 3 k = 4 k = 2 k = 3 k = 4
X = 123 X = 123 X = 73 X = 73 X = 73
```

Figure 355. A floating-point representation showing normalized and unnormalized values

Figure 355 shows that unnormalization allows redundant representations. We’ll see that z System hexadecimal and decimal floating-point allow redundant representations, but binary floating-point does not.

---

188 Processor manufacturers previously created many different solutions (we’ll see some in Section 36) but in recent years this wide variety of floating-point formats has converged on a small set of possibilities.
31.5.1. Some Additional Details (*)

Interesting observations

This section will be interesting mainly to mathematically inclined readers.

Mathematically, floating-point numbers are a subset of the rational numbers: that is, they are a subset of all possible fractions (including fractions like 123/1). A value \( X \) is represented by \( \pm M \times r^k \), where

- \( M \) is an integer satisfying \( 0 \leq M < r^p \), an unsigned \( p \)-digit integer
- \( r \) is the radix (or base) of the significant digits of the representation
- \( p \) is the precision of \( M \) (the number of base-\( r \) digits)
- \( k \) is the exponent, the power of \( r \) by which \( M \) is multiplied, typically positive and negative values of approximately equal ranges.

We sometimes say that the set of all such values is known as a floating-point system \( \text{FP}(r,p) \).

We can also use a fraction for the significant digits, so that \( f = M \times r^p \), and the fraction satisfies \( 0 \leq f < 1.0 \). This puts the radix point at the left end of the digits; \( X \) is then represented by \( \pm f \times r^e \), and the exponent \( e = k + p \) (\( k \) was the exponent we used for the “integer-format” representation above). The normalization condition then becomes \( r^{-1} \leq f < 1.0 \), so the most significant digit of \( f \) is nonzero.

\( z \) System uses both floating-point representations: hexadecimal and binary represent the significant digits as fractions, and decimal uses integers. To clarify which is being discussed, we’ll use \( \text{FPF}(r,p) \) to mean a fraction representation, and \( \text{FPI}(r,p) \) to mean an integer representation. Thus, Figure 353 uses the \( \text{FPI}(10,4) \) representation, and Figure 354 uses the \( \text{FPF}(10,4) \) representation.

For example, suppose our \( \text{FPF}(10,4) \) representation allows a single decimal digit for the decimal exponent. The signed numbers \( +123 \) and \( +.0123 \) would be represented as in Figure 356:

\[
\begin{array}{ll}
+ & +3.1230 \\
\end{array}
\quad \text{and} \quad
\begin{array}{ll}
+ & -1.1230 \\
\end{array}
\]

Figure 356. Floating-point numbers with signed exponent

Another issue is rounding. If a number is not exactly representable in a given system, it should be approximated by one of the two nearest\(^{189}\) representable values, preferably the value closest to the exact value. Figure 357 shows some familiar approximations in \( \text{FPI}(10,4) \):

\[
\begin{array}{ccc}
\text{Rounded Down} & \text{Rounded Down} & \text{Rounded Up} \\
3.333. & 6.666. & 6.667. \\
k = -4 & k = -4 & k = -4 \\
X = 1/3 & X = 2/3 & X = 2/3 \\
\end{array}
\]

Figure 357. Examples of approximate floating-point representations

where we chose an approximation from one of the two nearest 4-digit neighbors of the exact value.

We saw in “31.2. Converting Fractions” on page 541 that decimal values like 0.1 cannot be converted exactly to binary or hexadecimal. So we must choose the best approximation of 0.1 in binary or hexadecimal floating-point. For example, if we use a hexadecimal floating-point repre-

---

\(^{189}\) Some numbers are very difficult to convert accurately between bases. Modern conversions are almost always able to choose one of the two nearest neighbors of the exact value. This was not true for many years, and was the source of occasional unhappiness and confusion.
sentation with 6 significant digits, and a binary floating-point representation with 24 significant bits, the best resulting fraction values will be close, but not exact:

\[
\begin{align*}
\text{In FPF}(16,6): & \quad \frac{1677722}{16} = \frac{1677722}{16777216} = 0.100\ 000\ 023\ 84 \\
\text{In FPF}(2,24): & \quad \frac{13421773}{2^7} = \frac{13421773}{134217728} = 0.100\ 000\ 001\ 49
\end{align*}
\]

Most decimal fractions aren’t representable precisely in base 2 or 16.

**Exercises**

31.5.1.(1) Using the FPF(10,4) representation in Figure 356 on page 550 with a single signed decimal digit for the exponent, how many redundant representations of zero are possible?

31.5.2.(1) In the floating-point systems FPF(10,4) and FPI(10,4), how many representations are there of 4.7?

31.6. z System Floating-Point Representations

z System supports three different representations for floating-point numbers: hexadecimal, binary, and decimal, with bases 16, 2, and 10. Historically, base 16 was supported first, then base 2, and then base 10.

For each representation, three data lengths are defined: 4 bytes, or *short*, 8 bytes, or *long*, and 16 bytes, or *extended*. Each has a sign bit, an exponent field, and a significand field for all of the significant digits (hexadecimal) or all but one of the significant digits (binary and decimal floating-point).

```
4 bytes │ │ Short
8 bytes │ │ Long
16 bytes │ │ Extended
```

Figure 358. Three floating-point data lengths

The three z System floating-point number representations have different properties and ways of representing the data. We’ll explore them in Sections 33, 34, and 35.

31.7. z System Floating-Point Registers

z System uses a separate set of registers for floating-point operands and arithmetic. For many years, the original System/360 and its successors supported only the four floating-point registers shown in Figure 359.
This figure raises several questions:

1. Why were there only four floating-point registers while there are 16 general registers?
2. Why were the floating-point registers numbered 0, 2, 4, and 6 rather than 0, 1, 2, and 3?
3. Why are separate floating-point registers used for floating-point operations, rather than using the general registers?
4. The floating-point registers are 64 bits long; how can we access the rightmost 32 bits?

Here are some possible answers:

1. In System/360 days, registers were expensive. Because businesses were the primary market, packed decimal data and operations were expected to satisfy most business needs. The “Floating-Point Feature” could be ordered if floating-point data and arithmetic was needed.
2. Because the floating-point registers are 64 bits long, their similarity to 32-bit general register pairs made it natural to number them the same way.
3. The general registers are needed for base registers and for address and integer arithmetic, so it seemed best to provide separate registers for floating-point operations.
4. Hexadecimal was the only floating-point representation supported for many years; short hexadecimal operands used just the leftmost 32 bits, while long operands used all 64 bits. There was rarely any need to access only the rightmost 32 bits of the floating-point register.

Later, IBM added the remaining 12 floating-point registers; all modern CPUs have 16.

Unlike the general registers, the floating-point registers are addressed only by their leftmost portions. The low-order portion of the register is not separately addressable.

In Figure 358, extended-precision operands are shown as being 16 bytes long; because the floating-point registers are only 8 bytes long, a pair of registers is used. The eight valid register pairs are (0,2), (1,3), (4,6), (5,7), (8,10), (9,11), (12,14), and (13,15), as illustrated by the “bracketing” in Figure 360.

Remember!

Each 64-bit floating-point register is not a pair of 32-bit registers.

---

191 We’ve already seen general register pairing for double-length integer products and dividends.
Figure 360. All sixteen floating-point registers, showing register pairings

The high-order half of an extended operand is in the lower-numbered register, and the low-order half is in the register number two higher.

---

**Remember!**

floating-point register pairs are $R_n$ and $R_n + 2$, not $R_n$ and $R_n + 1$, as with general register pairs.

It may help to visualize floating-point register pairing this way:
You may want to be careful when referencing floating-point registers on a very old CPU that has only the four original registers. A specification exception would be generated by any instruction which tries to refer to any but FPR0, FPR2, FPR4, and FPR6.\textsuperscript{192}

**Exercises**

31.7.1.(1) Why do you think the floating-point registers are not paired in the same way as the general registers? For example, (0,1), (2,3), etc.

31.7.2.(2) Suppose the CPU has the number of a floating-point register to be used in an extended precision operation. What is an easy way to derive the number of the paired floating-point register?

### 31.8. Floating-Point Constants

The Assembler’s DC statement lets you define floating-point constants of the three standard lengths, with these default alignments:

<table>
<thead>
<tr>
<th>Type</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>4 bytes, fullword aligned</td>
</tr>
<tr>
<td>D</td>
<td>8 bytes, doubleword aligned</td>
</tr>
<tr>
<td>L</td>
<td>16 bytes, doubleword aligned</td>
</tr>
</tbody>
</table>

and all three representations, hexadecimal, binary, and decimal, specified by these subtypes:

<table>
<thead>
<tr>
<th>Subtype</th>
<th>Data Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>H or none</td>
<td>Hexadecimal floating-point</td>
</tr>
<tr>
<td>B</td>
<td>Binary floating-point</td>
</tr>
<tr>
<td>D</td>
<td>Decimal floating-point</td>
</tr>
</tbody>
</table>

These are described in the sections discussing each type of representation and arithmetic.

\textsuperscript{192} The Assembler can help by checking register references at assembly time. By default, all 16 registers are valid, but if you want to be sure your program references only those four, see the “AFPR” topic in the Assembler’s Language Reference manual.
Exercises

31.8.1.(1) What DC constant type (and subtype, if any) would you specify for floating-point constants of these types?

- Long decimal
- Short binary
- Extended hexadecimal
- Extended decimal

31.9. Representation-Independent Floating-Point Instructions

While many of the floating-point instructions depend on the representation of the data they manipulate, some work for all three.¹⁹³ That is, you can put any string of bits in a floating-point register; just be careful not to do arithmetic with them!

Worth remembering

These instructions do not depend on the representation of the data in the floating-point registers.

31.9.1. Register-Storage Instructions

The instructions in Table 214 move data between memory and the floating-point registers for data in all three z System floating-point representations. They do the same operations for floating-point register data as do the related instructions (like L, ST) for general register data. The CC is unchanged.

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>78</td>
<td>LE</td>
<td>RX</td>
<td>Load (Short)</td>
<td>ED64</td>
<td>LEY</td>
<td>RXY</td>
<td>Load (Short)</td>
</tr>
<tr>
<td>68</td>
<td>LD</td>
<td>RX</td>
<td>Load (Long)</td>
<td>ED65</td>
<td>LDY</td>
<td>RXY</td>
<td>Load (Long)</td>
</tr>
<tr>
<td>70</td>
<td>STE</td>
<td>RX</td>
<td>Store (Short)</td>
<td>ED66</td>
<td>STEY</td>
<td>RXY</td>
<td>Store (Short)</td>
</tr>
<tr>
<td>60</td>
<td>STD</td>
<td>RX</td>
<td>Store (Long)</td>
<td>ED67</td>
<td>STDY</td>
<td>RXY</td>
<td>Store (Long)</td>
</tr>
</tbody>
</table>

Table 214. Basic floating-point instructions

There are no register-memory instructions to load or store an extended operand into or from a floating-point register pair, and no instructions that load or store multiple floating-point registers.

31.9.2. Register-Register Instructions

Table 215 lists the instructions for moving floating-point operands among the floating-point registers:

¹⁹³ The z/Architecture Principles of Operation refers to them as “radix-independent” or “Floating-Point Support” instructions.
You may have noticed that “Load and Test” doesn’t appear among these representation-independent instructions; we’ll see why such instructions depend on the format of the operands.

LER and LDR are similar to LR and LGR: both LR and LER move only 4 bytes, and LGR and LDR move 8 bytes. LXR moves all 16 bytes, and requires both operands to refer to the lower-numbered register of a floating-point register pair.\textsuperscript{194}

There are two important differences between LR and LER:

1. While LR copies the low-order 4 bytes of one general register to another, LER copies the high-order 4 bytes of one floating-point register to another. For example:

\[
\begin{align*}
    \text{LG} & 0,=X'0123456789ABCDE'  & \text{Load GG0} \\
    \text{LG} & 2,=X'FEDCBA9876543210'  & \text{Load GG2} \\
    \text{LR} & 0,2 \ c(GG0)=X'0123456776543210'  & \text{Load FPR0} \\
    \text{LD} & 0,=X'0123456789ABCDE'  & \text{Load FPR0} \\
    \text{LD} & 2,=X'FEDCBA9876543210'  & \text{Load FPR2} \\
    \text{LER} & 0,2 \ c(FPR0)=X'FEDCBA9889ABCDEF'  & \text{Load FPR0}
\end{align*}
\]

The rightmost 4 bytes of GG0 are changed, but the leftmost 4 bytes of FPR0 are changed.

2. There is no way to reference the 4 low-order bytes of a floating-point register separately from its high-order 4 bytes.

The LCDFR, LNDFR, and LPDFR instructions in Table 215 are different from many similar instructions (such as LCR, LNR, and LPR for binary integers, and LCER, LNER, and LPER for hexadecimal floating-point), because they don’t set the Condition Code. There are other representation-dependent instructions like these that do set the CC.

### 31.9.3. Load-Zero Instructions

Before these instructions were introduced, setting a floating-point register to zero was awkward: either a zero had to be loaded from memory (which is relatively slow), or the register’s content had to be subtracted from itself, which could also be slow (and sometimes cause other undesired side-effects). The three instructions in Table 216 simply set the designated operand register(s) to zero, and do not change the Condition Code.

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>B374</td>
<td>LZER</td>
<td>RRE</td>
<td>Load Zero (Short)</td>
<td>B375</td>
<td>LZDR</td>
<td>RRE</td>
<td>Load Zero (Long)</td>
</tr>
<tr>
<td>B376</td>
<td>LZR</td>
<td>RRE</td>
<td>Load Zero (Extended)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 216. Floating-point Load Zero instructions

The LZER instruction probably isn’t needed, because LZDR will clear the full 8 bytes of the floating-point register; and because you can’t refer separately to the low-order 4 bytes of the register, there seems to be little gain in clearing only the high-order 4 bytes.

\textsuperscript{194} Previously, two LDR instructions were needed to copy an extended-precision operand from one floating-point register pair to another.
31.9.4. GPR-FPR Copying Instructions

Transferring data between general registers and floating-point registers on System/360 required using an intermediate storage area in memory. As CPUs have become much faster relative to memory speeds, those two memory accesses can cause program delays.

The two instructions in Table 217 transfer data directly between general and floating-point registers.

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3C1</td>
<td>LDGR</td>
<td>RXY</td>
<td>Load FPR from GPR</td>
<td>B3CD</td>
<td>LGDR</td>
<td>RXY</td>
<td>Load GPR from FPR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Long)</td>
<td></td>
<td></td>
<td></td>
<td>(Long)</td>
</tr>
</tbody>
</table>

Table 217. Instructions moving data between FPRs and GPRs

As the instruction names indicate, these two instructions move 64-bit operands. For example:

LDGR  4,13  Copy c(GG13) to c(FPR4)
LGDR  1,6   Copy c(FPR6) to c(GG1)

31.9.5. Sign-Copying Instruction

The Copy Sign instruction is unusual: the second operand is copied to the first operand (as for LDR), but with the sign bit of the third operand!

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>B372</td>
<td>CPSDR</td>
<td>RRF</td>
<td>Copy Sign (Long)</td>
</tr>
</tbody>
</table>

Table 218. Copy Sign instruction

The instruction format is

CPSDR R₁, R₃, R₂

The second operand (in R₂) is copied to the first operand (in R₁) with the sign of the third operand (in R₃). Only the long format is supported; but you can use CPSDR for short operands, and for extended operands if you remember to copy the low-order half from the second operand’s higher-numbered register to the higher-numbered register of the first operand.

Thus, you could write

CPSDR 1,5,8  Copy FPR8 to FPR1 with FPR5’s sign

to avoid having to write an LDR instruction followed by other Load and Test and Load Complement instructions to set the correct sign.

Exercises

31.9.1.(1) Write three different short instruction sequences to swap the contents of FPR0 and FPR4.

31.9.2.(1) In Exercise 19.5.1, you showed how the contents of two general registers could be exchanged using logical operations. Show another way to do this without referencing memory or by using logical operations.

31.9.3.(1) If you designed register-memory instructions to load and store extended floating-point operands, or to load and store multiple floating-point registers, what mnemonics might you assign to those four instructions? What possible exception conditions might they recognize?
31.10. Summary

This section has described scaled fixed-point arithmetic, and shown why its difficulties led to the introduction of floating-point.

The representation-independent instructions useful in programs handling floating-point operands are listed in Table 219.

<table>
<thead>
<tr>
<th>Operation</th>
<th>4 bytes</th>
<th>8 bytes</th>
<th>16 bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load (memory)</td>
<td>LE</td>
<td>LD</td>
<td></td>
</tr>
<tr>
<td>Load (register)</td>
<td>LER</td>
<td>LDR</td>
<td>LXR</td>
</tr>
<tr>
<td>Zero (register)</td>
<td>LZERO</td>
<td>LZDR</td>
<td>LZXR</td>
</tr>
<tr>
<td>Copy Sign (register)</td>
<td>CPSDR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Store (memory)</td>
<td>STE</td>
<td>STD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>STEY</td>
<td>STDY</td>
<td></td>
</tr>
</tbody>
</table>

Table 219. Basic Load/Store instructions for floating-point operands

The two instructions in Table 220 transfer data between floating-point registers and general registers.

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Operand 1</th>
<th>Operand 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>LGDR</td>
<td>8-byte GPR</td>
<td>8-byte FPR</td>
</tr>
<tr>
<td>LGGR</td>
<td>8-byte FPR</td>
<td>8-byte GPR</td>
</tr>
</tbody>
</table>

Table 220. Instructions moving operands between GPRs and FPRs

Instructions Discussed in this Section

The instruction mnemonics and opcodes are shown in the following table:

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Opcode</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPSDR</td>
<td>B372</td>
</tr>
<tr>
<td>LCDFR</td>
<td>B373</td>
</tr>
<tr>
<td>LD</td>
<td>68</td>
</tr>
<tr>
<td>LDGR</td>
<td>B3C1</td>
</tr>
<tr>
<td>LDR</td>
<td>28</td>
</tr>
<tr>
<td>LDY</td>
<td>ED65</td>
</tr>
<tr>
<td>LE</td>
<td>78</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Opcode</th>
</tr>
</thead>
<tbody>
<tr>
<td>LER</td>
<td>38</td>
</tr>
<tr>
<td>LEY</td>
<td>ED64</td>
</tr>
<tr>
<td>LGDR</td>
<td>B3CD</td>
</tr>
<tr>
<td>LNDFR</td>
<td>B371</td>
</tr>
<tr>
<td>LPDFR</td>
<td>B370</td>
</tr>
<tr>
<td>LXR</td>
<td>B365</td>
</tr>
<tr>
<td>LZERO</td>
<td>B375</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Opcode</th>
</tr>
</thead>
<tbody>
<tr>
<td>LZDR</td>
<td>B375</td>
</tr>
<tr>
<td>LZXR</td>
<td>B376</td>
</tr>
<tr>
<td>STD</td>
<td>60</td>
</tr>
<tr>
<td>STOY</td>
<td>ED67</td>
</tr>
<tr>
<td>STE</td>
<td>70</td>
</tr>
<tr>
<td>STEY</td>
<td>ED66</td>
</tr>
</tbody>
</table>

The instruction opcodes and mnemonics are shown in the following table:
<table>
<thead>
<tr>
<th>Opcode</th>
<th>Mnemonic</th>
<th>Opcode</th>
<th>Mnemonic</th>
<th>Opcode</th>
<th>Mnemonic</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>LDR</td>
<td>B370</td>
<td>LPDFR</td>
<td>B3C1</td>
<td>LDGR</td>
</tr>
<tr>
<td>38</td>
<td>LER</td>
<td>B371</td>
<td>LNDFR</td>
<td>B3CD</td>
<td>LGDR</td>
</tr>
<tr>
<td>60</td>
<td>STD</td>
<td>B372</td>
<td>CPSDR</td>
<td>ED64</td>
<td>LEY</td>
</tr>
<tr>
<td>68</td>
<td>LD</td>
<td>B373</td>
<td>LCDFR</td>
<td>ED65</td>
<td>LDY</td>
</tr>
<tr>
<td>70</td>
<td>STE</td>
<td>B374</td>
<td>LZER</td>
<td>ED66</td>
<td>STEY</td>
</tr>
<tr>
<td>78</td>
<td>LE</td>
<td>B375</td>
<td>LZDR</td>
<td>ED67</td>
<td>STDY</td>
</tr>
<tr>
<td>B365</td>
<td>LXR</td>
<td>B376</td>
<td>LZDR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Terms and Definitions

floating-point
A data representation with a sign, an exponent, and a set of significant digits.

significant
The numerically significant digits of a floating-point number, whether explicitly or implicitly represented.

radix
The base in which the significant digits of a floating-point number are represented.

exponent
The power of the radix by which the significand of a floating-point number must be multiplied to determine its value.

mantissa
An old term for the significant digits of a floating-point number.\(^{195}\)

floating-point system \(\text{FP}(r,p)\)
A floating-point data representation with a specified radix and number of significant digits, denoted \(\text{FPF}(r,p)\) or \(\text{FPI}(r,p)\).

floating-point system \(\text{FPF}(r,p)\)
A floating-point system with radix \(r\) and \(p\) digits of precision, in which the significant digits are represented as fractions.

floating-point system \(\text{FPI}(r,p)\)
A floating-point system with radix \(r\) and \(p\) digits of precision, in which the significant digits are represented as integers.

Programming Problems

Problem 31.1.(1) Write a program using packed decimal arithmetic to solve the import-tax calculation described in Section 31.3, and print the formatted result.

Problem 31.2.(2) Write a program using fixed binary arithmetic to solve the import-tax calculation described in Section 31.3, and print the formatted result.

Problem 31.3.(4) Write a program using fixed binary arithmetic to evaluate the square root of 2 using the Newton-Raphson iteration described in Section 30.1, with initial estimate 1. (The hardest part of this problem will probably be formatting the fraction part of the result.)

---

\(^{195}\) This term should be avoided because it can be confused with the mantissa of a logarithm, which is quite different.
In this section we examine the basic behavior of floating-point arithmetic, and some factors that you (and CPU designers) must consider. We’ll start with floating-point multiplication.

### 32.1. Floating-Point Multiplication

Suppose we want to multiply two floating-point numbers $A$ and $B$, where $A = a \times 10^{E_a}$ and $B = b \times 10^{E_b}$. Their product is

$$ A \times B = (a \times b) \times 10^{(E_a + E_b)} $$

That is, we multiply the significant digits and add the exponents.

For example, suppose $A$ is 3300 ($33 \times 10^2$) and $B$ is 0.029 ($29 \times 10^{-3}$). Multiplying, we find that

$$ A \times B = (33 \times 29) \times 10^{(2 + (-3))} = 957 \times 10^{-1} = 95.7 $$

If we represent $A$ and $B$ in FPF(10,4) as four-digit base-10 floating-point values with normalized fractions, $A = 0.3300 \times 10^4$ and $B = 0.2900 \times 10^{-1}$. Multiplying gives

$$ A \times B = (0.3300 \times 0.2900) \times 10^{(4 + (-1))} = 0.0957 \times 10^3 = 95.7 $$

The result is numerically correct, but the product fraction 0.0957 is not normalized. To generate a normalized result, the fraction must be shifted left one digit position to form 0.957; and because this increases the fraction by 10, we must reduce the exponent by 1 to compensate. The normalized result is then 0.9570 $\times 10^2$.

This final multiplication correction is called post-normalization, and may be needed if the leading digit of the product fraction is zero. For example, if we multiply the decimal fractions 0.2 and 0.3, the product fraction 0.06 must be shifted left once to obtain a normalized result. If the post-normalizing shift is performed, the exponent is reduced by 1 to account for the shift having multiplied the fraction by 10.

This example shows that multiplication using FPF($r$,p) may require a post-normalization shift. The same product using integer values in FPI(10,4) would give

$$ A \times B = (0032. \times 10^2) \times (0029. \times 10^{-3}) = 0957. \times 10^2 + (-3) = 957. \times 10^{-1} = 95.7 $$

and no post-normalizing shift is needed.
The products in these examples have had few enough digits that we haven’t had to worry about excess low-order (or high-order) digits. We’ll investigate what can be done about them in Section 32.3.

Exercises

32.1.1.(2) In FPF(10,4) using 4-digit internal arithmetic, what are the normalized values of these products?

1. \((0.7654 \times 10^{12}) \times (0.1235 \times 10^{-8})\)
2. \((0.7655 \times 10^{2}) \times (0.7655 \times 10^{2})\)
3. \((0.0333 \times 10^{2}) \times (0.0321 \times 10^{1})\)

32.2. Pre-Normalization of Fraction Operands

Our examples assumed that the operands of a product in an FPF(10,4) representation were normalized, so that at most a single post-normalizing shift is needed. But what if the operands are not normalized? If the numbers A and B had been represented by the unnormalized values

\[ A = 0.0033 \times 10^{6} \]  
\[ B = 0.0029 \times 10^{1} \]

the product will be

\[ A \times B = (0.0033 \times 0.0029) \times 10^{6+1} = 0.0000957 \times 10^{7} \]

If we had retained only the first 4 digits of this product, all significance would have been lost. This product fraction has five leading zeros, so something must be done to preserve the accuracy of the result. This is called pre-normalization: before the operands are multiplied the CPU internally normalizes them and adjusts their exponents; the product fraction is then 0.0957, which needs only a single post-normalizing shift.

Because most floating-point operands are already normalized, the cost of pre-normalization is very low relative to the other steps needed to complete the instruction. Also, if the operand fractions are pre-normalized, we know that at most one post-normalization shift may be needed.

Exercises

32.2.1.(2) In FPF(r,p), what is the largest number of pre-normalizing shifts required for a nonzero operand?

32.2.2.(2) Show the normalized results in FPF(10,4) of each product, with and without pre-normalized operands.

1. \((0.0147 \times 10^{2}) \times (0.0070 \times 10^{3})\)
2. \((0.0073 \times 10^{4}) \times (0.0071 \times 10^{1})\)

32.3. Floating-Point Rounding

We learned to round decimal results by adding 5 to the first digit to be “lost”, propagating any carries. This is sometimes called “arithmetic rounding” or “round half-up” (among other names). It is one of many ways to round a more precise value to a less.

Arithmetic rounding is “biased” in the sense the sums may be slightly too large. For example, suppose you are calculating the sum of the exact values .11115, .11125, .11135, .11145, and .11155, and each exact value must be rounded to four significant digits before final summation. With arithmetic rounding, the intermediate values are .1112, .1113, .1114, .1115, and .1116 and their sum is .5570. But the sum of the 5-digit intermediate values is .55675, which we would round to 4 significant digits as .5568.
In hexadecimal floating-point, arithmetic results are truncated (“rounded toward zero”). Our five intermediate values would be .1111, .1112, .1113, .1114, and .1115, and their sum would be .5565.

An important rounding that reduces bias is “round half-even” (sometimes called “banker’s rounding”). If the value to be rounded lies exactly half way between two closest neighboring numbers in the less-precise representation, we choose the value whose low-order digit is even. With half-even rounding, our five intermediate values would be .1112, .1112, .1114, .1114, and .1116, and their sum is .5568; and this is also the rounded (half-even or arithmetic rounding) value of the exact sum.

Starting with the exact value, we can summarize our examples of these three types of rounding:

- .55675 = exact
- .5565 = truncated (rounded toward zero)
- .5570 = arithmetic (half-up) rounding
- .5568 = half-even rounding

This shows how arithmetic results can depend on the type of rounding used. z System supports some other types of rounding, especially for binary and decimal floating-point arithmetic. We noted above that hexadecimal floating-point arithmetic truncates: its sum would be .5565.

The guard and rounding digits are used only internally, and are not a part of any accessible register. This means that these two digits are not available on completion of an operation, and their values are not carried over from one instruction to the next. You can think of them as being set to zero at the beginning of the operation.

### Exercises

32.3.1.(2)+ Given the two FPF(10,4) numbers X=.1000×10^1 (=1.000) and Y=.5555×10^0 (=.5555), show the results of four iterations of the calculation

\[ X = (X+Y)-X \]

using (a) round to zero, (b) round half-up, and (c) round half-even arithmetic for each iteration.

32.4. Guard and Rounding Digits (*)

Let’s try other examples of multiplication in FPF(10,4) with normalized operands. First, consider 1×1 = (.1000×10^1)×(.1000×10^1). The intermediate product is .0100×10^2, which after normalization becomes .1000×10^1.

Now, consider 1×1.234 = (.1000×10^1)×(.1234×10^1). Since our products are 4 digits long, the intermediate product is .0123×10^2, or .1230×10^1 after normalization. But this is unacceptable: we want to believe that 1×A for any A always yields A.

The solution to this unfortunate situation is to use a guard digit, a single extra digit used internally for intermediate results. With a guard digit, the intermediate product is .0123[4], where the guard digit is shown in square brackets. The post-normalizing shift shifts the intermediate product including the guard digit left by 1 digit position, and the final product is .1234×10^1 as required.

Another example can reinforce the importance of a guard digit. If we have two positive numbers A and B with A < B, then multiplying both by A should mean (according to the rules of algebra) that A^2 < AB. Now, suppose A = .9999×10^0 and B = .1000×10^1, so A < B. Without a guard digit, the products are A^2 = .9998×10^0, and AB = .9990×10^0, which means

---

196 It happened to IBM in 1966, because the very first System/360 processors omitted the guard digit for long hexadecimal arithmetic. The oversight was quickly corrected, along with some other hexadecimal floating-point inconsistencies.
that \( A^2 > AB \) instead! With a guard digit, the products are \( A^2 = .9998 \times 10^0 \) and \( AB = .9999 \times 10^0 \), preserving the required inequality.

A guard digit is needed not only to improve the precision of a result. It might seem that the difference between the results with and without a guard digit is small (and especially so with fractions having many digits), and is therefore negligible. The important observation is not that the answer is slightly incorrect, but that an expected ordering relationship between the operands might be destroyed. It’s quite difficult to write reliable programs if you can’t assume that inequalities between operands behave normally.

Suppose we multiply 509\times151; the product is 76859. In FPF(10,4), \((.5090 \times 10^3)\times(.1510 \times 10^3)\) gives an intermediate product \(.0768[5]9 \times 10^6\), and post-normalization gives the result \(.7685 \times 10^5 = 76850\). But a much better approximation in FPF(10,4) is \(.7686 \times 10^5 = 76860\). To produce this more accurate result, a second internal digit is needed, a rounding digit.

To round, we first post-normalize the intermediate result and then add 5 to the digit (if any) after the last significant digit (propagating carries, of course). The rounded intermediate product fraction \(.0768[5]9\) becomes

\[
\begin{array}{c}
0.76859 \\
+5
\end{array}
\]

\[= 0.76864 \]

The rounding digit is then discarded, giving \(.7686 \times 10^5\), as desired.

If no post-normalizing shift is needed, the guard digit is used as the rounding digit.

In z System processors, hexadecimal floating-point arithmetic provides a guard digit but no rounding digit. Special instructions can round longer results (extended and long) to shorter (long and short), but very few hexadecimal floating-point instructions round their results.

However, z System binary and decimal floating-point arithmetic let you specify several rounding modes, both generally and for individual instructions. We’ll explore the instructions and rounding modes when we discuss binary and decimal floating-point.

**Exercises**

32.4.1.(2) Without a guard digit, what types of operand \( A \) in FPF(10,4) will cause \( 1 \times A \) to be unequal to \( A \)?

32.4.2.(2) For these pairs of FPF(10,4) operands, show their products (a) with no guard or rounding digit, (b) with a guard digit but no rounding digit, and (c) with both guard and rounding digits.

1. \( 155 \times 165 = 25575 \)
2. \( 45 \times 2469 = 111105 \)
3. \( 21 \times 1117 = 23457 \)
4. \( 127 \times 137 = 17399 \)

32.4.3.(3) For these pairs of FPF(10,4) operands, show their products (a) with no guard or rounding digit, (b) with a guard digit but no rounding digit, and (c) with both guard and rounding digits.

1. \( 509 \times 101 = 51409 \)
2. \( 509 \times 555 = 282495 \)
3. \( 509 \times 150 = 779950 \)
4. \( 407 \times 515 = 209605 \)

32.4.4.(2) Repeat Exercise 31.1.1, assuming the operands are pre-normalized. Show the results (a) with a guard digit, and (b) with guard and rounding digits.
32.4.5.(3) Construct three examples of products using FPF(10,4) operands that show differences between rounding before post-normalization and rounding after post-normalization.

32.5. Integer-Based Representations (*)

Integer-based floating-point representations raise a different set of questions. Using the FPI(10,4) notation of Figure 353 on page 549, we can consider several representations of the number 73:

```
 7 3 0 0. 0 7 3 0. 0 0 7 3.
```

<table>
<thead>
<tr>
<th>k</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>73</td>
</tr>
<tr>
<td>-1</td>
<td>73</td>
</tr>
<tr>
<td>0</td>
<td>73</td>
</tr>
</tbody>
</table>

Figure 361. Integer-based representation of 73 in FPI(10,4)

All three representations have the same value, but only the third “looks like” the integer 73, because its exponent is zero (so the lowest-order digit is multiplied by 10^0).

Now, suppose we multiply 73 by 730, both represented as integers with exponent zero. then (0073.×10^0)×(0730.×10^0) is 53290.×10^0. But there are five digits in the product, so to preserve precision we must shift the result one digit to the right, giving 5329.×10^1. The result no longer has the original integer representation, because the lowest-order digit has effectively been multiplied by 10^1. Because the discarded digit was zero, we didn’t worry about rounding. Thus, the product is

```
5 3 2 9 0.
```

```
k = +1
X = 53290
```

and the decimal point lies beyond the precision of the representation.

Now, consider the product 127×137 = 17399. If we start with integer values with exponent zero, the product again has too many digits and must be shifted right once to fit in the 4-digit significand field. Because the digit to be discarded is nonzero, the remaining digits should be rounded, so the result will be 1740.×10^1.

Integer-based floating-point representations are not “normalized” either by requiring the highest-order digit to be nonzero (as in fraction-based representations), nor by requiring the lowest-order digit to be nonzero. Integer-based floating-point is used in z System only for decimal floating-point, which we’ll explore in Section 35.

Exercises

32.5.1.(2) In FPI(r,p), what advantage might there be if you pre-normalize the nonzero operands of a multiplication “to the right” so that the lowest-order digit is nonzero?

32.6. Floating-Point Division

If we calculate the quotient Q of two floating-point operands S and T, Q = S÷T, where

```
S = s×10^Es and T = t×10^Et,
```

the quotient S+T will be

```
S + T = (s + t)×10^{Es-Et}
```

To illustrate, suppose we use the same FPF(10,4) representation for S and T as for A and B above: four fractional base-10 digits and an exponent, and let \( S = 3300 \times 10^4 \) and \( T = 6 \times 10^1 \), so the quotient will be 550. Then

\[
S \div T = (0.3300 \div 0.6000) \times 10^{(4-1)} = 0.5500 \times 10^3 = 550
\]

In this case, the quotient fraction is properly normalized.

Now, suppose we divide 0.5 by 0.2, ignoring exponents. The result “fraction” is 2.5, which is greater than 1, so the result requires a corrective right shift.\(^{197}\) Because shifting the fraction right by one digit position is the same as dividing it by 10, the exponent of the result is increased by 1 to compensate for the shift. This is illustrated in Figure 362:

![Figure 362. Illustrating floating-point division corrective right shift](image)

Division operand fractions are pre-normalized, as for multiplication. If they weren’t, we might divide 0.95 by 0.0005, giving 1900. for the (very unnormalized) quotient! This could cause extra work to produce a correctly normalized result; possibly, the CPU designers would avoid designing the extra circuits and simply indicate an error.

If the divisor \( T \) is zero, the division is improper and the CPU generates a floating-point divide exception. If the dividend \( S \) is zero, the result can be set to zero immediately.

### Exercises

32.6.1.(2) Ignoring exponents, which of the following division operations will require a corrective right shift for the 4-digit quotient? Show the rounded 4-digit quotient fraction.

1. \( .1428 \div .7142 \)
2. \( .6667 \div .6666 \)
3. \( .1277 \div .3456 \)
4. \( .3456 \div .1275 \)
5. \( .9999 \div .9999 \)

### 32.7. Floating-Point Addition and Subtraction

Adding and subtracting floating-point numbers is more complicated than multiplying and dividing. We don’t need to consider subtraction separately: to subtract, the CPU needs only to invert the sign bit of the second operand and then add. Thus, we consider adding operands with like signs or unlike signs.\(^{198}\)

One major difference between division and multiplication on the one hand, and addition on the other, is that in addition neither operand needs to be pre-normalized. This is because

- there is no guarantee (as was the case for multiplication and division) that at most one corrective shift will be needed when the addition is completed, and
- some calculations are simplified by not pre-normalizing; some of these will be illustrated when we discuss hexadecimal floating-point in Section 33.

---

\(^{197}\) This corrective right shift is not a post-normalizing shift in same sense as for multiplication, because “normalization” is usually understood to imply a left shift of the fraction to eliminate leading zero digits.

\(^{198}\) Adding operands with unlike signs is just another name for subtraction.
To illustrate floating-point addition, we'll again use decimal operands to add 124 and 3. In FPF(10,4), these are represented as \(0.1240 \times 10^3\) and \(0.3000 \times 10^1\) respectively. Now we can't simply add the fractions directly, since the true positions of the decimal points don't correspond to the same leading digit positions: that is, adding

\[0.1240 + 0.3000 = (?) 0.4240\]

is clearly not correct. To add the fractions correctly, we must compare the exponents of the operands: if they are equal, the fractions can be added immediately. If the exponents are not equal, the fraction part of the number with the smaller exponent is shifted right by a number of digit positions equal to the difference between the exponents. Because each right shift means that the smaller exponent is increased by 1, it will eventually be equal to the larger.

Thus, the CPU must unnormalize the fraction of the operand with the smaller exponent until the exponents of the two operands are equal. The fraction parts can then be added directly; in our example we would find after shifting the fraction 0.3 to the right by \(3 – 1 = 2\) places and adding, that the result fraction is

\[
\begin{array}{cc}
\text{Before} & \text{After} \\
0.1240 \times 10^3 & 0.1240 \times 10^3 \\
+0.3000 \times 10^1 & +0.0030 \times 10^3 \\
????? \times 10^0 & ????.70 \times 10^3 \\
\end{array}
\]

The result exponent is 3, the exponent of the larger operand, and the value to which both exponents were adjusted.

As another decimal example of adding operands with like signs, suppose we want to add 62 and 77, which would be represented as \(.6200 \times 10^2\) and \(.7700 \times 10^2\). The exponents are equal, so the fraction parts may be added directly, giving \(1.3900 \times 10^2\).

\[
\begin{array}{c}
.6200 \times 10^2 \\
+ .7700 \times 10^2 \\
1.3900 \times 10^2, \text{ or } +.1390 \times 10^3. \\
\end{array}
\]

This “fraction” is not less than one in magnitude, so a single corrective right shift is needed; the exponent is increased by one to account for the right shift. Thus, the result is \(+.1390 \times 10^3\), as desired.

When adding two normalized numbers of like signs, the only post-addition correction that may be needed is a possible right shift of the fraction by one digit position, with an accompanying increase of the exponent or characteristic by one.

What happens if the operands have exponents with a larger difference? Suppose we add \(.1234\) and \(.00008\), which in FPF(10,4) have representations \(.1234 \times 10^0\) and \(.8000 \times 10^{-4}\). Because the exponent difference is 4, we must shift the smaller operand right 4 places:

\[
\begin{array}{c}
.1234 \times 10^0 \\
+ .00008 \times 10^0 \\
.12348 \times 10^0 \\
\end{array}
\]

As with multiplication, discarding the extra rightmost digit would give a less accurate result; some types of floating-point arithmetic use the extra digit position to round the result to \(.1235 \times 10^0\).

If the exponent difference is large enough, the smaller operand would be shifted so far to the right that its digits can’t contribute to the sum. Thus, the CPU can compare exponents to quickly determine that it can deliver the larger operand as the result without doing any arithmetic.

Adding numbers with unlike signs proceeds the same way: the fraction part of the operand with the smaller exponent is right-shifted a number of digit positions equal to the difference of the exponents. The subtraction (“negative addition”) of the two fractions is then performed, and the sign of the result is noted.

Since the result fraction can be smaller in magnitude than the larger of the two original operands, we may find some leading zero digits in the result. If a normalized result is desired, the fraction digits are shifted left (post-normalized) and the exponent is decremented by the number of left
shifts performed. (Sometimes it’s useful to retain the unnormalized result; we’ll see examples when we discuss hexadecimal floating-point.)

For example, suppose we add $+72 \times 10^2$ and $-67 \times 10^2$. Because the exponents are equal, no operand shift is needed. Then, the steps of the addition are these:

\[
\begin{align*}
+ & .7200 \times 10^2 \\
- & .6700 \times 10^2 \\
+ & .0500 \times 10^2
\end{align*}
\]

This example shows that adding numbers of unlike signs can generate an unnormalized result. If a normalized result is required, the result would be $+.5000 \times 10^1$, as expected. Similarly, we can subtract $99 \times 10^2$ from $102 \times 10^3$. After shifting the operand with the smaller exponent to the right by one digit position, the steps are shown in this example:

\[
\begin{align*}
+ & .1020 \times 10^3 \\
- & .0990 \times 10^3 \\
+ & .0030 \times 10^3, \text{ or } .3000 \times 10^1.
\end{align*}
\]

and two shifts are needed to normalize the result.

**Exercises**

32.7.1.(2) For each of these differences in FPF(10,4) arithmetic, show the result (a) without guard and rounding digits, (b) with a guard digit but no rounding digit, and (c) with both rounding and guard digits.

1. $(.7435 \times 10^3) - (.9621 \times 10^1)$
2. $(.7435 \times 10^1) - (.6994 \times 10^1)$
3. $(.1043 \times 10^5) - (.9527 \times 10^4)$
4. $(.1000 \times 10^9) - (.9992 \times 10^{-2})$

32.7.2.(1) In describing addition with unlike signs, the text above states “... the result fraction can be smaller in magnitude than the larger of the two original operands...”. Why does it not state “... the result fraction is smaller in magnitude...”?

32.7.3.(2) In FPF(10,4), show the intermediate steps and the results in calculating the following quantities. (1) $9 \times 9$, (2) $9 - 9$, (3) $643 - 552$, (4) $2/3$, (5) $28 - 32$.

### 32.8. Floating-Point Precision

You may have learned in a mathematics class about what mathematicians call “real” numbers that have unlimited precision and magnitude. But in our “realistic” world, we must deal with numbers having finite precision—limited numbers of digits. This is familiar to us; the import-tax example in Section 31.3 on page 543 is typical of everyday calculations.

Floating-point arithmetic is necessarily “realistic” because data items have finite numbers of digits. When we want to know the precision of a floating-point number, we need to know the precision of its representation.

We’ll use values in FPF(10,4) to illustrate. Ignoring exponents for the moment, consider the fraction $.1000$: we might say it has a precision of 4 decimal digits. The next larger value is $+.1001$; the relative difference between the two is $+.0001 + .1000$, or $10^{-3}$. Somehow, our four digits of precision has become three!

---

199 If you ever had to follow a mathematics proof using “deltas” and “epsilons”, you’ll remember that they can be arbitrarily tiny.
The relative size of a one-digit change in the rightmost digit of a floating-point number is sometimes called a “Unit in the Last Place”, or an “ulp” for short. An ulp is defined by

\[ \text{ulp}(x) = \text{successor}(x) - x \]

where the successor of a floating-point number is the next larger value. This is the “spacing” between neighboring values.

Because the size of an ulp depends on the size of the number, it may be more useful to know its relative size. The relative size of an ulp is

\[ \text{ulp}(x) / x \]

This is the relative weight of the low-order digit of the number \( x \).

In FPF(10,4), \( \text{ulp}(.1000 \times 10^6) \) is \( 10^2 \), and \( \text{ulp}(.1000 \times 10^{-6}) \) is \( 10^{-10} \); but the relative size of both ulps is about \( 10^{-3} \).

But now consider the fraction .9998: its successor (the next larger value) is .9999, so their relative difference is \( .0001 \div .9998 \), or almost \( 10^{-4} \). So, the relative size of an ulp can vary by as much a factor of 10, the radix of the representation.

This behavior applies to any floating-point representation using radix \( r \): the relative size of an ulp can vary between \( r^{-p} \) and \( r^{-p+1} \), so its size can vary by as much as \( r \). Thus the relative precision of a floating-point representation is best described as \( r^{-p+1} \), and the precision of a \( p \)-digit decimal fraction is not \( 10^{-p} \), but \( 10^{-p+1} \).

As we saw for values in FPF(10,4), the precision of a floating-point number is sometimes estimated (incorrectly) as the relative value of its lowest-order digit. For example, in FPF(16,6) a short hexadecimal floating-point number has six hexadecimal digits, so the relative value of its rightmost digit is

\[ 16^{-6} = 0.00000059604644775390625 = 5.96 \times 10^{-8} \]

This has sometimes led people to say that a short hexadecimal floating-point number can accurately represent seven decimal digits. But because the precision of the low-order digit may be smaller:

\[ 16^{-5} = 0.0000095367431640625 = 9.54 \times 10^{-7} \]

It’s much safer to say that only six decimal digits can be accurately represented.

The question “How many decimal digits does this floating-point number represent?” also involves issues of converting between decimal and the floating-point radix; we’ll discuss this topic more fully in Section 36.

**Exercises**

32.8.1.(2) Estimate the largest relative size of an ulp in each floating-point representation:

1. FPF(16,14)
2. FPF(2,24)
3. FPF(10,34)

---

200 It’s more usual, and somewhat more correct, to define

\[ \text{ulp}(x) = \min[ \text{successor}(x) - x, x - \text{predecessor}(x) ] \]

where the predecessor is the number with the next smaller value.

201 This effect is sometimes called “wobbling precision”.

568 Assembler Language Programming for IBM z System™ Servers  Version 1.00
32.9. Floating-Point Range

We will use positive numbers in the FPF(10,4) representation to illustrate limits on the size of floating-point data. It may help to refer occasionally to Figure 363, where the results of the following examples are indicated by “keys” like this: 1

We will also use \([\text{exponent}] || \text{fraction}\) to represent a floating-point value, where the exponent is a signed decimal digit. We’ll call the maximum allowed exponent “Emax”, and the minimum allowed exponent “Emin”. In these examples, Emax=+9 and Emin=−9. This means that the largest normalized value is \([+9] || +.9999\) (called “Max” or “MaxReal” 6), and the smallest normalized value is \([-9] || +.1000\) (called “Min” or “MinReal” 7).

Floating-point numbers with too-large exponents can’t be represented. These exponent range violations are called exponent overflow (the exponent is positive, and its value is greater than Emax) and exponent underflow (the exponent is negative, and its value is less than Emin).

1. The very large number \([+9] || +.5000\) multiplied by itself gives \([+18] || +.2500\), which generates an exponent overflow 1 because the exponent +18 is greater than Emax.

2. Similarly, the very small number \([-9] || -.5000\) multiplied by itself gives \([-18] || +.2500\], which generates an exponent underflow because the exponent is less than Emin. 2

These two examples show that products and quotients of “normal” numbers can generate results with double the allowed exponent range.

3. Adding the very large number \([+9] || +.9000\) to itself generates \([+10] || +.1800\]. The result has an exponent one larger than Emax, which shows that the exponents of sums of “normal” numbers can overflow Emax by 1. 3

4. Subtracting the very small number \([-9] || +.1000\) from its next larger value \([-9] || +.1001\] generates \([-12] || +.1000\]. Because our precision “p” is 4, this example shows that differences of “normal” numbers can generate exponents as small as Emin−(p−1). 4

5. Although this normalized result has caused exponent underflow, some floating-point systems support operations that generate unnormalized results for some arithmetic operations. If \([-12] || +.1000\] is denormalized by shifting the fraction right three places and adding 3 to the exponent, the resulting value is \([-9] || +.0001\). 5

This is the smallest nonzero value in our FP(10,4) representation. This denormalized minimum value is sometimes called “DMin”.

Multiplying \([-5] || +.5000\) by itself generates \([-10] || +.2500\]. The normalized result has created an exponent underflow, but denormalizing the fraction by one digit creates the representable value \([-9] || +.0250\].

The two values \([-9] || +.0001\] and \([-9] || +.0250\] have valid exponents but unnormalized fractions; they are sometimes called “denormal” or “subnormal” numbers.

Exponent overflow and underflow are serious conditions, and it’s important to handle them carefully. Operations on overflowed values are difficult to manage. Sometimes the exponent of the result has been adjusted to lie between Emin and Emax, so you must be careful not to continue calculations with the adjusted value.

Sometimes overflowed results may be set to values like MaxReal, MinReal, a bit pattern representing infinity, or zero, and underflows may be set to zero.

MaxReal is sometimes mistakenly called “infinity”, but MaxReal is very different from the mathematical concept of \(\infty\):

- \(\infty / 2 = \infty\), but MaxReal/2 is finite
- \(\infty \times 0\) is meaningless, but MaxReal\(\times 0 = 0\)
Figure 363. Exponent range of representable and computable values

Exercises

32.9.1.(2) Using our FPF(10,4) representation with a single signed decimal digit for exponent, create three pairs of numbers such that dividing the first number by the second generates

1. an overflowed result with exponent $2 \times E_{\text{Max}}$,
2. an underflowed result with exponent $2 \times E_{\text{Min}}$, and
3. an underflowed result that can be denormalized to have exponent $E_{\text{Min}}$.

32.9.2.(3) Show the results of these operations in FPF(10,4), and indicate whether the result is normal, overflowed, underflowed, or can be denormalized to have exponent $E_{\text{Min}}$. Assume that both guard and rounding digits are used.

1. $[+8]+.4946] + [+8]+.5429$]
32.10. Exponents and Characteristics

The examples above used exponents with a sign and a single decimal digit having values from \(-9\) to \(+9\). If the sign and digit were represented in binary on a “real” computer, we would need one bit for the sign and 4 bits for the digit. But with the same 5 bits, we can represent signed binary numbers from \(-16\) to \(+15\). This greater range of exponent values shows why floating-point data representations use binary exponents.

All z System floating-point systems use a form of exponent representation called a characteristic. Because exponents can take both positive and negative values, internal arithmetic involving the exponent is simplified by adding a bias that makes the characteristic an unsigned number.

This eliminates the problems of dealing with two different signed values in a single number (the significand’s + and the exponent’s −) and makes it easier to handle and detect both normal and abnormal conditions. When we multiply two numbers, one bias value is subtracted and then the characteristics are added; if a carry is detected after the characteristic addition, we know that an exponent overflow has occurred, and if the result would be negative we know that an exponent underflow has occurred.

Similarly, in division we add one bias value and subtract the characteristic of the divisor; and for addition and subtraction, the difference in characteristics determines the number of places the smaller operand must be shifted.

To illustrate, suppose we decide to restrict our decimal exponent to a single unsigned digit. If we choose \(E_{\text{max}} = +4\) and \(E_{\text{min}} = -5\), we need to add a +5 bias for unsigned characteristic values between 0 and 9. The number 100 previously represented as \([+3||+1.000]\) in this new FPFa(10,4) representation would be \([+8||+1.000]\). Similarly, the true \(\text{MaxReal} \ [+9||+.9999]\) would be represented as \([+4||+.9999]\) and the true \(\text{MinReal} \ [0||+.1000]\) would be represented as \([-5||+.1000]\).

If we multiply this proposed \(\text{MaxReal}\) by itself, the characteristic of the intermediate result would be \(+18-5\), or \(+13\), corresponding to an exponent \(+8\). Because \(E_{\text{max}} = +4\), an exponent overflow condition would be recognized. Similarly, if we add this \(\text{MaxReal}\) to itself, the intermediate result would be \([+10||+.1000]\) because the rounded fraction was shifted right one position and the characteristic was incremented by one. The characteristic \(+10\) corresponds to an exponent \(+5\), which exceeds \(E_{\text{max}}\) by 1.

The choice of a bias value not only determines the range of representable values, but influences arithmetic using those values. For example, suppose we divide 1 by this proposed \(\text{MinReal}\): if we use true exponents for a moment, we find

\[
[+1||+.1000] \div [-5||+.1000] = [+7||+.1000]
\]

But this number is about 100 times larger than \(\text{MaxReal}\)!

The solution to this “range asymmetry” is to choose the bias to be 4 instead of 5. Now, in this updated FPFb(10,4) representation, \(+\text{MaxReal}\) would be \([+5||+.9999]\) and \(+\text{MinReal}\) would be \([-4||+.1000]\). Now, if we divide 1 by the new \(\text{MinReal}\), the result (again using true exponents) is

\[
[+1||+.1000] \div [-4||+.1000] = [+6||+.1000]
\]

and this result is just a tiny bit larger than \(\text{MaxReal}\).

These examples show how the choice of bias can influence the range of computable results. The bias is usually chosen to try to minimize range asymmetries.

**Exercises**

32.10.1.(2) Short hexadecimal floating-point is a FPF(16,6) representation with \(E_{\text{max}}=+63\) and \(E_{\text{min}}=-64\), with characteristic bias \(+64\). Show the hexadecimal values of Max and Min.
32.10.2.(2) Using the same representation as in Exercise 32.9.1, estimate its range asymmetry.

32.10.3.(3) Review Exercise 32.9.1. Then, estimate the range asymmetry if the same exponent range is used with characteristic bias +65. Also, estimate the values of MaxReal and MinReal.

32.11. Summary

This has been a brief overview of floating-point arithmetic. The examples we’ve seen represent the behavior of the three floating-point representations used in z System, although each has its variations on the themes described in this section.

Terms and Definitions

bias
A fixed value added to an exponent so that the exponent field always contains a nonnegative value, the characteristic.

characteristic
The true exponent plus the bias.

MaxReal
The largest representable floating-point magnitude, also called Max.

MinReal
The smallest representable floating-point magnitude. If normalized, it is also called Min; if denormalized, it is also called DMin.

exponent overflow
A condition arising when the exponent of a calculated result is too large to be contained in its floating-point representation.

exponent underflow
A condition arising when the exponent of a calculated result is too small to be contained in its floating-point representation.

normalization
A process of ensuring that the most significant digit in a fraction-based floating-point representation is nonzero.

pre-normalization
A process of normalizing the operand or operands before operating on it or them.

post-normalization
A process of normalizing the result operand after operating on it.

denormalization
A process of shifting the result fraction of a floating-point number to the right by enough digit positions so the exponent will lie in a representable range.

guard digit
An extra internal digit used to increase the accuracy of a calculated floating-point result.

rounding digit
An extra internal digit used to help correctly round a calculated floating-point result.

ulp
An abbreviation for “unit in the last place”, a measure of the relative precision of a floating-point number.
33. Hexadecimal Floating-Point Data and Operations

This section examines the hexadecimal floating-point ("HFP") representation and the instructions for hexadecimal floating-point arithmetic. Hexadecimal floating-point was introduced with the original System/360, and is the oldest of the three z System floating-point representations.

33.1. Hexadecimal Floating-Point Data

The hexadecimal floating-point representation uses hexadecimal fraction digits and a binary exponent representing a power of 16. All significant digits are present; none are implied. A number X in hexadecimal floating-point form is

\[ X = f \times 16^e \]

where "f" is a fraction with value less than one, and "e" is a positive or negative binary integer exponent with value between \(-64\) and \(+63\), so that

\[-64 \leq e \leq +63\]

For example, the number 1 can be represented in decimal as \(100 \times 10^{-2}\), \(1.00 \times 10^0\), and \(0.0001 \times 10^4\), and in hexadecimal as \(X'100'\times16^{-2}\), \(X'1'\times16^0\), and \(X'0.0001'\times16^4\). The normalized short floating-point form is \(X'.100000'\times16^1\).

Figure 364 shows the three hexadecimal floating-point formats. The sign bit S is 0 for positive numbers and 1 for negative numbers. The exponent is represented as an unsigned characteristic in two's complement form, obtained by adding a bias 64 to the exponent:

\[
\text{characteristic} = \text{exponent} + 64 = \text{exponent} + X'40'
\]

Thus, the characteristic satisfies

\[ 0 \leq \text{characteristic} \leq 127 \]

The sign and seven-bit characteristic occupy the first byte of the number, and the magnitude of the fraction is carried in the remaining bytes, as shown in Figure 364.
The short-format fraction has 6 hexadecimal digits, the long-format fraction has 14, and the extended-format fraction has 28. The high-order byte of the second portion of the extended format is ignored.202

To illustrate a short hexadecimal floating-point representation, consider the value +123.4567 that we converted to scaled fixed-point binary in Section 31.3.

1. The integer value 123 = \texttt{1111011}_2, giving the first two digits of the hexadecimal fraction. Because the significand is a fraction, 123 must be represented as \texttt{.7} \times 16^2. Thus, we know that the exponent is +2 and the characteristic is \texttt{42}.

2. The fraction value 0.4567 = \texttt{.74EA4BA...'}, which rounds to \texttt{.74EA}.

3. We now combine the parts:
   - The sign is +, so the first bit is zero.
   - The characteristic is \texttt{42}'.
   - The hexadecimal fraction is \texttt{.74B7}.
   - The converted representation is \texttt{427B74EA}.

Table 221 summarizes the properties of hexadecimal floating-point numbers. The column headed “Precision” gives the number of hexadecimal digits in the fraction.

<table>
<thead>
<tr>
<th>Byte</th>
<th>Char. (bits)</th>
<th>Min exp.</th>
<th>Max exp.</th>
<th>Char. Bias</th>
<th>Precision</th>
<th>Max Norm. (Max)</th>
<th>Min Norm. (Min)</th>
<th>Min Denorm. (DMin)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>7</td>
<td>-64</td>
<td>+63</td>
<td>+64</td>
<td>6</td>
<td>7.2\times10^{+75}</td>
<td>5.4\times10^{-79}</td>
<td>5.1\times10^{-85}</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>-64</td>
<td>+63</td>
<td>+64</td>
<td>14</td>
<td>7.2\times10^{+75}</td>
<td>5.4\times10^{-79}</td>
<td>1.2\times10^{-94}</td>
</tr>
<tr>
<td>16</td>
<td>7</td>
<td>-64</td>
<td>+63</td>
<td>+64</td>
<td>28</td>
<td>7.2\times10^{+75}</td>
<td>5.4\times10^{-79}</td>
<td>1.7\times10^{-111}</td>
</tr>
</tbody>
</table>

These rules determine a unique representation for a normalized number \(X\):

1. If \(f = 0\), and \(e = -64\), then \(X\) is a true zero; that is, everything except possibly the sign bit \(S\) is zero.

2. If \(f = 0\) and \(e > -64\), then \(X\) is a pseudo-zero (the characteristic is nonzero).

3. If \(1.0 > f \geq 1/16\), then \(X\) is said to be normalized (the most significant fraction digit is nonzero).

202 The unused bits of the extended format were used to greatly extend the exponent range in a special form called the “Extended Exponent Range Representation”, or “XEXP”. It was implemented only in software.
However, the representation of \( X \) could be unnormalized:

4. If \( \frac{1}{16} > f > 0 \), then \( X \) is unnormalized (there is at least one leading zero digit in the fraction).

A number \( X \) has a unique normalized representation, and may have several unnormalized representations with the same value. For example, we can represent the number 1.0 in several ways: only the first is normalized:

\[
\begin{align*}
41100000 & \quad 42010000 & \quad 43001000 & \quad 44000100 & \quad 45000010 & \quad 46000001
\end{align*}
\]

If the value is not an integer, the unnormalized forms may not have the same value as the normalized form. For example, if we chose to represent the decimal fraction 0.1 as an unnormalized short floating-point number, it might appear to have the following equivalent representations:

\[
\begin{align*}
4019999A & \quad 4101999A & \quad 4200199A & \quad 4300019A & \quad 4400001A & \quad 45000002
\end{align*}
\]

The values represented become less accurate as the amount of unnormalization increases.

\[
\begin{align*}
4019999A & \quad 4101999A & \quad 4200199A & \quad 4300019A & \quad 4400001A & \quad 45000002
\end{align*}
\]

In the last case, the value of the number is not 0.1 (base 10) but 0.125, which would be unacceptably different for most applications. Thus, normalized floating-point numbers offer the greatest precision: they contain more digits with reliable values. This is not the same as saying that normalized results are more accurate, because there may be other errors in a calculation which cause the results to be incorrect even though all six digits are always retained in the answer.

Table 222 shows some unnormalized numbers in short hexadecimal floating-point format, and their corresponding normalized forms:

<table>
<thead>
<tr>
<th>Unnormalized</th>
<th>Normalized</th>
</tr>
</thead>
<tbody>
<tr>
<td>40030000</td>
<td>3F300000</td>
</tr>
<tr>
<td>41003000</td>
<td>3F300000</td>
</tr>
<tr>
<td>620AB128</td>
<td>61AB1280</td>
</tr>
<tr>
<td>4300009E</td>
<td>3F9E0000</td>
</tr>
<tr>
<td>CB00FACE</td>
<td>C9FACE0000</td>
</tr>
<tr>
<td>03000123</td>
<td>00123000</td>
</tr>
</tbody>
</table>

Table 222. Unnormalized and normalized short hexadecimal floating-point numbers

Table 223 shows some examples of short hexadecimal floating-point numbers: Their representations are fairly simple because all the quantities are multiples of powers of two.

<table>
<thead>
<tr>
<th>Value</th>
<th>Fraction-exponent representation</th>
<th>Short floating-point representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+1 \times 16^1</td>
<td>41100000</td>
</tr>
<tr>
<td>1</td>
<td>+0.001 \times 16^4</td>
<td>44000100</td>
</tr>
<tr>
<td>256</td>
<td>+0.00001 \times 16^8</td>
<td>48000001</td>
</tr>
<tr>
<td>7/8</td>
<td>+E \times 16^0</td>
<td>40E000000</td>
</tr>
<tr>
<td>-5/4</td>
<td>-.14 \times 16^1</td>
<td>C1140000</td>
</tr>
<tr>
<td>1/1024</td>
<td>+.4 \times 16^-2</td>
<td>3E400000</td>
</tr>
<tr>
<td>1000/1024</td>
<td>+.FA \times 16^0</td>
<td>40FA0000</td>
</tr>
</tbody>
</table>

Table 223. Short hexadecimal floating-point numbers

Consider the representation of \( +1000/1024 \):

- First, \( 1000_{10} = 1 \times 3E.7 = B'0011\ 1110\ 1000.'\)
- Dividing by 1024 shifts this value right 10 bits, giving \( X' . FA' = B' . 1111\ 1010\ 0000'\)
• The result has exponent 0 and characteristic X′40′, giving X′40FA0000′ as the hexadecimal floating-point representation.

Long floating-point numbers are 8 bytes long; Table 224 shows some typical examples.

<table>
<thead>
<tr>
<th>Value</th>
<th>Fraction-exponent representation</th>
<th>Long floating-point representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+1×16^1</td>
<td>41100000 00000000</td>
</tr>
<tr>
<td>0.1</td>
<td>+.1×10^-1</td>
<td>40199999 99999999</td>
</tr>
<tr>
<td>−256</td>
<td>−1×16^3</td>
<td>C3100000 00000000</td>
</tr>
<tr>
<td>1000</td>
<td>+1000.0×10^3</td>
<td>433E8000 00000000</td>
</tr>
<tr>
<td>7/8</td>
<td>+E×16^0</td>
<td>4E000000 00000000</td>
</tr>
<tr>
<td>−5/4</td>
<td>−.14×16^1</td>
<td>C1140000 00000000</td>
</tr>
<tr>
<td>1/1024</td>
<td>+.4×16^-2</td>
<td>3E000000 00000000</td>
</tr>
<tr>
<td>1000/1024</td>
<td>+.FA×16^0</td>
<td>40FA0000 00000000</td>
</tr>
</tbody>
</table>

Table 224. Long hexadecimal floating-point numbers

An extended-precision number is 16 bytes long, and is represented by a pair of long-precision numbers, the high-order and low-order halves. The high-order half contains the sign, the characteristic, and the most significant 14 hex digits of the fraction of the extended number. The sign and characteristic of the low-order half are ignored, and the fraction part of the low-order half contains the least significant 14 digits of the fraction.203 (By convention, the characteristic of the low-order half is set to 14 less than the characteristic of the high-order half.) Thus, an extended number has a precision of 28 hexadecimal digits, equivalent to about 32 decimal digits.

Table 225 shows some examples of extended hexadecimal floating-point numbers.

<table>
<thead>
<tr>
<th>Value</th>
<th>Fraction-exponent representation</th>
<th>Extended floating-point representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.1×10^0</td>
<td>40199999 99999999 32999999 99999999A</td>
</tr>
<tr>
<td>π</td>
<td>.314159...×10^+1</td>
<td>413243F6 A8885A30 338D3131 98A2E037</td>
</tr>
<tr>
<td>e</td>
<td>.271828...×10^+1</td>
<td>41287E15 1628ABD2 33A6A8F7 158809CF</td>
</tr>
<tr>
<td>.000000000001</td>
<td>.1×10^-11</td>
<td>37119799 812DEA11 29197F27 F0F6886</td>
</tr>
</tbody>
</table>

Table 225. Extended hexadecimal floating-point numbers

Exercises

33.1.1.(2) A four-byte area of memory contains the bit pattern X′4040405C′. What is represented by that pattern? (You should now be able to describe five different possibilities.)

33.1.2.(2) How many redundant values are there for these short HFP numbers? (a) 25, (b) 1, (c) 0.25, (d) 0. How many redundant values for long numbers?

33.1.3.(1)+ 25.5. Determine if each of the following short HFP numbers is a pseudo-zero, a true zero, is normalized, or is unnormalized.

1. X′45678900′
2. X′FFFFFFFF′
3. X′00000001′
4. X′80000000′
5. X′00FF00FF′

203 The two halves of an extended-precision hexadecimal floating-point number are not treated as independent values, as is done on some other systems supporting "double-double" precision.
33.1.4.(3) The “XEXP” representation mentioned in the footnote on page 574 stated that the unused bits of the low-order characteristic were used to extend the exponent range of extended-precision numbers. Assuming that the sign bit was reserved and the remaining 7 bits were used to extend the high-order characteristic, what would be the resulting exponent range?

33.1.5.(2) Given the quantities Z, A, B, C, D, E, and D as in Exercise 2.8.5, give their representations in short hexadecimal floating-point form.

33.1.6.(2) Given a short precision hexadecimal floating-point number S, write fixed-point instructions to calculate short floating-point numbers with (a) the largest power of 16 ≤ S, and (2) the smallest power of 16 ≥ S. Store the results at S1 and S2. Ignore the possibility of exponent underflow or overflow.

For example, if S = X′42280000′ = 4010, then the result at S1 is X′42100000′ = 161 and the result at S2 is X′43100000′ = 162.

33.1.7.(2) Can you extend the instructions you wrote in solving Exercise 33.1.6 for long and extended precision operands? Why or why not?

33.2. Writing Hexadecimal Floating-Point Constants

As mentioned in Section 31.8, the basic lengths of all floating-point constants are determined by types E (short), D (long), and L (extended). The default length and alignment are word, doubleword, and doubleword. The default alignment in memory of an extended-precision number is only to a doubleword boundary, not to a 16-byte “double-doubleword” or “quadword” boundary.

The syntax of DC assembler instruction statements for HFP constants is

\[
\text{DC } [\text{dup\_factor}]\text{type}[\text{modifiers}]\{\text{value}[\text{dec\_exponent}]\}
\]

Like many other numeric constants, you can provide several value[dec_exponent] values separated by commas.

where

- the duplication factor [dup_factor] is optional,
- the type is required,
- the [modifiers] are optional,
- a value is required, and
- the decimal exponent [dec_exponent] is optional.

This constant has all five items:

\[
\text{DC } 2EL4S1E-2^7.73E8
\]

The duplication factor is 2, the type is E, the three modifiers are “L4“, “S1“, and “E=2“; the value is 7.73, and the decimal exponent is E8.

Table 226 gives some examples of simple floating-point constants. For extended-precision constants, the Assembler gives the same signs to the high-order and low-order halves, and the characteristic of the low-order half is 14 less than the characteristic of the high-order half. The CPU does the same for the results of extended-precision arithmetic operations.
Consider the second constant: 22 = \(X'_{16}'\), and \(.75 = \frac{12}{16} = X'.C'\). Putting these two parts together we get 22.75 = \(X'_{16}.C'\). (Remember, the significand is represented as a hexadecimal fraction!) So the characteristic is +2+64 = \(X'42'\), and the entire 8-digit constant is therefore \(X'42160000'\).

The Assembler’s decimal to hexadecimal floating-point conversion is rounded, but hexadecimal floating-point arithmetic performed by the CPU is almost always unrounded.

### 33.2.1. Decimal Exponents

If a constant has many leading or trailing zeros, it is inconvenient to have to write out all the digits; the operand \(E'10000000000000'\) is an awkward way to define the constant \(10^{13}\). To simplify writing such constants, two different methods may be used, both of which specify a power of ten by which the value must be multiplied: one is to use a decimal exponent with the nominal value, and the other is to use an exponent modifier.

As we saw for F and H-type binary constants in “12.1. F-Type and H-Type Constants” on page 148, a decimal exponent is written as the letter “E” followed by a positive or negative integer which specifies the power of ten by which the constant is to be multiplied. It is written immediately following the value of the constant. For instance, we could write a DC statement operand to define four constants of value \(10^{13}\) like this:

\[
\text{DC } E'1 \text{E}13', E'1.0 \text{E}13', E'100 \text{E}11', E'10 \text{.E}+12'
\]

Table 227 shows some examples of constants with decimal exponents.

<table>
<thead>
<tr>
<th>DC Operand</th>
<th>Assembled Constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E'1 \text{E}13')</td>
<td>(433E8000 00000000)</td>
</tr>
<tr>
<td>(E'1.0 \text{E}13')</td>
<td>(42640000 00000000)</td>
</tr>
<tr>
<td>(E'\text{E}1+1')</td>
<td>(3F28F5C2 8F5C28F6)</td>
</tr>
<tr>
<td>(E'\text{E}1-2')</td>
<td>(3E41B937 4BC6A7F0)</td>
</tr>
<tr>
<td>(E'\text{E}1-3')</td>
<td>(3D68D8B8 AC710CB3)</td>
</tr>
<tr>
<td>(E'\text{E}1-4')</td>
<td>(3CA7C5AC 471B47B4)</td>
</tr>
</tbody>
</table>

The previous rules for using literals also apply to hexadecimal floating-point literals.
Exercises

33.2.1.(1) Some HFP constants have one or more trailing zero digits. Does the generated constant for

```
DC E'1E13'
```

contain all the significant bits of the value $10^{13}$? How could you tell whether it does or does not?

33.2.2.(2) Write a single DC statement that generates a table of 11 short HFP constants containing the powers of 10 from 0 to 10.

33.2.3.(2) What is the largest power of 10 that can be stored precisely as (1) a short, (2) a long, (3) an extended HFP number?

33.2.4.(1) Write statements to generate the nine hexadecimal floating-point constants for the decimal fractions from 0.1 to 0.9 in steps of 0.1.

33.3. Modifiers

Hexadecimal floating-point constants allow three types of modifiers: Length, Scale, and Exponent. If any are present, they must appear in that order.

33.3.1. Length Modifiers

As with other constants, you can use the L modifier to define explicit lengths; the generated constants are not aligned. Truncation or padding takes place on the right. Thus, the DC operand EL2'1' generates the constant X'4110', and DL3'0.1' generates X'40199A'. The Assembler rounds the fraction to the specified length.

Length modifiers are rarely used with floating-point constants, and then mainly to cause unaligned data in a tightly-packed data structure. Generating a shorter constant loses precision, as Table 228 shows:

<table>
<thead>
<tr>
<th>DC Operand</th>
<th>Generated Constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL4'2.71965'</td>
<td>X'412B8380'</td>
</tr>
<tr>
<td>EL3'2.71965'</td>
<td>X'412B84'</td>
</tr>
<tr>
<td>EL2'2.71965'</td>
<td>X'412'</td>
</tr>
<tr>
<td>EL1'2.71965'</td>
<td>X'41' (Error!)</td>
</tr>
</tbody>
</table>

Table 228. Length-modified hexadecimal floating-point constants

Note that as each fraction grows shorter, the lowest-order digit is rounded to compensate for the truncated portion that was removed. The Assembler issues an error message for the last case to indicate that all precision has been lost.

33.3.2. Scale Modifiers (*)

Obscure topic

Because scale modifiers are used very rarely for floating-point constants, feel free to skip this subsection.

Like the scale modifiers described in Section 31.3.2 for binary constants, a scale modifier is used to generate an unnormalized HFP constant. It is written as the letter “S” followed by either a decimal self-defining term or a nonnegative absolute expression enclosed in parentheses; the
decimal value or the parenthesized expression may be preceded by a “+” sign if desired. The value of the scale modifier determines the number of leading zero digits in the fraction: the number of hex digit positions the fraction is to be shifted to the right.

Scale modifiers larger than 5 for short, 13 for long, and 27 for extended operands will cause all significant digits to be lost, so the Assembler considers this an error.204 The characteristic of the generated number is adjusted upward by the number of hex digits shifted, so that the value of the constant remains the same, subject to the possible loss of accuracy caused by the right shift. For example:

```
DC ES0′1.0′ Generates X′41100000′
DC ES1′1.0′ Generates X′42010000′
DC ES2′1.0′ Generates X′43001000′
DC ES3′1.0′ Generates X′44000100′
DC ES4′1.0′ Generates X′45000010′
DC ES5′1.0′ Generates X′46000001′
DC ES5′15.999′ Generates X′47000001′ (rounded!)
```

The Assembler rounds the remaining portion of the fraction to account for the part that was shifted off; if after rounding there is a carry into a zeroed digit position, the fraction is shifted right once more, and the characteristic is adjusted accordingly.

### 33.3.3. Exponent Modifiers

Unlike a decimal exponent, an exponent modifier appears before the nominal value of the constant or constants. It is written as the letter E followed by either a decimal self-defining term or an absolute expression enclosed in parentheses. A sign may precede the decimal value or the parenthesized expression.

We can write the constant $10^{13}$ as $EE13′1′$, $EE6′100E5′$, $EE-2′1.0E15′$, $EE-(3-1)′1.E+15′$ or $EE17′1.E-4′$, where the exponent modifier is indicated by a bold-face $E$ and the decimal exponent by an underscored $E$. The modifying power of ten applied to each constant is the sum of the decimal exponent and the exponent modifier.

Either method is accepted for a given constant, so you might ask why both methods are used. One possibility is that you might want to specify multiple constants in a single operand, as in

```
DC EE2′1,20,3E3,4E22′ Four short HFP constants
```

where the exponent modifier 2 applies to all the constants generated, while each decimal exponent affects only the value to which it is appended. The values of the third and fourth operands are affected by both an exponent modifier and a decimal exponent.

The allowed range for exponents is such that the sum of the decimal exponent and the exponent modifier must lie between $-85$ and $+75$.

The constants in Table 229 will be assembled as shown, where we assume the absolute expression $(B-A)$ has value $+4$.

As noted following Table 228, the characteristic is adjusted to compensate for shifts due to scaling.

---

204 If the scale modifier is equal to the fraction length, the assembler notes that precision is lost; if the modifier exceeds the fraction length, it is considered invalid.
33.3.1.(2) What would you expect the Assembler to generate for these hexadecimal floating-point constants?

<table>
<thead>
<tr>
<th>DC Operand</th>
<th>Assembled Constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL5E1’10’</td>
<td>4264000000</td>
</tr>
<tr>
<td>EL3S1E1’10’</td>
<td>430640</td>
</tr>
<tr>
<td>DS13’.5’</td>
<td>4E000000 00000008</td>
</tr>
<tr>
<td>ES1E1’1’</td>
<td>420A0000</td>
</tr>
<tr>
<td>E’.999999’</td>
<td>40FFFFFF</td>
</tr>
<tr>
<td>EE-((8+4)/6)’1E15’</td>
<td>4B9184E7</td>
</tr>
<tr>
<td>EL(B-A)S(B-A)E(B-A)’4’</td>
<td>4800009C</td>
</tr>
<tr>
<td>ES5’31’</td>
<td>47000002</td>
</tr>
<tr>
<td>2EL4S1E-2’7.73E8’</td>
<td>47075F3547075F35</td>
</tr>
</tbody>
</table>

Table 229. Hexadecimal floating-point constants with modifiers

33.3.2.(1) What decimal values are represented by these constants?

<table>
<thead>
<tr>
<th>DC Operand</th>
<th>Assembled Constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>W DC DE5’3.7E-2’</td>
<td></td>
</tr>
<tr>
<td>X DC EE-25’1.0E80’</td>
<td></td>
</tr>
<tr>
<td>Y DC LE2’8.8E-2’</td>
<td></td>
</tr>
<tr>
<td>Z DC EE9’4E9’</td>
<td></td>
</tr>
</tbody>
</table>

33.4. Subtypes Q and H (*)

Hexadecimal floating-point constants allow two subtypes, Q and H.

33.4.1. LQ-Type Constants

The Q subtype is used only with type L, and its only effect is to align the generated constant on a quadword (16-byte) boundary. For example:

```
DC L’0.1’ Doubleword aligned
DC LQ’0.1’ Quadword aligned
```

Figure 365. Quadword aligned constants and data

To be sure your constants and data are correctly aligned on quadword boundaries when your program is loaded into memory for execution,
1. use the Assembler’s SECTALGN(16) option to request that all control sections begin in quadword boundaries, and
2. verify that the linker and loader of your operating system support quadword alignment.

### 33.4.2. Subtype H

Specifying subtype H for hexadecimal floating-point constants lets you specify

- more precise rounding
- value suffixes to choose a rounding mode
- symbolic operands \((\text{Max}), (\text{Min}), \text{and} (\text{DMin})\) with optional signs

Without the H subtype, the Assembler rounds HFP constants by adding 1 to the first “lost” bit position, just as we do decimal rounding by adding 5 to the first “lost” decimal digit. When you specify subtype H, five rounding modes can be specified by adding “Rn” at the end of the nominal value, where the number “n” selects a rounding mode shown in Table 230.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Rounding</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>Add 1 to the first lost bit (this is the default mode).</td>
</tr>
<tr>
<td>R4</td>
<td>Round the exact value to the nearest representable machine value. If the exact value is exactly half-way between two machine numbers, choose the one with a zero low-order bit.</td>
</tr>
<tr>
<td>R5</td>
<td>Round toward zero: truncate by discarding any extra bits.</td>
</tr>
<tr>
<td>R6</td>
<td>Round toward the maximum positive value (“toward +∞”)</td>
</tr>
<tr>
<td>R7</td>
<td>Round toward the maximum negative value (“toward −∞”)</td>
</tr>
</tbody>
</table>

Table 230. Hexadecimal floating-point rounding modes with subtype H

The rounding-mode suffix must follow the value of the constant, including any decimal exponent.

Figure 366 gives some examples of HFP constants using rounding-mode suffixes:

```
DC EH'0.1 R1' generates X'40199999A'
DC EH'0.1 R4' X'40199999A'
DC EH'0.1 R5' X'40199999'
DC EH'0.1 R6' X'40199999A'
DC EH'0.1 R7' X'40199999'
DC EH'1048576.5R1' X'46100001' rounded up
DC EH'1048576.5R4' X'46100000' rounded down to even
DC EH'1048577.5R1' X'46100002' rounded up
DC EH'1048577.5R4' X'46100002' rounded up to even
```

Figure 366. Hexadecimal floating-point constants with rounding suffixes

The value 1048576.5 has hexadecimal representation X’100000.8’, exactly halfway between X’100000’ and X’100001’. Standard rounding (R1) rounds the “lost” bit up, while “Round to Even” (R4) rounds to the nearest number with a low-order zero bit, X’100000’. Similarly, the representation of 1048577.5 is X’100001.8’; in this case, “Round to Even” rounds up to X’100002’.

The difference between these two rounding modes is sometimes important when you create data for floating-point arithmetic.

Table 231 shows The symbolic operands and their generated constants:

---

205 More about control sections in Section 38.
33.4.3. Difficult Numbers (*)

This section will be interesting mainly to mathematically inclined readers.

In addition to symbolic operands and rounding modes, H subtypes are converted using greater internal precision, so certain “difficult” numbers may be slightly more accurate.

“Difficult” numbers are those whose exact values lie very close to half way between two representable numbers, so extra precision is needed to determine how they should be rounded. Not only are they difficult to convert accurately, it’s difficult to find them! Here are some examples:

<table>
<thead>
<tr>
<th>Constant Type</th>
<th>DC Operand</th>
<th>Generated Constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Magnitude</td>
<td>EH’ (Max)’</td>
<td>X’7FFFFFFF’</td>
</tr>
<tr>
<td></td>
<td>DH’ (Max)’</td>
<td>X’7FFFFFFF FFFFFFFF’</td>
</tr>
<tr>
<td></td>
<td>LH’ (Max)’</td>
<td>X’7FFFFFFF FFFFFFFF 71FFFFFF FFFFFFFF’</td>
</tr>
<tr>
<td>Minimum Normalized Magnitude</td>
<td>EH’ (Min)’</td>
<td>X’00100000’</td>
</tr>
<tr>
<td></td>
<td>DH’ (Min)’</td>
<td>X’00100000 00000000’</td>
</tr>
<tr>
<td></td>
<td>LH’ (Min)’</td>
<td>X’00100000 00000000 72000000 00000000’</td>
</tr>
<tr>
<td>Minimum Denormalized Magnitude</td>
<td>EH’ (DMin)’</td>
<td>X’000000001’</td>
</tr>
<tr>
<td></td>
<td>DH’ (DMin)’</td>
<td>X’00000000 000000001’</td>
</tr>
<tr>
<td></td>
<td>LH’ (DMin)’</td>
<td>X’00000000 00000000 72000000 00000001’</td>
</tr>
</tbody>
</table>

Table 231. Symbolic hexadecimal floating-point constants

<table>
<thead>
<tr>
<th>DC Operand</th>
<th>Without H Subtype</th>
<th>With H Subtype</th>
</tr>
</thead>
<tbody>
<tr>
<td>0’.30332554866797714604E-10’</td>
<td>X’382159DA E5B7B6B0’</td>
<td>X’382159DA E5B7B6BE’</td>
</tr>
<tr>
<td>0’.185240322463448422373E-23’</td>
<td>X’2D23D4A8 0F402692’</td>
<td>X’2D23D4A8 0F402693’</td>
</tr>
<tr>
<td>E’.1053771313464019060319004056804E-41’</td>
<td>X’1E177FF8’</td>
<td>X’1E177FF9’</td>
</tr>
<tr>
<td>L’.8031692147E-10’</td>
<td>X’38584F34 1F25338E 2A9D527E 34864A16’</td>
<td>X’38584F34 1F25338E 2A9D527E 34864A17’</td>
</tr>
</tbody>
</table>

Table 232. “Difficult” hexadecimal floating-point conversion values

Exercises

33.4.1.(5) Find another “difficult” number.

33.4.2.(2) Write and assemble the third (E-type) difficult number as an L-type constant. What property does the generated constant have that makes it “difficult”?

33.4.3.(2) The hexadecimal floating-point value of $10^{-3}$ to many digits is

\[ 3E1A8937 \quad 48C6A7EF \quad 9DB22D0E \quad 56D41893 \quad 74BC6A7E \quad F9DB22D0 \quad E5604189 \ldots \]

If this is rounded to long format using rounding-mode suffixes R1, R4, and R5, what will be the generated result?
33.5. Basic Hexadecimal Floating-Point Instructions

We will be concerned mainly with instructions for multiplying, dividing, adding, and subtracting hexadecimal floating-point operands. We’ll describe some details of their operation, but you don’t need to fully understand these details to use them.

For these instructions, the CPU

- uses a single hexadecimal guard digit, and
- truncates all results without rounding.

Later in this section we’ll see some instructions that round their results.

In most operations on extended-precision numbers, the CPU gives the same signs to the high-order and low-order halves, and the characteristic of the low-order half will be 14 less than the characteristic of the high-order half.

33.6. Hexadecimal Floating-Point RR-Type Data-Movement Instructions

Some instructions used for all types of floating-point operands were described in Section 31.9; these instructions are specifically for hexadecimal operands.

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>LTER</td>
<td>RR</td>
<td>Load and Test (Short)</td>
<td>33</td>
<td>LCER</td>
<td>RR</td>
<td>Load Complement (Short)</td>
</tr>
<tr>
<td>31</td>
<td>LNER</td>
<td>RR</td>
<td>Load Negative (Short)</td>
<td>30</td>
<td>LPER</td>
<td>RR</td>
<td>Load Positive (Short)</td>
</tr>
<tr>
<td>22</td>
<td>LTDR</td>
<td>RR</td>
<td>Load and Test (Long)</td>
<td>23</td>
<td>LCDR</td>
<td>RR</td>
<td>Load Complement (Long)</td>
</tr>
<tr>
<td>21</td>
<td>LNDR</td>
<td>RR</td>
<td>Load Negative (Long)</td>
<td>20</td>
<td>LPDR</td>
<td>RR</td>
<td>Load Positive (Long)</td>
</tr>
<tr>
<td>B362</td>
<td>LTXR</td>
<td>RRE</td>
<td>Load and Test (Extended)</td>
<td>B363</td>
<td>LCXR</td>
<td>RRE</td>
<td>Load Complement (Extended)</td>
</tr>
<tr>
<td>B361</td>
<td>LNXR</td>
<td>RRE</td>
<td>Load Negative (Extended)</td>
<td>B360</td>
<td>LPXR</td>
<td>RRE</td>
<td>Load Positive (Extended)</td>
</tr>
</tbody>
</table>

Table 233. Data-moving hexadecimal floating-point instructions

The register-to-register “Load and Test”, “Load Positive”, “Load Negative”, and “Load Complement” instructions are similar to the corresponding general register instructions:

- Load and Test sets the Condition Code to indicate the sign of a value
- Load Positive sets the sign to +
- Load Negative sets the sign to − for nonzero values
- Load Complement inverts the sign for nonzero values.

For hexadecimal floating-point, there are a few differences:

1. Negation only needs to invert the sign bit, and not complement all the other bits. Thus, no overflow is possible when complementing an operand, and the characteristic and fraction are unmodified.
2. In instructions that set the Condition Code, an operand is treated as zero if its fraction part is zero. A pseudo-zero is treated as a zero even though its characteristic is nonzero.
3. If short operands are specified, only the left half of the register is involved. This means that in testing the contents of the result register R1 in order to set the Condition Code, the low-order half of the register is ignored. For example, if

   \[ c(FPR2) = '4200000000000000 \] 12345678'

   the instructions “LTER 2,2” and “LTDR 2,2” yield CC settings of 0 and 2 respectively.
4. Because only the sign bit is manipulated, it is possible to generate a “minus zero”, a number with all zero bits except for sign. It still behaves like a true zero.
5. Operands are not normalized.
The CC settings after floating-point arithmetic are the same as for the GPR instructions: 0 for a zero fraction, 1 for a negative result, and 2 for a positive result. These instructions do not set Condition Code 3.

For example:

```
LD 0,=DH' (Max)' Initialize FPR0
LTDR 0,0 CC = 2
LCDR 6,0 CC = 1
LPDR 6,6 CC = 2
*
LE 4,=X'46000000' Pseudo-zero in FPR4
LTER 4,4 CC = 0, c(FPR4)=X'46000000'
LCER 2,4 CC = 0, c(FPR2)=X'60000000'
```

Figure 367. Examples of hexadecimal floating-point instructions

These extended-precision instructions have an additional behavior: for nonzero fractions, the high-order and low-order signs are made equal, and the low-order characteristic is set to the high-order characteristic minus 14, modulo 128.

```
LD 4,=X'A123456789ABCDE' Initialize FPR4
LD 6,=X'00EDCBA987654321' ..and FPR6
LTXR 0,4 c(FPR0,2)=X'A123456789ABCDE..
*
CE00000000000000
..3CEDCBA987654321', CC=2
```

Figure 368. Example of LTXR instruction

If the source operand is a pseudo-zero, the result characteristic and fraction are set to zero, and the sign bits of the high-order and low-order halves are made identical.

```
LZXR 4 Set c(FPR4,6) to zero
LD 4,=X'CE00000000000000' Negative pseudo-zero in FPR4
LTXR 0,4 c(FPR0,2)=X'8000000000000000..
*
..8000000000000000', CC=0
*
..0000000000000000', CC=0
```

Figure 369. Examples of extended-precision hexadecimal RR instructions

**Exercises**

33.6.1.(1) If you execute these instructions:

```
LD 4,=X'S0123456789ABCDE'
LD 6,=X'FEDCBA9876543210'
LTXR 0,4
```

What will be in the register pair (FPR0,FPR2), and what will be the CC setting?

33.6.2.(2) Suppose c(FPR0)=X'0A123456789ABCDE' and c(FPR2)=X'42857196DBBB93310'. Show the CC setting and the contents of the result register or registers after executing each of the following instructions:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>LPER 4,2</td>
<td></td>
</tr>
<tr>
<td>(2)</td>
<td>LTDR 2,2</td>
<td></td>
</tr>
<tr>
<td>(3)</td>
<td>LCXR 4,0</td>
<td></td>
</tr>
<tr>
<td>(4)</td>
<td>LCDR 4,2</td>
<td></td>
</tr>
</tbody>
</table>

Chapter IX: Floating-Point Data and Operations 585
### 33.7. Hexadecimal Floating-Point Multiplication

Table 234 lists the hexadecimal floating-point multiplication instructions. None of them affect the Condition Code.

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED37</td>
<td>MEE</td>
<td>RXE</td>
<td>Multiply (Short×Short to Short)</td>
<td>B337</td>
<td>MEER</td>
<td>RRE</td>
<td>Multiply (Short×Short to Short)</td>
</tr>
<tr>
<td>7C</td>
<td>ME, MDE</td>
<td>RX</td>
<td>Multiply (Short×Short to Long)</td>
<td>3C</td>
<td>MER, MDER</td>
<td>RR</td>
<td>Multiply (Short×Short to Long)</td>
</tr>
<tr>
<td>6C</td>
<td>MD</td>
<td>RX</td>
<td>Multiply (Long×Long to Long)</td>
<td>2C</td>
<td>MDR</td>
<td>RR</td>
<td>Multiply (Long×Long to Long)</td>
</tr>
<tr>
<td>67</td>
<td>MXD</td>
<td>RX</td>
<td>Multiply (Long×Long to Extended)</td>
<td>27</td>
<td>MXDR</td>
<td>RR</td>
<td>Multiply (Long×Long to Extended)</td>
</tr>
<tr>
<td>26</td>
<td>MXR</td>
<td>RR</td>
<td>Multiply (Ext.×Ext. to Ext.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

#### Table 234. Hexadecimal floating-point Multiply instructions

Multiplication is the simplest HFP operation. Suppose we need to find the product \( z \) of two numbers \( w \) and \( y \). From the usual rules of algebra, we know that if \( w = F_w \times 16^{E_w} \) and \( y = F_y \times 16^{E_y} \) then

\[
z = (F_w \times F_y) \times 16^{(E_w+E_y)}
\]

so that \( F_z = F_w \times F_y \) and \( E_z = E_w + E_y \).

The CPU sets the result to a true zero immediately if either fraction is zero. Otherwise, the characteristic \( C_z \) of the result is computed from

\[
C_z = C_w + C_y - 64 = C_w + C_y - X'40'
\]

where \( X'40' \) is subtracted so that \( C_z \) is biased only once. (See Exercise 33.7.7.)

The two fractions are pre-normalized, and the result characteristic is adjusted internally to account for both shifts. The CPU then multiplies the two fractions to obtain the result fraction \( F_z \). Since \( F_x \) and \( F_y \) were pre-normalized and both are nonzero, we must have a value for \( F_z \) in the range

\[
1.0 > F_z \geq 16^{-2}
\]

so it may be necessary to shift \( F_z \) left one digit to post-normalize the result fraction.

The sign of the result is determined from the rules of algebra, which means that an XOR is performed between the sign bits of the original operands. The result is placed in the floating-point register specified by the first operand of the instruction.

Suppose we multiply \( w = 5 \) and \( y = 7 \). Then, \( C_w = X'41' \), \( C_y = X'41' \), \( F_w = X'.500000' \), and \( F_y = X'.700000' \). The result characteristic \( C_z \) is

\[
C_z = X'41' + X'41' - X'40' = X'42'
\]

and the result fraction is \( X'.230000' \), which requires no post-normalization. Thus, in short floating-point form, we find that \( z = X'42230000' \). The instructions in Figure 370 do this:

```
LE 2,W Put W in FPR2
MEE 2,Y Multiply by Y
STE 2,Product Store the result

W DC E5' X'41500000'
Y DC E7' X'41700000'
Product DS E Result = X'42230000'
```

Figure 370. Short hexadecimal floating-point multiplication

Figure 371 shows the contents of the two floating-point registers:
Before Operation After

<table>
<thead>
<tr>
<th>FPR2 Before</th>
<th>Operation</th>
<th>FPR2 After</th>
</tr>
</thead>
<tbody>
<tr>
<td>///// ///</td>
<td>LE 2,W</td>
<td>41500000</td>
</tr>
<tr>
<td>41500000</td>
<td>MEE 2,Y</td>
<td>42230000</td>
</tr>
</tbody>
</table>

Figure 371. Floating-point registers used for hexadecimal floating-point multiplication

To illustrate a typical use of hexadecimal floating-point multiplication, suppose we must calculate Z(i)=X(i)×Y(i) for values of i from 1 to 10, where X(i), Y(i), and Z(i) are short floating-point numbers in tables at XX, YY, and ZZ respectively.

XR	5,5	GR5 contains index
LH	2,Count	Counter in GR2
Loop	LE 0,XX(5)	Load X(i) in FPR0 (short)
	MEER 0,0	X(i)^2 in FPR0
	MEE 0,YY(5)	Multiply by Y(i)
	STE 0,ZZ(5)	Store short result Z(i)
	LA 5,L'XX(5)	Increment index by operand length
	JCT 2,Loop	Count down and loop

XX DC E’1,2,3,4,5,6,7,8,9,10’ Values of X(i)
Count DC Y(*-XX)/L’XX’ Count of X(i) entries
YY DC 5E3.14159,2.71828’ 2 Y(i) values, copied 5 times
ZZ DS 10E Results Z(i)

Figure 372. Calculating a table of short hexadecimal floating-point products

Note that in defining the symbol Count we use the length attribute of the symbol XX twice. If new entries are added to the X(i) table, or if the X(i) entries are updated to long precision, the value at Count will be updated automatically when you reassemble the program.

The general registers provide addressing and indexing; all floating-point arithmetic uses FPR0. If the same calculation is done with long operands, the program segment would appear as in Figure 373.

XR	5,5	Initialize index to zero
LH	2,Count	Number of elements (10)
Loop	LE 0,XX(5)	Load X(i) in FPR0 (long)
	MDR 0,0	X(i)^2 in FPR0
	MD 0,YY(5)	Multiply by Y(i)
	STD 0,ZZ(5)	Store long result Z(i)
	LA 5,L’XX(5)	Increment index by operand length
	JCT 2,Loop	Count down and branch

XX DC 10D’27’ Some values for X(i)
Count DC Y(*-XX)/L’XX’ Count of X(i) entries
YY DC 10D’-263E-17’ And for Y(i)
ZZ DS 10D Space for results

Figure 373. Calculating a table of long hexadecimal floating-point products

Here, the length attribute of the symbol XX is 8; in both figures, the number of elements at Count is determined automatically by the Assembler.

The hexadecimal floating-point multiply instructions in Table 234 generate products of different lengths, as summarized in Table 235. None of them set the Condition Code.
Table 235. Summary of hexadecimal floating-point multiplication results

<table>
<thead>
<tr>
<th>Operand 1</th>
<th>Operand 2</th>
<th>Product</th>
<th>Instructions</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short</td>
<td>Short</td>
<td>Short</td>
<td>MEE, MEER</td>
<td>Truncated to 6 digits; right half of FPR R1 unchanged</td>
</tr>
<tr>
<td>Long</td>
<td>Long</td>
<td>Long</td>
<td>MD, MDR</td>
<td>Truncated to 14 digits</td>
</tr>
<tr>
<td>Extended</td>
<td>Extended</td>
<td>Extended</td>
<td>MXR</td>
<td>Truncated to 28 digits</td>
</tr>
<tr>
<td>Short</td>
<td>Extended</td>
<td>Long</td>
<td>MDE (ME), MDER (MER)</td>
<td>Exact product</td>
</tr>
<tr>
<td>Long</td>
<td>Short</td>
<td>Long</td>
<td>MXD, MXDR</td>
<td>Exact product</td>
</tr>
</tbody>
</table>

MEE and MEER generate the same short product as the high-order four bytes of the product generated by MDE and MDER. You can think of ME and MER as the HFP equivalents of M and MR, because both generate double-length products of single-length operands. Similarly, MEE and MEER are equivalent to MS and MSR, because both generate single-length products of single-length operands.²⁰⁶

To show how ME differs from MEE, suppose we revise Figure 371 as shown in Figure 374:

```
FPR2 Before Operation FPR2 After

//////// /// LE 2,W 41500000 ///////
41500000 /// ME 2,Y 42230000 00000000
```

Figure 374. Floating-point registers used for hexadecimal floating-point multiplication

In this case, the product is a long hexadecimal floating-point value.

There are no hexadecimal floating-point multiply instructions that use one short and one long operand.

When you use MXD and MXDR, remember these considerations:
- Because the first operand’s register pair will contain the extended product, R1 must be the low-numbered register of a floating-point register pair.
- The fraction part of the low-order half of an extended result is not necessarily normalized (because the 28-digit fraction is normalized in the high-order half). Its characteristic is 14 less than the characteristic of the high-order half, except that 128 is added if the low-order characteristic becomes negative. No exponent underflow is indicated if the low-order characteristic becomes negative.

To form the long product of the long operand in FPR0 by itself, we write

```
MDR 0,0
```

To form the extended product of the same long operand by itself, we would write

```
MXDR 0,0
```

and the original contents of FPR2 is replaced by the low-order half of the extended result. To illustrate the use of MXD, suppose we wish to store at XPrd the extended product of the two long operands stored at DA and DB.

```
LD 0,DA Load first operand into FPR0
MXD 0,DB Form extended product in FPR(0,2)
STD 0,XPrd Store high-order half of product
STD 2,XPrd+8 Store low-order half of product
```

²⁰⁶ The ME and MER mnemonics were defined for System/360 and are still valid. MDE and MDER are recommended because they more clearly indicate that multiplying two short operands yields a long product.
33.7.1. Exponent Overflow and Underflow.

Two error conditions can arise if the result characteristic lies outside the range

$$0 \leq C_z \leq 127.$$  

If the left inequality is not satisfied (the result characteristic is negative), an exponent underflow occurs; if the right inequality is not satisfied (the result characteristic exceeds 127), an exponent overflow occurs. These two conditions are sometimes known as exponent or characteristic spill. In both cases an interruption condition is recognized, and the quantity left in the result register has the correct sign and fraction, but the characteristic field contains the rightmost seven bits of the true characteristic. This treatment of the characteristic is called “characteristic wraparound”, in the sense that 0 follows 127 for overflows, and 127 follows 0 for underflows.

To illustrate, if we multiply $$X'70800000'$$ by itself, the product fraction is $$X'400000'$$. The result characteristic is

$$X'70' + X'70' - X'40' = X'A0' (= X'80' + X'20'),$$

which is the same as $$X'20'$$ when the rightmost seven bits are retained. The result is then $$X'20400000'$$, with an overflow interruption.

Similarly, if we multiply $$X'10800000'$$ by itself, the result is $$X'60400000'$$. The result characteristic is found from

$$X'10' + X'10' - X'40' = -X'20' = -X'80' + X'60'.$$

By retaining a result which is incorrect only by a fixed power of 16 ($$16^{128}$$), you can take steps to continue a calculation and still get a correct final result despite intermediate exponent spills.

Uninterrupted calculation of some results can depend on the order of the operations. Suppose you must multiply the three numbers 16^{50}, 16^{40}, and 16^{60}. The product of the first two numbers creates an overflow, and multiplying that product by the third number creates an underflow. But, multiplying the first and third numbers and then multiplying by the second generates no interruptions. It helps to know the magnitudes of your operands!

Because exponent underflow means the result has become small enough to be considered negligible in certain circumstances, you can set the HFP Exponent Underflow bit (shown in Table 76 on page 236) in the Program Mask to zero to request that if an exponent underflow occurs, the result should be set to a true zero and no interruption should occur. If the bit is 1, an interruption due to exponent underflow does occur, and the Interruption Code is set to 13 ($$X'D'$$). An interruption for exponent overflow cannot be suppressed; the Interruption Code is set to 12 ($$X'C'$$).

Exercises

33.7.1.(3) Using short operands, modify Figure 372 on page 587 to show how to benefit from a 12-digit product of the operands at $$XX$$ to generate long results at $$ZZ$$.

33.7.2.(1) What two things can you say that are true for all products generated by ME and MER?

33.7.3.(2) If the ME and MEE instructions rounded their results, could the four high-order bytes be different if they multiply the same operands?

33.7.4.(2) Write a program segment that will compute a table of the cubes of the first 100 integers, and store them as short hexadecimal floating-point numbers starting at Cubes.

33.7.5.(2) What result will be in FPR0 after executing these instructions?

$$LD 0,=X'4111111199999999'$$
$$MEER 0,0$$

33.7.6.(3) Consider the product of any floating-point number with fraction part $$X'.uvwxyz'$$ and 1.0, which has representation $$X'41100000'$$'. Show that without a guard digit, the product frac-
tion would be $X'0uvwx'y'$, which after post-normalization becomes $X'uwxy0'$.
What does this mean for multiplication by 1?

33.7.7. (1) Show an easy way for the CPU to subtract $X'40'$ from the sum of two characteristics.

### 33.8. Hexadecimal Floating-Point Division

Table 236 lists the five hexadecimal floating-point divide instructions. The sign of the quotient is set to the XOR of the operand signs. The CC is not changed by a divide instruction.

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>7D</td>
<td>DE</td>
<td>RX</td>
<td>Divide (Short)</td>
<td>3D</td>
<td>DER</td>
<td>RR</td>
<td>Divide (Short)</td>
</tr>
<tr>
<td>6D</td>
<td>DD</td>
<td>RX</td>
<td>Divide (Long)</td>
<td>2D</td>
<td>DDR</td>
<td>RR</td>
<td>Divide (Long)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B22D</td>
<td>DXR</td>
<td>RRE</td>
<td>Divide (Extended)</td>
</tr>
</tbody>
</table>

Table 236. Hexadecimal floating-point Divide instructions

Suppose we want to calculate $z = w/y$. If the divisor fraction $F_y$ is zero, the division is improper and a HFP divide exception is initiated; the resulting program interruption sets the Interruption Code to 15 ($X'F'$), and the dividend operand in the first-operand register is unchanged. If the dividend fraction $F_w$ is zero, the result is set to zero immediately. Otherwise, both fractions are pre-normalized, and the result characteristic

$$C_z = C_w - C_y + X'40' = C_w - C_y + 64$$

is adjusted to account for the normalizing shifts. The result fraction $F_z = F_w / F_y$ is then computed. Since we must have a value for $F_z$ that satisfies the inequalities

$$16 > F_z \geq 1/16,$$

a single corrective right shift may be needed for a proper fractional result; the characteristic is increased by 1 to account for the shift if it is performed, as we saw in Section 32.6.

Unlike fixed-point binary division where the remainder is in the even register and the quotient is in the next higher-numbered odd register, no floating-point remainder is provided by the CPU. We’ll see how to calculate a hexadecimal floating-point remainder in Section 33.15.

To give another example of hexadecimal floating-point division, suppose we divide $x=3$ by $y=5$. Then,

$$F_w = X'.3', \quad F_y = X'.5',$$

$$C_x = C_y = X'41'$'

$$C_z = X'41' - X'41' + X'40' = X'40'.$$

We know that the result fraction in decimal is 0.6; to convert this to hexadecimal we use the method described in Section 31.2. on page 541:

$$0.6 \times 16 = 9.6$$

so the first hexadecimal fraction digit is 9. But the next decimal digit is 6 again, so that $0.6_{10} = X'.9999999...'$ and $F_z = X'.999999'$.

In short floating-point form, the quotient $z$ is $X'40999999'$. This result is not rounded; the rounded result would have been $X'4099999A'$. Thus,

```
LE 0,=E'3'
DE 0,=E'5'
```

leaves the unrounded quotient $X'40999999'$ in FPR0.

The hexadecimal floating-point divide instructions DE, DER, DD, and DDR are similar to the four multiply instructions, except that the divisor, dividend, and quotient fractions are all 6 digits
long for short operand division, 14 digits for long operand division, and 28 digits long for extended division.

No attempt is made to provide an “inverse” to the short multiply instructions by dividing a short divisor into a long dividend. The low-order part of the register is ignored in short HFP division, and is not replaced by a remainder.

If you’re not dividing by zero, the quotient is computed; if a corrective right shift of the result fraction is needed, the extra digit at the right end is lost and the quotient then replaces the dividend. Characteristic wraparound also applies to division: if we divide $X'60200000'$ by $X'10400000'$ the quotient is $X'10800000'$ with an exponent overflow indicated, and if we divide $X'16600000'$ by $X'79200000'$, the result is $X'5D300000'$ with a (maskable) exponent underflow condition indicated.

Figure 375 illustrates floating-point divide instructions. Suppose we again have two arrays at XX and YY of ten short hexadecimal floating-point operands X(i) and Y(i), and wish to store $Z(i) = |X(i)|/Y(i)^2$ in the array at ZZ.

XR	7,7	Set index in GR7 to zero
LA	2,10	Initialize counter in FR2 to 10
Loop	LE 2,XX(7)	Load X(i) in FPR2
	LPER 4,2	Place absolute value in FPR4
	LE 6,YY(7)	Get Y(i)
	MER 6,6	Square it in FPR6
	DER 4,6	Form quotient in FPR4
	STE 4,2Z(7)	Store Z(i)
	LA 7,4,(7)	Increment index
	JCT 2,Loop	Count and loop

Figure 375. Example of hexadecimal floating-point divide instructions

It was unnecessary to use FPR4 as an intermediate register. Figure 376 shows another way to do the same calculation. (It might run slightly slower because more divide instructions are used and more memory accesses are required for the operands.)

XR	1,1	Initialize index
LA	2,10	And counter
Loop	LE 0,XX(1)	X(i) in FPR0
	LPER 0,0	Abs(X(i)) in FPRO
	DE 0,YY(1)	Abs(X(i))/Y(i)
	DE 0,YY(1)	Abs(X(i))/Y(i)/Y(i)
	STE 0,2Z(1)	Store Z(i)
	LA 1,4,(1)	Increment index
	JCT 2,Loop	Count down and branch

Figure 376. Example of hexadecimal floating-point divide instructions

### 33.8.1. The Halve Instructions (*

The two instructions in Table 237 divide an operand by 2 by doing a single binary shift, saving the cost of a more expensive multiplication or division instruction. The first operand is replaced by a number whose value is one-half that of the second operand. The Condition Code is unchanged.

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
<td>HER</td>
<td>RR</td>
<td>Halve (Short)</td>
<td>24</td>
<td>HDR</td>
<td>RR</td>
<td>Halve (Long)</td>
</tr>
</tbody>
</table>

Table 237. Hexadecimal floating-point Halve instructions

The fraction part of the second operand is shifted right by one bit position. The bit shifted off the right end moves into the guard digit, which was initialized to zero. If the fraction is still normalized, the instruction is complete; otherwise a normalizing (hexadecimal) left shift is done, and the characteristic is decreased by 1 for each shift. The result is not rounded.
For example:

\[
\begin{align*}
\text{LE } 0,=E'10' & \quad c(\text{FPR0}) = X'41A00000' \\
\text{HER } 0,0 & \quad \text{Result} = X'41500000' \text{ (no shift)} \\
\text{LE } 0,=E'1.0' & \quad c(\text{FPR0}) = X'41100000' \\
\text{HER } 0,0 & \quad \text{Result} = X'40800000' \text{ (normalized)}
\end{align*}
\]

Figure 377. Example of a hexadecimal floating-point halve instruction

The only possible exception is an exponent underflow, as illustrated in Figure 378.

\[
\begin{align*}
\text{LE } 0,=E'H\text{ (Min)}' & \quad c(\text{FPR0}) = X'00100000' \\
\text{HER } 0,0 & \quad \text{Result} = X'7F800000' \text{ with underflow}
\end{align*}
\]

Figure 378. Hexadecimal halve instruction causing underflow

For short operands (using the HER instruction), the low-order part of the register is unchanged, and does not contain the lost bit when no post-normalization is performed. If the fraction part of the second operand is zero, a true zero replaces the first operand.

**Exercises**

33.8.1.(1) In calculating the quotient 3/5, the result is given as X'40999999', and not the rounded value X'4099999A'. How do we know what the rounded answer is?

33.8.2.(2) What is the result of executing HER 0,0 if FPR0 contains each of these operands:
- 1. X'4013579B'
- 2. X'40013579'

33.8.3.(2) What is the result of executing HDR 0,0 if FPR0 contains each of these operands:
- 1. X'42FB2690 5A66B73D'
- 2. X'C5774302 D4FB018F'

33.8.4.(2) What result will be in FPR4 after executing these instructions?

\[
\begin{align*}
\text{LE } 0,=X'04000002' & \\
\text{HER } 4,0
\end{align*}
\]

33.8.5.(1) What instructions involving the general registers might be thought of as the fixed-point analogs of the floating-point Halve instructions HER and HDR?

33.8.6.(3) Write instructions to implement a rounded hexadecimal floating-point “halve” operation.

33.9. Hexadecimal Floating-Point Addition and Subtraction

There are two major groups of hexadecimal floating-point add and subtract instructions: those that normalize their results, and those that do not. Both groups are listed in Table 238.
Four distinctive properties of the hexadecimal floating-point add and subtract instructions are:

1. No initial tests are made for zero operands.
2. Neither fraction is pre-normalized.
3. The Condition Code is always set.
4. The operation code specifies whether or not the final result will be normalized.

The first step is to compare the characteristics of the operands. If the difference is such that the fraction part of the operand with the smaller characteristic would have to be shifted to the right by too many places so that no significant digits would be left, the result is the operand with the larger characteristic. That is, the smaller operand is ignored in short arithmetic if the magnitude of the characteristic difference is greater than 6, in long arithmetic if it exceeds 14, and in extended arithmetic if it exceeds 28, because there could be no useful digit to add. In such cases, no shifted digit could appear in the guard digit position.

For example, suppose we add the normalized short operands \(X'58123456'\) and \(X'52987654'\). The characteristic difference \(X'58' - X'52' = 6\) means that the second fraction must be shifted right by six digit positions, giving a fraction with six leading zero digits. Since the intermediate arithmetic is performed with a precision of only seven digits, the second operand cannot possibly contribute to the final result, so it is ignored. (Remember that the guard digit is initialized to zero!) To visualize this process:

\[
\begin{array}{c}
58123456(0) \\
+52987654 \\
58123456(0) \\
+58000000(9) \\
58123456
\end{array}
\]

Figure 379. Example of hexadecimal floating-point addition

Because the sum need not be normalized, the guard digit is lost.

Subtraction can be different; consider the same two operands:

\[
\begin{array}{c}
58123456(0) \\
-52987654 \\
58123456(0) \\
-58000000(9) \\
58123455
\end{array}
\]

In this case, the digit shifted into the guard digit position causes a “borrow” from the low-order digit of the first operand. Thus, if the operation is a subtraction, an exponent difference equal to

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>7A</td>
<td>AE</td>
<td>RX</td>
<td>Add (Short)</td>
<td>3A</td>
<td>AER</td>
<td>RR</td>
<td>Add (Short)</td>
</tr>
<tr>
<td>7B</td>
<td>SE</td>
<td>RX</td>
<td>Subtract (Short)</td>
<td>3B</td>
<td>SER</td>
<td>RR</td>
<td>Subtract (Short)</td>
</tr>
<tr>
<td>6A</td>
<td>AD</td>
<td>RX</td>
<td>Add (Long)</td>
<td>2A</td>
<td>ADR</td>
<td>RR</td>
<td>Add (Long)</td>
</tr>
<tr>
<td>6B</td>
<td>SD</td>
<td>RX</td>
<td>Subtract (Long)</td>
<td>2B</td>
<td>SDR</td>
<td>RR</td>
<td>Subtract (Long)</td>
</tr>
<tr>
<td>36</td>
<td>AXR</td>
<td>RR</td>
<td>Add (Extended)</td>
<td>37</td>
<td>SXR</td>
<td>RR</td>
<td>Subtract (Extended)</td>
</tr>
<tr>
<td>7E</td>
<td>AU</td>
<td>RX</td>
<td>Add (Short) Unnormalized</td>
<td>3E</td>
<td>AUR</td>
<td>RR</td>
<td>Add (Short) Unnormalized</td>
</tr>
<tr>
<td>7F</td>
<td>SU</td>
<td>RX</td>
<td>Subtract (Short) Unnormalized</td>
<td>3F</td>
<td>SUR</td>
<td>RR</td>
<td>Subtract (Short) Unnormalized</td>
</tr>
<tr>
<td>6E</td>
<td>AW</td>
<td>RX</td>
<td>Add (Long) Unnormalized</td>
<td>2E</td>
<td>AWR</td>
<td>RR</td>
<td>Add (Long) Unnormalized</td>
</tr>
<tr>
<td>6F</td>
<td>SW</td>
<td>RX</td>
<td>Subtract (Long) Unnormalized</td>
<td>2F</td>
<td>SWR</td>
<td>RR</td>
<td>Subtract (Long) Unnormalized</td>
</tr>
</tbody>
</table>

Table 238. Hexadecimal floating-point Add/Subtract instructions
the number of digits in the significand does not necessarily mean that the result will be the larger operand.

For addition, if the characteristic difference is equal to 6, 14, or 28, and if the operand with the larger characteristic is unnormalized, a digit from the operand with the smaller characteristic may appear in the result. (See Exercise 33.9.14.)

If the registers were longer, the second operand could contribute to the sum, so short and long arithmetic might yield different results from the same data. (See Exercise 33.9.1.)

Adding (or subtracting) two numbers that lead to a zero fraction produces different results, depending on the setting of the Program Mask. If the intermediate result fraction including the guard digit is zero, a HFP significance exception may be recognized, meaning there are no significant digits in the result, only the correct sign and characteristic.

As with exponent underflow, you can zero the HFP Significance bit in the Program Mask (shown in Table 76 on page 236) to request that the CPU ignore the exception condition and set the result to a true zero. If the interruption does occur, the result register will contain a pseudo-zero with the correct characteristic, and the Interruption Code will be set to 14 (X'E').

For example:

LE 2,'X'456789AB'
AE 2,'X'C56789AB'

If the Program Mask bit is zero, c(FPR2)=X'00000000'; but if the Program Mask bit is one, c(FPR2)=X'45000000' when the program interruption occurs.

The difference between a true zero is and a pseudo-zero is rarely important, so most applications set the HFP-significance mask bit to zero so they don’t have to worry about interruptions for calculated zero results.

Suppose we must evaluate the expression

\[ Z = T \times (A + B) + 2C / (A + B) \]

where all operands are long and are found at memory locations with the same names.

LD 6,A Form sum first
AD 6,B (A+B) in FPR6
HDR 4,6 Save (A+B)/2 in FPR4
MD 6,T Multiply sum by T, giving T*(A+B)
LD 2,C Load C in FPR2
DDR 2,6 Divide by c(FPR4) giving 2C/(A+B)
ADR 2,6 Form Z in FPR2
STD 2,Z Store the long result at Z

Figure 380. Evaluating a hexadecimal floating-point expression

Suppose we must form the “inner product” of two linear arrays of twenty short-precision elements each, by evaluating the sum

\[ Z = X(1) \times Y(1) + X(2) \times Y(2) + \ldots + X(19) \times Y(19) + X(20) \times Y(20), \]

where the arrays of the X(i) and Y(i) values are stored starting at XX and YY respectively. The value of Z will be accumulated in long precision, and stored in short precision.

\[ ^{207} \text{In practice, the Significance exception is rarely enabled because it would occur even when a calculated result should be zero. The Program Mask bit is almost always set to zero. (You can change the bits in the Program Mask with the SPM instruction, as described in Section 16.2.)} \]
As a second example, suppose we want to evaluate the polynomial
\[ Z = A(10)Y^{10} + A(9)Y^9 + A(8)Y^8 + \ldots + A(1)Y + A(0), \]
where the coefficients \( A(k) \) are stored in an array starting at \( AA \) in the order \( A(0), A(1), \ldots, A(10) \).

We will do the evaluation by writing the polynomial in "nested" form (sometimes known as Horner’s Rule):
\[ Z = ((\ldots((A(10) \times Y) + A(9)) \times Y + \ldots + A(1)) \times Y + A(0)). \]

Figure 382 shows an example using this method.

For short polynomials it is simpler and faster to do the calculation without looping. If we want only the quadratic portion (up to the second power in \( Y \)) of the same polynomial, we could use the instructions in Figure 383:

```
LE 0,AA+8 Get A(2)
ME 0,Y *Y
AE 0,AA+4 +A(1)
ME 0,Y *Y
AE 0,AA +A(0)
STE 0,Z Store at Z
```

Figure 383. Evaluating a quadratic polynomial

and no loop-control “housekeeping” instructions are needed.

## 33.9.1. Unnormalized Addition and Subtraction

Unnormalized addition and subtraction follow the same rules as the normalizing operations, except that the result is not post-normalized. This leads to these conditions:

- The guard digit is ignored (it participates only if a post-normalization shift is needed to deliver a normalized result).
- If the sum creates a carry out of the high-order digit, a corrective right shift is needed, so an exponent overflow is possible. For example:

```
LE 0,=X'7FFE7654' Large number in FPR0
AU 0,=X'7EFEDCBA' Add another almost as large
```

generates an exponent overflow interruption, and the result in FPR0 is \( X'0010\text{E641}' \).
• If there is no overflow, the characteristic of the result is that of the operand with the larger characteristic (the fraction of the operand with the smaller characteristic will have been shifted right).
• Because there is no normalizing left shift, no exponent underflow is possible.
• If the result fraction is zero, a HFP lost-significance exception is possible; if suppressed, the result is set to +0. For example:

```plaintext
LE 0,=X'76543210' Initialize FPR0
SUR 0,0 Unnormalized subtraction
```

generates a significance-exception interruption, and the result in FPR0 is X'76000000'. If the Program Mask bit is zero there is no interruption, and c(FPR0)=X'00000000'.

The test for a zero intermediate fraction includes the guard digit for normalized addition and subtraction, and excludes the guard digit for unnormalized addition and subtraction, because the guard digit cannot appear in the final result. (See Exercise 33.9.9.)

### 33.9.2. Older Uses of Unnormalized Addition (*)

This section describes instructions that see relatively little use on modern CPUs.

Before the instructions described in Section 33.14 on page 606 were available, unnormalized addition was needed to convert numbers between binary integers and HFP values. If we had to convert 12345 from binary to hexadecimal floating-point we might have used the instructions in Figure 384.

```plaintext
L 1,=F'12345' Binary integer to be floated
ST 1,Const+4 Store in right half of a constant
LD 0,=D'0' Clear FPR0
AD 0,Const Add the constant
```

Figure 384. Converting a binary integer to hexadecimal floating-point

After the ST instruction, c(Const)=X'4E0000000003039'. Because its exponent is 14, the radix point is at the right end of the constant; after executing the AD instruction to normalize the result, c(FPR0)=X'4430390000000000'.

Converting in the other direction used a similar technique shown in Figure 385, this time with an unnormalized addition:

```plaintext
LD 0,=D'12345' Value to be converted to binary
AW 0,=X'4E0000000000000' Force unnormalization
STD 0,DTemp Store the result
L 1,DTemp+4 Binary integer now in GR1
```

Figure 385. Converting a hexadecimal floating-point number to a binary integer

After the AW instruction is executed, c(FPR0)=X'440000000003039'. The L instruction finally loads X'000003039'=12345 into GR1.

Newer instructions provide improved ways of converting between HFP and binary, as we’ll see in Section 33.14.

### Exercises
33.9.1.(2) In Figure 379 on page 593, we considered adding the short operands \(X'58123456'\) and \(X'52987654'\). If these were the long operands \(X'5812345600000000'\) and \(X'5298765400000000'\), what would be their sum?

33.9.2.(1) Suppose you execute these instructions:

\[
\begin{align*}
&\text{LD } 2,=D'1.0' \\
&\text{LD } 6,=D'2.5' \\
&\text{AXR } 2,6
\end{align*}
\]

What will be in FPR2?

33.9.3.(0) There is an engineer's pun among the mnemonics in Table 238 on page 593. Can you find it?

33.9.4.(2) Given the following short hexadecimal floating-point operands:

\[
\begin{align*}
A &= X'41200000' \\
B &= X'0138762' \\
C &= X'420A0000' \\
D &= X'6B200000' \\
E &= X'45000000'
\end{align*}
\]

Show (in hexadecimal) the appropriate contents of FPR0 and the setting of the Condition Code after executing each of the following instruction sequences.

1. LE 0,E  
2. LE 0,D  
3. LE 6,E  
4. LE 0,C

33.9.5.(3) Given the following hexadecimal floating-point quantities:

\[
\begin{align*}
A &= X'C1200000' \\
B &= X'4310000F' \\
C &= X'03780000' \\
D &= X'C400E000' \\
E &= X'408279ED'
\end{align*}
\]

Show (in hexadecimal) the contents of FPR0 and the Condition Code setting after executing each of the following instruction sequences:

1. LE 0,A  
2. LE 0,E  
3. LE 4,B  
4. LE 0,B

33.9.6.(3) Using the same quantities as in Exercise 33.9.5, and these additional hexadecimal floating-point quantities:

\[
\begin{align*}
W &= X'04100000' \\
X &= X'08012335' \\
Y &= X'4600ABCD'
\end{align*}
\]

show (in hexadecimal) the contents of FPR0 and the Condition Code setting after executing each of the following instruction sequences:

1. LE 0,A  
2. LE 0,D  
3. SER 0,0  
4. LE 0,X

33.9.7.(2) Sometimes programs use data having the wrong type, as in this example. What result will be in FPR0 after executing these instructions?

\[
\begin{align*}
\text{LE } 0,=F'-3' \\
\text{AER } 0,0
\end{align*}
\]

Chapter IX: Floating-Point Data and Operations
33.9.8.(1) Show that if an exponent overflow occurs in executing an unnormalized add or subtract instruction, the characteristic of the result must be zero.

33.9.9.(2) Suppose $X'40FFFFFF'$ is subtracted from $X'41100000'$ using (1) SE and (2) SU instructions. What will be the result in each case?

33.9.10.(1) In Figure 382 on page 595, what conflicts might arise between the uses of LE as a symbol and as a mnemonic?

33.9.11.(2) An array of short hexadecimal floating-point numbers is stored starting at Data, and the number of elements in the array is in the fullword integer at NItems. Write instructions to compute the average of the numbers and store the result at Average.

33.9.12.(2) Suppose you want to add 1000000 and 0.000001 using hexadecimal floating-point arithmetic. What limitations should be imposed on the registers and operands if the result is to be computed correctly?

33.9.13.(2) Suppose you add $X'58023456'$ to $X'52987654'$. The difference in the characteristics is 6; what is the result of the addition?

33.9.14.(2) Show the result in FPR0 after executing each of the following five pairs of instructions:

(a) LE 0,$X'411000005'$
   AE 0,$X'40100005'$

(b) LE 0,$X'41100005'$
   SE 0,$X'40800005'$

(c) LE 0,$X'41100000'$
   SE 0,$X'38100000'$

(d) LE 0,$X'41100000'$
   SE 0,$X'3A100000'$

(E) LE 0,$X'40123456'$
   AE 0,$X'40100000'$

---

33.10. Adding Operands of Like Sign (*)

Adding operands of like sign (or true addition) is straightforward; the sign of the result is known. If the original operands are normalized, the result fraction cannot need any post-normalizing left shifts because no leading zero digits can be generated, and at most one corrective right shift (with an accompanying increment of the characteristic) can be needed. Thus, true addition is the only case in floating-point addition where exponent overflow can occur. The guard digit is significant in like-sign addition only if unnormalized operands are used, and if the instruction also requires that the result be normalized. A few examples of adding short operands will illustrate these points.

**Example 1:** $X'40111111' + X'40222222'$

Because the exponents are equal, the fractions are added directly, with result $X'40333333'$. The CC is set to 2 to indicate a positive result.
Example 2:  
\( X'40123456' + X'42456789' \)

After shifting the fraction part of the smaller first operand right by two places, the intermediate result is \( X'424579BD(5)' \), where the guard digit is parenthesized. The CC is again set to 2.

Example 3:  
\( X'42FEDCBA' + X'41456789' \)

After shifting the second fraction to the right by one place, the intermediate sum is \( X'1.033332(9)' \) with a carry bit (so seven digits plus a guard digit are shown). After a corrective right shift, the result is \( X'43103333' \); both the guard digit and the low-order digit of the intermediate sum are lost, and no rounding is done. The CC is set to 2.

Example 4:  
\( X'FF801020' + X'FF934567' \)

This case illustrates an exponent overflow: the result fraction is \( X'1.145587(0)' \), which after right-shifting leads to characteristic \( X'80' \) and fraction \( X'.114558(7)' \). The guard digit is lost, and because of characteristic wraparound the result becomes \( X'80114558' \), and an exponent overflow interruption is initiated. The CC is set to 1 indicating a negative result.

Exponent overflow during addition should be an infrequent occurrence, because the operands involved must be quite large.

Example 5:  
\( X'43000123' + X'416789AB' \)

In this case the intermediate sum fraction \( X'.0068AC(A)' \) is unnormalized; if the result is normalized, we obtain \( X'4168ACAG' \), and the guard digit is retained.

Example 6:  
\( X'02000012' + X'00023456' \)

After right-shifting the second fraction by two places, the intermediate sum is \( X'0200246(5)' \). On normalization, this gives \( X'7F246500' \), with an accompanying exponent underflow exception condition.

If the Exponent Underflow mask bit is zero, no interruption occurs and the CC and the result are set to zero. Otherwise, the result register is unchanged, the CC is set to 2 (the result is positive), and an interruption occurs.

Exponent underflow can occur when adding numbers of like sign only if both operands are unnormalized.

33.11. Adding Operands of Unlike Sign (*)

Adding operands of unlike sign (or complement addition) is more complicated.

1. No exponent overflow can be generated, because the difference of two operands is never greater in magnitude than the larger of the original two.

2. Leading zeros can be generated in the fraction part of the intermediate result so that exponent underflows can occur even with normalized operands.

Suppose we add \(-5 (X'C1500000') + +121 \) (where \( 121 = X'79' = X'.79' \times 16^2 (X'42790000') \)). After shifting the first fraction to the right by one digit position and subtracting it from the second fraction, the intermediate result is \( X'42740000(0)' \). Since the result is now normalized and no characteristic spill was generated, the result is \( X'42740000' \) and the CC is set to 2 indicating a positive result. If we use the same operands with inverted signs, the same process generates \( X'C2740000' \), with CC 1 indicating a negative result.

33.11.1. Hexadecimal Floating-Point Complement Addition (*)

It’s easy in some cases to see what the result should be, by inspecting the operands: we observe which is the larger, subtract the smaller, and use the sign of the operand with the larger magnitude.

But the CPU cannot compare the operands to see which has the larger magnitude without doing a subtraction! It would have to duplicate much of its effort if a comparison indicated that the subtraction should actually have been done in the opposite order. Thus, a technique similar to
that for fixed-point arithmetic is used, where subtraction was performed by adding the two’s comple-
ment of the second operand to the first.

We can’t do the same with the fraction parts of the floating-point operands, because the sign bit is
not an extension of the fraction: that is, the fractions are represented in a sign-magnitude represen-
tation.

Though z System may not do complement addition exactly this way, we will describe a method,
using the short-arithmetic addition of −5 and +121.

1. Given operands X’C1500000’ and X’42790000’, determine whether one of them has a charac-
teristic larger than the other; call it the first operand. If the characteristics are equal, simply
choose one of the operands as the first. (Thus, X’42790000’ is the first operand.)

2. As in true addition, if the characteristic difference exceeds 6 for short, 14 for long, or 28 for
extended operands, the intermediate result is the first operand.

3. As in true addition, shift the fraction part of the second operand to the right by a number of
places equal to the magnitude of the characteristic difference. In our example, the second
operand fraction is shifted once to produce X’.050000(0)’, with the seventh digit being the
guard digit.

4. The sign of the intermediate result is assumed to be the same as the sign of the first operand
(“+” in this example).

5. The two’s complement of the second fraction is added to the first fraction, with carries off the
left being ignored. Thus, we add X’.790000(0)’ + X’.F80000(0)’, giving X’(1).740000(0)’.
The carry bit is explicitly indicated, even though it doesn’t appear in the result.

6. Depending on the presence or absence of a carry, one of the following is performed:
   a. if there is a carry, it is ignored and the intermediate result consists of the first operand
      sign, the first operand characteristic, and the intermediate fraction to whatever precision
      it was calculated.
   b. if there is no carry, the intermediate result fraction is said to be in complement form. It is
      then recomplemented, and the sign bit is inverted.

At this point the zero-fraction test for a Significance exception is made; the guard digit does not
participate if an unnormalized result is to be generated. The intermediate result may be normal-
ized if required by the instruction.

Here are some further examples of adding operands, now with unlike signs.

**Example 7:**   X’C2777444’ + X’40121314’

The first operand is X’C2777444’; after shifting and then complementing the second operand
fraction, we do the following addition (where we show the parts of the intermediate result as
sign, characteristic, and fraction):

<table>
<thead>
<tr>
<th>Sign</th>
<th>Char</th>
<th>Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>42</td>
<td>.7774440 first operand with guard digit</td>
</tr>
<tr>
<td>-</td>
<td>42</td>
<td>.FFEDECF complemented 2nd operand fraction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1).776230F carry occurs</td>
</tr>
</tbody>
</table>

Thus the result is in true form, and we have the intermediate result X’C2776230(F)’. The
lowest-order digit of the second operand was lost in the shifting operation.

**Example 8:**   X’C2000444’ + X’40121314’

As before, we arrive at

<table>
<thead>
<tr>
<th>Sign</th>
<th>Char</th>
<th>Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>42</td>
<td>.0044440 first operand</td>
</tr>
<tr>
<td>-</td>
<td>42</td>
<td>.FFEDECF complemented 2nd operand fraction</td>
</tr>
<tr>
<td>+</td>
<td>42</td>
<td>.0000CF1</td>
</tr>
</tbody>
</table>

The result is in complement form, as indicated by the absence of a carry. After recomplementation and sign inversion, we have
giving the intermediate result \( X'42000DCF(1)' \). The guard digit will become significant if the final result is normalized, when the result would be \( X'3FDCF100' \).

**Example 9:** \( X'42111111' + X'C111111' \)

The intermediate calculation would yield

\[
\begin{align*}
+ & \quad 42 \\
  & \quad .1111110 \\
  & \quad .FEEEEEEF \\
+ & \quad (1).0FFFFFF \\
\end{align*}
\]

with a carry; thus we have the intermediate result \( X'420FFFFF(F)' \).

**Example 10:** \( X'40123456' + X'C0123457' \)

The intermediate result would be found from

\[
\begin{align*}
+ & \quad 40 \\
  & \quad .1234560 \\
  & \quad .EDCBA90 \\
+ & \quad 40 \\
  & \quad .FFFFF0 \\
\end{align*}
\]

with no carry; after recomplementation and sign inversion the intermediate result would be \( X'C0000001(0)' \), as we would have guessed from inspecting the operands.

These last two examples illustrate an important consideration: if the original operands are normalized, a single guard digit provides adequate protection against unexpected loss of precision. This is because the difference of two normalized fractions with unequal characteristics can introduce at most one leading zero digit in the intermediate result fraction (except in cases of severe cancellation). Example 8 above illustrates that a single guard digit may be insufficient if unnormalized operands are allowed. If the operands have the same characteristic (as in Example 10), the possible loss of accuracy can be predicted but not prevented, so in this situation you are entitled only to the digits left in the intermediate result and no more.

**33.11.2. Implementing Hexadecimal Floating-Point Complement Addition (*)**

Complement addition can be simplified by forming the ones' complement of the second fraction, rather than the two's complement. Then, if a carry occurs after the fractions are added, it is "carried around" to the low-order end of the intermediate sum and added there. This gives the effect of having added the two's complement of the second operand initially. If there is no carry, the recomplementation is also a ones' complement, which "retrieves" the low-order one-bit that would have been added if the two's complement had been formed originally; that is, we have effectively subtracted and then added back the low-order bit.

A reason for using this technique is that the formation of the two's complement of a number is an arithmetic operation requiring an addition (and therefore, time and hardware for the propagation of carries), while ones' complementation requires only the simple and inexpensive logical operation of inverting all the bits of an operand. (You might review the similar discussion at "How Additions and Subtractions are Actually Performed" on page 36.)

Using this revision to the above addition scheme, Examples 9 and 10 above would appear as shown in Examples 11 and 12 below.

**Example 11:** \( X'42111111' + X'C1111111' \)

The intermediate calculation gives

\[
\begin{align*}
+ & \quad 42 \\
  & \quad .1111110 \quad \text{first operand} \\
  & \quad .FEEEEEE \quad \text{ones' complement of 2nd fraction} \\
  & \quad (1).0FFFFFF \quad \text{carry occurs, so...} \\
  & \quad + \quad 1 \quad \text{add back at low-order end} \\
  & \quad .0FFFFFF \quad \text{intermediate result} \\
\end{align*}
\]

**Example 12:** \( X'40123456' + X'C0123457' \)

Remember that a guard digit is part of the second operand fraction, even though it is initially zero; the intermediate calculation is
The intermediate result fraction is in complement form; recomplementation (now using the ones’ complement) and sign inversion give X’C0000001(0)’ as before.

Exercises

33.11.1.(3) In Example 8 above, what result would be generated if the X’C2000444’ operand was normalized?

33.11.2.(3)+ Given the hexadecimal floating-point quantities you defined in Exercise 33.1.5, compute in decimal and in then in short hexadecimal floating-point forms the following values:

(a) D+C  (b) A+E  (c) B+E  (d) E−F  (e) D×B  (f) C×C  (g) D/B

33.12. Hexadecimal Floating-Point Comparison

Table 239 lists the hexadecimal floating-point comparison instructions:

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>79</td>
<td>CE</td>
<td>RX</td>
<td>Compare (Short)</td>
</tr>
<tr>
<td>69</td>
<td>CD</td>
<td>RX</td>
<td>Compare (Long)</td>
</tr>
<tr>
<td>39</td>
<td>CER</td>
<td>RR</td>
<td>Compare (Short)</td>
</tr>
<tr>
<td>29</td>
<td>CDR</td>
<td>RR</td>
<td>Compare (Long)</td>
</tr>
<tr>
<td>B369</td>
<td>CXR</td>
<td>RRE</td>
<td>Compare (Extended)</td>
</tr>
</tbody>
</table>

Comparing two floating-point operands requires an internal subtraction which follows all the above rules. As with other compare instructions, no interruption conditions are recognized and the intermediate result (including the guard digit) is examined to determine the CC setting. The operands are considered to be equal if the intermediate difference (including the guard digit) is zero.

The Condition Code settings are shown in this table:

<table>
<thead>
<tr>
<th>CC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Operands are equal</td>
</tr>
<tr>
<td>1</td>
<td>First operand is low</td>
</tr>
<tr>
<td>2</td>
<td>First operand is high</td>
</tr>
</tbody>
</table>

Be careful: if you compare unnormalized operands, two unequal operands may compare equal. For example, if we compare the short HFP number X’40000001’ to any number of the form X’3B10wxyz’, the CC setting is zero (indicating equality) for any values of the digits “wxyz”. (See Exercise 33.12.1.)

Exercises

33.12.1.(2)+ Perform the intermediate steps of comparing the two short operands X’40000001’ and X’3B1wxyz’, where wxyz are arbitrary hex digits, and prove that they will be found equal.

33.12.2.(2) Given the quantities A, B, C, D, and E shown in Exercise 33.9.5, show the CC setting after executing each of these instruction sequences:
33.12.3.(3) Given three arrays of 10 short hexadecimal floating-point values stored beginning at SideA, SideB, and SideC respectively, write an instruction sequence to set the byte at offset K in the ten-byte string starting at Triangle to one if the values of the K-th floating-point numbers could form the sides of a plane triangle, and to zero if not. (Remember that a triangle has the property that the sum of any two sides is greater than the third.)

33.12.4.(3) Given two arrays of twenty short HFP numbers X(i) and Y(i) stored at XX and YY respectively, write an instruction sequence that will store in the array starting at Ratio the quantity (X(i) / Y(i)) if |X(i)/Y(i)|<10^40, or 10^40 otherwise. Your program should be written so that no exponent overflows or underflows can be generated.

33.13. Rounding and Lengthening Instructions

Two sets of length-changing hexadecimal floating-point instructions let you

• round a longer operand to a shorter, and
• extend a shorter operand to a longer.

33.13.1. Rounding Instructions

Though hexadecimal floating-point arithmetic is not rounded, the instructions in Table 241 round a longer operand to a shorter.

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnen</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnen</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>LRER</td>
<td>RR</td>
<td>Load Rounded (Long to Short)</td>
<td>25</td>
<td>LRDR</td>
<td>RR</td>
<td>Load Rounded (Extended to Long)</td>
</tr>
<tr>
<td>B366</td>
<td>LEXR</td>
<td>RRE</td>
<td>Load Rounded (Extended to Short)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 241. Hexadecimal floating-point Round instructions

The LRDR and LXDR instructions round an extended operand to long, and LRER and LEDR round a long operand to short, as follows.

1. Examine the fraction bit of the next longer floating-point format that immediately follows the low-order fraction bit of the shorter operand. For LRER, LEDR, or LEXR this will be bit 32 of FPR(R_2); and for LRDR or LDXR, it will be bit 8 of FPR(R_2+2).

2. If the examined bit is zero, the high-order part of the second operand is placed in the first operand register.

3. If the examined bit is one, a low-order 1-bit is added internally to the low-order bit of the first-operand length of the second operand, and the resulting floating-point sum is placed in the first operand register.

4. If, in adding the low-order 1-bit, a carry occurs out of the high-order digit of the fraction, the fraction is shifted right one hex digit, and the characteristic is increased by 1. If this process causes the characteristic to exceed 127, an exponent overflow interruption occurs, and the IC is set to 12 (X'C').

5. No post-normalization is done, except for a possible right shift of one digit if there is a carry out of the high-order digit position, and the characteristic is incremented.

6. The Condition Code is not changed by these instructions.

For example, to round a long operand in FPR2 to short and store it at Rounded we can use the instructions in Figure 386.
LRER 0,2  Long operand in FPR2, short in FPR0
STE 0,Rounded  Store short rounded result

Figure 386. Rounding a long hexadecimal floating-point number to short

To form the extended product of two long operands at DA and DB and then round the result to long format, you can use an instruction sequence like this:

LD 0,DA  Load first operand into FPR0
MXD 0,DB  Form extended product in FPR(0,2)
LRDR 0,0  Round extended to long in FPR0

Suppose we must store at ZZ the rounded inner product of two linear arrays of twenty long-precision elements that start at XX and YY. (Compare Figure 381 on page 595.)

TL Equ 20  Length of arrays
LZXR 4     Accumulate extended sum in FPR(4,6)
LA 0,L’XX  JXLE Increment in GR0
LA 1,L’XX*(TL-1) JXLE Compare and in GR1
SR 2,2     JXLE Index in GR2
Loop LD 0,XX(2) Fetch operand XX(i)
MXD 0,YY(2) Form extended product XX(i)*YY(i)
AXR 4,0    Accumulate extended sum
JXLE 2,0,Loop Increment index and loop
LRDR 2,4   Round the result sum into FPR2
STD 2,ZZ   Store final result
- - -

XX DS (TL)D  Space for first array
YY DS (TL)D  Space for second array
ZZ DS D  Rounded inner product stored here

Figure 387. Rounded inner product of long HFP numbers

To retain precision, products of the long elements are generated and accumulated as an extended-precision sum that is rounded to the final long result. Because there are no instructions to test individual bits in the floating-point registers, you could do rounding “manually” in other ways that illustrate the rounding method used by the CPU.

Suppose the LRER instruction did not exist. We could write instruction sequences to round the long floating-point number in FPR2 in several ways:

1. A direct method stores the long operand and tests the bit. If it is one, form an unnormalized quantity of the same sign and characteristic with only a low-order 1-bit in the fraction, and add it to do the rounding. Suppose the result is to be stored at Round1.

STD 2,Temp  Store long operand
TM Temp+4,X’80’ Test high-order bit of right half
JZ Done  If zero, no rounding
MVC One(1),Temp  Move sign and characteristic
AE 2,One  Add roundoff bit
Done STE 2,Round1  Store rounded result
- - -

Temp DS D  Workspace
One DC F’1’  Low-order 1-bit for rounding
Round1 DS E  Rounded result

Figure 388. Manually rounding long to short (1)

Suppose FPR2 initially contains X’ccdd dddr xeee eeee’, where cc is the characteristic, r is the digit that might be rounded, and the high-order bit of x is tested by the TM instruction. If the bit is zero, nothing else need be done. If it is 1, the characteristic is moved to the high-order byte of the “constant” named One (poor programming technique!), forming cc00 0001, which is then added as a short hexadecimal floating-point value to FPR2, rounding the long value to short.
2. Another instruction sequence uses the fact that if the high-order bit of the lower half of the long operand is a 1-bit, then adding that bit to itself will produce a carry into the low-order bit position of the short half of the register.

```
STD 2,T Store long operand
XC T+1(3),T+1 Set 1st 3 fraction bytes to 0
AD 2,T Add back to round off
STE 2,Round2 Store rounded short operand
```

Figure 389. Manually rounding long to short (2)

3. This instruction sequence uses only the floating-point registers, and no intermediate storage:

```
LDR 6,2 Move long argument to FPR6
LZDR 4 Clear all of FPR4
LER 4,2 Move short half of argument to FPR4
SWR 6,4 Subtract left part of fraction
ADR 2,6 Add low-order half to round
STE 2,Round3 Store rounded result
```

```
T DS D
Round2 DS E
```

Figure 390. Manually rounding long to short (3)

These examples only show how rounding works; it’s far simpler to use the CPU’s rounding instructions, not these.

### 33.13.2. Lengthening Instructions

These instructions do a simple operation: the second operand is copied to the first operand register and extended with zeros. The Condition Code is unchanged.

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED24</td>
<td>LDE</td>
<td>RXE</td>
<td>Load Lengthened (Short to Long)</td>
<td>B324</td>
<td>LDER</td>
<td>RRE</td>
<td>Load Lengthened (Short to Long)</td>
</tr>
<tr>
<td>ED26</td>
<td>LXE</td>
<td>RXE</td>
<td>Load Lengthened (Short to Extended)</td>
<td>B326</td>
<td>LXER</td>
<td>RRE</td>
<td>Load Lengthened (Short to Extended)</td>
</tr>
<tr>
<td>ED25</td>
<td>LXD</td>
<td>RXE</td>
<td>Load Lengthened (Long to Extended)</td>
<td>B325</td>
<td>LXDR</td>
<td>RRE</td>
<td>Load Lengthened (Long to Extended)</td>
</tr>
</tbody>
</table>

Table 242. Hexadecimal floating-point Load Lengthened instructions

For example, to lengthen a short operand to long, you could write:

```
LE 0,=X’12345678’ Short hexadecimal floating-point value
LDER 4,0 c(FPR4)=X’1234567800000000’
```

For extended targets (of LX-type instructions), the signs of the first operand’s high- and low-order halves are the same, and the low-order characteristic is 14 less than the high-order characteristic (modulo 128).

```
LD 0,=X’123456789ABCDEFO’ Source operand
LXDR 4,0 Extend in (FPR4,6)
```

will set FPR4 to the same value that is in FPR0, and FPR6 will be set to X’0400000000000000’.

If the source fraction for an extended target is negative zero, the result is all zero digits except for the two matching sign bits. For example:
LD 0,=X'8000000000000000'  Minus zero
LXDR 4,0  Extend in (FPR4,6)

will set both FPR4 and FPR6 to X'8000000000000000'.

Bonus effect
LXE and LXD provide an easy way to load a short or long operand into a floating-point register while also setting its paired register to zero.

Exercises

33.13.1.(2)+ Suppose an LRER or LRDR instruction causes an exponent overflow. What are the possible values of the rounded result?

33.13.2.(2)+ Show the result in FPR0 of executing
LRER 0,0
with each of these register contents:
1. c(FPR0)=X'7FFFFFFF87654321'
2. c(FPR0)=X'4000000087654321'
3. c(FPR0)=X'4000000012345678'

33.13.3.(2) Write and execute instructions to verify that the sequence shown in Figure 390 on page 605 works as described.

33.13.4.(1) Suppose you execute these instructions:
LE 4,Variable
LDER 2,4
LEDR 0,2

What differences will there be between c(FPR0) and c(FPR4)?

33.13.5.(2) Show the contents of the registers at each step in Figure 390 on page 605.

33.14. Converting Between Binary Integers and HFP

Before these instructions were added to the z System instruction set, converting between hexadecimal floating-point and binary integers was somewhat roundabout. The instructions in Table 243 greatly simplify the process.

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3B4</td>
<td>CEFR</td>
<td>RRE</td>
<td>Convert from Fixed (32 to Short)</td>
<td>B3B8</td>
<td>CFER</td>
<td>RRF</td>
<td>Convert to Fixed (Short to 32)</td>
</tr>
<tr>
<td>B3B5</td>
<td>CDFR</td>
<td>RRE</td>
<td>Convert from Fixed (32 to Long)</td>
<td>B3B9</td>
<td>CFDR</td>
<td>RRF</td>
<td>Convert to Fixed (Long to 32)</td>
</tr>
<tr>
<td>B3B6</td>
<td>CXFR</td>
<td>RRE</td>
<td>Convert from Fixed (32 to Extended)</td>
<td>B3BA</td>
<td>CFXR</td>
<td>RRF</td>
<td>Convert to Fixed (Extended to 32)</td>
</tr>
<tr>
<td>B3C4</td>
<td>CEGR</td>
<td>RRE</td>
<td>Convert from Fixed (64 to Short)</td>
<td>B3C8</td>
<td>CGER</td>
<td>RRF</td>
<td>Convert to Fixed (Short to 64)</td>
</tr>
<tr>
<td>B3C5</td>
<td>CDGR</td>
<td>RRE</td>
<td>Convert from Fixed (64 to Long)</td>
<td>B3C9</td>
<td>CGDR</td>
<td>RRF</td>
<td>Convert to Fixed (Long to 64)</td>
</tr>
<tr>
<td>B3C6</td>
<td>CXGR</td>
<td>RRE</td>
<td>Convert from Fixed (64 to Extended)</td>
<td>B3CA</td>
<td>CGXR</td>
<td>RRF</td>
<td>Convert to Fixed (Extended to 32)</td>
</tr>
</tbody>
</table>

Table 243. Hexadecimal floating-point FPR/GPR conversion instructions
33.14.1. Converting Binary Integers to Hexadecimal Floating-Point

The six instructions in the left-hand columns of Table 243 convert a binary integer from a general register to a hexadecimal floating-point value in a floating-point register. For example, we can convert the integer in GR5 to short hexadecimal floating-point in FPR4:

```
L 5,=F'54321'
CEFR 4,5 c(FPR4)=X'44D43100'
```

Figure 391. Converting a 32-bit integer to short hexadecimal floating-point

The rules for these six instructions are simple:

1. Zero integer values are converted to +0 floating-point values.
2. The HFP result is truncated, not rounded.
3. The Condition Code is unchanged.
4. The CXFR and CXGR instructions require that the $R_1$ operand refer to the lower-numbered register of a Floating-Point Register pair.

Converting 64-bit integers to hexadecimal floating-point is just as easy, but you can see in Figure 392 that large integer values may lose some low-order bits when converted to short or long hexadecimal floating-point formats:

```
LG 5,=FD'123456789012345678' (X'01B69B4A630F34E')
CEGR 4,5 c(FPR4)=X'4F1B69B4' (truncated)
CDGR 4,5 c(FPR4)=X'4F1B69B4A630F34' (truncated)
CXGR 4,5 c(FPR4)=X'4F1B69B4A630F34 41E0000000000000' (OK)
```

Figure 392. Converting a 64-bit integer to three hexadecimal floating-point values

To help you appreciate the simplicity of these instructions, consider this sequence of instructions used by an early System/360 FORTRAN compiler to convert the fullword integer stored at FWInt to hexadecimal floating-point, and store the result at DFInt.

```
LD 0,=D'0' Clear all of FPR0
L 1,FWInt Load integer from FWInt into GPR1
LTR 1,1 Test sign
BM Neg Branch if negative
ST 1,DCon+4 Store magnitude
AD 0,DCon Normalized result in FPR0
B Store Branch to store
Neg LPR 1,1 Take magnitude of integer
ST 1,DCon+4 Store it
SD 0,DCon Form negative normalized value
Store STD 0,DFInt Store long floating value

DFInt DS D Doubleword result
DCon DC X'4E',7X'0' Pseudo-zero, exponent = 14
```

Figure 393. Early conversion of integer to hexadecimal floating-point

More efficient and elegant techniques were developed as high-level languages evolved; some of them are illustrated in (the recommended!) Exercises 33.14.4 through 33.14.6.

When converting a fullword integer to short hexadecimal floating-point, there may be as many as 32 significant bits in the integer, but a short HFP number has only a 24-bit fraction. Thus, there may be a loss of accuracy in converting fullword integers to short hexadecimal floating-point. Since floating-point arithmetic is concerned primarily with maintaining as many high-order digits as possible, this truncation is tolerated by the new instructions also.

---

208 A very early compiler. Subsequent compilers quickly used improved techniques.
33.14.2. Converting Hexadecimal Floating-Point to Binary Integers

The six instructions in the right-hand columns of Table 243 convert a hexadecimal floating-point value in a floating-point register to a binary integer in a general register. Any fractional value is lost, except that rounding the lost fraction might affect the low-order digit of the integer result. In addition to the expected R₁ and R₂ operands, they also specify a rounding modifier M₃ as another operand. The instruction format is:

<table>
<thead>
<tr>
<th>opcode</th>
<th>M₃</th>
<th>R₁</th>
<th>R₂</th>
</tr>
</thead>
</table>

Table 244. Format of HFP to fixed binary instructions

Calling it the “third” operand may be confusing, because it is actually specified as the second operand of a machine instruction statement:

CFER R₁,M₃,R₂

Figure 394. Format of machine instruction statement for converting HFP to binary

The R₁ (target) operand specifies a general register and the R₂ (source) operand specifies a floating-point register. The M₃ operand determines what rounding should be done, as shown in Table 245. (These instructions are easy to use; just be sure to specify a rounding mode (M₃) operand, as there is no default.)

<table>
<thead>
<tr>
<th>M₃</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>B’0000’</td>
<td>Truncate the fraction part (round toward zero)</td>
</tr>
<tr>
<td>B’0001’</td>
<td>Round to nearest; if the source value is halfway between two integer values, choose the one with the larger magnitude</td>
</tr>
<tr>
<td>B’0100’</td>
<td>Round to nearest; if the source value is halfway between two integer values, choose the even one with a zero low-order bit</td>
</tr>
<tr>
<td>B’0101’</td>
<td>Truncate the fraction part (round toward zero)</td>
</tr>
<tr>
<td>B’0110’</td>
<td>Round toward +∞</td>
</tr>
<tr>
<td>B’0111’</td>
<td>Round toward −∞</td>
</tr>
</tbody>
</table>

Table 245. Rounding modifiers for HFP-to-binary conversion

Other modifier values are invalid, and cause a specification exception.

These instructions set the Condition Code, with CC=3 as an interesting and unusual case.

<table>
<thead>
<tr>
<th>CC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Result is = 0</td>
</tr>
<tr>
<td>1</td>
<td>Result is &lt; 0</td>
</tr>
<tr>
<td>2</td>
<td>Result is &gt; 0</td>
</tr>
<tr>
<td>3</td>
<td>The rounded result exceeds the range of the target representation, and has been replaced by the largest representable correctly signed magnitude.</td>
</tr>
</tbody>
</table>

Table 246. CC settings for HFP-to-binary conversion

As you would expect, the CFXR and CXFGR instructions require that the R₂ operand reference the low-order half of a floating-point register pair.

For example, these instructions generate the indicated results:

\[
\begin{align*}
\text{LE } & \quad 4_4 = E^{123.456} \\
\text{CFER } & \quad 2_2, B’0110’, 4, \quad c(\text{GR2}) = X’0000007C’ (=124) \\
\text{LD } & \quad 4_4 = E^{’-73.946} \\
\text{CGER } & \quad 2_2, B’0111’, 4, \quad c(\text{GG2}) = X’FFFFFFF08FB6’ (=−74) \\
\text{LE } & \quad 4_4 = E^{1234567890} \quad c(\text{GR2}) = X’49960300’ (=1234567936)
\end{align*}
\]
The last example shows that some low-order bits could not be represented in the short second operand.

Unexpected results can also be generated if floating-point values “known” to have integer values are converted to binary. For example if a HFP result is expected to be 8 but actually is calculated as 7.999999, the lack of a rounding conversion to binary generates the integer value 7.

Table 247 summarizes the actions of some instructions that move and/or convert data between and among the general registers and floating-point registers:

<table>
<thead>
<tr>
<th>From</th>
<th>Fixed Bin (32 bits)</th>
<th>Fixed Bin (64 bits)</th>
<th>Hex Float (32 bits)</th>
<th>Hex Float (64 bits)</th>
<th>Hex Float (128 bits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed Bin (32 bits)</td>
<td>LR</td>
<td>LGFR</td>
<td>CEFR</td>
<td>CDFR</td>
<td>CXFR</td>
</tr>
<tr>
<td>Fixed Bin (64 bits)</td>
<td>LR</td>
<td>LGR</td>
<td>CEGR</td>
<td>CDGR</td>
<td>CXGR</td>
</tr>
<tr>
<td>Hex Float (32 bits)</td>
<td>CFER</td>
<td>CGER</td>
<td>LER</td>
<td>LDER</td>
<td>LXER</td>
</tr>
<tr>
<td>Hex Float (64 bits)</td>
<td>CFDR</td>
<td>CGDR</td>
<td>LRER</td>
<td>LDR</td>
<td>LXER</td>
</tr>
<tr>
<td>Hex Float (128 bits)</td>
<td>CFXR</td>
<td>CGXR</td>
<td>LEXR</td>
<td>LRDR</td>
<td>LXR</td>
</tr>
</tbody>
</table>

Table 247. Instructions moving/converting binary and hexadecimal floating-point operands

**Exercises**

33.14.1.(2) An array of fullword integers is stored starting at IntData and the number of elements in the array is stored as a fullword integer at NItems. Write instructions to compute and store at IntAvg the floating-point average of the list of integers, taking into account the possibility that the integer sum may overflow a general register.

33.14.2.(2) What is the largest binary integer that can be converted to hexadecimal floating-point long format without loss of precision? Explain.

33.14.3.(1) Can the instructions for converting a binary integer to hexadecimal floating-point generate an exponent spill?

33.14.4.(3) A compiler used these instructions to convert the fullword binary integer in GR0 to long hexadecimal floating-point form in FPR0.

```assembly
X 0,Float+4 ; Invert sign bit
ST 0,DCon+4 ; Store result in long number
LD 0,DCon ; Load the unnormalized value
SD 0,Float ; Subtract and normalize
- - -
DS OD ; Align on doubleword boundary
DCon DC X’4E00000000000000’ ; Pseudo-zero, exponent = 14
Float DC X’4E00000080000000’ ; 2**31, unnormalized
```

Analyze this method, and show (a) how it works, and (b) that it will work correctly for any integer value.

33.14.5.(3) Another compiler used this instruction sequence to convert a fullword binary integer in GR0 to long hexadecimal floating-point form in FPR0. Analyze its action for positive, zero, negative, and maximum negative integer values. Describe the differences between this instruction sequence and that in Exercise 33.14.4.
33.14.6.(3)+ The following instruction sequence was used by a compiler to convert a short hexadecimal floating-point value at $X$ to a fullword integer in GR0. Analyze its operation for positive, zero, and negative hexadecimal floating-point values, and describe its behavior for hexadecimal floating-point values exceeding $2^{31}$.

```
LD 0, DCon ; Clear low-order half of FPR0
LE 0, X ; Get floating-point operand
AD 0, DCon ; Add and normalize
STD 0, FTemp ; Store the result
L 0, FTemp+4 ; Put the integer result in GR0
```

Temp DS D Doubleword temporary
DCon DC X'4F08000000000000' Conversion constant

33.14.7.(3) What modifications would be required to the instructions in Exercise 33.14.6 to handle conversion of a long precision hexadecimal floating-point value to fullword integer form? To 64-bit integer form?

33.14.8.(2)+ Write the constants named DCon in Exercises 33.14.4 through 33.14.6 as hexadecimal floating-point constants in DC statements.

33.14.9.(2)+ What integer values satisfying

$$2^{30} \leq \text{value} < 2^{31}$$

can be converted without loss of precision to short hexadecimal floating-point form?

33.14.10.(3) Without using the instructions described in Section 33.14, write instructions to convert the long hexadecimal floating-point value at YY to a fullword binary integer stored at NN. If the integer result is too large to be correctly represented, branch after storing the result to the instruction at location TooBig.

33.14.11.(3) Without using the instructions described in Section 33.14, write instructions to convert the short hexadecimal floating-point number at XX to a correctly rounded fullword integer value stored at MM.

33.14.12.(2) Write the constant named Float in Exercise 33.14.4 in a DC statement as a scaled D-type constant.

33.14.13.(3)+ Write an instruction sequence that will convert the nonnegative fullword integer at IntVal to a rounded short hexadecimal floating-point format stored at Result, using round half-up (arithmetic) rounding.

33.14.14.(3) Repeat Exercise 33.13.13, but use half-even rounding.

33.14.15.(2) The following short HFP numbers are converted to binary integers using these two instructions:
for these HFP_Number values:

(1) $X'46000000'$
(2) $X'C7654321'$
(3) $X'7FEDCB49'$
(4) $X'ABCDEF74'$
(5) $X'4974662'B$

Show the Condition code and the contents of GR3 and GG3 for each HFP number.

33.14.16.(2) If you convert the HFP constant $E'65537'$ to a halfword binary integer, what is the result?

33.14.17.(2) Suppose you use these instructions to convert a long HFP operand at $DFloat$ to a fullword binary integer stored at $NF$. What value will be stored?

LD 0,DFloat Get long operand
AW 0,DCon Add long pseudo-zero, exponent 14
STD 0,DTemp Store temporarily
L 1,DTemp+4 Pick up fullword integer
BNM *+6 Branch if nonnegative
LCR 1,1 Complement integer value
ST 1,NF Store fullword result

$DTemp$ DS D
$DCon$ DC $X'4E',7X'O'$ Pseudo-zero, exponent=14
$DFloat$ DC $D'16777219'$ Long HFP source data
$NF$ DS F Integer result

33.15. Hexadecimal Floating-Point Integers and Remainders (*)

We must sometimes compute the “remainder” of a floating-point division, even though it’s not provided by the CPU as a result of any divide instruction. Given two operands $A$ and $B$, we may need to calculate a quotient $Q$ and a remainder $R$ so that

$$A = Q*B + R$$

The quotient $Q$ is produced by the divide instructions; for floating-point arithmetic, $R$ must be calculated separately. This can be done using

$$R = A - \text{Int}(A/B)*B$$

Thus, we evaluate $A/B$, convert it to its floating-point integer form, multiply that by $B$, and subtract the product from $A$ to give the desired result.

For example, suppose we use three-digit decimal floating-point and divide 5.55 by 2.47; the true quotient is 2.246963562753.... The integer part of the quotient is 2, so we must evaluate $5.55-(2\times2.47)$ to find the remainder, 0.61.

The key step is finding the integer part of the quotient, using the instructions in Table 248.
Table 248. Hexadecimal floating-point instructions generating floating-point integers

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>B377</td>
<td>FIER</td>
<td>RRE</td>
<td>Load FP Integer (Short)</td>
<td>B37F</td>
<td>FIDR</td>
<td>RRE</td>
<td>Load FP Integer (Long)</td>
</tr>
<tr>
<td>B367</td>
<td>FIXR</td>
<td>RRE</td>
<td>Load FP Integer (Extended)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

It’s important to remember that the result is a *hexadecimal floating-point integer* in the same format, not a fixed binary integer!

- The results of these instructions are normalized.
- The Condition Code is unchanged.
- FIXR requires that both operands refer to the lower-numbered register of a floating-point register pair.
- If the exponent of the second operand is large enough, the result in the first operand will be the same value (normalized).

Using the values $A=5.55$ and $B=2.47$, Figure 395 shows how we would calculate the HFP remainder:

```
LE 0,=E'5.55' A = 5.55
DE 0,=E'2.47' B = 2.47
FIER 0,0 Int(A/B) = 2
ME 0,=E'2.47' Multiply by B
LCER 0,0 Invert sign of the product
AE 0,=E'5.55' Remainder = A - Int(A/B)*B
```

Figure 395. Calculating a HFP remainder

The result in FPR0 is $X'409C28F0'$, or approximately 0.60999966 in decimal.

To give another example:

```
LE 0,=X'42345678' Hex 33.5678
FIER 2,0 c(FPR2) = X'4234000'
```

removes the fraction $X'42005678'$, leaving the integer part.

Suppose there are short hexadecimal floating-point operands at $A$ and $B$ and the remainder is to be stored in short form at $AModB$.

```
LE 0,A Load A into FPR0
DE 0,B Divide by B
FIER 0,0 Drop off the fraction part
ME 0,B Form product with integer part
LCER 0,0 Form -B*IntPart(A/B)
AE 0,A Add A to form remainder
STE 0,AModB Store result
```

```
A DC E'20' A value for A
B DC E'16' And for B
```

Figure 396. Evaluating a hexadecimal floating-point remainder

This technique should be used with care. If the relative magnitudes of $A$ and $B$ are close, the result is acceptable; but if the ratio $|A/B|$ approaches the precision of the operands, the result can be inaccurate, and special programming techniques may be needed to calculate an accurate result.
Exercises

33.15.1.(2) In Figure 396, what will be in FPR0 after the DE instruction? After the FIER instruction? After the ME instruction? After the AE instruction?

33.15.2.(2) Show that the FIER instruction in Figure 396 can be replaced by

\[ \text{AU} \quad 0 = X'46000000' \]

33.15.3.(3) What will happen in Figure 396 if the FIER instruction is replaced by

\[ \text{AE} \quad 0 = X'46000000' \]

For what values of A/B will there be no difference between using AE and AU instructions?

33.15.4.(1) Rewrite the instructions in Figure 396 to use long operands.

33.15.5.(2) What is the result in FPR0 of each of these instruction sequences?

1. \[ \text{LE} \quad 0 = X'44001234' \]
   \[ \text{FIER} \quad 0,0 \]

2. \[ \text{LD} \quad 0 = X'C7FEDCA987654321' \]
   \[ \text{FIDR} \quad 0,0 \]

3. \[ \text{LXD} \quad 0 = X'1234567890ABCDEF' \]
   \[ \text{FIXR} \quad 0,0 \]

4. \[ \text{LE} \quad 0 = X'77654321' \]
   \[ \text{FIER} \quad 0,0 \]

5. \[ \text{LD} \quad 0 = X'C7FEDCA987654321' \]
   \[ \text{FIER} \quad 0,0 \]

33.15.6.(2) Rewrite the instructions in Figure 396 to handle long HFP operands.

33.16. Square Root Instructions (*)

The instructions in Table 249 extract the square root of a hexadecimal floating-point operand. None of them change the Condition Code.

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED34</td>
<td>SQE</td>
<td>RXE</td>
<td>Square Root (Short)</td>
<td>B245</td>
<td>SQER</td>
<td>RRE</td>
<td>Square Root (Short)</td>
</tr>
<tr>
<td>ED35</td>
<td>SQD</td>
<td>RXE</td>
<td>Square Root (Long)</td>
<td>B244</td>
<td>SQDR</td>
<td>RRE</td>
<td>Square Root (Long)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B336</td>
<td>SQXR</td>
<td>RRE</td>
<td>Square Root (Extended)</td>
</tr>
</tbody>
</table>

Table 249. Hexadecimal floating-point Square Root instructions

The SQXR instruction requires both the R₁ and R₂ operands to refer to the lower-numbered register of a Floating-Point Register pair.

The second operand is first tested to see if it is negative and nonzero. If so, a HFP Square Root interruption occurs, and the IC is set to 29 (X'1D'). Otherwise, the operand is normalized internally and its square root is evaluated; the result is normalized, rounded, and its sign is always +.

Because the exponent of a square root is about one-half the exponent of its argument, the result cannot cause an exponent spill.

Figure 397 gives some examples of these instructions:
These instructions have two interesting properties (see Exercises 33.16.1 and 33.16.2):

1. Rounding cannot produce a carry out of the high-order digit of the result.
2. A square root cannot lie exactly half way between two representable values, so that traditional “half-up” rounding can be used.

### Exercises

33.16.1.(1) Estimate the value of the square root of HFP \((\text{Max}), (\text{Min}), \) and \((\text{DMin})\) values.

33.16.2.(3) It is stated above that rounding the result of a square root instruction cannot create a carry out of the high-order digit of the fraction. Why not?

33.16.3.(4) It is stated above that the result of a square root instruction cannot lie exactly half way between two representable values. Why not?

### 33.17. Multiply and Add/Subtract Instructions (*)

The instructions in Table 250 combine two operations into one: a multiplication followed by an addition or subtraction; they are sometimes called “fused multiply-add” or “FMA” instructions. None of them change the Condition Code.

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED2E</td>
<td>MAE</td>
<td>RXF Multiply and Add (Short)</td>
<td>B32E</td>
<td>MAER</td>
<td>RRF Multiply and Add (Short)</td>
</tr>
<tr>
<td>ED3E</td>
<td>MAD</td>
<td>RXF Multiply and Add (Long)</td>
<td>B33E</td>
<td>MADR</td>
<td>RRF Multiply and Add (Long)</td>
</tr>
<tr>
<td>ED2F</td>
<td>MSE</td>
<td>RXF Multiply and Subtract (Short)</td>
<td>B32F</td>
<td>MSER</td>
<td>RRF Multiply and Subtract (Short)</td>
</tr>
<tr>
<td>ED3F</td>
<td>MSD</td>
<td>RXF Multiply and Subtract (Long)</td>
<td>B33F</td>
<td>MSDR</td>
<td>RRF Multiply and Subtract (Long)</td>
</tr>
</tbody>
</table>

Table 250. Hexadecimal floating-point Multiply and add/subtract instructions

These instructions have three operands; their RRF format (shown in Table 251) is similar to that in Table 244 on page 608, except that the instruction operands are in different fields.

<table>
<thead>
<tr>
<th>opcode</th>
<th>R1</th>
<th>R3</th>
<th>R2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 251. Format of RRF-type HFP multiply and add/subtract instructions

The RXF-type instruction format is shown in Table 252:

<table>
<thead>
<tr>
<th>opcode</th>
<th>R3</th>
<th>X2</th>
<th>B2</th>
<th>D2</th>
<th>R1</th>
<th>opcode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 252. Format of RXF-type multiply and add/subtract instructions

The assembler instruction statement format for these instructions is simpler:
The effect of these instructions is to evaluate

\[ \text{operand}_1 = (\text{operand}_3 \times \text{operand}_2) \pm \text{operand}_1 \]

or

\[ c(R_1) = (c(R_3) \times \text{operand}_2) \pm c(R_1) \]

Initially, the product of operand_2 and operand_3 is evaluated internally to double precision: that is, to 14 digits for short operands, and to 28 digits for long operands. Possible exponent spills are ignored at this stage. Then, operand_1 is added or subtracted, the result is normalized and truncated, and replaces operand_1. Exponent overflow or underflow may occur at this stage.

A single guard digit is used for the addition or subtraction, and the final result is truncated, not rounded.

None of the operands is normalized at the start of the instructions.

For example:

- \text{LE} 4,=E'25' \quad \text{Operand}_3 \text{ in FPR4}
- \text{LE} 2,=E'123' \quad \text{Operand}_1 \text{ in FPR2}
- \text{MAE} 2,4,=E'4' \quad \text{Operand}_2 = 4.0

multiplies 25 and 4, and adds 123, giving X'42DF0000', or 223 as expected.

The big advantage of these instructions is that they avoid the possibility of double rounding, or the need for using higher-precision arithmetic. If you wanted to achieve the same result without the MAE instruction, you would have to write something like this:

- \text{LE} 4,=X'60987654' \quad \text{Operand}_3
- \text{LE} 2,=X'FFFFFFFF' \quad \text{Operand}_1
- \text{MAE} 2,4,=X'60234567' \quad \text{Operand}_2 \text{ in memory}

produces a result X'7F50182C' in FPR2 with no overflow, but

- \text{LE} 4,=X'60987654' \quad \text{Operand}_3
- \text{ME} 4,=X'60234567' \quad \text{Operand}_2 \text{ in memory}
- \text{AE} 4,=X'FFFFFFFF' \quad \text{Operand}_1

produces an exponent overflow when the ME instruction is executed with \( c(\text{FPR}_4) = X'00150182B3FC00' \); the following AE instruction ignores the (now) tiny result of the ME instruction, giving X'FFFFFFFF' as the final result!

### Exercises

3.3.17.1.(2)+ Rewrite the example in Figure 381 on page 595 to use multiply-add instructions.

3.3.17.2.(2) Rewrite the example in Figure 382 on page 595 to use multiply-add instructions.
33.18. Some Hexadecimal Floating-Point History (*)

In the early System/360 CPUs, processor and memory speeds were close (and in some cases a memory access was faster than the time needed to execute an instruction). Some programming techniques that performed acceptably then are no longer used.

33.18.1. Zeroing Floating-Point Registers

Sometimes you need to clear a floating-point register to zero, or set the low-order half of a floating-point register to zero prior to loading a short operand. Without the lengthening instructions in Section 33.13.2 on page 605, or the Load Zero instructions in Section 31.9.3. on page 556, you might have used instructions like these:

```
LD 0,=D’0.0’ Load a zero from memory
```

or

```
SWR 0,0 Subtract the register from itself
```

with the cost of a constant and a memory access for the LD instruction, and a possible HFP lost-significance exception for the SWR instruction.

33.18.2. Hexadecimal Floating-Point to Binary Conversion Comments (*)

There are some possible problems.

1. Suppose we try to convert the HFP constant E’50000’ to a halfword integer. If we use a typical instruction sequence, the intermediate HFP result would be X’4600C350’. If we load the rightmost four digits of this result into a general register using a LH instruction, the contents of that register would be X’FFFFC350’, an integer value of -15536! This could be quite a surprise, because the original operand was positive. Such conversions gave no indication that the result was corrupted.

While this example might seem relatively harmless (the negative result indicates that an overflow has occurred), it is easy to create examples where the loss of accuracy is not as obvious.

2. The lack of a CC setting meant that the binary result would have to be tested using a LTR instruction to determine its sign; the new instructions like those in Section 33.14.2 on page 608 solve that problem.

3. When converting an integer to short hexadecimal floating-point, it is possible that the integer has enough low-order zero bits so that its magnitude may exceed 2^24 and still no significant bits will be lost in the conversion, but we have no way to know this is so. While this may not seem very important, there are situations where you may obtain unsuspected results.

33.18.3. Initial System/360 Oversights

When the very first System/360 CPUs were delivered, customers found that some floating-point implementation oversights made program portability more difficult among different models:

1. There was no guard digit for long hexadecimal floating-point arithmetic. (For example, the multiplicative identity 1×a=a failed in long arithmetic due to the lack of a guard digit.)

2. No post-normalization or zero-fraction test was performed after the Halve instructions, so that unnormalized results could be generated from normalized operands.

3. No characteristic wraparound or correct fraction was guaranteed in case of overflow and underflow, and the result left in the register depended on the model.

4. A condition code of 3 was generated when exponent overflow occurred during add operations.

5. No extended precision operations were available.

These oversights were corrected very promptly: IBM announced in February 1967 that engineering changes would be made to all machines (if desired by the owner or renter) in order to rectify the first four of the above conditions. Extended precision was delivered several years later.
33.19. Summary

We’ve covered a lot of material in this section; a few summary comments may help.

- Operands are pre-normalized for multiplication and division, but not for addition or subtraction.
- There are no reserved or special values, as for binary and decimal floating-point.
- Arithmetic results are not rounded.
- Arithmetic truncates (usually, but not always, toward zero!) For example: \(X'42100000' - X'40FFFFFF' = X'41F00001'\) (instead of \(X'41F00000'\)); this result is truncated away from zero, with error = 15/16 ulp.
- Zero arithmetic results are delivered as +0 ("true zero").

There are no instructions operating on two hexadecimal floating-point operands of different lengths, such as adding a short and a long operand. Such arithmetic is sometimes called “mixed-length” or “mixed-precision” arithmetic. The only practical way to mix short and long operands is to clear the low-order half of a long register (or area of memory), place the short operand in the high-order half, and then do the required operation in long arithmetic.

The hexadecimal floating-point instructions for moving and testing data in the floating-point registers are summarized in Table 253.

<table>
<thead>
<tr>
<th>Function</th>
<th>Operand Length</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4 bytes</td>
</tr>
<tr>
<td>Load and Test</td>
<td>LTER</td>
</tr>
<tr>
<td>Load Complement</td>
<td>LCER</td>
</tr>
<tr>
<td>Load Negative</td>
<td>LNER</td>
</tr>
<tr>
<td>Load Positive</td>
<td>LPER</td>
</tr>
</tbody>
</table>

Table 253. Hexadecimal floating-point Move/Test instructions

The hexadecimal floating-point multiplication instructions are summarized in Table 254.

<table>
<thead>
<tr>
<th>Function</th>
<th>Source Length</th>
<th>Product Length</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4 bytes</td>
<td>8 bytes</td>
</tr>
<tr>
<td>Multiply (registers)</td>
<td>MEER</td>
<td>MER</td>
</tr>
<tr>
<td>Multiply (storage)</td>
<td>MEE</td>
<td>ME</td>
</tr>
</tbody>
</table>

Table 254. Hexadecimal floating-point Multiply instructions

The hexadecimal floating-point divide instructions are summarized in Table 255.

<table>
<thead>
<tr>
<th>Function</th>
<th>Operand Length</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4 bytes</td>
</tr>
<tr>
<td>Divide (register)</td>
<td>DER</td>
</tr>
<tr>
<td>Divide (storage)</td>
<td>DE</td>
</tr>
<tr>
<td>Halve (register)</td>
<td>HER</td>
</tr>
</tbody>
</table>

Table 255. Hexadecimal floating-point Divide instructions
The hexadecimal floating-point instructions for normalized and unnormalized addition and subtraction and for comparison are summarized in Table 256.

<table>
<thead>
<tr>
<th>Function</th>
<th>Operand Length</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4 bytes</td>
</tr>
<tr>
<td>Add/Subtract Normalized (register)</td>
<td>AER</td>
</tr>
<tr>
<td></td>
<td>SER</td>
</tr>
<tr>
<td>Add/Subtract Normalized (storage)</td>
<td>AE</td>
</tr>
<tr>
<td></td>
<td>SE</td>
</tr>
<tr>
<td>Add/Subtract Unnormalized (register)</td>
<td>AUR</td>
</tr>
<tr>
<td></td>
<td>SUR</td>
</tr>
<tr>
<td>Add/Subtract Unnormalized (storage)</td>
<td>AU</td>
</tr>
<tr>
<td></td>
<td>SU</td>
</tr>
<tr>
<td>Compare (register)</td>
<td>CER</td>
</tr>
<tr>
<td>Compare (storage)</td>
<td>CE</td>
</tr>
</tbody>
</table>

Table 256. Hexadecimal floating-point Add, Subtract, and Compare instructions

The hexadecimal floating-point rounding instructions are summarized in Table 257.

<table>
<thead>
<tr>
<th>Function</th>
<th>Source Length</th>
<th>8 bytes</th>
<th>16 bytes</th>
<th>16 bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Round</td>
<td>Source Length</td>
<td>Result Length</td>
<td>4 bytes</td>
<td>8 bytes</td>
</tr>
<tr>
<td></td>
<td>8 bytes</td>
<td>16 bytes</td>
<td>16 bytes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8 bytes</td>
<td>16 bytes</td>
<td>16 bytes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LRER</td>
<td>LEDR</td>
<td>LEXR</td>
<td>LRDR</td>
</tr>
<tr>
<td></td>
<td>LEER</td>
<td>LEXE</td>
<td>LXER</td>
<td>LXDR</td>
</tr>
</tbody>
</table>

Table 257. Hexadecimal floating-point Round instructions

The hexadecimal floating-point operand-lengthening instructions are summarized in Table 258.

<table>
<thead>
<tr>
<th>Function</th>
<th>Source Length</th>
<th>4 bytes</th>
<th>8 bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lengthen (register)</td>
<td>Result Length</td>
<td>8 bytes</td>
<td>16 bytes</td>
</tr>
<tr>
<td></td>
<td>32 bits</td>
<td>64 bits</td>
<td>32 bits</td>
</tr>
<tr>
<td></td>
<td>32 bits</td>
<td>64 bits</td>
<td>32 bits</td>
</tr>
<tr>
<td></td>
<td>LDER</td>
<td>LXER</td>
<td>LXDR</td>
</tr>
<tr>
<td></td>
<td>LDER</td>
<td>LXER</td>
<td>LXDR</td>
</tr>
</tbody>
</table>

Table 258. Hexadecimal floating-point Lengthening instructions

The instructions for converting hexadecimal floating-point operands to binary integers are summarized in Table 259.

<table>
<thead>
<tr>
<th>Function</th>
<th>Source Length</th>
<th>Target Length</th>
<th>4 bytes</th>
<th>8 bytes</th>
<th>16 bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Source Length</td>
<td>Target Length</td>
<td>32 bits</td>
<td>64 bits</td>
<td>32 bits</td>
</tr>
<tr>
<td></td>
<td>Source Length</td>
<td>4 bytes</td>
<td>8 bytes</td>
<td>16 bytes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Source Length</td>
<td>32 bits</td>
<td>64 bits</td>
<td>32 bits</td>
<td>64 bits</td>
</tr>
<tr>
<td></td>
<td>Source Length</td>
<td>32 bits</td>
<td>64 bits</td>
<td>32 bits</td>
<td>64 bits</td>
</tr>
<tr>
<td></td>
<td>CFER</td>
<td>CGER</td>
<td>CFDR</td>
<td>CGDR</td>
<td>CFXR</td>
</tr>
</tbody>
</table>

Table 259. Convert hexadecimal floating-point to binary instructions

The instructions for converting binary integer operands to hexadecimal floating-point are summarized in Table 260.

<table>
<thead>
<tr>
<th>Function</th>
<th>Source Length</th>
<th>Target Length</th>
<th>4 bytes</th>
<th>8 bytes</th>
<th>16 bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Source Length</td>
<td>Target Length</td>
<td>4 bytes</td>
<td>8 bytes</td>
<td>16 bytes</td>
</tr>
<tr>
<td></td>
<td>Source Length</td>
<td>32 bits</td>
<td>64 bits</td>
<td>32 bits</td>
<td>64 bits</td>
</tr>
<tr>
<td></td>
<td>Source Length</td>
<td>32 bits</td>
<td>64 bits</td>
<td>32 bits</td>
<td>64 bits</td>
</tr>
<tr>
<td></td>
<td>CFER</td>
<td>CDFR</td>
<td>CXFR</td>
<td>CEGR</td>
<td>CDGR</td>
</tr>
</tbody>
</table>

Table 260. Convert binary to hexadecimal floating-point instructions

The instructions for removing the fraction part of hexadecimal floating-point operands (that is, extracting the integer portion) are summarized in Table 261.
The instructions for evaluating the square root of hexadecimal floating-point operands are summarized in Table 262.

<table>
<thead>
<tr>
<th>Function</th>
<th>4 bytes</th>
<th>8 bytes</th>
<th>16 bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Square root (register)</td>
<td>SQER</td>
<td>SQDR</td>
<td>SQXR</td>
</tr>
<tr>
<td>Square root (register)</td>
<td>SQE</td>
<td>SQD</td>
<td></td>
</tr>
</tbody>
</table>

Table 262. Hexadecimal floating-point Square Root instructions

The instructions for performing multiply-and-add and multiply-and-subtract operations on hexadecimal floating-point operands are summarized in Table 263.

<table>
<thead>
<tr>
<th>Function</th>
<th>4 bytes</th>
<th>8 bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiply-add (register)</td>
<td>MAER</td>
<td>MADR</td>
</tr>
<tr>
<td>Multiply-add (storage)</td>
<td>MAE</td>
<td>MAD</td>
</tr>
<tr>
<td>Multiply-subtract (register)</td>
<td>MSER</td>
<td>MSDR</td>
</tr>
<tr>
<td>Multiply-add (storage)</td>
<td>MSE</td>
<td>MSD</td>
</tr>
</tbody>
</table>

Table 263. Hexadecimal floating-point Multiply-Add/Subtract instructions

Instructions Discussed in this Section
The instruction mnemonics and opcodes are shown in the following table:

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Opcode</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD</td>
<td>6A</td>
</tr>
<tr>
<td>ADR</td>
<td>2A</td>
</tr>
<tr>
<td>AE</td>
<td>7A</td>
</tr>
<tr>
<td>AER</td>
<td>3A</td>
</tr>
<tr>
<td>AU</td>
<td>7E</td>
</tr>
<tr>
<td>AUR</td>
<td>3E</td>
</tr>
<tr>
<td>AW</td>
<td>6E</td>
</tr>
<tr>
<td>AWR</td>
<td>2E</td>
</tr>
<tr>
<td>AXR</td>
<td>36</td>
</tr>
<tr>
<td>CD</td>
<td>69</td>
</tr>
<tr>
<td>CDFR</td>
<td>B3B5</td>
</tr>
<tr>
<td>CDGR</td>
<td>B3C5</td>
</tr>
<tr>
<td>CDR</td>
<td>29</td>
</tr>
<tr>
<td>CE</td>
<td>79</td>
</tr>
<tr>
<td>CEFR</td>
<td>B3B4</td>
</tr>
<tr>
<td>CEGR</td>
<td>B3C4</td>
</tr>
<tr>
<td>CFRD</td>
<td>B3B9</td>
</tr>
<tr>
<td>CFXR</td>
<td>B3BA</td>
</tr>
<tr>
<td>CGDR</td>
<td>B3C9</td>
</tr>
<tr>
<td>CGER</td>
<td>B3C8</td>
</tr>
<tr>
<td>CGXR</td>
<td>B3CA</td>
</tr>
<tr>
<td>CXFR</td>
<td>B3B6</td>
</tr>
<tr>
<td>CXGR</td>
<td>B3C6</td>
</tr>
<tr>
<td>CER</td>
<td>39</td>
</tr>
<tr>
<td>CFER</td>
<td>B3B8</td>
</tr>
<tr>
<td>CXR</td>
<td>B369</td>
</tr>
<tr>
<td>DD</td>
<td>6D</td>
</tr>
<tr>
<td>DDR</td>
<td>2D</td>
</tr>
<tr>
<td>DE</td>
<td>7D</td>
</tr>
<tr>
<td>DER</td>
<td>3D</td>
</tr>
<tr>
<td>DXR</td>
<td>B22D</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Opcode</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIDR</td>
<td>B37F</td>
</tr>
<tr>
<td>FIER</td>
<td>B377</td>
</tr>
<tr>
<td>FIXR</td>
<td>B367</td>
</tr>
<tr>
<td>HDR</td>
<td>24</td>
</tr>
<tr>
<td>HER</td>
<td>34</td>
</tr>
<tr>
<td>LCTR</td>
<td>23</td>
</tr>
<tr>
<td>LCER</td>
<td>33</td>
</tr>
<tr>
<td>LCXR</td>
<td>B363</td>
</tr>
<tr>
<td>LDE</td>
<td>ED24</td>
</tr>
<tr>
<td>LDER</td>
<td>B324</td>
</tr>
<tr>
<td>LDXR</td>
<td>25</td>
</tr>
<tr>
<td>LEDR</td>
<td>35</td>
</tr>
<tr>
<td>LEXR</td>
<td>B366</td>
</tr>
<tr>
<td>LNDR</td>
<td>21</td>
</tr>
<tr>
<td>LNER</td>
<td>31</td>
</tr>
<tr>
<td>LNXR</td>
<td>B361</td>
</tr>
<tr>
<td>LPDR</td>
<td>20</td>
</tr>
<tr>
<td>LPER</td>
<td>30</td>
</tr>
<tr>
<td>LPXR</td>
<td>B360</td>
</tr>
<tr>
<td>LRDR</td>
<td>25</td>
</tr>
<tr>
<td>LRER</td>
<td>35</td>
</tr>
<tr>
<td>LTR</td>
<td>22</td>
</tr>
<tr>
<td>LTER</td>
<td>32</td>
</tr>
<tr>
<td>LTXR</td>
<td>B362</td>
</tr>
<tr>
<td>LXD</td>
<td>ED25</td>
</tr>
<tr>
<td>LXR</td>
<td>B325</td>
</tr>
<tr>
<td>LXE</td>
<td>ED26</td>
</tr>
<tr>
<td>LXRER</td>
<td>B326</td>
</tr>
<tr>
<td>MAD</td>
<td>ED3E</td>
</tr>
<tr>
<td>MADR</td>
<td>B33E</td>
</tr>
<tr>
<td>MAE</td>
<td>ED2E</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Opcode</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAER</td>
<td>B32E</td>
</tr>
<tr>
<td>MD</td>
<td>6C</td>
</tr>
<tr>
<td>MDE</td>
<td>7C</td>
</tr>
<tr>
<td>MDER</td>
<td>3C</td>
</tr>
<tr>
<td>MDR</td>
<td>2C</td>
</tr>
<tr>
<td>ME</td>
<td>7C</td>
</tr>
<tr>
<td>MEE</td>
<td>ED37</td>
</tr>
<tr>
<td>MEER</td>
<td>B337</td>
</tr>
<tr>
<td>MER</td>
<td>3C</td>
</tr>
<tr>
<td>MSD</td>
<td>ED3F</td>
</tr>
<tr>
<td>MSDR</td>
<td>B33F</td>
</tr>
<tr>
<td>MSE</td>
<td>ED2F</td>
</tr>
<tr>
<td>MSER</td>
<td>B32F</td>
</tr>
<tr>
<td>MXD</td>
<td>67</td>
</tr>
<tr>
<td>MXDR</td>
<td>27</td>
</tr>
<tr>
<td>MXR</td>
<td>26</td>
</tr>
<tr>
<td>SD</td>
<td>6B</td>
</tr>
<tr>
<td>SDR</td>
<td>2B</td>
</tr>
<tr>
<td>SE</td>
<td>7B</td>
</tr>
<tr>
<td>SER</td>
<td>3B</td>
</tr>
<tr>
<td>SQD</td>
<td>ED35</td>
</tr>
<tr>
<td>SQDR</td>
<td>B244</td>
</tr>
<tr>
<td>SQE</td>
<td>ED34</td>
</tr>
<tr>
<td>SQER</td>
<td>B245</td>
</tr>
<tr>
<td>SQX</td>
<td>B336</td>
</tr>
<tr>
<td>SU</td>
<td>7F</td>
</tr>
<tr>
<td>SUR</td>
<td>3F</td>
</tr>
<tr>
<td>SW</td>
<td>6F</td>
</tr>
<tr>
<td>SWR</td>
<td>2F</td>
</tr>
<tr>
<td>SXR</td>
<td>37</td>
</tr>
</tbody>
</table>
The instruction opcodes and mnemonics are shown in the following table:

<table>
<thead>
<tr>
<th>Opcode</th>
<th>Mnemonic</th>
<th>Opcode</th>
<th>Mnemonic</th>
<th>Opcode</th>
<th>Mnemonic</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>LPDR</td>
<td>3E</td>
<td>AUR</td>
<td>B361</td>
<td>LNXR</td>
</tr>
<tr>
<td>21</td>
<td>LNDR</td>
<td>3F</td>
<td>SUR</td>
<td>B362</td>
<td>LTXR</td>
</tr>
<tr>
<td>22</td>
<td>LTDR</td>
<td>67</td>
<td>MXD</td>
<td>B363</td>
<td>LCXR</td>
</tr>
<tr>
<td>23</td>
<td>LCDR</td>
<td>69</td>
<td>CD</td>
<td>B366</td>
<td>LEXR</td>
</tr>
<tr>
<td>24</td>
<td>HDR</td>
<td>6A</td>
<td>AD</td>
<td>B367</td>
<td>FIXR</td>
</tr>
<tr>
<td>25</td>
<td>LDXR</td>
<td>6B</td>
<td>SD</td>
<td>B369</td>
<td>CXR</td>
</tr>
<tr>
<td>26</td>
<td>MXR</td>
<td>6C</td>
<td>MD</td>
<td>B377</td>
<td>FIER</td>
</tr>
<tr>
<td>27</td>
<td>MXDR</td>
<td>6D</td>
<td>DD</td>
<td>B37F</td>
<td>FIDR</td>
</tr>
<tr>
<td>28</td>
<td>LDR</td>
<td>6E</td>
<td>AW</td>
<td>B384</td>
<td>CEFR</td>
</tr>
<tr>
<td>29</td>
<td>CDR</td>
<td>6F</td>
<td>SW</td>
<td>B3B5</td>
<td>CDFR</td>
</tr>
<tr>
<td>2A</td>
<td>ADR</td>
<td>79</td>
<td>CE</td>
<td>B3B6</td>
<td>CXFR</td>
</tr>
<tr>
<td>2B</td>
<td>SDR</td>
<td>7A</td>
<td>AE</td>
<td>B3B8</td>
<td>CFER</td>
</tr>
<tr>
<td>2C</td>
<td>MDR</td>
<td>7B</td>
<td>SE</td>
<td>B3B9</td>
<td>CFDR</td>
</tr>
<tr>
<td>2D</td>
<td>DDR</td>
<td>7C</td>
<td>MDE</td>
<td>B3B9A</td>
<td>CFXR</td>
</tr>
<tr>
<td>2E</td>
<td>AWR</td>
<td>7C</td>
<td>ME</td>
<td>B3C4</td>
<td>CEGR</td>
</tr>
<tr>
<td>2F</td>
<td>SWR</td>
<td>7D</td>
<td>DE</td>
<td>B3C5</td>
<td>CDGR</td>
</tr>
<tr>
<td>30</td>
<td>LPER</td>
<td>7E</td>
<td>AU</td>
<td>B3C6</td>
<td>CXGR</td>
</tr>
<tr>
<td>31</td>
<td>LNER</td>
<td>7F</td>
<td>SU</td>
<td>B3C8</td>
<td>CGER</td>
</tr>
<tr>
<td>32</td>
<td>LTER</td>
<td>B22D</td>
<td>DXR</td>
<td>B3C9</td>
<td>CGDR</td>
</tr>
<tr>
<td>33</td>
<td>LCTR</td>
<td>B244</td>
<td>SQDR</td>
<td>B3CA</td>
<td>CGXR</td>
</tr>
<tr>
<td>34</td>
<td>HER</td>
<td>B245</td>
<td>SQER</td>
<td>ED24</td>
<td>LDE</td>
</tr>
<tr>
<td>35</td>
<td>LEDR</td>
<td>B244</td>
<td>SQDR</td>
<td>ED25</td>
<td>LDX</td>
</tr>
<tr>
<td>35</td>
<td>LTER</td>
<td>B245</td>
<td>SQER</td>
<td>ED26</td>
<td>LXE</td>
</tr>
<tr>
<td>36</td>
<td>AXR</td>
<td>B246</td>
<td>LXER</td>
<td>ED2E</td>
<td>MAE</td>
</tr>
<tr>
<td>37</td>
<td>SXR</td>
<td>B325</td>
<td>LXDR</td>
<td>ED2F</td>
<td>MSE</td>
</tr>
<tr>
<td>39</td>
<td>CER</td>
<td>B326</td>
<td>LXER</td>
<td>ED34</td>
<td>SQE</td>
</tr>
<tr>
<td>3A</td>
<td>AER</td>
<td>B32E</td>
<td>MAER</td>
<td>ED35</td>
<td>SQD</td>
</tr>
<tr>
<td>3B</td>
<td>SER</td>
<td>B32F</td>
<td>MSER</td>
<td>ED37</td>
<td>MEE</td>
</tr>
<tr>
<td>3C</td>
<td>MDER</td>
<td>B336</td>
<td>SQXR</td>
<td>ED3E</td>
<td>MAD</td>
</tr>
<tr>
<td>3C</td>
<td>MER</td>
<td>B337</td>
<td>MEER</td>
<td>ED3E</td>
<td>MSD</td>
</tr>
<tr>
<td>3D</td>
<td>DER</td>
<td>B338</td>
<td>MDER</td>
<td>ED3E</td>
<td>MSD</td>
</tr>
</tbody>
</table>
Exercises

33.19.1.(2) Suppose you evaluate 0x42100000’−0x40FFFFFF using SE and SU instructions. Estimate the size of the error for each result, and explain their difference.

33.19.2.(4) Suppose the designers of System/360 had chosen an octal (base 8) representation for floating-point arithmetic. Consider two choices for the width of a binary characteristic: 7 bits (with 8 fraction digits), or 4 bits (with 9 fraction digits); the remaining bit is for the sign. Determine the exponent ranges and fraction accuracy for each.

The following six exercises use the definition of ulp(x) described in Section 32.8 on page 567.

33.19.3.(2) Suppose a short hexadecimal floating-point number is stored at X. Write instructions to calculate ulp(X) and store the result at ULPX. Assume that the value at X is large enough that no exponent underflow occurs in calculating the result.

33.19.4.(3) What is the minimum value of the hexadecimal floating-point number at X that will not underflow when you calculate ulp(X)?

33.19.5.(2) Repeat Exercise 33.19.3 assuming that the value at X is a long precision hexadecimal floating-point number.

33.19.6.(3) Repeat Exercise 32.19.4 assuming that the value at X is a long precision hexadecimal floating-point number.

33.19.7.(3) Repeat Exercise 33.19.3 assuming that the value at X is an extended precision hexadecimal floating-point number.

33.19.8.(3) Repeat Exercise 33.19.4 assuming that the value at X is an extended precision hexadecimal floating-point number.

Terms and Definitions

unnormalized add/subtract
Hexadecimal floating-point addition and subtraction in which the result is not normalized.

multiply and add/subtract
An instruction in which a double-length product is created internally to which a third operand is added or subtracted before truncating or rounding the result to the length of the original operands.

rounding-mode suffix
The letter R and a number appended to the numeric value of a constant to request the Assembler to perform a specific form of rounding.

significance exception
In hexadecimal floating-point, the result of an addition or subtraction yields a significand of all zero digits. This exception can either cause a program interruption with IC=14, or can be masked to produce a true zero.

Programming Problems

Problem 33.1.(2) Write a program to compute and print the hexadecimal floating-point values of the expression

\[ f(x) = \frac{1}{(x^3 - 3x - 2)} \]

for integral values of x from -5 to +5. Print the largest possible hexadecimal floating-point value if the denominator is zero for any value of x in the range.
Problem 33.2. (2) Write a program to compute a table of factorials from 0 to 55, and determine which values will be stored exactly (with no truncation error) for both short and long precision.

Problem 33.3. (4) Write a program to convert short hexadecimal floating-point numbers to a printable decimal format such as “-1.23456E+21”. Test your program by reading records with eight hexadecimal characters: convert them to a word representing the short floating-point number; convert those values, and print a line showing the original hexadecimal string and the converted result.

Some sample input values are
80000000
451E240C
40100000
00000001
7FFFFFFF

and the output from the last of these could look like this:
X’7 FFFFFFF’ = +.723701E+76

Problem 33.4. (3) For values of X running from +2.0 to −2.0 in steps of 0.1, write an instruction sequence to compute and print (in short hexadecimal floating-point) the value of the expression
7X^4 − 3X^3 + 4x^2 + 5x − 2.
Evaluate the expression using only four multiplications by factoring it into “nested” form.

Problem 33.5. (3) Write a program using short, long, and extended precision hexadecimal floating-point arithmetic that shows that the expression (1.0/N)×N=1.0 is true for values of N between 1 and 100 only when N is a power of 2.

Problem 33.6. (3) Using the iterative technique described in Section 31.3.1 on page 544, write a program to evaluate the square root of 2 to 10 significant digits using long hexadecimal floating-point arithmetic, and without using hexadecimal square-root instructions. Format and print the result as a fixed-point value.

Problem 33.7. (2)+ To explore the relationship between significance and accuracy described in Section 25.10, write a program to assemble the 50 decimal values
0.062499991
0.062499992
   - - -
0.062499999
0.062500000
0.062500001
   - - -
0.062500040

in short and long precision, and observe the behavior of the assembled constants. See if you can find other sequences of decimal values that exhibit similar behavior.
This section describes binary floating-point data and arithmetic, often known as “IEEE Binary Floating-Point”\(^\text{209}\) Its design is based on many years of experience with irregular floating-point architectures that caused great problems in creating stable and reliable software. Binary floating-point was carefully designed\(^\text{210}\), has been widely adopted, and is now used on almost all processors. Its benefits include:

- Greater precision and exponent range than hexadecimal floating-point (except for short precision, which has greater exponent range), making exponent spills less likely.
- Rounding for all arithmetic operations.
- Gradual underflow.
- Special values (such as infinity and “Not a Number” or “NaN”).
- Ways to control and test for exception conditions.

First, we’ll examine the binary floating-point data representations

### 34.1. Binary Floating-Point Data

Table 264 summarizes the three binary floating-point data formats supported by z System:

<table>
<thead>
<tr>
<th>Length (bytes)</th>
<th>Char. (bits)</th>
<th>Min exp.</th>
<th>Max exp.</th>
<th>Char. Bias</th>
<th>Precision</th>
<th>Max Norm. (Max)</th>
<th>Min Norm. (Min)</th>
<th>Min Denorm. (DMin)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>8</td>
<td>−126</td>
<td>+127</td>
<td>+127</td>
<td>24</td>
<td>3.4×10(^{+38})</td>
<td>1.2×10(^{-38})</td>
<td>1.4×10(^{-45})</td>
</tr>
<tr>
<td>8</td>
<td>11</td>
<td>−1022</td>
<td>+1023</td>
<td>+1023</td>
<td>53</td>
<td>1.8×10(^{+308})</td>
<td>2.2×10(^{-308})</td>
<td>4.9×10(^{-324})</td>
</tr>
<tr>
<td>16</td>
<td>15</td>
<td>−16382</td>
<td>+16383</td>
<td>+16383</td>
<td>113</td>
<td>1.2×10(^{+4932})</td>
<td>3.4×10(^{-4932})</td>
<td>6.5×10(^{-4966})</td>
</tr>
</tbody>
</table>

---

\(^{209}\) IEEE stands for the Institute for Electric and Electronic Engineers, which publishes standards used in many industries.

\(^{210}\) The standards committee paid “…meticulous attention to details that hardly matter to most people but matter, when they do matter, very much.” (W. Kahan)
Unlike hexadecimal floating-point, the characteristic field width is different for each data length, and certain characteristic bit patterns represent the special values infinity and “Not a Number”. Another key difference is that almost all finite values are normalized. This means:

- there are no redundant representations of finite values, and
- the leading significant fraction digit of a normalized number must be 1, so it can be omitted and its presence can be assumed.

### Fraction and Significand

Unlike hexadecimal floating-point where all the significant bits of a number (its significand) are present in the fraction field, the fraction of a normal binary floating-point number does not contain all its significant bits.

#### 34.1.1. Data Representations

Figure 398 illustrates the three data formats. The three components of each format are:

- **s**: The sign bit (0 = +, 1 = −)
- **char**: The characteristic (“biased exponent”), with values from $C_{\text{min}} = 0$ to $C_{\text{max}} = \text{all 1-bits}$.
- **fraction**: The remaining bits of the significand. Because there is an extra implied high-order 1-bit for normal values, significands actually have 24-bit, 53-bit, and 113-bit precisions respectively.

<table>
<thead>
<tr>
<th>18</th>
<th>2 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>char</td>
</tr>
<tr>
<td></td>
<td>Format</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11</th>
<th>5 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>char</td>
</tr>
<tr>
<td></td>
<td>Format</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1 15</th>
<th>112</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>char</td>
</tr>
<tr>
<td></td>
<td>Format</td>
</tr>
</tbody>
</table>

Figure 398. Three binary floating-point data representations

There are six classes of binary floating-point data; all are signed:

1. Zero
2. Normal numbers
3. Denormalized numbers
4. Infinity
5. Quiet NaN
6. Signaling NaN

The “Not a Number” (or “Not any Number”) was introduced with the binary floating-point standard.\(^{211}\) It is used to indicate the result of an operation that can’t deliver a valid result, such as a division by zero. NaNs are very useful: they let you detect unusable results in your computations when they occur, and with proper error handling you can avoid doing lengthy calculations only to produce useless results.

---

\(^{211}\) Some earlier processors supported reserved values such as “indeterminate”.  

626 Assembler Language Programming for IBM z System™ Servers Version 1.00
All but the normal numbers are considered special values, even though we normally think of only NaNs and infinity as being “special”. Valid results can be (but might not be) generated from data of all classes except NaNs.

Unlike hexadecimal and decimal floating-point, binary floating-point has no redundant representations.

### 34.1.2. Normal Numbers

The exponent of a normal number is determined from its unsigned characteristic:

\[
\text{Characteristic} = \text{Exponent} + \text{Bias}
\]

Two characteristic values, \( C_{\text{min}} (0) \) and \( C_{\text{max}} \) (all 1-bits), are reserved for special values. This means that the characteristic’s range is \( (C_{\text{min}} - \text{Bias}) + 1 = E_{\text{min}} \) to \( (C_{\text{max}} - \text{Bias}) - 1 = E_{\text{max}} \), so the exponent range is \( E_{\text{min}} \) to \( E_{\text{max}} \), as shown in Table 264.

Because the significand is actually \( 1.\text{fraction} \) (the leading 1-bit is implied), the fraction is necessarily always normalized, and the significand satisfies \( 1 \leq \text{significand} < 2 \). Thus, the value of a normal number is:

- Single precision (short) value: \( \pm (1.\text{fraction}) \times 2^{\text{char} - 127} \)
- Double precision (long) value: \( \pm (1.\text{fraction}) \times 2^{\text{char} - 1023} \)
- Extended precision (16 bytes) value: \( \pm (1.\text{fraction}) \times 2^{\text{char} - 16383} \)

Table 265 shows examples of short precision normal values.

<table>
<thead>
<tr>
<th>Value</th>
<th>S</th>
<th>Char.</th>
<th>Fraction</th>
<th>Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>+1.0</td>
<td>0</td>
<td>01111111</td>
<td>000........000</td>
<td>X’3F800000’</td>
</tr>
<tr>
<td>+15.0</td>
<td>0</td>
<td>10000010</td>
<td>1110000....000</td>
<td>X’41700000’</td>
</tr>
<tr>
<td>+0.1</td>
<td>0</td>
<td>01111011</td>
<td>10011001...011</td>
<td>X’3DCCCCD’</td>
</tr>
<tr>
<td>+Max</td>
<td>0</td>
<td>11111110</td>
<td>111.........111</td>
<td>X’7F7FFFFF’</td>
</tr>
<tr>
<td>−Min</td>
<td>1</td>
<td>00000001</td>
<td>000........000</td>
<td>X’80800000’</td>
</tr>
<tr>
<td>−0.0</td>
<td>1</td>
<td>00000000</td>
<td>000.........000</td>
<td>X’80000000’</td>
</tr>
</tbody>
</table>

Table 265. Examples of short-precision binary floating-point normal values

The first number has characteristic value 127 and zero fraction, so its value is \( (1.0) \times 2^{127 - 127} = 1.0 \).

### 34.1.3. Special Values

Special values are indicated by the reserved characteristic values \( C_{\text{min}} \) (zero), and \( C_{\text{max}} \) (all 1-bits).

1. If the characteristic is zero, there are two possible representations:
   - If the fraction is zero, the value is \( \pm 0 \).
   - If the fraction is not zero, the value is a *denormalized number*.

   In this case, there is no implied 1-bit before the fraction, so the value is \( \pm (0.\text{fraction}) \times 2^{E_{\text{min}}} \). (\( E_{\text{min}} \) values are shown in Table 264 on page 625.)

   Table 266 shows examples of short precision denormalized values.

<table>
<thead>
<tr>
<th>Value</th>
<th>S</th>
<th>Char.</th>
<th>Fraction</th>
<th>Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>( 1 \times 10^{-40} )</td>
<td>0</td>
<td>00000000</td>
<td>00...011000010</td>
<td>X’0001162C’</td>
</tr>
<tr>
<td>Largest Denorm</td>
<td>0</td>
<td>00000000</td>
<td>111.........111</td>
<td>X’007FFFFF’</td>
</tr>
<tr>
<td>Smallest Denorm</td>
<td>0</td>
<td>00000000</td>
<td>000.........001</td>
<td>X’00000001’</td>
</tr>
</tbody>
</table>

Table 266. Examples of short-precision binary floating-point denormalized values
2. If the characteristic is all 1-bits, two special values are represented:
   - If the fraction is zero, the value is ±infinity. We’ll see that the sign of an infinity is sometimes important.
   - If the fraction is nonzero, the value is a “NaN”. There are two types of NaN:
     - If the leftmost bit of the fraction is 1, the NaN is called a *Quiet NaN*.
     - If the leftmost bit of the fraction is 0, the NaN is called a *Signaling NaN*. Signaling NaNs can cause exceptions.

   The sign of a NaN is ignored.

Table 267 shows examples of short precision special values:

<table>
<thead>
<tr>
<th>Value</th>
<th>S</th>
<th>Char.</th>
<th>Fraction</th>
<th>Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>−Infinity</td>
<td>1</td>
<td>11111111</td>
<td>0000....000</td>
<td>X’FF800000’</td>
</tr>
<tr>
<td>a Quiet NaN</td>
<td>0</td>
<td>11111111</td>
<td>1100....000</td>
<td>X’7FE00000’</td>
</tr>
<tr>
<td>a Signaling NaN</td>
<td>0</td>
<td>11111111</td>
<td>0100....000</td>
<td>X’7FA00000’</td>
</tr>
</tbody>
</table>

Table 267. Examples of short-precision binary floating-point special values

### 34.1.4. Range of the Representation

The full range of representable binary floating-point data is sketched in Figure 399:

![Figure 399. Range of the binary floating-point representation](image)

The special values with characteristic $C_{\text{max}}$ are infinity and NaNs; those with characteristic $C_{\text{min}}$ are denormalized numbers and zero.

Another view of the binary floating-point representation for computationally valid values is shown in Figure 400:
NaNs are the only representable forms that can’t be used in arithmetic operations.

Exercises

34.1.1.(2) Write numeric expressions for the values of the three short binary floating-point values

- Min (minimum normal number),
- DMax (maximum denormalized number), and
- DMin (minimum denormalized number).

34.1.2.(2) In the short precision binary floating-point representation, how many denormalized numbers can be represented?

34.1.3.(2) Show the hexadecimal representation of +infinity in short, long, and extended precision binary floating-point formats.

34.1.4.(2) Repeat Exercise 34.1.2 for long binary floating-point values.

34.2. Writing Binary Floating-Point Constants

Binary floating-point constants have the same types (E, D, and L) as other floating-point constants, and the type extension must be B.

- EB Short format binary floating-point
- DB Long format binary floating-point
- LB Extended format binary floating-point

You can create short binary floating-point constants like these:

<table>
<thead>
<tr>
<th>Command</th>
<th>Format</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBFP1 DC</td>
<td>EB’1.0’</td>
<td>X’3F800000’</td>
<td>Binary floating-point 1</td>
</tr>
<tr>
<td>SBTenth DC</td>
<td>EB’0.1’</td>
<td>X’3DCCCCCD’</td>
<td>Binary floating-point 1/10</td>
</tr>
<tr>
<td>BPi DC</td>
<td>EB’3.14159265’</td>
<td>X’40490FDB’</td>
<td>Pi</td>
</tr>
<tr>
<td>B1OM11 DC</td>
<td>EB’10000000’</td>
<td>X’4B189680’</td>
<td>10**7</td>
</tr>
<tr>
<td>B1OM1nth DC</td>
<td>EB’0.0000001’</td>
<td>X’33D6BF95’</td>
<td>10**(-7)</td>
</tr>
<tr>
<td>Familiar DC</td>
<td>EB’123.4567’</td>
<td>X’42F6E9D5’</td>
<td>A familiar value</td>
</tr>
</tbody>
</table>

Converting decimal values to binary floating-point is a bit complicated; if you’re interested, here’s how it’s done for the last constant, +123.4567:

1. The integer part of the constant is 123 = X’7B’.
2. The fraction part, 0.4567, must be converted to binary. Using the method described in Section 31.2 on page 541, the result (written in hexadecimal for compactness) is X’0.74EA4A8C1...’.
3. The two parts combined (again, in hexadecimal) give 123.456710 = X’7B.74EA4A8C1...’.
4. Now, we rewrite this in binary: 111 1011. 0111 0100 1110 1010 1010 1000...’.
5. We multiply the value by $2^6$, so it can be rewritten as $B'1.11\ 1011\ 0111\ 0100\ 1010\ 1010\ 1000...\times2^6$. The single 1-bit preceding the decimal point is because normal binary floating-point values have an implicit high-order 1-bit.

6. We now know the exponent 6; adding the bias (+127, from Table 264 on page 625), the characteristic is $133 = X'85' = B'10000101'$. From Table 264 the characteristic width is 8 bits; using a zero bit for the sign, we know that the first 9 bits of the constant are $0\ 1000\ 0101\ 1110\ 1101\ 1101\ 1101\ 0101'$, or $X'42F6E9D5'$. Finally, we attach the fraction bits (omitting the implicit 1-bit):

$$B'0100\ 0010\ 1111\ 0110\ 1110\ 1001\ 1101\ 0101'$$

or $X'42F6E9D5'$. The first omitted bit (underscored in step 4 above) is zero, so the result wasn’t rounded.

It’s easy to see why we leave conversions to the Assembler!

Similarly, you can create long and extended format binary floating-point constants:

<table>
<thead>
<tr>
<th>Label</th>
<th>Value</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>LBFP1</td>
<td>DB'1.0'</td>
<td>BFP 1, long format</td>
</tr>
<tr>
<td>LB10th</td>
<td>DB'0.1'</td>
<td>BFP 1/10, extended format</td>
</tr>
<tr>
<td>LB10mil</td>
<td>DB'1000000'</td>
<td>BFP 10**7, long format</td>
</tr>
<tr>
<td>XB10th</td>
<td>LB'-.1'</td>
<td>BFP -0.1, extended format</td>
</tr>
</tbody>
</table>

Figure 402. Examples of long and extended binary floating-point constants

Rounding is important in binary floating-point arithmetic. You can choose how your constants should be rounded by following the nominal value of a numeric constant with the letter R and a decimal number. The supported rounding indicators are:

- **R1** Add 1 in the first lost bit position (biased round)
- **R4** Unbiased round to nearest, ties to even (default)
- **R5** Round toward zero (truncate, chop)
- **R6** Round toward maximum positive value (+infinity)
- **R7** Round toward minimum positive value (−infinity)

If no rounding indicator is specified, the Assembler uses R4, “unbiased round to nearest”. The examples in Figure 403 show how these rounding indicators are used; the first two constants use default rounding.

<table>
<thead>
<tr>
<th>Label</th>
<th>Value</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC</td>
<td>EB'0.1'</td>
<td>$X'3DCCCCCD'$ Unbiased round half-even</td>
</tr>
<tr>
<td>DC</td>
<td>EB'-.1'</td>
<td>$X'BDCCCCCD'$ Unbiased round half-even</td>
</tr>
<tr>
<td>DC</td>
<td>EB'+.1R1'</td>
<td>$X'3DCCCCCD'$ Biased round</td>
</tr>
<tr>
<td>DC</td>
<td>EB'-.1R1'</td>
<td>$X'BDCCCCCD'$ Biased round</td>
</tr>
<tr>
<td>DC</td>
<td>EB'+.1R4'</td>
<td>$X'3DCCCCCD'$ Unbiased round half-even</td>
</tr>
<tr>
<td>DC</td>
<td>EB'-.1R4'</td>
<td>$X'BDCCCCCD'$ Unbiased round half-even</td>
</tr>
<tr>
<td>DC</td>
<td>EB'+.1R5'</td>
<td>$X'3DCCCCCCC'$ Truncate</td>
</tr>
<tr>
<td>DC</td>
<td>EB'-.1R5'</td>
<td>$X'BDCCCCCD'$ Truncate</td>
</tr>
<tr>
<td>DC</td>
<td>EB'+.1R6'</td>
<td>$X'3DCCCCCD'$ Round toward +infinity</td>
</tr>
<tr>
<td>DC</td>
<td>EB'-.1R6'</td>
<td>$X'BDCCCCCD'$ Round toward +infinity</td>
</tr>
<tr>
<td>DC</td>
<td>EB'+.1R7'</td>
<td>$X'3DCCCCCCC'$ Round toward -infinity</td>
</tr>
<tr>
<td>DC</td>
<td>EB'-.1R7'</td>
<td>$X'BDCCCCCD'$ Round toward -infinity</td>
</tr>
</tbody>
</table>

Figure 403. Rounding indicators for binary floating-point constants

The Assembler also supports nominal-value operands for special values, as shown in Table 268.
Table 268. Nominal-value operands for binary floating-point special values

These assembled constants are shown for each format in Table 269:

Table 269. Assembled binary floating-point special-value constants

<table>
<thead>
<tr>
<th>Special values</th>
<th>Short</th>
<th>Long</th>
<th>Extended</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Inf)</td>
<td>7F800000</td>
<td>7FF0000000000000</td>
<td>7FFF0000000000000000000000000000</td>
</tr>
<tr>
<td>(Max)</td>
<td>7F7FFFFF</td>
<td>7FEFFFFFFFFFFFF</td>
<td>7FEFFFFFFFFFFFFFFFFFFF</td>
</tr>
<tr>
<td>(Min)</td>
<td>00800000</td>
<td>0010000000000000</td>
<td>00010000000000000000000000000000</td>
</tr>
<tr>
<td>(DMin)</td>
<td>00000001</td>
<td>00000000000000001</td>
<td>00000000000000000000000000000001</td>
</tr>
<tr>
<td>(SNaN)</td>
<td>7FA00000</td>
<td>7FF4000000000000</td>
<td>7FFF4000000000000000000000000000</td>
</tr>
<tr>
<td>(QNaN)</td>
<td>7FE00000</td>
<td>7FFC000000000000000000000000000000000000000000000000000000000000000</td>
<td></td>
</tr>
<tr>
<td>(NaN)</td>
<td>7FC00000</td>
<td>7FF8000000000000000000000000000000000000000000000000000000000000000</td>
<td></td>
</tr>
</tbody>
</table>

Table 268. Nominal-value operands for binary floating-point special values

Special values may be signed:

- DC EB’-(Inf)’ X’FF800000’
- DC DB’-(Min)’ X’801000000000000000000000000000000000000000000000000000000000000000 |
- DC LB’-(NaN)’ X’800000000000000000000000000000000000000000000000000000000000000000 |
- DC LB’-(QNaN)’ X’800000000000000000000000000000000000000000000000000000000000000000 |

Sometimes it is useful to add information to the unused fraction bits of a NaN, such as its address or the number of the statement in which it was defined. This “payload” can be used for diagnostic information when a numeric result doesn’t behave as you might expect.

QN DC EB’-(QNaN)’ Short QNaN
Org *-2 Back up location counter by 2
QNParm DC H’1324’ Statement 1324, short NaN payload
SN DC DB’-(SNaN)’ Long SNaN
Org *-4 Back up location counter by 4
SNParm DC A(SN) Address of the long SNaN

Figure 404. Examples of parameterized binary floating-point NaNs

If you decide to parameterize your NaNs by adding payloads, follow these guidelines:

- Don’t use the two high-order fraction bits; they are needed to distinguish NaN types.
- If possible, use at most the 21 high-order bits for NaN payload values, in case your NaN might be used in an arithmetic operation that yields a short-format result.

Thus, in Figure 404 the “SNParm” payload might be truncated if the NaN named SN is shortened, and the address information would be incorrect.

34.2.1. Decimal Exponents and Exponent Modifiers

As with other numeric floating-point constants, you can specify a decimal exponent with the nominal value, and an exponent modifier to apply to all values in the constant. For example, some of the constants in Figures 401 and 402 could be written as in Figure 405.
Figure 405. Binary floating-point constants with decimal exponents and modifiers

As the constant **LBFP1** shows, the power of ten multiplying the numeric part of the constant is the sum of the exponent modifier (−12) and the decimal exponent (+12), so the generated constant is simply 1.0 in long precision.

### 34.2.2. Length Modifiers (* *)

Length modifiers are rarely used for binary floating-point data. To avoid excessive truncation, the Assembler requires the minimum bit lengths shown in Table 270.

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Short</th>
<th>Long</th>
<th>Extended</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal values</td>
<td>9</td>
<td>11</td>
<td>16</td>
</tr>
<tr>
<td>Special values</td>
<td>11</td>
<td>14</td>
<td>18</td>
</tr>
</tbody>
</table>

Table 270. Minimum bit lengths for binary floating-point constants

While it may seem strange to allow normal binary floating-point constants to include only the sign and exponent, there is always an implied 1-bit preceding the radix point. Thus, you could write

```
DC LBL2’1’ X’3FFF’
```

and generate a valid (if not especially useful) constant!

The minimum lengths for special values are two larger than for normal values, to make sure there’s enough room for the bits distinguishing NaN types.

---

**Advice**

Don’t use length modifiers with binary floating-point constants.

Binary floating-point constants do not support a Scale modifier.

### Exercises

34.2.1.(2) What is the hexadecimal representation of the decimal value 0.1 with lengths 2, 3, and 4 bytes in each of the three formats?

34.2.2.(2)+ A four-byte area of memory contains the bit pattern **X’4040405C’**. What is represented by that pattern? (You should now be able to describe six different possibilities.)

34.2.3. Determine if each of these short binary floating-point numbers is zero, normal, denormal, infinity, a QNaN, or a SNaN:

1. **X’7FFFFFFF’**
2. **X’007FFFFFFF’**
3. **X’80000000’**
4. **X’00FFFFFF’**
5. **X’FF8000AB’**
6. **X’FF800000’**

34.2.4.(3) Suppose you define these constants:
What values would actually appear when the first pair is used as short operands, and the second pair is used as long operands?

34.3. Binary Floating-Point Arithmetic in General

The IEEE standard\textsuperscript{212} specifies a powerful rule:

Each of the computational operations that return a numeric result ... shall be performed as if it first produced an intermediate result to infinite precision and with unbounded range, and then rounded that intermediate result, if necessary, to fit the destination's format.

This rule means that you can know the calculated result in all situations.

34.3.1. Rounding Modes

The standard specifies that “the result cannot suffer more than one rounding error”. There are four “global” rounding modes that can be set to apply to subsequent operations; you can change them during your program’s execution.

0 Unbiased round to nearest (ties—exact values lying exactly half way between two representations in the target format—operand in FPR0 isn’t in long format—it’s just the high-order round to the neighbor of the exact value with low-order bit zero)

1 Round toward zero (truncate)

2 Round toward $+\infty$

3 Round toward $-\infty$

Most applications use rounding mode 0 and don’t change it during execution.

Some specialized instructions provide an explicit “local” rounding-method mask field for the operation of only that one instruction:

0 Round according to the current “global” rounding mode in the Floating-Point Control Register (described in Section 34.4.1)

1 Biased round to nearest (ties round away from zero; effectively, the same as adding 1 to the first lost bit)

4 Unbiased round to nearest

5 Round toward zero (truncate)

6 Round toward $+\infty$

7 Round toward $-\infty$

Most of the conversion instructions between binary floating-point and binary integers provide a “local” rounding mask.

\textsuperscript{212} The full name is “IEEE Std 754\textsuperscript{™}-2008”. 
34.3.2. Denormalized Numbers

Denormalized numbers allow “gradual underflow” if the exponent of a normalized result might fall below $E_{\text{min}}$. This means that binary floating-point arithmetic needs no unnormalizing arithmetic operations.

To illustrate the importance of denormalization, we’ll use the notation for FPF(10,4) numbers introduced in Section 32.9 on page 569, where $E_{\text{min}} = -9$. Suppose we have two numbers $X = (.1234 \times 10^{-9})$ or $[-9||+.1234]$, and $Y = (.1200 \times 10^{-9})$, or $[-9||+.1200]$. Then $X - Y$ is

$$
-9||+.1234 -9||+.1200 -Y
$$

intermediate denormalized result

$$
-9||+.0034 \text{ normalized (underflowed) result}
$$

Because the exponent of the normalized result is $-11$, the result is often set to zero.

Suppose we add $Y$ to $(X - Y)$: we would expect to get $X$.

$$
-9||+.1200 Y
+ 0||+.0000 \text{ underflowed difference } (X - Y)
= -9||+.1200 \text{ normalized result } = Y
$$

so that without denormalization, $(X - Y) + Y$ gives $Y$! However, if the result of $(X - Y)$ is denormalized, we get

$$
-9||+.0034 \text{ denormalized difference } (X - Y)
+ -9||+.1200 Y
= -9||+.1234 \text{ normalized result } = X
$$

and $(X - Y) + Y$ gives $X$, the result we expect.

Denormalized numbers are the default result of gradual underflow.

Of course, normal underflow can occur. In FPF(10,4), if we multiply $[-6||+.2000]$ by itself, the intermediate result is $[-12||+.0400]$. Deormalizing this result while retaining a nonzero fraction can only generate $[-10||+.0004]$, so that one further denormalization step to increase the exponent to $-9$ generates a zero fraction. This is a true underflow.

It sometimes helps to visualize a line of binary floating-point values close to zero. If values smaller than $E_{\text{min}}$ are normalized (or “flushed” to zero), there are no represented values between $E_{\text{min}}$ and zero. However, with gradual underflow there are as many values between between $E_{\text{min}}$ and zero as between between $E_{\text{min}}$ and between $E_{\text{min}} + 1$. In Figure 406 (a “magnification” of the region near zero in Figure 400 on page 629), we suppose the binary floating-point numbers have 3 fraction bits:

![Figure 406. Values representable with gradual underflow](image-url)

As noted in Section 32.8 on page 567, an “ulp” of a number varies with the magnitude of the number. As the figure illustrates, an ulp is proportional to the spacing between neighboring representable values.
34.3.3. Arithmetic with Zero, Infinity, and NaNs

The IEEE standard defines actions taken when operations involve zero, infinity, or NaNs.

1. **Zero**

   In operations with finite values \( F_n \), zero behaves as you would expect: \( 0 \times F_n \) is zero, \( 0 \pm F_n \) and \( F_n \pm 0 \) all return that finite number \( F_n \).\(^{213}\)

   Some situations require creation of \(-0\), such as:
   - \(+0 \times \) (negative finite number), or \(-0 \times \) (positive finite number)
   - \(+0 \div \) (negative finite number), or \(-0 \div \) (positive finite number)
   - \((F_n - F_n)\), rounded toward \(-\infty\)
   - \((-0) + (-0)\)
   - Square root of \(-0\)

2. **Infinity**

   Valid arithmetic on infinities is always “exact”, and correctly signed. If \( F_n \) is a finite number, then:
   - \( F_n \pm \infty = \pm \infty \)
   - \( |\infty| + |\infty| = \infty \)
   - \( F_n \times \infty = \infty \)
   - \( F_n + \infty = 0 \)
   - \( F_n \div 0 = \infty \)

   and other similar operations.

   Note, however, that infinity doesn’t behave like a finite number, where \((1+X) \times X = 1\), \(X+X=1\), and \(X-X=0\). If \(X=\infty\), none of these relations apply!

3. **NaNs**

   NaN operands in arithmetic operations have several possible results:
   - A SNaN will either cause an invalid-operation exception or produce a QNaN as the result, depending on the setting of a mask bit (described shortly, in Section 34.4).
   - QNaNs are propagated without causing an exception; if both operands are QNaNs, the CPU will deliver operand 1.

**Exercises**

34.3.1.(3) Show in hexadecimal the result generated if you calculate \( (\text{Min}) - (\overset{\circ}{\text{Min}}) \) in short binary floating-point.

---

**Details**

The next section describes binary floating-point exceptions. If you are interested mainly in the arithmetic operations, skip ahead to Section 34.5.

---

34.4. Binary Floating-Point Exceptions, Interruptions, and Controls

The IEEE binary floating-point standard also defines a rich set of controls for exceptions, when a valid result cannot be generated. Unlike hexadecimal floating-point, where only exponent underflow and lost significance can be controlled by bits in the Program Mask, binary floating-point lets you control *five* exception conditions.

1. **Invalid operation** has two causes:
   - Mathematically meaningless operations, such as

---

\(^{213}\) A Cornell student once asked a professor, “Is zero a number?” He replied, “Oh yes! It’s one of the best!”
a. $|\infty| - |\infty|

b. $\infty \times 0$

c. $\infty + \infty$

d. $0 \div 0$

e. Remainder of $X + Y$ with $X = \infty$ or $Y = 0$

f. Square root of a negative value

- Computationally meaningless operations, such as
  a. an operation on a Signaling NaN (SNaN)
  b. a comparison operation involving a NaN (an “unordered” comparison)
  c. an integer-conversion fault (where the source operand is a NaN, $\infty$, or is too large for the target operand)

2. Division by zero ($0 \div 0$ is an invalid operation).

3. Exponent overflow: the magnitude of the result is too large for the target format.

4. Exponent underflow: the magnitude of the result is too small for the target format.

5. Inexact result occurs when a rounding operation changes the value of the exact infinite-precision unbounded-range result. This condition can occur with others.

### 34.4.1. Binary Floating-Point Exceptions (*)

Exceptions can cause an interruption (the IEEE standard calls it a “trap”), or set a status flag bit. Which of these two actions occurs depends on the setting of a mask bit.

The mask bits and the status flags are held in the Floating-Point Control (FPC) Register; it is distinct from all other registers. In addition to the mask and status flag bits, the FPC register contains a Data Exception Code (DXC) and bits for the “global” rounding mode. Figure 407 illustrates the format of the FPCR.

<table>
<thead>
<tr>
<th>Mask Bits</th>
<th>Flag Bits</th>
<th>Data Excep’n Code (DXC)</th>
<th>Rounding Mode Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>izou000</td>
<td>izou000</td>
<td>izouxy00</td>
<td>00000000 BRM</td>
</tr>
</tbody>
</table>

Figure 407. Floating-Point Control (FPC) register

- The mask and flag bits in the first and second bytes are indicated by single letters:

**Bit**	**Meaning**
  i (bit 0) | Invalid operation
  z (bit 1) | Divide by zero
  o (bit 2) | Overflow
  u (bit 3) | Underflow
  x (bit 4) | Inexact result

When an exception occurs, the CPU takes one of two actions:

- If the corresponding mask bit is one an interruption occurs, the Interruption Code is set to 7, and information about the cause is placed in the Data Exception Code (DXC) byte and in memory at address 147 (X‘93’). The corresponding flag bit is unchanged.
- If the corresponding mask bit is zero a default action is taken, no interruption occurs, its corresponding status flag bit is set to 1, and the DXC remains unchanged. A default result value is generated.

Once a status flag bit is set to 1, it is unchanged until it is explicitly reset by an instruction that changes the contents of the FPC register.
Sometimes the mask bits in the first byte are called “ Interruption Mask” bits, abbreviated IMi, IMz, etc.; and the flag bits in the second byte are called “ Status Flag” bits, abbreviated SFi, SFi, etc.

• The third byte of the FPC register holds the DXC; its value is set when an interruption occurs. The $y$ in Figure 407 appears only in the DXC:

  Bit Meaning
  $y$ (bit 5) The result was incremented

Note that the first five bits of the DXC shown in Figure 407 correspond from left to right to the first five bits of the mask and flag bits.

If an interruption occurs the Interruption Code is set to 7, the same IC used for the (packed decimal) Data Exception. To learn whether the interruption is due to a binary floating-point or packed decimal operation, you must test the DXC for zero (packed decimal) or nonzero (binary floating-point).

Table 271 describes the values placed in the DXC:

<table>
<thead>
<tr>
<th>DXC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>Decimal data exception (for invalid packed decimal data, as discussed in Section 29)</td>
</tr>
<tr>
<td>01</td>
<td>An invalid Floating-Point Register is used by a floating-point instruction; the registers are available on this CPU, but are not enabled</td>
</tr>
<tr>
<td>02</td>
<td>A BFP instruction is attempting to execute on a CPU where BFP instructions are available, but are not enabled</td>
</tr>
<tr>
<td>08</td>
<td>IEEE inexact exception; the result was truncated</td>
</tr>
<tr>
<td>0C</td>
<td>IEEE inexact exception; the result was incremented</td>
</tr>
<tr>
<td>10</td>
<td>IEEE underflow exception; the result is exact</td>
</tr>
<tr>
<td>18</td>
<td>IEEE underflow exception; the result is inexact and was truncated</td>
</tr>
<tr>
<td>1C</td>
<td>IEEE underflow exception; the result is inexact and was incremented</td>
</tr>
<tr>
<td>20</td>
<td>IEEE overflow exception; the result is exact</td>
</tr>
<tr>
<td>28</td>
<td>IEEE overflow exception; the result is inexact and was truncated</td>
</tr>
<tr>
<td>2C</td>
<td>IEEE overflow exception; the result is inexact and was incremented</td>
</tr>
<tr>
<td>40</td>
<td>IEEE division by zero</td>
</tr>
<tr>
<td>80</td>
<td>IEEE invalid operation</td>
</tr>
</tbody>
</table>

Table 271. Binary floating-point DXC values

• The binary floating-point rounding mode is specified by the two low-order bits of the fourth byte of the FPC register, indicated by BRM in Figure 407. They have the same values we saw for the rounding modes discussed in Section 34.3.1 on page 633:

  BRM Meaning
  $b’00’$ To nearest
  $b’01’$ Toward zero (truncate)
  $b’10’$ Up (toward $+\infty$)
  $b’11’$ Down (toward $-\infty$)

34.4.2. FPC Register Instructions (*)

The five instructions in Table 272 are used to manage the FPC register.
Table 272. Binary floating-point FPC register control instructions

<table>
<thead>
<tr>
<th>Op</th>
<th>Mнем</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mнем</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>B29D</td>
<td>LFPC</td>
<td>S</td>
<td>Load FPC</td>
<td>B2BD</td>
<td>LFAS</td>
<td>S</td>
<td>Load FPC and Signal</td>
</tr>
<tr>
<td>B384</td>
<td>SFPC</td>
<td>RRE</td>
<td>Set FPC</td>
<td>B385</td>
<td>SFASR</td>
<td>RRE</td>
<td>Set FPC and Signal</td>
</tr>
<tr>
<td>B38C</td>
<td>EFPC</td>
<td>RRE</td>
<td>Extract FPC</td>
<td>B29C</td>
<td>STFPC</td>
<td>S</td>
<td>Store FPC</td>
</tr>
<tr>
<td>B299</td>
<td>SRNM</td>
<td>S</td>
<td>Set BFP Rounding Mode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The Load FPC and Store FPC instructions use a 32-bit operand in memory. They are used to set the mask and Rounding Mode bits. For example:

```
STFPC OldFPC Store current FPCR into memory
LFPC NewFPC Load new FPCR from memory
```

The flag bits and the Data Exception Code are set by the CPU when an exception condition occurs.

The Set FPC and Extract FPC instructions use a 32-bit operand in the rightmost 32 bits of a general register; bits 0-31 in the left half of the register are unaffected. For example:

```
SFPC 1 Set FPCR from GPR 1
EFPC 1 Extract FPCR into GPR 1
```

The SRNM (Set BFP Rounding Mode) instruction takes its operand from the rightmost 2 bits of its Effective Address and puts them in the “BRM” (Binary Rounding Mode) bits of the FPCR. The rest of the FPCR is unchanged. For example:

```
SRNM 0(5) Set BRM from last 2 bits of GPR5
SRNM 1 Set rounding mode to ‘toward zero’
```

The LFAS and SFASR instructions load and set the FPCR, but with the side effect of possibly generating a specific exception condition. They are used to simulate BFP exception conditions without needing to perform actual BPF operations that would generate the exceptions. They make it easier to write and test exception handling routines. Because their use is specialized, we won’t discuss them further.

### 34.4.3. Exception Actions (*

When an exception occurs, the generated result depends on whether an interruption occurs (the corresponding mask bit is 1) or does not (the corresponding mask bit is 0).

1. **Invalid operation**

<table>
<thead>
<tr>
<th>Mask bit = 1</th>
<th>Mask bit = 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>An interruption occurs; the DXC is set to X'80', and the instruction is suppressed (registers remain unchanged). The ë flag bit is unchanged.</td>
<td>A special “hardware generated” QNaN is delivered as the default result; its first fraction bit is 1, and the rest of the fraction is zero. If an operand was a SNaN, the corresponding QNaN is delivered. The ë flag bit is set to 1.</td>
</tr>
</tbody>
</table>

Table 273. Invalid operation binary floating-point exception

If the two operands are QNaN and SNaN, the SNaN takes precedence as the result, even if it is forced to a QNaN.

2. **Divide by zero**
3. **Overflow**

<table>
<thead>
<tr>
<th>Mask bit = 1</th>
<th>Mask bit = 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>An interruption occurs; the DXC is set to $X'40'$, and the instruction is suppressed (registers remain unchanged). The $z$ flag bit is unchanged.</td>
<td>A ±infinity is delivered. The $z$ flag bit is set to 1.</td>
</tr>
</tbody>
</table>

Table 274. Divide by zero binary floating-point exception

Be Careful!

If possible, don’t set overflowed results to MaxReal. MaxReal is a valid finite number, so it might propagate unnoticed through subsequent computations.

4. **Underflow**

<table>
<thead>
<tr>
<th>Mask bit = 1</th>
<th>Mask bit = 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>An interruption occurs; the DXC is set to $X'20'$, $X'28'$, or $X'2C'$, and the exponent of the result is “scaled”. The $o$ flag bit is unchanged.</td>
<td>A correctly signed infinity or MaxReal is delivered, depending on the current rounding mode. The $o$ and $x$ flag bits are set to 1.</td>
</tr>
</tbody>
</table>

Table 275. Exponent overflow binary floating-point exception

5. **Inexact result** (An inexact exception can also occur with BFP overflow or underflow.)

<table>
<thead>
<tr>
<th>Mask bit = 1</th>
<th>Mask bit = 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>An interruption occurs: the DXC is set to $X'10'$, $X'18'$, or $X'1C'$, and the exponent of the result is “scaled”. The $u$ flag bit is unchanged.</td>
<td>A zero or denormalized result is delivered. The $u$ flag bit is set to 1, and the $x$ flag bit is set to 1 if the result is inexact.</td>
</tr>
</tbody>
</table>

Table 276. Exponent underflow binary floating-point exception

The mask and flag bits in the FPC register are ignored for HFP and FP Support instructions.

**Remember**

Binary floating-point exceptions may or may not cause a program interruption, depending on the settings of mask bits in the FPC register, and the generated results can be quite different.

34.4.4. **Scaled Exponents (*)**

When an exponent overflow or underflow is not masked the CPU generates a program interruption, and the characteristic of the result is adjusted or “scaled” by adding (for underflows) or subtracting (for overflows) a fixed quantity. This adjustment brings the scaled result near the middle of the characteristic range, so that the decimal exponent is nearer to zero than the ends of the exponent range. The scaling factors are shown in Table 278 on page 640.
To see how this works, consider multiplying two short binary floating-point numbers that cause overflow. If their exponents are both $E_{\text{max}} = +127$, the exponent of the product will be about $+254$. By subtracting the scale factor (192), the exponent of the product will be about $+62$, nearly half of $E_{\text{max}}$, and easier to manage if further adjustments are needed.

### Exercises

34.4.1.(1)+ What binary floating-point exception conditions and rounding mode will be set by this instruction?

```
LFPC =X’30000003’
```

34.4.2.(2) What will be the effect of executing these three instructions?

```
EFPC 9
NILH 9,X’7F00’
SFPC 9
```

34.4.3.(2)+ In Table 271, a Data Exception Code X’02’ means that you have tried to execute a BFP instruction on a CPU where BFP instructions are available, but not enabled. What do you think will happen if you try to execute a BFP instruction on a CPU where the BFP instructions are not available?

34.4.4.(1)+ Refer to Table 271 on page 637 and construct a table that identifies the meaning of each of the 8 bits in the DXC.

### 34.5. Basic Binary Floating-Point Instructions

Before we discuss the basic binary floating-point instructions, it’s worth reviewing the instructions in Section 31.9 starting on page 555. Those instructions can move floating-point operands of all representations, so they can be used with hexadecimal floating-point, binary floating-point, and decimal floating-point data.

Some general points to remember about binary floating-point instructions:

- Almost all binary floating-point instruction mnemonics contain a letter ‘B’
- Their actions are more complex than the equivalent operations in hexadecimal floating-point, due to the presence of rounding modes, NaNs and infinities, maskable exceptions, and different exponent ranges.
- Instructions involving extended-precision operands must specify a valid pair of floating-point registers.
- They support a full range of common algebraic operations.

Unlike hexadecimal floating-point, binary floating-point supports non-numeric values. Because it’s difficult to test an operand for a special value by examining its bit patterns, we use the “Test Data Class” instructions listed in Table 279.
A bit pattern in the rightmost 12 bits of the Effective Address of the second operand address tests selected classes of the first operand. The test bits are shown in Table 280.

Another view of the corresponding positions of the bits in the second operand Effective Address and the tested value is illustrated in Table 281.

If any test bit corresponds to the class of the first operand, the Condition Code is set to 1; otherwise, it is set to 0. You can use these instructions to test for SNaNs without causing an invalid-operation Exception.

The 12 bits of the test pattern fit in the instruction’s displacement field, so you can specify it both at assembly time and at execution time. For example, suppose you want to test a short binary floating-point operand for ±infinity:

```
LE 2,FPData
TCEB 2,'X'030'
JNZ AnInfin
or
LA 9,'B'110000'
TCEB 2,0(,9)
JNZ AnInfin
```

The TDEB instructions use the same test bit pattern.

**Exercises**

34.5.1.(2) Given a binary floating-point operand in FPR0, which data classes will these instructions detect?
(a) TCEB 0,29
(b) TCDB 0,4095
(c) TCXB 0,15
(d) TCDB 0,′X′ C00′

34.5.2.(3) What result would you expect from executing each pair of these instructions:

(a) LE 2,−DB′ (Inf)′
   TCEB 2,′X′ 30′
   Test for infinity

(b) LE 4,EB′42′
   TCXB 4,′X′ 300′
   Test for normal

(c) LE 6,EB′42′
   TCDB 6,′X′ 300′
   Test for normal

34.5.3.(1) Which instruction in Exercise 34.5.1 is redundant?

34.5.4.(3) For each data item in Exercise 34.2.3, what operand of the TCXB instruction should be used to correctly determine the class of the item?

34.6. Binary Floating-Point RR-Type Data Movement Instructions

Remember that the instructions described in Section 31.9 can be used to move any floating-point data between registers and memory. The instructions in Table 282 differ from the related representation-independent instructions because they are sensitive to the presence of NaN operands.

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>B302</td>
<td>LTEBR</td>
<td>RRE</td>
<td>Load and Test (Short)</td>
<td>B303</td>
<td>LCEBR</td>
<td>RRE</td>
<td>Load Complement (Short)</td>
</tr>
<tr>
<td>B301</td>
<td>LNEBR</td>
<td>RRE</td>
<td>Load Negative (Short)</td>
<td>B300</td>
<td>LPEBR</td>
<td>RRE</td>
<td>Load Positive (Short)</td>
</tr>
<tr>
<td>B312</td>
<td>LTDBR</td>
<td>RRE</td>
<td>Load and Test (Long)</td>
<td>B313</td>
<td>LCDBR</td>
<td>RRE</td>
<td>Load Complement (Long)</td>
</tr>
<tr>
<td>B311</td>
<td>LNDBR</td>
<td>RRE</td>
<td>Load Negative (Long)</td>
<td>B310</td>
<td>LPDBR</td>
<td>RRE</td>
<td>Load Positive (Long)</td>
</tr>
<tr>
<td>B342</td>
<td>LTXBR</td>
<td>RRE</td>
<td>Load and Test (Extended)</td>
<td>B343</td>
<td>LCXB</td>
<td>RRE</td>
<td>Load Complement (Extended)</td>
</tr>
<tr>
<td>B341</td>
<td>LNXBR</td>
<td>RRE</td>
<td>Load Negative (Extended)</td>
<td>B340</td>
<td>LPXBR</td>
<td>RRE</td>
<td>Load Positive (Extended)</td>
</tr>
</tbody>
</table>

Table 282. Binary floating-point RR-type data movement instructions

For the operations Load Complement, Load Negative, and Load Positive, the result placed at the first operand will be unmodified except for a possible sign change, even if the operand is a NaN. For short operands, the right half of the target register is unchanged.

The CC setting is shown in Table 283:

<table>
<thead>
<tr>
<th>CC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Operand is zero</td>
</tr>
<tr>
<td>1</td>
<td>Operand is less than zero</td>
</tr>
<tr>
<td>2</td>
<td>Operand is greater than zero</td>
</tr>
<tr>
<td>3</td>
<td>Operand is a NaN</td>
</tr>
</tbody>
</table>

Table 283. CC settings for BFP data movement instructions

The Load and Test instructions are sensitive to the difference between a QNaN and an SNaN. If the second operand is a Signaling NaN, an invalid operation exception occurs, and the result depends on the setting of the invalid-operation mask bit in the FPCR.
• If the mask bit in the FPCR for an invalid operation is 1, an interruption occurs, and the Condition Code is unchanged.
• If the mask bit is 0, no interruption occurs, and the result is the corresponding QNaN.
• If no interruption occurs, the Condition Code is set by the Load and Test instructions as shown in Table 283.

Figure 408 shows some examples of these instructions:

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
<th>Condition Code</th>
<th>FPR Register Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LE 0,=EB (QNaN)</td>
<td>c(FPR0)=X'7FE00000'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCEBR 2,0</td>
<td>c(FPR2)=X'FFE00000', CC=1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTEBR 4,0</td>
<td>c(FPR4)=X'7FE00000', CC=3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LNEBR 6,0</td>
<td>c(FPR6)=X'FFE00000', CC=1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
<th>Condition Code</th>
<th>FPR Register Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LD 0,=DB -3.14</td>
<td>c(FPR0)=X'CO091EB851EB851F'</td>
<td>CC=1</td>
<td></td>
</tr>
<tr>
<td>LTDBR 0,0</td>
<td>c(FPR2)=X'40091EB851EB851F', CC=2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Don’t mix floating-point data types**
You might accidentally use a hexadecimal floating-point operation on binary floating-point data, or vice versa. The results may be unexpected!

**Exercises**

34.6.1.(1) If you execute these instructions:

LD 4,=X'50123456789ABCDE'
LD 6,=X'FEDCB9876543210'
LTXBR 0,4

What will be in the register pair FPR(0,2), and what will be the CC setting?

34.6.2.(2) Suppose c(FPR0)=X'0A123456789ABCDE' and c(FPR2)=X'42857196DBB93310'. Show the CC setting and the contents of the result register or registers after executing each of the following instructions:

(1) LPEBR 4,2
(2) LTDBR 2,2
(3) LCXBR 4,0
(4) LCDBR 4,2

34.6.3.(2) Suppose you execute these sets of instructions. What will be the resulting CC setting for each case?

(a) LE 0,=EB (SNaN)'
LTER 0,0

(b) LE 2,=X'FFFFFFFF'
LCEBR 2,2

34.6.4. Which instruction in Exercise 34.5.1 could be replaced by one other instruction, and what is that instruction?
### 34.7. Binary Floating-Point Multiplication

Table 284 lists the instructions for binary floating-point multiplication. None of them change the Condition Code.

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED17</td>
<td>MEEB</td>
<td>RXE</td>
<td>Multiply (Short←Short×Short)</td>
<td>B317</td>
<td>MEEBR</td>
<td>RRE</td>
<td>Multiply (Short←Short×Short)</td>
</tr>
<tr>
<td>ED0C</td>
<td>MDEB</td>
<td>RXE</td>
<td>Multiply (Long←Short×Short)</td>
<td>B30C</td>
<td>MDEBR</td>
<td>RRE</td>
<td>Multiply (Long←Short×Short)</td>
</tr>
<tr>
<td>ED1C</td>
<td>MDB</td>
<td>RXE</td>
<td>Multiply (Long←Long×Long)</td>
<td>B31C</td>
<td>MDBR</td>
<td>RRE</td>
<td>Multiply (Long←Long×Long)</td>
</tr>
<tr>
<td>ED07</td>
<td>MXDB</td>
<td>RXE</td>
<td>Multiply (Extended←Long×Long)</td>
<td>B307</td>
<td>MXDBR</td>
<td>RRE</td>
<td>Multiply (Extended←Long×Long)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B34C</td>
<td>MXBR</td>
<td>RRE</td>
<td>Multiply (Ext.←Ext.×Ext.)</td>
</tr>
</tbody>
</table>

Table 284. Binary floating-point Multiply instructions

As the table indicates, five instructions (MEEB, MEEBR, MDB, MDBR, and MXBR) generate a product the same length as the two operands, while four others (MDEB, MDEBR, MXDB, and MXDBR) generate a double-length product. As with other multiply instructions, the sign of the product is the XOR of the signs of the two operands, even if they are zero or infinity. MXBR, like other instructions handling extended-precision operands, must refer to valid floating-point register pairs.

Multiplying two finite values gives the expected rounded result, determined by the rounding mode in the FPCR, so long as there is no overflow or underflow. Figure 409 gives an example, where we’ve assumed the default rounding mode (to nearest).

$$\begin{array}{ll}
\text{LE } & 0_e=\text{EB}'0.1' \\
\text{MDEB} & 0_e=\text{EB}'-0.2' \\
\hline
\text{LE} & 0_e=\text{EB}'0.1' \\
\star & \text{MDEB} 0_e=\text{EB}'-0.2' \\
\end{array}$$

Figure 409. Example of binary floating-point multiply instructions

The first multiplication (using MDEB) creates a double-length product of the two operands; its fraction digits start with $X'3DCCCCCD'$. The single-length product (using MEEB) has a shorter exponent field, so its fraction digits are $X'3DCCCCCD'$. Because the longer result is slightly closer to $X'47AE16'$ than to $X'47AE14'$, default rounding generates the indicated result.

**But:** the short product is not exact. If the inexact (“x”) mask bit in the FPCR is 1, a program interruption will occur. Because we normally don’t care about unused trailing bits of a product, that mask bit is often set to zero to suppress the inexact exception.

Figure 410 shows how overflow and underflow can occur when we multiply two sufficiently large or sufficiently small numbers:
**With the overflow mask bit set to 1:**

\[
\text{LFPC =X'} F8000000' \quad \text{All mask bits = 1 (allow interrupts)}
\]

\[
\text{LE 0,=EB'1E20' c(FPRO)=X'60AD78EC'}
\]

\[
\text{MEEBR 0,0 c(FPRO)=X'21EB1950' Overflowed result}
\]

\[
\text{LE 0,=EB'1E-30' c(FPRO)=X'0DA24260'}
\]

\[
\text{MEEBR 0,0 c(FPRO)=X'3BCB825' Underflowed result}
\]

**With the overflow and underflow mask bits set to 0:**

\[
\text{LFPC =F'0' \quad \text{All mask bits = 0 (no interrupts)}}
\]

\[
\text{LE 0,=EB'1E20' c(FPRO)=X'60AD78EC'}
\]

\[
\text{MEEBR 0,=EB' -(Inf)' c(FPRO)=X'7F800000' Overflow to +infinity}
\]

\[
\text{LE 0,=EB'1E-30' c(FPRO)=X'0DA24260'}
\]

\[
\text{MEEBR 0,=EB' -(Inf)' c(FPRO)=X'00000000' Underflow to zero}
\]

Figure 410. Examples of binary floating-point multiplication overflow and underflow

In case (1), both MEEBR instructions cause interruptions, and the result in FPR0 is set to a scaled result: the significand is correct, but the exponent has been adjusted by a fixed amount to bring the result into a more manageable range. Further computation with this result must take account of the exponent scaling.

In case (2) both interruptions are suppressed, and the default result is +infinity for overflow, and zero for underflow.

Figure 411 shows two examples with signed zeros and infinities:

\[
\text{LE 0,=EB' -0.' c(FPRO)=X'80000000' (-0)}
\]

\[
\text{MEEBR 0,0 c(FPRO)=X'00000000' (-0)*(-0) = +0}
\]

\[
\text{LE 0,=EB'(Inf)' c(FPRO)=X'7F800000' (+infinity)}
\]

\[
\text{MEEBR 0,=EB' -(Inf)' c(FPRO)=X'FF800000' (-infinity)}
\]

Figure 411. Examples of binary floating-point multiply instructions

Figure 412 shows how a denormalized result can be generated:

\[
\text{LFPC =F'0' \quad \text{Set all mask bits to zero}}
\]

\[
\text{LE 0,=EB'1E-21' c(FPRO)=X'1C91DA0'}
\]

\[
\text{MEEBR 0,0 c(FPRO)=X'000002CA'}
\]

Figure 412. Example of binary floating-point denormalized product

If the mask bit for exponent underflow had not been set to zero, an underflow exception would have occurred, and the result would have a “wrapped” exponent rather than a denormalized number.

Table 284 shows that the product of two extended operands is formed by the RRE-type instruction MXBR, so that both operands must be loaded into register pairs, as illustrated in Figure 413:

\[
\text{LD 0,=LB'0.1' c(FPRO)=X'FBB9999999999999'}
\]

\[
\text{LD 2,=LB'0.1'+8 c(FPR2)=X'9999999999999999A'}
\]

\[
\text{LD 4,=LB' -0.2' c(FPR4)=X'BFFC999999999999'}
\]

\[
\text{LD 6,=LB' -0.2'+8 c(FPR6)=X'9999999999999999A'}
\]

\[
\text{MXBR 0,4}
\]

\[
\text{Now, c(FPRO,FPR2)=X'BFF947AE147AE147 AE147AE147AE147'}
\]

Figure 413. Example of binary floating-point extended-precision operands

The product contains a repeating digit pattern X'147AE': the final digit has been rounded up to the nearest even value. As in Figure 409, if the mask bit for inexact result had been one, an interruption for an inexact exception would have occurred.

If the operands are not finite numbers, some special rules apply:

- Multiplying two infinities, or a finite nonzero number by infinity, generates an infinity.
• Multiplying zero and infinity generates an invalid-operation exception. If the corresponding mask bit is zero, the generated result is a default QNaN.

• If both operands are QNaNs, the first operand is generated.

• If either operand is a SNaN, an invalid-operation exception is generated. If the corresponding mask bit is zero, the generated result is the corresponding QNaN. (If both operands are SNaNs, the first operand is used to create the corresponding QNaN.)

As these rules indicate, the result depends on the order of the operands only if one or both is a NaN. For other values, the order of the operands doesn’t matter.

**Exercises**

34.7.1.(2) Show the actual bit patterns of the two products in Figure 409 and determine how the rounded product of the second multiplication is formed.

34.7.2.(2) Write a program segment using binary floating-point arithmetic that will compute a table of the cubes of the first 100 integers, and store them as short binary floating-point numbers starting at $BCubes$.

34.7.3.(3)+ How can you generate the maximum positive short-precision binary floating-point number by multiplying two finite short binary floating-point values?

34.7.4.(2) In Figure 410 part (1), determine the exponent of each operand before executing the instruction, and the scaled exponent of each result.

**34.8. Binary Floating-Point Division**

Table 285 lists the five binary floating-point divide instructions. None of them generate a remainder; the instructions described in Section 34.13 on page 655 can be used to calculate a remainder in most cases. The Condition Code is unchanged.

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED0D</td>
<td>DEB</td>
<td>RXE</td>
<td>Divide (Short)</td>
<td>B30D</td>
<td>DEBR</td>
<td>RRE</td>
<td>Divide (Short)</td>
</tr>
<tr>
<td>ED1D</td>
<td>DDB</td>
<td>RXE</td>
<td>Divide (Long)</td>
<td>B31D</td>
<td>DDBR</td>
<td>RRE</td>
<td>Divide (Long)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B34D</td>
<td>DXBR</td>
<td>RRE</td>
<td>Divide (Extended)</td>
</tr>
</tbody>
</table>

Table 285. Binary floating-point Divide instructions

As this table shows, none of the instructions operate on mixed-length operands: dividend, divisor, and quotient all have the same length. DXBR, like other instructions handling extended-precision operands, must refer to valid floating-point register pairs.

If the result is finite, zero, or infinity (and not a NaN), the sign of the quotient is the XOR of the operand signs.

Figure 414 shows two examples of binary floating-point division.

\[
\begin{align*}
\text{LE} & \quad 2_{y} = \text{EB'}7' \\
\text{DEB} & \quad 2_{y} = \text{EB'}2' \quad \text{Result} = 3.5 = X'40600000' \\
\text{LD} & \quad 0_{y} = \text{DB'}987654321' \\
\text{DDB} & \quad 0_{y} = \text{DB'}3' \quad \text{Result} = 329218107 = X'41B39F783B00000' \\
\end{align*}
\]

Figure 414. Examples of binary floating-point division

The quotient is rounded according to the current rounding mode in the Floating-Point Control Register.
Division can also generate overflow and underflow exceptions, as illustrated in Figure 415:

* (1) With the overflow mask bit set to 1:

- `LFPC = X'F8000000'`  
  All mask bits = 1 (allow interrupts)
- `LE 0, =EB'1E0'`  
  c(FPRO)=X'60AD78EC'
- `LER 4,0`  
  Copy to FPR4
- `LE 2, =EB'1E-30'`  
  c(FPR2)=X'0DA24260'
- `DEBR 0,2`  
  c(FPRO)=X'3288D876' Overflowed result
- `DEBR 2,4`  
  c(FPRO)=X'4C6F73D2' Underflowed result

* (2) With the overflow and underflow mask bits set to 0:

- `LFPC = F'0'`  
  All mask bits = 0 (no interrupts)
- `LE 0, =EB'1E0'`  
  c(FPRO)=X'60AD78EC'
- `LER 4,0`  
  Copy to FPR4
- `LE 2, =EB'1E-30'`  
  c(FPR2)=X'0DA24260'
- `DEBR 0,2`  
  c(FPRO)=X'7FF800000' Overflow to +infinity
- `DEBR 2,4`  
  c(FPRO)=X'00000000' Underflow to zero

Figure 415. Examples of binary floating-point division overflow and underflow

In case (1), the overflow and underflow exceptions cause an interruption, and the result in the first-operand register has the correct significand and a scaled exponent. In case (2), no interruption occurs, and the default result is delivered (as indicated in the comment fields of the DEBR instructions).

Special cases are treated as follows:

- A finite number divided by infinity returns a correctly signed zero.
- A finite number divided by zero causes a divide-by-zero exception. If the “z” mask bit is zero, a properly signed infinity is generated. For example:
  - `LFPC = F'0'`  
    Mask off all exceptions
  - `LE 2, =EB'1E-30'`  
    Finite dividend to divide by zero
  - `DEB 2, =EB'0'`  
    Result = X'FF800000' = -infinity
- 0÷0 and ∞÷∞ cause an invalid-operation exception. If masked off, they deliver the default QNaN of the appropriate length.
- If neither operand is a SNaN, but one or both is a QNaN, then QNaN is the generated result.
- An invalid-operation exception results if either operand is a SNaN. If the exception is masked off, the corresponding QNaN is the delivered result.

**Exercises**

34.8.1.(3) How can you generate the maximum positive short-precision binary floating-point number by dividing two finite short binary floating-point values?

34.8.2.(1) Show the short binary floating-point result of each of these division operations:

1. +1 ÷ −1
2. −0 ÷ +∞
3. +∞ ÷ −1

34.8.3.(1)+ What values will result from these operations?

1. +2.4 ÷ −∞
2. −2.5 ÷ −∞
3. +2.6 ÷ −2.6

34.8.4.(3) Using binary floating-point divide instructions (no “Test Data Class”), how can you distinguish between +0 and −0?
34.9. Binary Floating-Point Addition and Subtraction

Table 286 lists the instructions for binary floating-point addition and subtraction. As with the multiplication and division instructions, extended operands use only RR-type instructions that require valid floating-point register pairs.

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED0A</td>
<td>AEB</td>
<td>RXE</td>
<td>Add (Short)</td>
<td>B30A</td>
<td>AE BR</td>
<td>RRE</td>
<td>Add (Short)</td>
</tr>
<tr>
<td>ED1A</td>
<td>ADB</td>
<td>RXE</td>
<td>Add (Long)</td>
<td>B31A</td>
<td>ADBR</td>
<td>RRE</td>
<td>Add (Long)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B34A</td>
<td>AXBR</td>
<td>RRE</td>
<td>Add (Extended)</td>
</tr>
<tr>
<td>ED0B</td>
<td>SEB</td>
<td>RXE</td>
<td>Subtract (Short)</td>
<td>B30B</td>
<td>SEBR</td>
<td>RRE</td>
<td>Subtract (Short)</td>
</tr>
<tr>
<td>ED1B</td>
<td>SDB</td>
<td>RXE</td>
<td>Subtract (Long)</td>
<td>B31B</td>
<td>SDBR</td>
<td>RRE</td>
<td>Subtract (Long)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B34B</td>
<td>SXBR</td>
<td>RRE</td>
<td>Subtract (Extended)</td>
</tr>
</tbody>
</table>

Table 286. Binary floating-point Add and Subtract instructions

The machine instruction statement format for these instructions is written

```
mnemonic R1,R2
```

The second operand is added to or subtracted from the first operand, and the resulting sum or difference replaces the first operand.

Table 287 shows the Condition Code settings:

<table>
<thead>
<tr>
<th>CC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Result is zero</td>
</tr>
<tr>
<td>1</td>
<td>Result is &lt; zero</td>
</tr>
<tr>
<td>2</td>
<td>Result is &gt; zero</td>
</tr>
<tr>
<td>3</td>
<td>Result is a NaN</td>
</tr>
</tbody>
</table>

Table 287. CC settings after BFP add/subtract instructions

For example:

```
LE 2,=EB‘2.55’
AEB 2,=EB’-2.77’ CC=1, result < 0
```

These considerations apply to the instructions:

1. The current rounding mode in the Floating-Point Control Register is used.
2. Denormalized operands are valid, and the result may be denormalized.
3. If both operands are QNaNs, the result is the first operand; and if both operands are SNaNs and the invalid-operation exception is masked off, the result is the QNaN derived from the first operand.
4. There are no instructions for adding or subtracting operands of different lengths. If you need to use mixed-length operands, you must use one of the rounding instructions (to make an operand shorter) or lengthening instructions (to make an operand longer) described in Section 34.11 on page 651.

Figure 416 shows examples of binary floating-point addition and subtraction:

```
LD 0,=DB’1.1E4’ c(FPR0)=X’40C57C00000000000’
ABDR 0,0 c(FPR0)=X’40D57C00000000000’, CC=2
LD 2,=DB’1.9E4’ c(FPR2)=X’40D28E00000000000’
SDBR 2,0 c(FPR2)=X’C0A7700000000000’, CC=1
```

Figure 416. Examples of binary floating-point addition and subtraction
Because the ADBR instruction in Figure 416 doubles the number in FPR0, its significand is unchanged and its exponent is increased by 1.

**Exercises**

34.9.1.(1) In each binary floating-point representation, show the hexadecimal value of \((D\text{Min}) + (D\text{Min})\). Assume that all exceptions are masked off.

34.9.2.(2) In each binary floating-point representation, show the hexadecimal value of \((\text{Min}) + (\text{Min})\). Do not assume that all exceptions are masked off.

34.9.3.(1) What is the result of \((a) (\infty) - (-\infty)\), \((b) (\infty) - (\infty)\)?

### 34.10. Binary Floating-Point Comparison

Table 288 lists the “normal” BFP compare instructions (the “special” instructions are in Section 34.10.1):

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED09</td>
<td>CEB</td>
<td>RXE</td>
<td>Compare (Short)</td>
<td>B309</td>
<td>CEBR</td>
<td>RRE</td>
<td>Compare (Short)</td>
</tr>
<tr>
<td>ED19</td>
<td>CDB</td>
<td>RXE</td>
<td>Compare (Long)</td>
<td>B319</td>
<td>CDBR</td>
<td>RRE</td>
<td>Compare (Long)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B349</td>
<td>CXBR</td>
<td>RRE</td>
<td>Compare (Extended)</td>
</tr>
</tbody>
</table>

Table 288. Binary floating-point Compare instructions

For instructions dealing with extended-precision operands, the operands must be loaded into the floating-point registers.

None of the comparison instructions compare mixed-length operands, but the lengthening instructions described in Section 34.11.2 on page 651 can be used to extend a shorter operand to the length of the longer before comparing.

The Condition Code settings for the compare instructions are shown in Table 288:

<table>
<thead>
<tr>
<th>CC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Operand1 = Operand2</td>
</tr>
<tr>
<td>1</td>
<td>Operand1 &lt; Operand2</td>
</tr>
<tr>
<td>2</td>
<td>Operand1 &gt; Operand2</td>
</tr>
<tr>
<td>3</td>
<td>Operands are unordered</td>
</tr>
</tbody>
</table>

Table 289. CC settings for BFP comparisons

All values other than NaNs can be compared:

- \(+\infty\) is greater than all values, other than \(+\infty\) (to which it compares equal).
- \(-\infty\) is less than all values, other than \(-\infty\) (to which it compares equal).
- \(+0\) and \(-0\) compare equal. (They are the only two distinct binary floating-point bit patterns for numeric values that compare equal.)

When one or both operands is a QNaN, the comparison is “unordered” and the CC is set to 3. If either operand is a SNaN, an invalid-operation exception either causes an interruption (if the corresponding mask bit is 1), or sets the CC to 3 (if the mask bit is 0).

Figure 417 shows examples of binary floating-point comparisons.
Figure 417. Examples of binary floating-point comparison

Remember that Condition Code 3 does not occur for hexadecimal floating-point comparisons.

### 34.10.1. Compare and Signal (*)

**Specialized uses**

These instructions are used mainly for testing binary floating-point applications.

The binary floating-point compare and signal instructions in Table 290 behave just like the “normal” binary floating-point comparisons in Table 288, except that any NaN causes an invalid-operation exception. Thus, these compare and signal instructions are very useful in helping to prevent propagation of invalid results throughout a calculation.

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED08</td>
<td>KEB</td>
<td>RXE</td>
<td>Compare and Signal (Short)</td>
<td>B308</td>
<td>KEBR</td>
<td>RRE</td>
<td>Compare and Signal (Short)</td>
</tr>
<tr>
<td>ED18</td>
<td>KDB</td>
<td>RXE</td>
<td>Compare and Signal (Long)</td>
<td>B318</td>
<td>KDBR</td>
<td>RRE</td>
<td>Compare and Signal (Long)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B348</td>
<td>KXBR</td>
<td>RRE</td>
<td>Compare and Signal (Extended)</td>
</tr>
</tbody>
</table>

Table 290. Binary floating-point Compare and Signal instructions

The CC settings for these instructions are the same as in Table 289. As with the “normal” comparisons, masking off the invalid-operation interruption will set CC=3.

Figure 418 shows examples of binary floating-point compare and signal instructions.

<table>
<thead>
<tr>
<th>LE</th>
<th>0,=EB’+0’</th>
<th>c(FPRO) = +0</th>
</tr>
</thead>
<tbody>
<tr>
<td>KEB</td>
<td>0,=EB’-(Inf)’</td>
<td>CC=2 (0 &gt; -infinity)</td>
</tr>
<tr>
<td>KEB</td>
<td>0,=EB’-0’</td>
<td>CC=0 (+0 = -0)</td>
</tr>
<tr>
<td>KEB</td>
<td>0,=EB’(QNaN)’</td>
<td>CC=3 (unordered)</td>
</tr>
<tr>
<td>KEB</td>
<td>0,=EB’(+Inf)’</td>
<td>CC=1 (0 &lt; +infinity)</td>
</tr>
</tbody>
</table>

Figure 418. Examples of binary floating-point compare and signal instructions

### Exercises

34.10.1.(2) Given operands A=+1, B=−0, C=+∞, D=−(Min), and E=−∞, show the Condition Code setting resulting from comparing each to the other four.

34.10.2.(2) Will the results you found in Exercise 34.10.1 be different if you use compare and signal instructions instead?

34.10.3.(4) A programmer claimed that two numeric short or long precision binary floating-point numbers X and Y satisfy the relation X < Y when compared as binary floating-point numbers and when they are compared as signed two’s complement binary integers. Is this true or not?
34.11. Binary Floating-Point Rounding and Lengthening Instructions (*)

These two groups of instructions convert longer to shorter formats (with rounding) and shorter to longer formats.

34.11.1. Rounding Instructions (*)

The three Load Rounded instructions in Table 291 round a longer operand to a shorter form using the default Binary Rounding Mode in the FPCR. None of the instructions change the Condition Code.

Table 291. Binary floating-point Round instructions

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>B344</td>
<td>LEDBR</td>
<td>RRE</td>
<td>Load Rounded (Short←Long)</td>
<td>B346</td>
<td>LEXBR</td>
<td>RRE</td>
<td>Load Rounded (Short←Extended)</td>
</tr>
<tr>
<td>B345</td>
<td>LDXBR</td>
<td>RRE</td>
<td>Load Rounded (Long←Extended)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Because each longer operand format has a wider exponent range than the range of the target operand, exponent overflow or underflow can be generated. (They are handled as described in Section 34.4.3 on page 638.) Figure 419 shows some examples:

```plaintext
LD 0,=LB'1.23456789012345678901234567890123'
LD 2,=LB'1.23456789012345678901234567890123'+8
* c(FPR0,FPR2)=X'3FFF3C0A428C59F B71A7BE16B6B6D43'
LEXBR 4,0 Extended to short: c(FPR4)=X'3F9E0652'
LDXBR 4,0 Extended to long: c(FPR4)=X'3FF3C0A428C59FB'
LEDBR 4,0 Long to Short(??) c(FPR4)=X'3FF9E0652'
```

Figure 419. Examples of binary floating-point rounding instructions

The last example (using LEDBR) is invalid, because the second operand is the high-order half of an extended-precision value, while the LEDBR instruction expects a long precision second operand! Unlike hexadecimal floating-point operands, binary floating-point exponent field widths are different for each format, so you must be careful to ensure your instructions deal with the correct operand lengths.

The treatment of NaNs is interesting:

- The low-order bits of QNaNs are discarded. (The exponent field is adjusted to the proper length for the shorter format.)
- SNaNs cause an invalid-operation exception. If masked off, the result is the same as for QNaNs.

34.11.2. Lengthening Instructions (*)

The instructions in Table 292 extend a shorter operand to a longer format, by adjusting the exponent and appending zeros to the low-order bits of the significand. The Condition Code is unchanged.

Table 292. Binary floating-point Lengthen instructions

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED04</td>
<td>LDEB</td>
<td>RXE</td>
<td>Load Lengthened (Long←Short)</td>
<td>B304</td>
<td>LDEBR</td>
<td>RRE</td>
<td>Load Lengthened (Long←Short)</td>
</tr>
<tr>
<td>ED06</td>
<td>LXEB</td>
<td>RXE</td>
<td>Load Lengthened (Extended←Short)</td>
<td>B306</td>
<td>LXEBR</td>
<td>RRE</td>
<td>Load Lengthened (Extended←Short)</td>
</tr>
<tr>
<td>ED05</td>
<td>LXDB</td>
<td>RXE</td>
<td>Load Lengthened (Extended←Long)</td>
<td>B305</td>
<td>LXDBR</td>
<td>RRE</td>
<td>Load Lengthened (Extended←Long)</td>
</tr>
</tbody>
</table>
Table 292. Binary floating-point Lengthening instructions

These instructions are simpler than the Load Rounded instructions, because numeric values in a shorter format can always be represented correctly in a longer format. For example:

\[
\begin{align*}
\text{LE} & 0,=\text{EB}′0.1′ \quad c(\text{FPR0})=X′3\text{DCCCCCD}′ \\
\text{LDEBR} & 2,0 \\c(\text{FPR2})=X′3\text{FB99999A00000000}′ \\
\text{LXDBR} & 4,2 \\c(\text{FPR4,FPR6})=X′3\text{FB99999A0000000} \text{0000000000000000}′
\end{align*}
\]

Figure 420. Examples of BFP load lengthened instructions

Figure 420 shows that lengthening an operand doesn’t increase its accuracy, even though the longer value has greater precision.\(^{214}\)

QNaNs are simply extended with zeros; SNaNs cause an invalid-operation exception, and place the corresponding QNaN in the first-operand register. Figure 421 shows some examples:

\[
\begin{align*}
\text{LE} & 0,=\text{EB}′(\text{QNaN})′ \\c(\text{FPR0})=X′7\text{FE00000}′ \quad \text{(Short QNaN)} \\
\text{LDEBR} & 2,0 \\c(\text{FPR2})=X′7\text{FFC0000000000000}′ \quad \text{(Long QNaN)} \\
\text{LE} & 0,=\text{EB}′(\text{SNaN})′ \\c(\text{FPR0})=X′7\text{FA00000}′ \quad \text{(Short SNaN)} \\
\text{LDEBR} & 2,0 \\c(\text{FPR2})=X′7\text{FFC0000000000000}′ \quad \text{(Long QNaN)}
\end{align*}
\]

Figure 421. Examples of BFP load lengthened instructions with NaNs

**Exercises**

34.11.1.(1) Can the Load Rounded instructions be considered “shortening” or “truncating” instructions? Why or why not?

34.11.2.(2)+ Suppose you round a long binary floating-point operand X to short format, and then extend it to long format again. Estimate the difference between the original and final lengthened values.

34.11.3.(4)+ Suppose you execute these instructions for each of the short precision binary floating-point operands listed below:

\[
\begin{align*}
\text{LZDR} & 0 \quad \text{Set FPR0 to zero} \\
\text{LE} & 0,\text{data\_item} \quad \text{Load a short data item}
\end{align*}
\]

1. =EB′1.0′
2. =EB′(Min)′
3. =EB′(Dmin)′
4. =EB′(QNaN)′
5. =EB′(SNaN)′
6. =EB′(Inf)′

In each case, if you then treat the number in FPR0 as a long binary floating-point value, what will that long value be? What can you infer from the results?

\(^{214}\) If you set a value like π to 9.876543210987654321..., the number may have great precision but no accuracy.
34.12. Converting Between BFP and Binary Integers (*)

System instructions let you convert binary integers in the general registers to binary floating-point format, and vice versa. We’ll start with the integer-to-float instructions.

34.12.1. Converting Binary Integers to Binary Floating-Point (*)

The instructions in Table 293 convert the binary integer in the second-operand general register to one of the three binary floating-point formats in the first-operand floating-point register, using the current rounding mode in the FPCR if needed. None of them affect the Condition Code.

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>B394</td>
<td>CEFBR</td>
<td>RRE</td>
<td>Convert from Fixed (Short ← 32)</td>
<td>B3A4</td>
<td>CEGBR</td>
<td>RRE</td>
<td>Convert from Fixed (Short ← 64)</td>
</tr>
<tr>
<td>B395</td>
<td>CDFBR</td>
<td>RRE</td>
<td>Convert from Fixed (Long ← 32)</td>
<td>B3A5</td>
<td>CDGBR</td>
<td>RRE</td>
<td>Convert from Fixed (Long ← 64)</td>
</tr>
<tr>
<td>B396</td>
<td>CXFBR</td>
<td>RRE</td>
<td>Convert from Fixed (Extended ← 32)</td>
<td>B3A6</td>
<td>CXGBR</td>
<td>RRE</td>
<td>Convert from Fixed (Extended ← 64)</td>
</tr>
</tbody>
</table>

Table 293. Binary integer to binary floating-point conversion instructions

Some examples are shown in Figure 422.

L 0,=F’2147483647’ c(GR0)= X’7FFFFFFF’
SRNM 1(0) Set rounding mode to ‘truncate’
CEFBR 4,0 c(FPR4)=X’4EFFFFFFFFFF’, truncated
SRNM 0(0) Set rounding mode to ‘to nearest’
CEFBR 4,0 c(FPR0)=X’4F000000’, rounded
LG 1,=FD’-99’ c(GG1)= X’FFFFFFFFFFFFFFFF9D’
CDGBR 6,1 c(FPR6)=X’C058C000000000000’

Figure 422. Examples of binary integer to binary floating-point instructions

Because the value in register GG1 is small enough, the result in FPR6 needed no rounding.

34.12.2. Converting Binary Floating-Point to Binary Integers (*)

These instructions convert binary floating-point operands in a floating-point register to a two’s complement fixed-point binary value in a general register:

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>B398</td>
<td>CFEBR</td>
<td>RRF</td>
<td>Convert to Fixed (32 ← Short)</td>
<td>B3A8</td>
<td>CGEBR</td>
<td>RRF</td>
<td>Convert to Fixed (64 ← Short)</td>
</tr>
<tr>
<td>B399</td>
<td>CFDBR</td>
<td>RRF</td>
<td>Convert to Fixed (32 ← Long)</td>
<td>B3A9</td>
<td>CDGBR</td>
<td>RRF</td>
<td>Convert to Fixed (64 ← Long)</td>
</tr>
<tr>
<td>B39A</td>
<td>CFXBR</td>
<td>RRF</td>
<td>Convert to Fixed (32 ← Extended)</td>
<td>B3AA</td>
<td>CGXBR</td>
<td>RRF</td>
<td>Convert to Fixed (64 ← Extended)</td>
</tr>
</tbody>
</table>

Table 294. Binary floating-point to integer conversion instructions

The six instructions in Table 294 have an additional mask operand specifying a “local” rounding mode that takes effect only for that single instruction. Their format is illustrated in Table 295:

<table>
<thead>
<tr>
<th>Opcode</th>
<th>M3</th>
<th>R1</th>
<th>R2</th>
</tr>
</thead>
</table>

Table 295. Format of BFP Convert To Fixed instructions

Even though the local rounding mode mask is called M3, it appears in the machine instruction statement’s operand field as the second operand:
As noted in Section 34.3 on page 633, the meanings of the local rounding mode field M3 are:

<table>
<thead>
<tr>
<th>M3</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>B’0000’</td>
<td>Round according to the current “global” rounding mode in the FPCR</td>
</tr>
<tr>
<td>B’0001’</td>
<td>Biased round to nearest (ties round away from zero; the same as adding 1 to the first lost bit)</td>
</tr>
<tr>
<td>B’0100’</td>
<td>Unbiased round to nearest</td>
</tr>
<tr>
<td>B’0101’</td>
<td>Round toward zero (truncate)</td>
</tr>
<tr>
<td>B’0110’</td>
<td>Round toward +∞</td>
</tr>
<tr>
<td>B’0111’</td>
<td>Round toward −∞</td>
</tr>
</tbody>
</table>

Table 296. Rounding modifier for BFP convert to fixed instructions

Local rounding mode 1 is the traditional “round up” action.

The effect of the rounding modifiers on fraction-to-integer conversion is illustrated in Figure 423.

![Figure 423. Examples of converting binary floating-point fractions to integers with rounding](image)

To obtain these results we can use the instructions in Figure 424:

```assembly
LE 8,=EB’3.5’
c(FPR8)=X’40600000’
CFEVR 11,B’0110’,8 c(GR11)=X’00000004’ (Round up)
CFEVR 12,B’0111’,8 c(GR12)=X’00000003’ (Round down)
CFEVR 13,B’0101’,8 c(GR13)=X’00000003’ (Round toward 0)
CFEVR 14,B’0100’,8 c(GR14)=X’00000004’ (To nearest even)
CFEVR 15,B’0001’,8 c(GR15)=X’00000004’ (Biased round)
LE 6,=EB’2.5’
c(FPR6)=X’40200000’
CFEVR 10,B’0100’,6 c(GR10)=X’00000002’ (To nearest even)
```

Figure 424. Examples of Convert to Fixed instructions

The Condition Code is set as shown in Table 297:

<table>
<thead>
<tr>
<th>CC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Source was zero</td>
</tr>
<tr>
<td>1</td>
<td>Source was less than zero</td>
</tr>
<tr>
<td>2</td>
<td>Source was greater than zero</td>
</tr>
<tr>
<td>3</td>
<td>Special case</td>
</tr>
</tbody>
</table>

Table 297. CC settings after convert to binary instructions

These are the special cases resulting in CC=3:

- The size of the binary floating-point value lies outside the representable range of a 32- or 64-bit integer; an invalid operation exception is signaled.
  - If the mask bit is zero, CC3 is set, and the maximum correctly signed integer is placed in the target R1 general register.
  - If the mask bit is one, a program interruption occurs.
• If the source operand is a NaN and the invalid-operation mask bit is 1, a program interruption occurs; otherwise, the target R1 general register is set to the maximum negative number.

An inexact exception may also occur, but these interruptions are typically masked off.

These instructions make it very easy to choose the rounding you want to use for converting binary floating-point values to binary integers.

Exercises

34.12.1.(2) An array of fullword integers is stored starting at IntData and the number of elements in the list is stored as a fullword integer at NItems. Write an instruction sequence to compute and store at IntAvg the binary floating-point average of the list of integers. Take into account the possibility that the integer sum may overflow a general register.

34.12.2.(1)+ Can the instructions for converting a binary integer to binary floating-point generate an exponent underflow or overflow?

34.12.3.(2)+ What integer values satisfying $2^{30} \leq \text{value} < 2^{31}$ can be converted without loss of precision to short binary floating-point form?

34.13. Binary Floating-Point Integers and Remainders (*)

The System provides two groups of instructions for deriving integer values of binary floating-point numbers, and for calculating remainders.

As with other binary floating-point instructions, a QNaN operand leads to a QNaN result, and a SNaN operand causes an invalid operation exception. If masked off, the result is the corresponding QNaN.

34.13.1. Load FP Integer Instructions

The three Load FP Integer instructions in Table 298 round a second-operand binary floating-point operand to a first-operand integer value in the same format.

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>B357</td>
<td>FIEBR</td>
<td>RRF</td>
<td>Load FP Integer (Short)</td>
<td>B35F</td>
<td>FIDBR</td>
<td>RRF</td>
<td>Load FP Integer (Long)</td>
</tr>
<tr>
<td>B347</td>
<td>FIXBR</td>
<td>RRF</td>
<td>Load FP Integer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Extended)

Table 298. Load floating-point integer instructions

The three instructions have the format shown in Table 295. The format of the machine instruction statement is

```
mnemonic R1,M3,R2
```

where $M3$ is a rounding modifier with values shown in Table 299:
If we execute the instructions in Figure 425, the results in FPR2 are as shown:

<table>
<thead>
<tr>
<th>Mző</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>B’0000’</td>
<td>Round according to the current BFP rounding mode</td>
</tr>
<tr>
<td>B’0001’</td>
<td>Round to nearest with ties away from 0</td>
</tr>
<tr>
<td>B’0100’</td>
<td>Round to nearest with ties to even</td>
</tr>
<tr>
<td>B’0101’</td>
<td>Round toward 0</td>
</tr>
<tr>
<td>B’0110’</td>
<td>Round toward +∞</td>
</tr>
<tr>
<td>B’0111’</td>
<td>Round toward −∞</td>
</tr>
</tbody>
</table>

Table 299. Rounding mode modifiers for BFP load integer instructions

If we execute the instructions in Figure 425, the results in FPR2 are as shown:

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>LE 0,=EB’5.6789012’ c(FPR0)=X’40B5B98F’</td>
<td></td>
</tr>
<tr>
<td>FIEBR 2,B’0100’,0 c(FPR2)=X’40C00000’ (Round to nearest)</td>
<td></td>
</tr>
<tr>
<td>FIEBR 2,B’0001’,0 c(FPR2)=X’40C00000’ (Round away from 0)</td>
<td></td>
</tr>
<tr>
<td>FIEBR 2,B’0101’,0 c(FPR2)=X’40A00000’ (Round toward 0)</td>
<td></td>
</tr>
<tr>
<td>FIEBR 2,B’0111’,0 c(FPR2)=X’40A00000’ (Round down)</td>
<td></td>
</tr>
</tbody>
</table>

Figure 425. Examples of load FP integer instructions

The second and third results have value +6, and the third and fourth results have value +5.

Because the initial operand in FPR0 is not already an integer, there will be an exception condition for an inexact result; if not masked off, and an interruption will occur.

---

Remember

These instructions produce a binary floating-point integer-valued result in a floating-point register, not a binary integer in a general register.

34.13.2. Divide to Integer Instructions (*)

Table 300 lists the two instructions used to calculate binary floating-point remainders:

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>B353</td>
<td>DIEBR</td>
<td>RRF</td>
<td>Divide to Integer (Short)</td>
</tr>
<tr>
<td>B35B</td>
<td>DIDBR</td>
<td>RRF</td>
<td>Divide to Integer (Long)</td>
</tr>
</tbody>
</table>

Table 300. Binary floating-point Divide to Integer instructions

The format of these two instructions is shown in Table 301:

<table>
<thead>
<tr>
<th>Opcode</th>
<th>R3</th>
<th>M4</th>
<th>R1</th>
<th>R2</th>
</tr>
</thead>
</table>

Table 301. Format of BFP Divide to Integer instructions

The format of the machine instruction statement is

\[
\text{mnemonic} \ R_1, R_3, R_2, M_4
\]

where all the register operands must be different, and \( M_4 \) is a rounding modifier with the same values shown in Table 299 above. Note that only the final quotient is rounded.

The first operand is divided by the second operand, and the integer quotient replaces the third operand; the remainder replaces the dividend in the first operand.

If you divide \( x \) by \( y \), a floating-point remainder is defined by the relation

\[
r = x - (y \times n)
\]

---

215 These instructions are complex; before using them you should study their description in the z/Architecture Principles of Operation.
where \( n \) is the integer nearest the \textit{exact} value of \( x/y \).

For example, suppose we want the remainder of 6.5/2.0. The quotient is 3 and the remainder is 0.5. However, if we want the remainder of 7.5/2.0, the “true” quotient \( n \) is again 3 and the “true” remainder is 1.5. Depending on the rounding mode chosen for the final quotient, the remainder could be -0.5! This shows why:

- 6.5/2.0 with rounding toward zero: \( q_{\text{exact}}=3.25 \), so \( q=3.0 \), \( r=+0.5 \)
- 7.5/2.0 with rounding toward zero: \( q_{\text{exact}}=3.75 \), so \( q=3.0 \), \( r=+1.5 \)

- 6.5/2.0 with rounding toward nearest: \( q_{\text{exact}}=3.25 \), so \( q=3.0 \), \( r=+0.5 \)
- 7.5/2.0 with rounding toward nearest: \( q_{\text{exact}}=3.75 \), so \( q=4.0 \), \( r=-1.5 \)

The instructions in Figure 426 show this behavior (where the rounding mode is “to nearest”):

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LE 0,=EB'6.5'</td>
<td>c(FPR0)=′X′40000000'</td>
</tr>
<tr>
<td>LE 2,=EB'2.0'</td>
<td>c(FPR0)=′X′40000000'</td>
</tr>
<tr>
<td>DIEBR 0,4,2,B′0100'</td>
<td>c(FPR0)=′X′40400000' (Remainder=+0.5)</td>
</tr>
<tr>
<td>*</td>
<td>c(FPR4)=′X′40400000' (Quotient =+3.0)</td>
</tr>
<tr>
<td>LE 0,=EB'7.5'</td>
<td>c(FPR0)=′X′40F00000'</td>
</tr>
<tr>
<td>DIEBR 0,4,2,B′0100'</td>
<td>c(FPR0)=′X′BF000000' (Remainder=-0.5)</td>
</tr>
<tr>
<td>*</td>
<td>c(FPR4)=′X′40800000' (Quotient =+4.0)</td>
</tr>
</tbody>
</table>

Figure 426. Examples of divide to integer instructions

Sometimes the calculation of a remainder is lengthy, so the CPU sets the CC to indicate that the operation is incomplete, as we saw for instructions like MVCLE and CLCLE in Section 25. The CC settings are shown in Table 302:

<table>
<thead>
<tr>
<th>CC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Remainder complete, normal quotient</td>
</tr>
<tr>
<td>1</td>
<td>Remainder complete, quotient overflow or NaN</td>
</tr>
<tr>
<td>2</td>
<td>Remainder incomplete, normal quotient</td>
</tr>
<tr>
<td>3</td>
<td>Remainder incomplete, quotient overflow or NaN</td>
</tr>
</tbody>
</table>

Table 302. CC settings after divide to integer instructions

These CC settings are somewhat unusual. Rather than indicating an exception condition for quotient overflow, CC values 1 and 3 indicate that the exponent of the quotient has been scaled. CC values 2 or 3 mean you should repeat the instruction until the remainder is complete.

If a quotient overflow occurs or if an operand is a SNaN, an invalid operation exception is indicated. If masked off, the result is a QNaN.

To illustrate, suppose we execute the instructions in Figure 427:

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LE 8,=EB'1E28'</td>
<td>Dividend is large, ( X′6E013F39′ )</td>
</tr>
<tr>
<td>LE 3,=EB'.73E-9'</td>
<td>Divisor is small, ( X′3048A92F′ )</td>
</tr>
<tr>
<td>Div</td>
<td>DIEBR 8,0,3,B′0100'</td>
</tr>
<tr>
<td>*</td>
<td>BC 3,Div</td>
</tr>
</tbody>
</table>

Figure 427. Example of iterative divide to integer

A final result requires five iterations. The CC setting, the values in FPR8 and FPR0, and the partial remainders (PR) and partial quotients (PQ) are developed in these steps:
Calculating the quotient manually gives a value 1.3698E37, as we see in the partial quotient of the first iteration.

**Exercises**

34.13.1.(2)+ Show the result in FPR2 of executing

\[ \text{LE } 0,=EB'3.5' \]
\[ \text{FIEBR } 2, \text{mask}, 0 \]

for mask values 1, 4, 5, 6, and 7.

34.13.2.(3)+ What result will appear in FPR2 after executing

\[ \text{LD } 0,=DB'9.5' \]
\[ \text{FIEBR } 2, 4, 0 \]

Be careful!

34.13.3.(4) Show that the rule requiring the generation of an even quotient in the case when \(|n-x/y|=1/2\) and the rounding mode is "to nearest even" leads to a remainder satisfying \(|r| \leq y/2\).

### 34.14. Binary Floating-Point Square Root Instructions (*)

Four of the square root instructions in Table 303 have both RX- and RR-type forms; SQXBR has only RR format.

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED14</td>
<td>SQEB</td>
<td>RXE</td>
<td>Square Root (Short)</td>
<td>B314</td>
<td>SQEBR</td>
<td>RRE</td>
<td>Square Root (Short)</td>
</tr>
<tr>
<td>ED15</td>
<td>SQDB</td>
<td>RXE</td>
<td>Square Root (Long)</td>
<td>B315</td>
<td>SQDBR</td>
<td>RRE</td>
<td>Square Root (Long)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B316</td>
<td>SQXBR</td>
<td>RRE</td>
<td>Square Root (Extended)</td>
</tr>
</tbody>
</table>

Table 303. Binary floating-point Square Root instructions

The square root of the binary floating-point second operand is evaluated, rounded according to the current BFP rounding mode, and placed in the R1 floating-point register. Negative nonzero values and SNaNs cause an invalid-operation exception; if masked off, the result is a QNaN. The square root of \(+\infty\) is \(+\infty\). \(^{216}\)

Figure 429 shows some examples of the binary floating-point square root instructions.

\(^{216}\) Seems reasonable.
SQEB 0,=EB’10′  c(FPR0)=X’404A62C2’
SQDB 2,=DB’9999′  c(FPR2)=X’4058FFAE13F4A7D3’
LD 4,=LB’0.1′    c(FPR4)=X’3F89999999999999’
LD 6,=LB’0.1′+8  c(FPR6)=X’9999999999999999’
SQRXBR 4,4 c(FPR4)=X’3FFB999999999999’
    * c(FPR6)=X’EDB36E896CF3D7B0’
SQEB 0,=EB’(QNaN)’  c(FPR0)=X’7FF00000’ (QNaN)
SQEB 2,=EB’(Inf)’   c(FPR2)=X’7FF80000’ (+infinity)

Figure 429. Examples of binary floating-point square root instructions

Exercises

34.14.1.(1)+ Estimate the value of the square root of BFP (Max), (Min), and (DMin) values.

34.14.2.(2)+ What result will appear in FPR0 if you execute this instruction?

    SQEB 0,=DB’16′

Be careful!

34.15. Binary Floating-Point Multiply and Add/Subtract (*)

Table 304 lists the binary floating-point “multiply and add” and “multiply and subtract” instructions. The Condition Code is unchanged.

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED0E</td>
<td>MAEB</td>
<td>RXF</td>
<td>Multiply and Add (Short)</td>
<td>B30E</td>
<td>MAEBR</td>
<td>RRF</td>
<td>Multiply and Add (Short)</td>
</tr>
<tr>
<td>ED1E</td>
<td>MADB</td>
<td>RXF</td>
<td>Multiply and Add (Long)</td>
<td>B31E</td>
<td>MADBR</td>
<td>RRF</td>
<td>Multiply and Add (Long)</td>
</tr>
<tr>
<td>ED0F</td>
<td>MSEB</td>
<td>RXF</td>
<td>Multiply and Subtract (Short)</td>
<td>B30F</td>
<td>MSEBR</td>
<td>RRF</td>
<td>Multiply and Subtract (Short)</td>
</tr>
<tr>
<td>ED1F</td>
<td>MSDB</td>
<td>RXF</td>
<td>Multiply and Subtract (Long)</td>
<td>B31F</td>
<td>MSDBR</td>
<td>RRF</td>
<td>Multiply and Subtract (Long)</td>
</tr>
</tbody>
</table>

Table 304. Binary floating-point Multiply and Add/Subtract instructions

The Assembler instruction statement format for these instructions is

\[ R_1, R_3, R_2 \] For RRF-format
\[ R_1, R_3, D_2(x_2, B_2) \] For RXF-format

These instructions provide a more precise result for a very common mathematical operation:

\[ \text{operand1} = (\text{operand3} \times \text{operand2}) \pm \text{operand1} \]

The product is formed internally to double length without rounding, and then operand1 is added or subtracted. This result is then rounded to the target operand length according to the current BFP rounding mode. This means that

- the product is more precise than would be delivered by a single multiplication operation, and
- the first operand is added to an unrounded product, with possibly more bits participating.

To illustrate the difference between using multiply and add compared to using a multiply and then an add instruction, consider the instructions shown in Figure 430:
In many cases, the results will differ by very little, perhaps by a single bit. But if these operations are part of a long loop involving sums of many products, the accumulated differences can be significant.

If the operands are close to overflow or underflow thresholds, the results can be quite different. For example:

```
LE 0,=EB‘1.85E19’ c(FPR0) = X‘5F805E9A’
MEEBR 0,0 c(FPR0) = X‘1F80BD7A’ (overflow)
AEB 0,=EB‘-(Max)’ c(FPR0) = X‘FF7FFFFF’ -(Max)
```

The first three instructions multiply an operand slightly larger than the square root of (Max), generating an overflowed result with characteristic wrap. Subtracting (Max) overwhelms the wrapped result, leaving $-(\text{Max})$ as the result. The second three instructions add $-(\text{Max})$ to the intermediate result, generating a finite (and correct) result.

If any operand is a QNaN, the result is a QNaN taken from the original operands in order of precedence operand3, operand2, operand1. Any SNaN causes an invalid operation exception; if it is masked off, a default QNaN is delivered as the result.

**Exercises**

34.15.1.(2)+ Rewrite the example in Figure 381 on page 595 to use binary floating-point data and multiply-add instructions.

34.15.2.(2) Rewrite the example in Figure 382 on page 595 to use binary floating-point data and multiply-add instructions.

### 34.16. Summary

The binary floating-point instructions for several operation types are summarized in Table 305. All of these operations use operands of uniform lengths.

<table>
<thead>
<tr>
<th>Function</th>
<th>4 bytes</th>
<th>8 bytes</th>
<th>16 bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add/Subtract (register)</td>
<td>AEBR</td>
<td>ADBR</td>
<td>AXBR</td>
</tr>
<tr>
<td></td>
<td>SEBR</td>
<td>SDBR</td>
<td>SXBR</td>
</tr>
<tr>
<td>Add/Subtract (storage)</td>
<td>AEB</td>
<td>ADB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SEB</td>
<td>SDB</td>
<td></td>
</tr>
<tr>
<td>Compare (register)</td>
<td>CEBR</td>
<td>CDBR</td>
<td>CXBR</td>
</tr>
<tr>
<td>Compare (storage)</td>
<td>CEB</td>
<td>CDB</td>
<td></td>
</tr>
</tbody>
</table>
Tables 306 through 310 summarize instructions whose operands may have mixed lengths.

The binary floating-point multiplication instructions are summarized in Table 306.

<table>
<thead>
<tr>
<th>Function</th>
<th>Source Length</th>
<th>4 bytes</th>
<th>8 bytes</th>
<th>16 bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Divide (register)</td>
<td>MEBR</td>
<td>MEBR</td>
<td>MEBR</td>
<td>MEBR</td>
</tr>
<tr>
<td>Divide (storage)</td>
<td>MEBR</td>
<td>MEBR</td>
<td>MEBR</td>
<td>MEBR</td>
</tr>
<tr>
<td>Divide to Integer</td>
<td>MEBR</td>
<td>MEBR</td>
<td>MEBR</td>
<td>MEBR</td>
</tr>
<tr>
<td>Compare and Signal</td>
<td>KEBR</td>
<td>KEBR</td>
<td>KEBR</td>
<td>KEBR</td>
</tr>
<tr>
<td>(register)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compare and Signal</td>
<td>KEBR</td>
<td>KEBR</td>
<td>KEBR</td>
<td>KEBR</td>
</tr>
<tr>
<td>(storage)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load Positive (register)</td>
<td>LPEBR</td>
<td>LPEBR</td>
<td>LPEBR</td>
<td>LPEBR</td>
</tr>
<tr>
<td>Load Negative (register)</td>
<td>LNEBR</td>
<td>LNEBR</td>
<td>LNEBR</td>
<td>LNEBR</td>
</tr>
<tr>
<td>Load Complement (register)</td>
<td>LCEBR</td>
<td>LCEBR</td>
<td>LCEBR</td>
<td>LCEBR</td>
</tr>
<tr>
<td>Load and Test (register)</td>
<td>LTEBR</td>
<td>LTEBR</td>
<td>LTEBR</td>
<td>LTEBR</td>
</tr>
<tr>
<td>Load FP Integer</td>
<td>FIEB</td>
<td>FIEB</td>
<td>FIEB</td>
<td>FIEB</td>
</tr>
<tr>
<td>Multiply and Add/Subtract</td>
<td>MAEBR</td>
<td>MAEBR</td>
<td>MAEBR</td>
<td>MAEBR</td>
</tr>
<tr>
<td>(register)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiply and Add/Subtract</td>
<td>MSEB</td>
<td>MSEB</td>
<td>MSEB</td>
<td>MSEB</td>
</tr>
<tr>
<td>(storage)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Square Root (register)</td>
<td>SQEBR</td>
<td>SQEBR</td>
<td>SQEBR</td>
<td>SQEBR</td>
</tr>
<tr>
<td>Square Root (storage)</td>
<td>SQEBR</td>
<td>SQEBR</td>
<td>SQEBR</td>
<td>SQEBR</td>
</tr>
<tr>
<td>Test Data Class (register)</td>
<td>TCEB</td>
<td>TCEB</td>
<td>TCEB</td>
<td>TCEB</td>
</tr>
</tbody>
</table>

The binary floating-point rounding instructions are summarized in Table 307.

<table>
<thead>
<tr>
<th>Function</th>
<th>Source Length</th>
<th>8 bytes</th>
<th>16 bytes</th>
<th>16 bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Round</td>
<td>LEBR</td>
<td>LEBR</td>
<td>LEBR</td>
<td>LEBR</td>
</tr>
</tbody>
</table>

The binary floating-point operand-lengthening instructions are summarized in Table 308.

<table>
<thead>
<tr>
<th>Function</th>
<th>Source Length</th>
<th>4 bytes</th>
<th>8 bytes</th>
<th>16 bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lengthen (register)</td>
<td>DEBR</td>
<td>DEBR</td>
<td>DEBR</td>
<td>DEBR</td>
</tr>
<tr>
<td>Lengthen (storage)</td>
<td>DEB</td>
<td>DEB</td>
<td>DEB</td>
<td>DEB</td>
</tr>
</tbody>
</table>

The instructions for converting binary floating-point operands to binary integers are summarized in Table 309.
Table 309. Convert binary floating-point to binary integer instructions

The instructions for converting binary integer operands to binary floating-point are summarized in Table 310.

Table 310. Convert binary integer to binary floating-point instructions

<table>
<thead>
<tr>
<th>Function</th>
<th>Source Length</th>
<th>4 bytes</th>
<th>8 bytes</th>
<th>16 bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Target Length</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>32 bits</td>
<td>64 bits</td>
<td>32 bits</td>
<td>64 bits</td>
</tr>
<tr>
<td>Convert float to binary</td>
<td>CFEBR</td>
<td>CGEBr</td>
<td>CFDBR</td>
<td>CGDBR</td>
</tr>
<tr>
<td></td>
<td>CFXBR</td>
<td>CGXBR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 311 summarizes the binary floating-point exception conditions that might be caused by the instructions described in this section. F denotes a finite value, and IMax is the largest representable binary integer in the target format.

Table 311. Summary of binary floating-point operations and exceptions

<table>
<thead>
<tr>
<th>Operation</th>
<th>Invalid Operation</th>
<th>Divide by Zero</th>
<th>Over-Flow</th>
<th>Under-Flow</th>
<th>Inexact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add, Subtract</td>
<td>SNaN, ∞ − ∞</td>
<td>—</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Compare,</td>
<td>SNaN</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Compare and Signal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Convert to Fixed</td>
<td>NaN,</td>
<td>F</td>
<td>&gt;</td>
<td>IMax</td>
<td></td>
</tr>
<tr>
<td>Divide</td>
<td>SNaN, 0÷0, ∞ ÷ ∞</td>
<td>F÷0</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Divide to Integer</td>
<td>SNaN, Any ÷ ∞</td>
<td>—</td>
<td>—</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Load and Test</td>
<td>SNaN</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Load FP Integer</td>
<td>SNaN</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Yes</td>
</tr>
<tr>
<td>Load Lengthened</td>
<td>SNaN</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Load Rounded</td>
<td>SNaN</td>
<td>—</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Multiply</td>
<td>SNaN, ∞ × 0</td>
<td>—</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Multiply &amp; Add,</td>
<td>SNaN, ∞ − ∞, ∞ × 0</td>
<td>—</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Multiply &amp; Subtract</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Square Root</td>
<td>SNaN, − ∞, F&lt;0</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Note: F is any finite value; IMax is the largest available signed integer in the target format.

Table 311. Summary of binary floating-point operations and exceptions

Instructions Discussed in this Section

The instruction mnemonics and opcodes are shown in the following table:
The instruction opcodes and mnemonics are shown in the following table:
### Terms and Definitions

**Floating-Point Control Register (FPCR)**

A special register containing IEEE masks, status indicators, Data Exception Code, and rounding mode.

**mask**

A bit in the FPCR controlling the actions to be taken when an exception condition occurs.

**status flag**

A bit in the FPCR indicating that an exception condition has occurred.

---

<table>
<thead>
<tr>
<th>Opcode</th>
<th>Mnemonic</th>
<th>Opcode</th>
<th>Mnemonic</th>
<th>Opcode</th>
<th>Mnemonic</th>
</tr>
</thead>
<tbody>
<tr>
<td>B299</td>
<td>SRNM</td>
<td>B31C</td>
<td>MDBR</td>
<td>B3A5</td>
<td>CDGBR</td>
</tr>
<tr>
<td>B29C</td>
<td>STFPC</td>
<td>B31D</td>
<td>DDBR</td>
<td>B3A6</td>
<td>CXGBR</td>
</tr>
<tr>
<td>B29D</td>
<td>LFPC</td>
<td>B31E</td>
<td>MADBR</td>
<td>B3A8</td>
<td>CGEBR</td>
</tr>
<tr>
<td>B2BD</td>
<td>LFAS</td>
<td>B31F</td>
<td>MSDBR</td>
<td>B3A9</td>
<td>CGDBR</td>
</tr>
<tr>
<td>B300</td>
<td>LPEBR</td>
<td>B340</td>
<td>LPXBR</td>
<td>B3AA</td>
<td>CGXBR</td>
</tr>
<tr>
<td>B301</td>
<td>LNEBR</td>
<td>B341</td>
<td>LNXBR</td>
<td>ED04</td>
<td>LDEB</td>
</tr>
<tr>
<td>B302</td>
<td>LTEBR</td>
<td>B342</td>
<td>LTXBR</td>
<td>ED05</td>
<td>LXDB</td>
</tr>
<tr>
<td>B303</td>
<td>LCEBR</td>
<td>B343</td>
<td>LCXBR</td>
<td>ED06</td>
<td>LXEB</td>
</tr>
<tr>
<td>B304</td>
<td>LDEBR</td>
<td>B344</td>
<td>LEDBR</td>
<td>ED07</td>
<td>MXDB</td>
</tr>
<tr>
<td>B305</td>
<td>LXDBR</td>
<td>B345</td>
<td>LDXBR</td>
<td>ED08</td>
<td>KEB</td>
</tr>
<tr>
<td>B306</td>
<td>LXEBR</td>
<td>B346</td>
<td>LEXBR</td>
<td>ED09</td>
<td>CEB</td>
</tr>
<tr>
<td>B307</td>
<td>MXDBR</td>
<td>B347</td>
<td>FIXBR</td>
<td>EDOA</td>
<td>AEB</td>
</tr>
<tr>
<td>B308</td>
<td>KEBR</td>
<td>B348</td>
<td>KXBR</td>
<td>EDOB</td>
<td>SEB</td>
</tr>
<tr>
<td>B309</td>
<td>CEBR</td>
<td>B349</td>
<td>CXBR</td>
<td>EDOC</td>
<td>MDEB</td>
</tr>
<tr>
<td>B30A</td>
<td>AEBR</td>
<td>B34A</td>
<td>AXBR</td>
<td>EDD</td>
<td>DEB</td>
</tr>
<tr>
<td>B30B</td>
<td>SEBR</td>
<td>B34B</td>
<td>SXBR</td>
<td>EDOE</td>
<td>MAEB</td>
</tr>
<tr>
<td>B30C</td>
<td>MDEBR</td>
<td>B34C</td>
<td>MXBR</td>
<td>EDOF</td>
<td>MEB</td>
</tr>
<tr>
<td>B30D</td>
<td>DEBR</td>
<td>B34D</td>
<td>DXBR</td>
<td>ED10</td>
<td>TCEB</td>
</tr>
<tr>
<td>B30E</td>
<td>MAEBR</td>
<td>B353</td>
<td>DIEBR</td>
<td>ED11</td>
<td>TCD</td>
</tr>
<tr>
<td>B30F</td>
<td>MEBR</td>
<td>B357</td>
<td>FIEBR</td>
<td>ED12</td>
<td>TCB</td>
</tr>
<tr>
<td>B310</td>
<td>LPDBR</td>
<td>B35B</td>
<td>DIDBR</td>
<td>ED14</td>
<td>SQEB</td>
</tr>
<tr>
<td>B311</td>
<td>LNDBR</td>
<td>B35F</td>
<td>FIDBR</td>
<td>ED15</td>
<td>SQDB</td>
</tr>
<tr>
<td>B312</td>
<td>LTDBR</td>
<td>B384</td>
<td>SFPC</td>
<td>ED17</td>
<td>MEEB</td>
</tr>
<tr>
<td>B313</td>
<td>LCDBR</td>
<td>B385</td>
<td>SFASR</td>
<td>ED18</td>
<td>KDB</td>
</tr>
<tr>
<td>B314</td>
<td>SQEBR</td>
<td>B38C</td>
<td>EFPC</td>
<td>ED19</td>
<td>CDB</td>
</tr>
<tr>
<td>B315</td>
<td>SQDBR</td>
<td>B394</td>
<td>CEFLBR</td>
<td>ED1A</td>
<td>ADB</td>
</tr>
<tr>
<td>B316</td>
<td>SQXBR</td>
<td>B395</td>
<td>CDFBR</td>
<td>ED1B</td>
<td>SDB</td>
</tr>
<tr>
<td>B317</td>
<td>MEEBR</td>
<td>B396</td>
<td>CXFBR</td>
<td>ED1C</td>
<td>MDB</td>
</tr>
<tr>
<td>B318</td>
<td>KDBR</td>
<td>B398</td>
<td>CFEBR</td>
<td>ED1D</td>
<td>DDB</td>
</tr>
<tr>
<td>B319</td>
<td>CDBR</td>
<td>B399</td>
<td>CDFBR</td>
<td>ED1E</td>
<td>MADB</td>
</tr>
<tr>
<td>B31A</td>
<td>ADBR</td>
<td>B39A</td>
<td>CFBR</td>
<td>ED1F</td>
<td>MSDB</td>
</tr>
<tr>
<td>B31B</td>
<td>SDBR</td>
<td>B3A4</td>
<td>CEGBR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DXC
Data Exception Code, a field in the FPCR.

Data Exception Code
A field in the FPCR indicating which of various floating-point and packed decimal exceptions have occurred.

Rounding Mode
A field in the FPCR indicating the rounding action to be taken after a binary floating-point operation.

denormalized number
A nonzero binary floating-point value with characteristic zero and a nonzero fraction.

gradual underflow
A technique allowing numbers to become denormalized when they are finite and smaller than the smallest normalized magnitude.

NaN
A “Not-a-Number” having no numeric or mathematical meaning.

QNaN
A Quiet Not-a-Number that does not cause an exception condition in any arithmetic operation.

SNaN
A Signaling Not-a-Number that does cause an exception condition in an arithmetic operation.

special value
A zero, a denormalized number, an infinity, a QNaN, or an SNaN.

exception condition
One of five conditions defined by the IEEE Floating-Point Standard: invalid operation, division by zero, exponent overflow, exponent underflow, and inexact result.

rounding modifier
A field in an instruction specifying the type of rounding to be performed on the result of the operation.

Programming Problems

Problem 34.1.(2) Write a program using binary floating-point operands to generate each of the five exception conditions. First, set the five mask bits to zero, and see what default results are delivered for each exception type; then, generate the same exceptions with each mask bit set to one. Determine the ways your operating system reports the interruptions.

Problem 34.2.(4) Write a program that will read records containing eight hex digits representing short binary floating-point numbers. Then, print the approximate (but reasonably accurate) decimal value of the binary floating-point number to five significant digits, in the form s.dddddE+nn, where s is the sign of the number and of its exponent, dddd are the significant decimal digits, and nn is the decimal exponent. If the number is a NaN or infinity, print an appropriate indication. (See Problem 33.3.)

Problem 34.3.(2) Write a program that calculates a table of the square roots of short precision binary floating-point integer values from 1 to 20. For each square root value, also calculate its square and compare the result to the original integer value. Then, display the original value, its square root, and the difference between the integer value and the squared square root. (If you can display the results as decimal values, perhaps using your solution to Problem 34.2, so much the better!)

Problem 34.4.(3) A programmer claimed that evaluating (1.0/N)*N in binary floating-point arithmetic (with (default) rounding to nearest even) for values of N from 1 to 100 does not always produce 1.0. Write a program that will test this claim in short, long, and extended binary floating-point arithmetic.
Problem 34.5.(3) Using the iterative technique described in Section 31.3.1 on page 544, write a program to evaluate the square root of 2 to 10 significant digits using long binary floating-point arithmetic, and without using any square-root instructions. Format and print the result as a fixed-point value.
Having seen in Sections 33 and 34 that z System supports both hexadecimal and binary floating-point, you might ask why yet another is needed.

- We are ten-fingered creatures: (almost) all humans count in decimal, and non-decimal arithmetic is highly unintuitive for most people.\(^{217}\)
- When calculations using hexadecimal or binary floating-point are compared with “hand” calculations in decimal, the results may be different. Decimal notation and arithmetic is pervasive in business use, and is often a legal requirement.
- If your processor is capable of scaled fixed-point decimal arithmetic (like packed decimal), such computations are difficult because the position of the decimal point must be remembered.
  - Even when you can do this the resulting code may be complex, difficult to understand and maintain, and slow.
- One of the most annoying aspects of non-decimal arithmetic is that representations of decimal fractions (e.g., 1/10) are imprecise and must be rounded, which can cause accumulated errors.
  - Laws in many countries require exact decimal rounding for financial calculations.
- Conversions between decimal and hexadecimal or binary are complicated, and can be quite difficult to do correctly. Imprecise conversions can lead in either binary or packed decimal to many other problems.
- Floating-point remainders are often not what you would expect in bases other than ten.
- The decimal “precision” of a binary or hexadecimal floating-point number is often not what it seems. The question “How many significant digits?” almost always implies decimal digits.
- The results of floating-point comparisons can be surprising: two values that you think should be algebraically equal may not be.
- Decimal floating-point is now an international standard (IEEE Std 754™-2008).

A desired solution should have these properties:
- Intuitive, familiar decimal arithmetic
- Exact representation of (most) decimal numbers

\(^{217}\) Old joke: “There are 10 types of people who understand binary: those who do, and those who don’t.”
Problems with repeating non-decimal fractions like 1/3 are well known and understood.

- Automatic tracking of the decimal point’s placement
- No conversions between decimal and hex or binary are needed, so there are fewer misconceptions about the decimal precision of a number
- Rounding uses decimal rules, not binary or hexadecimal
  - More rounding modes are supported.
- Low-order digits are preserved whenever possible
- Integer, fixed point, and floating-point values are supported without extra effort.
  - Businesses need all three, for things like counts, currency, and interest and tax rates.

As we will see, the z System decimal floating-point data types and instructions have these properties.

**Exercises**

35.0.1.(0) Many cartoon characters are drawn with only three fingers and a thumb on each hand. Use that property to devise examples for teaching children octal (base-8) arithmetic.

35.0.2.(1) What other number bases are in widespread use today?

### 35.1. Representations

The significand in the binary and hexadecimal floating-point representations is a string of hexadecimal or binary digits, packaged with a sign and an exponent:

```
 ┌─┬──────────┬────────────────────────────────────┐
 │s│ exponent │hhhhhhhhhhhh │ Hex
 └─┴──────────┴────────────────────────────────────┘
 ┌─┬──────────┬────────────────────────────────────┐
 │s│ exponent │bb │ Binary
 └─┴──────────┴────────────────────────────────────┘
```

Figure 431. Hexadecimal and binary floating-point representations

You might reasonably expect something similar for decimal:

```
 ┌─┬──────────┬────────────────────────────────────┐
 │s│ exponent │ d d d d d d d d d d d d d d d d d d │ Decimal
 └─┴──────────┴────────────────────────────────────┘
```

Three possible representations could be considered:

1. Like hexadecimal floating-point, the significand could contain BCD (not EBCDIC!) digits. This has some advantages and disadvantages:
   - No conversion of external decimal data to and from binary or hexadecimal is needed.
   - Rounding can use similar techniques as for the packed decimal instruction SRP (discussed in Section 29.7).

---

218 One of the earliest time-sharing systems on System/360 was known as RUSH; its decimal floating-point representation used BCD rather than hexadecimal digits, and its implementation used part of the packed decimal microcode.
Because the operations would be done in the floating-point registers rather than in storage, they could be faster than for packed decimal.

- The representation is somewhat wasteful, using only 62.5 percent of the available “bit space” (digits A-F are not present). Encoding decimal values with BCD digits is inefficient because each 3 BCD digits require 12 bits, but values from 000 to 999 can be stored in 10 bits.

2. The significand could be a binary integer, as sketched in this figure:

```
| s | exponent | binary integer |
```

This has some advantages and disadvantages:
- The representation is compact; no significand bit combinations are disallowed.
- Arithmetic should be about as fast as for the binary floating-point instructions.
- Data would require conversion from BCD formats.
- A serious disadvantage is that decimal rounding, shifting, and scaling are complicated and possibly expensive.

This format is actually defined by the IEEE standard, but is not supported by z System. (If you’re interested, see Section 35.14 on page 716.)

3. The significand could contain compressed BCD digits.

This has some advantages and disadvantages:
- The representation can be made very efficient, having the compactness of binary and the ease of scaling, shifting, and rounding of decimal.
- The encoding is complex and quite unintuitive.
- Decimal operations are natural.

The encoding chosen for z System to represent decimal floating-point data is the last one.

### 35.1.1. Conceptual View of the Decimal Floating-Point Representation

It’s easiest to think of decimal floating-point data having the representation shown in Figure 432. As with hexadecimal and binary floating-point representations, the exponent field contains a characteristic (the exponent plus a bias to ensure that it’s nonnegative).

```
| s | exponent | . | 0 |
```

Figure 432. Conceptual decimal floating-point representation

An important property of decimal floating-point data is that it is not always normalized, either as a fraction or as an integer. This means that it is easy to generate equal values that don’t have the same representation. For example, $1 \times 10^3$ and $100 \times 10^1$ have the same value but different representations.

The set of redundant representations with the same value is called a “cohort”: each such number is a “cohort member”.

---

219 The term “cohort” actually refers to a division of 300 to 600 troops of a Roman army legion. Its informal meaning of a group of associates (not an associate of a “hort”) is intended here.
To illustrate a decimal floating-point cohort, consider the notation we used in Section 32.9, where a 4-digit decimal floating-point number is represented as \([\text{exponent}]\|\text{significand}\). The decimal number 100 then has four possible representations: \([-1]\|1000\), \([0]\|0100\), \([+1]\|0010\), and \([+2]\|0001\]; this cohort has 4 members.

None of the values is necessarily normalized, either as a fraction (as in the FPF(10,4) representation) nor as an integer (as in the FPI(10,4) representation), even though the first and last cohort members appear to be left- and right-normalized.

A new term is introduced in place of the “ulp” (unit in the last place) we saw in discussing hexadecimal and binary floating-point: the units-digit value, \(1 \times 10^{\text{exponent}}\), is called the quantum.

Each of the four representations above has a different quantum, respectively \(1 \times 10^{-1}\), \(1 \times 10^{0}\), \(1 \times 10^{+1}\), and \(1 \times 10^{+2}\). This shows how the quantum of a value depends on which member of a cohort is chosen.

For example, the three numbers in Figure 433 represent the same value, \(12345 \times 10^{7}\), so they are members of the same cohort. But they have different exponents (and therefore, different quanta).

![Figure 433. Three decimal floating-point representations of the same value](image)

Table 312 summarizes the properties of the z System decimal floating-point representation, where approximations are given for Max, Min, and DMin values. Because decimal floating-point numbers aren’t usually normalized, the column headed “Max Norm.” refers to values with nonzero leftmost digit, and the two “Min” columns refer to values with only 1 in the units digit.

<table>
<thead>
<tr>
<th>Byte length</th>
<th>Character (bits)</th>
<th>Min exp.</th>
<th>Max exp.</th>
<th>Char. Bias</th>
<th>Precision</th>
<th>Max Norm. (Max)</th>
<th>Min Norm. (Min)</th>
<th>Min Denorm. (DMin)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>8</td>
<td>-95</td>
<td>+96</td>
<td>+101</td>
<td>7</td>
<td>(1.0 \times 10^{+97})</td>
<td>(1.0 \times 10^{-95})</td>
<td>(1.0 \times 10^{-101})</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>-383</td>
<td>+384</td>
<td>+398</td>
<td>16</td>
<td>(1.0 \times 10^{+385})</td>
<td>(1.0 \times 10^{-383})</td>
<td>(1.0 \times 10^{-398})</td>
</tr>
<tr>
<td>16</td>
<td>14</td>
<td>-6143</td>
<td>+6144</td>
<td>+6176</td>
<td>34</td>
<td>(1.0 \times 10^{+6145})</td>
<td>(1.0 \times 10^{-6143})</td>
<td>(1.0 \times 10^{-6176})</td>
</tr>
</tbody>
</table>

Table 312. Decimal floating-point data representations

The “\(1.0 \times 10^N\)” values in Table 312 are actually \(0.9999... \times 10^N\), which were rounded for simplicity.

Decimal floating-point has many advantages over packed decimal:
- Its behavior is governed by industry standards.
- It keeps track of the decimal point automatically.
- Fewer programming languages support packed decimal.
- Its performance is faster because arithmetic is done in registers, rather than in memory.
- Rounding support is far more varied than the simple “round-by-adding” of the SRP instruction.

**Exercises**

35.1.1. (2) Short hexadecimal and binary floating-point data can correctly represent only 6 decimal digits. Assuming a 7-bit exponent, show how you would create a 24-bit decimal floating-point data item with BCD digits used for the significand. What should be the minimum and maximum values of the exponent, EMax and EMin, and what should be the characteristic bias?

35.1.2. (2) In Figure 433, what is the quantum of each value?

35.1.3. (1) Suppose two decimal floating-point numbers have representations of 7 and 16 digits respectively. If their exponents are equal, do they also have the same quantum?

35.1.4. (2) In Figure 433, how many significant digits are there in each value?

35.1.5. (2) In Figure 433, how many members are there in the cohort of each value?

35.1.6. (3) Suppose a decimal floating-point representation supports p significand digits. If a nonzero value has n digits between its leftmost and rightmost nonzero digits, how many members are in its cohort, assuming the value is well within the limits of the representations exponent range? (For example, if p=11 and the significand is 00057036000, then n=5.)

### 35.2. z System Decimal Floating-Point Data Encoding and Representation (*)

**Details Follow**

This next section describes the interesting (and complex!) details of the z System decimal floating-point format, but you don’t need to understand it to make good use of decimal floating-point instructions and arithmetic. The conceptual representation in Figure 432 is an adequate description for almost all your needs.

We’ll start by showing how three BCD digits are encoded in 10 bits.

#### 35.2.1. Decimal Floating-Point Data Encoding (*)

To efficiently encode decimal values between 0 and 999, we could use 10-bit binary integers. (The values from 1000 to 1023 would be unused, but this is a small price to pay.) However, because we want to do *decimal* arithmetic, we should avoid frequent internal conversions between binary and decimal. Thus, this 10-bit binary-integer format was rejected.

Instead, an efficient and unusual *densely packed decimal* (DPD) encoding is used. Three BCD digits (12 bits) are mapped into an unusual 10-bit grouping called a “declet”.

---

220 The details are ugly or elegant, depending on your perspective.
The actual encoding takes this form: let 3 BCD digits be represented by the 12 bits “abcd efgh ijkm”, and let a a 10-bit declet be represented by “pqr stu v wxy”. Converting from BCD digits to a declet is done in two steps:

1. Extract the high-order bits of the three BCD digits (aei).

2. Select one of eight 10-bit declet encodings, based on the remaining nine bits of the BCD string. Table 313 shows the bit selections:

<table>
<thead>
<tr>
<th>aei</th>
<th>pqr stu v wxy</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>bcd fgh 0 jkm</td>
</tr>
<tr>
<td>001</td>
<td>bcd fgh 1 00m</td>
</tr>
<tr>
<td>010</td>
<td>bcd jkh 1 01m</td>
</tr>
<tr>
<td>011</td>
<td>bcd 10h 1 11m</td>
</tr>
<tr>
<td>100</td>
<td>jkd fgh 1 10m</td>
</tr>
<tr>
<td>101</td>
<td>fgd 01h 1 11m</td>
</tr>
<tr>
<td>110</td>
<td>jkd 00h 1 11m</td>
</tr>
<tr>
<td>111</td>
<td>00d 11h 1 11m</td>
</tr>
</tbody>
</table>

Table 313. Declet encoding for BCD digits

For example, suppose you want to encode the BCD digits 579 into a declet. The bits of the BCD digits are 0101 0111 1001, so the aei bits are 001. The remaining three bits (bcd) of the first BCD digit are 101; the remaining three bits of the second BCD digit (fgh) are 111, and the remaining bits (jkm) of the last BCD digit are 001. When combined, the result is 101 111 1 001. (The jk bits are zero because the final BCD digit is 9, so they are ignored in forming the declet!)

Because we are encoding only 1000 values (from 000 to 999), the remaining 24 possible bit patterns are called “non-preferred”, and assigned 3 each to 8 BCD values. They have bit patterns 01x11x11x, 10x11x11x, and 11x11x11x, where x can be either 0 or 1. The preferred encodings are called canonical encodings. Non-preferred encodings are accepted as arithmetic operands, but are never generated as a result.

Figure 463 on page 720 shows all the BCD-to-DPD encodings, including the 24 non-preferred declet encodings. Figure 464 on page 721 shows all the DPD-to-BCD encodings, and Table 379 on page 719 summarizes the non-canonical declets and their BCD equivalents.

Declets can be converted to BCD digits according the rules shown in Table 314, where the ‘-’ is a “don’t care” indicator meaning the bit may be 0 or 1. (The same notation for declet bits and BCD-digit bits is used as in Table 313.)

<table>
<thead>
<tr>
<th>vwst</th>
<th>abcd</th>
<th>efgh</th>
<th>jkm</th>
</tr>
</thead>
<tbody>
<tr>
<td>011100</td>
<td>00r</td>
<td>100u</td>
<td>100y</td>
</tr>
<tr>
<td>011101</td>
<td>00r</td>
<td>0pq</td>
<td>100y</td>
</tr>
<tr>
<td>011110</td>
<td>00r</td>
<td>100u</td>
<td>100y</td>
</tr>
<tr>
<td>011111</td>
<td>00r</td>
<td>100u</td>
<td>100y</td>
</tr>
</tbody>
</table>

Table 314. Converting decimal floating-point declets to BCD digits

For example, suppose you start with a declet 10111111001, where the bits are denoted pqrstuvwxy, and the bits of the three BCD digits are denoted abcd &efgh \( \text{jkm} \). The vwstx bits are then 1001. This corresponds to the second row of Table 314, so we construct the abcd (first BCD) digit from 0101, the efgh (second BCD) digit from 0111, and the jkm (third BCD) digit from 001. Thus, the three BCD digits are 579, as desired.
This may seem an enormous amount of effort and a great complication, just to encode three
BCD digits. But it has a great advantage from the perspective of the CPU designers:
DPD-to-BCD and BCD-to-DPD conversions can be done efficiently with simple logical oper-
ations; no arithmetic is needed!

Remember that all the non-preferred digit encodings have bit representations 01x11x111x,
10x11x111x, and 11x11x111x, where x is either 0 or 1.

35.2.2. Decimal Floating-Point Data Representation (*)

Now that we know how declets are created, we’ll see how they and the exponent are actually
packaged. Unlike Figure 432, the decimal floating-point representation takes the form shown in
Figure 434:

```
 s Combination Trailing Significand Field
 │ Field (CF) (TSF) or (T)
 └─┴─────────────┴─────────────────────┘
```

Figure 434. Decimal floating-point data representation

The key properties of the representation shown in Figure 434 are:

- The coefficient is a string of encoded decimal digits, to the left of an implied decimal point
  following the low-order digit. The value of the exponent determines the true position of the
decimal point (as we’ve seen for hexadecimal and binary floating-point data).
- The rightmost digit is the “units digit”. It may be zero, because the significand is not right-
normalized.
- The leftmost nonzero digit is called the “leftmost significant digit”.
- The high-order digit (whether or not it’s zero) is the “leftmost digit”. Thus, the significand
digits are the leftmost digit through the low-order units digit, while the significant digits are the
leftmost nonzero digit through the low-order units digit.

Then, the value of a number is $(-1)^{sign} \times \text{coefficient} \times 10^{\text{exponent}}$

Figure 435 shows the 32-, 64-, and 128-bit formats. Each Trailing Significand Field (sometimes
abbreviated TSF) is a multiple of 10 bits long, because it contains 2, 5, or 11 declets.

```
1 11 20
Single (32 bit) Format
 s Combo Fld TSF
```

```
1 13 50
Double (64 bit) Format
 s Combo Fld Trailing Significand Field
```

```
1 17 110
Extended (128 bit) Format
 s Combo Field/ / Trailing Significand Field
```

Figure 435. z System decimal floating-point representations

The 32-bit format is not encouraged by the IEEE standard, but is supported by the Assembler as
a storage format. There are no arithmetic operations on the 32-bit format, but special instructions
make it easy to convert to and from long and extended formats.

---

The logical operations are described in the IEEE Standard.
The Combination Field is unusual: it contains the exponent and the leftmost significand digit! The Trailing Significand Field contains the remaining significand digits, encoded as 10-bit declets. Thus, the precisions of the three representations are $6(+1)=7$, $15(+1)=16$, and $33(+1)=34$ decimal digits respectively.

### 35.2.3. Decimal Floating-Point Combination Field (*)

The representation of the exponent is unusual: the first five bits of the Combination Field (CF) contain the leftmost significand digit and the first two bits of the characteristic (the biased exponent), and the remaining 6, 8, or 12 bits contain the rest of the characteristic.

The first five bits allow 32 combinations; two are reserved for the special values shown in Table 315:

<table>
<thead>
<tr>
<th>CF bits 0-4</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>11111</td>
<td>NaN</td>
</tr>
<tr>
<td>11110</td>
<td>Infinity</td>
</tr>
<tr>
<td>All others</td>
<td>Finite numbers</td>
</tr>
</tbody>
</table>

Table 315. First five bits of special-values Combination Field

When the first 5 bits are 11111, the data item is a NaN. If the next bit (bit 6 of the representation; remember, the sign bit is bit 0) is zero, the item is a QNaN, and if one, a SNaN. Canonical NaNs set all other bits of the data item to zero.

When the first 5 bits are 11110, the data item is an infinity, no matter what the remaining bits are. Canonical infinity values set all the other bits of the data item to zero.

The remaining 30 possible combinations of Combination Field are used to encode finite values. The five bits contain the Leftmost Digit (LMD) of the significand and the first two bits of the characteristic, as shown in Table 316.

<table>
<thead>
<tr>
<th>LMD</th>
<th>First 2 characteristic bits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>00</td>
</tr>
<tr>
<td>0</td>
<td>0000</td>
</tr>
<tr>
<td>1</td>
<td>0001</td>
</tr>
<tr>
<td>2</td>
<td>0010</td>
</tr>
<tr>
<td>3</td>
<td>0011</td>
</tr>
<tr>
<td>4</td>
<td>0100</td>
</tr>
<tr>
<td>5</td>
<td>0101</td>
</tr>
<tr>
<td>6</td>
<td>0110</td>
</tr>
<tr>
<td>7</td>
<td>0111</td>
</tr>
<tr>
<td>8</td>
<td>1100</td>
</tr>
<tr>
<td>9</td>
<td>1101</td>
</tr>
</tbody>
</table>

Table 316. First 5 bits of finite-value Combination Field

A zero value has all significand digits zero, and any representable exponent.

Suppose we want to represent the value 8765432 as a short decimal floating-point number. The rightmost 6 digits are encoded into two declets $X'3E5'$ (representing 765) and $X'232'$ (representing 432). Thus, the rightmost five hex digits of the data item contain $X'F9632'$ (Remember, the declet representing 765 was shifted right 2 bits.)

---

222 The IEEE 754-2008 standard calls these bits $G_0$ through $G_4$. 

674 Assembler Language Programming for IBM z System™ Servers Version 1.00
The exponent is zero, so the characteristic is decimal 101 (the characteristic bias, shown in Table 317) or 0B1100101′. Because the Combination Field is 11 bits wide and its first 5 bits are the LMD+Leading CF bits, we must extract the two leading bits of the characteristic, or 01. Then, we see in Table 316 that the LMD 8 means that the leading 5 bits of the CF contains 11010. With a zero for the sign bit, we can put the pieces together:

- 0 (Sign Bit)
- 11010 (initial 5 bits of Combination Field)
- 100101 (rest of the characteristic)
- X′F9632′ (20-bit trailing significand)

so the final data item has representation X′6A5F9632′.

---

**Decimal floating-point encodings are difficult!**

As this example shows, it’s best to let the Assembler and the CPU generate encoded values for you.

Table 317 summarizes properties of the decimal floating-point representation. The values in the row denoted “Characteristic length” show that two of its bits are encoded in the Combination Field.

<table>
<thead>
<tr>
<th>Property</th>
<th>Short format</th>
<th>Long format</th>
<th>Extended format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Format length (bits)</td>
<td>32</td>
<td>64</td>
<td>128</td>
</tr>
<tr>
<td>Combination field length (bits)</td>
<td>11</td>
<td>13</td>
<td>17</td>
</tr>
<tr>
<td>Characteristic length (bits)</td>
<td>6+2</td>
<td>8+2</td>
<td>12+2</td>
</tr>
<tr>
<td>Trailing Significand Field length (bits)</td>
<td>20</td>
<td>50</td>
<td>110</td>
</tr>
<tr>
<td>Precision (decimal digits)</td>
<td>7</td>
<td>16</td>
<td>34</td>
</tr>
<tr>
<td>Exponent range</td>
<td>−95, +96</td>
<td>−383, +384</td>
<td>−6143, +6144</td>
</tr>
<tr>
<td>Exponent bias</td>
<td>101</td>
<td>398</td>
<td>6176</td>
</tr>
<tr>
<td>Max Normalized Value (N&lt;sub&gt;max&lt;/sub&gt;)</td>
<td>= 10&lt;sup&gt;+97&lt;/sup&gt;</td>
<td>= 10&lt;sup&gt;+385&lt;/sup&gt;</td>
<td>= 10&lt;sup&gt;+6145&lt;/sup&gt;</td>
</tr>
<tr>
<td>Min Normalized Value (N&lt;sub&gt;min&lt;/sub&gt;)</td>
<td>= 10&lt;sup&gt;−95&lt;/sup&gt;</td>
<td>= 10&lt;sup&gt;−383&lt;/sup&gt;</td>
<td>= 10&lt;sup&gt;−6143&lt;/sup&gt;</td>
</tr>
<tr>
<td>Smallest DeNorm Value (D&lt;sub&gt;min&lt;/sub&gt;)</td>
<td>= 10&lt;sup&gt;−101&lt;/sup&gt;</td>
<td>= 10&lt;sup&gt;−398&lt;/sup&gt;</td>
<td>= 10&lt;sup&gt;−6176&lt;/sup&gt;</td>
</tr>
<tr>
<td>Effective exponent range (of all representable values)</td>
<td>−101, +90</td>
<td>−398, +369</td>
<td>−6176, +6111</td>
</tr>
</tbody>
</table>

Table 317. Properties of decimal floating-point representations

The unusual format of the combination field allows the exponent range to be wider: normally an n-bit exponent would allow 2<sup>n</sup> values, but the DFP encoding allows approximately 3×2<sup>(n−1)</sup> or 1.5 times as many values.

**Exercises**

35.2.1.(2)+ Using a decimal floating-point notation like that used in the text on page 670, what are the quanta of each member of the cohorts of these numbers?

1. [−3]17430
2. [+1]0009
3. [−2]0340

35.2.2.(1) In Figure 435 on page 673, how many declets appear in each of the decimal floating-point representations?

35.2.3.(2) Suppose the significand of a long decimal floating-point number has eight nonzero significant digits, such as “12345678”. How many members does its cohort have?
35.2.4.(3) Suppose the significand of a long decimal floating-point number has eight significant digits, but you don't know their values. How many members does its cohort have?

35.2.5.(2) What is the declet encoding of the BCD digits 987? Show the steps you used to derive your result.

35.2.6.(2) Decode the declet 1011001101 to BCD digits. Show the steps you used to derive your result.

35.2.7.(2) What type of long decimal floating-point special value is represented by these strings?

1. \textit{X'827C000000000000'}
2. \textit{X'7EF000498268A380'}
3. \textit{X'FB7388215142D357'}

35.2.8.(1) Write and assemble a test program to verify that the representation of the short decimal floating-point value 8765432 is as derived following Table 316.

35.2.9.(2) Convert the value 3.141593 to short and long decimal floating-point using the method shown following Table 316.

35.2.10.(2) Why is the low-order digit of a decimal floating-point value often the same as the low-order digit of its decimal value?

### 35.3. Decimal Floating-Point Constants

Decimal floating-point constants are generated by DC statements with types E, D, and L for short, long, and extended formats respectively. The type extension must be D:

- **ED** Short format decimal floating-point
  
<table>
<thead>
<tr>
<th>DC ED'123.4567'</th>
<th>7 digits</th>
</tr>
</thead>
<tbody>
<tr>
<td>2614D2E7</td>
<td></td>
</tr>
</tbody>
</table>

- **DD** Long format decimal floating-point
  
<table>
<thead>
<tr>
<th>DC DD'12345678.90123456'</th>
<th>16 digits</th>
</tr>
</thead>
<tbody>
<tr>
<td>261934B9C1E28E56</td>
<td></td>
</tr>
</tbody>
</table>

- **LD** Extended format decimal floating-point
  
<table>
<thead>
<tr>
<th>DC LD'123456789012345678901234'</th>
<th>34 digits</th>
</tr>
</thead>
<tbody>
<tr>
<td>2603534B9C1E28E5</td>
<td></td>
</tr>
</tbody>
</table>

These three statements generate the short, long, and extended decimal floating-point representations of 100:

- **DC ED'100'** Generates \textit{X'22500080'}
- **DC DD'100'** Generates \textit{X'2238000000000080'}
- **DC LD'100'** Generates \textit{X'22080000000000000000080'}

Because decimal floating-point values are not normalized, equivalent values (members of a cohort) can generate different constants. For example, each of these constants has numeric value 100;

- **DC ED'100.00'** Generates \textit{X'22304000'}
- **DC ED'100.0'** Generates \textit{X'22400400'}
- **DC ED'100'** Generates \textit{X'22500080'}
- **DC ED'1 EZ'** Generates \textit{X'22700001'}

but the generated constants depend on the number of significant digits in the nominal value: in the first three constants, the trailing zero digits are significant.

You can also generate constants with the four special values infinity, NaN, SNaN, and QNaN, as well as the three finite values Max, Min, and DMin. These are shown in Table 318.
Unlike binary floating-point, the only decimal floating-point special value that is not simply a short constant extended with zeros is the (Max) constant. (Compare these values with those in Table 269 on page 631.)

Decimal floating-point zeros do not have a unique representation, as illustrated in Table 319. This lack of uniqueness can have possibly unexpected effects in decimal floating-point arithmetic operations; some examples are given in Section 36.7.

Table 319. Examples of decimal floating-point short precision zeros

Unlike hexadecimal and binary floating-point zeros, decimal floating-point zeros can have a wide variety of representations.

### 35.3.1. Rounding-Mode Suffixes for Decimal Floating-Point Constants

In the absence of a specific rounding request, the Assembler rounds decimal floating-point constants to “nearest even”. For directed rounding, you can specify a rounding-mode suffix of the form $R_n$, where $n$ is one of the numbers 8 through 15; $R_n$ must given as a single token with no embedded blanks.

Table 320 lists the rounding-mode suffixes and their meanings.
We’ll discuss these various rounding options in more detail later.

In this short-precision example, the nominal value is rounded up:

\[
\begin{align*}
2614D2E7 & \quad DC \quad ED'123.4567' \quad \text{Default rounding} \\
2614D2E8 & \quad DC \quad ED'123.45678R10' \quad \text{Rounded to +infinity} \\
2614D2E8 & \quad DC \quad ED'123.45678R14' \quad \text{Rounded away from zero}
\end{align*}
\]

In this long-precision example, the nominal value is rounded down:

\[
\begin{align*}
261934B9C1E28E58 & \quad DC \quad DD'12345678.901234577' \quad \text{Default rounding} \\
261934B9C1E28E57 & \quad DC \quad DD'12345678.901234577R11' \quad \text{Rounded to -infinity}
\end{align*}
\]

In this extended-precision example, the nominal value is rounded toward zero (truncated):

\[
\begin{align*}
260353489C1E28E5 & \quad DC \quad LD'123456789012345.67890123456789012349' \quad \text{Default rounding} \\
6F3C127177823535 & \quad DC \quad LD'123456789012345.67890123456789012349R9' \quad \text{Rounded to 0}
\end{align*}
\]

35.3.2. Decimal Exponents and Modifiers

You can specify a decimal exponent as part of the nominal value, or an exponent modifier that applies to all the nominal values in the operand. Figure 436 shows some examples; the letters E, M, and B in the comments fields mean the constant has a decimal Exponent, an exponent Modifier, or Both. The “also” comments show different ways to generate the same constant. All the constants have value 100, so are members of the same cohort.

\[
\begin{align*}
\text{DC} & \quad \text{ED'}100000E-2' \quad E: \text{generates X}'22304000' \\
\text{DC} & \quad \text{EDE-2'}10000' \quad M: \text{generates X}'22304000' \quad \text{also.} \\
\text{DC} & \quad \text{ED'}1000E-1' \quad E: \text{generates X}'22400400' \\
\text{DC} & \quad \text{EDE-1'}1000' \quad M: \text{generates X}'22400400' \quad \text{also.} \\
\text{DC} & \quad \text{ED'}100' \quad \text{Generates X}'22500080' \\
\text{DC} & \quad \text{ED'}10E1' \quad E: \text{generates X}'22600010' \\
\text{DC} & \quad \text{ED'}l E2' \quad E: \text{generates X}'22700001' \\
\text{DC} & \quad \text{DEDE1'l E1'} \quad B: \text{generates X}'22700001' \quad \text{also,} \\
\text{DC} & \quad \text{DEDE-5'l E7'} \quad B: \text{generates X}'22700001' \quad \text{also, and} \\
\text{DC} & \quad \text{ED'.l E3'} \quad M: \text{generates X}'22700001' \quad \text{also.}
\end{align*}
\]

Figure 436. DFP constants with exponent modifiers and decimal exponents

The only other modifier allowed with decimal floating-point constants is Length, and it must be 4 for short precision values, 8 for long, or 16 for extended. The only effect is that the generated constants are not aligned on their respective “natural” boundaries: word, doubleword, and doubleword.

Exercises

35.3.1.(2)+ A four-byte area of memory contains the bit pattern X’4040405C’. What possibilities are represented by that pattern?

35.3.2.(3) Write three decimal floating-point constants that generate a value one “ulp” smaller than the (Max) constant in short, long, and extended representations.

35.3.3.(2) Write three decimal floating-point constants with numeric operands that generate a value equal to that generated by a (Max) operand.

35.3.4.(2)+ Hexadecimal and binary floating-point constants allow a variety of length modifiers. Why do decimal floating-point constants not allow length modifiers other than 4 (for short), 8 (for long), or 16 (for extended)?
35.3.5.(2) How many members are there in the cohort of +0 in a short decimal floating-point representation?

35.3.6.(2) How many members are there in the cohort of +0 in a long decimal floating-point representation?

35.3.7.(2) Assemble the following sixteen short DFP constants, and study the generated values, particularly the encoding of the significands. Which of the values are “NMin”, and which are “DMin”, having the minimum exponent?

- 10000000.E-95
- 1000000.E-95
- 100000.E-95
- 10000.E-95
- 1000.E-95
- 100.E-95
- 10.E-95
- 1.E-95
- .1E-95
- .01E-95
- .001E-95
- .0001E-95
- .00001E-95
- .000001E-95
- .0000001E-95
- .00000001E-95

35.4. Decimal Floating-Point Data Classes (*)

Like binary floating-point data types, decimal floating-point data occurs in six classes:

1. Zeros may have any exponent and either sign, and have a zero significand.223 ±0’s are distinct, but compare equal.
2. Subnormal numbers X lie in the range $D_{\text{min}} \leq |X| < N_{\text{min}}$
3. Normal values X lie in the range $N_{\text{min}} \leq |X| \leq N_{\text{max}}$
4. Infinity requires that the first five bits of the Combination Field be 11110. The contents of the Trailing Significand Field is ignored. Infinities are valid in decimal floating-point arithmetic operations.
5. Quiet NaNs require that the first five bits of the Combination Field be 11111, and that the next bit of the CF is 0.
6. Signaling NaNs require that the first five bits of the Combination Field be 11111, and that the next bit of the CF is 1.
   - Operations involving SNaNs usually cause and Invalid Operation exception, and may be masked off by setting mask bits in the Floating-Point Control Register (to be described in “ 34.4. Binary Floating-Point Exceptions, Interruptions, and Controls” on page 635).

Table 321 lists the three instructions used to test operands in the floating-point registers:

---

223 Binary floating-point zeros must have zero characteristic and zero significand. Hexadecimal floating-point true zeros have zero characteristic and zero fraction, but pseudo-zeros have a zero fraction and nonzero characteristic.
Table 321. Decimal floating-point Test Data Class instructions

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED50</td>
<td>TDCET</td>
<td>RXE</td>
<td>Test Data Class (Short)</td>
<td>ED54</td>
<td>TDCDT</td>
<td>RXE</td>
<td>Test Data Class (Long)</td>
</tr>
<tr>
<td>ED58</td>
<td>TDCXT</td>
<td>RXE</td>
<td>Test Data Class</td>
<td></td>
<td></td>
<td></td>
<td>(Extended)</td>
</tr>
</tbody>
</table>

The operands of these instructions have the format
\[ R_1, D_2(x_2, b_2) \]

where \( R_1 \) designates a FPR.

A bit pattern in the rightmost 12 bits of the Effective Address of the second operand address tests selected classes of the first operand; the remaining bits of the Effective Address are ignored. The instruction sets the CC to 1 if a bit in the Effective Address matches the operand’s data class, or to zero if not.

Table 322 shows the test bits; the bit numbering corresponds to a 64-bit Effective Address.

<table>
<thead>
<tr>
<th>Class</th>
<th>+ sign</th>
<th>– sign</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero</td>
<td>52</td>
<td>53</td>
</tr>
<tr>
<td>Subnormal</td>
<td>54</td>
<td>55</td>
</tr>
<tr>
<td>Normal</td>
<td>56</td>
<td>57</td>
</tr>
<tr>
<td>Infinity</td>
<td>58</td>
<td>59</td>
</tr>
<tr>
<td>QNaN</td>
<td>60</td>
<td>61</td>
</tr>
<tr>
<td>SNaN</td>
<td>62</td>
<td>63</td>
</tr>
</tbody>
</table>

| Note: The order of the test bits in the second operand's Effective Address of these decimal floating-point instructions is different from the order of the test bits in the corresponding binary floating-point instructions. (Compare Table 322 to Table 280 on page 641.) |

To illustrate, the Condition Code after each of these TDCET instructions in Figure 437 will be 1, because the bits in the Effective Address match the class of the data in FPR0.

```
LZER 0
c(FPR) = X’000000000001’, zero
TDCET 0, B’1100000000000000’
test for zero
LE 0, =ED’1 E’-100’
c(FPR) = X’00100001’, subnormal
TDCET 0, B’0011000000000000’
test for subnormal
LE 0, =ED’1’
c(FPR) = X’22500001’, normal
TDCET 0, B’0000110000000000’
test for normal
LE 0, =ED’(Inf)’
c(FPR) = X’78000000’, infinity
TDCET 0, B’0000000110000000’
test for infinity
LE 0, =ED’(QNaN)’
c(FPR) = X’7C000000’, QNaN
TDCET 0, B’0000000011000000’
test for QNaN
LE 0, =ED’(SNaN)’
c(FPR) = X’7E000000’, SNaN
TDCET 0, B’0000000000110000’
test for SNaN
```

Figure 437. Examples of decimal floating-point Test Data Class instructions

Table 323 shows another way to visualize the left-to-right order of the test bits and the tested classes:
Table 323. Test Data Class test-bit vs. tested-class correspondence

<table>
<thead>
<tr>
<th>Bits 0-51</th>
<th>52</th>
<th>53</th>
<th>54</th>
<th>55</th>
<th>56</th>
<th>57</th>
<th>58</th>
<th>59</th>
<th>60</th>
<th>61</th>
<th>62</th>
<th>63</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ignored</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0</td>
<td>-0</td>
<td>+Subnormal</td>
<td>-Subnormal</td>
<td>+Normal</td>
<td>-Normal</td>
<td>+Infinity</td>
<td>-Infinity</td>
<td>Inf</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Three related “Test Data Group” instructions are described in Section 35.12.7 on page 712.

Exercises

35.4.1.(2) Given a decimal floating-point operand in FPR0, which data classes will these instructions detect?

(a) TDCET 0,29
(b) TDCDT 0,4095
(c) TDCXT 0,15
(d) TDCDT 0,’X’ C00’

35.5. Decimal Floating-Point Operations: Rounding, Quanta, and Exceptions

Decimal floating-point operations offer rich choices of rounding options; we’ll describe them briefly. Because many instructions involve selecting the “quantum” of the final result, we’ll see some examples to clarify the concepts involved.

35.5.1. Rounding

Rounding a result requires choosing a “Permissible Value” among the possible values; it is usually one of the values allowed by the destination precision. (Infinity is not a permissible value.)

Suppose $Z$ is the infinitely precise result.

- If $Z$ is exactly representable, its value is always selected as the delivered result, independent of the rounding mode.
- Otherwise, the two adjacent values with same sign as $Z$ are candidates for the delivered result.

To illustrate, suppose $Z$ is the intermediate result of an operation, as sketched in Figure 438.

Let $Z_1$ and $Z_2$, or $Z_3$ and $Z_4$ be the nearest representable values to the infinitely precise value. If $Z$ is not representable, either $Z_1$ or $Z_2$ is chosen (if $Z$ is negative), or $Z_3$ or $Z_4$ is chosen (if $Z$ is positive). $Z_2$ or $Z_3$ can be zero.
Assuming $Z$ is not between $Z_2$ and $Z_3$, the standard rounding modes from $Z$ to one of the nearest candidate values are as follows:

- If $Z$ lies exactly halfway between the two candidates, a “tie” occurs: choose the candidate with an even low-order digit. ("Round to nearest even")
- If $Z$ lies exactly halfway between the two candidates, a “tie” occurs: choose the candidate with the larger magnitude. ($Z_1$ or $Z_4$) ("Round half-up")
- Choose the candidate toward $+\infty$ ($Z_2$ or $Z_4$) ("Round up")
- Choose the candidate toward $-\infty$ ($Z_1$ or $Z_3$) ("Round down")
- Choose the candidate closer to zero ($Z_2$ or $Z_3$) ("Round toward zero; Truncate")
- If $Z$ lies anywhere between the two candidates, choose the candidate with the larger magnitude ($Z_1$ or $Z_4$) ("Round away from zero")

If $Z$ is a very small number close to zero, there are two cases to consider:

![Figure 439. Illustration of decimal floating-point rounding candidates near zero]

- If $-D\text{Min} < Z < 0$, then
  - $-D\text{Min}$ is selected for for rounding toward $-\infty$ or for rounding away from zero
  - Otherwise, 0 is selected.
- If $0 < Z < +D\text{Min}$, then
  - $+D\text{Min}$ is selected for for rounding toward $+\infty$ or for rounding away from zero
  - Otherwise, 0 is selected.

These rounding modes are illustrated in Table 324:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Round to nearest, ties to even</td>
<td>12.34</td>
<td>12.34</td>
<td>12.35</td>
<td>12.36</td>
<td>-12.34</td>
</tr>
<tr>
<td>Round to nearest, ties away from zero</td>
<td>12.34</td>
<td>12.35</td>
<td>12.35</td>
<td>12.36</td>
<td>-12.35</td>
</tr>
<tr>
<td>Round toward $+\infty$</td>
<td>12.35</td>
<td>12.35</td>
<td>12.35</td>
<td>12.36</td>
<td>-12.34</td>
</tr>
<tr>
<td>Round toward $-\infty$</td>
<td>12.34</td>
<td>12.34</td>
<td>12.34</td>
<td>12.35</td>
<td>-12.35</td>
</tr>
<tr>
<td>Round toward zero (truncate)</td>
<td>12.34</td>
<td>12.34</td>
<td>12.34</td>
<td>12.35</td>
<td>-12.34</td>
</tr>
<tr>
<td>Round away from zero</td>
<td>12.35</td>
<td>12.35</td>
<td>12.35</td>
<td>12.36</td>
<td>-12.35</td>
</tr>
</tbody>
</table>

Table 324. Example of DFP rounding modes

We’ll see how to set a default “global” decimal floating-point rounding mode in Section 35.12 starting on page 704; one other rounding type ("Round to prepare for shorter precision") is described there.

### 35.5.2. Preferred Exponent and Quantum

When a decimal floating-point calculation generates a result, a choice must sometimes be made among several possible cohort members having the correct value. Using numbers with seven-digit maximum precision, suppose we add two numbers having the same exponent (and quantum):

\[
\begin{align*}
123.450 & +6.228 & 129.678 \\
123450.\times10^{-3} & 6228.\times10^{-3} & 129628.\times10^{-3}
\end{align*}
\]

Quantum = .001

the sum has the same exponent and quantum so long as greater precision isn’t needed for the significand.

Suppose the two numbers have different exponents/quantas:
In this case, the same result should have the same quantum as before, so we assign the smaller exponent/quantum of the two operands. This choice preserves all the significant digits.

It doesn’t matter if the low-order digit is zero; the smaller quantum is still chosen: this is the “preferred quantum” for exact results.

If the result is inexact, a different rule is needed. Using 7-digit precision, suppose we add:

The result will be inexact because it must be rounded to seven significant digits (the example uses rounding toward zero). Thus, the possible same-valued results with 7 digits are 129.6780 and 0129.678; these are two members of a cohort having quanta .0001 and .001 respectively. The smaller quantum is preferred, so the first value 129.6780 is delivered; it is the result with the greater precision.

A similar rule applies to multiplication: the exponent of the product is the sum of the two operand exponents, and the product quantum is the product of the two operand quanta. Assuming 7-digit precision,

For an exact result, the exponent is the sum of the two exponents, and the quantum is the product of the quanta of the two operands. Now, suppose we generate the inexact product of 11.001 and 22.002, and the exact result 242.242020 must be rounded:

Again assuming the result is truncated to 7 significant digits, we must choose one of two possible cohort members: 242.2420 (with quantum .0001) and 0242.242 (with quantum .001). As we saw for addition, the preferred quantum is the smaller, so the delivered result is 242.2420, with the greater precision.

Similar considerations apply to division. The exponent of the quotient is the exponent of the divisor subtracted from the exponent of the dividend, and the quantum of the quotient is the quantum of the dividend divided by the quantum of the divisor. Consider an exact result:

For this exact result, the preferred quantum is the quotient of the operand quanta, in this case .01+.1 = .1.

Now, consider an inexact result: the quotient of 10000.1 ÷ 2.0001 is 4999.8000099..., which must be rounded to seven significant digits:

Chapter IX: Floating-Point Data and Operations 683
The cohort containing the result has three members: 004999.8 (with quantum 0.1) 04999.80 (with quantum .01), and 4999.800 (with quantum .001). The chosen result is the last of these, with the smallest exponent and quantum, and the largest number of significant digits.

This example shows an inexact quotient with only one cohort member:

\[
\begin{align*}
10. & \ \times 10^{0} \ \text{Exponent} = 0, \ \text{Quantum} = 1 \\
+ & .03 \\
333.3333... & \ \text{Quantum} = .0001
\end{align*}
\]

where the infinitely-repeating result has been truncated to 7 digits. If the result had been exact, the quantum would have been 100; but for an inexact result, the cohort member (in this case, there’s only one!) with the smallest quantum is chosen.

These rules are summarized in Table 325.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Result</th>
<th>Preferred Quantum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add, Subtract</td>
<td>Exact</td>
<td>Smaller of the two source quanta, or the quantum closest to it</td>
</tr>
<tr>
<td></td>
<td>Inexact</td>
<td>Smallest quantum of result’s cohort members</td>
</tr>
<tr>
<td>Multiply</td>
<td>Exact</td>
<td>Product of the two source quanta</td>
</tr>
<tr>
<td></td>
<td>Inexact</td>
<td>Smallest quantum of result’s cohort members</td>
</tr>
<tr>
<td>Divide</td>
<td>Exact</td>
<td>Quotient of the two source quanta</td>
</tr>
<tr>
<td></td>
<td>Inexact</td>
<td>Smallest quantum of result’s cohort members</td>
</tr>
</tbody>
</table>

Table 325. Preferred quanta for some decimal floating-point operations

These examples help show that the exponent and quantum chosen for a delivered result generally retain the maximum number of significant digits. Low-order digits are preserved until the number of significant digits exceeds the precision $p$ of the representation. Thus, values are right-normalized so long as the number of significant digits is less than $p$, and left-normalized when the number is greater than $p$.

We might characterize the treatment of preferred exponent and quantum$^{224}$ this way:

<table>
<thead>
<tr>
<th>Preferred Exponent and Quantum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decimal floating-point arithmetic tries to give the best available fixed-point result unless it can’t, and then it gives you the most precise available rounded floating-point result.</td>
</tr>
</tbody>
</table>

### 35.5.3. DFP Exceptions

In addition to the exceptions described in Section 34.4 starting on page 635, the quantum exception is provided for decimal floating-point. This exception condition is caused when a result has a different quantum from the preferred quantum. This is rarely a concern to most programs.

There are two decimal floating-point “q” bits defined in the Floating-Point Control Register, shown in Figure 440. (The decimal floating-point rounding mode bits are described in Section 35.12.)

$^{224}$ Rather than the term “preferred quantum”, the IEEE-754 standard uses “preferred exponent” instead:

For all computational operations except quantize and roundToIntegralExact, if the result is inexact the cohort member of least possible exponent is used to get the maximum number of significant digits. If the result is exact, the cohort member is selected based on the preferred exponent for a result of that operation, a function of the exponents of the inputs. Thus, for finite $x$, depending on the representation of zero, $0 \times x$ might result in a different member of $x$’s cohort. If the result’s cohort does not include a member with the preferred exponent, the member with the exponent closest to the preferred exponent is used.
Bit	Meaning
q (bit 5) | Quantum exception

In addition to the Data Exception Code values listed Table 271 on page 637, there are two further codes that might be placed in the DXC when you execute a DFP instruction:

<table>
<thead>
<tr>
<th>DXC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>03</td>
<td>a DFP instruction is attempting to execute on a CPU where DFP instructions are available, but are not enabled.</td>
</tr>
<tr>
<td>04</td>
<td>a DFP instruction has delivered a result with a quantum that is different from the preferred quantum.</td>
</tr>
</tbody>
</table>

Table 326. Decimal floating-point additional DXC value

The CPU’s behavior for a quantum exception is shown in Table 327:

<table>
<thead>
<tr>
<th>Mask bit = 1</th>
<th>Mask bit = 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>An interruption occurs: the DXC is set to (04'), and the quantum of the result is set to the quantum closest to the preferred quantum.</td>
<td>The result is the cohort member with quantum closest to the preferred quantum. The (q) flag bit is set to 1.</td>
</tr>
</tbody>
</table>

Table 327. Decimal floating-point quantum exception

In other words, the delivered result is the same whether or not you enable an exception.

The other exceptions generated by decimal floating-point operations are the same as those for binary floating-point described in Section 34.4.3 on page 638, and the other mask and flag bits in the first and second bytes are as described in Section 34.4 on page 635.

### 35.4.4. Overflow/Underflow Scale Factors (‘)

When exponent overflow and underflow exceptions are enabled, the exponent of the delivered result is scaled by adding or subtracting a factor that causes the exponent to lie near the middle of the exponent range for that representation. These scale factors are shown in Table 328.

<table>
<thead>
<tr>
<th>Long</th>
<th>Extended</th>
</tr>
</thead>
<tbody>
<tr>
<td>576</td>
<td>9216</td>
</tr>
</tbody>
</table>

Table 328. Decimal floating-point scale factors for exponent spills

For overflows, the scale factor is subtracted from the overflowed exponent, and for underflows it is added to the underflowed exponent.

### Exercises

35.5.1.(2) Does the choice of the smallest quantum for an inexact result mean that the significand is left-normalized?
35.5.2.(1) What will happen if you attempt to execute a DFP instruction on a CPU where DFP instructions are not available?

35.6. Decimal Floating-Point Data Movement Instructions

These instructions were described in Section 31.9 starting on page 555, and are mentioned here because they can be used for decimal floating-point operands. They have no dependence on any floating-point representation, and the CC is not changed.

35.6.1. Copy Sign

The CPSDR instruction copies the long second operand to the first operand register, giving it the sign of the third operand.

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>B372</td>
<td>CPSDR</td>
<td>RRF</td>
<td>Copy Sign (Long)</td>
</tr>
</tbody>
</table>

Table 329. Copy Sign instruction

The instruction format is

\[ \text{CPSDR } R_1, R_3, R_2 \]

so you could write

\[ \text{CPSDR } 1,5,8 \quad \text{Copy FPR8 to FPR1 with FPR5's sign} \]

35.6.2. Copy between General and Floating-Point Registers

The LDGR and LGDR instructions copy long operands between a GPR and a FPR.

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3C1</td>
<td>LDGR</td>
<td>RXY</td>
<td>Load FPR from GPR (Long)</td>
</tr>
<tr>
<td>B3CD</td>
<td>LGDR</td>
<td>RXY</td>
<td>Load GPR from FPR (Long)</td>
</tr>
</tbody>
</table>

Table 330. Instructions moving data between FPRs and GPRs

Their instruction format is

\[ \text{mnemonic } R_1, R_2 \]

To copy the contents of GG3 to FPR6, and from FPR2 to GG0, you could write

\[ \text{LDGR } 6,3 \quad \text{Copy c(GG3) to FPR6} \]
\[ \text{LGDR } 0,2 \quad \text{Copy c(FPR2) to GG0} \]

35.6.3. Copy Among Floating-Point Registers

Table 331 lists the instructions for moving floating-point operands among the floating-point registers. (They were introduced in System/360 for moving hexadecimal floating-point operands, but can just as well be used for binary and decimal operands.)

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>LER</td>
<td>RR</td>
<td>Load FPR from FPR (Short)</td>
</tr>
<tr>
<td>28</td>
<td>LDR</td>
<td>RR</td>
<td>Load FPR from FPR (Long)</td>
</tr>
<tr>
<td>B365</td>
<td>LXR</td>
<td>RRE</td>
<td>Load FPR from FPR (Extended)</td>
</tr>
</tbody>
</table>

Table 331. Instructions copying data between FPRs

For example:
LER 5,8 Copy short c(FPR8) to FPR5
LDR 4,2 Copy long c(FPR4) to FPR2
LXR 1,12 Copy extended c(FPR12,FPR14) to (FPR1,FPR3)

Always remember that both operands of the LXR instruction must refer to valid FPR pairs.

Exercises

35.6.1.(1) What is the difference between these instructions?

\[
\begin{align*}
\text{LDR} & \quad 8,1 \\
\text{LDR} & \quad 10,3 \\
\text{LXR} & \quad 8,1
\end{align*}
\]

35.7. Decimal Floating-Point Arithmetic Instructions

We’ll start with the basic arithmetic operations: multiplication, division, addition, and subtraction; the instructions are listed in Table 332. All the operations are rounded according to the current rounding mode in the FPCR.

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3D0</td>
<td>MDTR</td>
<td>RRR</td>
<td>Multiply (Long)</td>
<td>B3D8</td>
<td>MXTR</td>
<td>RRR</td>
<td>Multiply (Extended)</td>
</tr>
<tr>
<td>B3D0</td>
<td>MDTRA</td>
<td>RRR</td>
<td>Multiply (Long)</td>
<td>B3D8</td>
<td>MXTRA</td>
<td>RRR</td>
<td>Multiply (Extended)</td>
</tr>
<tr>
<td>B3D1</td>
<td>DDTR</td>
<td>RRR</td>
<td>Divide (Long)</td>
<td>B3D9</td>
<td>DXTR</td>
<td>RRR</td>
<td>Divide (Extended)</td>
</tr>
<tr>
<td>B3D1</td>
<td>DDTRA</td>
<td>RRR</td>
<td>Divide (Long)</td>
<td>B3D9</td>
<td>DXTRA</td>
<td>RRR</td>
<td>Divide (Extended)</td>
</tr>
<tr>
<td>B3D2</td>
<td>ADTR</td>
<td>RRR</td>
<td>Add (Long)</td>
<td>B3DA</td>
<td>AXTR</td>
<td>RRR</td>
<td>Add (Extended)</td>
</tr>
<tr>
<td>B3D2</td>
<td>ADTRA</td>
<td>RRR</td>
<td>Add (Long)</td>
<td>B3DA</td>
<td>AXTRA</td>
<td>RRR</td>
<td>Add (Extended)</td>
</tr>
<tr>
<td>B3D3</td>
<td>SDTR</td>
<td>RRR</td>
<td>Subtract (Long)</td>
<td>B3DB</td>
<td>SXDR</td>
<td>RRR</td>
<td>Subtract (Extended)</td>
</tr>
<tr>
<td>B3D3</td>
<td>SDTRA</td>
<td>RRR</td>
<td>Subtract (Long)</td>
<td>B3DB</td>
<td>SXDRA</td>
<td>RRR</td>
<td>Subtract (Extended)</td>
</tr>
</tbody>
</table>

Table 332. Decimal floating-point basic arithmetic instructions

All decimal floating-point arithmetic instructions are register-register operations, unlike some hexadecimal and binary floating-point instructions that support register-storage operations. All can be “non-destructive” because neither source operand need be overwritten by the result.

The format of the instructions without an “A” suffix on the mnemonics is shown in Table 333:

<table>
<thead>
<tr>
<th>opcode</th>
<th>R3</th>
<th>R1</th>
<th>R2</th>
</tr>
</thead>
</table>

Table 333. Format of DFP arithmetic instructions

Their assembler instruction statements have operand format

\[ \text{mnemonic} \ R_1, R_2, R_3 \]

where the two source operands are in floating-point registers \( R_2 \) and \( R_3 \), and the result is placed in floating-point register \( R_1 \).

The operands must all be long or all extended precision; there are no arithmetic operations for short-precision or mixed-length operands.

The format of the instructions with an “A” suffix on the mnemonics is shown in Table 334:
Table 334. Format of DFP arithmetic instructions with rounding mask

<table>
<thead>
<tr>
<th>opcode</th>
<th>R3</th>
<th>M4</th>
<th>R1</th>
<th>R2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Their assembler instruction statements have operand format

`mnemonic R1, M4, R2, R3`

Again, the two source operands are in floating-point registers R2 and R3, and the result is placed in floating-point register R1. The rounding mask M4 applies only to the current instruction, and has the values and effects shown in Table 335:

<table>
<thead>
<tr>
<th>Mask</th>
<th>Effect</th>
<th>Mask</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>B’0000’</td>
<td>Use current DFP rounding mode</td>
<td>B’1000’</td>
<td>Round to nearest with ties to even</td>
</tr>
<tr>
<td>B’0001’</td>
<td>Round to nearest with ties away from 0 (“traditional” round)</td>
<td>B’1001’</td>
<td>Round toward 0</td>
</tr>
<tr>
<td>B’0010’</td>
<td>Use current DFP rounding mode</td>
<td>B’1010’</td>
<td>Round toward +∞</td>
</tr>
<tr>
<td>B’0011’</td>
<td>Round to prepare for shorter precision</td>
<td>B’1011’</td>
<td>Round toward −∞</td>
</tr>
<tr>
<td>B’0100’</td>
<td>Round to nearest with ties to even</td>
<td>B’1100’</td>
<td>Round to nearest with ties away from 0</td>
</tr>
<tr>
<td>B’0101’</td>
<td>Round toward 0</td>
<td>B’1101’</td>
<td>Round to nearest with ties toward 0</td>
</tr>
<tr>
<td>B’0110’</td>
<td>Round toward +∞</td>
<td>B’1110’</td>
<td>Round away from 0</td>
</tr>
<tr>
<td>B’0111’</td>
<td>Round toward −∞</td>
<td>B’1111’</td>
<td>Round to prepare for shorter precision</td>
</tr>
</tbody>
</table>

Table 335. Instruction-specific rounding mask values

The mnemonics with the “A” suffix have the same opcodes as the instructions without a suffix. The new mnemonics were introduced so the Assembler can correctly identify the four operands.

### 35.7.1. Multiplication

The decimal floating-point multiply instructions leave the Condition Code unchanged. You can think of the operation this way:

```
operand1 ← operand2 × operand3
```

The exponent of the product is the sum of the exponents of the two operands.

Unlike hexadecimal and binary floating-point multiplication, there are no instructions to form “double-length” products from “single-length” operands; results have the same format as the operands. For example:

```
LD 4,=DD’75.22’
MDTR 1,4,4 c(FPR1) = c(FPR4)**2

LD 0,=LD’0.1’ High-order half to FPR0
LD 2,=LD’0.1’+8 Low-order half to FPR2
MXTR 8,0,0 c(FPR8,FPR10) = c(FPR0,FPR2)**2

LD 8,=DD’1.41421’
MDTR 2,4,8 c(FPR2)=75.22*1.41421
```

For finite results, the quantum of the product is chosen as shown in Table 325.
If underflow or overflow occur, the appropriate exception is signaled; if enabled, the rounded result is delivered to the target register and an interruption occurs. Otherwise, the exponent is scaled and the corresponding flag bit in the FPCR is set to 1.

If either operand is a QNaN, that QNaN is the delivered result; if both are QNaNs, the \( R_2 \) operand is the result. Any SNaN operand, or multiplying zero and infinity, causes an invalid-operation exception.

To illustrate exponent scaling on overflow, suppose we multiply \( N_{\text{max}} \) by itself, with the interruption enabled for exponent overflow:

\[
\begin{align*}
\text{LD} & \; 0,=\text{DD}'(\text{Max})' \\
\text{c(FPR0)} & = X'77\text{FCFF3FCFF3FCFF}'
\end{align*}
\]

\[
\begin{align*}
\text{MDTR} & \; 2,0,0 \\
c(FPR2) & = X'7500\text{FF3FCFF3FCFE}'
\end{align*}
\]

The overflowed exponent (384+384=768) is scaled by subtracting 576 (from Table 328 on page 685), giving a scaled exponent 192, which happens to be exactly half the maximum exponent, 384. The scaled result is now in “mid-range”.

### 35.7.2. Division

The decimal floating-point divide instructions leave the Condition Code unchanged, and no remainder—integer or fraction—is calculated. The second operand (the dividend) is divided by the third operand (the divisor). The quotient is rounded according to the current DFP rounding mode, and replaces the first operand. You can think of the operation this way:

\[
\text{operand1} \leftarrow \text{operand2} \div \text{operand3}
\]

The exponent of the quotient is the exponent of the divisor subtracted from the exponent of the dividend. For example:

\[
\begin{align*}
\text{LD} & \; 0,=\text{DD}'1' \\
c(FPR0) & = 1 \; = X'2238000000000001'
\end{align*}
\]

\[
\begin{align*}
\text{LD} & \; 1,=\text{DD}'3' \\
c(FPR1) & = 3 \; = X'2238000000000003'
\end{align*}
\]

\[
\begin{align*}
\text{DDTR} & \; 2,0,1 \\
c(FPR2) & = 1/3 \; = X'2\text{DF9B36CD}B3\text{6CD}B3'
\end{align*}
\]

For finite results, the quantum of the quotient is chosen as shown in Table 325.

If underflow or overflow occur, the appropriate exception is signaled; if enabled, the rounded result is delivered to the target register and an interruption occurs. Otherwise, the exponent is scaled and the corresponding flag bit in the FPCR is set to 1.

Dividing a finite number by infinity returns a zero quotient, and dividing a finite number by zero causes a divide-by-zero exception (which if masked off, returns infinity as the quotient).

Dividing zero by zero or infinity by infinity, or any SNaN operand, causes an invalid-operation exception. A SNaN operand is returned, unless both are SNaNs in which case the dividend SNaN is delivered. A QNaN divisor returns a canonical QNaN.

### 35.7.3. Addition and Subtraction

You can think of these operations this way:

\[
\text{operand1} \leftarrow \text{operand2} \pm \text{operand3}
\]

The results from addition and subtraction depend on whether or not the result is exact. We’ll illustrate using 7-digit operands:

- If the result is exact, the preferred quantum is the smaller of the quanta of the two source operands, or (if the smaller can’t be represented) the quantum closest to the smaller.

For example, this sum produces an exact result:

\[
\begin{align*}
1.234 & \; \text{Quantum} = .001 \\
+ .34567 & \; \text{Quantum} = .00001 \\
1.57967 & \; \text{Quantum} = .00001
\end{align*}
\]
and the result has the smaller quantum. In this example, the result is exact but the smaller quantum can’t be assigned:

\[
\begin{align*}
1.234000 & \quad \text{Quantum} = .000001 = 10^{-6} \\
+.3456700 & \quad \text{Quantum} = .0000001 = 10^{-7} \\
1.5796700 & \quad \text{Quantum} = .0000001 ?
\end{align*}
\]

In this case there are two cohort members with the same value: 1.579670 and 01.57967, with quanta \(10^{-6}\) and \(10^{-5}\) respectively. The quantum closest to the preferred value (\(10^{-7}\)) is \(10^{-6}\), so the delivered result is 1.579670.

- If the result is inexact, the preferred quantum is the smallest of the quanta of the result’s cohort members.

For example, this sum produces an inexact result:

\[
\begin{align*}
1.234321 & \quad \text{Quantum} = .000001 \\
+.3454321 & \quad \text{Quantum} = .0000001 \\
1.579753 & \quad \text{Quantum} = .000001
\end{align*}
\]

and the (rounded) sum has the smaller quantum.

There may be more than one member of the cohort containing the result. For example:

\[
\begin{align*}
1.111201 & \quad \text{Quantum} = .000001 \\
-.1111009 & \quad \text{Quantum} = .0000001 \\
1.000100 & \quad \text{Quantum} = .000001
\end{align*}
\]

where the rounded result has discarded the low-order one. There are three cohort members: 1.000100, 01.00010, and 001.0001; the first has the smallest quantum and greatest number of significant digits among these cohort members.

These rules preserve as many low-order digits as possible.

Adding a finite number to infinity produces infinity, as does adding like-signed infinities. Adding infinities of opposite signs causes an invalid-operation exception. If the exception is masked off a default QNaN is delivered and the CC is set to 3.

Any SNaN operand delivers a SNaN result, and the CC is set to 3. QNaNs generate an invalid-operation exception; if masked off, the CC is set to 3.

For example:

\[
\begin{align*}
\text{LD 0,}=DD'1' & \quad \text{c(FPR0)} = 1 \\
\text{LD 4,}=DD'(Inf)' & \quad \text{c(FPR4)} = +infinity \\
\text{ADTR 2,0,0} & \quad \text{c(FPR2)} = 2, \text{CC}=2 \\
\text{ADTR 2,0,4} & \quad \text{c(FPR2)} = +infinity, \text{CC}=2 \\
\text{SDTR 2,0,4} & \quad \text{c(FPR2)} = -infinity, \text{CC}=1 \\
\text{SDTR 2,4,4} & \quad \text{Invalid-operation exception}
\end{align*}
\]

Table 336 shows how the decimal floating-point add and subtract instructions set the Condition Code:

<table>
<thead>
<tr>
<th>CC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Result is zero</td>
</tr>
<tr>
<td>1</td>
<td>Result is less than zero</td>
</tr>
<tr>
<td>2</td>
<td>Result is greater than zero</td>
</tr>
<tr>
<td>3</td>
<td>Result is a NaN</td>
</tr>
</tbody>
</table>

Table 336. CC settings for Add/Subtract instructions
Exercises

35.7.1.(2) Assuming the same initial contents of FPR0 and FPR2 in each case, what result of each of these operations will be in FPR4?

\[
\begin{align*}
LD & 0,=DD'-1' \\
LD & 2,=DD'-(Inf)'
\end{align*}
\]

(a) DDTR 4,0,2
(b) DDTR 4,2,0
(c) MDTR 4,2,0
(d) SDTR 4,0,2

35.8. Decimal Floating-Point Compare Instructions

We’ll look at three groups of decimal floating-point compare instructions:

- arithmetic compare
- compare and signal
- compare biased exponent (characteristic)

All have operand format R₁,R₂. The first operand is compared to the second, and the CC is set to indicate the result, as shown in Table 337. All these compare instructions set the Condition Code in the same way.

<table>
<thead>
<tr>
<th>CC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Operands are equal</td>
</tr>
<tr>
<td>1</td>
<td>First operand is low</td>
</tr>
<tr>
<td>2</td>
<td>First operand is high</td>
</tr>
<tr>
<td>3</td>
<td>Operands are unordered</td>
</tr>
</tbody>
</table>

Table 337. CC settings for Compare instructions

35.8.1. Compare

These two instructions work just like other arithmetic comparisons, except that the presence of any QNaN sets the CC to 3. If either operand is a SNaN, an invalid operation exception occurs; if it is masked off, the CC is set to 3.

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3E4</td>
<td>CDTR</td>
<td>RRE</td>
<td>Compare (Long)</td>
<td>B3EC</td>
<td>CXTR</td>
<td>RRE</td>
<td>Compare (Extended)</td>
</tr>
</tbody>
</table>

Table 338. Decimal floating-point Compare instructions

For example, these comparisons set the CC as indicated in the comments:
35.8.2. Compare and Signal

The two Compare and Signal instructions behave just like the ordinary compare instructions, except that any NaN, Quiet or Signaling, causes an invalid operation exception. Again, if the exception is masked off, the CC is set to 3.

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3E0</td>
<td>KDTR</td>
<td>RRE</td>
<td>Compare and Signal</td>
<td>B3E8</td>
<td>KXTR</td>
<td>RRE</td>
<td>Compare and Signal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Long)</td>
<td></td>
<td></td>
<td></td>
<td>(Extended)</td>
<td></td>
</tr>
</tbody>
</table>

Table 339. Decimal floating-point Compare and Signal instructions

These comparisons set the CC as indicated in the comments:

LD 0,=DD'(Inf)' c(FPR0) = +Infinity
LD 1,=DD'(QNaN)' c(FPR1) = +QNaN
LD 2,=DD'2' c(FPR0) = +2
LD 3,=DD'(SNaN)' c(FPR0) = +S NaN

* KDTR 0,2 CC = 2 (+Infinity > +2)
KDTR 0,1 Invalid operation exception
KDTR 2,0 CC = 1 (+2 < +Infinity)
KDTR 2,2 CC = 0
KDTR 2,3 Invalid operation exception

The main reason to use the Compare and Signal instructions is to avoid the propagation of NaNs through a computation, perhaps to stop before useless results have been generated.

35.8.3. Compare Biased Exponent

It is sometimes useful to compare the characteristics of two decimal floating-point operands using the instructions in Table 340.

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3F4</td>
<td>CEDTR</td>
<td>RRE</td>
<td>Compare Biased Exponent</td>
<td>B3FC</td>
<td>CEXTR</td>
<td>RRE</td>
<td>Compare Biased Exponent</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Long)</td>
<td></td>
<td></td>
<td></td>
<td>(Extended)</td>
<td></td>
</tr>
</tbody>
</table>

Table 340. Decimal floating-point Compare Biased Exponent instructions

These instructions compare the biased exponent (characteristic) of the operands, including infinity and any type of NaN. Table 341 shows the Condition Code setting:

<table>
<thead>
<tr>
<th>CC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Characteristics equal</td>
</tr>
<tr>
<td>1</td>
<td>First-operand characteristic is low</td>
</tr>
<tr>
<td>2</td>
<td>First-operand characteristic is high</td>
</tr>
<tr>
<td>3</td>
<td>Operands are unordered</td>
</tr>
</tbody>
</table>

Table 341. CC settings for Compare Biased Exponent instructions
The CC is set to 1 or 2 only if both operands are finite; otherwise, comparing the characteristic of any infinity to another, or of any NaN to another, sets the CC to zero. Other combinations of operands set the CC to 3.

These examples show some biased exponent comparisons:

```
LD 0,=DD('Inf') c(FPRO) = +Infinity
LD 1,=DD('QNaN') c(FPR1) = +QNaN
LD 2,=DD'2 c(FPRO) = +2
LD 3,=DD'2E75 c(FPRO) = +2*(10**75)
```

- CEDTR 0,2 CC = 3 (Finite vs. Infinity)
- CEDTR 1,1 CC = 0 (NaN vs. NaN)
- CEDTR 2,1 CC = 3 (Finite vs. NaN)
- CEDTR 2,3 CC = 1 (2 vs. 2*(10**75))
- CEDTR 0,0 CC = 0 (Infinity vs. Infinity)

**Exercises**

35.8.1.(1) Make a table showing the CC settings after comparing the biased exponents (characteristics) of a finite value, a NaN, and an infinity among one another.

### 35.9. Converting Decimal Floating-Point To and From Fixed Binary

The instructions in Table 342 convert fixed-point binary integers in a general register to and from a decimal floating-point value in a floating-point register.

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3F1</td>
<td>CDGTR</td>
<td>RRE</td>
<td>Convert from Fixed (Long←64)</td>
<td>B3F1</td>
<td>CDGTRA RRE</td>
<td>Convert from Fixed (Long←64)</td>
<td></td>
</tr>
<tr>
<td>B3F9</td>
<td>CXGTR</td>
<td>RRE</td>
<td>Convert from Fixed (Extended←64)</td>
<td>B3F9</td>
<td>CXGTRA RRE</td>
<td>Convert from Fixed (Extended←64)</td>
<td></td>
</tr>
<tr>
<td>B3E1</td>
<td>CGDTR</td>
<td>RRF</td>
<td>Convert to Fixed (64←Long)</td>
<td>B3E1</td>
<td>CGDTRA RRF</td>
<td>Convert to Fixed (64←Long)</td>
<td></td>
</tr>
<tr>
<td>B3E9</td>
<td>CGXTR</td>
<td>RRF</td>
<td>Convert to Fixed (64←Extended)</td>
<td>B3E9</td>
<td>CGXTRA RRF</td>
<td>Convert to Fixed (64←Extended)</td>
<td></td>
</tr>
</tbody>
</table>

Table 342. Decimal floating-point convert to/from fixed binary instructions

### 35.9.1. Convert From Fixed Binary to DFP

These four instructions convert a 64-bit binary integer in the R₂ general register to a long or extended decimal floating-point value in the R₁ floating-point register, and the Condition Code is unchanged. For the instructions without an “A” suffix, the instruction format is

```
mnemonic R₁,R₂
```

For the instructions with an “A” suffix, the instruction format is

```
mnemonic R₁,M₃,R₂,M₄
```

The values of the M₃ rounding mask are shown in Table 335 on page 688, and the M₄ mask has bit settings to optionally suppress certain exception conditions.

The preferred quantum for an exact result is 1; for an inexact result, an exception might be indicated, and the preferred quantum is the smallest.

To illustrate, suppose we convert three binary values containing 17 decimal digits to long decimal floating-point, with default rounding:
In the first case, the result is exact because the final decimal digit is zero. The second case is rounded to the same value because the DFP value lies exactly between two decimal values so the result has an even low-order digit, and the third is rounded up to the next higher value.

Converting very large binary values does not cause overflow:

\[
\text{LG } 0,=\text{FD}'12345678901234565' \quad \text{17 digits}
\]
\[
\text{CDGTR } 0,0 \quad c(FPR0)=X'263D3489C1E28E56' 
\]

but because \(2^{63}-1\) is 19 digits long, the decimal floating-point result was rounded to 16 decimal digits.

### 35.9.2. Convert From DFP To Fixed Binary

The instructions that convert from decimal floating-point to binary integers whose mnemonics have no suffix have the format shown in Table 343:

<table>
<thead>
<tr>
<th>opcode</th>
<th>M3</th>
<th>R1</th>
<th>R2</th>
</tr>
</thead>
</table>

Table 343. Format of Convert to Fixed Binary instructions

The assembler instruction statement format is

\[
\text{mnemonic } R1,M3,R2 
\]

For the instructions with a suffix A, the instruction format is shown in Table 344:

<table>
<thead>
<tr>
<th>opcode</th>
<th>M3</th>
<th>M4</th>
<th>R1</th>
<th>R2</th>
</tr>
</thead>
</table>

Table 344. Format of Convert to Fixed Binary instructions

Their assembler instruction statement format is

\[
\text{mnemonic } R1,M3,R2,M4 
\]

As noted above, the M4 field can be used to mask certain exception conditions.

The decimal floating-point operand in the R2 floating-point register is rounded to a binary integer in the R1 general register according to the M3 rounding modifier described in Table 335 on page 688.

Figure 441 shows some examples of proper conversions; those with CGXTR instructions use 16-byte extended-precision values that can hold all the digits of the full 19-digit maximum-integer value.
Figure 441. Examples of converting decimal floating-point to fixed binary

In each case, the Condition Code is set according to the result, as shown in Table 345:

<table>
<thead>
<tr>
<th>CC</th>
<th>Meaning</th>
<th>LFPC =F0’ Mask off all exceptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Source was zero</td>
<td>2**63 = +MaxPos</td>
</tr>
<tr>
<td>1</td>
<td>Source was less than zero</td>
<td>2**63 = +MaxPos</td>
</tr>
<tr>
<td>2</td>
<td>Source was greater than zero</td>
<td>2**63 = +MaxPos</td>
</tr>
<tr>
<td>3</td>
<td>Special case</td>
<td>2**63 = +MaxPos</td>
</tr>
</tbody>
</table>

Table 345. CC settings for Convert to Fixed instructions

Cases where the decimal floating-point value exceeds the representable range of a 64-bit binary integer are handled either by causing an invalid operation exception, or (if the exception is masked off) by setting the CC to 3 and the result to the maximum positive or negative integer, according to the sign of the decimal floating-point operand.

The following CGXTR instructions each cause an invalid operation exception, but because the exception is masked off the CC is set to 3 and the results are the default maximum and minimum integer values.

Figure 442. Examples of converting decimal floating-point to binary integer

Exercises

35.9.1.(3)+ Suppose two extended precision decimal floating-point numbers have the value of the 64-bit maximum positive integer plus 1/2 and the maximum negative integer minus 1/2:

LD 0,=DD’127’
CGDTR 0,B0000’,0   C(GGO)=X’000000000000007F’
LD 0,=DD’-3’
CGDTR 0,B0000’,0   C(GGO)=X’000000000000007D’
LD 0,=LD’9223372036854775807’ 2**63-1 = +MaxPos
LD 2,=LD’9223372036854775807’+8 2**63-1 = +MaxPos
CGXTR 0,B0000’,0   C(GGO)=X’7FFFFFFFFFFFFF’
LD 0,=LD’-9223372036854775808’ -2**63 = -MaxNeg
LD 2,=LD’-922372036854775808’+8 -2**63 = -MaxNeg
CGXTR 0,B0000’,0   C(GGO)=X’0000000000000000’

For what values of the rounding modifier mask fields Mp and Mn will an invalid operation exception be avoided?
35.10. Converting Decimal Floating-Point To/From Packed and Zoned Decimal

As you might expect, converting decimal floating-point data to displayable decimal digits is far simpler than for hexadecimal and binary floating-point data. These instructions make the process quite simple. None of the instructions change the Condition Code.

The packed decimal operands are in general registers, not in memory.

35.10.1. Convert To/From Signed Packed Decimal

For signed packed decimal operands, use the instructions in Table 346:

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3F3</td>
<td>CDSTR</td>
<td>RRE</td>
<td>Convert from 64-bit Signed Packed (Long)</td>
<td>B3FB</td>
<td>CXSTR</td>
<td>RRE</td>
<td>Convert from 128-bit Signed Packed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Extended)</td>
</tr>
<tr>
<td>B3E3</td>
<td>CSDTR</td>
<td>RRF</td>
<td>Convert to 64-bit Signed Packed (Long)</td>
<td>B3EB</td>
<td>CSXTR</td>
<td>RRF</td>
<td>Convert to 128-bit Signed Packed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Extended)</td>
</tr>
</tbody>
</table>

Table 346. Decimal floating-point convert to/from signed packed decimal instructions

When converting from packed decimal to decimal floating-point you don’t need to worry about rounding, because 15-digit and 31-digit packed decimal operands in a general register or general register pair (respectively) can be represented exactly in long and extended formats.

When you convert to packed decimal from decimal floating-point using the CSDTR and CSXTR instructions, you might want to select the sign code. The instruction format in Table 347 provides an M₄ field to select the sign code:

<table>
<thead>
<tr>
<th>opcode</th>
<th>M₄</th>
<th>R₁</th>
<th>R₂</th>
</tr>
</thead>
</table>

Table 347. Format of Convert to Signed Packed instructions

The M₄ mask uses only a single bit. If M₄=0, the sign code of the packed decimal result is X’C’, and if M₄=1, the sign code is X’F’. ²²⁵

The machine instruction statement operands for converting to packed decimal are written

```
mnemonic R₁,R₂,M₄
```

and those for converting from packed decimal are written

```
mnemonic R₁,R₂
```

First, consider converting from signed packed decimal to decimal floating-point:

```
LG 7,=PL8‘123456789012345’
CDSTR 4,7
 c(GG7)=X’123456789012345C’
 c(FPR4)=X’12238A395BCF049C5’

LG 8,=X’1234567890123456’
LG 9,=X’789012345678901C’
CXSTR 0,8
 Convert to extended DFP
 c(FPR0,FPR2)=X’22080014D2E7078A 395BCF049C5DE08D’
```

Figure 443. Converting signed packed decimal to decimal floating-point

As this example indicates, both operands of the CXSTR instruction must be register pairs.

²²⁵ Since M₄ is only a single bit, it’s not really a “mask”; the other bit positions are reserved.

696 Assembler Language Programming for IBM z System™ Servers Version 1.00
Converting from packed decimal to decimal floating-point is straightforward. Converting in the other direction, however, is a bit more complex. First, we’ll start with the decimal floating-point values in Figure 443, and convert them to signed packed decimal.

```
LD 4,=X’2238A395BCF049C5’ c(FPR4)=DD’123456789012345’
CSDTR 7,4,B’0000’ c(GG7)=X’123456789012345C’
LD 0,=X’22080014D2E7078A’ High-order half
LD 2,=X’395BCF049C5DE08D’ Low-order half
CXSTR 8,0,B’0000’ Convert to packed decimal
* c(GG8,GG9)=X’1234567890123456 789012345678901C’
```

Figure 444. Converting decimal floating-point to signed packed decimal

In Figure 444 we started with decimal floating-point values containing 15 and 31 significant digits. Because long and extended decimal floating-point data can hold 16 and 34 significant digits, these two instructions will convert only the rightmost 15 and 31 digits to packed decimal, as shown in Figure 445.

```
LD 0,=DD’1234567890123456’ 16 significant digits
CSDTR 3,0,B’0000’ c(GG3)=X’234567890123456’
LD 1,=LD’1234567890123456789012345678901234’ 34 digits
LD 3,=LD’1234567890123456789012345678901234+8 34 digits
CSXTR 4,1,B’0000’ Convert to packed decimal
* c(GG4,GG5)=X’4567890123456789 012345678901234’
```

Figure 445. Converting decimal floating-point to signed packed decimal

This example shows that one or three high-order digits can be lost when converting from decimal floating-point to signed packed decimal.

It doesn’t matter if the DFP operand is a NaN or infinity; the “significand” is converted anyway. For example:

```
LD 0,=DD’(Inf)’ c(FPR0)=X’7800000000000000’
CSDTR 1,0,B’0000’ c(GG1)=X’0000000000000000’
LD 0,=DD’(SNaN)’ c(FPR0)=X’7E00000000000000’
CSDTR 2,0,B’0000’ c(GG2)=X’0000000000000000’
```

When converting decimal floating-point data to signed packed decimal using the CSDTR instruction, you may lose one high-order digit; and when using CSXTR, you may lose three high-order digits.

Be Careful!

We’ll see in Section 35.12.4 that the shift-significand instructions let you convert the “lost” digits.

### 35.10.2. Convert To/From Unsigned Packed Decimal

The instructions in Table 348 convert decimal floating-point data to unsigned packed decimal digits in a general register.

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3F2</td>
<td>CDUTR</td>
<td>RRE</td>
<td>Convert from 64-bit Unsigned Packed (Long)</td>
<td>B3F4</td>
<td>CXUTR</td>
<td>RRE</td>
<td>Convert from 128-bit Unsigned Packed (Extended)</td>
</tr>
<tr>
<td>B3E2</td>
<td>CUDTR</td>
<td>RRE</td>
<td>Convert to 64-bit Unsigned Packed (Long)</td>
<td>B3E4</td>
<td>CUXTR</td>
<td>RRE</td>
<td>Convert to 128-bit Unsigned Packed (Extended)</td>
</tr>
</tbody>
</table>

Table 348. Decimal floating-point convert to/from unsigned packed decimal instructions
Because no sign code is generated for the unsigned packed decimal results, 16 or 32 digits can be converted, and no digits are lost for long precision decimal floating-point data. CUXTR, however, loses the two high-order digits.

CUDTR and CUXTR provide no M₄ operand as do CSDTR and CSXTR, so their machine instruction statement operand format is R₁,R₂.

We’ll use the examples as for conversions to signed packed decimal, to see the difference in the number of generated digits. Figure 446 shows how to convert from unsigned packed decimal to decimal floating-point.

```
LG 7,=XL8'1234567890123456' c(GG7)=X'123456789012345C'
CUDTR 4,7 c(FPR4)=X'263934B9C1E28E56'

LG 8,=X'1234567890123456' High-order 16 digits
LG 9,=X'7890123456789012' Low-order 15 digits, sign
CUXTR 0,8 Convert to extended DFP
 * c(FPR0,FPR2)=X'2208012717782353 4B9C1E28E56F3C12'
```

Figure 446. Converting unsigned packed decimal to decimal floating-point

These examples convert from decimal floating-point to unsigned packed decimal:

```
LD 4,=DD'1234567890123456' c(FPR4)=X'263934B9C1E28E56'
CUDTR 7,4 c(GG0)=X'1234567890123456'

LD 0,=LD'12345678901234567890123456789012' High half
LD 2,=LD'12345678901234567890123456789012'+8 Low half
CUXTR 8,0 Convert to packed decimal
 * c(GG8,GG9)=X'1234567890123456 7890123456789012'
```

Figure 447. Converting decimal floating-point to unsigned packed decimal

If we compare Figure 447 to Figure 445, we see that the lack of a sign code lets us generate one more packed decimal digit in place of the sign code.

Because it’s easy to determine the sign of a decimal floating-point number, most programs converting decimal floating-point to packed decimal will probably use the unsigned conversions, to generate the largest possible number of digits.

NaNs and infinity are converted to unsigned packed decimal without causing exceptions:

```
LD 0,=DD'(Inf)' c(FPRO)=X'7800000000000000'
CUDTR 1,0 c(GG1)=X'0000000000000000'

LD 0,=DD'(SNaN)' c(FPRO)=X'7E00000000000000'
CUDTR 2,0 c(GG2)=X'0000000000000000'
```

Be Careful!

When converting decimal floating-point data to unsigned packed decimal using the CUXTR instruction, you may lose two high-order digits.

We’ll see in Section 35.12.4 on page 707 that the shift-significand instructions let you capture the “lost” digits.

35.10.3. Convert To/From Zoned Decimal

The instructions in Table 349 on page 699 convert data between decimal floating-point and zoned decimal, saving the need to use packed decimal as an intermediate step.
Table 349. Instructions converting between decimal floating-point and zoned decimal

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDAA</td>
<td>CDZT</td>
<td>RSL</td>
<td>Convert from Zoned</td>
<td>EDAB</td>
<td>CXZT</td>
<td>RSL</td>
<td>Convert from Zoned</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Long ← Zoned)</td>
<td></td>
<td></td>
<td></td>
<td>(Extended ← Zoned)</td>
</tr>
<tr>
<td>EDA8</td>
<td>CZDT</td>
<td>RSL</td>
<td>Convert to Zoned</td>
<td>EDA9</td>
<td>CZXT</td>
<td>RSL</td>
<td>Convert to Zoned</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Zoned ← Long)</td>
<td></td>
<td></td>
<td></td>
<td>(Zoned ← Extended)</td>
</tr>
</tbody>
</table>

Table 350. Instructions converting between decimal floating-point and zoned decimal

All the instructions have the format shown in Table 350:

<table>
<thead>
<tr>
<th>opcode</th>
<th>L_2</th>
<th>B_2</th>
<th>D_2</th>
<th>R_1</th>
<th>M_3</th>
<th>Opcode</th>
</tr>
</thead>
</table>

Table 350. Format of DFP/zoned decimal conversion instructions

The decimal floating-point operand is in FPR R_1, and the zoned decimal operand is in memory at the Effective Address of the second operand.

The machine instruction statement format of the instructions is

\[ \text{mnemonic } R_1,D_2(N_2,B_2),M_3 \]

where N_2 is the true number of bytes in the second operand. (Remember from Section 24.2 on page 369 that you specify the true length in the Assembler Language machine instruction statement, but the CPU uses the encoded length in the machine language instruction, which is one less.)

Because the decimal floating-point operand is at most 16 or 34 digits long, the CPU requires that the length of the zoned decimal operand satisfy

\[ 0 \leq L_2 \leq 15 \quad \text{or} \quad 1 \leq N_2 \leq 16 \]

for Long DFP

\[ 0 \leq L_2 \leq 33 \quad \text{or} \quad 1 \leq N_2 \leq 34 \]

for Extended DFP

The Convert from Zoned instructions are simpler: the N_2 zoned decimal digits at the second operand are converted to decimal floating-point; the Condition Code is unchanged.

The leftmost bit of the M_3 field determines the treatment of a possible sign code in the rightmost byte of the zoned operand:

- If M_3 = B’1000’, the zoned operand is assumed to have a standard sign code (X’A,C,E,F’ for +, (X’B,D’ for −); the decimal floating-point operand is given that sign.
- If M_3 = B’0000’, the zoned operand is assumed to have no sign code, so the sign bit of the decimal floating-point operand is set to zero to indicate plus. (This is important for numeric ASCII characters that have zone digit X’3’ that would otherwise cause a decimal data exception.)

The preferred quantum of the result is one, meaning that the exponent assigned is set to zero so the result is treated as an integer.

Figure 448 shows the effect of the two values of the M_3 operand:

\[
\text{CDZT } 0,\text{ZoneA,B’1000'} \Rightarrow c(\text{FPR0}) = X'A2380000000049C5'
\]

\[
\text{CDZT } 0,\text{ZoneA,B’0000'} \Rightarrow c(\text{FPR0}) = X'22380000000049C5'
\]

Figure 448. Effect of the mask operand on Convert from Zoned results

The first instruction generates a negative result because M_3 = B’1000’, while the second instruction ignores the sign code in the last zoned byte and returns a positive result.

The Convert to Zoned instructions convert the specified number of rightmost digits of the decimal floating-point operand to zoned, with the same restrictions on L_2 (and N_2).

The bits of the M_3 operand control how zone and sign digits are assigned; for convenience, the bits are designated SZPF from left to right.
S is bit zero of $M_3$: $B′S′...$. If $S=0$, the zoned result does not have a sign, and all zone digits are determined by the Z bit. If $S=1$, the zoned operand has a sign; its form is controlled by the P and F bits.

Z is bit one of $M_3$: $B′Z...$. If $Z=0$, the zone fields of the result are $X′F′$; if $Z=1$, the zone fields are $X′3′$. If $S=1$, the final zone (the sign) depends on the P and F bits.

P is bit two of $M_3$: $B′...P′$. If $S=0$, the P bit is ignored (assumed to be zero) and the sign code depends on the Z bit. Otherwise, if $P=0$, the sign code for non-negative results is set to $X′F′$; if $P=1$, the plus sign code is $X′C′$.

F is bit three of $M_3$: $B′...F′$. If $S=0$, the F bit is ignored (assumed to be zero). Otherwise, if $F=0$, nothing happens. If $F=1$ and the absolute value of the zoned result is zero, the sign code is set to a plus code as determined by the P bit. (This is so that the zoned result can’t be a negative zero.)

The field allocated for the zoned result may be too short for all the significant digits of the decimal floating-point operand. Because only the requested number of rightmost digits are converted, it’s possible that significant digits could be lost. (This is one reason why the F bit tests for a zero result.)

The Convert to Zoned instructions set the Condition Code, as shown in Table 351:

<table>
<thead>
<tr>
<th>CC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Source operand is zero</td>
</tr>
<tr>
<td>1</td>
<td>Source operand is less than zero</td>
</tr>
<tr>
<td>2</td>
<td>Source operand is greater than zero</td>
</tr>
<tr>
<td>3</td>
<td>Source operand is infinity, QNaN, SNaN, or a partial result was generated</td>
</tr>
</tbody>
</table>

Table 351. Condition Code settings for Convert to Zoned

To illustrate, suppose we convert these DFP operands to zoned:

```
LD 0,=DD’-12345’
CZDT 0,ZoneB,B’0000’ Result = X’F0F1F2F3F4F5’, CC=1
CZDT 0,ZoneB,B’1000’ Result = X’F0F1F2F3F4D5’, CC=1
CZDT 0,ZoneB,B’0100’ Result = X’303132333435’, CC=1
CZDT 0,ZoneB,B’1100’ Result = X’3031323334D5’, CC=1

LD 0,=DD’+12345’
CZDT 0,ZoneC,B’1010’ Result = X’F0F1F2F3F4F5’, CC=2
CZDT 0,ZoneC,B’0000’ Result = X’F0F1F2F3F4F5’, CC=2
CZDT 0,ZoneD,B’0000’ Result = X’F2F3F4F5’, CC=3

LD 0,=DD’-12000000’
CZDT 0,ZoneD,B’1000’ Result = X’F0F0F0D0’, CC=3
CZDT 0,ZoneD,B’1001’ Result = X’F0F0F0C0’, CC=3
```

Figure 449. Examples of converting decimal floating-point to zoned

Most of the results in Figure 449 are what you might expect, but some may look unusual:

- In the first group, the fourth CZDT instruction’s $M_3$ digit is $B′1100′$: the S bit means the result should be signed, and because the result is negative, the Z, P, and F bits don’t apply.
- In the second group, the first CZDT instruction’s $M_3$ digit is $B′1010′$: the S bit means the result should be signed, the Z bit is zero so the result’s zone is $X′F′$ independent of the P and F bits. The third CZDT instruction sets the CC=3 because a partial result was generated.
- In the third group, both CZDT instruction set CC=3 because the result is partial.
Exercises

35.10.1.(2)+ If you are converting decimal floating-point data to signed packed decimal, what instructions can you use to test beforehand whether or not any high-order digits might be lost?

35.10.2.(2) Why do CUDTR and CUXTR need no M₄ operand?

35.10.3.(2)+ In Figure 443 on page 696, what is the LeftMost Digit (LMD) of the decimal floating-point result in (FPR0,FPR2)? Why?

35.10.4.(2) Can a source operand of CZDT be zero and cause Condition Code 3? If yes, give an example; if not, explain why.

35.10.5.(3)+ Make a table showing the effect of all possible combinations of the SZPF bits in the M₃ field of a CZDT instruction.

35.11. Decimal Floating-Point Load Operations

This section describes four groups of instructions; all the instructions are register-register operations.

- Load and Test, plus Load Complement, Load Negative, and Load Positive
- Load Floating-Point Integer
- Load Lengthened
- Load Rounded

35.11.1. Load and Test, Complement, Negative, and Positive

The instructions in Tables 352 and 354 have operand format R₁,R₂.

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3D6</td>
<td>LTDTR</td>
<td>RRE</td>
<td>Load and Test (Long)</td>
<td>B3DE</td>
<td>LTXTR</td>
<td>RRE</td>
<td>Load and Test (Extended)</td>
</tr>
</tbody>
</table>

Table 352. Decimal floating-point Load and Test instructions

If the source operand is a QNaN, the CC is set to 3; if it is a SNaN, an invalid operation exception occurs; if masked off, the corresponding QNaN is placed in the first-operand location.

Table 353 shows the Condition Code setting.

<table>
<thead>
<tr>
<th>CC</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Operand is zero</td>
</tr>
<tr>
<td>1</td>
<td>Operand is less than zero</td>
</tr>
<tr>
<td>2</td>
<td>Operand is greater than zero</td>
</tr>
<tr>
<td>3</td>
<td>Operand is a NaN</td>
</tr>
</tbody>
</table>

Table 353. CC setting after DFP Load and Test instructions

The three instructions in Table 354 set the sign bit as indicated by the instruction name.

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>B373</td>
<td>LCDFR</td>
<td>RRE</td>
<td>Load Complement (Long)</td>
<td>B371</td>
<td>LNDFR</td>
<td>RRE</td>
<td>Load Negative (Long)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B370</td>
<td>LPDFR</td>
<td>RRE</td>
<td>Load Positive (Long)</td>
</tr>
</tbody>
</table>

Table 354. Instructions copying/complementing data between FPRs
These instructions can be used for both decimal and binary floating-point operands: they are type-insensitive and don’t care if the operand is a NaN or infinity. Unlike the corresponding instructions for hexadecimal floating-point operands, they don’t change the Condition Code.

Some examples of these instructions, showing that only the sign bit changes:

<table>
<thead>
<tr>
<th>Instruction</th>
<th>c(FPR0)</th>
<th>c(FPR1)</th>
<th>c(FPR2)</th>
<th>c(FPR3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LD 0,=DD’-21.43’</td>
<td>X’A23000000000008C3’</td>
<td>X’22300000000008C3’</td>
<td>X’A23000000000008C3’</td>
<td>X’22300000000008C3’</td>
</tr>
<tr>
<td>LCDFR 1,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LNDFR 2,1</td>
<td>X’A23000000000008C3’</td>
<td>X’22300000000008C3’</td>
<td>X’A23000000000008C3’</td>
<td>X’22300000000008C3’</td>
</tr>
<tr>
<td>LPDFR 3,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

35.11.2. Load Floating-Point Integer

The two Load Floating-Point Integer instructions in Table 355 convert a decimal floating-point second operand to an integer-valued first operand in the same format. The CC is unchanged.

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3D7</td>
<td>FIDTR</td>
<td>RRF</td>
<td>Load Floating-Point</td>
<td>B3DF</td>
<td>FIXTR</td>
<td>RRF</td>
<td>Load Floating-Point</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Integer (Long)</td>
<td></td>
<td></td>
<td></td>
<td>Integer (Extended)</td>
</tr>
</tbody>
</table>

Table 355. Decimal floating-point Load Floating-point Integer instructions

The instructions have two mask fields, M₃ and M₄, shown in Table 356:

<table>
<thead>
<tr>
<th>opcode</th>
<th>M₃</th>
<th>M₄</th>
<th>R₁</th>
<th>R₂</th>
</tr>
</thead>
</table>

Table 356. Format of Load FP Integer instructions

The machine instruction statement format specifies the operands in this order:

```
mnemonic R₁,M₃,R₂,M₄
```

The M₃ mask controls rounding of the delivered operand; its possible values are given in Table 335 on page 688.

The M₄ mask controls recognition of the inexact exception. If the value of the result is different from the value of the second operand it is inexact; then, if bit 1 (B’0100’) of M₄ is one, no inexact exception will occur.

If the second operand is a QNaN, so is the result. If the second operand is a SNaN, an invalid operation exception occurs; if masked off, the corresponding QNaN is the result. To illustrate:

```
LD 6,=DD’7.2’ Fractional operand X’22340000000000072’
FIDTR 2,B’1000’,6,4 No exception: X’2238000000000007’

LD 6,=DD’7.2’ Same fractional operand
FIDTR 2,B’1000’,6,0 Same result, inexact exception
```

35.11.3. Load Lengthened

Table 357 lists the two instructions that convert a decimal floating-point operand to a longer format. They can be used to convert from the short storage format to long or extended format for computations.

Because a longer format has greater precision and range, no rounding is needed. Only infinity and SNaNs need special treatment; QNaNs are converted to the longer format with the payload (if any) extended with zeros on the left. Neither instruction changes the CC.

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3D4</td>
<td>LDETR</td>
<td>RRF</td>
<td>Load Lengthened</td>
<td>B3DC</td>
<td>LXDT</td>
<td>RRF</td>
<td>Load Lengthened</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Short to Long)</td>
<td></td>
<td></td>
<td></td>
<td>(Long to Extended)</td>
</tr>
</tbody>
</table>

Table 357. Decimal floating-point Load Lengthened instructions
They have the instruction format illustrated in Table 343 on page 694, and machine instruction statement format

\[
\text{mnemonic } R_1, R_2, M_4
\]

The second operand is extended to the next longer format, and placed in the first operand register.

Table 358 shows how the \( M_4 \) mask controls the treatment of an infinity or SNaN.

<table>
<thead>
<tr>
<th>Operand</th>
<th>( M_4 )</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infinity</td>
<td>0</td>
<td>Canonical infinity for the target format</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Source infinity with payload padded with zeros on the left</td>
</tr>
<tr>
<td>SNaN</td>
<td>0</td>
<td>Invalid operation exception; if masked, deliver corresponding QNaN with payload padded with zeros on the left</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Source SNaN with payload padded with zeros on the left</td>
</tr>
</tbody>
</table>

Table 358. Load Lengthened special operand control mask

For finite values, the \( M_4 \) mask makes no difference:

\[
\begin{align*}
\text{LE} & 2, =E'D'(QNaN)' & \text{Short source operand } X'7C000000' \\
\text{LDETR} & 4, 2, 0 & \text{Long result } X'7C00000000000000' \\
\text{LE} & 2, =E'D'123.4567' & \text{Short source operand } X'2614D2E7' \\
\text{LDETR} & 4, 2, 0 & \text{Long result } X'2228000001D2E7' \\
\text{LD} & 1, =D'D'7654.321' & \text{Long operand } X'222C000007D51A1' \\
\text{LXDTR} & 5, 1, 0 & \text{Extended format} \\
\text{c(FPR5,FPR7)=} & X'2207400000000000 & 000000007D51A1' \\
\end{align*}
\]

35.11.4. Load Rounded

The two Load Rounded instructions in Table 359 convert an operand to the next shorter format: extended to long, and long to short. Because the shorter format has less precision and narrower range, the \( M_3 \) rounding mask field is provided in the instruction, as shown in Table 335 on page 688. If the source operand is finite, these instructions can indicate underflow, overflow, and inexact exceptions.

Neither instruction changes the CC.

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3D5</td>
<td>LEDTR</td>
<td>RRF</td>
<td>Load Rounded (Long to Short)</td>
<td>B3DD</td>
<td>LDXTR</td>
<td>RRF</td>
<td>Load Rounded (Extended to Long)</td>
</tr>
</tbody>
</table>

Table 359. Decimal floating-point rounding/lengthening instructions

If the source operand’s range causes an overflow or underflow condition when rounded to the shorter format, an interruption will occur if the mask bits in the Floating-Point Control Register are one. If the appropriate mask bit is zero, the exponent is scaled to be in range.

The \( B'1000' \) bit in the \( M_4 \) mask controls the treatment of infinity and SNaNs:

- If the source operand is infinity and the \( M_4 \) bit is zero, the result is a canonical infinity; and if the \( M_4 \) bit is one, trailing exponent bits are set to zero and the payload is shortened by removing high-order digits.
- If the source operand is a SNaN and the \( M_4 \) bit is zero, an invalid operation condition occurs; if the interruption is masked off, the result is the corresponding QNaN with shortened payload. If the \( M_4 \) bit is one, the invalid operation condition is suppressed and the result is a canonicalized SNaN with shortened payload.

Note that LDETR and LEDTR are the only DFP instructions that operate on short DFP operands. (TDCEt tests a short operand, but doesn’t operate on it.) Arithmetic on short-format data requires
lengthening the source operands and rounding the result back to short format. Suppose we need the short-format quotient of 24÷7:

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>LE 2,=ED’24’</td>
<td>Load first operand X’22500024’</td>
</tr>
<tr>
<td>LDETR 2,2,B’0000’</td>
<td>Lengthen it X’2238000000000024’</td>
</tr>
<tr>
<td>LE 6,=ED’7’</td>
<td>Load second operand X’22500007’</td>
</tr>
<tr>
<td>LDETR 6,6,B’0000’</td>
<td>Lengthen it X’2238000000000007’</td>
</tr>
<tr>
<td>DDTR 2,2,6</td>
<td>Long quotient X’2DFE2BBCC62BC629’</td>
</tr>
<tr>
<td>LEDTR 2,B’0000’,2,0</td>
<td>Round to short format X’2DF8A2F1’</td>
</tr>
<tr>
<td>STE 2,Quotient</td>
<td>Store the short result</td>
</tr>
</tbody>
</table>

Figure 450. DFP arithmetic with short operands

Both the division and rounding instructions indicate an inexact result; 24÷7 is not a finite fraction.

Exercises

35.11.1.(3) Suppose the source operand of a Load Rounded instruction is a SNaN. Show the possible combinations of $M_4$ mask bit and FPCR invalid-operation mask, and the delivered result for each case.

35.11.2.(1) With reference to Figure 450, what is the true value of 24÷7?

35.11.3.(1)+ Table 354 has no instructions for extended precision operands. How then could you do a “Load Complement” of an extended precision operand?

35.11.4.(2) Under what circumstances would you use a Test Data Class instruction in preference to a Load and Test instruction?

35.12. Decimal Floating-Point Miscellaneous Operations (*)

This subsection describes some operations of (possibly) less interest or less frequent use:

- Set Decimal Rounding Mode
- Extract and Insert Biased Exponent
- Extract Significance
- Shift Coefficient Left and Right
- Quantize
- Reround
- Test Data Group

35.12.1. Set Decimal Rounding Mode

The SRNMT instruction in Table 360 sets the DFP rounding mode.

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2B9</td>
<td>SRNMT</td>
<td>S</td>
<td>Set Decimal Rounding Mode</td>
</tr>
</tbody>
</table>

Table 360. Decimal floating-point Set Rounding Mode instruction

The machine instruction statement is written with a single operand:

```
SRNMT D5(B2)
```

The rightmost three bits of the Effective Address are placed in the FPCR’s rightmost byte, in the bits indicated by DRM in Figure 451. The CC is unchanged.
Comparing this figure to Figure 407 on page 636, the only difference is the presence of the “q” mask and flag bits (for the quantum exception), and the three added DRM bits for the decimal rounding mode.

<table>
<thead>
<tr>
<th>Mask Bits</th>
<th>Flag Bits</th>
<th>Data Excep’n Code (DxC)</th>
<th>Rounding Mode Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>izouqx00</td>
<td>izouqx00</td>
<td>izouxy00</td>
<td>DRM 00 BRM</td>
</tr>
</tbody>
</table>

Figure 451. Floating-Point Control Register showing Decimal Rounding Mode bits

The rightmost 2 bits of the DRM field have the same meaning as for the Binary Rounding Mode (BRM):

<table>
<thead>
<tr>
<th>BRM/DRM Rounding Action</th>
<th>BRM/DRM Rounding Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>'000'</td>
<td>To nearest (default; “ties” round to even),</td>
</tr>
<tr>
<td>'001'</td>
<td>Toward zero (truncate; “chop”)</td>
</tr>
<tr>
<td>'010'</td>
<td>Up (toward +∞)</td>
</tr>
<tr>
<td>'011'</td>
<td>Down (toward −∞)</td>
</tr>
</tbody>
</table>

There are four additional decimal floating-point rounding modes when the leftmost DRM bit is 1:

<table>
<thead>
<tr>
<th>DRM Rounding Action</th>
<th>DRM Rounding Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>'100'</td>
<td>To nearest, with ties away from 0 (instead of “to even”)</td>
</tr>
<tr>
<td>'101'</td>
<td>To nearest, with ties toward 0</td>
</tr>
<tr>
<td>'110'</td>
<td>Round away from 0</td>
</tr>
<tr>
<td>'111'</td>
<td>Round to prepare for shorter precision</td>
</tr>
</tbody>
</table>

For example, to set the decimal rounding mode to the default, you could execute

\[ \text{SRNMT} \text{ B'000'} \quad \text{Set DRM to unbiased round to nearest} \]

### 35.12.2. Extract and Insert Biased Exponent

Because the representation of the true biased exponent of a DFP number is so complex, z System provides the instructions listed in Table 361 to extract and to insert its value.

<table>
<thead>
<tr>
<th>Op</th>
<th>Mнем</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mнем</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3E5</td>
<td>EEDTR</td>
<td>RRE</td>
<td>Extract Biased Exponent (Long)</td>
<td>B3ED</td>
<td>EEXTR</td>
<td>RRE</td>
<td>Extract Biased Exponent (Extended)</td>
</tr>
<tr>
<td>B3F6</td>
<td>IEDTR</td>
<td>RRF</td>
<td>Insert Biased Exponent (Long)</td>
<td>B3FE</td>
<td>IEXTR</td>
<td>RRF</td>
<td>Insert Biased Exponent (Extended)</td>
</tr>
</tbody>
</table>

Table 361. Decimal floating-point Insert/Extract Biased Exponent instructions

None of the instructions change the Condition Code.

Machine instruction statements for the extract instructions have two operands:

\[ \text{EEDTR} R_1, R_2 \]

where the \( R_2 \) floating-point register holds a decimal floating-point number and its biased exponent is placed in the general register specified by \( R_1 \). For example:

\[ \text{LD} \text{ 5, =DD'}2.5' \quad \text{Long DFP operand} X'2234000000000025' \]
\[ \text{EEDTR} \text{ 3, 5} \quad \text{Result in GG3} = X'18D' = 397 \]
\[ \text{AHI} \text{ 3, -398} \quad \text{Remove exponent bias} \]
\[ \text{c(GG3)} = -1, \text{the unbiased exponent} \]

Figure 452. Example of extracting DFP biased exponent

The value in FPR5 is 2.5\( \times 10^{-1} \); the exponent bias for a long DFP number is 398, so the true exponent is \( 397-398 = -1 \), as expected.
For special values, a negative value is placed in the $R_1$ general register, as shown in Table 362:

<table>
<thead>
<tr>
<th>DFP operand</th>
<th>Binary result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infinity</td>
<td>−1</td>
</tr>
<tr>
<td>QNaN</td>
<td>−2</td>
</tr>
<tr>
<td>SNaN</td>
<td>−3</td>
</tr>
</tbody>
</table>

Table 362. Extracted Biased Exponent for DFP special values

Thus, the IEXTR and IEDTR extract instructions can be applied to any DFP operand.

The instructions that insert a biased exponent have three operands:

$\text{IEDTR } R_1, R_3, R_2$

where the source DFP operand is in floating-point register $R_3$, the new biased exponent is in general register $R_2$, and the result is placed in floating-point register $R_1$. For example:

- $\text{LD } 5,=D'D'2.5'$
  - Source operand = $X''2234000000000025''$
- $\text{LG } 9,=F'D'399'$
  - New biased exponent
- $\text{IEDTR } 2,5,9$
  - Insert; result = $X''223C000000000025''$

Figure 453. Example of inserting a biased DFP exponent

In this case, the significand is unchanged, and the new biased exponent (399) means that the new true exponent is $399 - 398 = +1$, so the value of the number in FPR2 is $25 \times 10^1$, or 250.

Thus, the Insert Biased Exponent instructions provide an easy way to multiply or divide finite numbers by a power of 10, without changing significance.

Special values are treated in a way much like that for the extract instructions. The results are illustrated in Table 363, where “CMax” represents the largest characteristic (biased exponent) value.

<table>
<thead>
<tr>
<th>$R_2$ operand</th>
<th>DFP source operand in $R_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Finite</td>
</tr>
<tr>
<td>Value &gt; CMax</td>
<td>QNaN</td>
</tr>
<tr>
<td>0 ≤ Value ≤ CMax</td>
<td>Finite</td>
</tr>
<tr>
<td>Value = −1</td>
<td>Infinity</td>
</tr>
<tr>
<td>Value = −2</td>
<td>QNaN</td>
</tr>
<tr>
<td>Value = −3</td>
<td>SNaN</td>
</tr>
<tr>
<td>Value ≤ −4</td>
<td>QNaN</td>
</tr>
</tbody>
</table>

Table 363. DFP Insert Biased Exponent results

### 35.12.3. Extract Significance

The instructions in Table 364 let you determine the number of significant digits in a DFP operand. Neither instruction changes the Condition Code.

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3E7</td>
<td>ESDTR</td>
<td>RRE</td>
<td>Extract Significance</td>
<td>B3EF</td>
<td>ESXTR</td>
<td>RRE</td>
<td>Extract Significance</td>
</tr>
</tbody>
</table>

Table 364. Decimal floating-point Extract Significance instructions

The second operand of the machine instruction statement is the DFP number, and the result is placed in the $R_1$ general register. For example:
Special values return zero (for zeros), −1 for infinities, −2 for QNaNs, and −3 for SNaNs.

### 35.12.4. Shift Significand Left/Right

Table 365 list the four instructions for shifting decimal floating-point operands left and right.

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED40</td>
<td>SLDT</td>
<td>RXF</td>
<td>Shift Significand Left (Long)</td>
<td>ED48</td>
<td>SLXT</td>
<td>RXF</td>
<td>Shift Significand Left (Extended)</td>
</tr>
<tr>
<td>ED41</td>
<td>SRDT</td>
<td>RXF</td>
<td>Shift Significand Right (Long)</td>
<td>ED49</td>
<td>SRXT</td>
<td>RXF</td>
<td>Shift Significand Right (Extended)</td>
</tr>
</tbody>
</table>

All four leave the CC unchanged, and cause no exceptions.

These shifts are similar to the logical shift instructions for binary data in the general registers: digits shifted off either end are lost, and zeros are inserted into positions vacated by the shift. Exponents are unchanged, and the results are not rounded.

The instruction format is illustrated in Table 366:

<table>
<thead>
<tr>
<th>opcode</th>
<th>R3</th>
<th>X2</th>
<th>B2</th>
<th>D2</th>
<th>R1</th>
<th>opcode</th>
</tr>
</thead>
</table>

The operands of the assembler instruction statements have format R3,R3,D2(X2,B2), where the source operand is in FPR R3, the result is placed in FPR R1, and the shift amount is determined by the rightmost 6 bits of the Effective Address. For example, shifting right by one digit effectively divides the source operand by 10, truncating the lost digits:

- **LD 0,=DD’1000000’**  
  **Source = X’2238000000100000’**
- **SRDT 0,0,1**  
  **Result = X’2238000000020000’**

These shifts are similar, except that the high-order digit of the significand moves into the Combination Field; the previous occupant is lost. For example:

- **LD 0,=DD’1234567’**  
  **Source = X’223800000014DE7’**
- **SRDT 0,0,1**  
  **Result = X’223800000028E56’**

Left shifts are similar, except that the high-order digit of the significand moves into the Combination Field; the previous occupant is lost. For example:

- **LD 0,=DD’1000000000’**  
  **Source = X’2238000040000000’**
- **SLDT 0,0,6**  
  **Result = X’2638000000000000’**
  * Leftmost digit now in Combo Field

In the first case, the significant digit is shifted into the Combination Field, and in the second case it is shifted completely out leaving a zero significand with exponent +9.

---

226 This format is unusual in placing the R3 operand in the position where most instructions put the R1 operand.
Because the exponent is not changed, you might consider these instructions as a way to multiply or divide by 10; but be cautious. The significance of the operand is changed depending on the direction and amount of the shift.

The significands of infinity, SNaN, and QNaN are shifted without regard to the type of operand, and without causing any exceptions.

With these shift instructions, we can now convert all 34 digits of an extended decimal floating-point value to packed decimal, using instructions like those in Figure 455.

```
LD 0,=LD′1234567890123456789012345678901234′ 34 digits
LD 2,=LD′1234567890123456789012345678901234′+8
CSXTR 4,0,0 Convert 31 signed digits to (GG3,GG4)
STMG 4,5,Packed+2 Store low-order 31 digits and sign
SRXT 0,0,31 Shift, keeping 3 high-order digits
CUXTR 4,0 Convert 3 unsigned digits
STH 5,Packed Store remaining 3 digits

- - -
Packed DS XL18 34 Packed digits and sign
```

Figure 455. Converting an extended decimal floating-point value to packed decimal

The result at Packed is X′0123456789012345678901234C′. Because the symbol Packed may not be aligned on a halfword preceding a doubleword boundary, the Assembler may diagnose a possibly unfavorable operand alignment; such messages can be avoided by preceding the DS instruction with

```
ORG *+2,8,-2 Halfword preceding doubleword
```

You can consult the High Level Assembler Language Reference for details.

### 35.12.5. Quantize

The quantize instructions in Table 367 do a very simple operation: they make one operand have the same decimal point alignment as another.

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3F5</td>
<td>QADTR</td>
<td>RRF</td>
<td>Quantize (Long)</td>
<td>B3FD</td>
<td>QAXTR</td>
<td>RRF</td>
<td>Quantize (Extended)</td>
</tr>
</tbody>
</table>

Table 367. Decimal floating-point Quantize instructions

The instruction format in Table 368 has four operands:

<table>
<thead>
<tr>
<th>opcode</th>
<th>R₃</th>
<th>M₄</th>
<th>R₁</th>
<th>R₂</th>
</tr>
</thead>
</table>

Table 368. Format of decimal floating-point Quantize instructions

and the assembler instruction statement is written

```
QADTR R₃,R₄,R₂,M₄
```

The source operand is in FPR R₃ and the result is placed in FPR R₄; the operand in R₂ (the “quantizing” operand) provides the quantum to be assigned to the R₃ operand. The M₄ rounding mask controls the rounding of the result, and takes the values listed in Table 335 on page 688. The Condition Code is unchanged.

The idea is to make the result have the same exponent (and quantum) as the R₂ operand, preserving the value of the R₃ operand to the greatest possible extent.

For example, suppose we have two values, 12789 (12789×10⁰) and 12.789 (12789×10⁻³).

- **A** DC DD′12789′ Generates X′2238000000004BCF′
- **B** DC DD′12789E−3′ Generates X′222C000000004BCF′
Both have the same significand, 12789, but their exponents differ by 3. Now, suppose we want to quantize A to have the same quantum/exponent as B, while preserving the value of A.

LD 0,A c(FPR0) = X'2238000000004BCF'
LD 2,B c(FPR2) = X'222C000000004BCF'
QADTR 4,0,2,B'1000' c(FPR4) = X'222C0000012F3C00'=12789000

The result in FPR4 has the same quantum/exponent as B, but the significand 12789000 has effectively been shifted left three digits and is now larger by 1000. Because the result has B's exponent (-3), its value is 12789000×10^-3, the same as the value of A.

Now, consider quantizing B to have the same quantum/exponent as A.

LD 0,A c(FPR0) = X'2238000000004BCF'
LD 2,B c(FPR2) = X'222C000000004BCF'
QADTR 4,2,0,B'1000' c(FPR4) = X'2238000000000013'=13

Because the result in FPR4 must have the same quantum as A, the significand of B must effectively be shifted right by three digits. The rounding mask causes 12.789 to be rounded to 13×10^0.

Infinity as either the source or quantizing operand produces an invalid operation exception; if masked off the result is a canonical QNaN:

LD 0,A Finite value in FPR0
LD 2,=DD'(Inf) Infinity in FPR2
QADTR 4,0,2,B'00000' Quantize A with infinity; c(FPR4) = QNaN
QADTR 6,2,0,B'00000' Quantize infinity with A; c(FPR6) = QNaN

Quantizing with QNaNs always produces QNaNs. Quantizing with SNaNs produces an invalid operation exception; if masked off, the result is the corresponding QNaN.

These examples illustrate the rules for quantizing operations:

1. If the exponent of the result is being decreased (as in the first example), and the result does not have more digits than supported by the operand format, the result has the same value as the source operand. But if the result would have more digits than supported, an invalid operation is signaled; if masked off, the result is a default QNaN.

For example:

LD 0,A Source operand = X'2238000000004BCF'=12789
LD 2,=DD'12789e-12' Second operand = X'2208000000004BCF'
QADTR 4,0,2,B'1000' Invalid operation

If the quantum/exponent of the result in FPR4 were to be the same as the second operand's, the significand of A would have to be shifted left 12 digits, giving 12789000000000000. But this is 17 digits long, too many digits for a long decimal floating-point operand.

2. If the exponent of the result is being increased (as in the second example), the result is rounded according to the M₄ rounding modifier. This can possibly generate an inexact exception if the value of the result is different from the value of the source operand. A zero value with nonzero exponent can be generated.

3. If the source or quantizing operand is infinity, the result is a canonical infinity.

Because the exponent of the result is the same as that of the second (quantizing) operand, no overflow or underflow occurs. A finite result always has the requested quantum/exponent.

To summarize the exception conditions for finite operands:

- If the requested quantum/exponent (from the quantizing operand) is smaller than the quantum of the source operand, the only possible exception is an invalid operation exception that might occur if the significand would have too many digits.

- If the requested quantum/exponent (from the quantizing operand) is greater than the quantum of the source operand, the only possible exception is an inexact exception that might occur if nonzero digits were lost.
Here’s a practical example using a quantize instruction. Suppose you must calculate the final price of an item costing $923.85 after adding tax of 8.25 percent. You would probably start with something like this:

```
LD 0,Price Get item price (923.85)
LD 2,Tax Load tax rate (1.0825)
MDTR 0,2,0 Calculate price+tax (1000.067625)
STD 0,Cost Store final cost (1000.067625)
```

Figure 456. Calculate price plus tax

The product was calculated by the MDTR instruction to 16 digits, and rounded according to the current rounding mode. But you will want to display the cost with only two decimal places, as $1000.07; because it’s important to avoid double rounding, how should you proceed?

First, calculate the product without rounding, by setting the Decimal Rounding Mode to “prepare for shorter precision”:

```
SRNMT 7 Set rounding mode to B’111’
```

This rounding mode selects the result of the MDTR instruction with the smaller magnitude, unless the rounding digit is 0 or 5, when the result with the largest magnitude is chosen.

The calculated result has too many digits, so we must round the result to two decimal digits. But since we don’t know how many digits are to the left of the decimal point, we can use a quantize operation. We know that the original price had two decimal digits, so we can use it as the quantizing operand:

```
LD 4,Price Item price (923.85) in FPR4
LD 2,Tax Tax rate (1.0825) in FPR2
MDTR 2,2,4 Price+tax (1000.067625) in FPR2
QADTR 0,2,4,B’1100’ Quantize to 2 decimal digits
STD 0,Cost Store final cost (1000.07)
```

Figure 457. Correctly rounding a cost to two decimal digits

The rounding mask (12) of the QADTR instruction rounds to nearest with ties away from zero; this is the familiar decimal rounding used for many business calculations.

### 35.12.6. Reround

The instructions in Table 369 perform a reround operation. In effect, rerounding simply changes the number of significant digits.

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3F7</td>
<td>RRDTR</td>
<td>RRF</td>
<td>Reround (Long)</td>
<td>B3FF</td>
<td>RRXTR</td>
<td>RRF</td>
<td>Reround (Extended)</td>
</tr>
</tbody>
</table>

Table 369. Decimal floating-point Reround instructions

The instruction format is shown in Table 368, and assembler instruction statements are written as shown following that table. Neither instruction changes the Condition Code.

These instructions let you simulate a DFP operation with a different precision from any supported format, and with the effect of a single rounding. You start by specifying “Round to prepare for shorter precision” in the operation, and then you follow that with the desired rounding method in the reround instruction.

The reround instructions work like this:
The desired significance is an unsigned integer in GPR R2.

The operand in FPR R3 is rounded to the significance specified in GPR R2, and the result is placed in FPR R1.

If the requested significance is less than or equal to the significance of the third operand, it is placed unchanged in R1.

If the requested significance is greater than the significance of the third operand, it is rounded to the requested significance using the rounding mask specified by the M4 operand.

If the instruction can’t represent the result to the requested significance, or if the source operand is a SNaN or infinity, an invalid operation is signaled. If the exception is disabled, the delivered result is a default QNaN.

As with other operations, if the result differs in value from the source operand in R3, an inexact exception is signaled.

These instructions may seem strange: you already have rounding options for all the arithmetic operations, so why would you want to use a “reround” instruction?

Suppose you are offering to do some work, and you calculate your total cost as $1783. You probably prefer to quote a slightly larger “rounder” number, such as $1800. You can do this with a reround instruction:

```
LD 4,=DD'1783' # Calculated total cost
LA 5,2 # 2 significant digits
RRDTR 6,4,5,B'1110' # Round to 2 digits, away from zero
SLDT 6,6,2 # Shift left 2 digits
- - - # Convert result to printable form
```

Figure 458. Example of a reround instruction

and the result in FPR6 is 1800, the value to be quoted.

This example works for a total cost with at most 4 digits, but you would like to use it for larger values. Supposing that you still want to quote values with two low-order zero digits, you can modify the example in Figure 458:

```
Final0s Equ 2
LD 4,=DD'1783333' # Calculated total cost = $1,783,333
ESDTR 5,4 # Extract its significance into GR5
AHI 5,-Final0s # Reduce by number of final zeros
RRDTR 6,4,5,B'1110' # Round to to specified significance
SLDT 0,6,Final0s # Compensate for digits removed
- - - # Convert to printable format
```

Figure 459. Example of rerounding arbitrary amounts

Because we have rounded away from zero, the result in FPR0 is 1783400. (For large values like this you would probably want to set Final0s to 3, to round to thousands.)

Because the reround instructions can round longer operands to shorter, the Assembler supports a “round for reround” modifier. These 17-digit constants have an even final digit and rounding digits 4, 5, and 6. You can see that the R15 rounding option leaves the final digit unchanged.
These constants are now prepared for rerounding if desired.\textsuperscript{227}

35.12.7. Decimal Floating-Point Data Groups (*)

You may find in evaluating a complex expression that you need to do parts of the calculation in a longer format, and want to know whether the result will have the same value and quantum as if the calculation had been done in the shorter format. The Test Data Group instructions in Table 370 provide this information.

The instructions used to test the data group of an operand are shown in Table 370:

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED51</td>
<td>TDGET</td>
<td>RXE</td>
<td>Test Data Group (Short)</td>
<td>ED55</td>
<td>TDGDT</td>
<td>RXE</td>
<td>Test Data Group (Long)</td>
</tr>
<tr>
<td>ED59</td>
<td>TDGXT</td>
<td>RXE</td>
<td>Test Data Group (Extended)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 370. Decimal floating-point Test Data Group instructions

Like the Test Data Class instructions in Section 35.4 on page 679, you can test the properties of an operand without causing any exceptions. The assembler instruction statement is written

\[
\text{mnemonic } R_1,D_2(X_2,B_2)\]

The rightmost 12 bits of the second operand’s Effective Address test the operand in \(R_1\). Using the same bit numbering as in Table 322, the tested groups are shown in Table 371.

<table>
<thead>
<tr>
<th>+ sign</th>
<th>− sign</th>
<th>Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>52</td>
<td>53</td>
<td>Zero with non-extreme exponent</td>
</tr>
<tr>
<td>54</td>
<td>55</td>
<td>Zero with extreme exponent</td>
</tr>
<tr>
<td>56</td>
<td>57</td>
<td>Normal or subnormal with extreme exponent</td>
</tr>
<tr>
<td>58</td>
<td>59</td>
<td>Normal with non-extreme exponent and zero leftmost digit</td>
</tr>
<tr>
<td>60</td>
<td>61</td>
<td>Normal with non-extreme exponent and nonzero leftmost digit</td>
</tr>
<tr>
<td>62</td>
<td>63</td>
<td>Infinity or NaN</td>
</tr>
</tbody>
</table>

Table 371. Test Data Group second-operand bits

\textsuperscript{227} Most applications would probably define separate constants of the required length, rather than rounding longer ones.
The main use of these instructions is checking an operand to verify it has these properties:

- its value is finite,
- its exponent is not extreme (neither maximum nor minimum),
- its leftmost significant digit is zero,
- calculating the operand in a wider format would have produced the same value and quantum.

If the result satisfies these conditions, it is said to be “safe”.

For example, suppose you multiply the number \(100000000 \times 10^5\) by itself in long and extended arithmetic. Because it has 9 significant digits, the extended precision product has 17 significant digits:

\[
LD 0, =LD'100000000E5' c(FPR0) = X'2209400000000000'
LD 2, =LD'100000000E5'+8 c(FPR2) = X'0000000080000000'
\]

\[
MXTR 0,0,0 Form extended product
\]

The result in (FPR0,FPR2) is \(X'220A800000000000 0040000000000000'\) and the exponent is 10.

When we form the same product in long precision:

\[
LD 0, =DD'100000000E5' c(FPR0) = X'224C000008000000'
MDTR 0,0,0 c(FPR0) = X'2664000000000000'
\]

where the most significant digit is also the leftmost digit, and the exponent is 11. If we test the data group of this result:

\[
TDGDT 0,B'000000001100' Test normal value, nonzero LMD
\]

the Condition Code is set to 1, indicating that this would not be a “safe” result. The value of the result is the same, but the exponents (and therefore quanta) were different.

**Exercises**

35.12.1.(2) Assuming you start with the same operand in FPR2 for each shift instruction, what will be the result of extracting the significance of the result after executing each of these instructions?

- \(LD 2, =DD'12340000E3'\) Initial value for each shift
- (a) SLDT 2,2,0
- (b) SLDT 2,2,3
- (c) SRDT 2,2,6
- (d) SLDT 2,2,10
- (e) SRDT 2,2,8

35.12.2.(2) In Figure 454, it appears that the third DFP operand (\(X'221C00002500000'\)) has only seven significant digits, but the result of extracting its significance is 8. Why are they different?

35.12.3.(2) The shift instructions effectively multiply or divide the source operand by a power of 10. Why or why not use them in place of the “regular” multiply and divide instructions?

35.12.4.(2) Give an example showing how a quantize operation can generate a non-canonical zero, a zero result with nonzero exponent.

35.12.5.(1)+ In Figure 455 on page 708, why was the symbol **Packed** not defined as PL18?
Example of a Decimal Floating-Point “Business” Computation

We’ll repeat the simple business computation that used packed decimal arithmetic in Section 29.11 on page 517, now using decimal floating-point arithmetic.

This is the situation: we suppose a wholesaler and a retailer complete an order.

1. The retailer orders from the wholesaler 60 high-tech widgets at $74.65 each.
   
   \[(60 \times 74.65 = 4479.00)\]

2. For this large order, the wholesaler discounts the price by 4.7%.
   
   \[(4479.00 \times 0.047 = 210.513, \text{ so the discounted price is } 4479.00 - 210.51 = 4268.49)\]

3. The wholesaler adds 9.75% local sales tax, and a $4.00 per-item shipping charge.
   
   \[(4268.49 \times 1.0975 = 4684.67; \text{ the shipping charge is } 60 \times 4.00 = 240.00, \text{ so the total is } 4684.67 + 240.00 = 4924.67.]\]

4. The retailer’s pre-payment of $1000.00 is deducted. The result is the wholesaler’s bill to the retailer.
   
   \[(4294.67 - 1000.00 = 3294.67)\]

Then, the retailer calculates his necessary markup and the sale price:

5. The retailer calculates his base cost for each item.
   
   \[(4294.67/60 = 82.07785 \text{ or } 82.08)\]

6. He then applies his retail markup (about 37%), adjusted to a sale cost just below one dollar.
   
   \[(82.08 \times 1.37 = 112.4496 \text{ or } 112.45, \text{ and the adjustment is } 0.54 + 112.45 = 112.99)\]

7. Each item a customer buys must include 9.25% sales tax and a $7.50 recycling fee.
   
   \[(112.99 \times 1.0925 = 123.44; \text{ adding the recycling fee gives the final customer cost: } 123.44 + 7.50 = 130.94)\]

8. The result is the final cost per item to the customer.

9. The retailer’s gross profit per item is (sale cost)–(base cost).
   
   \[(112.99 - 82.08 = 30.91. \text{ The percent gross profit is } 30.91/82.08 = 0.376 \text{ or } 38\%)\]

### 35.13.1. The Wholesaler’s Calculation

We will use long decimal floating-point values. Because all arithmetic is done in the floating-point registers, we won’t define constants with names, but use literals with the same values as in Section 29.11.1.

The values in the comments fields show the value of each operand as a decimal floating-point number.

```
LD F1,=DD’,60’ Number of items 60.E+0
LD F2,=DD’,74.65’ Wholesale price per widget 7465.E-2
MDTR F3,F1,F2 Price of all 60 items 447900.E-2
LD F4,=DD’,047’ Discount % for a large order 47.E-3
MDTR F5,F3,F4 Discount amount 21051300.E-5
SDTR F5,F3,F5 Subtract the discount 426848700.E-5
LD F6,=DD’,10975’ Sales tax multiplier 10975.E-4
MDTR F3,F5,F6 Price with sales tax 468464482500.E-9
LD F7,=DD’,400’ Shipping charge per item 400.E-2
MDTR F7,F7,F1 Shipping charge for 60 items 24000.E-2
ADTR F3,F7,F3 Add shipping charge 4924664482500.E-9
LD F8,=DD’,1000.00’ Retailer’s prepayment 100000.E-2
SDTR F3,F3,F8 Result = bill to retailer 3924664482500.E-9
```

So, we calculate that the final bill to the retailer is $3924.66. But this is one cent less than the packed decimal value! What happened?

Aha! We didn’t use something like the “Shift and Round Decimal” (SRP) instruction to round intermediate results. So, we’ll try again, using QADTR “quantize” instructions to round interme-
mediate results to two decimal places, as was done with the SRP instructions in the packed decimal example.

LD F1,=DD’60’  
LD F2,=DD’74.65’  
MDTR F3,F1,F2  
LD F4,=DD’0.47’  
MDTR F5,F3,F4  
QADTR F5,F5,F2,B’0001’  
SDTR F3,F3,F5  
LD F6,=DD’1.0975’  
MDTR F3,F3,F6  
QADTR F3,F3,F2,B’0001’  
LD F7,=DD’4.00’  
MDTR F7,F7,F1  
ADTR F3,F7,F3  
LD F8,=DD’1000.00’  
SDTR F3,F3,F8  

Now, the calculated final bill to the retailer is $3924.67, matching the packed decimal calculation.

35.13.2. The Retailer’s Calculation

Again, we’ll use quantization instructions to mimic SRP rounding:

LD F1,=DD’60’  
LD F2,=DD’4924.67’  
LD F3,=DD’1.37’  
LD F4,=DD’0.54’  
LD F5,=DD’0.925’  
LD F6,=DD’7.50’  
DDTR F7,F2,F1  
QADTR F7,F7,F3,B’0001’  
QADTR F8,F8,F3,B’0001’  
ADTR F8,F8,F4  
MDTR F9,F8,F5  
QADTR F9,F9,F3,B’0001’  
ADTR F10,F9,F8  
ADTR F10,F10,F6  
SDTR F8,F8,F7  
DDTR F8,F8,F7  
QADTR F8,F8,F5,B’0001’

We get the same results as we did with packed decimal: $130.94 for the total cost to the consumer, and a 37.66% profit margin for the retailer.

35.13.3. Comparing Packed and Floating Decimal

In the packed decimal calculations we had to keep track of the decimal point for each calculation. Furthermore, all packed decimal operations are storage-to-storage; on modern CPUs, the cost of memory references grows much faster than processor speed, so storage references are relatively expensive. Temporary work areas (as in Figures 320 and 322) add to the amount of storage needed, and intermediate results must often be copied to temporaries for later use.

Although neither the packed decimal nor the decimal floating-point example showed how the results would be formatted for printing, packed decimal formatting must “know” where to put the decimal point, and how many significant digits are in the value.

Decimal floating-point takes care of all the hard work for you! For example:
• All 16 floating-point registers are available, so temporary work areas in storage are rarely needed.
• Non-destructive operations minimize the need for copying data.
• Decimal floating-point knows where the decimal point is, and how many significant digits are present; instructions are available to easily determine both.
• A simple timing test showed that the decimal floating-point computation was several times faster than the packed decimal computation.

Comparing the two examples, you can see how programming decimal-arithmetic financial and business calculations can be much easier using decimal floating-point values and arithmetic.

35.14. Decimal Floating-Point Binary-Significand Format (*)

For other architectures

This format is not supported by z System.

We mentioned briefly on page 669 that a binary-integer significand could be used for decimal floating-point data. The IEEE 754-2008 standard defines this representation; it is intended mainly for implementations not using the complex hardware logic of the DPD formats.

The binary-significand encoding uses a simpler significand, and like the DPD representation, the Combination Field also mixes part of the characteristic and the leading significand digits.

As in the DPD representation, the first five bits of the CF are used to indicate infinity and NaNs:
• If the bits are 11110, the value is an infinity. In a canonical infinity, all remaining bits are zero.
• If the bits are 11111, the data item is a NaN; the following bit is zero for a QNaN and 1 for a SNaN. In a canonical NaN, all bits after the sixth are zero.

The standard defines the Combination Field to be w+5 bits long, where the five bits are reserved. This means that for short, long, and extended representations, w is 6, 8, and 11 respectively. The CF bits are denoted gₙ, where n takes values from 0 to (5+w−1). If we call the significand T, then the value of a number in this format is defined this way:

1. If g₀ and g₁ are one of 00, 01, or 10, then the biased exponent E is formed from g₀ through gₙ₊₁ and the significand is formed from bits gₙ₊₂ through the end of the encoding (including T).
2. If g₀ and g₁ together are 11 and g₂ and g₃ are one of 00, 01, or 10, then the biased exponent E is formed from g₂ through gₙ₊₃ and the significand is formed by prefixing the 4 bits (8+gₙ₊₄) to T.
3. Exponent biases are the same as for the decimal encodings.

Figure 461 sketches this representation:

```
1 ─ 5+w ─
sabcdefghijkmnopq | T=binary significand
```

Figure 461. Example of DFP binary-significand format

Figure 462 shows a short-format value in this representation, where w=6:

```
1 ─ 11 bits ─ 20 bits ─
sabcdefghi | T=binary significand
```

Figure 462. Sketch of short binary-significand format
Thus, if bits ‘ab’ are 00, 01, or 10, then the characteristic is bits ‘abcdefg′, and the binary significand is formed from bits ‘ijk’ concatenated at the front of T (23 bits).

Similarly, if bits ‘ab’ are 11 and bits ‘cd’ are 00, 01, or 10, then the characteristic is bits ‘cdefghijk′ and the binary significand is formed from the four bits (8+‘k’) concatenated at the front of T (24 bits).

We can derive the value of the short binary-encoded number $X^{3\text{FFFFFFF}}$ this way:

- The sign bit is 0, so the number is positive.
- The eleven bits of the Combination Field are B’011 1111 1111′. The ‘ab’ bits are 01, so the biased exponent is B’011 1111 1’ or $X^{7F}$ = 127 decimal. Because the exponent bias is 101, the true exponent is $127-101 = 26$.
- The significand is the remaining 3 bits of the CF, B’111′, followed by the 20 bits of the TSF, giving $X^{7\text{FFFFF}}$, or 8388607 in decimal.

Thus, the value is $+8388607\times10^{26}$.

If $J$ is the number of 10-bit, 3-BCD-digit declets in the Trailing Significand Field of a DPD-encoded number (2, 5, or 11), then the maximum valid value of the binary-encoded significand is the same as that of the corresponding decimal-encoded significand: $10^{(3\times J+1)}-1$ for numeric values, or $10^{(3\times J)}-1$ when T is used as the payload of a NaN. If the value exceeds this maximum, the significand is non-canonical and the value used is zero.

Computational operations in both decimal- and binary-significand representations produce only canonical significands, and always accept non-canonical significands as input operands.

### Exercises

35.14.1.(3) Create a 32-bit binary-significand representation whose value exceeds the maximum value $10^{97}-1$.

35.14.2.(4) Construct a short-format binary-significand decimal floating-point number Max, the maximum valid value. Show its hexadecimal representation.

35.14.3.(2) Construct a short-format binary-significand decimal floating-point number Min, the minimum valid value. Show its hexadecimal representation.

35.14.4.(3) A binary-significand decimal floating-point number has representation $X^{5\text{FFFFFFF}}$. Is it valid? If so, what is its value?

### 35.15. Summary

This section has covered a wide range of topics, some of which most programmers won’t need to worry about. The key operations are the arithmetic, loading, and type-conversion instructions; the others are useful to know about, but aren’t as frequently used.

We might describe decimal floating-point arithmetic this way:

**Decimal floating-point arithmetic**

It can behave like fixed-point arithmetic until it can’t, and then it behaves like floating-point arithmetic.

Table 372 lists the instructions that test data classes and data groups.
Table 372. DFP Test Data Class and Test Data Group instructions

<table>
<thead>
<tr>
<th>Function</th>
<th>Operand Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Data Class</td>
<td>TDCET</td>
</tr>
<tr>
<td>Test Data Group</td>
<td>TDGET</td>
</tr>
</tbody>
</table>

Table 373 lists the decimal floating-point arithmetic and related instructions.

| Function                     | Opera| |nd Length |
|------------------------------|------|---|---|---|
| Add                          | Long | Extended |
| Subtract                     | Long | Extended |
| Divide                       | Long | Extended |
| Multiply                     | Long | Extended |
| Compare                      | Long | Extended |
| Compare and Signal           | Long | Extended |
| Compare Biased Exponent      | Long | Extended |
| Load FP Integer              | Long | Extended |
| Extract Biased Exponent      | Long | Extended |
| Insert Biased Exponent       | Long | Extended |
| Extract Significance         | Long | Extended |
| Shift Significand Left       | Long | Extended |
| Shift Significand Right      | Long | Extended |
| Quantize                     | Long | Extended |
| Reround                      | Long | Extended |

Table 374 summarizes instructions that convert decimal floating-point data to and from different lengths and different data types.

<table>
<thead>
<tr>
<th>From To→</th>
<th>Short DFP</th>
<th>Long DFP</th>
<th>Ext. DFP</th>
<th>64-bit binary</th>
<th>Signed BCD</th>
<th>Unsigned BCD</th>
<th>Zoned decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short DFP</td>
<td>—</td>
<td>LDETR</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Long DFP</td>
<td>LDETR</td>
<td>—</td>
<td>LXDTR</td>
<td>CGDTR</td>
<td>CSDTR</td>
<td>CUDTR</td>
<td>CZDT</td>
</tr>
<tr>
<td>Ext. DFP</td>
<td>—</td>
<td>LDXTTR</td>
<td>—</td>
<td>CGXTTR</td>
<td>CSXTTR</td>
<td>CUXTR</td>
<td>CZXT</td>
</tr>
<tr>
<td>64-bit binary</td>
<td>—</td>
<td>CDGTR</td>
<td>CXGTR</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Signed BCD</td>
<td>—</td>
<td>CDSTR</td>
<td>CXSTR</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Unsigned BCD</td>
<td>—</td>
<td>CUDTR</td>
<td>CXUTR</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Zoned decimal</td>
<td>—</td>
<td>CDZT</td>
<td>CZXT</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Table 375 lists the decimal floating-point rounding and lengthening instructions.

<table>
<thead>
<tr>
<th>Function</th>
<th>Round</th>
<th>Lengthen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long to Short</td>
<td>LDETR</td>
<td>—</td>
</tr>
<tr>
<td>Short to Long</td>
<td>—</td>
<td>LDETR</td>
</tr>
<tr>
<td>Extended to Long</td>
<td>LDXTTR</td>
<td>—</td>
</tr>
<tr>
<td>Long to Extended</td>
<td>—</td>
<td>LDXTTR</td>
</tr>
</tbody>
</table>
Table 375. DFP rounding and lengthening instructions

Table 376 lists instructions that move data among the floating-point registers.

<table>
<thead>
<tr>
<th>Function</th>
<th>Long</th>
<th>Extended</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copy Sign</td>
<td>CPSDR</td>
<td></td>
</tr>
<tr>
<td>Load Complement</td>
<td>LCDFR</td>
<td></td>
</tr>
<tr>
<td>Load Negative</td>
<td>LNDFR</td>
<td></td>
</tr>
<tr>
<td>Load Positive</td>
<td>LPDFR</td>
<td></td>
</tr>
<tr>
<td>Load and Test</td>
<td>LTDTR</td>
<td>LTXTR</td>
</tr>
</tbody>
</table>

Table 376. DFP data-loading instructions

Table 377 lists instructions that move data among the floating-point registers.

<table>
<thead>
<tr>
<th>Function</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copy FPR to GPR</td>
<td>LGDR</td>
</tr>
<tr>
<td>Copy GPR to FPR</td>
<td>LDGR</td>
</tr>
</tbody>
</table>

Table 377. Instructions copying between FPRs and GPRs

Table 378 lists the instruction that sets the decimal rounding model.

<table>
<thead>
<tr>
<th>Function</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set Decimal Rounding Mode</td>
<td>SRNMT</td>
</tr>
</tbody>
</table>

Table 378. Instruction setting decimal rounding mode

Table 379 summarizes the non-preferred declet encodings. (They are also shown in parentheses with all the declet encodings in Figure 464.)

<table>
<thead>
<tr>
<th>Noncanonical declets</th>
<th>BCD digits</th>
<th>Canonical declet</th>
</tr>
</thead>
<tbody>
<tr>
<td>16E</td>
<td>26E</td>
<td>36E</td>
</tr>
<tr>
<td>16F</td>
<td>26F</td>
<td>36F</td>
</tr>
<tr>
<td>17E</td>
<td>27E</td>
<td>37E</td>
</tr>
<tr>
<td>17F</td>
<td>27F</td>
<td>37F</td>
</tr>
<tr>
<td>1EE</td>
<td>2EE</td>
<td>3EE</td>
</tr>
<tr>
<td>1EF</td>
<td>2EF</td>
<td>3EF</td>
</tr>
<tr>
<td>1FE</td>
<td>2FE</td>
<td>3EE</td>
</tr>
<tr>
<td>1FF</td>
<td>2FF</td>
<td>3FF</td>
</tr>
</tbody>
</table>

Table 379. Non-canonical declets
The following table shows how sets of three BCD digits are encoded into a canonical declet. The first two BCD digits are selected from a row, and the final BCD digit is selected from a column.

| 00_ | 000 | 001 | 002 | 003 | 004 | 005 | 006 | 007 | 008 | 009 | 01_ | 010 | 011 | 012 | 013 | 014 | 015 | 016 | 017 | 018 | 019 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 02_ | 020 | 021 | 022 | 023 | 024 | 025 | 026 | 027 | 028 | 029 | 03_ | 030 | 031 | 032 | 033 | 034 | 035 | 036 | 037 | 038 | 039 |
| 04_ | 040 | 041 | 042 | 043 | 044 | 045 | 046 | 047 | 048 | 049 | 05_ | 050 | 051 | 052 | 053 | 054 | 055 | 056 | 057 | 058 | 059 |
| 06_ | 060 | 061 | 062 | 063 | 064 | 065 | 066 | 067 | 068 | 069 | 07_ | 070 | 071 | 072 | 073 | 074 | 075 | 076 | 077 | 078 | 079 |
| 08_ | 080 | 081 | 082 | 083 | 084 | 085 | 086 | 087 | 088 | 089 | 09_ | 090 | 091 | 092 | 093 | 094 | 095 | 096 | 097 | 098 | 099 |
| 10_ | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 11_ | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 |
| 12_ | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 13_ | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 |
| 14_ | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 15_ | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 |
| 16_ | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 17_ | 170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 |
| 18_ | 180 | 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 19_ | 190 | 191 | 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 |
| 20_ | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 21_ | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 |
| 22_ | 220 | 221 | 222 | 223 | 224 | 225 | 226 | 227 | 228 | 229 | 23_ | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239 |
| 24_ | 240 | 241 | 242 | 243 | 244 | 245 | 246 | 247 | 248 | 249 | 25_ | 250 | 251 | 252 | 253 | 254 | 255 | 256 | 257 | 258 | 259 |
| 26_ | 260 | 261 | 262 | 263 | 264 | 265 | 266 | 267 | 268 | 269 | 27_ | 270 | 271 | 272 | 273 | 274 | 275 | 276 | 277 | 278 | 279 |

Figure 463. BCD-to-DPD encodings
The following table shows how declets are converted to groups of three BCD digits. The parenthesized values in the table are non-preferred encodings; they are accepted as input values, but are not generated by any arithmetic operation.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>3F</td>
<td>770</td>
<td>771</td>
<td>772</td>
<td>773</td>
<td>774</td>
</tr>
<tr>
<td>3C</td>
<td>740</td>
<td>741</td>
<td>742</td>
<td>743</td>
<td>744</td>
</tr>
<tr>
<td>3B</td>
<td>730</td>
<td>731</td>
<td>732</td>
<td>733</td>
<td>734</td>
</tr>
<tr>
<td>37</td>
<td>670</td>
<td>671</td>
<td>672</td>
<td>673</td>
<td>674</td>
</tr>
<tr>
<td>33</td>
<td>630</td>
<td>631</td>
<td>632</td>
<td>633</td>
<td>634</td>
</tr>
<tr>
<td>32</td>
<td>620</td>
<td>621</td>
<td>622</td>
<td>623</td>
<td>624</td>
</tr>
<tr>
<td>2F</td>
<td>570</td>
<td>571</td>
<td>572</td>
<td>573</td>
<td>574</td>
</tr>
<tr>
<td>26</td>
<td>460</td>
<td>461</td>
<td>462</td>
<td>463</td>
<td>464</td>
</tr>
<tr>
<td>24</td>
<td>440</td>
<td>441</td>
<td>442</td>
<td>443</td>
<td>444</td>
</tr>
<tr>
<td>21</td>
<td>410</td>
<td>411</td>
<td>412</td>
<td>413</td>
<td>414</td>
</tr>
<tr>
<td>1B</td>
<td>330</td>
<td>331</td>
<td>332</td>
<td>333</td>
<td>334</td>
</tr>
<tr>
<td>12</td>
<td>220</td>
<td>221</td>
<td>222</td>
<td>223</td>
<td>224</td>
</tr>
<tr>
<td>11</td>
<td>210</td>
<td>211</td>
<td>212</td>
<td>213</td>
<td>214</td>
</tr>
<tr>
<td>10</td>
<td>200</td>
<td>201</td>
<td>202</td>
<td>203</td>
<td>204</td>
</tr>
<tr>
<td>0E</td>
<td>160</td>
<td>161</td>
<td>162</td>
<td>163</td>
<td>164</td>
</tr>
<tr>
<td>0D</td>
<td>150</td>
<td>151</td>
<td>152</td>
<td>153</td>
<td>154</td>
</tr>
<tr>
<td>0C</td>
<td>140</td>
<td>141</td>
<td>142</td>
<td>143</td>
<td>144</td>
</tr>
<tr>
<td>08</td>
<td>100</td>
<td>101</td>
<td>102</td>
<td>103</td>
<td>104</td>
</tr>
<tr>
<td>06</td>
<td>060</td>
<td>061</td>
<td>062</td>
<td>063</td>
<td>064</td>
</tr>
<tr>
<td>04</td>
<td>040</td>
<td>041</td>
<td>042</td>
<td>043</td>
<td>044</td>
</tr>
<tr>
<td>03</td>
<td>030</td>
<td>031</td>
<td>032</td>
<td>033</td>
<td>034</td>
</tr>
<tr>
<td>02</td>
<td>020</td>
<td>021</td>
<td>022</td>
<td>023</td>
<td>024</td>
</tr>
<tr>
<td>01</td>
<td>010</td>
<td>011</td>
<td>012</td>
<td>013</td>
<td>014</td>
</tr>
<tr>
<td>00</td>
<td>000</td>
<td>001</td>
<td>002</td>
<td>003</td>
<td>004</td>
</tr>
</tbody>
</table>

Figure 464. DPD-to-BCD translation

Chapter IX: Floating-Point Data and Operations
### Instructions Discussed in this Section

The instruction mnemonics and opcodes are shown in the following table:

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Opcode</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADTR</td>
<td>B3D2</td>
</tr>
<tr>
<td>ADTRA</td>
<td>B3D2</td>
</tr>
<tr>
<td>AXTR</td>
<td>B3DA</td>
</tr>
<tr>
<td>AXTRA</td>
<td>B3DA</td>
</tr>
<tr>
<td>CDFTR</td>
<td>B351</td>
</tr>
<tr>
<td>CDGTR</td>
<td>B3F1</td>
</tr>
<tr>
<td>CDGTRA</td>
<td>B3F1</td>
</tr>
<tr>
<td>CDFLTR</td>
<td>B353</td>
</tr>
<tr>
<td>CDFGTR</td>
<td>B952</td>
</tr>
<tr>
<td>CDGTR</td>
<td>B3F3</td>
</tr>
<tr>
<td>CDTR</td>
<td>B3E4</td>
</tr>
<tr>
<td>CDUTR</td>
<td>B3F2</td>
</tr>
<tr>
<td>CDZT</td>
<td>EDAA</td>
</tr>
<tr>
<td>CEDTR</td>
<td>B3F4</td>
</tr>
<tr>
<td>CEXTR</td>
<td>B3FC</td>
</tr>
<tr>
<td>CFDTR</td>
<td>B941</td>
</tr>
<tr>
<td>CFXTR</td>
<td>B949</td>
</tr>
<tr>
<td>CGDTR</td>
<td>B3E1</td>
</tr>
<tr>
<td>CGDTRA</td>
<td>B3E1</td>
</tr>
<tr>
<td>CGXTR</td>
<td>B3E9</td>
</tr>
<tr>
<td>CGXTRA</td>
<td>B3E9</td>
</tr>
<tr>
<td>CLFDTR</td>
<td>B943</td>
</tr>
<tr>
<td>CLFXTR</td>
<td>B94B</td>
</tr>
<tr>
<td>CLGXT</td>
<td>B94A</td>
</tr>
<tr>
<td>CLGDR</td>
<td>B942</td>
</tr>
<tr>
<td>CPSDR</td>
<td>B372</td>
</tr>
<tr>
<td>CSDTR</td>
<td>B3E3</td>
</tr>
<tr>
<td>CSXTR</td>
<td>B3EB</td>
</tr>
<tr>
<td>CUDTR</td>
<td>B3E2</td>
</tr>
<tr>
<td>CUXTR</td>
<td>B3EA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Opcode</th>
</tr>
</thead>
<tbody>
<tr>
<td>CXFTR</td>
<td>B359</td>
</tr>
<tr>
<td>CXGTR</td>
<td>B3F9</td>
</tr>
<tr>
<td>CXGTRA</td>
<td>B3F9</td>
</tr>
<tr>
<td>CXLFTTR</td>
<td>B95B</td>
</tr>
<tr>
<td>CXLGTR</td>
<td>B95A</td>
</tr>
<tr>
<td>CXTR</td>
<td>B3EC</td>
</tr>
<tr>
<td>CXUTR</td>
<td>B3FA</td>
</tr>
<tr>
<td>CXZT</td>
<td>EDAB</td>
</tr>
<tr>
<td>CZDT</td>
<td>EDAB</td>
</tr>
<tr>
<td>CZXT</td>
<td>EDA9</td>
</tr>
<tr>
<td>DDTR</td>
<td>B3D1</td>
</tr>
<tr>
<td>DDTRA</td>
<td>B3D1</td>
</tr>
<tr>
<td>DXTR</td>
<td>B3D9</td>
</tr>
<tr>
<td>DXTRA</td>
<td>B3D9</td>
</tr>
<tr>
<td>EEDTR</td>
<td>B3E5</td>
</tr>
<tr>
<td>EEXTR</td>
<td>B3ED</td>
</tr>
<tr>
<td>ESĐT</td>
<td>B3E7</td>
</tr>
<tr>
<td>ESXTR</td>
<td>B3EF</td>
</tr>
<tr>
<td>FIDTR</td>
<td>B3D7</td>
</tr>
<tr>
<td>FIXTR</td>
<td>B3DF</td>
</tr>
<tr>
<td>IEDTR</td>
<td>B3F6</td>
</tr>
<tr>
<td>IEXTR</td>
<td>B3FE</td>
</tr>
<tr>
<td>KDTR</td>
<td>B3E0</td>
</tr>
<tr>
<td>KXTR</td>
<td>B3EB</td>
</tr>
<tr>
<td>LCDFR</td>
<td>B373</td>
</tr>
<tr>
<td>LDTR</td>
<td>B3D4</td>
</tr>
<tr>
<td>LDGR</td>
<td>B3C1</td>
</tr>
<tr>
<td>LDXT</td>
<td>B3DD</td>
</tr>
<tr>
<td>LEDTR</td>
<td>B3D5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Opcode</th>
</tr>
</thead>
<tbody>
<tr>
<td>LGDTR</td>
<td>B3CD</td>
</tr>
<tr>
<td>LNDFR</td>
<td>B371</td>
</tr>
<tr>
<td>LPDFR</td>
<td>B370</td>
</tr>
<tr>
<td>LTDTR</td>
<td>B3D6</td>
</tr>
<tr>
<td>LTXTR</td>
<td>B3DE</td>
</tr>
<tr>
<td>LXDT</td>
<td>B3DC</td>
</tr>
<tr>
<td>MDTR</td>
<td>B3D0</td>
</tr>
<tr>
<td>MDTRA</td>
<td>B3D0</td>
</tr>
<tr>
<td>MXTR</td>
<td>B3D8</td>
</tr>
<tr>
<td>MXTRA</td>
<td>B3D8</td>
</tr>
<tr>
<td>QADTR</td>
<td>B3F5</td>
</tr>
<tr>
<td>QAXTR</td>
<td>B3FD</td>
</tr>
<tr>
<td>RDRTR</td>
<td>B3F7</td>
</tr>
<tr>
<td>RRXTR</td>
<td>B3FF</td>
</tr>
<tr>
<td>SDTR</td>
<td>B3D3</td>
</tr>
<tr>
<td>SDTRA</td>
<td>B3D3</td>
</tr>
<tr>
<td>SLDT</td>
<td>ED40</td>
</tr>
<tr>
<td>SLXT</td>
<td>ED48</td>
</tr>
<tr>
<td>SRDT</td>
<td>ED41</td>
</tr>
<tr>
<td>SRNMT</td>
<td>B2B9</td>
</tr>
<tr>
<td>SRX</td>
<td>ED49</td>
</tr>
<tr>
<td>SXTR</td>
<td>B3DB</td>
</tr>
<tr>
<td>SXTRA</td>
<td>B3DB</td>
</tr>
<tr>
<td>TDCDT</td>
<td>ED54</td>
</tr>
<tr>
<td>TDCET</td>
<td>ED50</td>
</tr>
<tr>
<td>TDCX</td>
<td>ED58</td>
</tr>
<tr>
<td>TDGDT</td>
<td>ED55</td>
</tr>
<tr>
<td>TDGET</td>
<td>ED51</td>
</tr>
<tr>
<td>TDGXT</td>
<td>ED59</td>
</tr>
</tbody>
</table>
The instruction opcodes and mnemonics are shown in the following table:

<table>
<thead>
<tr>
<th>Opcode</th>
<th>Mnemonic</th>
<th>Opcode</th>
<th>Mnemonic</th>
<th>Opcode</th>
<th>Mnemonic</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2B9</td>
<td>SRNMT</td>
<td>B3ED</td>
<td>EEXTR</td>
<td>B353</td>
<td>CDLFTR</td>
</tr>
<tr>
<td>B3CD</td>
<td>LGDR</td>
<td>B3EF</td>
<td>ESXTR</td>
<td>B359</td>
<td>CXFTR</td>
</tr>
<tr>
<td>B3C1</td>
<td>LDGR</td>
<td>B3E0</td>
<td>KDTR</td>
<td>B370</td>
<td>LPDFR</td>
</tr>
<tr>
<td>B3DA</td>
<td>AXTR</td>
<td>B3E1</td>
<td>CGDTR</td>
<td>B371</td>
<td>LNDFR</td>
</tr>
<tr>
<td>B3DA</td>
<td>AXTRA</td>
<td>B3E1</td>
<td>CGDTRA</td>
<td>B372</td>
<td>CPSDR</td>
</tr>
<tr>
<td>B3DB</td>
<td>SXTR</td>
<td>B3E2</td>
<td>CUDTR</td>
<td>B373</td>
<td>LCDFR</td>
</tr>
<tr>
<td>B3DB</td>
<td>SXTRA</td>
<td>B3E3</td>
<td>CSDTR</td>
<td>B94A</td>
<td>CLGXT</td>
</tr>
<tr>
<td>B3DC</td>
<td>LXDTR</td>
<td>B3E4</td>
<td>CDTX</td>
<td>B94B</td>
<td>CLFXTR</td>
</tr>
<tr>
<td>B3DD</td>
<td>LDXT</td>
<td>B3E5</td>
<td>EEDTR</td>
<td>B941</td>
<td>CDFTR</td>
</tr>
<tr>
<td>B3DE</td>
<td>LTXTR</td>
<td>B3E6</td>
<td>KXTR</td>
<td>B942</td>
<td>CLGDTR</td>
</tr>
<tr>
<td>B3DF</td>
<td>FIXT</td>
<td>B3E7</td>
<td>ESDTR</td>
<td>B943</td>
<td>CLFDTR</td>
</tr>
<tr>
<td>B3D0</td>
<td>MDTR</td>
<td>B3E8</td>
<td>KXTR</td>
<td>B949</td>
<td>CFXTR</td>
</tr>
<tr>
<td>B3D0</td>
<td>MDTA</td>
<td>B3E9</td>
<td>CGXTR</td>
<td>B95A</td>
<td>CLXGTR</td>
</tr>
<tr>
<td>B3D1</td>
<td>DDTR</td>
<td>B3E9</td>
<td>CGXTRA</td>
<td>B95B</td>
<td>CLXLFR</td>
</tr>
<tr>
<td>B3D1</td>
<td>DDTRA</td>
<td>B3FA</td>
<td>CXUTR</td>
<td>B952</td>
<td>CDLGR</td>
</tr>
<tr>
<td>B3D2</td>
<td>ADTR</td>
<td>B3FB</td>
<td>CXSTR</td>
<td>ED40</td>
<td>SLDT</td>
</tr>
<tr>
<td>B3D2</td>
<td>ADTRA</td>
<td>B3FC</td>
<td>CEXTR</td>
<td>ED41</td>
<td>SRTX</td>
</tr>
<tr>
<td>B3D3</td>
<td>SDTR</td>
<td>B3FD</td>
<td>QAXTR</td>
<td>ED48</td>
<td>SLXT</td>
</tr>
<tr>
<td>B3D3</td>
<td>SDTRA</td>
<td>B3FE</td>
<td>IEXTR</td>
<td>ED49</td>
<td>SRXT</td>
</tr>
<tr>
<td>B3D4</td>
<td>LEDTR</td>
<td>B3FF</td>
<td>RRXTR</td>
<td>ED50</td>
<td>TDCT</td>
</tr>
<tr>
<td>B3D5</td>
<td>LEDTR</td>
<td>B3F1</td>
<td>CDGTRA</td>
<td>ED51</td>
<td>TDCBT</td>
</tr>
<tr>
<td>B3D6</td>
<td>LTDT</td>
<td>B3F2</td>
<td>CDTX</td>
<td>ED54</td>
<td>TDCDT</td>
</tr>
<tr>
<td>B3D7</td>
<td>FIDTR</td>
<td>B3F3</td>
<td>CDSTR</td>
<td>ED55</td>
<td>TDGDT</td>
</tr>
<tr>
<td>B3D8</td>
<td>MXT</td>
<td>B3F4</td>
<td>CEDTR</td>
<td>ED58</td>
<td>TDCTX</td>
</tr>
<tr>
<td>B3D8</td>
<td>MXTRA</td>
<td>B3F5</td>
<td>QADTR</td>
<td>ED59</td>
<td>TDGMT</td>
</tr>
<tr>
<td>B3D9</td>
<td>DXTR</td>
<td>B3F6</td>
<td>IEDTR</td>
<td>ED8A</td>
<td>CZDT</td>
</tr>
<tr>
<td>B3D9</td>
<td>DXTRA</td>
<td>B3F7</td>
<td>RRDTR</td>
<td>EDA9</td>
<td>CZXT</td>
</tr>
<tr>
<td>B3EA</td>
<td>CUXTR</td>
<td>B3F9</td>
<td>CXGTR</td>
<td>EDAA</td>
<td>CDZT</td>
</tr>
<tr>
<td>B3EB</td>
<td>CSXTR</td>
<td>B3F9</td>
<td>CXGTRA</td>
<td>EDAB</td>
<td>CXZT</td>
</tr>
<tr>
<td>B3EC</td>
<td>CXTR</td>
<td>B351</td>
<td>CDFTR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Exercises**

35.15.1.(3) Several decimal floating-point instructions have an $M_4$ mask field. Make a table showing (a) its possible values, (b) the type or types of instructions to which each value applies, and (c) the effect of each value for the affected instructions.

**Terms and Definitions**

**cohort**

In a given format, a set of decimal floating-point numbers having the same numeric value but different quanta.
quantum
The value of a unit in the low-order digit of a decimal floating-point number.

preferred quantum
The quantum selected for the result of an operation that maximizes the number of significant
digits, including low-order zero digits. Equivalent to preferred exponent.

declet
A 10-bit encoding of three Binary Coded Decimal (BCD) digits. Declets may have two
forms:
• canonical: preferred (and generated) values, and
• non-cannonical: any of 24 non-preferred encodings accepted as operands, but not generated
by any arithmetic operation.

DPD
Densely Packed Decimal; an encoding into declets.

extreme exponent
An exponent with maximum positive or negative value.

payload
Diagnostic information contained in a the significand of a NaN.

preferred exponent
The exponent of the result of every numeric operation has a preferred value, either that of
one of the operands or a value providing the maximum number of significant digits.

Programming Problems

Problem 35.1.(3)+ Write a program that reads records containing eight hex digits representing a
short decimal floating-point number. Then, display the value of the number in “scientific”
format: sd.ddddddEsdd where s is a sign, and d represents decimal digits. If the hex digits repre-
sent a special value, print its sign followed by Inf, QNaN, or SNaN as appropriate.

Problem 35.2.(4) In decimal floating-point arithmetic, the equation (1.0/N)×N=1.0 is true for
some values of N between 1 and 100 and not for others. Write a program that tests this relation
in long and extended precision decimal floating-point arithmetic. Show the values of N for
which the relation fails for both lengths, and for which the relation fails for only one of the
lengths.

For your own edification and/or extra credit:
• For those values of N for which the equation fails, determine the relative difference between
1.0 and the result of (1.0/N)×N.
• What rounding modes should be used for your solution? How would other choices affect
the results?
• What property is shared by all the values that fail?

Problem 35.3.(3)+ Write a subroutine named DPD2BCD that converts a declet to the decimal
equivalent 3 hex digits that represent the value of the declet.

Then, write a driver program that will call DPD2BCD for each of the 1024 possible bit combina-
tions, and display in tabular form (a) the decimal value of the declet, (b) the declet as three
hexadecimal digits, and (c) the decimal number between 0 and 999 represented by the declet.
This chapter has covered a wide range of topics; this final section summarizes properties of floating-point data and arithmetic, and provides some general observations and reminders.

### 36.1. Floating-Point Data Representations

The three z System floating-point representations are summarized in Table 380 for short, long, and extended precision data respectively.

<table>
<thead>
<tr>
<th>Property</th>
<th>Hexadecimal</th>
<th>Binary</th>
<th>Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operand width, in bits</td>
<td>32, 64, 128</td>
<td>32, 64, 128</td>
<td>32, 64, 128</td>
</tr>
<tr>
<td>Base/radix</td>
<td>16</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Representation of significand digits</td>
<td>Fraction</td>
<td>Fraction</td>
<td>Integer or fraction</td>
</tr>
<tr>
<td>Significant digits</td>
<td>All are present</td>
<td>Implicit high-order bit for normalized data</td>
<td>All are present; high-order digit is part of Combination Field</td>
</tr>
<tr>
<td>Significand width, in radix digits</td>
<td>6, 14, 28</td>
<td>24, 53, 113</td>
<td>7, 16, 34</td>
</tr>
<tr>
<td>Maximum equivalent decimal precision</td>
<td>6, 15, 32</td>
<td>6, 15, 33</td>
<td>7, 16, 34</td>
</tr>
<tr>
<td>Exponent width, in bits</td>
<td>Always 7</td>
<td>8, 11, 15</td>
<td>8, 10, 14</td>
</tr>
<tr>
<td>Exponent representation</td>
<td>Binary</td>
<td>Binary</td>
<td>Binary</td>
</tr>
<tr>
<td>Exponent sign</td>
<td>In biased exponent</td>
<td>In biased exponent</td>
<td>In biased exponent</td>
</tr>
<tr>
<td>Exponent bias</td>
<td>64</td>
<td>127, 1023, 16383</td>
<td>101, 398, 6176</td>
</tr>
<tr>
<td>Maximum exponent</td>
<td>+63</td>
<td>+127, +1023, +16383</td>
<td>+96, +384, +6144</td>
</tr>
<tr>
<td>Minimum exponent</td>
<td>−64</td>
<td>−126, −1022, −16382</td>
<td>−95, −383, −6143</td>
</tr>
</tbody>
</table>
Table 380 (Page 2 of 2). Summary of z System floating-point representations

<table>
<thead>
<tr>
<th>Property</th>
<th>Hexadecimal</th>
<th>Binary</th>
<th>Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum normalized value</td>
<td>7.2×10^{+75}</td>
<td>3.4×10^{+38}</td>
<td>10^{+97}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.8×10^{+308}</td>
<td>10^{+385}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.2×10^{+4392}</td>
<td>10^{+6145}</td>
</tr>
<tr>
<td>Minimum normalized value</td>
<td>7.2×10^{-79}</td>
<td>1.2×10^{-38}</td>
<td>10^{-95}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.2×10^{-308}</td>
<td>10^{-383}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.4×10^{-4392}</td>
<td>10^{-6143}</td>
</tr>
<tr>
<td>Minimum denormalized value</td>
<td>5.1×10^{-85}</td>
<td>1.4×10^{-45}</td>
<td>10^{-101}</td>
</tr>
<tr>
<td></td>
<td>1.2×10^{-94}</td>
<td>4.9×10^{-324}</td>
<td>10^{-398}</td>
</tr>
<tr>
<td></td>
<td>1.7×10^{-111}</td>
<td>6.5×10^{-4966}</td>
<td>10^{-6176}</td>
</tr>
<tr>
<td>Scale factor for overflow/underflow exponent wrap</td>
<td>none</td>
<td>192</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1536</td>
<td>576</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24576</td>
<td>9216</td>
</tr>
<tr>
<td>Scale factor for “Load Rounded” exponent wrap</td>
<td>none</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>512</td>
<td>192</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8192</td>
<td>3072</td>
</tr>
<tr>
<td>Special values</td>
<td>None</td>
<td>QNaN, SNaN, Infinity</td>
<td>QNaN, SNaN, Infinity</td>
</tr>
<tr>
<td>Multiple representations of a value</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Unnormalized values</td>
<td>Yes</td>
<td>Yes (for tiny values)</td>
<td>Yes</td>
</tr>
<tr>
<td>Rounding options for arithmetic</td>
<td>None</td>
<td>4 modes</td>
<td>8 modes</td>
</tr>
<tr>
<td>Sign of zero arithmetically significant</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Each representation has advantages and disadvantages:

- Hexadecimal floating-point has a fixed-width characteristic, so it’s easier to extract the significand and to extend or shorten operands; it supports redundant representations.
- Binary floating-point has no redundant values or representations, but lengthening or shortening operands requires special instructions.
- Decimal floating-point has a very complex representation and supports redundant values, but its arithmetic is more intuitive than hexadecimal or binary.
- Precisions have minor differences:
  - Short binary has 0 to 3 more fraction bits than short hexadecimal
  - Long binary has 0 to 3 fewer fraction bits than long hexadecimal
  - Extended IEEE binary has 1 to 4 more fraction bits than extended hexadecimal
- Decimal floating-point has greater decimal precision than either hexadecimal or binary floating-point, for all operand lengths.

**Exercises**

36.1.1.(1) What possibilities must you consider in converting short-precision floating-point data between hexadecimal and binary representations?

36.1.2.(1) What possibilities must you consider in converting long-precision floating-point data between hexadecimal and binary representations?

36.1.3.(1) What possibilities must you consider in converting extended-precision floating-point data between hexadecimal and binary representations?
36.2. Floating-Point Properties

Because precision and range are limited, the fundamental behaviors of floating-point are always present; and, some numbers cannot be represented exactly. For example, consider the decimal value 0.1: its value in binary is 0.0001 1001 1001 1001 1001 1001 1001 1001 ...; an unbounded bit string. When representing 0.1 as a normalized short hexadecimal floating-point value, the fraction has 21 significant bits: \( \times'9999A' \), with relative error \( 2^{-22} \). When represented as a short precision binary floating-point value, the fraction has 24 significant bits: \( \times'CCCCD' \), with relative error \( 2^{-25} \).

This representation error may lead to unexpected results. Suppose we add 0.1 to itself 8 times, and multiply 0.1 by 8, using short binary and hexadecimal arithmetic. The results are shown in Table 381, where the differences from the decimal result are due to the imprecise representation of 0.1 in hexadecimal and binary.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Binary</th>
<th>Hexadecimal</th>
<th>Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add 0.1 8 times</td>
<td>.8000000715...</td>
<td>.8000000119...</td>
<td>.8000000</td>
</tr>
<tr>
<td>Multiply 0.1 8 times</td>
<td>.8000000119...</td>
<td>.8000000119...</td>
<td>.8000000</td>
</tr>
</tbody>
</table>

Table 381. Adding 0.1 in hexadecimal, binary, and decimal floating-point

This repeating-fraction problem doesn’t go away when you use decimal floating-point: it cannot precisely represent fractions like 2/3 and 1/7.

Exercises

36.2.1.(2)+ Using 6-digit decimal floating-point numbers and arithmetic (not a type used in z System!), add 2/3 to 1.00000 3 times, with rounding to the nearest 6-digit value at each step. If you start (a) with 2/3 = 0.666667 and (b) with 2/3 = 0.666666, what are the results?

36.2.2.(2)+ Using the same 6-digit decimal floating-point numbers as in Exercise 36.2.1, add three copies of each representation of 2/3 to itself, and then add 1.00000. What are the results?

36.3. Floating-Point Exceptions

Hexadecimal and binary/decimal exceptions have similarities and differences, as summarized in Tables 382 and 383.

<table>
<thead>
<tr>
<th>Exception</th>
<th>Maskable</th>
<th>Masked result</th>
<th>Interrupt action/result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exponent overflow</td>
<td>No</td>
<td>—</td>
<td>Scaled exponent</td>
</tr>
<tr>
<td>Exponent underflow</td>
<td>Yes</td>
<td>True zero</td>
<td>Scaled exponent</td>
</tr>
<tr>
<td>Zero divide</td>
<td>No</td>
<td>—</td>
<td>Dividend operand unchanged</td>
</tr>
<tr>
<td>Lost significance</td>
<td>Yes</td>
<td>True zero</td>
<td>Pseudo-zero</td>
</tr>
</tbody>
</table>

Table 382. Exception behavior for hexadecimal floating-point

<table>
<thead>
<tr>
<th>Exception</th>
<th>Maskable</th>
<th>Masked result</th>
<th>Interrupt action/result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invalid operation</td>
<td>Yes</td>
<td>QNaN</td>
<td>Operation suppressed</td>
</tr>
<tr>
<td>Zero divide</td>
<td>Yes</td>
<td>Signed infinity</td>
<td>Operation suppressed</td>
</tr>
<tr>
<td>Exponent overflow</td>
<td>Yes</td>
<td>Infinity or MaxReal</td>
<td>Scaled exponent</td>
</tr>
<tr>
<td>Exponent underflow</td>
<td>Yes</td>
<td>Zero (or BFP de-norm)</td>
<td>Scaled exponent</td>
</tr>
<tr>
<td>Inexact result</td>
<td>Yes</td>
<td>Calculated result</td>
<td>Calculated result</td>
</tr>
<tr>
<td>Quantum exception (DFP only)</td>
<td>Yes</td>
<td>Calculated result</td>
<td>Calculated result</td>
</tr>
</tbody>
</table>
Table 383. Exception behavior for binary and decimal floating-point

<table>
<thead>
<tr>
<th>Differences to consider</th>
</tr>
</thead>
<tbody>
<tr>
<td>Both hexadecimal and IEEE BFP/DFP results can differ significantly between masked and unmasked actions.</td>
</tr>
</tbody>
</table>

36.4. Defining Floating-Point Constants

Each type allows you to specify a length modifier, as shown in Table 384. The hexadecimal and binary types can be generated at less than their default lengths, but decimal floating-point constants must have fixed lengths even if they are not aligned on default boundaries. (Bit-length modifiers were described in Section 17.5 on page 257.)

<table>
<thead>
<tr>
<th>Constant Type</th>
<th>Default Length</th>
<th>Length Modifier Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>E, EH (hexadecimal)</td>
<td>4</td>
<td>.12 to 8</td>
</tr>
<tr>
<td>EB (binary)</td>
<td>4</td>
<td>.9 to 4</td>
</tr>
<tr>
<td>ED (decimal)</td>
<td>4</td>
<td>.32 or 4 only</td>
</tr>
<tr>
<td>D, DH (hexadecimal)</td>
<td>8</td>
<td>.12 to 8</td>
</tr>
<tr>
<td>DB (binary)</td>
<td>8</td>
<td>.12 to 8</td>
</tr>
<tr>
<td>DD (decimal)</td>
<td>8</td>
<td>.64 or 16 only</td>
</tr>
<tr>
<td>L, LH, LQ (hexadecimal)</td>
<td>8</td>
<td>.12 to 16</td>
</tr>
<tr>
<td>LB (binary)</td>
<td>16</td>
<td>.16 to 16</td>
</tr>
<tr>
<td>LD (decimal)</td>
<td>16</td>
<td>.128 or 16 only</td>
</tr>
</tbody>
</table>

Table 384. Length modifiers of floating-point constants

Table 385 summarizes the rounding-mode suffixes you can use when defining floating-point constants. Values less than 8 are used for hexadecimal and binary constants and values greater than or equal to 8 are used for decimal floating-point constants.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Rn</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>R1</td>
<td>Round half-up (to nearest, ties away from 0) (HFP default)</td>
</tr>
<tr>
<td>4</td>
<td>R4</td>
<td>Round half-even (to nearest, ties to nearest even) (BFP Default)</td>
</tr>
<tr>
<td>5</td>
<td>R5</td>
<td>Round toward zero (truncate)</td>
</tr>
<tr>
<td>6</td>
<td>R6</td>
<td>Round to +∞; if −, truncate</td>
</tr>
<tr>
<td>7</td>
<td>R7</td>
<td>Round to −∞; if +, truncate</td>
</tr>
<tr>
<td>8</td>
<td>R8</td>
<td>Round half-even (to nearest, ties to nearest even) (default)</td>
</tr>
<tr>
<td>9</td>
<td>R9</td>
<td>Round toward zero (truncate)</td>
</tr>
<tr>
<td>10</td>
<td>R10</td>
<td>Round to +∞; if −, truncate</td>
</tr>
<tr>
<td>11</td>
<td>R11</td>
<td>Round to −∞; if +, truncate</td>
</tr>
<tr>
<td>12</td>
<td>R12</td>
<td>Round half-up (to nearest, ties away from 0)</td>
</tr>
<tr>
<td>13</td>
<td>R13</td>
<td>Round half-down (to nearest, ties toward 0)</td>
</tr>
<tr>
<td>14</td>
<td>R14</td>
<td>Round up (away from zero)</td>
</tr>
<tr>
<td>15</td>
<td>R15</td>
<td>Round for reround (“prepare for shorter precision”)</td>
</tr>
</tbody>
</table>

Table 385. Assembler rounding-mode suffixes for floating-point constants
Exercises

36.4.1.(2) Table 384 indicates that the minimum bit length for hexadecimal floating-point constants is 12 bits. However,

```
DC EL.9'8'
```

is quite acceptable to the Assembler. Why then is the stated minimum bit length 12?

36.4.2.(3)+ Consider the representations of the decimal constant 0.1: Its short binary floating-point representation is `X'3DCCCCCD'` and its short decimal floating-point representation is `X'22400001'`. What are the values of these two words if they are mistakenly interpreted as short hexadecimal floating-point constants?

36.4.3.(3)+ The short hexadecimal floating-point representation of 0.1 is `X'4019999A'`. What would be the value of this constant if treated as if it is binary and decimal floating-point?

36.4.4.(3)+ The short decimal floating-point representation of 1 is `X'22500001'`. What would be the value of this constant if treated as if it is hexadecimal and binary floating-point?

36.4.5.(3)+ These four floating-point constants were found in a program that didn’t document their type. What values would they take if interpreted as short hexadecimal, binary, and decimal floating-point constants?

(a) `X'3F800000'
(b) `X'41100000'
(c) `X'42640000'
(d) `X'7FFFFFFF'

36.5. Converting Among Decimal, Hexadecimal and Binary Representations

When you display the values of floating-point numbers, they will almost always be wanted in decimal form. For decimal floating-point, you only need to format the results; no conversion is needed because values are already in decimal format. For the other two representations, however, the data must be converted from a binary format (including hexadecimal) to decimal. These conversions can be very difficult to do correctly: approximate conversions between decimal and hex or binary are easy, but some common values require great care. We’ll discuss this problem in two forms, known as “In-Out” and “Out-In” conversions.

An “In” conversion converts data from decimal to a machine radix (hexadecimal or binary) and an “Out” conversion converts data from a from machine radix to decimal. The conversions between decimal and binary correctly must be correctly rounded for all values for these rules to apply.

36.5.1. In-Out Conversions

When we convert external data from a decimal representation to internal hexadecimal or binary floating-point, do some computations, and then convert the internal floating-point values back to decimal for display or printing, we have done an In-Out conversion. To be assured that the results are reliable, we must answer this question:

- If the precision of the external decimal data is D digits, what internal precision p is required to be sure we can correctly represent the decimal value (the “In” conversion); and when converted back to decimal (the “Out” conversion), can we correctly recover all D decimal digits?

---

228 Today, these conversions are almost always correctly rounded, but for many years their complexity was not well understood.
This observation helps define the term “equivalent decimal digits”. Using a floating-point system FP(r,p) with radix r and p base-r digits, if

1. \(10^J \neq r^K\) for any nonzero J and K (that is, no power of 2 is a power of 10, which is true for both hexadecimal and binary), and

2. all D-digit decimal floating-point numbers can be correctly converted to a member of FP(r,p), and when converted back to decimal will correctly recover the original decimal value, and

3. conversions are exact (that is, deliver the nearest neighbor of the infinitely precise value), and are correctly rounded.

then we say that FP(r,p) can faithfully represent D-digit decimal numbers.

Starting with decimal data with precision D, the required internal hexadecimal and binary floating-point precisions for faithful conversion are summarized in Table 386.

<table>
<thead>
<tr>
<th>Precision</th>
<th>Decimal Digits</th>
<th>Hexadecimal Digits</th>
<th>Binary Digits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short</td>
<td>6</td>
<td>6</td>
<td>21</td>
</tr>
<tr>
<td>Long</td>
<td>15</td>
<td>14</td>
<td>51</td>
</tr>
<tr>
<td>Extended</td>
<td>32</td>
<td>28</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>—</td>
<td>111</td>
</tr>
</tbody>
</table>

Table 386. Internal precision required for faithful In-Out conversion

For example, suppose the decimal data has precision 6 digits. Faithful conversion to hexadecimal or binary requires 6 hexadecimal digits or 21 binary digits, so decimal data with 6 digits is faithfully represented in both short floating-point representations. But if the decimal data has 7 digits, the number of internal hexadecimal and binary digits is too small, so seven-digit decimal numbers cannot be faithfully represented in short floating-point. Thus we say that FP(16,6) and FP(2,24) faithfully represent 6 decimal digits. This result may not be what you would expect from calculating the weight of the low-order bit of a floating-point number. In short hexadecimal floating-point, even though \(16^{-6} \approx 0.59 \times 10^{-7}\), all 6-digit decimal floating-point values but not all 7-digit decimal floating-point values can be converted to hexadecimal and back with complete recovery.

Similar considerations apply to long floating-point: at most 15 decimal digits can be faithfully represented in hexadecimal and binary. For extended precision, the two representations behave differently: hexadecimal floating-point can faithfully represent 32 decimal digits, while binary floating-point can faithfully represent 33.

### 36.5.2. Out-In Conversions

For Out-In conversions, we start with internal floating-point data, convert it to external decimal format, and then want to convert it back to internal format without losing the precision of the original internal values. This means we must know how many decimal digits are required; they are shown in Table 387.

<table>
<thead>
<tr>
<th>Precision</th>
<th>Binary Digits</th>
<th>Hexadecimal Digits</th>
<th>Decimal Digits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short</td>
<td>24</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>Long</td>
<td>53</td>
<td>—</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>14</td>
<td>18</td>
</tr>
<tr>
<td>Extended</td>
<td>113</td>
<td>28</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>—</td>
<td>36</td>
</tr>
</tbody>
</table>

Table 387. Decimal precision required for faithful Out-In conversion

For example, to recover long internal floating-point values converted to decimal and back,

- long binary requires 17 decimal digits for faithful representation of the internal value,
- long hexadecimal requires 18 decimal digits,
and (as for In-Out conversions) correct conversion is required.

This is a useful “Rule of Thumb” for In-Out and Out-In conversions:

<table>
<thead>
<tr>
<th>In-Out and Out-In Conversions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Out-In conversions need 3 more decimal digits than In-Out.</td>
</tr>
</tbody>
</table>

36.5.3. The PFPO Instruction (*)

The z System PFPO instruction converts floating-point data formats among one another.

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnen</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>010A</td>
<td>PFPO</td>
<td>E</td>
<td>Perform Floating-Point Operation</td>
</tr>
</tbody>
</table>

The instruction handles many operand combinations; for details, see the z/Architecture Principles of Operation.

Exercises

36.5.1.(2) Write a short Assembler Language program defining hexadecimal floating-point constants for the six 7-digit decimal floating-point values \(0.625000 \times 10^{-1}\), where \(x\) takes values from 3 to 8. What hexadecimal floating-point values are generated?

36.5.2.(3) If the short hexadecimal floating-point number ‘\(40100001'\) is converted to 7-digit decimal, what is the result?

36.6. “Real” and “Realistic” (Floating-Point) Arithmetic

Computation uses actual numbers, not mathematical real-number abstractions, so we must cope with problems of precision, rounding, significance, etc. The mathematician’s “real” numbers provide elegant analyses, but don’t always describe the “realistic” world where weights, dimensions, and other values are known only imprecisely. The quantities used for computation necessarily have finite precision and errors of measurement or estimation, and computational techniques have finite precision.

The abstract formulation of a problem can help define the form of a computation, but it’s important to remember that usable results may depend on knowing the behavior of the adaptations you make in order to calculate meaningful results.
The “laws” of real arithmetic such as associativity, distributivity, etc. apply only to abstract numbers and in limited ways to “realistic” numbers, so you may sometimes unknowingly make unsafe assumptions when you write your programs. We’ll compare “real” and “realistic” laws in Table 389, where real numbers are represented by lower case letters (a,b), and floating-point numbers are represented by capital letters (A,B).229 The letter “r” denotes the radix of the representation.

Table 389 (Page 1 of 2). Laws of real and realistic arithmetic

<table>
<thead>
<tr>
<th>“Law”</th>
<th>Arithmetic with “real” numbers</th>
<th>Arithmetic with “realistic” numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Closure</strong></td>
<td>The product and sum of real numbers a and b are reals.</td>
<td>The product (AB) and sum (A+B) of the floating-point numbers A and B may not exist in FPF(r,p). Example: FPF(16,6) (HFP) contains 90009.0 and 0.84375, but not their sum, difference, quotient, or product.</td>
</tr>
<tr>
<td><strong>Commutative</strong></td>
<td>a+b = b+a, ab = ba</td>
<td>True for z System and almost all other systems.</td>
</tr>
<tr>
<td><strong>Associative</strong></td>
<td>(a+b)+c = a+(b+c)</td>
<td>Fails. If A, B, and C have the same sign, the results may differ by r ulps.</td>
</tr>
<tr>
<td><strong>Distributive</strong></td>
<td>a(b+c) = ab+bc</td>
<td>Fails. If B and C have the same sign, then the results differ by at most r ulps.</td>
</tr>
<tr>
<td><strong>Additive Unit</strong></td>
<td>There is a real number 0 such that a+0 = 0+a = a</td>
<td>True for most systems (unless underflow intrudes).</td>
</tr>
<tr>
<td><strong>Multiplicative Unit</strong></td>
<td>There is a real number 1 such that a×1 = 1×a = a</td>
<td>True for z System and almost all other systems.</td>
</tr>
<tr>
<td><strong>Additive Inverse</strong></td>
<td>For any real a there is a real a′ with a+a′=0</td>
<td>True in all known systems.</td>
</tr>
<tr>
<td><strong>Multiplicative Inverse</strong></td>
<td>For any real a, if a≠0 there is a real a−1 with a×a−1 = a−1×a = 1</td>
<td>Fails to hold in many systems.; there may be no representable inverses. (z System hexadecimal floating-point has no inverse for any magnitude ≤X'02100000' = 16−63).</td>
</tr>
<tr>
<td><strong>Zero Divisor</strong></td>
<td>If ab = 0, then at least one of a or b must vanish</td>
<td>Frequently fails if overflow or underflow occurs.</td>
</tr>
<tr>
<td><strong>Cancellation</strong></td>
<td>1. (a−b)−b=a</td>
<td>1. Fails, especially in the presence of underflow or overflow.</td>
</tr>
<tr>
<td><strong>Division</strong></td>
<td>If b ≠ 0, and a/b means ab−1, then b(a/b) = a</td>
<td>2. Fails.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Fails. B and C may differ by r−1 ulps.</td>
</tr>
</tbody>
</table>

### Table 389 (Page 2 of 2). Laws of real and realistic arithmetic

<table>
<thead>
<tr>
<th>“Law”</th>
<th>Arithmetic with “real” numbers</th>
<th>Arithmetic with “realistic” numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subtraction</td>
<td>If (a-(b)) means (a+(-b)), then ((a+b)-b = a)</td>
<td>Frequently fails near underflow thresholds, or if (</td>
</tr>
<tr>
<td>Inequalities</td>
<td>1. (a &lt; b)</td>
<td>Fails; strict inequalities must be weakened to tolerate equality.</td>
</tr>
<tr>
<td></td>
<td>2. If (a &lt; b) then for all (c), (a+c &lt; b+c)</td>
<td>1. (A \leq B)</td>
</tr>
<tr>
<td></td>
<td>3. If (a &lt; b) and (c &lt; d) then (a+c &lt; b+d)</td>
<td>2. (A+C \leq B+C)</td>
</tr>
<tr>
<td></td>
<td>4. If (b &lt; c) and (a &gt; 0) then (ab &lt; ac)</td>
<td>3. (A+C \leq B+D)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. (AB \leq AC)</td>
</tr>
</tbody>
</table>

1. Floating-point numbers are actually a subset of the rational numbers, but they also don’t satisfy all the mathematical properties of rationals (which have unbounded numerator and denominator).

2. Neither equalities nor inequalities reliably persist across floating-point operations.

3. Multiplying any fraction by a power of the radix leaves the fraction unchanged, unless there is no guard digit and the product is truncated.

4. Inverses of tiny hex numbers overflow: the inverse of \(X'02100001' = \text{HexMax}\), but any smaller value causes exponent overflow.

5. An advantage of the binary floating-point representation: inverses exist for all normal values.

6. Some operations create meaningless results. Even in well-behaved programs, ordinary algebraic rules may fail:

<table>
<thead>
<tr>
<th>Calculation</th>
<th>Possible Problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 / X (\rightarrow) 0</td>
<td>Fails for (X = 0)</td>
</tr>
<tr>
<td>1 (*) X (\rightarrow) X</td>
<td>Fails for (X = \text{NaN})</td>
</tr>
<tr>
<td>0 (*) X (\rightarrow) 0</td>
<td>Fails for (X = \text{NaN or infinity})</td>
</tr>
<tr>
<td>X - X (\rightarrow) 0</td>
<td>Fails for (X = \text{NaN or infinity})</td>
</tr>
<tr>
<td>X / X (\rightarrow) 1</td>
<td>Fails for (X = \text{NaN or infinity})</td>
</tr>
<tr>
<td>X (=) X (\rightarrow) TRUE</td>
<td>Fails for (X = \text{NaN})</td>
</tr>
<tr>
<td>X &gt; Y (\rightarrow) Y &lt; X</td>
<td>Fails for (X = \text{NaN})</td>
</tr>
<tr>
<td>-X (=) 0 - X</td>
<td>Fails for (X = +0)</td>
</tr>
</tbody>
</table>

This table shows that NaNs and infinity violate many common arithmetic “laws”.

Numerical analysis is a “realistic” discipline, coping with realistic problems in a world of realistic numbers; the “real” analysis of advanced mathematics is a helpful but occasionally misleading abstraction because it requires “unrealistic” conditions such as infinite precision and unbounded magnitudes.

### Exercises

36.6.1.(2)+ Table 389 indicates that the “additive unit” is zero. Give an example of a nonzero hexadecimal floating-point value \(A\) such that \(A+0 \neq A\).

36.6.2.(2)+ Table 389 indicates that the “additive unit” is zero. Give examples of a nonzero numeric binary and decimal floating-point value \(A\) such that \(A+0 \neq A\).

36.6.3.(4) Find a short HFP constant \(A\) such that \(A \times (1/A)\) differs from 1 by at least 15 ulps.

36.6.4.(2)+ In hexadecimal floating-point, what is the value of Max\(\times\)Min?

36.6.5.(3)+ For each floating-point representation, create an example that shows the failure of additive association.
36.6.6.(3)+ For each floating-point representation, create an example that shows the failure of multiplicative association.

36.6.7.(3)+ For each floating-point representation, create an example that shows the failure of multiplicative association.

36.6.8.(3)+ For each floating-point representation, create an example that shows the failure of the distributive law.

36.7. When Does Zero Not Behave Like Zero? (*)

Fascinating details
Mathematically, we would expect \( X \pm 0 = X \), \( X \times 0 = 0 \), and \( 0 \div X = 0 \) (for \( x \neq 0 \)). In floating-point arithmetic, a zero value doesn’t always behave like a mathematical zero, especially in addition and subtraction.

36.7.1. Hexadecimal Floating-Point

Hexadecimal floating-point pseudo-zeros have zero fraction and nonzero characteristic. For example:

<table>
<thead>
<tr>
<th>Precision</th>
<th>A representative pseudo-zero</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single</td>
<td>( X'41000000' )</td>
</tr>
<tr>
<td>Double</td>
<td>( X'41000000 \ 00000000' )</td>
</tr>
<tr>
<td>Extended</td>
<td>( X'41000000 \ 00000000 \ 33000000 \ 00000000' )</td>
</tr>
</tbody>
</table>

Table 390. Examples of hexadecimal floating-point pseudo-zeros

If a pseudo-zero is an operand in a multiply operation, or is the dividend in a division operation, the result is a true zero (that is, \(+0\)). Thus, multiplication and division are well-behaved mathematically in hexadecimal floating-point arithmetic.

For addition and subtraction, the result depends on the differences between the characteristics of the operands. Figure 465 shows some examples using short-precision operands: the precision of the sum is degraded as the characteristic difference grows.

<table>
<thead>
<tr>
<th>LE 4, =E'123.456'</th>
<th>FPR4 = X'427B74BC' = 123.456</th>
</tr>
</thead>
<tbody>
<tr>
<td>LER 0, 4</td>
<td>Copy starting value to FPR0</td>
</tr>
<tr>
<td>AE 0, =X'45000000'</td>
<td>FPR4 = X'427B7400' = 123.453</td>
</tr>
<tr>
<td>LER 0, 4</td>
<td>Copy starting value to FPR0</td>
</tr>
<tr>
<td>AE 0, =X'46000000'</td>
<td>FPR4 = X'427B7000' = 123.434</td>
</tr>
<tr>
<td>LER 0, 4</td>
<td>Copy starting value to FPR0</td>
</tr>
<tr>
<td>AE 0, =X'47000000'</td>
<td>FPR4 = X'427B0000' = 123.000</td>
</tr>
<tr>
<td>LER 0, 4</td>
<td>Copy starting value to FPR0</td>
</tr>
<tr>
<td>AE 0, =X'48000000'</td>
<td>FPR4 = X'42700000' = 112.000</td>
</tr>
<tr>
<td>LER 0, 4</td>
<td>Copy starting value to FPR0</td>
</tr>
<tr>
<td>AE 0, =X'49000000'</td>
<td>FPR4 = X'00000000' = 0.0</td>
</tr>
</tbody>
</table>

Figure 465. Degraded precision in adding hexadecimal floating-point pseudo-zeros

Because the fraction of the operand with the smaller characteristic is shifted right until the characteristics are equal, more and more significant digits are lost.

- In the first example, the characteristic difference is 3, so the fraction \( X'7B74BC' \) is shifted right three places; the digit 4 becomes the guard digit and then appears in the normalized result, so only two digits are lost.
- In the last example, a zero fraction is generated and a significance exception is indicated.

Hexadecimal floating-point pseudo-zeros should be used rarely, and only with care.
### 36.7.2. Binary Floating-Point

Binary floating-point does not support pseudo-zeros: every zero and nonzero finite number has a unique representation in each precision, except that zero may have either sign. Arithmetic results have the mathematically-expected values:

- Adding zero to or subtracting zero from any operand that is not a NaN produces the original operand. (The sign of an exact zero result depends on the rounding mode.)
- Dividing zero by any finite operand that is not a NaN produces ±0.
- Multiplying zero by any operand that is not a NaN produces ±0.
- The square root of zero is a zero with the same sign.
- Operations with ±∞ behave sensibly.

### 36.7.3. Decimal Floating-Point

As described in Section 35.3 on page 676, decimal floating-point zeros can have many representations. This can sometimes lead to unintuitive or unexpected results. For example, suppose we add 1 and 0.0000000:

```
LD 4,=DD′0.0000000′
LD 2,=DD′1′
ADTR 0,2,4 Sum in FPR0
EEDTR 6,0 Biased exponent in GG6
AHI 6,-398 Exponent in GR6 = -7
CUDTR 7,0 c(GG7) = X′00000000 10000000′
```

so that the result is 100000000.10^-7, with value 1. We see that 1+0=1, but the result in this case has a very different representation than ordinary arithmetic might predict. If the decimal floating-point zero operand had been defined by

```
LD 4,=DD′0.00′
```

and the same instructions were executed, the result would be 10010^-2 = 1.00, with value 1 (again!) but with yet another representation.

This behavior isn’t limited to zero constants. If the result of an arithmetic operation is zero, we can get similar results:

```
LD 4,=DD′123.456′ c(FPR4)=X′222C0000 00028E56′
SDTR 2,4,4 c(FPR2)=X′222C0000 00000000′ (zero)
LD 0,=DD′1′ c(FPR0)=X′22380000 00000001′
ADTR 4,2,0 c(FPR4)=X′222C0000 00000400′
CUDTR 3,4 c(GG3) =c′00000000 00010000′
EEDTR 5,4 Extract biased exponent
AHI 6,-398 Remove bias; c(GR6)=X′FFFFFFFD′=-3
```

The operands of the SDTR instruction have 3 significant decimal places, so the resulting zero in FPR2 has the same quantum. When 1 is added the quantum is preserved, and the result is 100010^-3 = 1.00, with value 1 as expected.

As noted earlier, these results are numerically reasonable, but their representation may not be as easily predictable as with fixed-point binary or decimal arithmetic.

### Exercises

36.7.1.(1) In a hexadecimal floating-point representation of each precision, how many different pseudo-zeros can be created?

36.7.2.(2) In Figure 465, what result will be generated if the second operand is X′43000000′? That is, what is the result of this operation:

```
LE 4,=E′123.456′ c(FPR4) = X′427874BC′ = 123.456
AE 4,=X′43000000′ c(FPR4) = ?
```

Chapter IX: Floating-Point Data and Operations 735
## 36.8. Examples of Former Floating-Point Representations and Behaviors (*)

In Table 391, a sample of floating-point representations shows the processor, the base (radix) B of the significand, the number of base-B digits in the significand, the equivalent number of decimal digits represented, the exponent width in bits, the instruction format, and the representation of the significand.\(^{230}\)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pr1me 550 series single</td>
<td>2</td>
<td>23</td>
<td>6</td>
<td>8</td>
<td>s/f/e</td>
<td>Two’s complement</td>
</tr>
<tr>
<td>IEEE binary short precision</td>
<td>2</td>
<td>24</td>
<td>6</td>
<td>8</td>
<td>s/c/f</td>
<td>Sign-magnitude</td>
</tr>
<tr>
<td>IBM hex short precision</td>
<td>16</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>s/c/f</td>
<td>Sign-magnitude</td>
</tr>
<tr>
<td>Burroughs 6700 short precision</td>
<td>8</td>
<td>13</td>
<td>10</td>
<td>6</td>
<td>S/s/e/i</td>
<td>Sign-magnitude</td>
</tr>
<tr>
<td>CDC 6600/CYBER 70</td>
<td>2</td>
<td>48</td>
<td>14</td>
<td>11</td>
<td>s/e/i</td>
<td>Sign-magnitude</td>
</tr>
<tr>
<td>Cray-2 single precision</td>
<td>2</td>
<td>48</td>
<td>14</td>
<td>15</td>
<td>s/e/f</td>
<td>Sign-magnitude</td>
</tr>
<tr>
<td>IEEE binary double precision</td>
<td>2</td>
<td>53</td>
<td>15</td>
<td>11</td>
<td>s/c/f</td>
<td>Sign-magnitude</td>
</tr>
<tr>
<td>IBM hex double precision</td>
<td>16</td>
<td>14</td>
<td>15</td>
<td>7</td>
<td>s/c/f</td>
<td>Sign-magnitude</td>
</tr>
<tr>
<td>IBM hex extended precision</td>
<td>16</td>
<td>28</td>
<td>32</td>
<td>7</td>
<td>s/c/f</td>
<td>Sign-magnitude</td>
</tr>
</tbody>
</table>

**Note:** s = sign, e = signed exponent, c = characteristic, f = fraction, i = integer.

### Table 391. Examples of other floating-point representations

Most of these representations use a biased characteristic, but the Cray-2 used a signed exponent. Two processors (Burroughs and CDC) used a right-adjusted integer significand rather than a left-adjusted fraction, and Burroughs used sign-magnitude representations for both the exponent and the integer significand.

Some processors had representations for special values:
- CDC processors provided representations for infinity and “indefinite” (what we now call “Not a Number”).
- The IBM 7030 Stretch provided representations for infinity, infinitesimal (ε), and OMZ (“Order of Magnitude Zero” with significand = 0).
- The DEC VAX systems provided a “reserved operand” with minus sign and exponent zero that caused an interruption when accessed.

The wide variety of floating-point implementations on past processors led to some of the following oddities that happened on widely used processors:
- Some processors responded to exponent spills by delivering zero, \(∞\), MaxReal, or MinReal.
- Some numbers had no inverse.
- A number a had a precisely representable inverse, but \(a \times a^{-1} \neq 1\).
- Some processors treated all sufficiently tiny nonzero numbers z as if they were zero during multiplication and division, but not during addition or subtraction.
- \(z = y\) but \(z - t \neq y - t\) for reasonable values of \(z, y,\) and \(t\).
- \(1/3 \neq 9/27\).
- \(y \times z \neq z \times y\) (for example, the Cray-1 traded commutativity for speed).
- \(z \neq 1 \times z \neq 0\).
- \(y/z < 0.99\) but \(y - z = 0\) (caused by underflow to 0).
- \(|z| < 1\), but the processor claimed \(|z| \geq 1\).

\(^{230}\) To see some other floating-point representations, you may enjoy exploring the web for the formats on other old processors such as the IBM 7030 “Stretch”, the DEC VAX, and the Harris Series 500.
• The expressions \( x < y \) and \( (x - y) < 0 \) were exactly equivalent on some systems but not on others.
• Some processors had different over/underflow thresholds for multiplication and/or division than for addition and/or subtraction.

These many inconsistencies made it quite difficult (if not impossible) to create reliable numeric software that worked on many systems.\(^{231}\) This led to the IEEE Floating-Point standard for binary floating-point, adopted in 1975; its format quickly became an industry standard, supplanting most of the formats sketched in Table 391.

**Exercises**

36.8.1.(2) Sketch the formats of the floating-point representations in Table 391 for

- Pr1me 550 series single precision
- CDC 6600
- Cray-2 single precision

36.8.2.(2) In Table 389, the description of Additive Units says that underflow may cause the identity to fail. Give an example in hexadecimal floating-point where this can occur.

36.8.3.(3) The list of computational oddities included the possibility that \( z = y \) but \( z - t \neq y - t \). Create “sensible” (non-extreme) short hexadecimal floating-point values that exhibit this behavior.

36.8.4.(2) Search the web to find the representation used by the Burroughs 6700 for short floating-point numbers.

36.8.5.(2) Show the character, integer, and the binary, hexadecimal, and decimal floating-point values of these four words: \( 'X'81818181' \), \( 'X'A3A3A3A3' \), \( 'X'F5F5F5F5' \), \( 'X'FEFEFEFE' \).

**36.9. Summary**

Given the 32-, 64-, and 128-bit floating-point representations, the equivalent decimal precisions that can be faithfully represented are shown in Table 392.

<table>
<thead>
<tr>
<th>floating-point precision</th>
<th>hexadecimal floating-point</th>
<th>binary floating-point</th>
<th>decimal floating-point</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 bits</td>
<td>6 digits</td>
<td>6 digits</td>
<td>7 digits</td>
</tr>
<tr>
<td>64 bits</td>
<td>15 digits</td>
<td>15 digits</td>
<td>16 digits</td>
</tr>
<tr>
<td>128 bits</td>
<td>32 digits</td>
<td>33 digits</td>
<td>34 digits</td>
</tr>
</tbody>
</table>

Table 392. Equivalent decimal and floating-point precisions

If precision “equivalent to decimal” is important, decimal floating-point is best.

Some things to keep in mind:

1. Be careful about “optimizing” arithmetic expressions. The possible presence of signed zeros, NaNs, and infinities require care.
2. Predictability is more important than efficiency; getting wrong answers fast helps no one.
3. Respect the parentheses in coded expressions: they often specify a required order of evaluation.

---

\(^{231}\) Such oddities led someone to propose “Murphy’s Law of Floating-Point:” *Anything that can go wrong, does on some computer.*
4. Don’t accidentally mix operand lengths (except possibly with hexadecimal floating-point, and then only if you’re very careful!). A number in a floating-point register may have very different representations; for example, the three binary and decimal representations have different exponent field and significand widths.

5. It is best to do all computations in a single mode: hexadecimal, binary, or decimal, with a single representation for constants and literals.

6. Binary floating-point permits exceptions where none would occur with hexadecimal, such as when shortening an operand or creating inexact and invalid operation exceptions.

7. Inequalities do not persist across floating-point operations!

8. Don’t compare floating-point values for strict equality; use either an inequality, or a comparison for “equality within an acceptable tolerance”.

9. A smaller radix means that relative error grows more slowly, but more exponent bits are needed for a given exponent range. For example, binary requires 2 more exponent bits than hexadecimal for same range.

10. Rounding (as in BFP and DFP arithmetic) compared to truncation (in HFP arithmetic) means that the magnitude of average error tends to be smaller.

11. Don’t confuse the “ulp” (for HFP and BFP) with the quantum (for DFP). They might seem to describe the same concept, but an ulp(x) depends on the value of x and may vary by a factor of 2 (BFP) or 16 (HFP), while the magnitude of a quantum depends only on the exponent of the number. An ulp if a DFP number is meaningless, because DFP values aren’t normalized.

12. The two signed zeros (in BFP and DFP) are distinguishable arithmetically only by division by zero (producing signed infinities) or using the copy sign instructions. (See Exercise 34.8.3.)

You must think differently about floating-point numbers and arithmetic; so why do we rely on floating-point arithmetic?

1. It closely approximates the way most of us do most of our calculations, most of the time.
2. It handles most of the hard work automatically.
3. But, remember that it can be difficult to know with certainty when it doesn’t work!
4. “The secret of success of floating-point computation lies in the fact that we continue to do arithmetic to p digits of precision even though the accuracy of our intermediate results has degraded so that we can only guarantee that a few digits are significant.”

Terms and Definitions

“real” numbers
A powerful abstraction used by mathematicians.

“realistic” numbers
Numbers used for computation with finite range, precision, and accuracy.

mantissa
A term sometimes used to describe the significand of a floating-point number. Because it can be confused with the mantissa (fractional part) of a logarithm, avoid its use when describing floating-point representations.

Programming Problems

Problem 36.1.(5) Suppose your processor does not provide instructions to automatically convert between floating-point representations. Write a program that accepts strings of 8 hex digits representing a short binary floating-point value, and converts them to a short hexadecimal

floating-point representation using half-up rounding. Display the original and converted values in hexadecimal, and generate appropriate messages if any conversion problems arise.

Suggested test values include: X'80000000', X'7FFFFFFF', X'7F7FFFFF', X'3DCCCCCD', X'80800000', X'FF800000', and X'007FFFFFF', but you should create others.

Problem 36.2. Suppose your processor does not provide instructions to automatically convert between floating-point representations. Write a program that accepts strings of 16 hex digits representing a long hexadecimal floating-point value, and converts them to a long binary floating-point representation using rounding to half-even. Display the original and converted values in hexadecimal. If the HFP value is unnormalized, generate a canonical QNaN.

Suggested test values include: X'80000000 00000000', X'7FFFFFFF FFFFFFFF', X'40199999 9999999A', X'470CCCCC CCCCCC5', X'80100000 00000000', and X'413243F6 A8885A31', but you should create others.

Problem 36.3. Suppose your processor does not provide instructions to automatically convert between floating-point representations. Write a program that accepts 16 hex digits representing a long binary floating-point value, and converts them to a long hexadecimal floating-point representation using half-up rounding. Display the original and converted values in hexadecimal, and generate appropriate messages if any conversion problems arise.

Suggested test values include: X'80000000 00000000', X'7FFFFFFF FFFFFFFF', X'7FEEFFFF FFFFFFFF', X'3DCCCCCC CCCCCC5', X'80100000 00000000', and X'FFF00000 00000000', but you should create others.

Problem 36.4. For each floating-point representation, write instructions that will create a table of the values of N Factorial (N!) starting at 1! = 1 in the 8-byte floating-point representation. Determine the maximum representable value without causing overflow or underflow exceptions, and store the value of N for that maximum value as a word integer at HFactMax, BFactMax, and DFactMax for hexadecimal, binary, and decimal floating-point values respectively.
Chapter X: Large Programs and Modularization

The two sections of this chapter discuss program modularization:

- Section 37 introduces the basic concepts of internal subroutines, focusing on the fundamental processes of subroutine linkage, argument passing, and status preservation. It then describes the general linkage conventions used on z System operating systems.
- Section 38 describes:
  - Techniques for managing addressability in large programs (and how the powerful LOCTR instruction can help).
  - Separately assembled multi-module applications.
  - How to write external subroutines callable from Assembler Language and other programming languages.
  - How separately assembled modules are linked together to form an executable load module or program object, and how they are loaded into memory.
  - How to handle changes in addressing modes.
37. Subroutines and Linkage Conventions

Program modularization is a fundamental application development process. We divide a task into smaller pieces that can be written and tested independently. In this and the next section we will examine some general features of subroutines, a basic form of modularization.

Subroutines help you divide a programming problem into smaller and more manageable parts. A calculation needed at many places within a program can be done by including the necessary instructions at each place they are needed, but it is usually more economical to write the needed instructions once, and then execute them as needed.

Of course, if a calculation is needed at only one point in a program, it might seem easiest to insert the instructions there. But we will see that using a subroutine is justifiable because it simplifies program planning, organization, coding, and debugging. Often, a tested subroutine can be used in other programs.

37.1. Basic Concepts

We’ll start with three basic concepts:

- **Linkage**: how to pass control to a subroutine and return.
- **Argument passing**: how to provide data needed by the subroutine and access its results.
- **Status preservation**: how to be sure that nothing important is lost, modified, or destroyed in the process.

We call the main program the routine that transfers control to the subroutine. The former is said to call the latter, so the main program is the calling program (or caller) and the subroutine is the called program (or callee).

The rest of Section 37.1 uses simple examples to illustrate these three basic concepts; many of them are used in the general linkage conventions discussed in sections 37.2-37.4. For now, we’ll consider only 32-bit registers.
37.1.1. Linkage

This problem is relatively simple: we must find a way to transfer control from the caller to the callee and for the callee to then return to the caller. The calling program must know where to transfer control to execute the called program, and the called program must know how and where to return control to the calling program.

To use a trivial (and nonsensical) example, suppose the subroutine starting at an instruction named ZSet sets the byte named Flag to zero. (For the following examples, assume GR12 has been established as a base register.)

```
- - - Main program calculates something
 J ZSet Then branches to the subroutine (1)
Next L 2,Noodle And then continues
 - - - ...with something else

ZSet MVI Flag,0 Subroutine sets the byte to zero
 J Next And returns to the main program (2)
```

Figure 466. Trivial example of a subroutine (1)

The “processing” performed by this “subroutine” can obviously be done more simply without a subroutine call. The point is that we have (1) transferred control to a subroutine which does something and then (2) returns control to the caller. In its most primitive form, a subroutine can be written as a instruction sequence to which a branch is made, and which returns by branching elsewhere.

Now, suppose we want to call the subroutine starting at ZSet from several different places in the main program. We see that the return in Figure 466 always branches to the same instruction (named Next) in the calling program. But we may want to do something different before and after calling the subroutine each time. Thus we must solve the second half of the linkage problem: specify where control should be transferred when the subroutine ends.

We can solve this problem by agreeing that when control is transferred to ZSet, GR14 will contain a return address, the address of the instruction to which the subroutine should branch when it completes. Then we can make two calls to the subroutine at ZSet as shown in Figure 467.

```
- - - Calculate something
 LA 14,Next Set return address in GR14
 J ZSet Branch to subroutine
Next L 2,Noodle On return, begin calculating
 - - - ...something else
 ST 2,Result And store it
 LA 14,Ret2 Set new return address in GR14
 J ZSet Branch to subroutine
Ret2 L 3,Poodle ...and so forth
 - - -
ZSet MVI Flag,0 Subroutine does its work
 BR 14 And returns to the address in GR14
```

Figure 467. Trivial example of a subroutine (2)

The Branch and Save instructions provide a simpler solution.

37.1.2. The Branch and Save Instructions

The Branch and Save instructions let you execute both the branch to the called program, and set the return address. The four instructions are shown in Table 393.
Table 393. Branch and Save instructions

<table>
<thead>
<tr>
<th>Op</th>
<th>Mнем</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mнем</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0D</td>
<td>BASR</td>
<td>RR</td>
<td>Branch and Save</td>
<td>4D</td>
<td>BAS</td>
<td>RX</td>
<td>Branch and Save</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Register)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A75</td>
<td>BRAS</td>
<td>RI</td>
<td>Branch Relative and Save</td>
<td>C05</td>
<td>BRASL</td>
<td>RIL</td>
<td>Branch Relative and Save</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Long)</td>
</tr>
</tbody>
</table>

We first encountered BASR in Section 10 when we discussed addressability, but there the \( R_2 \) digit was assumed to be zero. BAS is an RX-type instruction with the operand format shown in Section 9.5, and BASR is an RR-type instruction with the operand format illustrated in Section 9.2. BRAS and BRASL use relative-immediate addressing, as discussed in Section 20.1.3.

As with other branch-relative instructions, we often use the extended mnemonics JAS for BRAS and JASL for BRASL.

The first step in executing a Branch and Save instruction is determining the \textit{branch address}: for BASR it is the address in the \( R_2 \) register (unless \( R_2 \) is zero, in which case the instruction doesn’t branch) and for the other three instructions the branch address is the Effective Address.

The second step places the Instruction Address from the PSW into general register \( R_1 \), so that \( R_1 \) contains the address of the instruction following the Branch and Save instruction.\(^{233} \)

- If the addressing mode is 24 or 31, bit 32 of the \( R_1 \) register is set to 0 or 1 accordingly, and bits 0 to 31 are unchanged.

The third and final step replaces the contents of the IA in the PSW with the branch address, so the next instruction executed will be at the branch address.

\[ \text{Reminder} \]
Remember that the Branch and Save instructions are modal. The address in the \( R_1 \) register depends on the current addressing mode, as described in Section 20.2.

We can rewrite Figure 467 to use a BAS instruction:

- - -          Main program labors
BAS 14,ZSet    Branch to subroutine, set GR14
L 2,Noodle     On return, labor again
- - -
ST 2,Result    Store a new result
BAS 14,ZSet    Call subroutine again
L 3,Poodle     ...etc.
- - -
ZSet MVI Flag,0 Subroutine does required work
BR 14          Return to address in GR14

Figure 468. Subroutine linkage using a BAS instruction

This program segment is functionally identical to Figure 467 but requires fewer instructions (and symbols) because the BAS instructions provide both the return addresses (formerly generated by LA instructions) and the branches to the subroutine (formerly done by the \( J\ ZSet \) instructions).

The RX-type BAS instruction requires a base register to resolve the target address; you can also use the relative branch form, JAS, to eliminate the need for one or more base registers for instruction addressing.

A BASR instruction can be used in a similar sequence:

\[^{233}\text{If the Branch and Save instruction is the subject of an EXecute instruction, } R_1 \text{ contains the address of the instruction following the execute instruction.}\]
This program segment is identical to that in the previous example, except that the BAS instructions have been replaced by BASR, and GR15 has been preset to contain the “entry point address” of the subroutine.

This convention is widely used for calling subroutines. In Figures 468 and 469, we assumed that the symbol ZSet was addressable from the BAS and LA instructions. If the source program is large the entry point of the subroutine may be far away, so you might use a technique like this:

```
- - -
LZSet L 15,AdrZSet Put subroutine address in GR15
BASR 14,15 Branch to subroutine
L 2,Noodle ...etc
- - -
Assume that GR15 is unmodified
ST 2,Result ...etc
BASR 14,15 Call subroutine again
L 3,Poodle ...etc
- - -
AdrZSet DC A(ZSet) Addressable from instruction LZSet
- - -
ZSet MVI FLAG,0 Subroutine (quite far from LZset)
BR 14 Returns to caller
```

Figure 470. Subroutine linkage using an address constant

Section 38 will explore this theme in more detail.

### 37.1.3. Argument Passing

Subroutines are rarely this trivial. A subroutine usually operates on data provided to it, and either modifies the data or uses it to compute new values. The data provided to a subroutine are called its arguments.234

The caller and callee must agree on the method(s) used for passing arguments. We will sketch a few simple techniques that require different amounts of information be known to both routines.

For these examples, suppose we must write a subroutine starting with an instruction named ShftRt which is has two arguments: a logical fullword to be shifted and a fullword integer N. The subroutine will shift the first argument logically to the right by \(2+\max(N,0)\) bit positions: if \(N\) is negative shift right two places, and if \(N\) is positive shift \(N+2\) places.

One simple method places the arguments into agreed-upon general registers. This works only for data which “naturally” fits in registers; a different method would be needed for packed decimal or character data.

---

234 This terminology comes from the mathematical concept of a function of one or more arguments. Because mathematical functions such as SIN and EXP in higher-level languages are almost always implemented by subroutine calls, we use the same terminology to describe similar situations even when the called routines are not mathematical functions.
Now, let the two arguments for the subroutine at \texttt{ShftRt} be placed in registers GR0 and GR1 respectively: the logical argument is in GR0 and the integer N is in GR1. The shifted result is left in GR0 when control is returned to the caller. As above, we assume the return address is in GR14.

* \texttt{ShftRt Arguments in registers 0 and 1}\*  
\begin{tabular}{ll}
\texttt{ShftRt} & LTR 1,1  \\
       & JNM ShftOK  \\
       & SR 1,1  \\
\texttt{ShftOK} & SRL 0,2(1)  \\
       & BR 14
\end{tabular}  
\texttt{Test value of N}  
\texttt{Branch if nonnegative}  
\texttt{Set N to zero if it was minus}  
\texttt{Shift (2+max(N,0)) bit positions}  
\texttt{Return to caller}

Figure 471. Simple shift subroutine (1)

While this instruction sequence is straightforward, a possibly undesirable side-effect is created by the subroutine: if the argument N in GR1 is negative, GR1 is set to zero. If the calling program did not need to use the contents of GR1 after the call there is no problem. Otherwise, we might rewrite the routine as in Figure 472:

\begin{tabular}{ll}
\texttt{ShftRt} & SRL 0,2  \\
       & LTR 1,1  \\
       & BNPR 14  \\
\texttt{ShftOK} & SRL 0,0(1)  \\
       & BR 14
\end{tabular}  
\texttt{Shift logical argument 2 places}  
\texttt{Test integer value N}  
\texttt{Return to caller if not positive}  
\texttt{Otherwise shift N more places}  
\texttt{And return to caller}

Figure 472. Simple shift subroutine (2)

This is better because the subroutine makes as few changes to the caller’s registers as possible.

A second way to pass arguments is to place them in named memory areas. This is sometimes used for operands (such as packed decimal data and character strings) that must be processed in memory. For example, suppose the argument to be shifted is stored in a word named \texttt{Logic} and the integer value N is stored in a word named \texttt{NN}. Assuming again that the caller expects the shifted result to be returned in GR0, we could write the subroutine as in Figure 473.

\begin{tabular}{ll}
\texttt{ShftRt} & L 0,Logic  \\
       & L 1,NN  \\
       & LTR 1,1  \\
       & JNM ShftOK  \\
       & SR 1,1  \\
\texttt{ShftOK} & SRL 0,2(1)  \\
       & BR 14
\end{tabular}  
\texttt{Get argument to be shifted}  
\texttt{Get number of shifts, N}  
\texttt{Check shift count}  
\texttt{Branch if not negative}  
\texttt{Set count to zero}  
\texttt{Shift by required amount}  
\texttt{Return result to caller in GR0}

Figure 473. Simple shift subroutine with named arguments (3)

In this case we have used the same technique as in Figure 466, but no harm is done by the SR instruction that sets GR1 to zero because the value of N stored at \texttt{NN} is unchanged. You can mix these techniques; some variations are illustrated in the Exercises.

A more powerful technique is to use argument \texttt{addresses}. Then, arguments can be anywhere in memory, and the subroutine is passed the addresses of the arguments. This method can be used for arguments of any type and is preferable as a general scheme; the simpler methods just described are efficient when restricted to particular types of data. First, suppose the address of the logical argument is in GR2, and the address of N is in GR3.
A key advantage of passing arguments or their addresses in registers is that the subroutine need not know where the arguments are, nor whether they would be addressable within the subroutine.

Now, suppose the argument addresses are also in memory: let the address of the logical argument be in a word named *AdrLogic* and the address of the integer argument N be in a word named *AdrN*. Then we can write the subroutine as in Figure 475:

```plaintext
* ShftRt argument addresses in named memory locations
ShftRt L 1,AdrLogic Get first argument address
L 0,0(0,1) Get logical argument in GR0
SRL 0,2 Shift right 2 bit positions
L 1,AdrN Get second argument address
L 1,0(0,1) Get integer argument in GR1
LTR 1,1 Test sign of N
BNPR 14 Return if not positive
SRL 0,0(1) Shift remaining N bit positions
BR 14 And return
```

Figure 475. Simple shift subroutine (5) with argument addresses in memory

This example is close to the “standard” argument-passing convention used by z System operating systems that we’ll discuss in Section 37.2.

In some specialized cases the return address can be used to address the arguments or the argument addresses. This is done by placing them inline: the data or data addresses are placed into the instruction sequence following the Branch and Save that links to the subroutine.

To illustrate inline arguments, first suppose the *ShftRt* subroutine is written so that the logical argument is in GR0 on entry and return, but the number of shifts is contained in a halfword immediately following the Branch and Save instruction. On entry to the subroutine, R14 contains the address of the halfword integer shift amount, and control must return to the instruction following that halfword.

```plaintext
- - - Call the subroutine
L 0,Data1 Get first logical data item
BAS 14,ShftRt1 Call ShftRt1 subroutine
DC H'5' Shift amount = +5
ST 0,Result1 Store shifted result
- - -
L 0,Data2 Get second data item
BAS 14,ShftRt1 Call subroutine again
DC H'-4' Shift amount = -4
ST 0,Result2 Store second result
```

Figure 476. Subroutine call with inline arguments

We can’t use the address in R14 for the return address, because we would branch to the halfword constant! The subroutine must account for the 2-byte length of the inline parameter when it returns:
Subroutine ShftRt1 with inline halfword shift-count argument

ShftRt1 LH 1,0(0,14) Get halfword shift argument N
LTR 1,1 Test sign
JNM ShftOK Branch if not negative
SR 1,1 Clear GRI1 to zero
ShftOK SRL 0,2(1) Perform required shifts
B 2(14) Return, stepping past argument

Figure 477. Subroutine returning past inline argument

For a further variation on this inline-argument scheme, suppose the arguments are two fullwords containing the addresses of the arguments. The call to the subroutine could then be written:

- - -
CNOP 0,4 Align to fullword boundary
BAS 14,ShftRt2 Call ShftRt2 subroutine
DC A(Logic,NN) Argument addresses
ST 0,Result Store shifted result
- - -
Logic DS F Logical datum to be shifted
NN DS F Shift amount
Result DS F Space for result

Figure 478. Subroutine call with inline argument addresses

The CNOP statement is needed to guarantee that the 4-byte BAS instruction falls on a fullword boundary, so that no space will be wasted between the BAS and the address constants. Otherwise, a program interruption might be generated by the subroutine. (See Exercise 37.1.6.)

A ShftRt2 subroutine called with these arguments could be written as follows:

ShftRt2 LM 1,2,0(14) Get argument addresses
L 0,0(0,1) Fetch logical datum
L 1,0(0,2) ...and shift amount
SRL 0,2(0) Shift two places
LTR 1,1 Now test shift amount
BNP 8(0,14) If not +, return to caller
SRL 0,0(1) Otherwise perform remaining shifts
B 8(0,14) ...and return

In both versions of this subroutine, the RX form of the return branch instruction (rather than RR form) must be used so that the displacement of the BC instruction can contain the length of the arguments to be skipped.

The technique of inline arguments is discouraged today because it can seriously impact program performance, but it was widely used in the past and sometimes appears in instructions generated by operating system macros. It is especially inefficient if the inline arguments vary each time the subroutine is called.

37.1.4. Returned Values

Each of the schemes for passing arguments to the subroutine can be also used for returning computed results to the calling program. (See Exercise 37.1.2.)

When the returned value can be held naturally in a register, we often return it in a register; or, we might store it in a specified place in memory. To illustrate the latter, suppose our general argument-passing scheme above is used with three address arguments. The first two address the logical word and shift count, and the third address in the address list points to a word where the result is to be stored. Assuming GRI contains the address of the first of the three argument addresses, we can write the subroutine as follows:
GR1 has address of argument and result addresses
ShftRt3 LM 2,4,0(1) Get argument and result addresses
L 0,0(2) Load logical argument
L 1,0(0,3) Load shift amount N
LTR 1,1 Test sign of shift count
JNM ShftOK Branch if not negative
SR 1,1 Set shift to zero otherwise
ShftOK SRL 0,2(1) Perform the required shifts
ST 0,0(0,4) Store result in given location
BR 14 Return to caller

Figure 479. Subroutine with argument address list

The important feature of this example is that GR1 points to a list of argument addresses; we’ll see this again in Section 37.3.

37.1.5. Status Preservation

The previous examples assumed that all registers except GR14 were available for use and could be modified by the subroutine. This could conflict with registers used in the calling program. For example, in Figure 479 registers GR0 through GR4 were modified.

Two decisions must be made: what should be preserved, and which routine should do the preserving: caller or callee? Among items that might need to be saved for later use by the caller are the general registers, the floating-point registers, and other things like the Condition Code and Program Mask.

Consider first the problem of determining which routine should do the status preservation. For simplicity, we take this to mean saving and restoring of the general registers. If the calling program saves all the registers before branching to the subroutine, and restores them on return, it might be doing a lot of unnecessary work; a subroutine like ShftRt uses very few registers, but the writer of the calling program would typically prepare for the worst and save all the registers.

More critically, whatever registers were used for addressability in the calling program may have been destroyed by the subroutine, which needs only to branch to the instruction at the return address. This could cause serious problems when the caller tries to restore its registers. (See Exercise 37.1.7.)

Thus, it’s better for the called routine to save and restore registers. The subroutine can take advantage of its (possibly) economical use of registers by saving and restoring only the ones it modifies.

There are also advantages to not preserving some registers. In Figure 475 only GR1 is modified, so there could easily be a convention between caller and callee that GR1 may be used for any necessary purpose without preserving its contents. (Such a register is sometimes called a scratch register or a volatile register; its contents may “evaporate” across calls.) The extra time and memory needed for status preservation on each subroutine call may be less if we agree to let the subroutine modify and not restore a designated group of registers.

There are many solutions to the problems of status preservation; this example shows a simple technique. Suppose we rewrite Figure 479 so that only GR0 is modified (containing the result), and GR1 through GR3 are restored before returning.
Exercises

37.1.1.(1) Write a version of the `ShftRt` subroutine that receives the logical argument in GR0, and the integer argument $N$ is in a fullword area of memory named NN. The return address is in GR14.

37.1.2.(1) Write a version of the `ShftRt` subroutine that expects its arguments to be in fullword areas of memory named `Logic` and `NN` and which leaves the result in a fullword area of memory named `Result`. The return address is in GR14.

37.1.3.(2)+ What will be found in GR R₁, and what instruction will be fetched next, if the subject instruction of an EX is a Branch and Save?

37.1.4.(3)+ A programmer asked whether or how the actions of the two instructions

\[
\text{BASR } 2,0 \quad \text{and} \quad \text{BASR } 2,2
\]

differ; he believed that they are identical except that the latter takes slightly longer. Explain how and why this is incorrect.

37.1.5.(3) Describe the action of the following sequence of instructions:

\[
\begin{align*}
\text{BASR } &3,0 \\
- &- - \quad \text{First block of code} \\
\text{BASR } &3,3 \\
- &- - \quad \text{Second block of code} \\
\text{BASR } &3,3 \\
- &- - \quad \text{Etc.}
\end{align*}
\]

37.1.6.(2)+ In Figure 478, what problems might occur if the CNOP instruction is omitted?

37.1.7.(3) Suppose the calling program saves and restores its own registers, and that the called routine returns to its caller using this (nonstandard) instruction sequence:

\[
\begin{align*}
\text{LR } &1,14 \quad \text{Move return address to GR1} \\
\text{S } &1,=F'4095' \quad \text{Subtract 4095 from ret addr} \\
\text{LM } &2,15,=14F'0' \quad \text{Have fun with the other regs} \\
\text{B } &4095(,1) \quad \text{And return to the caller, with} \\
\text{* } &\quad \text{An odd address in GR14 (HaHa)}
\end{align*}
\]

State the conditions under which the calling program could re-establish its own registers.

37.1.8.(3) The BASR instruction with operands “$R₁,R₂$”, when used for subroutine branching, is functionally identical to the instruction

\[
\text{BAS } R₁,0(0,R₂)
\]
Why then is there any use for BASR? Can you think of any reasons why the CPU architects included it in the instruction set? (Apply the same considerations to the instruction pairs BC/BCR and BCT/BCTR.)

37.1.9.(2)+ What will happen at execution time when these instructions are executed?

```
LA 4,XYZ Address of XYZ in GR4
BASR 5,0
BASR 4,5
```

37.1.10.(2)+ Rewrite the instructions in Figure 480 so that only two registers need to be saved and restored.

37.1.11.(2)+ Rewrite the instructions in Figure 480 so that only one register needs to be saved and restored. Is this solution likely to be more or less efficient than your solution to Exercise 37.1.10?

### 37.2. A General Linkage Convention

Section 37.1 described basic aspects of *internal* subroutines written as part of your source program. You can use these basic techniques to write internal subroutines using almost any workable conventions. (We’ll discuss *external* subroutines in Section 38.)

As your subroutines grow in size and complexity, you will want to use a more standard set of conventions.

- Section 37.3 describes a general scheme for passing arguments.
- Section 37.4 describes status preservation using save areas and register-saving conventions.
- Some additional conventions are described in Section 37.5.

Section 37.4 will summarize the conventions used by most operating systems on z System.

We describe subroutines using several important terms.

- The **entry point** of a subroutine is the first instruction to be executed when it receives control from the caller.
- The **return address** is set by the caller to the address of the first instruction to receive control when the subroutine terminates its execution.
- Values passed to a subroutine are **arguments** and variables using those values in the subroutine are **parameters**.

This example may help: suppose we need a subroutine `Add2` that adds two integers and stores their sum. We might define `Add2(X,Y,Z)` to mean “Add the values of X and Y and store their sum at Z”, even though we don’t know the values associated with X and Y. We might think of the subroutine doing something like this:

```
L 0,X Get first value from caller
A 0,Y Add second value from caller
ST 0,Z Store sum where caller specifies
```

If we want the `Add2` subroutine to add the integers at A and B and store their sum at C, we could write something like “CALL Add2(A,B,C)”. In this case, A, B, and C are the **arguments** of the call to `Add2`, and X, Y, and Z are the **parameters** of `Add2`. We associate arguments and parameters in order from left to right: argument A is associated with parameter X, B with Y, and C with Z. Another invocation like “CALL Add2(D,E,F)” will associate D with X, E with Y, and F with Z.

Thus, **arguments** have values supplied by the caller, while **parameters** are place-holders in the called subroutine. Parameters let the called routine use its own names to refer to the caller’s arguments (whose names may not be known to the callee); this is especially true for separately assembled routines.
37.3. Argument Passing

The previous examples have illustrated many ways to pass arguments. One further refinement provides a very general method. Suppose, as in Figure 480, that the addresses of the arguments are in successive words in memory, and when the subroutine is called register GR1 contains the address of the first address; this is illustrated in Figure 481, where we use 32-bit addresses. (We’ll discuss 64-bit addresses shortly.)

![Figure 481. General argument-passing scheme](image)

The argument addresses in the successive fullwords in memory form the *argument address list*.

Figure 482 illustrates a call to a `ShftRt5` subroutine; the first instruction is `Load Address`, not `Load`, so GR1 contains the *address* of the argument address list.

```
LA 1,ArgList GR1 points to address list
BAS 14,ShftRt5 Call ShftRt5 subroutine
ST 0,Result Store shifted result
```

![Figure 482. Subroutine call using an argument address list](image)

The arguments (`Logic` and `NN`) could have had any names and could be anywhere in the program; only the two address constants containing their addresses need be contiguous (and in this example, addressable). A `ShftRt5` subroutine using this argument-passing convention is shown in Figure 483.

```
* Argument address list pointer in GR1
ShftRt5 LM 2,3,0(1) Get argument addresses in GR2, GR3
 L 0,0(0,2) Get 1st (logical) argument in GR0
 L 1,0(0,3) Get 2nd (integer) argument in GR1
SRL 0,2 Shift 2 places
LTR 1,1 Test second argument
BNPR 14 Return if it’s not positive
SRL 0,0(1) Otherwise shift N places
BR 14 And return
```

![Figure 483. Subroutine called with an argument address list](image)

With the exception of the first instruction, this example is essentially the same as in Figure 474.

If we want to call this subroutine with other arguments, we can write instructions to build the argument address list, as illustrated in Figure 484.
37.3.1. Variable-Length Argument Lists

Sometimes a subroutine may accept a variable number of arguments. Thus, we need a way for a subroutine to determine the number of arguments passed to it. This is done by setting the leftmost bit of each 32-bit argument address to zero, except for the last argument address where we set its leftmost bit to 1. For example, to call a subroutine with two and then with three arguments, we could define the argument address lists as

```
ArgList1 DC A(ArgA1,ArgA2+X'80000000') Two arguments
ArgList2 DC A(ArgB1,ArgB2,ArgB3+X'80000000') Three arguments
```

and the subroutine can determine the number of arguments passed to it. To illustrate, suppose a subroutine named `AddHW` is called with these two argument address lists. The routine is to return the sum of the halfword integer arguments in GR0. We can call the subroutine with instructions like these:

```
LA 1,ArgPtrs GR1 points to argument list
JAS 14,AddHW

HiBit Equ X'80000000' High-order bit for 32-bit address
ArgPtrs DC A(Arg1,Val4,Whenever,Track+HiBit) Arg address list
Track DC H'13030' A halfword value
Val14 DC H'7294' Another
Whenever DC H'2015' Another halfword value
Arg1 DC H'12345' Still another halfword value
```

This example shows that the arguments can be “anywhere” in the calling program, not necessarily in any order. The `AddHW` subroutine could be written as in Figure 487:

```
AddHW SR 0,0 Clear GR0 for sum
AddLoop L 2,0(0,1) Pick up an argument address
AH 0,0(0,2) Add the argument to the sum
LA 1,4(0,1) Increment address list pointer
LTR 2,2 Test if we just added the last
JNM AddLoop Branch if not done
BR 14 Otherwise return sum to caller
```

The LTR instruction checks the high-order bit of the address of the just-added argument to test whether it was the last in the list.

In 24- and 31-bit addressing mode, where addresses can be held in a 32-bit register and word, a variable-length argument list looks like this:
This is the standard argument address list for 32-bit addresses: the high-order bit of the address of the last argument is set to 1.

### 37.3.2. Argument Lists with 64-Bit Addresses

At the time of this writing, no conventions have been established for variable-length lists of 64-bit argument addresses, or for setting a return flag. Some possible methods include the following; all require agreement between caller and callee; each method assumes GR1 (or GG1) contains the address of the list.

1. After the last argument address, add a doubleword of all one-bits. (This is sometimes called a “fence”.)

2. After the last argument address, add a doubleword of all zero-bits.

3. Immediately precede the list with a halfword integer containing the number of argument addresses. (This requires correct alignment of the halfword.)

4. The first doubleword in the argument list contains the number of argument addresses that follow it:

Figure 489. Sample 64-bit argument list addresses

(See Exercise 37.3.5.)
Exercises

37.3.1.(2) Write a version of the ShftRt subroutine that uses an argument address list like that in Figure 481. The first and second addresses point to the word to be shifted and the shift count. The third address in the list is the address of the fullword area where the result is to be stored. The return address is in R14. Restore all registers to the contents they had on entry to the subroutine.

37.3.2.(3) Write a subroutine starting at an instruction named AMax that has two arguments, passed according to the general scheme illustrated in Figure 481. The first argument is the lowest addressed element of an array of word integers, and the second argument is a positive word integer containing the number of elements in the array. The subroutine should return to the address in GR14 with the largest element of the array in GR0. The subroutine should save and restore the contents of any registers modified by the subroutine.

37.3.3.(3) Write a subroutine starting at an instruction named CMax like that in Exercise 37.3.2, except that the array elements are addresses pointing to character strings prefixed with a halfword length field containing the number of bytes in the following string. Compare the strings, and return in GR1 the address of the string comparing higher than any of the others. Assume that shorter strings are padded with blanks. (Hint: the CLCL instruction may help.)

37.3.4.(3) Write a subroutine to count the number of 1-bits in a string of bytes. The subroutine entry point should be named NBITS and a typical standard call from a high-level language would look like

CALL NBITS( String, StrgLen, NCount )

The first argument is the address of the first byte of the string, the second argument is a word integer containing the number of bytes in the string (not including the length of this word!), and the third argument is where the count of 1-bits should be stored. If the second argument is not strictly positive, set the bit count to zero.

37.3.5.(2) In Figure 489 on page 754, explain why the first operand of the ORG instruction is *+2 instead of simply *.

37.3.6.(2) Criticize the following schemes for passing a variable-length list of arguments to a subroutine, using 32-bit argument addresses, and compare them to the standard convention.

1. The number of arguments is contained in the leftmost byte of R1 on entry to the subroutine.
2. The end of the argument list is indicated by the presence of a fullword zero following the last valid argument address.
3. The first fullword in the argument address list holds the number of argument addresses in the rest of the list.

37.3.7.(2) The IBM Model 026 card punch produces holes in a card according to the old BCD character representation. The important differences between it and the EBCDIC representation are that the BCD characters ’=() punched by an 026 produce the same hole configurations as the characters @#&>< in the EBCDIC representation produced by a Model 029 card punch.

Write a subroutine named CONVT that will convert all occurrences of the characters @#&>< in a character string to the characters ’=() respectively. That is, replace each @ by ’, each # by =, each & by +, and so forth. The subroutine should use standard linkage, parameter passing, and status-preservation conventions. There are two parameters: the string of characters, and the length of the string. (Table 166 on page 430 may help.)
37.4. Save Areas

We’ll start with conventions used for 32-bit registers.

If a register save area is used within a program, we must necessarily modify some part of the program itself. While this is not a problem for many applications, there are times when we want to write re-enterable code that can be shared by many simultaneously executing programs. This requires different techniques for allocating save areas.

For now, we’ll consider programs that contain internal save areas. Such programs are not re-entrant; we’ll see the changes needed to support re-entrant programs in Chapter XI.

By convention, the caller provides a “standard” 18-word save area, and its address is passed to the callee in GR13. The general registers are stored starting at offset +12 in the order GR14, GR15, GR0, GR1, GR2, ..., GR12. The easiest way to save the registers is to execute the instruction

STM 14,12,12(13)  Save GR14-GR12 in caller’s save area

before the called program modifies any of them. This is often one of the first instructions executed by a called program.

Table 394 shows the contents of a standard 18-word save area. (Note that words are numbered starting at zero.)

<table>
<thead>
<tr>
<th>Word</th>
<th>Offset</th>
<th>Offset</th>
<th>How this word is used</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>X‘0’</td>
<td>Special Purpose Data; not to be modified</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>X‘4’</td>
<td>Address of caller’s save area; stored here by the routine containing this save area (back chain)</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>X‘8’</td>
<td>Address of the save area in the subroutine most recently called by this routine; put here by that subroutine (forward chain)</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>X‘C’</td>
<td>c(GR14) (return address to caller)</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>X‘10’</td>
<td>c(GR15) (entry point address of this routine)</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>X‘14’</td>
<td>c(GR0)</td>
</tr>
<tr>
<td>6</td>
<td>24</td>
<td>X‘18’</td>
<td>c(GR1)</td>
</tr>
<tr>
<td>7</td>
<td>28</td>
<td>X‘1C’</td>
<td>c(GR2)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>17</td>
<td>68</td>
<td>X‘44’</td>
<td>c(GR12)</td>
</tr>
</tbody>
</table>

Table 394. Standard (Format-0) Save Area

Assuming that our routine B was called by routine A, and that B will call routine C, Figure 490 shows a sketch of a standard save area that we provide:
The first word of the save area is used for special purposes by some high-level languages, and should not be modified in any way. The second and third words are used to chain (link) the save areas in a doubly-linked list.

Suppose the save area is in routine B, that routine B was called from routine A, and that B will call routine C, as in Figure 491.

To show how save areas are used and how they are chained, we suppose routine B is called by routine A. Figure 492 shows instructions used at the entry point of B; these are typical of many subroutines.

---

235 In your Assembler Language routine it may be prudent to zero the first word of the save area you provide to routines you call. But don’t touch the first word of any other routine’s save area if it was created by a high-level language.
These instructions put the address of B’s save area into R13, so that routine B can call lower-level routines such as C. After a sequence of subroutine calls, the chained save areas would then appear as in Figure 493.

To return control to the calling program, we restore the registers and branch to the return address. For a routine having its own save area (as for B, in Figure 492), the address of the save area in the calling program A must be retrieved before A’s registers can be reloaded. Because the address of B’s save area is in GR13, we use the typical subroutine return instructions shown in Figure 494.

It is not necessary to save and then restore all the general registers, so long as the others are not modified in any way.
37.4.1. Extended Save Area Conventions (*)

When your programs are executed in an environment using 64-bit registers, the save area conventions can be more complex. There are three situations to consider:

1. Your calling and called programs use only 32-bit registers.
   
   You don’t need to do anything different; continue to use the standard (Format-0) save areas shown in Table 394.

2. Your calling program has provided a 144-byte save area, or your program is executing in 64-bit addressing mode.
   
   Use the “Format-4” save area described in Section 37.4.2, Table 395.

3. Your calling program uses only 32-bit registers (and provides a standard 72-byte, 18-word save area) but your (called) program uses 64-bit registers.
   
   Use the “Format-5” save area described in Section 37.4.3, Table 396 on page 761.

As before, we assume the save areas are internal to the programs.

37.4.2. Format-4 Save Area Conventions for 64-bit Registers (*)

We can’t use a standard 18-word save area because forward and back chains are 64-bit addresses. Instead, we use the “Format-4” save area shown in Table 395. The chain-address fields are now at the end of a Format-4 save area. (Note that words are numbered starting at zero.)

The second word of a Format-4 save area contains the identifying characters F4SA. This is used by diagnostic tools to know how to display the contents of the save area.

<table>
<thead>
<tr>
<th>Word</th>
<th>Offset</th>
<th>Offset</th>
<th>How this field is used</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>X’0’</td>
<td>Special Purpose Data; not to be modified</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>X’4’</td>
<td>C’F4SA’ (Used by diagnostic tools to properly display register contents and locate chain addresses.)</td>
</tr>
<tr>
<td>2-3</td>
<td>8</td>
<td>X’8’</td>
<td>c(GG14) (return address in the caller)</td>
</tr>
<tr>
<td>4-5</td>
<td>16</td>
<td>X’10’</td>
<td>c(GG15) (entry point address in the called routine)</td>
</tr>
<tr>
<td>6-7</td>
<td>24</td>
<td>X’18’</td>
<td>c(GG0)</td>
</tr>
<tr>
<td>8-9</td>
<td>32</td>
<td>X’20’</td>
<td>c(GG1)</td>
</tr>
<tr>
<td>10-11</td>
<td>40</td>
<td>X’28’</td>
<td>c(GR2)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>30-31</td>
<td>120</td>
<td>X’78’</td>
<td>c(GG12)</td>
</tr>
<tr>
<td>32-33</td>
<td>128</td>
<td>X’80’</td>
<td>Address of the save area in the subroutine that called this routine (back chain)</td>
</tr>
<tr>
<td>34-35</td>
<td>136</td>
<td>X’88’</td>
<td>Address of the save area in the subroutine most recently called by this routine; put here by that subroutine (forward chain)</td>
</tr>
</tbody>
</table>

Table 395. Standard Format-4 save area

A representation of a Format-4 save area is shown in Figure 495.
To show how to use a Format-4 save area in a program executing in 64-bit addressing mode that was called by a program providing a Format-4 save area, you might use instructions like those in Figure 496:

CSECT64 CSect ,
CSECT64 AMode 64 Addressing mode 64
CSECT64 RMode Any Residence anywhere below the “bar”
STMG 14,12,8(13) Save 64-bit registers in caller’s area
LARL 12,CSECT64 Set local base register
USing CSECT64,12 Establish addressability
LA 11,MySave Point to local save area
STG 11,136(13) Save forward link in caller’s area
STG 13,MySave+128 Save backward link in local area
LGR 13,11 Set GG13 to point to local area
 Return LG 13,MySave+128 Retrieve caller’s area address
LMG 14,12,8(13) Restore registers
BR 14 Return
MySave DC F’0’,C’F4SA’,17D’0’ Format-4 save area

Figure 496. Example of using a Format-4 save area

37.4.3. Format-5 Save Area Conventions for 32- and 64-bit Registers (*)

In this case, your caller has provided a standard 18-word save area, but your routine will need to save the high-order halves of the general registers because his caller might be using all 64 bits of the registers. In this case, you need a Format-5 save area for your routine, as described in Table 396 and illustrated in Figure 496.
<table>
<thead>
<tr>
<th>Word</th>
<th>Offset</th>
<th>Offset</th>
<th>How this field is used</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>X’0’</td>
<td>Special Purpose Data; not to be modified</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>X’4’</td>
<td>C’F5SA’ (Used by diagnostic tools to properly display register contents and determine chaining links.)</td>
</tr>
<tr>
<td>2-3</td>
<td>8</td>
<td>X’8’</td>
<td>c(GG14) (return address in A)</td>
</tr>
<tr>
<td>4-5</td>
<td>16</td>
<td>X’10’</td>
<td>c(GG15) (entry point address in B)</td>
</tr>
<tr>
<td>6-7</td>
<td>24</td>
<td>X’18’</td>
<td>c(GG0)</td>
</tr>
<tr>
<td>8-9</td>
<td>32</td>
<td>X’20’</td>
<td>c(GG1)</td>
</tr>
<tr>
<td>10-11</td>
<td>40</td>
<td>X’28’</td>
<td>c(GR2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>...</td>
</tr>
<tr>
<td>30-31</td>
<td>120</td>
<td>X’78’</td>
<td>c(GG12)</td>
</tr>
<tr>
<td>32-33</td>
<td>128</td>
<td>X’80’</td>
<td>Address of the save area in the subroutine (A) that called this routine (B) (back chain)</td>
</tr>
<tr>
<td>34-35</td>
<td>136</td>
<td>X’88’</td>
<td>Address of the save area in the subroutine most recently called by B; put here by that subroutine (C) (forward chain)</td>
</tr>
<tr>
<td>36-51</td>
<td>144</td>
<td>X’90’</td>
<td>High halves of c(GG0)-c(GG15)</td>
</tr>
</tbody>
</table>

Table 396. Standard Format-5 save area

Figure 497 shows the layout of a Format-5 save area.

First, you save the caller’s 32-bit registers in his save area, as in Figure 492. Then, you save the high-order halves of all 16 general registers in your Format-5 save area in the 16 words starting at offset +144.
STM 14,12,12(13) Save low-order halves of GG14-GG12
STMH 0,15,BSaveHiH Save high-order halves of GG0-GG15
STG 13,BSaveBCh Save 64-bit back chain address
LA 1,BSave5 31-bit addr of our Format-5 save area
ST 1,8(13) Store forward chain in caller’s area
LGR 13,1 Point GG13 to our save area

BSave5 DS OD 208-byte Format-5 save area
DS F Reserved
DC ‘F5SA’ Format identifier
DS 13D Save area for GG14-GG12
BSaveBCh DS D Back chain address
BSaveFCh DS D Forward chain address
BSaveHiH DS 8D Save high halves of GG0-GG15

Figure 498. Saving registers using a Format-5 save area

After executing these instructions your program can use the 64-bit general registers. When it’s
time to return to the caller, the high-order halves of the registers must be restored, as in Figure
499.

LMH 0,15,BSaveHiH Reload high-order halves
LG 13,BSaveBCh Get address of caller’s save area
LM 14,12,12(13) Reload low-order halves
BR 14 Return to caller

Figure 499. Return from a routine using a Format-5 save area

To summarize the three main types of save area:

**Format-0**
The traditional 72-byte save area that saves only the low-order 32 bits of the general
registers.

**Format-4**
‘F4SA’ in the second word indicates a 144-byte save area for all 64 bits of the
general registers.

**Format-5**
‘F5SA’ in the second word indicates a 208-byte save area used when a program
executing in 24- or 31-bit addressing mode calls a program executing in 64-bit
mode. The first 144 bytes are the same as in the Format-4 save area. The low-
order 32 bits of the caller’s registers are saved in his Format-0 save area, and the
high-order 32 bits of the caller’s registers are saved in the 64 bytes starting at offset
144, and are used by programs that this program calls.

**Exercises**

37.4.1.(2)+ The second word of a Format-4 or Format-5 save area contains the characters F4SA
or F5SA. Why can this not be confused with the back-chain address of a standard save area?

37.4.2.(2) In Figure 499, the LMH instruction changes the high half of GG14. Why won’t this
affect the return address?

**37.5. Additional Conventions (*)**

Some other conventions can be used in subroutine calls: entry point identifiers, calling point
 identifiers, return flags, and return codes. Other than return codes, they are used largely for
program debugging and error diagnostics: if your program terminates “abnormally” the Supervi-
sor’s diagnostic programs can check for these three items and display them as part of memory
dumps and other “post-mortem” information. Also, entry point identifiers and calling point iden-
tifiers can be used to provide execution-time flow tracing information.
37.5.1. Entry Point Identifiers (*)

An entry point identifier is a string of characters describing the called routine’s entry point in some way; a typical identification is the name of the entry point. The entry point identifier (sometimes abbreviated EPID) is constructed as follows:

1. The first instruction at the actual entry point is an unconditional branch to the STM instruction that will save the registers.
2. The next byte contains a count of the number of characters in the following character string.
3. The identifier string of 1 to 255 characters follows immediately after the count byte.
4. The following instruction is the halfword-aligned STM instruction that saves the registers in the caller’s save area.

Figure 500 shows how an entry point identifier is created:

<table>
<thead>
<tr>
<th>Using *.15</th>
<th>Use caller’s preset GR15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample B</td>
<td>Saver</td>
</tr>
<tr>
<td>DC</td>
<td>AL1(L’EPID)</td>
</tr>
<tr>
<td>EPID</td>
<td>C’Sample’</td>
</tr>
<tr>
<td>Saver STM</td>
<td>14,2,12(13)</td>
</tr>
<tr>
<td></td>
<td>Save registers</td>
</tr>
<tr>
<td></td>
<td>etc...</td>
</tr>
</tbody>
</table>

Figure 500. Example of an entry point identifier

In this case the ID string is the name of the entry point instruction, but it can be any useful information:

<table>
<thead>
<tr>
<th>Using *.15</th>
<th>Use caller’s preset GR15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample B</td>
<td>Saver</td>
</tr>
<tr>
<td>DC</td>
<td>AL1(L’EPID)</td>
</tr>
<tr>
<td>EPID</td>
<td>C’Sample routine’s EPID created 30 Feb 2035, 14:45 19 Jan 2015, 15:13’</td>
</tr>
<tr>
<td>Saver STM</td>
<td>14,2,12(13)</td>
</tr>
<tr>
<td></td>
<td>Save registers</td>
</tr>
<tr>
<td></td>
<td>etc...</td>
</tr>
</tbody>
</table>

To save you having to worry about the details of identifying an entry point and storing registers, the “Library of Macro Instructions” available to the Assembler (see Figure 23 on page 74) will usually contain a SAVE macro-instruction. You use it in one of these three forms:

name SAVE (R1,R2)
name SAVE (R1,R2),,character-string
name SAVE (R1,R2),,*

where the name entry is optional.

The first form generates only the a STM instruction which saves registers R1 through R2 in the caller’s save area. The second generates the “character-string” as an entry point identifier, and then the STM instruction. The third form generates an entry point identifier consisting either of the name-field symbol name if it’s present or the name of the control section in which the SAVE appears, and then generates the STM instruction.

Thus, we could have written the last four statements of Figure 500 as the single statement

Sample SAVE (14,2),,* Identify entry, save registers

and the generated instructions would look like these:

<table>
<thead>
<tr>
<th>Sample B</th>
<th>12(0,15)</th>
<th>BRANCH AROUND ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC</td>
<td>AL1(6)</td>
<td></td>
</tr>
<tr>
<td>DC</td>
<td>CL6’Sample’</td>
<td></td>
</tr>
<tr>
<td>STM</td>
<td>14,2,12(13)</td>
<td>SAVE REGISTERS</td>
</tr>
</tbody>
</table>

For more about using macro-instructions like SAVE, see the IBM publications for your operating system environment.
37.5.2. Calling Point Identifiers (*)

A calling point identifier is a NOP instruction (described in Section 15.4) following the BAS or BASR. It contains a halfword integer like an “identification number” or statement number. For example, we can call a subroutine named `Dummy` with the two variable-length argument lists in Figure 485:

```
L 15,=A(Dummy) 'Dummy' is a separate subroutine
LA 1,List1 Point to first argument address list
BASR 14,15 Link to subroutine
NOP 1 Calling point ID = 1
L 15,=A(Dummy) As above (making sure GR15 is correct)
LA 1,List2 Point to second arg address list
BASR 14,15 Link to subroutine
NOP 2 Calling point ID = 2
```

Figure 501. Example of two calling point identifiers

When the called routine returns to the instruction whose address was passed to it in GR14, control will immediately continue to the instruction after the NOP. The logic of your program is not affected by the presence of a calling point identifier.

37.5.3. Save Area Return Flags (*)

A save area return flag is helpful as a diagnostic device for programs that might terminate unexpectedly. Suppose there isn’t enough information in the registers for you to determine which routine was most recently in control. You can examine the chain of save areas in a memory display to tell which routines have called one another, but you might not be able to tell which routines have returned to their callers. This added bit of information is provided by a return flag.

After the caller’s registers have been reloaded and just before branching to the instruction whose address is in R14, the callee executes the instruction

```
OI 15(13),X’01’
```

This sets the low-order bit of the fourth word of the caller’s save area to 1. Since the caller’s GR14 (saved at offset +12) has been reloaded before the OI is executed, the contents of GR14 on return is the same as when the call was made. We can revise the example in Figure 494 to set the return flag:

```
L 13,BSave+4 Retrieve address of caller’s area
LM 14,12,12(13) Restore all registers
OI 15(13),X’01’ Set return flag in save area
BR 14 Return to caller
```

Figure 502. Setting a return flag

If you wonder why the low-order bit of the byte at offset +15 in the save area might not already be 1: if your program was not invoked in 64-bit addressing mode with the BASSM or BSM instructions, it’s the address of an instruction to which control is returned, so it must be an even address. If your program was invoked in 64-bit mode with BASSM or BSM instructions, then this bit is already on and cannot be used to convey other information.

---

236 With certain options, the High Level Assembler will view the NOP instruction like any other branch, and check whether the Effective Address appears to reference the lowest 4K bytes of memory without a base register. In such cases, you might write NOP 1(,0), or specify other Assembler options.
Be careful!

If your subroutine can execute in any addressing mode (including 64-bit mode) and is called by a caller executing in 24- or 31-bit mode, don’t use this technique to set a return flag. If your program was invoked in 64-bit mode, this bit was already set to 1 and can’t be used to convey return information.

We’ll see the reasons for this when we discuss mode-changing instructions in Section 38.

37.5.4. Return Codes (*)

Return codes are used often when you communicate with Operating System services. They are usually small nonnegative integers, returned to the caller in GR15. Normally, the calling routine won’t expect the contents of R15 to be restored, so the called routine can use GR15 to pass a return code to the caller. This could be any value, but by convention only multiples of 4 such as 0, 4, 8, and so forth are used as return codes.

For example, suppose a subroutine does a calculation and returns the result in GR0, with GR15 set to zero. If the subroutine has been passed an invalid argument (so that it can’t do the calculation correctly), it can set GR15 to +4 to indicate the error condition and let the caller analyze and maybe correct the situation.

The instructions in Figure 504 show how the subroutine could set the return code for a “good” and a “bad” return.

```
* - - - Valid calculated result is in GR0
GoodRet L 13,Save+4 Retrieve pointer to caller’s area
 L 14,12(0,13) Restore caller’s GR14
 LM 1,12,24(13) Restore GR1 through GR12
 SR 15,15 Set return code to zero
 OI 15(13),X’01’ Set return flag
 BR 14 Return to caller

* - - - Invalid argument, no result in GR0
BadRet L 13,Save+4 Retrieve addr of caller’s save area
 LM 14,12,12(13) Restore all the registers
 LA 15,4 Ret return code to +4
 OI 15(13),X’01’ Set return flag
 BR 14 Return to caller
```

Figure 503. Setting a return code in register 15

Another way to set a return code that might have been given different values in the called program:

```
L 13,4(13) Retrieve caller’s save area address
L 14,12(13) Restore return address
L 15,Retcode Put return code in GR15
LM 0,12,20(13) Restore remaining registers
BR 14 Return to caller

or
L 13,4(13) Retrieve caller’s save area address
MVC 16(4,13),Retcode Put return code in GR15 slot
LM 14,12,12(13) Restore registers
BR 14 Return to caller
```

Figure 504 shows how the calling program can test the return code to validate the result:
L 15,=A(Sub)      Entry point address in GR15
LA 1,ArgLst       Argument address list
BASR 14,15        Link to subroutine
LTR 15,15         Test return code in GR15
JNZ Error         If nonzero, error indicated
ST 0,Result       Store valid result

ArgLst DC A(DataItem)   Address of data for 'SUB'

Figure 504. Testing a return code returned in register 15

When the return code can take on more values, it can be used as an index into a list of branch instructions.

- - -  Set up registers for linkage
BASR 14,15  Link to subroutine as usual
CHI 15,MaxRC  Check for return code too large
JH BadRC  Go do something if so

Br2List B *+4(15)  Indexed branch into list
J Ret000  Return code = 0
J Ret004  Return code = 4
J Ret008  Return code = 8
J Ret012  Return code = 12
- - -  etc...

Figure 505. Using a return code as a branch index

If you are using relative branch instructions to minimize (or eliminate) the need for base registers to address your instructions, you can’t use the RX-type B instruction named Br2List in Figure 505. Instead, use instructions like those in Figure 506:

- - -  Set up registers for linkage
BASR 14,15  Link to subroutine as usual
LARL 14,JList  Address of branch list
AR 14,15  Add return code to list address
BR 14  One-hop branch to correct routine

JList J Ret000  Return code = 0
J Ret004  Return code = 4
J Ret008  Return code = 8
J Ret012  Return code = 12
- - -  etc...

Figure 506. Using a return code as a branch index with relative branch instructions

It is always prudent to check the value of the return code if the called program isn’t known or trusted:

- - -  Set up registers for linkage
BASR 14,15  Link to subroutine as usual
CHI 15,0  Check for return code 0
JE Ret000  Return code = 0
CHI 15,4  Check for return code 4
JE Ret004  Return code = 4
CHI 15,8  Check for return code 8
JE Ret008  Return code = 8
J BadRetCd  Unknown/invalid return code

Figure 507. Checking for valid return code values

Subroutines that do very complex operations may need to give more detailed information about the reason for a particular return code. A common convention is to put a reason code in GR0, as illustrated in Figure 508:
BadRet  L  13,Save+4        Retrieve addr of caller’s save area
       L  0,ReasonCd        Load the reason code into GR0
       L  14,12,(13)        Restore the return address
       LM  1,12,24(31)      Restore GR1 through GR12
       LA  15,4             Ret return code to +4
       OI  15(13),X’01’     Set return flag in caller’s area
       BR  14               Return to caller
ReasonCd DC  X’0022006D’ Reason code for a specific problem

Figure 508. Setting a reason code in register 0

As with the SAVE macro-instruction, a RETURN macro is available in the macro library for use
by Assembler Language programs. You usually use one of these forms (where the name-field
entry name is optional):

name RETURN (R1,R2)        Restore registers
name RETURN (R1,R2),T       Restore regs, set return flag
name RETURN (R1,R2),T,RC=nn Restore regs, set flag and retcode
name RETURN (R1,R2),T,RC=(15) Restore regs, set flag and retcode

The first operand generates an LM instruction to reload registers R1 through R2, assuming that
GR13 contains the address of the caller’s save area before the RETURN macro-instruction is exe-
cuted. The second operand (“T”) causes the return flag to be set, and the third operand causes the
value “nn” or the existing contents of GR15 to be used as the return code. The second operand
can be omitted in the third and fourth forms of the RETURN macro-instruction.

We can rewrite Figure 503 to use RETURN macros:

* - - - Valid result in GRO
GoodRet L  13,Save+4        Restore caller’s save area address
       RETURN (14,12),T,RC=0 Restore registers, etc, RC = 0
BadRet L  13,Save+4        Restore save area pointer
       RETURN (14,12),T,RC=4 Restore registers, set RC = 4

Figure 509. Using RETURN macros to set return flags and return codes

The RETURN macros put the specified return codes in GR15, and then reload GR14 and the
other registers.

Sometimes, an alternate return branch does not put a return code in GR15, but returns instead at
the equivalent offset from the address in GR14. A revision of Figure 503 shows how this might be
done:

* - - - Valid calculated result is in GRO
GoodRet L  13,Save+4        Retrieve pointer to caller’s area
       LM  14,12,12(13)      Restore GR14 through GR12
       OI  15(13),X’01’     Set return flag
       BR  14               Return to caller
* - - - Invalid argument, no result in GRO
BadRet L  13,Save+4        Retrieve addr of caller’s save area
       LM  14,12,12(13)      Restore all the registers
       OI  15(13),X’01’     Set return flag
       B  4,(14)           ← Return to caller at offset +4

Figure 510. Returning to an error branch without a return code

For this to work, the caller must have placed enough 4-byte branch instructions after the BAS or
BASR, as in Figure 511 on page 768. Unlike Figure 505, caller and callee must agree which
method will be used to handle error returns.
If the called routine returns at a larger offset (say, 16) in Figure 511 than the calling routine expected, control would be given to something unexpected.

37.5.5. Conventions for Floating-Point Registers.

If a called subroutine modifies the floating-point registers, it is responsible for saving some of them: FPRs 0-7 are considered “volatile” and their contents need not be preserved, but the contents of FPRs 8-15 must be saved and restored across calls. That is, the called routine must save and restore modified non-volatile FPRs; this allows you to optimize certain variables into non-volatile registers across calls.

37.5.6. Main-Program Parameters

When you invoke a main program you often pass parameters, typically in the PARM field of a JCL statement:

```
// EXEC PGM=MYPROG,PARM=′YES,NO,UP,DOWN′
```

The string of characters is passed to your program as shown in Figure 512:

```
GR1 2
 ┌───────────┐ ┌───────────┐ ┌─────┬──────────────┐
 │ A(Addr1) │────/SM590000│ A(Parms) │────/SM590000│ Len │YES,NO,UP,DOWN│
 └───────────┘ └───────────┘ └─────┴──────────────┘
```

Figure 512. Convention for passing main-program parameters

where the halfword Len contains the number of bytes in the following character string.

One of three methods may be used to indicate there are no parameters for the main program:

- The address in GR1, “A(Addr1)” may be zero.
- The address pointed to by GR1, “A(Parms)” may be zero.
- The halfword length Len may be zero.

Exercises

37.5.1.(4) In the early days of System/360, all programs executed in 24-bit addressing mode, and a return flag was set with this instruction:

```
MVI 12(13),X′FF′
```

which set the high-order byte of the return address to all 1-bits. Why could the high-order byte of the return address not be all 1-bits resulting from a normal subroutine call? (You may have to do some historical research to answer this question!)

37.5.2.(2)+ A programmer decided to use this calling sequence to his subroutine:
CNOP 2,4          Align to middle of fullword
LA 13,MySave     Point GR13 to my save area
L 15,=A(SUB)  Set GR15 to entry point address
LA 14,Return    Set GR14 to return address
BASR 1,15   GR1 points to parm list; call SUB
DC A(P1,P2,P3) Argument address list, with
DC AL3(P4+X'80000000')  ... variable-length flag bit
Return NOP 999  Calling point identifier

Does this sequence conform to standard calling conventions?

37.5.3.(3)+ The instructions in Figures 505 and 506 assume that the return code in GR15 is a nonnegative multiple of 4. Assuming that the return code must be less than or equal to 12, revise the instructions as follows:

• If the return code is negative, set it to 12.
• If the return code is greater than 12, set it to 12.
• If the return code is not a multiple of 4, round it to the next higher multiple of 4.

37.5.4.(3) Write a subroutine named **WHO** that determines if there is an entry point identifier at the entry point of its caller, and print it if there is one. For example, if **WHO** was called from **WHAT**, it might print

> WHO called from WHAT

37.5.5.(3) Write a subroutine **WHO2** (as in Exercise 37.5.4) that will also print the caller’s calling point identifier if it is present.

37.5.6.(2)+ The technique for using return codes illustrated in Figure 506 is unsafe if the called routine does not place a valid return code in GR15. Rewrite the code sequence so that valid return codes 0, 4, 8, and 13 will branch as desired, and invalid codes will cause a branch to **InvCode**.

37.5.7.(1) What is the maximum possible value of a calling point identifier?

37.5.8.(1)+ A programmer suggested this instruction sequence for returning to a caller with a return code in GR15: will it work? Explain.

L 13,4,(13)  Restore caller’s save area addr
MVC 16(4,13),RetCode  Move my return code to GR15 slot
LM 14,12,12(13)  Restore registers
BR 14  Return to caller

37.5.9.(2)+ Show how you can use a based branch to branch into a branch table (as in 506) without requiring a base register.

37.5.10.(1) Show a way to test whether a return code is a multiple of four. If it isn’t, branch to **BadRC**.

37.5.11.(2)+ A programmer claimed that you can test whether the return code in GR15 is a multiple of 4 using these instructions:

Choice CLI *+1,B’111111100’
EX 15,*+-4
BNE Error  Branch if not a multiple of 4

Prove or disprove his claim.
37.6. Assisted Linkage (*)

Up to now we have discussed direct linkage: the calling program transfers control directly to the subroutine’s entry point. It is sometimes more convenient to use an indirect or assisted linkage: instead of branching directly to the called program, control passes to an intermediate assisting routine to do some useful activities (such as tracing, status preservation, and counting) and then branch to the subroutine.

This technique can relieve caller and callee of much of the labor associated with subroutine linkages, but it requires careful planning of conventions used to communicate with the intermediate assisting routine.

To illustrate, suppose ShftRt and Print are two subroutines called in a complex program. To call a routine, we place its “subroutine number” into GR15 and then link to an internal Caller routine that eventually branches to the desired subroutine. We can create the “subroutine numbers” by appending a “#” character to the actual routine name, and defining Equ statements to generate the number. Figure 513 shows how you might use an assisted linkage:

```
- - -
LA 15,ShftRt# Load subroutine number for ShftRt
BAS 14,Caller Link to ShftRt via Caller routine
- - -
LA 15,Print# Load subroutine number for Print
BAS 14,Caller Link to Print routine via Caller
```

Figure 513. Example of calling with assisted linkage

A simple form of Caller could be written as in Figure 514:

```
Caller L 15,AdrTbl(15) Get true subroutine address
BR 15 Branch to subroutine
AdrTbl DC 0A(0) Align start of table
ShftRt# Equ *-AdrTbl Subroutine number for ShftRt
 DC A(ShftRt) True address of ShftRt
Print# Equ *-AdrTbl Subroutine number for Print
 DC A(Print) True address of Print
- - -
```

Figure 514. Example of a routine to implement assisted linkage

The called routine will not be aware of the indirect nature of the call, and the return from callee to caller will be direct, bypassing the linkage routine.

This scheme apparently wastes instructions in getting from one routine to another. However, by expanding information kept by the Caller routine it can, for example, display the name and address of the routine being called and of its caller, the addresses of the arguments, the return address, and so forth.

For example, the Caller routine could keep a count of the number of times each routine is called. Figure 515 shows a way to do this; we assume that no base registers are available to provide addressability in the Caller routine.
In large programs, this tracing information can be extremely helpful in finding errors in logic and flow of control. The routines called using assisted linkages may have been tested, but difficulties always appear when smaller routines are combined into large programs.

The value of such a tracing and diagnostic tool often far outweighs its minor costs; and the overheads of the indirect subroutine linkage can be minimized by setting a flag to indicate whether or not traces and diagnostics are wanted, or if the indirect call should go directly to the chosen routine.

**Exercises**

37.6.1.(2) Assuming each of the called routines in Figure 515 has an entry point ID, show the instructions you’d add to the Caller routine to load GR1 and GR2 with the address and length of the called routine’s ID.

37.6.2.(4) Assuming each of the called routines in Figure 515 has an entry point ID, show the instructions you’d add to the Caller routine to load GR1 and GR2 with the address and length of the ID of the calling routine.

37.6.3.(2) In Figure 515 the first instruction saves registers in the caller’s save area. Will it matter whether or not the called routine (that eventually receives control from Caller) also executes the same instruction?

37.6.4.(2) Suppose the call to the Caller routine is changed to pass the subroutine number as a halfword following the BAS instruction:

```assembly
BAS 14,Caller Link to ‘Caller’ routine
DC Y(ShftRt#) With inline subroutine number
 Return here from called routine
```

The Caller routine could be modified like this:

```assembly
LA 15,AdrTbl Address of zero-th target routine
AH 15,0(0,14) Add subroutine number to GR15
L 15,0(0,15) Load correct entry point address
AH 15,2 Increment return address by 2
BR 15 Enter called routine
AdrTbl DC A(ShftRt) True address of ShftRt
DC A(Print) True address of Print
 ...etc...
```
Show how the interface could be slightly modified to not require incrementing the address in GR14 by two.

37.6.5. Revise the instruction sequences in Exercise 37.6.4 to pass the subroutine number in GR0 to the **Caller** program.

### 37.7. Lowest Level Subroutines

If a routine makes no calls to Lower-level routines (*including* calls to I/O or other Supervisor services), it need not contain a save area.

Suppose we need a subroutine that sets a string of bytes to zero; we will write a lowest level subroutine **ClearMem** that will zero up to 256 bytes at a time. Its first argument gives the address of the first byte of the area to be cleared, and the second is the address of a positive fullword integer specifying the number of bytes.

```assembly
Using *,15 Caller will preset GR15
ClearMem STM 14,2,12(13) Save GR14 through GR2
 XC 8(4,13),8(13) Zero the caller’s forward chain
 LM 1,2,0(1) Get argument addresses
 L 2,0(0,2) Load number of bytes to zero
 BCTR 2,0 Decrement by 1 for EX instruction
 EX 2,Zero Execute XC instruction
 LM 1,2,24(13) Restore modified registers
 BR 14 Return to caller
Zero XC 0(0,1),0(1) Clear a variable-length area
Drop 15 Base in GR15 no longer available
```

FIGURE 516. Example of a lowest level subroutine

Because no calls are made by this routine, GR15 can be used as its base register. The only registers changed are GR1 and GR2, which are restored on return.

We could have saved only GR1 and GR2, but it’s good practice to *always* save registers GR14 and GR15 in the caller’s save area. Because those registers define the addresses from and to which the call is made, those addresses in the save area can help diagnose difficulties if a program goes astray.

The technique shown in Figure 516 should be used only if you are absolutely certain that the routine will never be modified to call another lower-level routine. If that routine causes an interruption, debugging your program will be much more difficult.

### Exercises

37.7.1.(2) Assume that the **ShftRt5** routine in in Figure 483 on page 752 is a lowest level routine that returns its result in GR0. Revise it to save and restore the minimum necessary number of general registers.

37.7.2.(3)+ Write a **RanInt** subroutine that calculates random integers according to the formula

\[ X_{new} = A \times X_{old} \mod p \]

where \( A = 16807 \) and \( p = 2^{31} - 1 = 2147483647 \). That is, given a previous random integer \( X_{old} \), \( X_{new} \) is the remainder of \((A \times X_{old})/p\). The subroutine should conform to these conventions:

- The return address is in GR14.
- GR13 contains the address of a save area.
- The entry point instruction should be named **RanInt**.
- When control reaches the entry point its address will be in GR15.
• The value of Xold is passed to the routine in GR0.
• The new random number Xnew is returned to the caller in GR0.
• Restore all registers except GR0 to their original contents.

Note: The quality of the random sequences generated by this routine is not high enough for serious or lengthy simulations.

37.7.3.(2) Suppose in Figure 516 that the LM instruction to restore the registers had been written with operand field entry 1,12,24(13) instead of 1,2,24(13). Describe what differences this (not unusual) programming error might make in the behavior of the program.

37.8. Summary

This section has discussed topics that can help you divide a complex application into smaller parts that can be assembled and tested individually. We’ve seen conventions used for

• the registers used for standard linkage conventions
• techniques used for argument passing, including variable-length argument lists
• standard save areas
• status preservation
• useful instructions supporting these activities.

Internal subroutines can use any convenient convention for linkage and argument passing that are agreed between caller and callee, and used consistently. These “local” conventions can be simple and efficient, but subroutines using them can be difficult to extract for use in other programs.

Subroutines using standard linkage conventions can be written once, assembled, and installed in a “Library of object and load modules” (see Figure 24 on page 75) for use by many programs. Reusing existing subroutines makes it easier to share code, and simplifies and speeds application development.

37.8.1. Standard Linkage Conventions

This is a summary of the standard linkage conventions used in many operating system environments on z System.

1. The entry point address is in general register 15 on entry to the called routine.
2. The return address is in general register 14 on entry to the called routine.
3. The address of the list of argument addresses is in general register 1 on entry to the called routine. If there are no arguments, general register 1 is set to zero.
   For calls to routines using 32-bit argument addresses and in which the number of arguments is known to be fixed and invariable, it is not necessary to set the high-order bit of the last argument address (but it’s always a good practice!).
4. For calling programs using only 32-bit general registers, the address of an 18-word save area is in GR13 on entry to the called routine.
5. The setting of the Condition Code on entry to the called routine need not be preserved.
6. Subroutines that calculate an integer value often return it in general register 0.
7. The contents of floating-point registers 0-7 need not be preserved by the called routine; if any of floating-point registers 8-15 will be used their contents must be saved and restored before returning to the caller. That is, FPR0-FPR7 are considered “volatile”.

More precisely: internal subroutines within a single control section. We’ll see why this is important in Section 38, when we discuss separately assembled routines.
Routines that calculate floating-point values often return them in FPR0 or (FPR0,FPR2).

8. General registers 2 through 14 must be saved by the callee and restored to their original values before control is returned to the caller. (In general, it is best to restore the contents of all registers not containing return values whenever practical.) Some operating system services may not restore all registers; be sure to check the system’s documentation.

   If the called routine uses 64-bit registers, it must save and restore the low halves of general registers 2-13 and the high halves of general registers 2-14.

   Many Operating System services expect GR13 to point to a standard save area, and may not restore general registers 14, 15, 0, and 1.

9. In the Floating-Point Control Register, preserve the mask and rounding bits. The flag bits and Data Exception Code (DXC) need not be saved.

10. Return codes, if used, are integer multiples of 4 in GR15 on return.

    Sometimes more detailed information is returned than a single integer in GR15 can provide; if so, a reason code is often returned in general register 0.

11. For programs executing in 64-bit addressing mode, the caller must provide a 144-byte doubleword aligned Format-4 save area with the characters ‘F4SA’ in the second word.

Other conventions are used for identifying entry and calling points, and a return flag.

---

Terms and Definitions

**argument**
A value supplied by a calling program.

**parameter**
A place-holder in a called program, to be assigned a value from an argument provided by a calling program.

**linkage convention**
An agreed set of rules for transferring control between a calling and a called program, passing arguments and receiving results, and preserving caller information during the execution of the subroutine so it can be restored on return to the caller.

**calling point identifier**
A NOP instruction with a halfword identifying number in place of its addressing halfword, of the form X’4700nnnn’.

**entry point**
The first instruction to receive control when a routine is invoked.

**entry point identifier**
A string of characters following the first instruction at an entry point, providing descriptive information about the entry.

**return address**
The address of an instruction to which control should be passed when a routine completes its execution.

**return code**
A small integer value (usually a multiple of 4) placed in GR15 prior to returning to a calling program.

---

Programming Problems

**Problem 37.1.** Write a program to print the 168 prime numbers less than 1000. Create an internal subroutine to convert a number from its internal binary representation to character form and print it.
Problem 37.2. Write a subroutine named PD2CH with two arguments: the first (input argument) is a valid packed decimal number 6 bytes long, and the second (output argument) is a character string 12 bytes long containing a blank character followed by the digits of the result. Your routine should replace leading zero digits by blanks.

Problem 37.3. Do as in Problem 37.2, but now write a subroutine named PD2CHN that accepts two input arguments: the packed decimal number and its length in bytes. Use the second argument to determine the minimum necessary length of the third (output) argument.

Problem 37.4.(3)+ Write a subroutine named GCD that calculates the greatest common divisor of two positive 32-bit integer arguments, using standard linkage conventions. The subroutine should accept either two or three arguments:

- The first two arguments are the integers whose GCD is to be found. In this case, return their GCD in GR0.
- If a third argument address is provided, store the GCD at that address.

The greatest common divisor function GCD(x,y) can be defined by

\[ \text{GCD}(x,y) = \begin{cases} y & \text{if } x=0 \\ \text{GCD}(\text{remainder}[y/x],x) & \text{else} \end{cases} \]

Restore all registers other than GR0 and GR1.

Problem 37.5.(2)+ Write a subroutine with entry name PMax with a single argument: a pointer in GR1 to a list of addresses. Each address in the list points to a packed decimal number preceded by a single byte containing the length in bytes of the packed decimal number, as in

```
DC AL1(3),P'1234'
```

Only the address of the last item in the list has its high-order bit set to 1.

The subroutine should return in GR1 the address of the list item with the largest magnitude. None of the data in the list may be modified.
As programs grow, we need to consider (at least) three issues:

1. How to provide addressability for parts of the program that require it.
2. How to subdivide a program into smaller, more manageable pieces
   - within a single assembly,
   - with separate assemblies.
3. How to combine the separate pieces into a complete application.

Thus far, we've discussed programs where a single base register was enough to provide addressability for the entire program. But programs frequently grow large enough that more than one base register might be needed.

We'll consider two techniques for providing addressability in large programs:

1. We can allocate enough base registers to ensure that every byte of the program can be addressed; we call this “uniform” addressability.
2. We can rearrange parts of the program into segments that require addressability, and segments that don’t.

### 38.1. Uniform Addressability for Large Programs

If two or three general registers can be assigned as base registers for the duration of the program, we use some simple techniques.

For the following examples, suppose we need three base registers to provide addressability for the entire program, and that we have assigned GR10, GR11, and GR12 for this purpose. (Three base registers can provide uniform addressability for up to 12K bytes.) A typical instruction sequence for initializing these base registers is shown in Figure 517.
The USING statements need not appear exactly where they are placed in Figure 517. Because none of the LAY instructions contains an implied address, we can place the all USING statements after the BASR:

PROG Start 0
  BASR 10,0 Set first base register
  Using BaseLoc,10 Inform assembler
  BaseLoc LAY 11,4096,(10) Create c(GR10)+4096 in GR11
  Using BaseLoc+4096,11 Inform assembler of 2nd base
  LAY 12,8192,(10) Create c(GR10)+8192 in GR12
  Using BaseLoc+8192,12 And inform the assembler again

Figure 517. Establish three base registers (1)

In situations like this it’s easier use a more general form of the USING statement. Instead of writing a single register number after the first operand, we can write up to 15 register numbers:

\[
\text{Using value, regnum}_1, \text{regnum}_2, \ldots, \text{regnum}_k
\]

When the Assembler processes this statement, the entries made in the Using Table (described in Section 10.8 on page 127) are identical to the entries that would be made from these statements:

\[
\begin{align*}
\text{Using value,}\text{regnum}_1 \\
\text{Using value+4096,}\text{regnum}_2 \\
\text{Using value+8192,}\text{regnum}_3 \\
\vdots \\
\text{Using value+(k-1)*4096,}\text{regnum}_k
\end{align*}
\]

That is, each register specified in the third and following operands is assumed to contain a value 4096 larger than the value assigned to the previous register. We could therefore have written Figure 518 in the simpler form shown below.

---

238 A program needing 15 base registers for addressability wouldn’t be able to do much with the one remaining register! We’ll see that relative addressing can help a lot.
Similarly, Figure 519 could have been written this way:

```prolog
PROG Start 0
 BASR 10,0
 BaseLoc LAY 11,4096(0,10)
 LAY 12,8192(0,10)
 Using BaseLoc,10,11,12
```

Figure 521. Establish three base registers (5)

You can also use arithmetic instructions with immediate operands instead of the LAY instructions:

```prolog
PROG Start 0
 BASR 10,0
 BaseLoc LR 11,10
 AHI 11,4096
 LR 12,11
 AHI 12,4096
 Using BaseLoc,10,11,12
```

Even though the same number of bytes are generated, two more instructions must be executed.

### 38.1.1. Other Techniques (*)

You can create the base addresses in GR11 and GR12 shown in Figures 517 to 521 in other ways. If a binary halfword integer constant 4096 is in an area named `HW4096`, we might write the following:

```prolog
PROG Start 0
 BASR 10,0
 BaseLoc LR 11,10
 AHI 11,HW4096
 LR 12,11
 AHI 12,4096
 Using BaseLoc,10,11,12
```

This example contains a serious pitfall: since we do not necessarily know where the constant named `HW4096` is located, we also do not know which base register will be chosen by the Assembler when the implied addresses of the AH instructions are resolved into base-displacement form! Indeed, the Assembler has been instructed by the USING statement to assume that R11 and R12 may be used for addressing at a point in the program which logically precedes the point where the necessary addresses have been placed in the registers. Thus, we might find that the Assembler has resolved the implied addresses in a way that leads to execution-time errors. (See Exercises 38.1.5 and 38.1.14.)

To be safe, we must place the constant in a part of the program where we know it will be addressed relative to a register whose contents at execution time have been correctly established.
PROG  Start 0
    BASR 10,0          GR10 will be okay as our base reg
    Using *,10,11,12
    LR 11,10           Move base to GR11
    AH 11,HW4096       Add 4096 to get second base
    LR 12,11           Move second base to GR12
    AH 12,HW4096       Add 4096 more for 3rd base
    J Next             Jump over the constant
    HW4096 DC ’4096’   (addressed by GR10 as base)
Next                     ...rest of program...

Figure 523. Establish three base registers (7)

We can also load base addresses into registers using *address constants.* Suppose we define two fullword address constants with the statement

**Addr** DC A(BaseLoc+4096,BaseLoc+8192)

We will see in Section 38.7.2 how the *true* execution-time addresses corresponding to the expressions “BaseLoc+4096” and “BaseLoc+8192” are placed into the two fullword locations when the Supervisor loads our program into memory for execution. Then we could write

PROG  Start 0
    BASR 10,0          Set initial base register
    Using *,10,11,12
BaseLoc LM 11,12,Addr    Load GR11 and GR12

Figure 524. Establish three base registers (8)

Problems can also arise here if the constants at **Addr** are far enough away from **BaseLoc** that the value of the implied address of **Addr** causes the Assembler to resolve the addressing halfword of the LM instruction with GR11 or GR12 as the base register *before* its value has been established! To be safe, we should rewrite Figure 524 to be sure that the symbol **Addr** will be addressable only by GR10.

**Addr** DC A(BaseLoc+4096,BaseLoc+8192)

Figure 525. Establish three base registers (9)

In Section 38.2 we will examine cases where it is either undesirable or impossible to use the above techniques for maintaining addressability throughout an entire program.

**Exercises**

38.1.1.(2)+ In Figure 519, why could we not write

    Using *,10
    Using */4096,11
    Using */8192,12

as in Figure 518?

---

239 Or, *adcons*, for short. We first encountered them in Section 12.2, where we noted that the expression in an A-type constant may be relocatable or absolute.
38.1.2.(2)+ In Figures 519 and 521 why isn’t at least one USING needed immediately following the BASR?

38.1.3.(3)+ The addressing range of an instruction with a signed 20-bit displacement is about ±512K bytes. Instead of the three base registers in Figures 517 to 519, why can’t we write something like this, to be able to address over a million bytes with just one base register?

```assembly
Prog Start 0
 BASR 10,0
BaseLoc LAY 10,512000(,10) Establish base register
 USING BaseLoc+512000,10 Provide lots of addressability
 - - -
```

The next three exercises illustrate suggested methods for providing uniform addressability using address constants. Each contains an error for you to find.

38.1.4.(2)+ What’s wrong?

```assembly
Prog Start 0
 BASR 3,0
 Using *,3,4,5
 LM 4,5,=A(Begin+4096,Begin+8192)
```

38.1.5.(2)+ What’s wrong?

```assembly
Prog Start 0
 BASR 3,0
 Using *,3,4,5
 LM 4,5,=A(Begin+4096,Begin+8192)
 B Exec
 LTORG
 Exec EQU *
```

38.1.6.(2)+ What’s wrong?

```assembly
Prog Start 0
 BASR 3,0
 Using *,3,4,5
 LM 4,5,BaseAdr
 B Exec
 BaseAdr DC A(Begin+4096,Begin+8192)
 Exec EQU *
```

38.1.7.(2) A programmer was asked the following question: “Suppose your program is ‘covered’ by base registers 2, 3, and 4. A part of the code requires register 2 for another purpose. Re-establish register 2 as a base after that computation is finished.” Criticize his proposed solution below, assuming GR2 originally contained the address of Origin.

```assembly
 DROP 2 Don’t use GR2 as a base
 - - -
 - - - Do arithmetic with GR2
 - - -
 LA 2,Origin Restore GR2 to original value
 Using Origin,2 And re-issue USING
```

38.1.8.(2)+ In Figure 525, what would happen if the statement

```assembly
Using BaseLoc,10,11,12
```

is placed after the LM instruction?
38.1.9.(2) You have written a subroutine with entry point `SubRtn` and you know that GR15 will contain its address when control arrives there. Give an example to illustrate and explain why the following USING statement may be incorrect:

```
Using *,15
SubRtn ST 2,SaveR2 First instruction of SubRtn
- - - Rest of subroutine
```

38.1.10.(2) A programmer initialized his base registers with these instructions. Why might this not work?

```
Prog Start 0
Using *,15
LM 11,12,=A(Prog,Prog+4096)
Using *,11,12
Drop 15
```

The instruction sequences in Exercises 38.1.11 through 38.1.19 were proposed as solutions to the problem of initializing multiple base registers at the beginning of a program; find their errors. (If the errors are hard to find, try assembling each, study the assembled code, and calculate what would actually appear in the designated registers when the instructions were executed.)

38.1.11.(1) What’s wrong?

```
Prog Start 0
BAS 10,0
Using *,10,11
LA 11,Prog+4096 What object code is generated?
```

38.1.12.(1) What’s wrong?

```
Prog Start 0
BASR 10,0
Using *,10,11
LR 11,10
AH 11,=H'4096'
```

38.1.13.(2) What’s wrong?

```
Prog Start 0
BASR 10,0
Using *,11
LA 11,Prog+4096
```

38.1.14.(1) What’s wrong?

```
Prog Start 0
BASR 10,0
Using *,10,11,12
LA 11,Prog+4096
LA 12,Prog+8192
```

38.1.15.(1) What’s wrong?

```
Prog Start 0
BASR 2,0
Here Using *,2,3,4,5
LA 3,Here+4096
LA 4,Here+8192
LA 5,Here+12288
```
38.1.16.(1)+ What’s wrong?

Prog  Start 0
      BASR  10,0
      Using *,10,11
      LA  11,**+4096

38.1.17.(1)+ What’s wrong?

Prog  Start 0
      Here  BASR  10,0
            Using Here,10,11
      LA  11,Here+4096

38.1.18.(1)+ What’s wrong?

Prog  Start 0
      BASR  10,0
      Using Here,10,11
      Here  LA  11,Here+4096

38.1.19.(2)+ What’s wrong?

Prog  Start 0
      BASR  10,0
      Using *,10
      LA  11,4095(,10)
      LA  11,1(,11)
      Using *+4096,11

38.1.20.(2) A programmer decided not to use LAY instructions in Figure 518, and wrote

      BASR  10,0
      Using *,10
      Using *+4095,11
      Using *+8190,12
      LA  11,4095(,10)
      LA  12,4095(,11)

Is there anything wrong with this method? If so, why?

38.1.21.(2)+ Suppose the program segment in Figure 522 is rewritten as follows:

Prog  Start 0
      BASR  10,0
      Using *,10
      BaseLoc  LR  11,10
      AH  11,HW4096
      Using BaseLoc+4096,11
      LR  12,11
      AH  12,HW4096
      Using BaseLoc+8192,12

If the halfword area of memory named HW4096 actually contains X’1000’, and the program is less than 10,000 bytes long, will this segment work correctly? Explain your answer.

38.1.22.(2)+ In Figure 523, what would happen if the operand of the DC instruction is changed to H’4000’? If it is changed to H’5000’? What changes might be needed to the other instructions?

38.1.23.(3) In Figure 522, a risky method for initializing base registers is illustrated. Assuming that the value of the symbol HW4096 is X’1234’, determine (1) the bases and displacements assigned to the implied addresses of the AH instructions, and (2) the addresses that would be
38.1.24.(2) In Figure 522, show how to use immediate operands to eliminate the memory references to the constant named HW4096.

38.1.25.(2) Revise Figures 517 through 523 to use arithmetic-immediate instructions.

38.1.26.(2) Modify the instructions in Figure 520 on page 778 to use LA instructions instead of LAY instructions.

38.1.27.(1) Modify the instructions in Figure 525 on page 779 to initialize four base registers rather than three.

38.2. Simplifying Addressability Problems in Large Programs

As programs (inevitably) grow larger, more base registers may be needed to address the entire program. For programs of reasonable size, this is usually not a problem. However, if a program becomes large enough that many registers are required for addressability and few are left for the “business” of the program, we need to find ways to simplify the program.

First, we’ll look at cases where enough base registers are available; then we’ll discuss several techniques that can be used to reduce the number of required base registers.

38.2.1. Internal Subroutines Without Local Addressability

Most often, internal subroutines can use the “global” addressability provided for the entire program.

Here is a ShftRt subroutine like the one we saw in Figure 471 on page 746:

<table>
<thead>
<tr>
<th></th>
<th>ShftRt Arguments in registers 0 and 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>ShftRt</td>
<td>LTR 1,1</td>
</tr>
<tr>
<td></td>
<td>Test value of N</td>
</tr>
<tr>
<td></td>
<td>BNM ShftOK</td>
</tr>
<tr>
<td></td>
<td>Branch if nonnegative</td>
</tr>
<tr>
<td></td>
<td>SR 1,1</td>
</tr>
<tr>
<td></td>
<td>Set N to zero if it was minus</td>
</tr>
<tr>
<td>ShftOK</td>
<td>SRL 0,2(1)</td>
</tr>
<tr>
<td></td>
<td>Shift (2+max(N,0)) bit positions</td>
</tr>
<tr>
<td>BR</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Return to caller</td>
</tr>
</tbody>
</table>

Because it contains an implied address reference, it requires local addressability. But if the containing program has provided uniform addressability for the entire program, we need no local base register(s) to provide addressability for the reference to the symbol ShftOK.

Occasionally we can rewrite a subroutine by replacing a based branch instruction with a relative branch, and no base register may be needed.

<table>
<thead>
<tr>
<th></th>
<th>ShftRt Arguments in registers 0 and 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>ShftRt</td>
<td>LTR 1,1</td>
</tr>
<tr>
<td></td>
<td>Test value of N</td>
</tr>
<tr>
<td></td>
<td>JNM ShftOK</td>
</tr>
<tr>
<td></td>
<td>Branch relative if nonnegative</td>
</tr>
<tr>
<td></td>
<td>SR 1,1</td>
</tr>
<tr>
<td></td>
<td>Set N to zero if it was minus</td>
</tr>
<tr>
<td>ShftOK</td>
<td>SRL 0,2(1)</td>
</tr>
<tr>
<td></td>
<td>Shift (2+max(N,0)) bit positions</td>
</tr>
<tr>
<td>BR</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Return to caller</td>
</tr>
</tbody>
</table>

We’ll see more examples of this technique.

Internal subroutines typically use either the standard linkage conventions described in Section 37.2 on page 751, or local conventions specific to the needs of the internal subroutine. Figure 526 shows an unusual way to call a subroutine that doesn’t need a local base register.
The unusual aspect of this program segment is that GR14 (not GR15!) is used to contain (briefly)
the entry point address, and also the return address!

While this technique is not very general, it can be useful when the number of available registers is
severely limited.

### 38.2.2. Internal Subroutines With Local Addressability

Some programs are so big it is impractical to provide addressability for the entire program. We
will look at simple ways to divide a large program into smaller and more manageable parts,
starting with internal subroutines.

Suppose the $\text{ShftRt}$ subroutine in Figures 471 through 475 starting on page 746 is part of a large
program, and we don’t know

- where the subroutine will be placed relative to the rest of the program, nor
- whether addressability will be available in the subroutine.

For now, we’ll assume that the arguments are passed from the caller to the subroutine in registers
GR0 and GR1, as in Figures 471 and 472.

Because the caller can’t always be sure the first instruction of the subroutine is addressable, he
can’t safely call it using a

```
BAS 14, ShftRt
```

instruction as before. If the address of the instruction named $\text{ShftRt}$ is available, we can load the
address into a register and branch to the subroutine. If the caller and the subroutine agree that
GR15 will contain the address of the first executed instruction of the subroutine (its entry point
address), we could write

```
L 0, Logic Place arguments in GR0 ...
L 1, Shift ...and in GR1
L 14, AdShft Subroutine address in GR14 now
BASR 14, 14 Funny branch to subroutine
ST 0, Result Store answer
- - - ...and move on
Logic DS F Logical datum
Shift DS F Shift amount
Result DS F
AdShft DC A(ShftRt) Address of subroutine
```

Figure 526. Calling a subroutine not needing local addressability

As in Figure 466 on page 743 and those immediately following it, we assumed that GR12
provides addressability for the calling program, so the four fullwords of data are addressable (as
we expect from the implied addresses in the Load and Store instructions). Because the instruction
named $\text{ShftRt}$ may not be addressable, we require only that the address constant named $\text{AdShft}$
containing its address be addressable. Also, choosing GR14 and GR15 to contain the return and
entry point addresses is a matter of convention; but a convention that assumes that neither GR14
nor GR15 provides addressability in the calling program.
The `ShftRt` subroutine now takes advantage of its address having been put in GR15 by the caller, so we can write it as follows:

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using *,15</td>
<td>Caller will preset GR15</td>
</tr>
<tr>
<td>ShftRt LTR 1,1</td>
<td>Test shift count</td>
</tr>
<tr>
<td>BNM ShftOK</td>
<td>Branch (based) if not negative</td>
</tr>
<tr>
<td>SR 1,1</td>
<td>Set count to zero</td>
</tr>
<tr>
<td>ShftOK SRL 0,2(1)</td>
<td>Perform shifts</td>
</tr>
<tr>
<td>BR 14</td>
<td>And return to caller</td>
</tr>
<tr>
<td>DROP 15</td>
<td>Nobody should use GR15 hereafter</td>
</tr>
</tbody>
</table>

Figure 528. Subroutine with local addressability

We didn’t execute a “BASR 15,0” before the USING statement because the USING statement merely tells the Assembler what to assume for assigning bases and displacements. Because the caller places the correct address in GR15 before branching to the subroutine, there is no need to do anything more to establish addressability. Of course, if the caller neglects to preset GR15, the BNM instruction (if taken) might cause a branch into unknown parts of memory; but that’s the fault of the caller, since the subroutine is correctly written.

The DROP statement at the end of the subroutine is important: if it’s not present, the Assembler must assume GR15 is available for addressing purposes in statements following the subroutine. If GR15 is used as the base register in a subsequent implied address, serious errors could occur, because GR15 may not contain the address of `ShftRt` after return to the caller.

It may seem we haven’t gained much flexibility in this simple example. However, remember that the instruction sequence in Figure 528 could have been part of a small test program for checking that the subroutine worked correctly. By extracting the statements of the subroutine and putting the USING and DROP statements before and after them, the subroutine can be put in any convenient part of a larger program.

This is a major reason for using subroutines: you can break your large problem into smaller and more manageable pieces for testing before you combine them into a bigger program.

### 38.2.3. Minimizing the Number of Base Registers

We’ll investigate two basic ideas:

- Replace based-addressing instructions wherever possible with relative-addressing instructions, and replace references to constants and literals by instructions with immediate operands.
- Separate the instructions and data so that the instructions need no base registers to address themselves.

### 38.2.4. Relative Branches, Immediate Operands, and Long Displacements

First, we can take advantage of the relative branch instructions (and their extended mnemonics) listed in Table 117 on page 331 to replace based branches with relative branches:

<table>
<thead>
<tr>
<th>Before</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td>B Next</td>
<td>J Next</td>
</tr>
<tr>
<td>BZ ZeroVal</td>
<td>JZ ZeroVal</td>
</tr>
<tr>
<td>BC 12,NoCarry</td>
<td>JC 12,NoCarry</td>
</tr>
<tr>
<td>BAS 14,Sub</td>
<td>JAS 14,Sub</td>
</tr>
</tbody>
</table>

Figure 529. Replacing based branch instructions with relative-immediates

Each based branch instruction requires a base register to resolve its Effective Address; relative branches require no base register.

Similarly, each (based) EX instruction can be replaced by its relative-addressing form, EXRL:
Next, we can use the instructions with immediate operands described in Section 21 on page 317 to replace based references to constants and literals:

Before

After

Figure 531. Replacing references to constants with immediate operands

Finally, we can use instructions with long 20-bit signed displacements to refer to much more of the program than is possible with instructions using unsigned 12-bit displacements:

Before

After

Figure 532. Replacing short unsigned displacements with long signed displacements

Using relative branches and immediate operands, we can replace some instructions with base-displacement addressing that require base registers. However, instructions that load, store, and move data typically require base-displacement addressing.

38.2.5. Separating Instructions and Data

To reduce the number of required base registers, you can put data that will be read, written, or moved into an area addressable with a base register, and put as many of the instructions as possible into an area not requiring a base register to address them. For example, this program fragment mixes instructions and data areas, and requires a base register for both instructions and data.

Before

Base register for entire program

Using *,12

L 2,X
A 2,Y
ST 2,Z
BP Positive

- - -

X DC F'123456789'
Y DC F'7654321'
Z DS F Some sum

- - -

Positive L 0,PlusCode Indicate positive sum

- - -

PlusCode DC F'+12' A small number

Figure 533. A program fragment needing reorganization

The program fragment in 533 can be reorganized this way:
Now, only the data areas following the symbol Data are addressable; none of the instructions is addressable—and none needs to be! If this was part of a large program, it’s possible we could have eliminated the need for one or more base registers.

It seems logical to put the instructions at the start of the program and the constants and work areas at the end. Because most programs will already have a register assigned to the entry point at the start of the program, it’s easier to use that register as the base register for data items referenced by instructions that require base-displacement addressability, as shown in Figure 535:

As a general rule it’s best to keep groups of instructions and groups of data in separate areas, for these reasons:

1. You’ll very probably need fewer base registers, so you can use those registers for better purposes.
2. There is less likelihood of overwriting instructions (yes, it happens...).
3. Keeping read-only data such as constants separate from read-write work areas can help improve performance.
4. Modern processors buffer instructions and data from storage into different caches; if address references to one overlap with references to the other, the CPU can be slowed considerably.

Advice

To improve performance and minimize the number of base registers, keep instructions and data separated in the generated program.
Exercises

38.2.1.(2)+ Usually, we put USING statements after the BASR instructions that set the contents of the registers in the USINGs. In Figure 528, why didn’t we place the USING statement after the instruction whose address is in GR15?

38.2.2.(2)+ Explain the operation of the BASR 14,14 instruction in Figure 526.

38.2.3.(2)+ In Figure 526 on page 784, what would happen if the ShftRt subroutine contains a USING *,14 statement at its entry point?

38.2.4.(1)+ In Figure 531 on page 786, what results will be different between executing the L and LGFI instructions?

38.3. Separate Assemblies

Up to now we have treated all programs as self-contained. The entire program was translated in a single assembly; all instructions and declared data were processed by the Assembler as a single program. In practice it is often convenient (or even necessary) to assemble parts of programs separately, and link the parts later. While the parts could possibly be combined after debugging, and assembled in one large assembly, doing so is unnecessarily clumsy.

We now examine preparing programs as separately assembled segments, and how external symbols and address constants are used so that such routines can reference each other and their data areas.

We usually don’t care exactly where a routine is in memory, so long as we can call it and have it produce the desired results. The ShftRt subroutine in Figure 528 illustrates such a situation; the routine in Figure 527 that calls it makes no assumptions about the actual location of the subroutine, only that the address constant at AdShft will contain the correct address.

Writing a routine once and using it often is more economical, so z System operating systems support various forms of program segmentation. The Linker combines separately assembled components into a complete program; we’ll see how this works in Section 38.7.

The basic elements managed by the Linker are control sections and external symbols.

38.4. Control Sections

A control section is a segment of instructions or data (or both) that must be kept in one contiguous block in storage when the program is linked and executed. More precisely:

- **Control Section**

  A control section is the smallest indivisible contiguous segment of instructions and/or data which may be relocated independently of all other such segments, without affecting the logical operation of the program.

Correct execution of a program requires certain of its parts to maintain known and fixed relationships relative to one another. For example, the Assembler assigns Location Counter values within each assembly so it can correctly resolve the positions of implied addresses; if those positions are changed later, there’s no guarantee the program will execute correctly.

The following assembler instruction statements define a control section; for each, the name of the control section is provided in the name field entry of the statement. The first three identify what
the High Level Assembler Language Reference calls executable control sections: they are part of the completed, linked program. Despite the “executable” name, they need not contain any executable instructions.

**START**

START defines the beginning of a control section, and can set the initial value of the Location Counter to the operand, if specified. This initial value is rounded up to the next multiple of a doubleword (or other SECTALGN-specified) section alignment. For example,

```
MyProg START 100 Set initial LC for MyProg
```

would (by default) cause the Assembler to round the initial LC setting to 104 = X’000068’, the next doubleword boundary. If the operand is omitted, zero is assumed. If a comment field is present when the operand is omitted, an isolated comma must separate it from the mnemonic, as in

```
MyProg START , Control section for MyProg
```

A START statement must be the first or only executable control section definition in a program. (It may be preceded by reference control sections, which are described below.)

**CSECT**

A CSECT statement defines a control section, and has no operand. Your program may define many control sections. If a comment field is present, an isolated comma must separate it from the mnemonic, as in

```
MySect7 CSECT , Control section for MySect7
```

Unlike START, multiple CSECT statements are allowed in a single assembly.

**RSECT**

The RSECT statement is exactly the same as a CSECT statement, with the additional property that the Assembler will check for possible modifications of areas within that control section. (This is sometimes called “reenterability” checking.)

The next three statements identify what the High Level Assembler Language Reference calls reference control sections: they generate no data or instructions. They can describe the organization of a data structure; only COM allocates storage for it.

**COM**

Common control sections define work areas that can be shared by multiple control sections that may or may not be in the same assembly. They contain no assembly-time generated machine language instructions or data, but are part of the completed, linked program. COM statements have no operands.

**DSECT**

A Dummy control section is a template or mapping of a memory area that contains no machine language object code. Dummy sections are typically used to provide detailed symbolic descriptions of a data structure. (We’ll see lots of examples in Chapter XI.)

**DXD**

The DXD (“Define External Dummy”) instruction defines one component of a DSect-like structure created by the Linker. (We’ll describe DXD and related topics in Section 38.7.3.)

The Assembler maintains a separate Location Counter for each control section, and associates the control section name with the first byte of the control section. You can think of each control section as having its own “addressing space”.

The only statements that may precede a control section definition are comments, PRINT controls, macro-instruction definitions, and a few others of minor interest.

240 Occasionally, a control section is called a “CSect” (pronounced “See-Sect”). We usually know from context whether we are referring to a control section or to the assembler instruction statement with mnemonic CSECT.

241 As with “CSECT”, a “DSECT” is often pronounced “Dee-Sect”.

Chapter X: Large Programs and Modularization 789
Each control section has its own relocation attribute, so you can’t make implied-address references from one control section to another without additional USING statements. For example:

```
MyProg Start 0 My program
 Using *,15 Establish local addressability
 LA 1,SubData Address of subroutine's data (Bad!)
- - -
MySub Csect, My subroutine
- - -
SubData DC '1234' Data in MySub
```

Figure 536. Incorrect implied reference to a different control section

The LA instruction will be diagnosed as an error, because there is no USING statement with the relocation attribute of `MySub`. To reference a field in a separate control section, we need something like this:

```
MyProg Start 0 My program
 Using *,15 Establish local addressability
 L 12,ASub Get address of MySub
 Using MySub,12 Establish addressability
 LA 1,SubData Address of subroutine's data (Good!)
- - -
ASub DC A(MySub) Address of MySub
- - -
MySub Csect, My subroutine
- - -
SubData DC '1234' Data in MySub
```

Figure 537. Correct implied reference to a different control section

After the second USING statement, the USING Table would contain two entries: one for register 15 with Relocation Attribute 01 and a second for register 12 with Relocation Attribute 02, illustrated in Figure 538.

```
 basereg base location RA
 ------- ------------- ----
 15 00000000 01
 12 Loc of MySub 02
```

Figure 538. USING Table with two entries

Suppose a main program and our `ShftRt` subroutine are assembled together, but the subroutine is placed in a separate control section. Figure 539 shows how this can be done:
The Assembler knows the location of \texttt{ShftRt}, and includes information in the object module so that the adcon named \texttt{AdShf} will contain the correct address at execution time. The two control sections (\texttt{MyProg} and \texttt{ShftRt}) are separately relocatable, so we should DROP the main program’s base register before starting the code of the subroutine. Because none of the implied addresses in either control section refer to locations in the other, there is no need to provide addressability for more than one control section at a time.

To show how a COMMON control section can be shared between two executable control sections, we’ll revise Figure 539 to put the items passed from \texttt{MyProg} to \texttt{ShftRt} in a common section named \texttt{ShfCom}. Figure 540 shows how this can be done:
MyProg Start 0  Main program
BASR 12,0  Establish base for main program
Using *,12  Addressability for MyProg
L 11,AdCom  Load address of ShfCom section
Using ShfCom,11  Provide addressability
- - -  Calculate argument values
ST 0,Logic  Store Logic argument in ShfCom
ST 1,Shift  Store Shift argument in ShfCom
L 15,AdShf  GR15 has subroutine address
BASR 14,15  Link to subroutine
ST 0,Result  Store result
- - -
AdShf DC A(ShftRt)  Address of ShftRt subroutine
AdCom DC A(ShfCom)  Address of common section
- - -
DROP 12,11  Can’t use GR12, GR11 elsewhere
ShfCom COM ,  Declare common control section
Logic DS F  Work areas in ShfCom
Shift DS F  - - -
Result DS F  - - -
*************************************************************************
* ShftRt Subroutine *
*************************************************************************
ShftRt CSect ,  Separate control section for ShftRt
Using *,15  Use caller’s preset base register
L 2,ACom  Load address of common area
Using ShfCom,2  Establish addressability
L 0,Logic  Get argument to be shifted
LT 1,Shift  Load and test shift count
JNM ShftOK  Branch if not minus
SR 1,1  Set shift count to zero
ShftOK SRL 0,2(1)  Shift desired number of places
BR 14  Return to caller
ACom DC A(ShfCom)  Address of common area
END MyProg  Begin execution in main program

Figure 540. Main program, subroutine, and common section in one assembly

38.4.1. Resuming Control Sections

You need not put all the statements belonging to a given control section together. That is, you
can start a control section, then start another, and then resume the first one—and the Assembler
will keep all the related pieces together in the generated object code. For example:

First CSECT ,  Start a control section
A DC F’101’
B DC F’103’
Second CSECT ,  Start another control section
W DC F’-107’
X DC F’-109’
First CSECT ,  Resume the ‘First’ control section
C DC F’113’
Second CSECT ,  Resume the ‘Second’ control section
Y DC F’-127’

Figure 541. Resuming control sections

In the control section named First, the fullword constants named A, B, and C will have locations
X’0’’, X’4’’ and X’8’’ relative to the origin of the control section; similarly, the locations of the
three constants W, X, and Y in control section Second will have the same offsets relative to the
origin of that control section.
A more typical example to show how a CSECT statement can be used to resume a control section, we will rewrite Figure 539 in the form shown in Figure 542, where the contributions to CSECT `MyProg` are defined in two separate segments.

<table>
<thead>
<tr>
<th>MyProg</th>
<th>Start 0</th>
<th>Start of main program</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASR</td>
<td>12,0</td>
<td>Make a base</td>
</tr>
<tr>
<td>Using</td>
<td>*,.12</td>
<td>Inform the assembler</td>
</tr>
<tr>
<td>- - -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>0,Logic</td>
<td>Set up arguments in GRO</td>
</tr>
<tr>
<td>L</td>
<td>1,Shift</td>
<td>... and GR1</td>
</tr>
<tr>
<td>L</td>
<td>15,AdShf</td>
<td>Subroutine address to GR15</td>
</tr>
<tr>
<td>BASR</td>
<td>14,15</td>
<td>Link to subroutine</td>
</tr>
<tr>
<td>Drop</td>
<td>12</td>
<td>Can’t use main base here</td>
</tr>
</tbody>
</table>

```
* *
```

<table>
<thead>
<tr>
<th>ShftRt</th>
<th>Csect</th>
<th>Start of subroutine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using</td>
<td>*,.15</td>
<td>Addressability provided by GR15</td>
</tr>
<tr>
<td>LTR</td>
<td>1,1</td>
<td>Test shift count</td>
</tr>
<tr>
<td>JNM</td>
<td>ShftOK</td>
<td>Skip next instruction if not minus</td>
</tr>
<tr>
<td>SR</td>
<td>1,1</td>
<td>Clear shift count</td>
</tr>
<tr>
<td>ShftOK</td>
<td>SRL 0,2(1)</td>
<td>Shift,</td>
</tr>
<tr>
<td>BR</td>
<td>14</td>
<td>And return</td>
</tr>
<tr>
<td>Drop</td>
<td>15</td>
<td>Can’t use subroutine base here</td>
</tr>
</tbody>
</table>

```
* *
```

<table>
<thead>
<tr>
<th>MyProg</th>
<th>Csect</th>
<th>Resume the main program CSECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using</td>
<td>MyProg+2,.12</td>
<td>Re-establish Using information</td>
</tr>
<tr>
<td>ST</td>
<td>0,Answer</td>
<td>Store answer (GR12 is base)</td>
</tr>
<tr>
<td>- - -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logic</td>
<td>DS</td>
<td>F</td>
</tr>
<tr>
<td>SHIFT</td>
<td>DS</td>
<td>F</td>
</tr>
<tr>
<td>Answer</td>
<td>DS</td>
<td>F</td>
</tr>
<tr>
<td>AdShr</td>
<td>DC</td>
<td>A(ShftRt)</td>
</tr>
</tbody>
</table>

Figure 542. Main program and subroutine in one assembly, multiple CSEcts

The `MyProg` Csect is defined in two pieces, and the necessary USING and DROP statements are inserted to ensure that implied addresses are correctly resolved. The USING `MyProg+2,.12` statement is placed before the following ST instruction so that the implied address will be resolved with GR12 as the base register. Because this very simple subroutine has no implied addresses (and needs no local base register and no USING `*,15`) we could have omitted the “DROP 12” before the subroutine; but it’s always a good programming practice to limit the range of each USING statement.

Advice

Limit the range of USING resolution to the minimum necessary; otherwise the Assembler may resolve implied addresses with base registers whose contents are no longer valid.

We can now see how an expression can have a complex relocation attribute. Suppose in the assembly in Figure 542 we wanted to calculate the offset of `ShftRt` relative to `MyProg` and wrote this statement:

```
LA 2, ShftRt-MyProg
```

Because the two control sections are separately and independently relocatable (and the two symbols `ShftRt` and `MAIN` therefore have different relocation attributes), there is no way the Assembler can assign a base register and an absolute displacement to the instruction.
38.4.2. Literals in Multi-Section Assemblies (*)

Be careful when you use literals in programs with more than one control section. Literals are symbols, so they can have all the addressability problems of ordinary symbols. In particular, the Assembler could place the literals in a part of the program that is not addressable!

If any literals are left in the Assembler’s literal table at the end of the assembly, they are placed at the end of the first executable control section defined in the program. This may or may not be what you intended. Either (1) don’t use literals in a multi-Csect assembly, or (2) use LTORG statements at the end of each control section, so that the literals used in each control section will be defined within it.

For example:

Section1 Start 0
- - -
L 2,=F‘1’
- - -
Section2 CSect ,
- - -
L 7,=F‘43’
- - -
End

Because there is no LTORG in control section Section2, both literals will be placed in a literal pool at the end of Section1. This probably means that references in Section2 to literals will generate addressability errors.

38.4.3. Location Counter Discontinuities (*)

Because the Assembler uses multiple, separate Location Counters for control sections, they can also be used to manage discontinuities in the Location Counter. Suppose we write these statements, and the Assembler knows the value of the Location Counter when it processes the first statement:

<table>
<thead>
<tr>
<th>Loc</th>
<th>Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>000046</td>
<td>A DS XL(N) N is not defined yet</td>
</tr>
<tr>
<td></td>
<td>B DS F Aligned Fullword</td>
</tr>
<tr>
<td></td>
<td>C DS CL(3*N) Another discontinuity</td>
</tr>
<tr>
<td></td>
<td>D DS F Aligned Fullword</td>
</tr>
<tr>
<td>00005</td>
<td>N Equ 5 Finally, define N</td>
</tr>
</tbody>
</table>

Figure 543. Statements with Location Counter discontinuities

Because the value of the symbol N is not yet known, the location and alignment of the symbol B can’t be assigned. So, the Assembler assigns a temporary separate Location Counter to those two statements and saves information about this “group” of two statements until the value of N is known. Similarly, the statements named C and D represent another discontinuity group with their own temporary Location Counter.

When the END statement is reached, the unresolved discontinuity-group segments are analyzed. If resolvable (as in this case) the temporary Location Counter values are “stitched” into their proper places among the preceding and following segments. Thus, if the value of the Location Counter is X’0000046’ when the first statement in Figure 543 is processed, the value of the symbol B will be X’00004C’.

If any group cannot be resolved, the Assembler issues a diagnostic and ignores the faulty statement:

G DS XL(K) K is not defined yet
** ASMA080E Statement is unresolvable
H DS F Aligned Fullword
K Equ *-G Now, G is defined (?)
** ASMA044E Undefined symbol - G
Because the symbol G couldn’t be assigned a value (that is, be defined) until the value of K was known, the alignment of H was unknown and therefore resolving the value of K could not be completed.

38.4.4. Section Alignment (*)

The first byte of an executable or COMMON control section is always placed in memory on an aligned boundary. By default, all control sections are aligned on a doubleword boundary, but occasionally you may require a more stringent alignment. If you specify the SECTALGN option, the Assembler will align all control sections on the boundary you specify.

For example, if you specify the SECTALGN(16) option, all control sections will be aligned on a quadword boundary.242

When your program is linked with other control sections, this may waste a few bytes if the preceding control section does not end just before such a boundary. However, the Linker and Program Loader will respect your alignment request and load the executing program on the requested boundary. This means that boundary alignments within a control section (due to CNOP, ORG, DC, or DS statements) are preserved relative to the start of the control section.

In some cases, you can adjust the LC within a CSECT to a stricter boundary than the default, and then rely on Linker controls to request that the CSECT be aligned on (for example) a page boundary, thus guaranteeing that the stricter internal alignment will be honored when the program is linked. For example, suppose you want to force a CSECT to be an exact number of 4K “pages” long, by adding enough bytes at the end to force its length to be a multiple of 4096:

```
Prog CSECT, Start a control section
 - - - Add lots of statements
LtOrg, Insert the literals now
 * Round the LC to a page boundary
 DC ((((*-Prog)+4095)/4096)*4096-(*-Prog))'00'
ProgLlen Equ *-Prog Will now be a multiple of X'1000'
End
```

Figure 544. Technique for rounding the length of a CSECT

38.4.5. Threaded Location Counters (*)

Location Counter values in multi-CSECT assemblies are occasionally puzzling: the leftmost column of the Assembler’s listing shows the value of the LC assigned to each statement. When a single control section is being assembled, these LC values increase predictably as succeeding bytes are assembled.

In a multi-CSECT assembly, the values of the LC may appear to vary as the control section changes. Even though the statements belonging to different CSECTs are interleaved, the LC values look as though the statements had been rearranged within each control section, as noted in Section 38.4.1 above.

Remember that the Assembler maintains a separate Location Counter for each control section in an assembly. Except for the first CSECT (whose LC may be initialized to a nonzero value on a START statement), these LC values are set to zero whenever a new control section is encountered. Then, whenever a CSECT statement indicates that a different control section is to be begun or resumed, the Assembler uses a new LC to continue the assembly.

After the first pass of the assembly is complete, the Assembler processes its collection of Location Counters. First, the length of each CSECT is determined; this is possible because the Assembler knows both the current and the maximum value of the LC for each control section. Then, beginning with the first CSECT (whose initial LC value is known), the Assembler adds the initial LC value for each control section to its length, rounds the sum up to the next alignment boundary,

---

242 Not every system Linker supports quadword alignment, so you should try a simple test. Section alignments stricter than quadword require specifying the GOFF object-file option, or providing control statements to the Linker.
and assigns the resulting value as the initial LC value of the next CSECT. In this way, the control sections appear to have been “unscrambled” and assembled end-to-end.

During the second assembly pass, the Assembler uses these adjusted LC values to compute the values of expressions involving symbols and Location Counter references. The relocation attribute of the symbol tells which CSECT the symbol belongs in, and therefore what LC value should be added to the symbol’s value found in the symbol table.

Adjusting the LC values so that each control section starts at the next aligned boundary following the end of the previous one is called threading the location counters. With no threading, each control section starts at location zero.

Why does the Assembler perform threading? In the earliest days of System/360, programs were not organized into complex load modules by the Linkage Editor, but were loaded directly into memory from object modules. Because the address where loading began was often known in advance, that address could be assigned as the initial LC value in a START statement. Thus, the LC values printed on the Assembler’s listing corresponded exactly to the addresses in memory occupied by the assembled and loaded program. This made debugging simpler, because an interruption address could be immediately identified with the offending instruction in the listing.

Threading was intended as a convenience for you. We will see in discussing program linking that the LC values must be “un-threaded” by the Linker so it can correctly relocate the program. Whether threading is a help or hindrance is a matter of personal preference.

Sometimes it’s easier to debug programs if each control section starts at location zero (except possibly the first if its LC value is set by a START statement). If you specify the NOTHREAD option, the Assembler will not “thread” LC values for each new control section.

38.4.6. The “Location Counter” Instruction LOCTR (*)

As discussed in Section 38.4.2 on page 794, the Assembler can create separate Location Counters to handle discontinuities. The Assembler lets you create your own Location Counter discontinuities in Assembler Language programs with the LOCTR instruction.

LOCTR can help you group segments of your program so that the order of statements in each control section of the source program need not be the same as the order of the generated instructions and data in the object program, as was done in all our previous examples.

The LOCTR instruction starts (or continues) a separate group of statements having its own Location Counter. When the end of the source program is reached, the Assembler collects the portions of each LOCTR group in the order they were declared into a single group, and assigns a sequential Location Counter value to each item within each named group. Figure 545 illustrates this process:

\[\text{LOCTR} \quad \text{description} \quad \text{group} \quad \text{value} \quad \text{items} \quad \text{sequence} \]

\[\text{START} \quad \text{statement} \quad \text{address} \quad \text{program} \quad \text{locations} \quad \text{debugging} \]

\[\text{NOTHREAD} \quad \text{option} \quad \text{Assembler} \quad \text{not-thread} \quad \text{LC values} \quad \text{new control sections} \]

\[\text{LOCTR} \quad \text{pronunciation} \quad \text{LOKE-ter} \quad \text{LOCK-ter} \quad \text{personal preference} \]

---

The LOCTR instruction describes a Location Counter group, so its pronunciation would logically be LOKE-ter. But the people who invented it called it LOCK-ter. Your preference?
The three portions of LOCTR group X appear first in the generated object code, followed by the three portions of LOCTR group P. All the statements of the two LOCTR groups are part of the control section named X.

Note that all the statements are in control section X and that we have simply reordered the "normal" connection between source and object components of that control section. Conversely, multiple CSECT statements don’t change the ordering relation between statement sequence and the object code generated for each control section.

Figure 545 illustrates important properties of LOCTR groups:

1. A statement starting a control section (like CSECT) starts a LOCTR group with the name of the control section. Thus, each control section is its own LOCTR group!

2. The name of a LOCTR group appears in the name field of the LOCTR assembler instruction statement. Statements following the LOCTR belong to that group. Thus, the two groups in the figure are named X and P.

3. The object sequence of source statements is in the order of the first appearance of the group’s declaration on (1) a statement that initiates a control section (START, CSECT, DSECT, RSECT, COM) or (2) a LOCTR statement.

4. A LOCTR group can be interrupted by other LOCTR groups, and then resumed later in the source program. The same capability for control sections was described in Section 38.4.1.

These simple examples illustrate the effects of LOCTR:

1. This example starts LOCTR group ALoc and does not resume the LOCTR group of control section A.

   A          CSECT , Define LOCTR group A
   DC X’00’ Location = X’000000’
   ALoc LOCTR , Define LOCTR group ALoc
   DC X’01’ Location = X’000001’
   End

   Figure 546. Simple example of LOCTR (1)

2. This example resumes the LOCTR of control section A after the ALoc LOCTR was defined.
A CSect , Define LOCTR group A
ALoc LOCTR , Define LOCTR group ALoc
DC X’01’ Location = X’000001’
A LOCTR , Resume LOCTR group A
DC X’00’ Location = X’000000’
End

Figure 547. Simple example of LOCTR (2)

3. In this example, both LOCTR groups are first defined and then resumed.

A CSect , Define LOCTR group A
ALoc LOCTR , Define LOCTR group ALoc
A LOCTR , Resume LOCTR group A
DC X’00’ Location = X’000000’
ALoc LOCTR , Resume LOCTR group ALoc
DC X’01’ Location = X’000001’
End

Figure 548. Simple example of LOCTR (3)

While many programs don’t need the capability provided by LOCTR, it can improve readability and understandability by keeping related portions of the source program close together, while also keeping them separated in the object program. For example, though the simple program fragment in Figure 533 on page 786 may be more understandable in that form, we may eventually want the generated instructions and data to appear as in Figure 534. Figure 549 uses LOCTR groups named Code and Data to do this:

```
Using Data,12

Code LOCTR , Start LOCTR group for instructions
 L 2,X
 A 2,Y
 ST 2,Z

 JP Positive

Data LOCTR , Start LOCTR group for data
 DC F’something’
 DC F’something_else’
 DS F Some sum
Code LOCTR , Resume LOCTR group for instructions

 Positive L 0,Plus Code Indicate positive sum

Data LOCTR , Resume LOCTR group for data
 PlusCode DC F’some number’
```

Figure 549. A program fragment using LOCTR for reorganization

The object code generated by this program fragment would be the same as that generated in Figure 534.

Organizing a program using LOCTR to keep instructions and data separated is sketched in Figure 550:

---

244 Closely mixing instructions and data as in Figure 533 on page 786 can have significant negative effects on program performance.
After assembly, the program in Figure 550 appears as though it had been written this way:

Aside from the reordered statements, note these differences between Figures 551 and 550:

- All the constants and read-write areas are close to the origin of the control section, so will probably be within the range of addressability of the single USING statement.

- The literal in the program follows the LTORG statement; but because LTORG appeared at the end of the source program the literal will be generated with the other constants near the start of the object program.

- Branch instructions in the Code LOCTR group can now be changed to relative-immediate instructions, so no additional addressability is needed within that LOCTR group. In larger programs, this can free up previous base registers for more productive use.

Thus, it may be possible that all based references to the Consts and Data LOCTR groups can be addressed with a single base register. And, if you use relative-addressing branch instructions in the Code LOCTR group, then you shouldn’t need a base register to a address any instructions.
LOCTR also facilitates correctly defining the target of an EX instruction, since its definition will be close to the EX that references it. This helps ensure that the current USING instructions will be honored in both the EX and the target instruction.

Program Loctr, Group for mainline instructions
- - -
EX 1,Target Reference the target instruction
Constant Loctr, Put the target with constants
Target <the target instruction>
Program Loctr, Resume the mainline instructions

Some unexpected behaviors may arise when you mix control section and LOCTR statements.

1. This example uses both CSECT and LOCTR, where we define LOCTR groups in more than one control section:

   A CSect, Define LOCTR group A
   DC X'00', Location = X'000000'
   B CSect, Define LOCTR group B
   DC X'02', Location = X'000008'
   A LOCTR, Resume LOCTR group A
   DC X'01', Location = X'000001'
   B LOCTR, Resume LOCTR group B
   DC X'03', Location = X'000009'
   End

   Figure 552. Simple example of LOCTR (4)

   While control section B is active, the following "A LOCTR" statement resumes control section A. Resuming a LOCTR group can cause a change of control section.

2. This example inserts a second "A CSect" statement, with "interesting" results:

   A CSect, Define LOCTR group A
   DC X'00', Location = X'000000'
   ALoc LOCTR, Define LOCTR group ALoc
   DC X'01', Location = X'000001'
   A CSect, Resume LOCTR group A? ← Note!
   DC X'02', Location = X'000002'!
   End

   Figure 553. Example of unexpected LOCTR behavior (1)

   Resuming CSECT A does not resume its Location Counter! You might have expected that the last DC statement would follow the first. But, as the Location values of the constants indicate, resuming a control section resumes the most recently active LOCTR group in that control section, not the LOCTR group associated with the control section name.

3. Here's another example that illustrates this behavior:
Figure 554. Example of unexpected LOCTR behavior (2)

You might have expected both CSECT statements to resume their LOCTR groups; they instead resume the most recently active LOCTR groups within their sections. That’s why the constant X’04’ does not follow X’00’, but X’04’ instead follows X’01’. The constants in control section B behave similarly.

We can summarize these rules for using LOCTR statements and statements naming control sections.

1. A LOCTR group does not start a separate or different control section unless the LOCTR statement is the first LC-dependent statement in the program (it does depend on the Location Counter), in which case a Private Code control section is initiated by the Assembler. (Starting a program with LOCTR isn’t a good idea!)

2. A LOCTR group is part of the control section in which the group is first declared. The portions of a LOCTR group belong to the control section being assembled when its first LOCTR statement appears. That is, the statements in a LOCTR group have the same relocatability attribute as the owning control section in which they appear.

3. Resuming a control section resumes the most recently processed LOCTR group in that control section. If no LOCTR group has been defined in the control section, the control section is resumed normally. That is, you can use a LOCTR group name to resume a control section, but a control section name cannot safely be used to resume a LOCTR group. Instead, it resumes the most recently used LOCTR group in that control section.

4. To resume a control section in which LOCTR groups have been defined, issue a LOCTR statement with the name of the control section.

5. A change of LOCTR group may also change the current control section.

6. ORG in a LOCTR group pertains only to that group, and cannot be used to switch the Location Counter to a different control section.

Thus, the Assembler knows how to manage groups of statements with their own temporary Location Counters; the LOCTR statement lets you declare and determine the order of your own groups of statements.

Advice

Don’t use a LOCTR name as a branch target, because you may not know which of many possible occurrences of the name is the actual target.

Exercises

38.4.1.(2)+ In this program fragment, where will the literals =F’1′ be generated?
38.4.2.(2) In this program fragment, where will the literals \( F'1' \) be generated?

38.4.3.(1) In Figure 539 on page 791, why is a \texttt{DROP 15} statement not needed at the end of the \texttt{ShiftRt} subroutine?

38.4.4.(2) In Figure 539 on page 791, why is the \texttt{USING} statement in the \texttt{ShiftRt} control section not needed? Is there any reason why should it be retained?

38.4.5.(2) In Figure 542 on page 793, why is it a good idea to leave the \texttt{USING *15} statement at the start of the \texttt{ShiftRt} subroutine, even though it's not required?

38.4.6.(1) In Figure 543 on page 794, determine the values of all symbols if symbol \texttt{A} has value \( '001240' \). Now, do Exercise 38.4.7.

38.4.7.(2) In Figure 543, why is the value of the symbol \texttt{B} not the value of the symbol \texttt{A} plus five, or \( '00004' \)?

38.4.8.(2) First, make a complete and correct Assembler Language program using the instructions in Figure 540 on page 792. Then, assemble it twice: first with the \texttt{THREAD} option, and again with the \texttt{NOTHREAD} option. Study the Assembler's Location Counter values for each control section.

38.4.9.(2) What values are assigned to the symbols naming DS statements in this program?

38.4.10.(3) In Figure 544 on page 795, explain how the expressions in the DC statement generate the desired alignment.
38.4.11.(2) In this little program, in which control sections will each constant reside? Assuming normal doubleword section alignment, what will be their locations if the Location Counter values are “threaded”?

A  Start 0  
   DC X'1'
B  CSECT  ,
   DC X'2'
C  CSECT  ,
   DC X'3'
B  CSect  ,
   DC X'4'
C  CSect  ,
   DC X'5'
A  CSect  ,
   DC X'6'
C  CSect  ,
   DC X'7'
End

38.4.12.(2)+ What values are assigned to the symbols naming DS statements in this program?

Loc   CSEct  ,
H    DS X
ALoc  LOCTR  ,
A    DS X
BLoc  LOCTR  ,
B    DS X
Loc   LOCTR  ,
C    DS X
ALoc  LOCTR  ,
D    DS X
BLoc  LOCTR  ,
E    DS X
Loc   LOCTR  ,
F    DS X
End

38.4.13.(3)+ If you assemble this program, what will be the Location Counter values assigned to each symbol?

SectA  CSeCt  ,
H    DS X
ALoc  LOCTR  ,
B    DS X
SectB  CSeCt  ,
A    DS X
BLoc  LOCTR  ,
C    DS X
ALoc  LOCTR  ,
D    DS X
BLoc  LOCTR  ,
E    DS X
SectA  CSeCt  ,
F    DS X
BLoc  LOCTR  ,
G    DS X
SectB  LOCTR  ,
N    DS H
38.4.14.(2) Section 38.4.2 noted that literals not previously generated by LTORG statements are placed at the end of the first executable control section when the END statement is processed. How do you think the Assembler does that?

38.5. External Symbols

Usually, none of the symbols you used to write your program are available after the completion of its assembly, except for the program name. To communicate among routines assembled or compiled at different times, we need the additional information provided by external symbols.

An external symbol may be one of the following five types, and the statements used to declare them are shown in parentheses.

1. Control section name (CSECT, RSECT, START)
   A control section name is the name of a block of instructions or data. The name identifies the control section; it is used by the Linker to build an executable load module. Names of “executable” control sections—defined by START, CSECT, and RSECT instructions—are always external symbols.

2. Common section definition (COM)
   A common section is a reference control section that generates no assembly-time machine language instructions or data. Typically, COM sections are shared work areas among executing CSECTs in a loaded program. (That is, they are “commonly” available to multiple code CSECTs.) They provide an easy way to reference large data aggregates without passing their addresses as subroutine arguments.

3. External reference (EXTRN, WXTRN)
   An external reference is a symbol that is not assigned a value at assembly time. It is usually the name of an instruction or data area that will be supplied and resolved during program linking, often from the “Library of Object and Load Modules” illustrated in Figure 24 on page 75. EXTRN and WXTRN statements are needed only for symbols not defined in the assembly in which references to those symbols are needed.

   External references are typically used in address constants that, after program linking is complete, will contain addresses of other program segments.

   V-con operands are automatically declared EXTRN.

4. Entry name (ENTRY)
   An entry name is associated with a particular location within a control section. For example, library routines calculating the trigonometric functions SIN and COS use nearly identical algorithms, so a single control section may have separate entry names for SIN and COS.

5. Dummy external section (DXD, and DSECT in special cases)
   Dummy external sections are sometimes called “PseudoRegisters”. They have specialized uses that we’ll describe briefly in Section 38.7.3. Their names may match other external symbol names without conflict.

The Assembler maintains a special symbol table called the External Symbol Dictionary (ESD) for external symbol information.\textsuperscript{245} Each item in the External Symbol Dictionary (other than ENTRY names) is assigned an “ESD ID” number, or “ESDID”. (An ENTRY name is given an “Owning ID”, the ESDID of the section to which it belongs.)

\textsuperscript{245} Some of this information may also appear in the Symbol Table for “ordinary” (internal) symbols.
38.5.1. EXTRN and WXTRN Statements

Suppose our ShftRt subroutine has already been assembled as a separate program, to be combined by the Linker with our calling program. The symbol ShftRt will be defined somewhere outside our calling program—to the caller, it is an external symbol. Thus, the Assembler must provide information to the Linker indicating that we want to reference that symbol. This is done with the EXTRN statement.

For example, the subroutine call in Figure 527 on page 784 can be modified to make ShftRt an external symbol.

```
EXTRN ShftRt Declare 'ShftRt' to be external
- - -
L 0,Logic Datum to be shifted, in GR0
L 1,Shift Shift amount, in GR1
L 15,AdShft Subroutine address, in GR15
BASR 14,15 Link to subroutine
ST 0,Result Store shifted result
- - -
Logic DS F Space for arguments, Shift DS F ...
Result DS F And result
AdShft DC A(ShftRt) Subroutine address
```

Figure 555. Calling ShftRt as an external routine

When we compare the examples in Figure 527 on page 784 and Figure 555 above, the only difference is the presence of the EXTRN statement. The true address of ShftRt in the address constant named AdShft will be created by the Program Loader when the program is loaded into memory.

We can write the ShftRt routine as a separately assembled routine. First, we create a complete program in which the subroutine is defined as a control section named ShftRt. Because a control section name is already an external name, no EXTRN declaration is needed.

```
ShftRt Start 0 Define control section name
Using *,15 GR15 preset by caller
LTR 1,1 Test shift count
BNM ShftOK Branch if not minus
SR 1,1 Set shift to zero
ShftOK SRL 0,2(1) Perform the shifts
BR 14 Return to caller
END
```

Figure 556. ShftRt subroutine as a separate assembly

This assembly generates an object module with the single ShftRt control section, 14 bytes long. The only symbol in the External Symbol Dictionary in the object module will be the control section name. The “program name” is not an operand of the END statement, because we are not writing a main program that should be executed starting at ShftRt.

You can also use external symbols with relative branch instructions.\(^\text{246}\) For example, you can use references like these:

\(^\text{246}\) While the Assembler supports relative-immediate external references, you should verify that the Linker(s) in your operating system environment also supports them.
The Assembler encodes the 2-byte (for BRAS) and 4-byte (for BRASL) relative references in the object module. BRAS would typically be used to refer to external routines in a linked program not longer than (say) 50K bytes, while BRASL can be used for very large programs or programs in which different parts are widely separated.

The EXTRN and WXTRN assembler instruction statements have no name-field entry. The operand field is a symbol or list of symbols separated by commas. Each symbol is entered in the Assembler's External Symbol Dictionary, and given its own relocation attribute because the Assembler must assume it is independently relocatable.

The only difference between EXTRN and WXTRN symbols occurs during linking: if all the input object and load modules provided to the Linker do not have a definition of the symbol, EXTRN causes a library search for a definition, while WXTRN does not.

You can use WXTRN to declare and test for external symbols that are not linked with the completed program. The example in Figure 558 shows how you can do this:

```assembly
WXTRN Sub1 Weak reference for Sub1
EXTRN Sub2 Strong reference for Sub2

LT 15,ASub1 Test if Sub1 was linked
JZ CallSub2 Branch if it's not available
BRAS 14,15 It's available, call it

CallSub2 L 15,ASub2 Get the address of Sub2
BRAS 14,15 ... and call it

ASub1 DC A(Sub1) Address of Sub1, if linked
ASub2 DC A(Sub2) Address of Sub2
```

Figure 558. Using WXTRN to test whether a routine was linked

An external name declared in a WXTRN statement will not cause any Linker diagnostics if the name cannot be linked. Then, you can test the address constant referencing the name for zero to determine whether or not it is present in the linked program.

A symbol cannot appear both as an operand of an EXTRN or WXTRN statement and also as the name-field symbol in a statement which would assign a value to it, because this combination would be an attempt to declare that the symbol both is, and is not, defined external to this program.

```
EXTRN NotGood
NotGood DC C Not So Good' Internal symbol
** ASMA043E Previously defined symbol - NotGood
```

### 38.5.2. V-Type Address Constants

Calling an external subroutine can be simplified if you use V-type address constants. The presence of a symbol in a V-type adcon automatically and implicitly declares the symbol as external. We could rewrite Figure 555 as shown in Figure 559. The differences are the omission of the EXTRN statement, and using a V-type adcon in place of an A-type adcon.
Before converting programs using EXTRN declarations and A-type address constants to use V-type adcons, take note of these considerations:

1. The operand of a V-type address constant may be a symbol only.

2. In the object module, an additional flag is attached to the external symbols that appear in V-type address constants. This flag means that the symbol is the name of a routine or entry point to which control may be passed, as well as possibly the name of a data area.

There is no distinction between a V-type adcon and an A-type plus EXTRN unless the routine to which control may be transferred might use an assisted linkage. In this special case, the branch will actually go to a linkage-assist routine that loads the target routine into memory if necessary and then branches to it.

This is why an expression cannot be allowed in a V-type adcon: the branch may go not to the target routine but to a linkage-assist routine, so no added factors can be allowed in the address. Assisted linkage is (fortunately) usually invisible.

3. The symbol in a V-type constant may also be explicitly declared in an EXTRN or WXTRN statement.

Some useful programming conventions for V-type constants and external symbols are:

1. All external symbols should be explicitly declared in EXTRN statements, even though an implicit declaration could have been used.

2. All external branch addresses should be referenced through V-type constants. If you know that calling a routine will never use an assisted linkage, you can replace V-type constants by A-type constants (but retain the EXTRN declarations you’ve done already).

3. Data areas should never be addressed using V-type address constants: if assisted linkages are used at some later time, the address in the V-con might not be the address of the data area! And, if you store data at the address referenced by the constant, you might be destroying important linkage information.

### 38.5.3 ENTRY Statement

In addition to specifying `ShftRt` as a control section name, you can use an ENTRY statement to identify `ShftRt` as the name of a location in a control section with a different name. As with EXTRN, symbols identified as entry points are written as operands of an ENTRY statement, separated by commas.

ENTRY symbols must be defined in the program in which the ENTRY statement occurs. Otherwise, there would be no position in the control section that could be identified as the desired entry point.

---

247 This was particularly true for load modules formed into overlay structures, which are little used today; but other forms of assisted linkage exist, such as Dynamic Link Libraries (DLLs).
Suppose we rewrite the `ShftRt` subroutine as part of a control section named `SubShf2`. (We use the argument-passing convention of Figure 483 on page 752 in which the result address is also provided as an argument, and all registers are preserved.)

<table>
<thead>
<tr>
<th>SubShf2</th>
<th>Start 0</th>
<th>Set control section name and LC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENTRY</td>
<td>ShftRt</td>
<td>Identify entry point</td>
</tr>
<tr>
<td>Using *</td>
<td>,15</td>
<td>Assume standard linkage</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ShftRt</th>
<th>STM 0,4,Save</th>
<th>Save GRO through GR4</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM</td>
<td>2,4,0(1)</td>
<td>Get argument and result addresses</td>
</tr>
<tr>
<td>L</td>
<td>0,0(0,2)</td>
<td>Logical datum to GRO</td>
</tr>
<tr>
<td>L</td>
<td>1,0(0,3)</td>
<td>Shift amount in GR1</td>
</tr>
<tr>
<td>SRL</td>
<td>0,2</td>
<td>Perform initial shift</td>
</tr>
<tr>
<td>LTR</td>
<td>1,1</td>
<td>Test additional shift count</td>
</tr>
<tr>
<td>JNP</td>
<td>Finish</td>
<td>Branch if not positive</td>
</tr>
<tr>
<td>SRL</td>
<td>0,0(1)</td>
<td>Perform rest of shift</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Finish</th>
<th>ST 0,0(0,4)</th>
<th>Store result at given location</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM</td>
<td>0,4,Save</td>
<td>Restore all registers we used</td>
</tr>
<tr>
<td>BR</td>
<td>14</td>
<td>And return to caller via r14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Save</th>
<th>DS 5F</th>
<th>Register save area</th>
</tr>
</thead>
</table>

Figure 560. `ShftRt` subroutine in a different CSect

The External Symbol Dictionary for this assembly contains the CSect name `SubShf2` and the entry name `ShftRt`, and information to indicate the type of each symbol.

To illustrate a typical use of the ENTRY statement, suppose a `Main` routine calls a subroutine `Subr`. The data for the subroutine is in the main program, named `Data`. Rather than passing the address of the data area to the subroutine, the main program identifies it with an ENTRY statement.

<table>
<thead>
<tr>
<th>Main</th>
<th>Start 0</th>
<th>Main program</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENTRY</td>
<td>DATA</td>
<td>Identify entry point of <code>Data</code></td>
</tr>
<tr>
<td>BASR</td>
<td>12,0</td>
<td>Establish base register</td>
</tr>
<tr>
<td>Using *</td>
<td>,12</td>
<td>Assembler resolves displacements</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Compute something in data area</td>
</tr>
<tr>
<td>L</td>
<td>15,ASubr</td>
<td>Get subroutine address</td>
</tr>
<tr>
<td>BASR</td>
<td>14,15</td>
<td>Branch to subroutine</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Do something with the results</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ASubr</th>
<th>DC V(Subr)</th>
<th>External subroutine address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>DS 200F</td>
<td>Data area</td>
</tr>
</tbody>
</table>

END Main | Start execution in main program |

Figure 561. Main program with ENTRY for data

The separately assembled subroutine `Subr` could be written as in Figure 562:

<table>
<thead>
<tr>
<th>Subr</th>
<th>Start 0</th>
<th>Define control section <code>Subr</code></th>
</tr>
</thead>
<tbody>
<tr>
<td>EXTRN</td>
<td>Data</td>
<td>Mark <code>Data</code> as external</td>
</tr>
<tr>
<td>Using *</td>
<td>,15</td>
<td>Standard linkage assumed</td>
</tr>
<tr>
<td>STM</td>
<td>0,6,Save</td>
<td>Assume we need only GRO-GR6</td>
</tr>
<tr>
<td>L</td>
<td>6,ADATA</td>
<td>Get address of data area</td>
</tr>
<tr>
<td>L</td>
<td>0,0(0,6)</td>
<td>First data word to GRO</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Work with all the data</td>
</tr>
<tr>
<td>LM</td>
<td>0,6,Save</td>
<td>Restore GRO-GR6</td>
</tr>
<tr>
<td>BR</td>
<td>14</td>
<td>Return to master</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AData</th>
<th>DC A(Data)</th>
<th>Address of external data area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Save</td>
<td>DS 7F</td>
<td>Save area for registers GRO-GR6</td>
</tr>
</tbody>
</table>

Figure 562. Subroutine using EXTRN to reference data
Each of these programs refers to a name defined in the other by using an EXTRN declaration and an appropriate address constant.

We can use address constants for addressing data in many ways. For example, suppose the data area accessed by the subroutine contains several sub-areas that begin at `DATA`, `DATA+60`, and at `DATA+453`. We also suppose the subroutine refers to these sub-areas often enough that it keeps their addresses in registers. Because A-type address constants may contain expressions involving external symbols, we can define three adcons to point to the parts of the data area.

```
Subr Start 0 Define the CSect name
 EXTRN Data Indicate external symbol
 Using *,15 Caller will preset GR15
Subr STM 0,6,SAVE Save GR0-GR6
 LM 4,6,ADatas C(GR4) = A(start of data area),
 * GR5 points to second data area,
 * And GR6 points to the third
 - - - ... work with the data
 LM 0,6,Save Restore registers we used
 BR 14 Return to caller
ADatas DC A(Data) Address of base of data area
 DC A(Data+60) Address of next sub-area
 DC A(Data+453) Address of last data sub-area
Save DS 7F Register save area
END
```

Figure 563. Subroutine using EXTRN and adcons to reference data

The usage illustrated in Figure 563 cannot be “simplified” by using V-type constants such as `V(DATA+60)`.

Because multiple operands are allowed in address constants, we could also have written

```
ADatas DC A(Data,Data+60,Data+453)
```

or we could have used a literal, and written the LM instruction as

```
LM 4,6,=A(Data,Data+60,Data+453)
```

Adcons containing expressions involving external symbols must be used with care. If the referenced routine reorders the statements defining the data, the offsets encoded in the adcons will probably be incorrect. It’s better to identify such entry points by name, not by offset from another symbol.

Sometimes we must write two or more subroutines that do almost the same thing, but only minor variations are needed in each. We can combine the routines into a single CSect and use as much common coding as possible.

Suppose we need not only the `ShftRt` subroutine, but also one with identical parameters named `Shflft`, which does a logical left shift instead. First, we will sketch an example with no common coding; assume the parameters are passed in GR0 and GR1:
Now, we will rewrite the example to use some instructions common to the two subroutines. The routine isn’t shorter, but illustrates a technique you can use when multiple entry points in a routine have common instruction sequences that can be shared by each entry.

The BASR instruction named ShftAA and its associated USING are needed to establish a base register with a known value for the following instructions. If they had been omitted, the implied addresses of the subsequent instructions might use the wrong base. If the entry had been at ShftRt, GR15 would contain its address, whereas the USING in effect later will assume that GR15 contains the address of ShfLft.

38.5.4. The External Symbol Dictionary Listing

When the assembly is complete, the ESD information is encoded into the object module and displayed in the Assembler listing’s External Symbol Dictionary. You can suppress this part of the listing by specifying the Assembler’s NOESD option.
Main Start X’2400′ Main control section
DS 24D
EXTRN SomeSym External symbol declaration
ASect Csect , Second control section
DS XL137
ASecEnt Equ * Declare internal symbol
ENTRY ASecEnt Declare internal entry point
DS XL131
RSection RSect , Third control section
DS XL149
ComSect COM , Fourth control section
DS 200F
ADummy DXD CL44 Dummy external section
End

Figure 566. Sample assembly with external symbols

the Assembler’s External Symbol Dictionary listing looks like Figure 567:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Type</th>
<th>Id</th>
<th>Address</th>
<th>Length</th>
<th>Owner Id</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAIN</td>
<td>SD</td>
<td>00000001</td>
<td>000002400</td>
<td>0000000C0</td>
<td>00</td>
<td></td>
</tr>
<tr>
<td>SOMESYM</td>
<td>ER</td>
<td>00000002</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASECTION</td>
<td>SD</td>
<td>00000003</td>
<td>00000240C</td>
<td>00000010C</td>
<td>00</td>
<td></td>
</tr>
<tr>
<td>ASECENT</td>
<td>LD</td>
<td>000002549</td>
<td>000000003</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RSECTION</td>
<td>SD</td>
<td>00000004</td>
<td>000025D00</td>
<td>00000095</td>
<td>08 ← RSECT flag</td>
<td></td>
</tr>
<tr>
<td>COMSECT</td>
<td>CM</td>
<td>00000005</td>
<td>000000000</td>
<td>00000320</td>
<td>00</td>
<td></td>
</tr>
<tr>
<td>ADUMMY</td>
<td>XD</td>
<td>00000006</td>
<td>000000000</td>
<td>000002C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 567. External symbol dictionary from sample assembly

The seven fields in Figure 567 are:
1. Symbol: the external symbol, converted to upper-case letters.\footnote{Upper-cased external symbols have roots in the days of System/360, when almost all programs were created on punched cards using upper-case letters. You can generate external symbols with mixed-case letters and other characters using the ALIAS instruction; see the \emph{High Level Assembler Language Reference} for details.}
2. Type: the type of external symbol, described in Section 38.5 on page 804.
3. Id: the ESDID of the symbol. Note that the symbol ASECENT has no ESDID of its own, because it is in the control section ASECTION, identified by “Owner Id” X’00000003’.
4. Address: the location at which the control section begins. For entry names (identified by Type LD), the address is the location of the entry point within the “owning” control section. Note that each section address has been rounded up to the next doubleword boundary. For example, ASECTION starts at location X’24C0’ and is X’10C’ bytes long, so the first available location is X’25CC’ and RSECTION starts at the next doubleword, X’25D0’.
5. Length: the length of the control section.
6. Owner Id: for entry names (Type LD), the ESDID of the control section in which the entry point resides.
7. Flags: bits indicating the addressing and residence modes and RSECT status declared for each control section. In this example, all have specified 24-bit addressing mode and residence below the 16MB “line”.

We can now give a complete definition of a symbol’s relocation attribute:
1. If a symbol appears in the ESD only, or in the ESD and in the ordinary symbol table, its relocation attribute is its ESDID.

2. If a symbol appears only in the ordinary symbol table, its relocation attribute is the ESDID of the control section in which it appears. (Undefined symbols may have ESDID zero.)

A special Type indication (PC) appears in the Assembler’s External Symbol Dictionary listing for unnamed control sections; PC stands for “Private Code”. As noted on page 790, Private Code sections may be generated if you put some statements that could affect the Location Counter ahead of the first START or CSECT statement; the Assembler automatically creates a blank-named CSECT.

For example, this set of statements:

```
R1 Equ 1 EQU can affect the Location Counter!
Main Csect , Start of a control section
 - - - Rest of 'Main' Csect
End
```
could produce an External Symbol Dictionary listing like this:

```
Symbol Type Id Address Length
PC 00000001 00000000 00000000 ← Unnamed zero-length Csect
MAIN SD 00000002 00000000 00000204
```

Unfortunately, PC sections can sometimes cause the generated load module to have unintended addressing and residence modes.

ESD records describe four types of external symbols. These two-letter Type abbreviations identify the symbol’s type:

- **SD,CM,PC** Section Definition: the name of a control section, CM identifies COMMON sections having no machine language “text”, and PC identifies a blank-named control section; these three are doubleword aligned by default.

- **LD** Label Definition entries identify the name of a position at a fixed offset within an “owning” Control Section. They are used to identify entry points. Because Label Definitions belong to another CSECT, they are the only symbol type having no ESDID of their own.

- **ER,WX** These two external symbol types are for External References to symbols not defined in this module, but to a symbol defined elsewhere to which this module wants to refer. A special form of external symbol is called WX or “Weak EXternal”; this type of reference might not be resolved at link time, without error.

- **XD** The name of an “EXternal Dummy Section”; sometimes called a PseudoRegister (PR). XD names are in a separate link-time “name space” from all other external symbols, and may match non-XD external names without conflict. Section 38.7.3 will discuss their use.

If you specify the SECTALGN(16) option, three different Type identifiers are used for quadword-aligned control sections:

- **SQ** for a quadword-aligned control section,
- **CQ** for a quadword-aligned COMMON control section,
- **PQ** for a quadword-aligned private (unnamed) control section,

To illustrate, we’ll assemble the simple program in Figure 568 with each SECTALGN option:

---

250 “Private” because you can’t refer to such a control section by its nonexistent section name!
The allowed values of AMODE and their meanings are shown in Table 397.

<table>
<thead>
<tr>
<th>AMODE</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>The instructions in this control section, or at this entry point, should receive control in 24-bit addressing mode.</td>
</tr>
<tr>
<td>31</td>
<td>The instructions in this control section, or at this entry point, should receive control in 31-bit addressing mode.</td>
</tr>
<tr>
<td>64</td>
<td>The instructions in this control section, or at this entry point, should receive control in 64-bit addressing mode.</td>
</tr>
<tr>
<td>ANY, ANY31</td>
<td>The instructions in this control section, or at this entry point, may receive control in 24-bit or 31-bit addressing mode.</td>
</tr>
<tr>
<td>ANY64</td>
<td>The instructions in this control section, or at this entry point, may receive control in any addressing mode.</td>
</tr>
</tbody>
</table>

The allowed values of RMODE and their meanings are shown in Table 398 on page 814. (For an illustration of the 16MB “line” and the 2GB “bar”, see Figure 149 on page 308.)
<table>
<thead>
<tr>
<th>RMODE</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>The control section should be loaded below the 16MB “line”.</td>
</tr>
<tr>
<td>31, ANY</td>
<td>The control section should be loaded below the 2GB “bar”, either above or below 16MB</td>
</tr>
<tr>
<td>64</td>
<td>The control section may be loaded anywhere in memory.</td>
</tr>
</tbody>
</table>

Table 398. RMODE values

If either AMODE or RMODE (or neither) is specified for a section, the Assembler assigns the values shown in Table 399.

<table>
<thead>
<tr>
<th>Declared Mode</th>
<th>Assigned Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>AMODE 24, RMODE 24</td>
</tr>
<tr>
<td>AMODE24, AMODE 31, AMODE ANY, AMODE ANY31</td>
<td>RMODE 24</td>
</tr>
<tr>
<td>RMODE 24</td>
<td>AMODE 24</td>
</tr>
<tr>
<td>RMODE 31, RMODE ANY</td>
<td>AMODE 31</td>
</tr>
<tr>
<td>AMODE 64, AMODE ANY64</td>
<td>RMODE 31</td>
</tr>
<tr>
<td>RMODE 64</td>
<td>AMODE 64</td>
</tr>
</tbody>
</table>

Table 399. Default AMODE and RMODE values

Only certain combinations of AMODE and RMODE values are valid, as shown in Table 400.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Valid values</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMODE 24</td>
<td>RMODE 24</td>
</tr>
<tr>
<td>AMODE 31, AMODE ANY, AMODE ANY31</td>
<td>RMODE 24, RMODE 31</td>
</tr>
<tr>
<td>AMODE 64, AMODE ANY64</td>
<td>RMODE 24, RMODE 31, RMODE 64</td>
</tr>
</tbody>
</table>

Table 400. Valid combinations of AMODE and RMODE values

Figure 570 shows how mode values are assigned to external symbols:

```
Sect1 CSect ,
Sect1 RMODE 24 Assign residence mode
Sect1 AMODE 24 Assign addressing mode
STM 14,12,12(13) Entry point: save registers, ...
- - -
Sect2 CSect ,
Sect2 RMODE 24 Assign residence mode
Sect2 AMODE 31 Assign addressing mode
DR 2,11
- - -
Sect3 CSect ,
Sect3 RMODE 31 Assign residence mode
Sect3 AMODE 31 Assign addressing mode
- - -
Sect4 CSect ,
Sect4 RMODE 31 Assign residence mode
Sect4 AMODE 64 Assign addressing mode
- - -
```

Figure 570. Assigning RMODE and AMODE to a section name

The ESD listing from assembling this little fragment is shown in Figure 571 on page 815:
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Type</th>
<th>Id</th>
<th>Address</th>
<th>Length</th>
<th>Owner Id</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>SECT1</td>
<td>SD</td>
<td>00000001</td>
<td>00000000</td>
<td>00000004</td>
<td>01</td>
<td></td>
</tr>
<tr>
<td>SECT2</td>
<td>SD</td>
<td>00000002</td>
<td>00000008</td>
<td>00000002</td>
<td>02</td>
<td></td>
</tr>
<tr>
<td>SECT3</td>
<td>SD</td>
<td>00000003</td>
<td>00000010</td>
<td>00000000</td>
<td>06</td>
<td></td>
</tr>
<tr>
<td>SECT4</td>
<td>SD</td>
<td>00000004</td>
<td>00000010</td>
<td>00000000</td>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>

Figure 571. ESD showing RMODE and AMODE of section names

To help you understand the “Flags” field, do Exercise 38.5.17.

The addressing mode in effect when your program runs determines which register bits are used to form Effective Addresses, as shown in the following figures:

```
04 0 6 3
┌──┬─────────────────────────────────┐
│/SM630000────────────── ignored ───────────────────────────/SM590000│/SM630000─────── 24─bit address ────────/SM590000│ AMode 24
└──┴─────────────────────────────────┘
```

```
03 3 6 3
┌───┬──┐
│/SM630000────────────── ignored ──────────────────/SM590000│/SM630000──────────── 31─bit address ────────────/SM590000│ AMode 31
└───┴──┘
```

```
0 63
┌──┐
│/SM630000───────────────────────────────────64─bit address ──────────────────────────────────/SM590000│ AMode 64
└──┘
```

**Exercises**

38.5.1.(2)+ Assemble the program in Figure 566 on page 811 with the NOTHREAD option. Which values in the ESD portion of the listing have different values from those in Figure 567 on page 811? Why?

38.5.2.(1)+ Which assembler instruction statements define define executable control sections and which define reference sections? Which define space in the object module?

38.5.3.(2)+ Rewrite Figure 565 on page 810 so that the MVI instructions modify the *operation code* of a single shift instruction, so that it will perform the shifts in the desired direction. Remove all references to the flag byte.

*Note!* This is a very poor coding technique; this exercise is included only to show (what were believed to be clever) techniques used in “olden days” that now cause programs to run much more slowly.

38.5.4.(1) Why would specifying the SECTALGN(16) option be useful?

38.5.5.(1) Can you think of any use for Private Code sections?

38.5.6.(2) Write, assemble, and link a small program with unnamed CSECT and COM statements. Describe what happens.

38.5.7.(4) In Exercise 38.5.6 you wrote and assembled a small program with unnamed CSECT and COM statements. How could you refer to each from separately assembled modules?

38.5.8.(2)+ Determine whether the following variation on Figure 565 will work correctly, and correct it if you think it won’t. Explain your conclusions in either case.
Using *,15
ShftRt MVI SHFLAG,0 Set flag to zero
B SHFTAA Branch to common code
ShftLft LA 15,ShftRt Set common base register
MVI SHFLAG,1 Set flag for left shift
SHFTAA LTR 1,1 ...etc...

38.5.9.(4)+ Suppose a programmer wrote Figure 565 without the BASR at ShftAA and the following USING, and then attached the name ShftAA to the LTR instruction. Compute bases and displacements for all the instructions in the program (or, assemble it if necessary), and determine exactly what happens for correct calls to ShftRt and ShftLft.

38.5.10.(2)+ Write an external subroutine named BYTE with two arguments passed using standard conventions. The first argument is a byte, and the second argument is an 8-byte area where the subroutine will place 8 EBCDIC zero and one characters representing the bits of the byte argument.

38.5.11.(2)+ Write a separately-assembled subroutine named SIGNUM with a word integer argument that returns in GR0 the value −1 if the argument is negative, +1 if the argument is strictly positive, and 0 if the argument is zero. Assume standard linkage conventions, and restore all modified registers except GR0.

38.5.12.(2)+ In Figure 562, the first Load instruction places the address of Data in GR6. Why can’t it be replaced by this instruction?
LA 6,Data

38.5.13.(3) Suppose you are writing a large program that needs an internal debugging aid that will dump areas of memory in hexadecimal in some readable format. Write a separately-assembled subroutine named MemDump with this standard calling sequence:
L 15,=V(MemDump)
CNOP 2,4 Align to halfword boundary
BASR 14,15
DC A(start_address)
DC A(end_address)
You can use the PRINTLIN instruction to print the formatted lines.

38.5.14.(3) Revise your solution to Exercise 38.5.13 to allow either one or two memory addresses to be specified in the list following the BASR instruction, in this form:
BASR 14,15
DC A(×80000000'+start_address) For one argument
or
BASR 14,15
DC A(start_address)
DC A(×80000000'+end_address) For two arguments
where the high-order bit indicates the last memory address. If only a single argument is given, display 32 bytes starting at the start_address.

38.5.15.(3) Write an external subroutine named I2D that converts the signed 32-bit integer value in GR0 to a long hexadecimal floating-point value in FPR0.

38.5.16.(3) Write an external subroutine that converts the short hexadecimal floating-point number in FPR0 to a fullword integer in GR0. If the floating-point number is too large, return the maximum negative number in GR0 and set return code 4 in GR15.

38.5.17.(3)+ The rightmost six bits of the “Flags” field indicate the AMODE and RMODE associated with the external symbol (remember that bit numbering starts at zero):
38.6. Object Modules

While you don’t usually need to know what’s in your object modules, every executable program begins as an (un-executable) object module that must be transformed to a loadable/executable format. Any functional limitations in what can go into an object module will also limit how we can think about and build our programs.

We’ll first look at how the Assembler generates object modules from your source program, and then in Section 38.7 at how object modules are linked into executable load modules. Finally, in Section 38.8 we’ll see how load modules and program objects are loaded into storage for execution.

The traditional (“OBJ”) object module consists of 80-byte card-image records, with ‘X’02’ in column 1, and an identifying 3-character “tag” in columns 2-4. The 3-character tags are:

**SYM** This identifies records describing the internal symbols of your program. SYM records are rarely used now.

**ESD** ESD records contain the external symbols of your program and their types. Each symbol (except LD) is identified by an ID number called its “External Symbol Dictionary ID”, or ESDID. Each ESD entry for a control section specifies its length and starting address.

The four types of external symbols are:
- **Section Definition**: the name of a control section.
- **Label Definition**: the name of an entry point.
- **External Reference and Weak EXternal reference**
- **External Dummy section**

**TXT** These records contain the machine language instructions and data (the “Text”) of your program. Each record indicates how many bytes of data it contains (the length of the data), which control section it belongs to (its “position ID”, the ESDID of the control section owning the text), and where within that control section it goes (its starting address).

There are no “gaps” in the data on TXT records, even though there may have been uninitialized gaps visible in the listing.

**RLD** Relocation Dictionary records contain data about each relocatable address constant in your program: its type, where it is within its control section (its “Position ID”, identified by the control section’s ESDID), its location within that control section (its address), and what should be put in that field (specified by the ESDID of another external symbol, its “Relocation ID”).

RLD records encode information about four types of address constant:
1. A-type: resolves directly to the target address
2. V-type: resolves directly to the target address, or to an indirect linkage assist

---

251 The format of an object module is described in detail in the *High Level Assembler Programmer’s Guide*. The GOFF (“Generalized Object File Format”) object module allows more freedom than the traditional object module format; it is described in Section 38.8.1., and documented in the *MVS Program Management Advanced Facilities* manual.
3. **Q-type**: resolves to an offset value provided by the Linker (used for referring to external dummy sections)

4. **Cumulative External Dummy**: a length constant; the Linker inserts the total length of all external dummy sections in the bound program. (More about this in Section 38.7.3.)

**END**

The END record is the last record of an object module, and contains some additional “IDR” data identifying the program that created the object module. If your source program specifies an operand on the END statement (as in Figure 33 on page 83) requesting that the executed program receive control at that operand, that information is also encoded on this record.

There is at least one control section per object module, and one object module per assembly. If you specify the Assembler’s “BATCH” option, one invocation of the Assembler may produce multiple object modules.

### 38.6.1. Relocation Dictionary and External Symbol Dictionary

Suppose we assemble the statements in the following figure; its listing extract shows how the Assembler describes relocation information:

<table>
<thead>
<tr>
<th>Loc</th>
<th>Object Code</th>
<th>Stmt</th>
<th>Source Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>000000</td>
<td>...</td>
<td>1 AA</td>
<td>Csect , Start of a control section</td>
</tr>
<tr>
<td>000000</td>
<td>...</td>
<td>2 EXTRN XX</td>
<td>External symbol</td>
</tr>
<tr>
<td>000000</td>
<td>...</td>
<td>3 ENTRY YY</td>
<td>Entry name</td>
</tr>
<tr>
<td>000000</td>
<td>...</td>
<td>4 DummyX DXD D</td>
<td>Dummy External Section</td>
</tr>
<tr>
<td>000000</td>
<td>...</td>
<td>5 DC A(XX)</td>
<td>A-type constant</td>
</tr>
<tr>
<td>000004</td>
<td>...</td>
<td>6 YY DC V(XX)</td>
<td>V-type constant</td>
</tr>
<tr>
<td>000008</td>
<td>...</td>
<td>7 DC Q(DummyX)</td>
<td>Q-type constant</td>
</tr>
<tr>
<td>00000C</td>
<td>...</td>
<td>8 CXD ,</td>
<td>Cumulative external dummy size</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>9 End ,</td>
<td></td>
</tr>
</tbody>
</table>

The Assembler’s External Symbol and Relocation Dictionaries in the listing look like this:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Type</th>
<th>Id</th>
<th>Address</th>
<th>Length</th>
<th>Owner Id</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>SD</td>
<td>00000001</td>
<td>00000000</td>
<td>00000010</td>
<td></td>
</tr>
<tr>
<td>XX</td>
<td>ER</td>
<td>00000002</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YY</td>
<td>LD</td>
<td>00000004</td>
<td>00000001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DUMMYX</td>
<td>XD</td>
<td>00000003</td>
<td>00000007</td>
<td>00000008</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pos.Id</th>
<th>Rel.Id</th>
<th>Address</th>
<th>Type</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000001</td>
<td>00000000</td>
<td>0000000C</td>
<td>J 4</td>
<td>ST</td>
</tr>
<tr>
<td>00000001</td>
<td>00000000</td>
<td>00000000</td>
<td>A 4</td>
<td>+</td>
</tr>
<tr>
<td>00000001</td>
<td>00000000</td>
<td>00000004</td>
<td>V 4</td>
<td>ST</td>
</tr>
<tr>
<td>00000001</td>
<td>00000003</td>
<td>00000008</td>
<td>Q 4</td>
<td>ST</td>
</tr>
</tbody>
</table>

- All the RLD items have Position ID (“Pos. Id”) X'00000001', meaning that all the adcons are found in control section AA with that ESDID.
- The Relocation ID (“Rel. Id”) gives the ESDID with respect to which the relocation will be done.
For example, both the A-type and V-type adcons are relocated with respect to the symbol \texttt{XX} which has ESDID 2. The Q-type constant relocates with respect to the symbol \texttt{DUMMYX} which has ESDID 3. CXD items have Relocation ID zero.

- The Address field shows the position within the owning control section (identified by the Position ID) where the adcon starts.

For example, the V-type adcon resides in section \texttt{AA} with ESDID 1, at location \texttt{X'00000004}'.

- The Type field indicates the type and length of the adcon. Type J is used for length constants.

- The Action field indicates whether the relocation value will be added (+) or subtracted (-) from the contents of the field in the object text identified by the Position ID and Address, or whether the relocation value is stored (ST) in the object-text field.

**Exercises**

**38.6.1.(4)+ Assemble this little program with the \texttt{OBJECT} option.**

<table>
<thead>
<tr>
<th>Prog</th>
<th>Csect</th>
<th>Control section name</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Extn X</td>
<td>External name</td>
</tr>
<tr>
<td></td>
<td>Entry B</td>
<td>Entry name</td>
</tr>
<tr>
<td></td>
<td>DC $'\text{987}'$</td>
<td>Constant</td>
</tr>
<tr>
<td>B</td>
<td>DC A(\texttt{X,PRVLen})</td>
<td>A-type address constant</td>
</tr>
<tr>
<td></td>
<td>DC V(\texttt{Y})</td>
<td>V-type address constant</td>
</tr>
<tr>
<td>D</td>
<td>DXD 3H</td>
<td>External dummy section item</td>
</tr>
<tr>
<td></td>
<td>DC Q(D)</td>
<td>Offset of D</td>
</tr>
<tr>
<td>PRVLen</td>
<td>CXD</td>
<td>Cumulative external dummy length</td>
</tr>
<tr>
<td>C</td>
<td>COM</td>
<td>Common section</td>
</tr>
<tr>
<td></td>
<td>DS 4F</td>
<td>Space in the common section</td>
</tr>
</tbody>
</table>

Use any convenient method to display the object module in hexadecimal format. With the High Level Assembler Programmer’s Guide as a guide, study the object module to understand how the ESD, TXT, and RLD records are encoded.

**38.6.2.(2)+ What are the differences in the effects of these two types of statements?**

\[ \text{DC } V(\texttt{X}) \quad \text{and} \quad \text{EXTRN } X \]

\[ \text{DC } A(\texttt{X}) \]

**38.7. Program Linking: Combining Object Modules**

We will use a simple example to show how two object modules are linked and loaded directly into memory. The principles are very similar to creating a load module; we’ll explain the differences in Section 38.8. Suppose a program consists of these two source modules:
Program MAIN contains the XDATA entry point, and refers to the subroutine SUB and the common control section WORK, which it requires to be X'600' bytes long.

Subroutine SUB refers to the external name XDATA and to the common control section WORK, which it requires to be X'400' bytes long.

Assembling the source modules produces two object modules. The object module for Module 1 would look roughly like this:

```
| ESD SD ID=1 MAIN Addr=000 Len=300 |
| ESD CM ID=2 WORK Addr=000 Len=600 |
| ESD LD ID=1 XDATA Addr=260 |
| ESD ER ID=3 SUB |
| TXT ID=1 Addr=000 'abcdefghijk...' |
| TXT ID=1 ... etc. |
| TXT ID=1 Addr=100 'mnopqrstuvwxyz...' |
| TXT ID=1 Addr=208 00000260 |
| TXT ID=1 Addr=260 '01234567890'...' |
| TXT ID=1 ... etc. |
| RLD PID=1 RID=3 Addr=200 Len=4 Type=V Dir=+ |
| RLD PID=1 RID=2 Addr=204 Len=4 Type=A Dir=+ |
| RLD PID=1 RID=1 Addr=208 Len=4 Type=A Dir=+ |
| END Entry=MAIN |
```

The object module for Module 2 would look roughly like this:

```
| ESD SD ID=1 MAIN Addr=000 Len=300 |
| ESD CM ID=2 WORK Addr=000 Len=600 |
| ESD LD ID=1 XDATA Addr=260 |
| ESD ER ID=3 SUB |
| TXT ID=1 Addr=000 'abcdefghijk...' |
| TXT ID=1 ... etc. |
| TXT ID=1 Addr=100 'mnopqrstuvwxyz...' |
| TXT ID=1 Addr=208 00000260 |
| TXT ID=1 Addr=260 '01234567890'...' |
| TXT ID=1 ... etc. |
| RLD PID=1 RID=3 Addr=200 Len=4 Type=V Dir=+ |
| RLD PID=1 RID=2 Addr=204 Len=4 Type=A Dir=+ |
| RLD PID=1 RID=1 Addr=208 Len=4 Type=A Dir=+ |
| END Entry=MAIN |
```
The ESD records define two control sections (\texttt{SUB} and \texttt{WORK}) and one external reference (to \texttt{XDATA}).

The RLD records contain information about two address constants.

Note that both object modules assign ESDIDs starting at 1.

First, the Linker/Loader must reserve some memory to hold the loaded program; we'll suppose that block of memory starts at \texttt{X'00123500'}; this is called the load address.

As the object modules are read by the Linker/loader, the external symbols are entered into a "Composite External Symbol Dictionary" (CESD). It will contain all external symbols used in each of the object modules being linked and loaded. After the first object module has been read and the TXT data has been moved into memory starting at the load address, the CESD would look like this:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Type</th>
<th>ESDID</th>
<th>Address</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAIN</td>
<td>SD</td>
<td>0001</td>
<td>123500</td>
<td>300</td>
</tr>
<tr>
<td>WORK</td>
<td>CM</td>
<td>0002</td>
<td></td>
<td>600</td>
</tr>
<tr>
<td>XDATA</td>
<td>LD</td>
<td>*0001</td>
<td>123760</td>
<td></td>
</tr>
<tr>
<td>SUB</td>
<td>ER</td>
<td>0003</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In the CESD entry for \texttt{XDATA}, the * on the ESDID means that 0001 is its "owning" section's ESDID. That is, \texttt{XDATA} is an entry point in control section \texttt{MAIN}.

When the second object module is read, its ESDIDs also start at 1. For those of its ESDIDs that differ from symbols already in the CESD, new ESDIDs must be assigned to prevent conflicts; this process is called "renumbering". The Position and Relocation IDs of address constants are also renumbered.

The Linker adds new external names to the CESD (in this case, there are no new names) and adjusts the start address of \texttt{SUB} to start at the next doubleword boundary after the end of \texttt{MAIN}. The CESD would then look like this:
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Type</th>
<th>ESDID</th>
<th>Address</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAIN</td>
<td>SD</td>
<td>0001</td>
<td>123500</td>
<td>300</td>
</tr>
<tr>
<td>WORK</td>
<td>CM</td>
<td>0002</td>
<td></td>
<td>600</td>
</tr>
<tr>
<td>XDATA</td>
<td>LD</td>
<td>*0001</td>
<td>123760</td>
<td></td>
</tr>
<tr>
<td>SUB</td>
<td>SD</td>
<td>0003</td>
<td>123800</td>
<td>800</td>
</tr>
<tr>
<td>SUB</td>
<td>ER</td>
<td>0003</td>
<td>123800</td>
<td></td>
</tr>
</tbody>
</table>

Figure 576. Composite ESD after loading second object module

The symbol `SUB` appears twice in the Composite ESD because it is both a section definition and an external reference.

### 38.7.1. Assigning COMMON Sections

When reading the ESD of the second object module, the Linker notes that the requested length of the common block `WORK` is `X’400’`, which is less than the `X’600’` length requested by the `MAIN` program. The Linker always retains the longest requested length for common sections, so the length `X’600’` remains unchanged.

The Linker can now assign an address to `WORK` at the next doubleword boundary following the end of `Sub`. The final, updated CESD then looks like this:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Type</th>
<th>ESDID</th>
<th>Address</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAIN</td>
<td>SD</td>
<td>0001</td>
<td>123500</td>
<td>300</td>
</tr>
<tr>
<td>WORK</td>
<td>CM</td>
<td>0002</td>
<td>124000</td>
<td>600</td>
</tr>
<tr>
<td>XDATA</td>
<td>LD</td>
<td>*0001</td>
<td>123760</td>
<td></td>
</tr>
<tr>
<td>SUB</td>
<td>SD</td>
<td>0003</td>
<td>123800</td>
<td>800</td>
</tr>
<tr>
<td>SUB</td>
<td>ER</td>
<td>0003</td>
<td>123800</td>
<td></td>
</tr>
</tbody>
</table>

Figure 577. Composite ESD after assigning memory addresses

### 38.7.2. Relocating Address Constants

We’ll use the three adcons from sample program module 1 (see Figure 573 on page 820) to show how address constants are relocated.

1. **A(XDATA):**
   
   The Linker finds an RLD item referring to `XDATA`. Its position is in `MAIN` (ESDID=0001) at offset `X’208’`, and it relocates relative to Relocation ID 0001 because the target is an entry in `MAIN`. Because it’s an A-type constant, and the object text at the adcon’s address contains `X’00000260’`, the Linker loads that word. And because the Dir field indicates that the relocation value is to be added, the loader adds the relocation address `X’123500’` to the contents of the field at address `X’123708’` and stores the result, `X’123760’`, back in `Main` at address `X’123708’`.

   The same process is used for the `A(XDATA)` adcon in routine `SUB`.

2. **A(WORK):**
The Linker finds an RLD item referring to WORK. Its position is in MAIN (ESDID=0001) at offset X′204′, and it relocates relative to Relocation ID 0002. Because it’s an A-type constant with no offset, the loader adds the relocation address X′124000′ to the (zero) contents of the field at address X′123704′ and stores the result back in MAIN at address X′123704′.

The same process is used for the adcon referencing WORK in subroutine SUB.

3. V(SUB):

The Linker finds an RLD item referring to SUB. Its position is in MAIN (ESDID=0001) at offset X′200′, and it relocates relative to Relocation ID 0003. Because a V-type constant cannot have an offset, the loader stores the relocation address X′128000′ at address X′123700′ in MAIN.

Now that addresses have been assigned to all external symbols, the address constants have been relocated by adding or subtracting the relocation value to or from each adcon’s P-field contents (for A-type adcons), or by storing the relocation value in V-cons.

After loading and relocation are complete, the program in memory would look like this:

```
123500 (MAIN) 123800 (SUB) 124000 (WORK) 124600 (end)
```

![Figure 578. Memory layout of loaded program](image)

To summarize:

- Storage was allocated for three control sections (two SD, one CM); any excess memory (including that for the CESD) is freed.
- Address constants were resolved to the designated addresses.
- The program was given control at the entry point requested by the END statement of the MAIN program, at address X′123500′.
- The loaded program is X′1100′ bytes long.

This example has ignored what happens to unresolved strong external references after all object modules have been read. In practice, the Linker searches a “library” for names matching the remaining ERs and loads them in the same way it loaded the object modules. For example, if the MAIN program had contained an EXTRN for COS and COS was not defined in one of the input modules, the Linker will search the library for a member of that name. It’s important that this search is done after all primary inputs have been processed, because you may have written your own COS routine!

### 38.7.3. External Dummy Sections (*)
External Dummy Sections\textsuperscript{252} are used in situations like these:

- Separately assembled or compiled modules must share access to a resource by \textit{name}, such as an output file like \texttt{FILE1}.

- The complete linked program may be loaded into memory once, but executed simultaneously by more than one invoker. Thus, it cannot safely modify any of its own internal areas. Such programs are called “reenterable”.\textsuperscript{253}

None of the programs declaring the name of an external dummy item component of an External Dummy Section defines the area of storage it names; the allocation of memory to the External Dummy Section is done at execution time, as we’ll see.

Using an External Dummy Section requires actions at three different stages: during assembly, during linking, and at execution time. We’ll see shortly why it’s called an “External Dummy Section”, and will give an example to show how these three stages work together.

**Assembly time:** You declare your external dummy item contributions to the External Dummy Section in one of two ways:

1. Write a DXD statement defining the name, length, and alignment of \textit{your} external dummy item component of the External Dummy Section. This example defines two External Dummy Sections:

   ```
 FILE1CB DXD A 4 bytes, word aligned
 RANDOM DXD D 8 bytes, doubleword aligned
   ```

   Figure 579. Sample DXD declarations

2. Define a Dummy control section (DSECT) and use its name in a Q-type address constant; this automatically makes the DSECT name an External Dummy Section:

   ```
 TreeHead DSect , Head of a binary tree for symbols
 LftLink DS A
 RgtLink DS A
 SymLen DS X
 Symbol DS CL63
   ```

   Figure 580. External dummy section declaration

Then, define a Q-type constant referring to the DSECT or DXD name:

```
File1CBP DC Q(FILE1CB) External Dummy Section offset
RandomP DC Q(RANDOM) External Dummy Section offset
TreeHdP DC Q(TreeHead) External Dummy Section offset
```  

Figure 581. Referencing external dummy items with Q-cons

The Assembler’s External Symbol Dictionary entries for these three symbols are shown in this excerpt:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Type</th>
<th>Id</th>
<th>Address</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>FILE1CB</td>
<td>XD</td>
<td>00000002</td>
<td>00000003</td>
<td>00000004</td>
</tr>
<tr>
<td>RANDOM</td>
<td>XD</td>
<td>00000003</td>
<td>00000007</td>
<td>00000008</td>
</tr>
<tr>
<td>TREEHEAD</td>
<td>XD</td>
<td>00000004</td>
<td>00000007</td>
<td>00000048</td>
</tr>
</tbody>
</table>

Figure 582. External dummy items in ESD listing

\textsuperscript{252} “Ordinary” Dummy Control Sections (DSEcts) will be discussed extensively in Chapter XI.

\textsuperscript{253} The more common term is “reentrant”, but this also refers to a type of mathematical curve, which doesn’t apply here.
The “Address” field is actually an alignment mask: the requested alignment for the External Dummy Section item as a power of two, less one. (See Exercise 38.7.3.)

**Link time:** The Linker collects all the External Dummy Section contributions from the set of object modules is it linking, and constructs the template for the complete External Dummy Section. Each item is aligned according to its definition, and space is reserved according to its length. If more than one contribution has the same name, the Linker assigns the strictest alignment and longest length to that name. Thus, the Linker is creating something like a link-time Dummy Section; like a DSECT, it only describes an area of memory without actually allocating it.

For example, if a separate module also defined the DXD symbol **RANDOM** as in Figure 583,

**RANDOM** DXD **L** 16 bytes, doubleword aligned

Figure 583. Separate DXD declaration

the Linker would use the longer of this value and the one in Figure 579 on page 824, and assign length 16 and doubleword alignment to that name.

The completed External Dummy Section might look like this:

<table>
<thead>
<tr>
<th>Offset</th>
<th>Description</th>
<th>Length</th>
<th>Alignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>other items...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>FILE1CB XD item</td>
<td>length 4, word aligned</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>RANDOM XD item</td>
<td>length 16, doubleword aligned</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>other items...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6C</td>
<td>TreeHead XD item</td>
<td>length 72, word aligned</td>
<td></td>
</tr>
<tr>
<td>B4</td>
<td>other items...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC</td>
<td>Total length of the External Dummy Section</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 584. Example of a completed External Dummy Section

After the Linker has assigned all external dummy items offsets in the External Dummy Section, it then resolves the Q-type address constants by placing the offset from the start of the External Dummy Section of the operand name. Thus, for example, any Q-type address constant referring to **FILE1CB** would contain X'00000038'; if the Q-con had explicit length 2, it would contain X'0038'.

Finally, the Linker puts the accumulated length (X'0000000C') of the entire External Dummy Section into each CXD-type address constant. (You can now understand why CXD means “Cumulative External Dummy”. Usually, there's only one CXD in a completed program; we'll see why in a moment.)

When linking is complete, all address constants of types A, V, Q, and CXD have been resolved: A- and V-type for internal and external symbol references, Q-type for External Dummy Section offsets, and CXD-type for the cumulative length of the External Dummy Section.

**Execution time:** During initialization, each invocation of the main program uses operating system services to allocate an area of memory whose length is determined by the link-time value placed in the CXD-type constant, and sets the area to zeros. The address of this new area is put in a general register known to all routines that will access fields in the External Dummy Section.

Suppose GR11 has been assigned to hold this address:
Now, suppose one of several modules in the complete program wants to write records to FILE1, and has declared an external dummy item as in Figure 579 on page 824. It retrieves the FILE1CB item (a “file control block” giving access to the I/O routines) from the External Dummy Section:

L 2,=Q(FILE1CB) Get EDS offset of FILE1CB pointer
AR 2,11 Storage address of FILE1CB pointer
L 2,0(,2) Pointer to FILE1CB now in R2

Figure 585. Retrieving an External Dummy Section item

The routine can now call the routine that writes records, passing the addresses of the record, its length, and the address of the FILE1CB field in the External Dummy Section (which will initially be zero). The write routine notes the zero FILE1CB field and allocates more storage to hold the control blocks and other items needed to complete the write operation. It then stores the address of these control blocks back in the FILE1CB field in the External Dummy Section.

Later, any other routine that wants to write records to FILE1 will retrieve the updated FILE1CB pointer from the External Dummy Section as in Figure 585; the write routine can then access the already-established control blocks to write the record.

Some history:

- External Dummy Sections and external dummy items were originally used in OS/360 for reen-terable PL/I applications to allow sharing by name of dynamically managed external objects such as files, areas, and controlled variables that were defined in separately translated reenter-able programs.
- PL/I called the external dummy items “PseudoRegisters” (PRs), and the External Dummy Section a “PseudoRegister Vector” (or “PRV”). Each PR item was a 4-byte address, so it was natural to think of them as representing additional “registers”, and the External Dummy Section as a “vector” of PRs.
- Instructions referring to PR items were usually RX-type Load instructions. For example, the generated instruction was carefully arranged to do the same as in Figure 585, but saving one instruction:

```
L 2,0(11,0) Zero displacement and base fields!
ORG *-2
DC QL2(FILE1CB) Displacement (and zero base)
```

Figure 586. PL/I technique for loading Pseudo Registers

so that the generated instruction would be X'582B 0xxx' where 0xxx is the PR offset in the QL2-con, and the assigned External Dummy Section address (in GR11) is specified in the index register field of the L instruction. Thus, PL/I’s PRV allowed up to 1024 more 32-bit “pseudo registers”.

PseudoRegisters are not used frequently today.

COMMONs and DXD items have similarities and differences, as outlined in Table 401 on page 827.
To summarize:

- An External Dummy Section is like a component of a DSECT, but no space allocated in the programs that define the external dummy items that compose it. It is a template, a data-structure mapping created at link time. (Hence the Assembler’s name, “External Dummy”, as indicated by the XD type in the External Symbol Dictionary listing.)

- An external dummy item can have internal structure if it is mapped by a DSECT whose name appears in a Q-type constant.

### 38.7.4. Loading Object Modules (*)

To show how linkers load object modules, we will sketch the behavior of a simple loader; a real loader must handle complexities that we’ll ignore here. The basic steps are

1. Clear the ESDID Translation Table at the start of reading each object module.
2. Get an external symbol
3. Search the CESD to see if the symbol is already known from previous object modules.

For each input symbol type, search for a possible match among symbols of the types shown in Table 402. (During processing, LD types are sometimes “re-typed” as LR, meaning “Label Reference”.) As mentioned previously, PR symbols need not differ from the other types of symbols.

<table>
<thead>
<tr>
<th>Input Type</th>
<th>Search These Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD</td>
<td>ER, LD, SD, CM</td>
</tr>
<tr>
<td>LD</td>
<td>ER, LD, SD, CM</td>
</tr>
<tr>
<td>ER</td>
<td>ER, LD, SD, CM</td>
</tr>
<tr>
<td>CM</td>
<td>ER, LD, SD, CM</td>
</tr>
<tr>
<td>PR</td>
<td>PR Only</td>
</tr>
</tbody>
</table>

Table 402. ESD symbol search types

Different processing is required, depending on whether the incoming symbol already exists in the CESD (“match processing”) or not (“no-match processing”).

**No-Match Processing**

If the incoming symbol is not found in the CESD, the loader takes these steps:
1. Make an entry in the ESDID Translation Table, unless the symbol is type LD (its ESDID is that of its owning section).

```markdown
<table>
<thead>
<tr>
<th>Indexed by ESDID</th>
<th>Input ESDID</th>
<th>CESDID</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>
```

![Figure 587. ESDID Translation Table entry for an incoming symbol](image)

2. Perform processing, depending on symbol type:

**SD**

a. Determine the next available memory location (by adding the lengths of all previous control sections to the initial load address, rounding up each CSect address (origin + Length) to the next doubleword boundary.

b. Enter the name and start address of the new CSect in its CESD entry. Assign a new translation ID in the ESDID translation table to convert the ESDID of the current entry to the newly assigned CESDID of the symbol, as shown in Figure 587. Chain RLDs in this section to the CESD entry.

A typical CESD entry might look like this:

```markdown
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Type</th>
<th>Load address</th>
<th>Rel. Reloc. Const.</th>
<th>↑ RLDs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Length, Alignment</td>
<td></td>
</tr>
</tbody>
</table>
```

![Figure 588. A typical load-time CESD entry](image)

where the Load Address is the true address assigned to the symbol, and the Relative Relocation Constant is used to adjust translator-assigned addresses to true addresses.

c. Test for table overflows, and terminate loading if any.

d. Determine the relative relocation constant from the expression

(Linear-assigned CSect address) - (translator-assigned address)

where the translator-assigned address is the address field of the ESD entry.

e. Set a flag if this is a zero-length CSect; otherwise add its length to the current load address and round up to the next doubleword boundary.

**LD**

a. Make a CESD entry for the symbol.

b. Determine the true address of the symbol by adding the relative relocation constant (address) of the CSect owning this LD item (the owning ID can be found in the CESD by using the ESDID Translation Table) to the input address of the LD item.

c. Make no ESDID Translation Table entry for this LD symbol (it has no separate ESDID entry).

**ER**

Make a CESD entry for the symbol, and chain any associated RLD items to it.
CM

a. Make a CESD entry, and chain related RLDs to it. Set the Load Address to zero.
b. Enter the Common’s length and input address to the CESD entry.

PR

a. Make a CESD entry for the symbol, enter the PR length and alignment, and chain related RLD items (Q-type constants) to it.

Match Processing

If the incoming symbol is found in the CESD, the loader must take more complex actions, depending on the types of the new and existing CESD symbols. Because Private Code (PC) names are not unique, treat each PC as a new, unique SD: make a translation table entry, and create a CESD entry with its load address, length, and relative relocation constant, and chain any associated RLD items to the entry.

(1) Existing CESD Symbol is SD

<table>
<thead>
<tr>
<th>New Symbol</th>
<th>Processing</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD</td>
<td>Error: duplicate section. Set a flag to ignore TXT and RLD items for this ESDID.</td>
</tr>
<tr>
<td>CM</td>
<td>Check for CM length &gt; SD length. Error if so (CM references could overwrite subsequent CSects). Relocate RLDs referencing this symbol.</td>
</tr>
<tr>
<td>LD</td>
<td>Error: conflicting types.</td>
</tr>
<tr>
<td>ER</td>
<td>Make a Translation Table entry referring to the SD in the CESD.</td>
</tr>
<tr>
<td>PR</td>
<td>Ignore.</td>
</tr>
</tbody>
</table>

Table 403. Matching existing CESD SD symbol to incoming symbols

(2) Existing CESD Symbol is LD

<table>
<thead>
<tr>
<th>New Symbol</th>
<th>Processing</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD</td>
<td>Error: ESDID SD symbol matches an existing entry point. Set a flag to ignore TXT and RLD items for this ESDID.</td>
</tr>
<tr>
<td>CM</td>
<td>Error: ESDID CM symbol matches an existing entry point.</td>
</tr>
<tr>
<td>LD</td>
<td>Error: matching symbols with conflicting types.</td>
</tr>
<tr>
<td>ER</td>
<td>Make a translation table entry referring to the CESD LD.</td>
</tr>
<tr>
<td>PR</td>
<td>Ignore.</td>
</tr>
</tbody>
</table>

Table 404. Matching existing CESD LD symbol to incoming symbols

(3) Existing CESD Symbol is CM

<table>
<thead>
<tr>
<th>New Symbol</th>
<th>Processing</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD</td>
<td>Assign the greater of the lengths of the CESD CM and the incoming ESDID CM, and change the CESD CM symbol to SD.</td>
</tr>
<tr>
<td>CM</td>
<td>Assign the greater of the lengths of the CESD CM and the ESDID CM to the CESD CM.</td>
</tr>
<tr>
<td>LD</td>
<td>Error: matching symbols with conflicting types.</td>
</tr>
<tr>
<td>ER</td>
<td>Make a translation table entry referring to the CM.</td>
</tr>
<tr>
<td>PR</td>
<td>Ignore.</td>
</tr>
</tbody>
</table>

Table 405. Matching existing CESD CM symbol to incoming symbols

(4) Existing CESD Symbol is ER
Table 406. Matching existing CESD ER symbol to incoming symbols

<table>
<thead>
<tr>
<th>New Symbol</th>
<th>Processing</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD</td>
<td>Change the CESD entry to SD, and update the cumulative length of the loaded program. Relocate RLDs chained to the ER item.</td>
</tr>
<tr>
<td>CM</td>
<td>Change the CESD entry to CM. Make a translation table entry for the ESDID CM.</td>
</tr>
<tr>
<td>LD</td>
<td>Change the CESD ER symbol to LD. Update the relocation constant to refer to the assigned LD address, and relocate RLDs.</td>
</tr>
<tr>
<td>ER</td>
<td>Make a translation table entry referring to the CESD ER symbol. If both ERs are WX, leave the WX flag on; otherwise set it off.</td>
</tr>
<tr>
<td>PR</td>
<td>Ignore.</td>
</tr>
</tbody>
</table>

Table 407. Matching existing CESD ER symbol to incoming symbols

(5) Existing CESD Symbol is PR

<table>
<thead>
<tr>
<th>New Symbol</th>
<th>Processing</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD</td>
<td>Ignore</td>
</tr>
<tr>
<td>CM</td>
<td>Ignore</td>
</tr>
<tr>
<td>LD</td>
<td>Ignore</td>
</tr>
<tr>
<td>ER</td>
<td>Ignore</td>
</tr>
<tr>
<td>PR</td>
<td>Set the CESD length to the greater of the CESD and ESDID PR lengths, and the alignment to the stricter of the two alignments.</td>
</tr>
</tbody>
</table>

TXT Record Processing: The loader checks the ESDID of the TXT record; if invalid, it discards the record. If valid, it checks the length of the TXT data against the current load address to see if available storage would be exceeded, and terminates loading if so. Otherwise it moves the text to the assigned address, and updates the load address.

END Record Processing: If no entry-point address has been assigned, and one is defined on the END record, save it. If an entry address has already been assigned, ignore the END record.

Final Processing

1. Unresolved ERs: If any unresolved ER items remain, search the Load Library (if requested), and load and relocate the members whose names match the unresolved ER names.
2. Commons: After the text has been loaded, space for each CM section is allocated, checking the length against the amount of available storage. The storage address of each CM is updated in the CESD.
3. PR Processing: Knowing the length and alignment of each PR item, the loader assigns a virtual offset to each, respecting the requested alignments, and noting the maximum final offset. These offsets are used in relocating Q-type address constants referring to the PR symbols, and the total length (the maximum offset) is assigned to CXD-type address constants.
4. RLD Processing: The address of each symbol in the CESD is now known, so the RLD items assigned to each can be relocated. (Remember that the address of the operand of a V-type address constant is stored in its text field, while the address of the operand of an A-type address constant is added to its text field.)
5. Release working storage, and enter the loaded module at its entry address.

Exercises

38.7.1.(1)+ In Figure 577, why does the symbol XDATA have the same ESDID as the symbol MAIN?
38.7.2.(3) Common sections cannot have entry points. Suppose you are expected to write a routine that uses a symbol *YourData* that is defined at an unknown offset in another program’s common section named *MyCom*, but you have no way of knowing in advance what that offset is, nor can you define an EXTRN for *YourData*.

Can you devise a way for the owner of the *MyCom* common section to help you determine the address of *YourData*? (It can be done!)

38.7.3.(2)+ Show how the Address fields in Figure 582 on page 824 can be used as alignment masks.

38.7.4.(2)+ The comment following Figure 586 on page 826 says that this technique allowed PL/I to define up to 1024 PRs. Why at most 1024, and not more?

### 38.8. Load Modules and Program Objects

We often want to save a linked program so it can be executed more than once without repeating the full linkage process. This is done by having the Linker create a load module.

We will describe the load module format used on MVS-based operating systems (including z/OS). Other operating environments use different formats, but the general principles are similar.

An executable load module that can be loaded and executed many times is created following the same steps illustrated in Section 38.7, with these differences:

- Instead of allocating an area of memory and loading the object text directly into that area, the Linker builds a file with assumed origin zero. Thus, the first control section is assigned address X’000000’, and subsequent control sections are added in order, following alignment of their offset from the origin.
- The completed load module file is written into a Partitioned Data Set (PDS) “library” from which it can be loaded for execution, or used as input to the Linker for relinking.
- The final assignment of memory addresses and adcon relocation happens when the Program Loader brings the load module into memory for execution; we’ll describe that process in Section 38.9 on page 841.

Suppose we use the two object modules in Figures 573 and 574 to create a load module. Now, all addresses in the CESD are assigned relative to a zero origin, as shown in Figure 589:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Type</th>
<th>ESDID</th>
<th>Address</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAIN</td>
<td>SD</td>
<td>0001</td>
<td>000000</td>
<td>300</td>
</tr>
<tr>
<td>WORK</td>
<td>CM</td>
<td>0002</td>
<td>000300</td>
<td>600</td>
</tr>
<tr>
<td>XDATA</td>
<td>LD</td>
<td>*0001</td>
<td>000260</td>
<td></td>
</tr>
<tr>
<td>SUB</td>
<td>SD</td>
<td>0003</td>
<td>000900</td>
<td>800</td>
</tr>
<tr>
<td>SUB</td>
<td>ER</td>
<td>0003</td>
<td>000900</td>
<td>800</td>
</tr>
</tbody>
</table>

Figure 589. Composite ESD after assigning load module addresses

As in Figure 577 on page 822, the symbol *SUB* appears twice; in this case the ER belongs to the *MAIN* program, while the SD belongs to *SUB*. If the subroutine *SUB* is replaced by a newer version, you won’t want the ER to be deleted because *MAIN* must still be able to call *SUB*.

The address fields of all RLD items are adjusted relative to zero. The text fields of adcons (such as those referencing *WORK* and *XDATA*) are updated to contain the offset relative to the zero assumed origin of their respective targets.

Chapter X: Large Programs and Modularization 831
The length of the bound program is the same, X'1100' bytes.

As before, if there are unresolved external references the Linker will search one or more libraries and include them in the load module. When this process is completed, the load module is written to the library.

The records of a load module are similar to the records of an object module (which simplifies processing each):

- **SYM**: Object-module SYM records are copied directly into load modules. They are included only at user request.\(^{254}\)
- **IDR**: Identification records (from object module END records, the Linker, the user, and other maintenance programs).
- **CESD**: The Composite External Symbol Dictionary; this is needed if the load module will be relinked.
- **TEXT**: Machine language instructions and data.
- **CTL/RLD**: Control records, for reading and relocating text records, and including Relocation Dictionary information.
- **EOM**: End of module (a flag field in a control record).

A sketch of a load module as it is written to the library is shown in Figure 590. (The “library” for load modules is a “Partitioned Data Set”, or PDS.)

```plaintext
+-----------------+ (If any)
| SYM +-----------------+
| CESD +-----------------+
| IDR +-----------------+
| CTL +-----------------+
| Text +-----------------+
| CTL/RLD +-----------------+
| Text +-----------------+
| EOM/RLD +-----------------+

Figure 590. Sketch of a load module
```

When loaded into memory, a load module is a single, one-dimensional set of contiguous control sections:

\(^{254}\) SYM records were originally used to help debuggers, but are rarely used now.
The format of a load module was fixed very early in System/360 days, and many tools and products depended on its format not changing; this made it nearly impossible to add new function. The z/OS Binder now supports “Application Programming Interfaces” (APIs) that can extract and update any interesting information in a load module.

### 38.8.1. External Subroutines and Assisted Linkage: Overlay (*)

Assisted linkages with external subroutines are more complicated than for the internal subroutines we discussed in Section 37.6 on page 770, where uniform addressability was assumed.

If the routine providing the assisted linkage (such as the Caller routine in Figure 513 on page 770) is external to the routines making the calls, the subroutine numbers will have been defined there, so the values of subroutine numbers like Print# won’t be known to the calling routines.

There are several ways to solve this problem, such as defining a table of subroutine numbers that can be copied into any program using Caller. Another is to create a macro-instruction that defines the subroutine numbers, and any calling program can invoke the macro.

**Overlay**: An early technique for providing indirect linkage was called overlay. It was used extensively in programs that needed more memory than was economically available at the time.

For example, suppose you had a MAIN program that needed to call subroutines SUBA and SUBB, but neither subroutine was called by the other. A typical arrangement in storage might look like this, if there was enough room in memory:

```
MAIN
 CALL SUBA
 CALL SUBB

SUBB

SUBA
```

In this case, the V-type address constants in MAIN for each of SUBA and SUBB would be resolved directly to their targets.

But if there wasn’t enough room for all three at the same time, you could arrange them like this, if you had a way to tell the Linker and Program Loader how to arrange the three routines:
The solution was provided by the Linker’s “overlay” control statements. The Linker would arrange the routines so that the contents of memory looked like this when MAIN was loaded:

The Entry Table is constructed by the Linker, and contains short “stub” routines to which the V-type address constants in MAIN were resolved. Each stub called the Supervisor to load either SUBA or SUBB into memory if it wasn’t already there. The stub also contained an A-type address constant with the memory address of the subroutine’s entry point where it would be after it was loaded. The stub could then branch directly to the subroutine.

For example, suppose MAIN called SUBA first, so it was loaded into memory by the Supervisor. When SUBA returned control to MAIN it called SUBB; the Supervisor would then load SUBB into the same area of memory just occupied by SUBA, “overlaying” it.

If an area of working memory needed to be shared among MAIN, SUBA, and SUBB, the usual solution was to define a Common section that would be loaded with MAIN. Because its address would be known to all three routines, A-type address constants were used for direct references.

The cost of memory has dropped rapidly since the days when overlay was needed, so it’s little used today. But it’s an interesting example of how to manage assisted linkage among separately translated routines.

### 38.8.2. Program Objects (*)

Program objects are the newest form of z/OS loadable module. A program object provides many enhancements compared to Load Modules: they can be much larger, portions can be loaded into distinct areas of memory, and they can retain many more forms of useful information that need not be loaded into memory along with machine instructions and data. The summary in Section 38.11 will compare these differences in greater detail.

A key feature of program objects is support for classes. Whereas a load module is a collection of control sections loaded as a single entity into one area of memory, a program object is a collection of independently relocatable classes that can be loaded into multiple disjoint areas of memory. We’ll describe program object loading in Section 38.9 on page 841.

You can create classes with the Assembler in several ways:

1. Generate traditional object modules as described in Section 38.6 on page 817. At link time, direct the Binder (the z/OS Linker) to save the generated result in a PDSE (Partitioned Data

---

255 Some support is provided on z/CMS.

256 These are not the same as classes as defined in object-oriented programming languages.
Set Extended), a more modern form of “library”. The Binder will create default classes for you. (Section 38.8.4 explains how this is done.)

2. Specify the GOFF (Generalized Object File Format) option to the Assembler for the same source program. The Assembler will generate the new-format object file and assign default classes for you. The presence of classes will usually require the Binder to save the generated program object in a PDSE.

3. Specify the GOFF Assembler option, and create your own classes using the CATTR (Class Attributes) Assembler instruction.

The first two of these ways to generate a program object require no changes to your source program.

Classes and Sections: It’s easiest to think of the structure of a program object as having two dimensions, one defined by a Section and the other by a Class.

---

```
Figure 592. Sketch of program object structure

Sections Class X Class Y Class Z

Section A Element Element Element

Section B Element Element Element
```

---

The term “Section” is used in a different sense with program objects. Rather than naming a control section (as with load modules), it names a set of contributions to one or more classes. The contribution of a Section to a Class is called an “Element”. Elements are analogous to control sections from ordinary assemblies: they are an indivisible collection of machine language instructions and data.

Thus in Figure 592, Sections A and B each contribute instructions or data (or both) to Classes X, Y, and Z. A Section can contribute (or not) to any number of Classes.

Each class in a program object has uniform binding and loading attributes and behavior; these are assigned when the class is defined in your program.

As an example, suppose we assemble this little program and specify the GOFF option:

```
A Csect,
 STM 14,12,12(13)
* - - -
B Csect,
 DC 3A(*-B+1)
End
```

---

```
Figure 593. Sample program assembled with the GOFF option

Key parts of the External Symbol Dictionary listing from this assembly look like this:
```
There are many differences from what you'd see if the program had been assembled without the GOFF option:

- Although CSects A and B are shown as SD items, they have no address or length. They are simply “owners” or “containers” for the contributions to Classes.

- For each executable control section, the Assembler automatically generates three Classes, as indicated by the ED (for “Element Definition”) in the Type column:
  
  - B_IDRL A Class to contain IDR (identification) data for each Section.
  - B_PRV A Class to contain external dummy item data for each Section, in case any are generated.
  - B_TEXT A Class that contains the generated object code for each Section. Each ED item in this class has an address (the starting address of the element) and a length. This is the default Class if no class was explicitly defined by the CATTR instruction.

- Each ED item has its own ESDID, and its “Owner Id” is the ESDID of the section to which it belongs.

- Because you may want to refer to instruction or data items in a CSECT by name, the Assembler generates an LD entry-point item for each control section’s name at the origin of the B_TEXT Class into which the object code is generated. Thus, the LD entry for symbol A indicates it is at location 0 in the Class with ID 00000004, B_TEXT.

- Each LD item has an ESDID, because it can be assigned attributes not available without the GOFF option.

- Because program objects can be much larger than load modules (which are limited to 16MB in size), all address fields in the listing are 8 digits long rather than the 6 digits for an assembly without the GOFF option.

Similar comments apply to the External Symbol Dictionary entries from CSECT B.

Because the little program in Figure 593 on page 835 (and others like it) don’t specify more than a single Class for instructions and data, either a load module or a program object can be created by the z/OS Binder.

When you specify the GOFF option, you can assign AMODEs to entry (LD) and external (ER) symbols. For example:

---

257 These three classes are generated so that older programs that define no explicit classes so the Binder can link them more easily into program objects, giving compatible behavior between the load module and program object forms of the same program.
The corresponding ESD listing is shown in Figure 596. (the AMODE for symbol B is properly encoded in the GOFF object file.)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Type</th>
<th>Id</th>
<th>Address</th>
<th>Length</th>
<th>Owner Id</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMODES</td>
<td>SD</td>
<td>00000001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B_IDRL</td>
<td>ED</td>
<td>00000002</td>
<td></td>
<td></td>
<td>0000001</td>
<td></td>
</tr>
<tr>
<td>B_PRV</td>
<td>ED</td>
<td>00000003</td>
<td></td>
<td></td>
<td>0000001</td>
<td></td>
</tr>
<tr>
<td>B_TEXT</td>
<td>ED</td>
<td>00000004</td>
<td>00000000</td>
<td>00000004</td>
<td>00000001</td>
<td>00</td>
</tr>
<tr>
<td>AMODES</td>
<td>LD</td>
<td>00000005</td>
<td>00000000</td>
<td></td>
<td>00000004</td>
<td>00</td>
</tr>
<tr>
<td>B</td>
<td>ER</td>
<td>00000006</td>
<td></td>
<td></td>
<td>00000001</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>LD</td>
<td>00000007</td>
<td>00000000</td>
<td></td>
<td>00000004</td>
<td>01</td>
</tr>
</tbody>
</table>

This technique can be useful if you create a module with more than one entry point, and wish to receive control in the intended addressing mode.

### 38.8.3. The “Class Attribute” Instruction CATTR

As sketched in Figure 592 on page 835, we need to specify both the Section and the Class to define the elements to which our data and instructions belong. The Section is defined by the traditional CSECT and RSECT instructions, and the Class is defined by the CATTR instruction. For example, the following assembly defines two Sections (SECT_A and SECT_B) and three Classes (B_TEXT, CLASS_X, and CLASS_Y):

**Figure 597. Sample program defining two Sections and three Classes**

<table>
<thead>
<tr>
<th>B_TEXT</th>
<th>CLASS_X</th>
<th>CLASS_Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>SECT_A</td>
<td>STM</td>
<td>Msg_1</td>
</tr>
<tr>
<td>SECT_B</td>
<td>LM</td>
<td>Msg_2</td>
</tr>
</tbody>
</table>

The assignment of instructions and data to the six elements defined by the Sections and Classes looks like this:

**Figure 598. Assignment of instructions and data into elements**
The (slightly abbreviated) assembly listing of the program is shown in Figure 599 on page 838:

```plaintext
<table>
<thead>
<tr>
<th>Loc</th>
<th>Stmt</th>
<th>Source Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000000</td>
<td>1</td>
<td>SECT_A Csect ,</td>
</tr>
<tr>
<td>00000000</td>
<td>2</td>
<td>STM 14,12,12(13) Appears in Class B_TEXT</td>
</tr>
<tr>
<td>00000008</td>
<td>3</td>
<td>CLASS_X CATTR ,</td>
</tr>
<tr>
<td>00000008</td>
<td>4</td>
<td>Msg_1 DC C'A message' Appears in Class CLASS_X</td>
</tr>
<tr>
<td>00000020</td>
<td>5</td>
<td>SECT_B Csect ,</td>
</tr>
<tr>
<td>00000020</td>
<td>6</td>
<td>LM 14,12,12(13) Appears in Class B_TEXT</td>
</tr>
<tr>
<td>00000011</td>
<td>7</td>
<td>CLASS_X CATTR ,</td>
</tr>
<tr>
<td>00000011</td>
<td>8</td>
<td>Msg_2 DC C'Good News' Appears in Class CLASS_X</td>
</tr>
<tr>
<td>00000004</td>
<td>9</td>
<td>SECT_A Csect ,</td>
</tr>
<tr>
<td>00000028</td>
<td>10</td>
<td>CLASS_Y CATTR ,</td>
</tr>
<tr>
<td>00000028</td>
<td>11</td>
<td>Msg_3 DC C'Better News' Appears in Class CLASS_Y</td>
</tr>
<tr>
<td>00000024</td>
<td>12</td>
<td>SECT_B Csect ,</td>
</tr>
<tr>
<td>00000033</td>
<td>13</td>
<td>CLASS_Y CATTR ,</td>
</tr>
<tr>
<td>00000033</td>
<td>14</td>
<td>Msg_4 DC C'Enough!' Appears in Class CLASS_Y</td>
</tr>
</tbody>
</table>
```

Figure 599. Assembly listing for sample program

This listing excerpt shows several things:

1. The Location Counter values are 8 hexadecimal digits long. This is because portions of a program object can be larger than 16MB, can be loaded above the 16MB "line".
2. Each Class starts on a doubleword boundary. (You can use the ALIGN operand of the CATTR instruction to modify this.)
3. The contributions to CLASS_X are the constants named Msg_1 and Msg_2, both being 9 bytes long. Thus the contributions to CLASS_X total 18 bytes.
4. The contributions to CLASS_Y are the constants named Msg_3 and Msg_4, respectively 11 and 7 bytes long. Thus the contributions to CLASS_Y also total 18 bytes.

The External Symbol Dictionary created from assembling the program in Figure 593 on page 835 looks like this:

```plaintext
Symbol Type Id Address Length Owner Id
SECT_A SD 00000001 00000000 00000004 /SM630000 Section
B_IDRL ED 00000002 00000001 /SM630000 Generated by Assembler
B_PRV ED 00000003 00000001 /SM630000 Same
B_TEXT ED 00000004 00000000 00000004 /SM630000 STM instruction
SECT_A LD 00000005 00000000 00000004 /SM630000 SECT_A entry
CLASS_X ED 00000006 00000008 00000012 /SM630000 Class
SECT_B SD 00000007 00000000 00000004 /SM630000 Section
B_IDRL ED 00000008 00000007 /SM630000
B_PRV ED 00000009 00000007 /SM630000
B_TEXT ED 0000000A 00000020 00000004 00000007 /SM630000 LM instruction
SECT_B LD 0000000B 00000000 00000020 0000000A /SM630000 SECT_B entry
CLASS_Y ED 0000000C 00000028 00000012 /SM630000
```

Figure 600. External symbol dictionary for sample program

From this ESD listing, we see that:

1. The address assigned to each Class starts on a doubleword boundary.
2. The lengths of classes CLASS_X and CLASS_Y are both X'00000012' or 18 bytes.
3. The contributions to Class B_TEXT are each 4 bytes long.

The CATTR instruction supports several operands; the most useful are the RMODE and loadability attributes:

- **RMODE**(n)  
  This allows you to specify the region of memory where the Program Loader should place the Class. The allowed values of n are 24, 31, and 64.
ALIGN(n) You can specify other than the default alignment for the Class. n is an exponent of 2 and takes values from 0 to 12, meaning byte to page alignment.

DEFLOAD A Class with this attribute can be loaded by the Program Loader when requested. It is used by reenterable programs to contain data and instructions needed for each of many simultaneous executions of the same program.

NOLOAD A Class with this attribute will be included in the program object by the Binder, but will not be loaded by the Program Loader. NOLOAD classes are typically used for symbol tables, source code, and other record-oriented information you want to keep with the executable program.

If neither DEFLOAD or NOLOAD operands are specified, the default is LOAD, meaning that the class will be loaded when the program object is put in memory by the Program Loader.

PART(name) A Part is a named subdivision of an element that can have internal structure and be addressed by its name.

An example of defining a PART is shown in Figure 601:

```
PartSect CSect ,
ClassA CATTR Part(P1)
 DC 2D'1.23'
ClassA CATTR Part(P2)
 DC C'Hello!'
```

Figure 601. Example of declaring parts in a GOFF class

The corresponding ESD is shown in Figure 602; note that Parts are given type PD by the Assembler.

```
Symbol Type Id Address Length Owner Id Flags
PARTSECT SD 00000001
B_IDRL ED 00000002 00000001
B_PRV ED 00000003 00000001
B_TEXT ED 00000004 00000000 00000000 00000001 00
PARTSECT LD 00000005 00000004 00
CLASSA ED 00000006 00000000 00000000 00000001
P1 PD 00000007 00000000 000000010 00000006 00
P2 PD 00000008 00000000 000000006 00000006 00
```

Figure 602. ESD for parts in a GOFF class

An element in a given section and class may contain several Parts; you can visualize them like this:

```
─ ─ ─┼───────────────────────┼─ ─ ─ ┐
│ Part T │ │
├───────────────────────┤ │ An Element in a Load Class
│ │ │
│ Part P1 │ │ or a Deferred-Load Class
││ │
├───────────────────────┤ │
│ Part P2 │ │
─ ─ ─┼───────────────────────┼─ ─ ─ ┘
```
38.8.4. Programming for Program Objects

When writing programs that utilize classes and parts:

1. You must specify the GOFF option. In not, CATTR statements are simply checked for correct syntax, and are otherwise ignored.

2. Literals are generated wherever a LTORG statement appears; be careful where you write your LTORGs.

3. If any literals appear in your program after the last LTORG statement, check carefully that the Assembler generates them where you intended.

4. To resume a class, use its name in a CATTR statement with no operands. LOCTR statements can’t be used to resume a class.

5. Be careful when using ORG with a class or part name, especially if the class name appears in more than one section.

6. You can specify an AMODE for entry point names and external references that can be used in some situations to help set the correct addressing mode for references to such symbols. For example:

   Prog Csect ,
   DC '1'
ClassA CATTR ,
XA DC '2'
ENTRY XA
XA AMODE 31    ← Entry XA has AMODE 31
EXTRN XB
XB AMODE 64    ← External symbol XB has AMODE 64

The ESD listing from assembling this little program with the GOFF option is:

Symbol Type Id Address Length Owner Id Flags
PROG  SD  00000001
B_IDRL ED  00000002 00000001
B_PRV ED  00000003 00000001
B_TEXT ED  00000004 00000000 00000001 00000001 00
PROG  LD  00000005 00000000 00000004 00
CLASSA ED  00000006 00000008 00000001 00000001
XA LD  00000007 00000008 00000006 02 ← AMODE 31
XB ER  00000008 00000001

Even though the AMODE of symbol XB isn’t shown in the “Flags” column, it is properly defined in the GOFF object file.

38.8.5. Comparing Load Modules and Program Objects

The z/OS Binder can create either a load module or a program object from old OBJ-format object modules. If the generated executable is a program object, the Binder makes a few internal changes:

- SD items: in addition to the control section name, the Binder creates an ED (Element Definition) for Class B_TEXT with the RMODE of the section, and an LD (Label Definition) at the origin of this element with the AMODE attribute of the original control section.
- CM (Common) sections are treated almost like SD items, and a “Common” flag is set.
- TXT records for the control section are assigned to the B_TEXT element. (There are no TXT items for Common sections.)
- XD items cause the Binder to create an ED item for the B_PRV class.

In creating a program object, the Binder may note that several classes may have identical binding and loading attributes, and combine the elements in those classes into single segments, to reduce loading time. The segments inherit boundary alignments of member classes.
From GOFF or OBJ object modules, the Binder can create either a load module or a program object, but a generated load module is necessarily limited to a narrower range of capabilities, as shown in Table 408 on page 841:

<table>
<thead>
<tr>
<th>Library type</th>
<th>Load Modules</th>
<th>Program Objects</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PDS</td>
<td>PDSE, z/OS Unix HFS</td>
</tr>
<tr>
<td>Executable module</td>
<td>One-dimension; single AMODE, RMODE</td>
<td>Two-dimensions; multiple segments and A/RMODEs</td>
</tr>
<tr>
<td>Size limit</td>
<td>16MB</td>
<td>1GB</td>
</tr>
<tr>
<td>External symbols</td>
<td>8 characters</td>
<td>32K characters</td>
</tr>
<tr>
<td>Symbol types</td>
<td>SD, LD, ER, WX, PR</td>
<td>Same, plus ED</td>
</tr>
<tr>
<td>Additional module data</td>
<td>IDR only; no system support for access</td>
<td>Any data; Binder Programming Interfaces for access</td>
</tr>
<tr>
<td>Extensibility</td>
<td>Not possible</td>
<td>Open-ended architecture</td>
</tr>
</tbody>
</table>

Table 408. Comparing load modules and program objects

**Exercises**

38.8.1.(2)+ Assemble the little program in Figure 593 on page 835 with and then without the GOFF option, and compare their External Symbol Dictionaries. Which fields are significantly different?

38.8.2.(2) Compare the CESDs in Figure 577 on page 822 and Figure 589 on page 831 and explain the differences.

38.8.3.(1) The older Linkage Editor supported an extended form of overlay called “regions” that provided up to four distinct areas in which distinct overlays were supported. Try to find (and study) information about overlay regions.

### 38.9. Loading Saved Modules into Storage

The Program Loader brings load modules and program objects into storage, and relocates all address constants.

#### 38.9.1. Loading Load Modules

As indicated in Figure 591 on page 833, a load module is a single unit of instructions, data, and uninitialized space. It has a single set of attributes: AMODE, RMODE, and reenterability (RENT) status, used by the Program Loader to load the module in the proper area of memory, and set the addressing mode before transferring control to the module’s entry point.258

Adcon relocation is simple: the module’s single load address is added to the text field at the offset given by the (linker-adjusted) Position address in the RLD item. This relocation is fast and efficient. It’s important to remember that two stages of relocation are involved:

1. When the load module is created, the Linker (or Binder) relocates addresses relative to the zero module origin.
2. When the load module is brought into memory by the Program Loader, it relocates addresses relative to the module’s load address.

---

258 If the RENT option was specified during linking, the Program Loader will enable memory protection on the area where the module is loaded, so that any attempt to store in that area will cause a memory-protection program interruption.
To save having to read (and discard) the SYM, IDR, RLD, and CESD records, a copy of the first control record is saved in the PDS directory. It is used so the Program Loader can start reading the load module at the first text record. Each control record contains the length and the relative address of the following text record, and RLD information for adcons in that block of text.

The first block of text is loaded starting on a boundary aligned as specified by the SECTALGN option or by Linker and Binder control statements. If RMODE(ANY) was specified, the load module can be placed either above or below the 16MB “line”.

### 38.9.2. Loading Program Objects

Program objects add flexibility by allowing you to arrange groups of Classes that are loaded into more than one area of memory. With z System, available memory is divided into three areas, as sketched in Figure 603, showing the three areas into which programs and data can be loaded.\(^{259}\)

![Figure 603. Sketch of virtual memory](image)

The RMODE operand of the CATTR statement lets you indicate into which of these three areas you want the class to be loaded by the Program Loader. Suppose the little program in Figure 597 on page 837 has been revised as in Figure 604, where we have simply added an RMODE(31) operand to the first CATTR statement for CLASS_Y:

```
SECT_A Csect, STM 14,12,12(13) Appears in Class B_TEXT
CLASS_X CATTR, Msg_1 DC C'A message' Appears in Class CLASS_X
SECT_B Csect, LM 14,12,12(13) Appears in Class B_TEXT
CLASS_X CATTR, Msg_2 DC C'Good News' Appears in Class CLASS_X
SECT_A Csect, CLASS_Y CATTR RMODE(31) Specify RMODE(31) for CLASS_Y
Msg_3 DC C'Better News' Appears in Class CLASS_Y
SECT_B Csect, CLASS_Y CATTR,
Msg_4 DC C'Enough!' Appears in Class CLASS_Y
```

![Figure 604. Sample program defining two Sections and three Classes](image)

\(^{259}\) At the time of this writing, only data can be loaded into the area “above the bar”.

---

Assembler Language Programming for IBM z System™ Servers  Version 1.00
If the GOFF object file from this assembly is linked into a program object, the Binder creates three segments from classes having the same attributes. The segments contain the items shown in Figure 598 on page 837, but now CLASS_Y has a different RMODE:

- **B_TEXT** Residence mode 24 (the default)
- **CLASS_X** Residence mode 24 (also the default)
- **CLASS_Y** Residence mode 31 (as declared)

The Binder creates a program object with these segments; when the Program Loader brings the program into memory, the first two segments will be loaded “below the line” in the RMODE(24) area, and the CLASS_Y segment will be loaded “above the line, below the bar” in the RMODE(31) area.

To simplify loading, the Binder may combine segments with identical attributes into a single loading segment. In Figure 605, the **B_TEXT** and **CLASS_X** segments may be combined, so the loaded program could look somewhat like this:

```
+-----------------+ 2**64 bytes
| |
| |
+-----------------+ 2**31 bytes (the “bar”)
| Msg_3 |
| Msg_4 |
+-----------------+ Load address for CLASS_Y segment
| |
+-----------------+ 2**16 bytes (the “line”)
| STM |
| LM |
| Msg_1 |
| Msg_2 |
+-----------------+ Load address for B_TEXT, CLASS_X segments
| |
| |
+-----------------+ 0
```

**Figure 605. Sketch of classes in virtual memory**

Loadable segments are loaded as *separately relocatable discontiguous* entities. Each is loaded as a single “block”, similar to a load module, and inter-segment references are resolved correctly, even across different RMODEs.

The great value of loading different parts of a program into different areas of memory is that each segment may contain address constants referencing positions loaded into a different area! Unlike Load Modules that are loaded into only one area (and therefore can use address constants to refer only to positions within the loaded module), program objects can reference other areas.

In Section 38.10 we will see how to pass control among routines using different addressing modes, and how to reference different areas of memory.

**Exercises**

38.9.1.(2)+ Create a program with more than one control section, with references among the sections and their entry points. When the program is loaded into memory, dump its contents and verify that all address constants have been relocated correctly.

38.9.2.(1)+ Create a loadable module on your system and use whatever tools are available to display or dump its format prior to loading.
38.10. Changing Addressing Modes

Most application programs don’t need to change addressing mode. They can access Operating System services that may change mode, but they restore your addressing mode on completion so the process is invisible to you.

These are typical situations where you might want or need to change addressing mode:

- Your application is loaded “above the line” and executes in 31-bit mode. It needs to call a program loaded below the line that runs in 24-bit mode.
- Your application is loaded below the line and runs in 24-bit mode, and needs to access data that resides above the line.

First, we describe five instructions you can use to change addressing mode, and one to test the current addressing mode. Of these instructions, BASSM and BSM are the most useful. Then we’ll see how to use them.

<table>
<thead>
<tr>
<th>Op</th>
<th>Mнем</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mнем</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0B</td>
<td>BSM</td>
<td>RR</td>
<td>Branch and Set Mode</td>
<td>0C</td>
<td>BASSM</td>
<td>RR</td>
<td>Branch and Save and Set Mode</td>
</tr>
<tr>
<td>010C</td>
<td>SAM24</td>
<td>E</td>
<td>Set Addressing Mode (24)</td>
<td>010D</td>
<td>SAM31</td>
<td>E</td>
<td>Set Addressing Mode (31)</td>
</tr>
<tr>
<td>010E</td>
<td>SAM64</td>
<td>E</td>
<td>Set Addressing Mode (64)</td>
<td>010B</td>
<td>TAM</td>
<td>E</td>
<td>Test Addressing Mode</td>
</tr>
</tbody>
</table>

Table 409. Instructions to change addressing mode

SAM24, SAM31, and SAM64 simply change the addressing mode to the indicated value, and TAM sets the Condition Code according to the current addressing mode:

<table>
<thead>
<tr>
<th>AMODE</th>
<th>TAM CC</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>$B'00'$</td>
</tr>
<tr>
<td>31</td>
<td>$B'01'$</td>
</tr>
<tr>
<td>64</td>
<td>$B'11'$</td>
</tr>
</tbody>
</table>

Table 410. CC settings for TAM instruction

As noted in “20.2. Addressing Modes” on page 306, the two PSW bits that determine the addressing mode, the extended addressing mode bit E and the basic addressing mode bit B, are shown in Figure 606.

![Figure 606. z System PSW showing addressing-mode bits](image)

The meanings of the E and B bit settings are:

<table>
<thead>
<tr>
<th>E</th>
<th>B</th>
<th>Addressing mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>24-bit mode</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>31-bit mode</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Invalid combination</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>64-bit mode</td>
</tr>
</tbody>
</table>

Table 411. PSW addressing-mode bits

Note that the CC bit settings for TAM (in Table 410) are the same as the PSW E and B bit values (in Table 411).
The easiest way to change addressing modes is to execute one of the SAMxx instructions; this requires keeping track of the current and the new addressing modes in case you need to change back to the previous mode.

### 38.10.1. The BASSM Instruction

If your program (the caller) wants to call another program (the callee, or target program) in another addressing mode, use the BASSM instruction:

\[
\text{BASSM } R_1, R_2
\]

The important `b` and `e` bits in the `R_1` and `R_2` registers are shown in Figure 607:

```
0 3 2 3 3 6 3
0 3 2 3 3 6 3
```

Figure 607. Important addressing mode bits for BASSM

When BASSM is executed, the CPU first completes the contents of GR `R_1` or GG `R_1`, as shown in Figure 608. Thus, the `R_1` register reflects the addressing mode of the calling program.

```
0 32 39 40 63
0 32 32 39 40 60
0 1 62 63
```

Figure 608. BASSM setting of first-operand register for 24-, 31-, and 64-bit addressing modes

If the `R_2` digit is 0, the instruction is complete; no branch occurs, and the current addressing mode is unchanged.

If the `R_2` digit is not 0, the CPU examines the contents of GR `R_2`:  
1. If the `e` bit is zero (as you would expect for the address of the callee), then the PSW addressing mode is set according to the value of the `b` bit:
   - If `b = 0`, the `E` and `B` bits in the PSW are set to `B'00'`, for addressing mode 24.
   - If `b = 1`, the `E` and `B` bits in the PSW are set to `B'01'`, for addressing mode 31.

   The contents of GR `R_1` are then set to the IA in the PSW (the address of the instruction following BASSM), using the new addressing mode:

2. If the `e` bit of GR `R_2` is one, the addressing mode `E` and `B` bits in the PSW are set to `B'11'`, and the CPU will execute in 64-bit addressing mode.

   The contents of GG `R_2` are then set using the target address in GR `R_2`, using the new addressing mode, and the low-order bit of GG `R_1` is set to one. (We’ll see why this is done when we describe the BSM instruction.)

To complete the instruction, the CPU takes these additional steps:

1. If the new addressing mode is 24 or 31, the branch is taken and the next instruction will come from the address in GR `R_2`.

Chapter X: Large Programs and Modularization  845
2. If the new addressing mode is 64, the low-order bit of GR \( R_2 \) was set to one (so the branch address will appear to be odd!), but the CPU ignores the low-order one bit and takes the next instruction from the even address, without changing that low-order bit.

Instruction fetching then continues at the target address in the new addressing mode.

A summary of the operation of BASSM is shown in Table 412:

<table>
<thead>
<tr>
<th>BASSM</th>
<th>to 24/31</th>
<th>to 64</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>from</strong></td>
<td><strong>to 24/31</strong></td>
<td><strong>to 64</strong></td>
</tr>
<tr>
<td>24/31</td>
<td>GPR(_{R_1}): bits 0-31 unchanged</td>
<td>same</td>
</tr>
<tr>
<td></td>
<td>bit 32 = B bit</td>
<td>same</td>
</tr>
<tr>
<td></td>
<td>bits 33-63 = PSW IA</td>
<td>same</td>
</tr>
<tr>
<td></td>
<td>PSW IA = A(GPR (_{R_2}))</td>
<td>same</td>
</tr>
<tr>
<td></td>
<td>PSW B bit = GRP (_{R_2}) bit 32</td>
<td>Note: GPR (_{R_2}) bit 63 = 0</td>
</tr>
<tr>
<td></td>
<td>Note: GPR (_{R_2}) bit 63 = 0</td>
<td>same</td>
</tr>
</tbody>
</table>

Table 412. BASSM actions summary

### 38.10.2. The BSM Instruction

The BSM instruction is used to restore the addressing mode of a calling program before returning. Its operation is summarized in Table 413; we’ll use the notations in Table 410 on page 844 and Figure 607 on page 845 to refer to specific PSW and register bits.

<table>
<thead>
<tr>
<th>Value</th>
<th>R(_{1}) operand</th>
<th>R(_{2}) operand</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>R(_{1}) register unchanged</td>
<td>No branch, no change to addressing mode</td>
</tr>
<tr>
<td>(\neq 0)</td>
<td>• In AMODE 24 or 31, put the PSW B bit into the b bit of GR (<em>{R_1}); remainder of GR (</em>{R_1}) is unchanged.</td>
<td>• If the e bit of GR (<em>{R_2}) is zero, set the PSW E bit to 0; the b bit of GR (</em>{R_2}) is put in the PSW B bit; AMODE is now 24 or 31. The branch address replaces the PSW IA.</td>
</tr>
<tr>
<td></td>
<td>• In AMODE 64, insert a 1-bit into the e bit of GR (<em>{R_1}); remainder of GR (</em>{R_1}) is unchanged.</td>
<td>• If the e bit of GR (<em>{R_2}) is one, set the PSW EB bits to (\text{B'11'}); AMODE is now 64. The branch address in bits 0-62 of GR (</em>{R_2}) replaces the PSW IA with a low-order zero bit appended.</td>
</tr>
</tbody>
</table>

Table 413. Operation of BSM instruction

Of these combinations, the R\(_{1}\) operand is almost always zero.

A similar summary of the operation of BSM is shown in Table 414 on page 847:
38.10.3. Branch and Return With Addressing Mode Change

Changes of addressing mode are usually used for calls among programs loaded into different areas of memory, that execute in different addressing modes. Such programs or memory areas may not be accessible in the current addressing mode, or must execute in a different mode.

1. Suppose your program A executes in AMode 31 and you must call a program B that executes in AM24 (and was therefore loaded below the 16MB “line”).

   \[ L\ 15,=V(B) \quad \text{Address of B (X'00xxxxxx')} \]
   \[ \text{BASSM 14,15 Call B} \]

   B will be entered in 24-bit mode because bit 32 of GR15 is 0 (remember that the Program Loader sets the high-order 8 bits of a 4-byte adcon to zero if the target symbol is below 16MB). The b bit in GR14 will be set to 1 because the BASSM instruction was executed in AMode 31. B will then return with

   \[ \text{BSM 0,14 Return from B to A} \]

   and the addressing mode will be changed from 24- to 31-bit mode because the b bit in GR14 was 1.

2. Suppose your program C executes in AMode 24 and you must call a program D that executes in AMode 31 (and was therefore loaded above the 16MB “line”).

   \[ L\ 15,=A(D+X'80000000) \quad \text{Address of D with bit 32 = 1} \]
   \[ \text{BASSM 14,15 Call D} \]

   D will be entered in 31-bit mode because bit 32 of GR15 is 1 because we set that bit by adding X'80000000' to its address. The b bit in GR14 will be set to 0 because the BASSM instruction was executed in AMode 24. D will then return with

   \[ \text{BSM 0,14 Return from D to C} \]

   and the addressing mode will be changed from 31- to 24-bit mode because the b bit in GR14 was 0.

3. Suppose your program E executes in AMode 31 and you must refer to data named F that resides below the 16MB “line”.

   \[ L\ 15,=V(F) \quad \text{Address of D with bit 32 = 1} \]

   You can now refer to the data at F because 31-bit mode lets you address anything below the 2GB “bar”.

4. Suppose your program G executes in AMode 24 and you must refer to data named H that resides above the 16MB “line” but below the 2GB “bar”.

   \[ L\ 15,=V(H) \quad \text{Address of H} \]
   \[ \text{SAM31 , Set addressing mode 31} \]
You can now refer to the data at $H$ because 31-bit mode lets you address anything below the 2GB “bar”. If your program must later execute in 24-bit addressing mode, you will need to execute a SAM24 instruction.

The following Table 415 shows combinations of instructions that may safely be used by programs executing in the “From” addressing mode to call programs that execute in the “To” mode.

<table>
<thead>
<tr>
<th>From</th>
<th>To AM24</th>
<th>To AM31</th>
<th>To AM64</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Call</td>
<td>Return</td>
<td>Call</td>
</tr>
<tr>
<td>AM24</td>
<td>BALR</td>
<td>BR</td>
<td>BASSM</td>
</tr>
<tr>
<td></td>
<td>BAS</td>
<td>BSM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BASR</td>
<td>BR</td>
<td>BASSM</td>
</tr>
<tr>
<td></td>
<td>BRAS</td>
<td>BSM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BRASL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AM31</td>
<td>BASSM</td>
<td>BSM</td>
<td>BSM</td>
</tr>
<tr>
<td>AM64</td>
<td>BASSM</td>
<td>BSM</td>
<td>BSM</td>
</tr>
</tbody>
</table>

Note that the BAL instruction appears in the table only for branch and return in 64-bit mode. BAL should be used only in combination with BR and never with BSM as the return instruction when your program is executing in addressing mode 24.260 (See Exercise 38.10.7.)

Table Table 416 shows ways you can do internal subroutine calls that change addressing modes within a single assembly.

<table>
<thead>
<tr>
<th>Caller</th>
<th>Subroutine Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>* To 24-bit mode from any mode</td>
<td>* Entry to 24-bit mode</td>
</tr>
<tr>
<td></td>
<td>Code24 DC 0H Must be below the line</td>
</tr>
<tr>
<td></td>
<td>BSM 0,14 Return to caller</td>
</tr>
<tr>
<td>* To 31-bit mode from any mode</td>
<td>* Entry to 31-bit mode</td>
</tr>
<tr>
<td></td>
<td>Code31 DC 0H Above or below the line</td>
</tr>
<tr>
<td></td>
<td>BSM 0,14 Return to caller</td>
</tr>
<tr>
<td>* To 64-bit mode from any mode</td>
<td>* Entry to 64-bit mode</td>
</tr>
<tr>
<td></td>
<td>Code64 DC 0H Anywhere in memory</td>
</tr>
<tr>
<td></td>
<td>BSM 0,14 Return to caller</td>
</tr>
</tbody>
</table>

When a program executes in 64-bit addressing mode, it can address any byte with addresses between $2^{31}$ and $2^{64}-1$. However, on z/OS systems the addresses between $2^{31}$ and $2^{32}-1$ are not made available; this area is sometimes called the “Blackout Area”, as sketched in Figure 609 on page 849.

260 The official term describing BAL and BALR is that their use is “deprecated”. This means that if you get in trouble using them, you can’t say you weren’t warned.
This was done because many existing programs used the convention shown in Section 37.3.1 on page 753 that set the high-order bit of a 4-byte address to 1 to indicate the last argument address in a list. If such an address is used in 64-bit addressing mode it will (accidentally) try to refer to an address in the Blackout Area, rather than the intended address below the 2GB “bar”.

To help avoid such problems we can use the LLGT and LLGTR instructions:

Table 417. LLGT and LLGTR instructions

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnm</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>E317</td>
<td>LLGT</td>
<td>RX Y</td>
<td>Load Logical Thirty One Bits</td>
</tr>
<tr>
<td>B917</td>
<td>LLGTR</td>
<td>RRE</td>
<td>Load Logical Thirty One Bits</td>
</tr>
</tbody>
</table>

These two instructions load a 32-bit word into the low-order 32 bits of the GR R1 register, set bit 32 to 0 (the bit that could potentially be 1) and set the remaining 32 high-order bits of GR R1 to zero. This means that the resulting address can safely be used by a program executing in 64-bit mode to refer to addresses below the 2GB “bar”. For example:

\[
\text{LLGT } 4,=X'\text{FEDCBA98}' \quad \text{c(GG5=X'00000000 7EDCBA98')} \\
\]

and bit 32 of GG4 has been set to zero.

The example in Figure 610 shows why this can be important. Suppose your program runs in AMode 31, and then changes to AMode 64.

Figure 610. Example showing why LLGT/LLGTR are necessary
The MVC instruction named Move may cause a protection exception for either of two reasons. The BASR instruction, because it is executed in AMode 31, sets bit 32 of GG12 (the b bit) to 1. When the Effective Addresses of the MVC operands A and B are generated, the presence of the 1-bit means that

- if bits 0-31 of GG12 are zero, the Effective Address of A lies in the “Blackout Area”;
- otherwise, if bits 0-31 of GG12 are not zero, the Effective Address of A lies somewhere above 2^{32}, in an area very probably not accessible to your program.

To avoid both forms of this problem, insert a LLGTR instruction:

```
- - -
SAM64 ,
LLGTR 12,12 Force bits 0-32 of GG12 to zero
Move MVC A,B Move some data
- - -
```

This example shows why LLGTR can be important: if you call a program executing in 64-bit mode from another program located “below the bar”, you must be sure that it’s safe to refer to the caller’s save area:

```
Code64 CSect ,
Code64 AMode 64 64-bit addressing mode
Using *,15 Local base register
STMH 14,12,HighRegs+12 Save high halves of registers locally
LLGTR 13,13 Clean address or caller’s area in GG13
STM 14,12,12(13) Save low halves of registers safely
- - -
Return LMD 14,12,HighRegs+12,12(13) Restore both halves of registers
BSM 0,14 Return to caller
HighRegs DS 18F Save area for high halves of registers
```

Without the LLGTR instruction, any nonzero bits in positions 0-33 of GG13 could cause a protection exception.

### Exercises

38.10.1.(1)+ When a program is loaded into memory, what is the maximum allowed difference between the addresses of BRAS and BRASL instructions and their targets?

38.10.2.(1) Show which PSW addressing mode bits (Figure 606 on page 844 may help) are set to what values by each of the SAMxx instructions in Table 409 on page 844.

38.10.3.(1)+ Show how the CC settings in Table 410 on page 844 correspond the the settings of the E and B addressing-mode bits in the PSW, as illustrated in Figure 606 on page 844.

38.10.4.(2)+ Describe the differences among BALR r,0 and BASR r,0 and BASSM r,0.

38.10.5.(1)+ The z/Architecture Principles of Operation states that if the current addressing mode is 24 or 31, the BSM instruction can be used to return from a program that was entered using a BAS, BASR, BRAS, and BRASL instruction. Explain why this is so.

38.10.6.(1) Can BASSM 0,0 or BSM 0,0 be used as a no-operation instruction, like NOPR 0?

38.10.7.(2)+ The paragraph after Table 415 on page 848 states that BAL should never be used with BSM as its return instruction when your program executes in AMODE 24. Why? Why is AMODE 31 not included in this warning?

38.10.8.(2) In Table 415 on page 848, why not use BASSM and BSM for a branch and return within the same addressing mode?
38.11. Summary

This chapter has covered a wide variety of topics. Key suggestions include:

1. Put all constants that can’t be replaced by immediate operands in one LOCTR group. It will probably need addressability.

2. Put all read/write data areas in one LOCTR group. It will probably need addressability.

3. Arrange for all instructions to be in one LOCTR group. Use relative branch, immediate, and long-displacement instructions wherever possible. Ideally, this LOCTR group will not need addressability.

4. Avoid using BAL/BALR except in applications with no changes of addressing mode.

Instructions Discussed in this Section

The instruction mnemonics and opcodes are shown in the following table:

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Opcode</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASSM</td>
<td>0C</td>
</tr>
<tr>
<td>BSM</td>
<td>0B</td>
</tr>
<tr>
<td>LLGT</td>
<td>E317</td>
</tr>
</tbody>
</table>

The instruction opcodes and mnemonics are shown in the following table:

<table>
<thead>
<tr>
<th>Opcode</th>
<th>Mnemonic</th>
</tr>
</thead>
<tbody>
<tr>
<td>010B</td>
<td>TAM</td>
</tr>
<tr>
<td>010C</td>
<td>SAM24</td>
</tr>
<tr>
<td>010D</td>
<td>SAM31</td>
</tr>
</tbody>
</table>

Terms and Definitions

address constant ("adcon")
A field within a control section into which a value (typically, an address) is placed during program binding, relocation, and/or loading.

Class
A cross-section of Program Object data with uniform format, content, function, and behavioral attributes.

Common
A CSECT having length and alignment attributes (but no text) for which space is reserved in the Program Object.

External Symbol Dictionary
The set of external symbols created by an assembly. They are displayed in the Assembler’s listing and are encoded in the ESD records of the generated object module.

Relocation Dictionary
A summary of each relocatable address constant in an assembly, displayed in the Assembler’s listing and encoded in the RLD records of the generated object module.
program linking
Resolve external names into offsets or addresses; combine multiple input name spaces into composite output name space.

text
The instructions and data generated by an assembly, encoded in the TXT records of an object module.

linking loader
Places modules into storage with linking, immediately prior to program execution.

object module
Records containing the external symbols, machine language text, and relocation dictionary information required for program linking, in either the older 80-byte card image “OBJ” format or in the newer GOFF format.

load module (LM)
The original form of MVS executable, stored in a Partitioned Data Set (PDS) program library in “record format”.

program object (PO)
A newer form of executable on z/OS, stored in a PDSE (Partitioned Data Set Extended) program library.

PseudoRegister (PR), External Dummy (XD)
A PseudoRegister or external data item having length and alignment attributes. Space in the loaded module is reserved for Common control sections; space for external dummy sections must be obtained at execution time.

executable control section
A control section containing machine language instructions or data, defined by CSECT, RSECT, or START instructions.

reference control section
A control section containing no machine language instructions or data, defined by DSECT, COM, or DXD instructions.

relocate
Assign actual-storage or module-origin-relative addresses to address constants.

relocating loader
Places modules into storage and adjusts addresses to their correct “final” value.

relocation
The load-time conversion of address constants from module or class displacements to virtual addresses. The assignment of actual or module-origin-relative addresses to address constants.

section
(1) A generic term for control section, dummy section, common section, etc.. A collection of items that must be bound or relocated as an indivisible unit.
(2) A collection of elements belonging to specified Classes in a program object. Elements defined by a section are added or deleted as a group. Not the name of a control section.

Class
A component of a program object with specified loading properties, containing elements supplied by sections. Loadable classes are independently relocatable. Indicated in the External Symbol Directory listing with type ED.

element
A component of a program object Class, defined by the combination of its section name and its Class name. The smallest indivisible and separately relocatable portion of a program object.

segment
A component of a program object containing classes with the same properties such as RMODE and loadability.

text
The portions of an object module containing machine language instructions and data.
**A-type address constant**
A field containing an absolute, relocatable, or complex relocatable expression. Absolute expressions are resolved by the Assembler, the others during linking and loading.

**V-type address constant**
A field containing the address of an external symbol, resolved during linking and loading.

**Q-type address constant**
A field containing the offset (not the address) of a Dummy External Symbol (or PseudoRegister) from the start of a virtual area mapped at link time and allocated at execution time.

**CXD-type address constant**
A word holding the length (not the address) of the virtual area created at link time from all the Dummy External Sections (or PseudoRegisters) in the complete program.

**AMODE**
Addressing mode, one of 24, 31, or 64.

**RMODE**
Residence mode, an indication of the desired placement in memory of a Control Section or class.

---

**Programming Problems**

**Problem 38.1.** (2) Use the external subroutines you wrote in solving Exercises 38.5.15 and 38.5.16 to create a complete program calling the subroutines. Verify your results by converting word integers to hexadecimal floating-point and then back to word integers; display the original and final integer values and the hexadecimal floating-point intermediate value. Be sure to test values such as

```
DC F'-0'
DC F'2147483647'
DC F'-2147483648'
```

**Problem 38.2.** (4) Days of the week can be calculated using Zeller's Congruence:  

\[ D_W = (D_M + ((M+1)\times13)/5) + Y + Y/4 + 6\times(Y/100) + Y/400 \pmod{7} \]

where \( D_M \) is the day of the month, \( M \) is the month, and \( Y \) is the year. \( D_W \) is the day of the week, starting with 0=Saturday through 7=Friday. All divisions (except the one calculating the day of the week \( \pmod{7} \)) discard remainders.

Write a separately assembled subroutine \textit{Zeller} to accept three integer arguments \( Y, M, \) and \( D_M \) and return \( D_W \) in GR0. Then, write a calling program that reads records with the three argument values right-justified in columns 1-10, 11-20, and 21-30. For example, some input records might be

```
2009 6 30
2000 1 1
1900 1 1
```

Create several test cases that display the day of the week, the month, day of the month, and the year. Even better, provide the names of the day and month.

**Problem 38.3.** (2) Using the definitions of ulp(x) in Section 32.8 on page 567, and with the assumptions in Exercises 33.19.3, 33.19.5, and 33.19.7, write three callable subroutines using standard calling conventions that are all in a single control section named \textit{HexUlp}. Your CSECT should have three entry points: \textit{HxUlpE}, \textit{HxUlpD}, \textit{HxUlpL}, having a short, long, and extended precision hexadecimal floating-point argument respectively.

Each entry should calculate the ulp of its argument and return the result in floating-point register 0 (for \textit{HxUlpE} and \textit{HxUlpD}) and in floating-point registers 0 and 2 for \textit{HxUlpL}.

\[26^1 \text{Due to Christian Zeller, in 1882-85. The formula is valid only for the Gregorian calendar.}\]
Your routines should preserve the contents of general registers 2-15 and floating-point registers 8-15 if they are modified in any way. Assume that the values of the arguments are large enough that no exponent underflows will occur in calculating each ulp.

**Problem 38.4.** (3) As you did in Problem 38.3, write a program in a CSECT named `BinUlp` with three similar entry points that will evaluate an ulp of a short, long, and extended precision binary floating-point argument.

**Problem 38.5.** (2) Write a callable routine named `ConvI` with two arguments: a 32-bit binary integer, and a 12-byte character string. Convert the binary integer to characters, right-adjusted in the string, and preceded by a minus sign if the integer is negative. Insignificant leading zeros should be omitted, and at least one digit must be produced. Be sure to test values like

```
DC F’0’
DC F’-1’
DC F’2147483647’
DC F’-2147483648’
```

**Problem 38.6.** (2) Write a callable routine named `ConvZ` with two arguments: a 32-bit word and an 8-byte character string. Convert the word to 8 EBCDIC characters representing the hexadecimal representation of the word.

**Problem 38.7.** (4) Write a program to display the contents of an 80-byte “OBJ” object module in hexadecimal.

**Problem 38.8.** (2) Write at least two separately-assembled routines referring to DXD items, some of which have identical names. Include Q-type address constants of lengths 2 to 4 referring to each item, and at least one CXD-type item. Link the routines together and execute the linked program.

Examine (and print) the contents of all the Q-cons and CXD constants to understand how the Linker allocated the entries in the External Dummy Section.

**Problem 38.9.** (1) Write a short program to illustrate the settings of the R₁ register when you execute BASSM and BASR instructions with R₂ = 0, in each of the three addressing modes. (Be careful if you use the PRINTOUT macro to print the results, because it executes only in AMODE 24.)

**Problem 38.10.** (2) Write and test a subroutine named `HexExp` that will evaluate and return in GR0 the exponent of a hexadecimal floating-point argument passed using standard linkage conventions. (You need not restore the contents of GR1.)
Chapter XI: Dummy Sections, Enhanced USINGs, and Data Structures

This chapter describes some basic techniques for arranging and describing data items in memory, including arrays, stacks, linked lists, and hash tables.

- Section 39 introduces the Dummy Control Section (DSECT) for mapping data objects, and then reviews the ordinary USING statement before introducing the enhanced Labeled USING, Dependent USING, and Labeled Dependent USING assembler instruction statements.
- Section 40 describes some basic techniques for arranging data items in memory, including arrays, stacks, linked lists, and hash tables.
This section describes two powerful programming aids: Dummy Control Sections and enhanced USING statements.

Dummy Control Sections are powerful tools for symbolic description of any area of memory. They are especially valuable when programs work with shared or multiple instances of data structures such as records.

Any addressing method should provide as many of the following benefits as possible:

1. Coding should be simple, clear, understandable, and efficient. These help with simplicity, readability, and maintainability.
2. All instructions should use fully symbolic references. These help with readability and maintainability.
3. Base registers and displacements should always be automatically assigned by the assembler from information provided in USING statements, and never as constants or by manual calculations. These also help with quality, readability, and maintainability.

Ordinary USINGs can easily fail in one or more of these respects, as some of the following illustrations will show; we will see how the new USING statements can avoid most of them.

39.1. Dummy Control Sections

In Sections 6.4 and 6.5 we mentioned that the START and CSECT assembler instruction statements initiate a control section containing instructions and data. A Dummy Control Section (or DSECT) is a control section like a control section initiated by CSECT or START, with these similarities and differences:

- A DSECT never generates any machine language object code, even if it contains instructions and constants.

---

262 The Assembler defines two types of control section: (a) an “executable” control section containing machine-language instructions and data (even though it might contain only data and no executable instructions, or even nothing at all!), and (b) a “reference” control section, most often a DSECT. (A reference control section can also be a COM section or an external dummy section, described in Section 38.4.)
• A DSECT has its own relocation attribute (RA). Because it generates nothing that will appear in the object module, its RA starts at (unsigned) X'FFFFFFFF' and counts down for each new DSECT. (You may remember from Section 38 that external symbols have relocation attributes defined by their ESDIDs, which count up from 1.)

• The Location Counter (LC) for a DSECT always starts at zero. Normal alignment rules apply to each statement in a DSECT.

A DSECT is a template or mapping of an area of memory, and is used to make symbolic references. To illustrate, suppose we declare a DSECT named DummyS:

```
DummyS DSect , Declare dummy control section DummyS
A DS F Fullword named A
B DS H Halfword named B
C DS CL25 25-byte character string named C
D DS D Doubleword named D
```

Figure 611. Example of a dummy control section

The symbol table entries for the four symbols might look like this:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Location</th>
<th>RA</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>X'000000'</td>
<td>X'FF'</td>
</tr>
<tr>
<td>B</td>
<td>X'000004'</td>
<td>X'FF'</td>
</tr>
<tr>
<td>C</td>
<td>X'000006'</td>
<td>X'FF'</td>
</tr>
<tr>
<td>D</td>
<td>X'000020'</td>
<td>X'FF'</td>
</tr>
</tbody>
</table>

Table 418. Symbol table entries for DSECT symbols

The Relocation Attribute of each symbol in the DSECT is the same as the RA of its “owning” control section.

Now, suppose we can address a work area named WorkA. We can use symbols to refer to fields in the work area, as in Figure 612:

```
Sample
BASR 12,0 Establish a base register
Using *,12 Provide addressability
- - -
LA 7,WorkA c(GR7) = Address of WorkA
Using DummyS,7 Provide symbolic mapping of WorkA
L 3,A Load a fullword from WorkA
AH 3,B Add a halfword from WorkA
CLC C,0(12) Compare 25 bytes of WorkA
JE ElseWhere Do something about the comparison
LM 0,1,D Load two words from doubleword
- - -
WorkA DS 00,XL84 Work area
```

Figure 612. Example using a dummy control section

The instructions referencing symbols defined in the DSECT are generated using the normal resolution rules for implied addresses. With the same notation as in Sections 10.8-10.10, the USING Table would look like Figure 613:

---

263 You can think of a DSECT as though it’s a transparent overlay that lets you make symbolic references to fields anywhere in memory. (This description is attributed to Jim Morrison.)
Figure 613. USING Table with two entries, one for a dummy section

References to the symbols defined in the DSECT can be resolved only with base register GR7, because the RA of the implied addresses in Figure 612 must match the RA of a base address in the USING Table. The generated instructions are shown in Figure 614:

<table>
<thead>
<tr>
<th>Loc</th>
<th>Object Code</th>
<th>Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>....</td>
<td>5830 7000</td>
<td>L 3,A</td>
</tr>
<tr>
<td>....</td>
<td>4A30 7004</td>
<td>AH 3,B</td>
</tr>
<tr>
<td>....</td>
<td>D518 7006 C000</td>
<td>CLC C,0(12)</td>
</tr>
<tr>
<td>....</td>
<td>A784 ....</td>
<td>JE ElseWhere</td>
</tr>
<tr>
<td>....</td>
<td>9801 7020</td>
<td>LM 0,1,D</td>
</tr>
</tbody>
</table>

Figure 614. Object code from references to a dummy control section

The symbol C is at location X'0000006' in the DSECT; the second USING statement tells the Assembler that the base address is location X'0000000', so the addressing halfword is X'7006'.

Now, suppose we refer to a different work area, so that the address in GR7 is different:

```
LA 7,WorkA+43
Using DummyS,7 Provide symbolic mapping of WorkA
L 3,A Load a fullword from WorkA
AH 3,B Add a halfword from WorkA
CLC C,0(12) Compare 25 bytes of WorkA
JE ElseWhere Do something about the comparison
LM 0,1,D Load two words from doubleword
```

```
WorkA DS XL84 Work area
```

Figure 615. Example using a dummy control section

The generated object code is identical to that in Figure 614, because exactly the same base expression and register are declared in the USING statement. In resolving the implied addresses, the Assembler doesn't know that the address in GR7 may not be aligned on proper boundaries; it only knows about alignments within the DSECT.

The examples in Figures 612 and 615 show how the DSECT template can be “overlaid” on any area of storage to provide symbolic references (the symbols A, B, C, and D to fields in the storage area.

Because a DSECT generates no machine language object code, we could have defined the DSECT in Figure 611 with DC (rather than DS) statements, with exactly the same results:

```
DummyS DSect,
 Declare dummy control section DummyS
A DC F'0' Fullword named A
B DC H'-45' Halfword named B
C DC CL25'String' 25-byte character string named C
D DC D'-1.732' Doubleword named D
```

The Length Attribute of a symbol naming a DSECT is 1, and not the total length of the DSECT itself.
Exercises

39.1.1.(1) In this DSECT, show the values of each symbol.

D39_1_1 DSect ,
A DS CL9
B DS F
C DS X
D DS H
E DS D
F Equ *-D39_1_1

39.1.2.(1) Figure 57 on page 163 shows statements describing a typical Assembler Language statement. Create a DSECT named ALStmt with those statements.

39.1.3.(2) In the DSECT you wrote in Exercise 39.1.2, what are the values and length attributes of all symbols?

39.2. Multiple Data Structures

You will often find that your program must work with more than one copy of an identical data structure. For example, suppose your program must read a data record from an old master file and update it in two ways:

- Copy the Old record to a New copy.
- Put the current processing date in the Old record and write it to an “archive” file for backup (and auditing) purposes.
- Make updates to the New record and write it to a master file.

In outline form, the main steps of your program might look like this:

BAS 14,Read_Old_Master Read a record for processing
BAS 14,Copy_Record Copy the old record to new area
BAS 14,Do_Old_Date Put date stamp in old record
BAS 14,Write_Archive_Record Write old record to archive
BAS 14,Update_New_Record Make updates to new record
BAS 14,Write_New_Master Write new record to master file

When you work with more than one copy of a data structure, your programs are simpler when the structures are described by a DSECT. Thus, each subroutine needs to know the structure and length of the record. Suppose the two record descriptions had been written as two separate groups of statements:

<table>
<thead>
<tr>
<th>New Record Description</th>
<th>Old Record Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NewRec DS 0D</td>
<td>OldRec DS 0D</td>
</tr>
<tr>
<td>NewType DS CL10 Record type</td>
<td>OldType DS CL10</td>
</tr>
<tr>
<td>NewID DS CL4 Record ID</td>
<td>OldID DS CL4</td>
</tr>
<tr>
<td>NewName DS CL40 Name</td>
<td>OldName DS CL40</td>
</tr>
<tr>
<td>NewAddr DS CL66 Address</td>
<td>OldAddr DS CL66</td>
</tr>
<tr>
<td>NewPhone DS CL12 Phone number</td>
<td>NewPhone DS CL12</td>
</tr>
<tr>
<td></td>
<td>etc.</td>
</tr>
<tr>
<td>NewYear DS F Processing year</td>
<td>OldYear DS F</td>
</tr>
<tr>
<td>NewDay DS F Day of year</td>
<td>OldDay DS F</td>
</tr>
<tr>
<td></td>
<td>etc.</td>
</tr>
</tbody>
</table>

Figure 616. A poor method for describing two instances of a record
and so forth for many fields. Any error in keeping the New and Old descriptions exactly the same could lead to serious errors if fields appeared at different offsets.

It is *much* better to describe the record with a DSECT:

```plaintext
Record DSect , Record description
RecType DS CL10 Record type
RecID DS CL4 Record ID
RecName DS CL40 Name
RecAddr DS CL66 Address
RecPhone DS CL12 Phone number
- - - etc.
- - - etc.
RecYear DS F Processing year
RecDay DS F Processing day of year
- - - etc.
RecLen Equ *-Record Record length
```

Figure 617. A better record description with a DSECT

and then use the DSECT in each subroutine to process the data. (Section 39.4 describes Labeled USINGs, which make it even easier to handle multiple instances of a data structure.)

**Advice**

If your program references more than a single copy of a record or structure, or if a record or structure is shared by more than one program, all references should (must!) use the same DSect mapping. It’s best to write only a *single* description of any data structure.

Your program can contain a mixture of both “regular” control sections and dummy control sections. Standard programming practice usually groups all DSECT definitions either at the very start or the very end of your program.

**Exercises**

39.2.1.(2)+ Suppose you want to refer to the Record structure in Figure 617 as a string of RecLen bytes. Define a symbol RecBase at offset zero in the DSECT having Length Attribute RecLen.

39.2.2.(1)+ Define a storage area named NewRec described by the Record DSECT in Figure 617 to start on a doubleword boundary, and have the correct length.

### 39.3. Shortcomings of Ordinary USING Statements

By “ordinary USING” we mean the USING statement we’ve seen many times previously, written as in Figure 618:

```
USING base_location,register(s) Ordinary USING statement
```

Figure 618. Ordinary USING statement syntax

The other three forms of USING statement we’ll discuss are variations on this basic syntax.

We will use the DSECT describing a typical data record shown in Figure 617 to illustrate several methods for copying the RecID field from the old record to the new. Each method has shortcomings; we’ll see in Section 39.4 that these are easily overcome with Labeled USING statements.
Suppose our program refers to the new and old and instances of the Record DSECT, and that we must move the RecID field from the Old instance of the record to the New instance, as sketched in Figure 619:

```
* New record * Old record
Record Dsect Record Dsect
RecType DS RecType DS
RecID DS CL4 RecID DS CL4
- - - etc. - - - - - - etc. - - -
```

Figure 619. Copying a field from Old record to New

First, we will see examples of five ways we might move the data, specifying only ordinary USING statements:

- Example 1: Incorrect addressing with ordinary USINGs.
- Example 2: Ordinary USINGs, with manually-specified displacements.
- Example 3: Unusual ordinary USINGs, with manually-specified displacements.
- Example 4: Ordinary USINGs and an intermediate temporary variable.
- Example 5: Duplicated (but differently-named) copies of the DSECT.

For each example, we will assume that

- GR5 and GR7 contain the addresses of the New and Old record instances respectively, and
- a single MVC instruction is the desired efficient solution.

#### 39.3.1. Ordinary USINGs

We will illustrate several approaches to managing the two copies of the Record DSECT with ordinary USING statements. Some of them are clearly incorrect; they are included to show how (apparently) obvious and simple solutions can lead to unexpected pitfalls.

**Example 1 — Obviously Incorrect Usage:** Suppose we wrote either of the two following sequences of statements:

```
Using Record,5
Using Record,7
or
Using Record,5
Using Record,7
MVC RecID,RecID
MVC RecID,RecID
```

We want the Assembler to generate the machine language instruction \( X'\text{D}203\ 500A\ 700A' \).

Both sequences fail because only GR7 will be used to address the fields of the Record DSECT. (If two registers are based on the same location, the assembler chooses the higher-numbered register for base-displacement resolutions.) Thus, the generated machine language instruction is \( X'\text{D}203\ 700A\ 700A' \), and the MVC instructions will move the RecID of the Old record onto itself, producing no result whatever!\(^{264}\)

The defects of this first technique are:

- incorrect code.

**Example 2 — Correct (But Poor) Usage with Manually-Specified Displacements and Registers:** Suppose now that we now rewrite these simple statements to avoid the previous problems, by specifying the displacement and base to be used:

```
Using Record,5
MVC RecID,RecID-Record(7)
```

Map New instance of Record
Move from Old to New

---

\(^{264}\) The Assembler can provide a diagnostic message warning about the fact that GR5 has been “nullified” as a base register to alert you to this situation.
This sequence has the disadvantage that the displacement and base register are assigned by the programmer, rather than by the assembler. If there is ever a need to reassign base registers (so that GR7 is given a different use), all references to GR7 must be located and inspected to see if they need changing.

In summary, the defects of this technique are

- more complex coding;
- more difficult maintenance.

Having seen that you can explicitly assign the base and displacement this way, you might be tempted to use the same technique for the first operand of the MVC instruction:

```
Using Record,7 Map Old instance of Record
MVC RecID-Record(5),RecID Move from Old to New
```

Figure 620. Incorrect addressing with ordinary USING

While this is syntactically correct it will undoubtedly be wrong. The syntax rules of the Assembler Language state that if the first operand of an SS-type instruction is written in the form expr1(expr2), then expr1 provides the implied address and expr2 provides the operand’s explicit Length Expression.

The more serious flaw is that because expr1 is absolute, the first operand will be resolved with base register zero, and therefore refer to the low-addressed end of storage, and may cause an interruption during program execution!265 (See Exercise 39.3.2.)

Consider how much more difficult this problem would have been to find if you had used a common register notation:

```
USING Record,R7 Map Old Record with GR7
MVC RecID-Record(R5),RecID Move Old to New (based on GR5)
```

The symbol R5 in the MVC statement could lead many readers to believe that it was a correct register reference, while in fact it is the Length Expression! It will be a rare coincidence if the implied length of the RecID field is the same as the value of the symbol R5, so this might be “correct” by chance (but almost always incorrect) despite the lack of any diagnostics.

The correct form requires a comma in the first operand to indicate that its implied length should be used:

```
USING Record,7 Map Old instance of Record
MVC RecID-Record(,5),RecID Move from Old to New
```

Figure 621. Correct but awkward addressing with ordinary USING

This requires remembering an obscure Assembler Language rule that may not be obvious to everyone. (See Exercise 39.3.3.)

Another potential trap in manually assigning registers is that USINGs may be in effect for both the Old and New register numbers, in such a way that a statement may assemble correctly but its operand(s) may be resolved with respect to the wrong register.

**Example 2a — A Digression about Devious Programming:** To avoid these syntactic difficulties, a clever programmer might observe that a manually-calculated displacement can be resolved without having to specify a base register explicitly by specifying a zero base address and the desired register:

```
USING Record,5 Map new instance of Record
USING 0,7 Map old instance of Record (??)
MVC RecID,RecID-Record Move from Old to New
```

---

265 The Assembler will try to diagnose such low-storage references if you specify the FLAG(PAGE0) option.
and the MVC instruction will now resolve correctly.\textsuperscript{266}

However, if you forget to DROP register 0, later statements that depend on absolute expressions resolving with register 0 may not give the correct object code:

\begin{verbatim}
- - - More statements (forgetting to drop R7)
LA 1,100 Resolved by GR7! (\textbf{X'41107}064')
\end{verbatim}

Clever programming has its limits.\textsuperscript{267}

\textbf{Example 3 — Problems with Manual Assignment:} Suppose the data structure mapped by the \texttt{Record} DSECT grows to be larger than 4096 bytes. You would establish two base registers to map each of the two instances:

\begin{verbatim}
LAY 6,4096(0,5) Increment GR5 by 4096 into GR6 ...
USING Record,5,6 Map New instance of Record
LAY 8,4096(0,7) Increment GR7 by 4096 into GR8 ...
* USING Record,7,8 Implicit map of Old instance of A
\end{verbatim}

Then, if you write

```
MVC RecID,RecID-Record(7) Is (RecID-Record) > 4095?
```

The correctness of the second operand depends on whether the manually-assigned displacement \(\text{RecID} - \text{Record}\) is less than 4095. If not, the displacement will be too large, and the manually-assigned register (7) will be incorrect. Thus, you might have to write something like this:

```
MVC RecID,RecID-Record-4096(8) If (RecID-Record) > 4095
```

Figure 622. Manual coding of base and displacement for a large DSECT

This is obviously error-prone, since it depends on the current size of the \texttt{Record} DSECT and the known offset of the \texttt{RecID} field; both could change as the program evolves.

In summary, the defects of the techniques in Examples 2 and 3 are

- greater likelihood of undetected error;
- deeper understanding required of language details;
- more complex coding;
- more difficult maintenance.

\textbf{Example 4 — Correct (But Still Poor) Usage with an Intermediate Temporary:} Correct references to the specific instances of the \texttt{Record} DSECT can be obtained (apparently) by using an intermediate temporary storage area:

```
USING Record,7 Map Old instance of Record
MVC Temp(L'Recid),RecId Move from Old to Temp
USING Record,5 Map New instance of Record
MVC RecId,Temp Move from Temp to New
```

Unfortunately, this version fails because if two registers are based at the same location, the higher-numbered register will be used for calculating displacements. Thus, the second MVC instruction will move the data from \texttt{Temp} back to where it started in the \texttt{Old} record!

\textsuperscript{266} The Assembler will tell you that your USING with absolute base address zero overlaps with its implicit USING 0,0.

\textsuperscript{267} To avoid the danger of improper resolutions using base register zero, a very clever programmer observed that setting a large absolute offset in the USING statement and in the manually calculated displacement avoids contaminating later resolutions intended for GR0:

```
USING Record,5 Map New instance of Record
USING 0+X'F999.7 Map Old instance of A (differently)
MVC RecId,RecId-Record=X'F999 Move from Old to New
```

The code is correct, but at the cost of complexity and obscure coding unlikely to be understood by later maintainers.
The solution for ordinary USINGs is to insert a DROP statement for GR7:

```
USING Record,7
MVC Temp(L'RecID),RecId
Drop 7
USING Record,5
MVC RecId,Temp
```

In summary, the defects of these two techniques are

- greater likelihood of undetected error;
- deeper understanding required of language details;
- more complex coding;
- less efficient instruction sequences;
- more difficult maintenance.

**Example 5 — Correct (But Not Recommended) Usage with Duplicated DSECTs:** A programmer observing the defects of the above methods of managing two instances of the `Record` DSECT might decide that the best solution is to make a second copy with a different name, to avoid having to write confusing USING and DROP statements. Thus, he might define an exact copy of `Record` now named `Record2`:

```
Record2 DSect , Record description
RecType2 DS CL10 Record type
RecID2 DS CL4 Record ID
RecName2 DS CL40 Name
RecAddr2 DS CL66 Address
- - - etc.
RecLen2 Equ *-Record2 Record length
```

Then, the desired instruction sequence is much cleaner and simpler:

```
USING Record2,7
USING Record,5
MVC RecId,RecId2
```

While it gives the desired sequence, this technique can lead to difficulties in maintenance if the maintainer doesn’t appreciate that `Record2` must be an exact duplicate of `Record`. If changes are made to the `Record` DSECT, the differences in DSECT and symbol naming make it easy to overlook the need to make equivalent and identical changes to `Record2`.

It is also less obvious that the symbols in this code fragment actually refer to the same objects.

In summary, the defects of this technique are

- greater likelihood of maintenance problems;
- greater difficulty in understanding the code.

**Example 5a — Another (But Still Not Recommended) Way with Macro-Duplicated DSECTs:** Occasionally, this “duplicate definition” technique is encapsulated in a macro definition. If someone writes a macro named DDSECT to define copies of the `Record` DSECT, the macro can generate as many copies of the DSECT as needed, adding a specified prefix to each of the generated symbols, as illustrated in the following (where the + sign is the Assembler’s indication that the statement was generated by a macro-instruction):
This technique (the most satisfactory of the approaches discussed so far) ensures that only a single source file containing the DSECT’s definition is maintained (inside the macro). The defects of this approach are:

- it introduces new symbols and DSECTs into the program, many of which are alternate names for what is really one object;
- it requires that an additional and complex piece of code (the macro definition) be defined and maintained;
- all references to the fields in the DSECT must use prefixed names, even when only a single instance of the object is active (unless a third set of names is generated, with no (or a default) prefix!).

These examples illustrate one of several problems with Ordinary USING statements:

1. You cannot make “simultaneous” symbolic references to a symbol belonging to multiple instances of a given control section (usually, a DSECT).

2. Ordinary USING statements offer only meager solutions to basic problems of symbolic reference to symbols in multiple instances of a data structure.

We will see other shortcomings that are removed by enhanced USING statements.

**Exercises**

39.3.1.(1)+ In Figure 622, explain the presence of -4096 and GR8 in the second operand of the MVC instruction.

39.3.2.(2)+ In Figure 620, these statements are said to be a poor programming practice:

```
Using Record,7 Map Old instance of Record
MVC RecID-Record(5),RecID Move from Old to New
```

Assuming that RecID-Record=X’00A’, what object code is generated by the MVC instruction? Why is it wrong?

39.3.3.(2)+ In Figure 621, the final instruction in Example 2 was written

```
USING Record,7 Map Old instance of Record
MVC RecID-Record(,5),RecID Move from Old to New
```

Again assuming that RecID-Record=X’00A’, what object code is generated by the MVC instruction? Why is it correct?

39.3.4. In Example 2a on page 863 (and in the footnote at the end of the example), what would happen if the LA 1,100 instruction had been written instead as

```
LAY 1,100000
```
39.4. Labeled USING Statements and Qualified Symbols

We want to use fully symbolic references to the fields of the records in Figure 617 on page 860, and not have to use explicit addressing for one of the operands. This capability is provided by Labeled USING statements, which let you symbolically reference more than one instance of a given DSECT at the same time.

Unlike ordinary USING statements, Labeled USING statements have a name field entry. The name field entry of a Labeled USING is called a qualifier, as illustrated in Figure 623.

```
qualifier USING base_location,register(s) Labeled USING statement
USING base_location,register(s) Ordinary USING statement
```

Figure 623. Labeled USING statement syntax

A key concept in using Labeled USING statements is the qualifier or qualifying label. A qualifier follows the rules for proper forms of ordinary symbols. A symbol is defined to be a qualifier only by its appearance in the name field of a USING statement, and it may not be used as an ordinary symbol. The presence of this name field symbol distinguishes Labeled USINGS from other USING statements.

39.4.1. Qualified Symbols

A qualified symbol is a pair of symbols separated by a period: the first symbol is the qualifier and the second is the ordinary symbol. The syntax for qualified symbols is shown in Figure 624.

```
qualified_symbol = qualifier.ordinary_symbol
```

Figure 624. Qualified symbol syntax

Some examples of qualified symbols are:

```
A.B
Left.Data
Record.Field4
```

In these examples, the qualifiers are A, Left, and Record; the ordinary symbols are B, Data, and Field4.

Only symbols may be qualified. Other terms may not be qualified.

We can write USING statements defining these qualifiers as in Figure 625:

```
A Using Z,5 Qualifier “A”
Left Using Block,9 Qualifier “Left”
Record Using Mapping,3 Qualifier “Record1”
```

Figure 625. Examples of qualifier definitions

If a qualifying symbol is not present, the USING statement is interpreted by the Assembler as an ordinary USING. Because qualifiers are kept in the same symbol table as ordinary symbols, they must be distinct from other symbols. Thus, a qualified symbol like X.X is invalid.

The resolution rule for Labeled USINGS and qualified symbols is simple: if a symbol is qualified, it may be resolved only with respect to the base register(s) specified in the Labeled USING statement with the qualifier label.

Symbol qualification is no guarantee of addressability! Address resolution still requires that displacements not exceed 4095 (for unsigned 12-bit displacements) or ±500K (for signed 20-bit displacements), and that the relocation attributes of the addressing expression and the base location in the USING statement must match.
Base-displacement resolution of qualified symbol operands is restricted to symbolic operands whose qualifier matches the qualifier defined on a valid Labeled USING statement.

Labeled USINGs provide a clean and simple solution to our problem of copying the RecID field from the Old record to the New. Suppose the Record DSECT has been defined as in Figure 617 on page 860. By specifying two Labeled USING statements and by writing qualified symbols, the resulting code is much simpler and easier to understand. Again supposing that GR7 and GR5 contain respectively the addresses of the old and new instances of the record, we can write:

```plaintext
Old /SF590000 1 /SF580000 USING Record,7 Map old instance of Record
New /SF590000 2 /SF580000 USING Record,5 Map new instance of Record
MVC New.RecID,Old.RecID Move field from Old to New
```

Figure 626. Copying a field with Labeled USINGs

The Labeled USING with qualifier Old (at 1) qualifies the second occurrence of the symbol RecID (at 3). Similarly, the Labeled USING with qualifier New (at 2) qualifies the first occurrence of the symbol RecID (at 4). Because both occurrences of RecID are qualified, they can be resolved into base-displacement form only with respect to the register with the corresponding qualifier, thus generating the desired X’D203 500A 700A’.

Appropriate choices of qualifier names also make the code easier to read and understand!

This example illustrates several advantages of Labeled USINGs:

1. Data objects need be defined only once, no matter how many times they may be referenced concurrently.
2. All references are fully symbolic, and neither explicit base registers nor manually-calculated displacements need to be assigned.
3. The desired, efficient solution is simple, direct, and readable.
4. You need not understand the details of instruction syntax or the address resolution rules for ordinary USING statements.

### 39.4.2. Dropping a Labeled USING Statement

You can DROP a Labeled USING statement with the DROP statement, but with a qualifier name in place of the register number:

```plaintext
DROP qualifier
```

Figure 627. DROP statement for Labeled USING

Thus, to DROP the Labeled USINGs in Figure 626, we would write

```plaintext
Drop Old,New Drop two Labeled USINGs
```

### 39.4.3. Labeled USING Statement Summary

Labeled USING statements have interesting properties:

- Though it is written like an ordinary symbol, a qualifier cannot be used both as a qualifier and as an ordinary symbol.
- No symbol without a qualifier matching the qualifying label can be resolved with that USING.
- Because symbol resolution for unqualified symbols and qualified symbols relies on different USING information, you could have more than one USING statement active for a particular base register at the same time. For example:
Using A,9  Ordinary USING
QQ Using A,9  Labeled USING, qualifier QQ

- - -
LA  0,A+40  Resolved only with Ordinary USING
LA  1,QQ.A+40  Resolved only with Labeled USING
Drop  9  Drop ordinary USING; Labeled still active
LA  2,QQ.A+40  Resolved only with Labeled USING

Figure 628. Concurrently active Ordinary and Labeled USINGs

Implied addresses containing symbols without qualifiers will be resolved with the ordinary USING, and qualified symbols will be resolved only with the matching Labeled USING. As Figure 628 shows, the DROP statement deletes the Using Table entry for the ordinary USING, but the Labeled USING remains in effect.

This style of programming should be avoided because it could cause resolution errors as well as making the code more confusing and difficult to understand. Don’t use more than a single USING based on a given register.

- DROP statements for Labeled USINGs must be specified by the qualifier, not by the register.
- Normal base-displacement address resolution rules are still in effect:
  - The relocation attribute of the qualified symbol’s implied address must match one of the entries in the USING Table before a displacement can be calculated.
  - Valid displacements still cannot exceed 4095 (for 12-bit displacements) or ± 500K (for 20-bit displacements).

**Warning**
An ordinary and a Labeled USING based on the same register should be avoided because it is potentially very confusing and error-prone.

**Exercises**

39.4.1.(2)+ Suppose you write instructions like these:
```
Using *,12
LA 1,ABC
Qual Using *,9
LA 2,Qual.ABC
* - - -
ABC DS F
```

What object code will be generated for the two LA instructions?

39.4.2.(2)+ Suppose you write instructions like these:
```
Qual Using *,9
Using *,6
LA 1,ABC
LA 2,Qual.ABC
* - - -
ABC DS F
```

What object code will be generated for the two LA instructions? How are the Addressing Halfwords resolved, and why?

39.4.3.(2)+ Suppose you used the statements in Figure 628 in a program like this:
Using A,9 Ordinary USING
QQ Using A,9 Labeled USING, qualifier QQ
*
LA 0,A+40 Resolved only with Ordinary USING
LA 1,QQ.A+40 Resolved only with Labeled USING
Drop 9 Drop ordinary USING; Labeled still active
LA 2,QQ.A+40 Resolved only with Labeled USING
*
A DS XL80

What addressing halfword will be generated for each of the three LA instructions?

39.4.4.(2) Suppose you wrote

A Equ 1024
Qual Using 512,7
LA 3,Q.A

What do you expect the generated object code to be for the LA instruction?

39.5. Dependent USING Statements

Complex data structures often have sub-structures that are described by their own DSECTs. For example, in Figure 617 on page 860, the RecAddr field of the Record DSECT describes an address. Because an address is itself a complex data structure, it should be defined by its own DSECT, as in Figure 629:

Addr DSect , Address-field dummy section
AddrNum DS CL8 Street number
AddrStrt DS CL22 Street name
AddrApt DS CL4 Apartment number
AddrCity DS CL20 City name
AddrStat DS CL2 State abbreviation
AddrPost DS CL8 Postal code
PostCtry DS CL2 Country code
AddrLen Equ *-Addr Length of address field

Figure 629. Dummy control section for record address

We should immediately rewrite the Record DSECT to utilize the length information in the Addr DSECT, as shown in Figure 630:

Record DSect , Record description
RecType DS CL10 Record type
RecID DS CL4 Record ID
RecName DS CL40 Name
RecAddr DS CL(AddrLen) Address (length from Addr DSect)
RecPhone DS CL12 Phone number
- - - etc.
RecYear DS F Processing year
RecDay DS F Processing day of year
- - - etc.
RecLen Equ *-Record Record length

Figure 630. Improved definition of a record description

The only change from Figure 617 is that the length of the RecAddr field is now defined by the length of the Addr DSECT, rather than by a hand-counted length. This technique should be used whenever possible.
Now, suppose GR7 contains the address of a record in memory, and we must update the postal code field \texttt{AddrPost} from the new value stored at \texttt{NewPost}. With ordinary USING instructions, we could map the address structure with the \texttt{Addr} DSECT, as in Figure 631:

```
Using Record,7 GR7 maps the entire record structure
LA 9,RecAddr Put address of RecAddr field in GR9
Using Addr,9 Map the address substructure
MVC AddrPost,NewPost Update the postal code
Drop 9 No further updates to Addr fields
```

Figure 631. Mapping a substructure with a second DSECT

But because we have addressability to the entire \texttt{Record} structure (provided by GR7), we know the \texttt{RecAddr} field is already addressable. The displacement of the LA instruction with operand \texttt{RecAddr} will be \((\text{RecAddr} - \text{Record})\).\footnote{We have assumed that the \texttt{Record} DSECT is less than 4096 bytes long. Even if the \texttt{Record} DSECT is much larger, we can either assign more than one base register to provide addressability to all its fields, or use instructions with signed 20-bit displacements.} Unfortunately, we have used a second \textit{and unneeded} base register to map the \texttt{Addr} DSECT in the proper position. Assigning an extra register can be quite inconvenient if many of the general registers are already needed for arithmetic or other addresses.

Thus, we want a way to tell the Assembler that it can use a \textit{single} base register (GR7 in Figure 631) to address both the \texttt{Record} and \texttt{Addr} structures, while letting us make fully symbolic references to fields in the “inner” \texttt{Addr} DSECT. Dependent USINGs let us do this.

### 39.5.1. Definition of Dependent USING Statements

Dependent USING statements look like ordinary USING statements:

```
USING base_location,operand2 Ordinary USING (usually!)
```

but with an important difference!

If the second operand of the USING statement (\texttt{operand2}) is absolute, then it must have a value between zero and fifteen to designate the base register of an ordinary USING statement. However, if the second operand is \textit{relocatable}, it is used as the “base location” at which the first operand is to be “based” or “anchored”. The USING statement is then a Dependent USING statement.

This base or anchor location must itself be within the range of, or \textit{depend on} an existing ordinary USING statement: implied operand addresses must still be addressable so they can be resolved into base-displacement form with respect to a declared base register and base location.

The syntax of a Dependent USING statement is therefore:

```
USING base_location,addressable_location Dependent USING statement
```

Figure 632. Dependent USING statement syntax

\textit{Dependent} USINGs let you address multiple DSECTs with a single base register.

### 39.5.2. Examples of Dependent USING Statements

Dependent USING statements allow any object — normally, a DSECT — to be “anchored” or “based” at any location already addressable by an existing USING statement.

We can now revise the instructions in Figure 631 to use a Dependent USING instruction and a single base register, where the two now-unnecessary statements have been “commented out” with the *** asterisks:
Using Record, 7

GR7 maps the entire record structure

*** LA 9, RecAddr

Put address of RecAddr field in GR9

Using Addr, RecAddr

Map the address substructure

MVC AddrPost, NewPost

Update the postal code

*** Drop 9

No further updates to Addr fields

Figure 633. Anchoring an internal DSECT with a Dependent USING

One fewer instruction and one fewer base register are needed now.

The Assembler requires the second operand of a Dependent USING to be addressable at the time the Dependent USING is encountered. This addressability may actually support more than one Dependent USING. For example, suppose we want to describe two subordinate DSECTs B and C within an outer DSECT A, as sketched in Figure 634:

Offset

$X'000'$

$X'020'$

$X'030'$

$X'100'$

DSECT A

DSECT B

DSECT C

DSECT C

Figure 634. Outer DSECT with two nested DSECTs

The Assembler listing extract in Figure 635 shows how addresses of various fields are resolved:

- The ordinary USING at statement 9 maps the location of the outer DSECT A, to provide addressability for all three DSECTs.

- The Dependent USING at statement 10 anchors DSECT B at offset $X'20'$ from the start of DSECT A.

- DSECT C is anchored by the Dependent USING at statement 14 at offset $X'10'$ from the start of DSECT B.
In statement 10, the Assembler indicates (at 1) that the anchoring base location of the first Dependent USING is at offset X′20′ from the location specified for base register X′F′. Statement 14 shows (at 2) that the anchoring base location of the second Dependent USING is at offset X′10′. Even though three distinct DSECTs are referenced, only one base register (GR15) is needed for the two LA instructions.

If the three DSECTs in Figure 634 are mutually independent, they need not be “nested” and can still be defined to use only a single base register, as sketched in Figure 636:

![Figure 636. Three independent data structures with one base register](image)

We can define the three independent data structures mapped by DSECTs A, B, and C with these statements:

---

269 Unfortunately, two of the USING statements in Figure 635 use absolute offsets. See Exercise 39.5.4 for a better approach.
B DSect
B1 DS D
B2 DS D
DS OD Round up length to a doubleword
BLen Equ *-B
C DSect
C1 DS CL80
C2 DS XL8
C3 DS H
DS OD Round up length to a doubleword
CLen Equ *-C
A DSect
DS XL256
DS OD Round up length to a doubleword
ALen Equ *-A

Figure 637. Defining DSECTs for three independent data structures

Unlike the DSECT definitions in Figure 635, each DSECT defines a symbol for its length after rounding to a doubleword boundary. This is a good practice in case you need to allocate storage for multiple structures to be based on a single base register, because you should ensure proper alignment of each structure. Suppose we allocate enough storage for all three structures:

TotalLen Equ ALen+BLen+CLen Total amount of storage needed

Now, suppose GR7 contains the address of TotalLen allocated bytes aligned on a doubleword boundary. We can use one ordinary and two Dependent USINGs to map all three structures:

* 'TotalLen' bytes addressed by GR7
  
  Using A,7 Map DSECT A first
  Using B,A+ALen Map DSECT B following A
  Using C,B+BLen Map DSECT C following B

Figure 638. Defining a mapping of three independent but contiguous data structures

Instructions referencing any of the fields within the three structures will be resolved with base register 7, assuming that TotalLen is small enough that a single base register can address all the fields.

39.5.3. Mapping a CSECT as a DSECT

Dependent USINGs let you do very interesting things. For example, suppose you need to construct a message into which several insertions will be made in known positions. First, construct the message skeletons in a separate CSECT in the same assembly as the Program CSECT:

MsgSkels Csect , Message skeletons
Msg1 DC C 'This message for' Message 1
Msg1To DC C 'tototo' Modified field: 'To' name
DC C 'is from' Additional message characters
Msg1From DC C 'fromfrom' Modified field: 'From' name
Msg1L Equ *-Msg1 Length of message 1
  
  Other messages follow

Figure 639. Example of a message-skeleton CSECT

We complete the message in the Program CSECT by first moving the message skeleton from the MsgSkels CSECT to an output area named OutMsg. Then, the Dependent USING maps the structure of the skeleton on the OutMsg where the completed message is constructed:
Program Csect,
  BASR 12,0       Set base register
  Using *,12      Provide local addressability
  L   10,AddrMsgs Point to messages
  L   11,AOutMsg  Point to buffer area
  Using MsgSkels,10 Addressability for Messages CSECT
  Using OutMsg,11 Addressability for OutMsg area
  MVC OutMsg(Msg1L),Msg1 Move skeleton to buffer
  Drop 10         Don’t reference original skeleton
  Using Msg1,OutMsg Map original skeleton onto buffer
  MVC Msg1To,ToName Move “To” name
  MVC Msg1From,FromName Move “From” name
  Drop 11         Done with buffer addressing

ToName DC CL(L’Msg1To’)’You’ Addresssee name
FromName DC CL(L’Msg1From’)’Me’ Sender name
AddrMsgs DC A(MsgSkels) Address of Messages CSECT
AOutMsg DC A(OutMsg) Address of OutMsg area

OutMsg DS CL121 Area for constructing messages

Figure 640. Example of mapping a CSECT as though it is a DSECT

The key statement is the Dependent USING statement:

Using Msg1,OutMsg Map original skeleton onto buffer

directs the Assembler to resolve the first-operand addresses in the two following MVC
instructions with offsets defined in the MsgSkels CSECT, but mapped on the OutMsg area. Note
that when those two MVCs are executed, the MsgSkels CSECT is no longer addressable! The
Dependent USING statement mapping the skeleton constant onto the OutMsg buffer avoids the
need to define a DSECT for each message, and also avoids manually calculating displacements
and assigning base registers.

39.5.4. Dropping Dependent USINGs

Unlike ordinary and Labeled USING statements, you must DROP a Dependent USING by
dropping the ordinary USING on which it depends. For example, in Figure 634 on page 871, we
can’t remove addressability to DSECT C separately; we must DROP the USING statement that
provides addressability for all three DSECTs. In Figure 640, to drop the USING in the statement

Using Msg1,OutMsg Map original skeleton onto buffer

we must drop the USING on which it depends:

Drop 11 Drop GR11

because the mapping of Msg1 is anchored at OutMsg which in turn is based on GR11.

We’ll see in Section 39.6 how Labeled Dependent USING statements can help.

39.5.5. Dependent USING Statement Summary

Dependent USINGs can provide elegant solutions to problems involving the management of data
structures that are adjacent, nested, or overlapping in storage.

- They provide addressability with a minimum number of registers.
- They allow fully symbolic structure and substructure mappings with independent DSECTs.
- They encourage simple mappings of complex data structures.
- They let you map “variant” records in which the structure of parts of the record depend on
  preceding data values, with different mappings along different code paths.

One way to view the difference between ordinary Dependent USINGs is by the way the first-
operand location is “based” or “anchored”.

• For ordinary USINGs, the first operand is “based” on the base register specified by the second operand. Instructions set the register contents at execution time.

• For dependent USINGs, the first operand is “based” or “anchored” on the location specified by the second operand; this location must already be addressable. The relative position of the first operand is set at assembly time by the Assembler.

Exercises

39.5.1.(2)+ Using the instructions sketched in Figures 639 and 640, create a program that can be correctly assembled. Study the displacements in the MVC instructions to verify that the intended data is moved to the correct fields.

39.5.2.(2) In Figure 636, will it make any difference if the three DSECTs are arranged in a different order?

39.5.3.(2)+ The first paragraph in Section 39.5.3 says that the MsgSkel CSECT containing the message skeletons is in the same assembly as the Program CSECT. What will happen if it is in a separate assembly?

39.5.4.(2)+ Revise the DSECT statements in Figure 635 on page 872 to make all references fully symbolic, without offsets like A+32 and B+16.

39.6. Labeled Dependent USING Statements

Labeled Dependent USINGs combine the benefits of Labeled USINGs and Dependent USINGs:

• multiple copies of an object may be active simultaneously (Labeled)
• many objects may be addressed with a single base register (Dependent).

We start with several examples that illustrate typical problems when we use ordinary USINGs, and how easily we can solve them with Labeled Dependent USINGs.

The syntax of a Labeled Dependent USING requires a qualifying label in the name field of the USING statement, and a relocatable second operand indicates where the first operand is to be “anchored” or “based”.

```
qualifier USING base_location,addressable_location Labeled Dependent USING
```

Figure 641. Labeled Dependent USING statement syntax

As with unlabeled Dependent USINGs, the second operand must be addressable with reference to an ordinary USING statement somewhere earlier in the program.

Suppose we have a data structure containing several data items, including two identical substructures described by a single DSECT. The substructure is defined by a DSECT named Inner:

```
Inner DSect ,
IVarJ DS XL5
IVarK DS XL7
InnerLen Equ *-Inner Length of Inner structure
```

and the containing data structure is described by a DSECT named Outer:
Outer DSect,
OutVarA DS CL12
Out_Inr1 DS XL(InnerLen) First substructure
OutVarB DS CL33
Out_Inr2 DS XL(InnerLen) Second substructure
OutVarC DS XL3
OuterLen Equ *-Outer Length of Outer structure

Figure 642. Nesting two identical structures within a third

Out_Inr1 and Out_Inr2 are the positions within the Outer DSECT where the two sub-structures are mapped.

We will examine three approaches to managing the description and addressing of the data elements in these structures:

• first, we consider ordinary USINGs and the problems they present;
• second, we examine Labeled USINGs;
• third, we will see how Labeled Dependent USINGs provide a solution free of the defects of the two previous approaches.

39.6.1. Nesting Structures Addressed with Ordinary USINGs

To address the three structures with ordinary USINGs, we need to provide three base registers and three USING statements. As in Section 39.4, we want to manage two active instances of the Inner DSECT, but only one active instance is allowed with ordinary USINGs.

We could make a second copy of the Inner DSECT, and then address it and the “original” copy with separate USINGs.

Znner DSect,
ZVarJ DS XL5
ZVarK DS XL7
ZnnerLen Equ *-Znner Length of Znner structure

The three DSECTs can now be addressed with statements like the following:

Using Outer,10 GR10 points to the Outer DSECT
LA 11,Out_Inr1 GR11 points to 1st copy of Inner
Using Inner,11 USING for 1st copy of Inner
LA 12,Out_Inr2 GR12 points to 2nd copy of Inner
Using Znner,12 USING for 2nd copy (now named Znner)

We’ve already described the defects and difficulties with ordinary USINGs in this context: maintenance and readability problems are much greater when more than one name is used for the same thing.

39.6.2. Nesting Structures Addressed with Labeled USINGs

A somewhat better solution involves Labeled USINGs. They allow the two instances of the Inner DSECT to be addressed using a single definition of Inner, eliminating any need for a Znner DSECT:

Using Outer,10 GR10 points to Outer DSECT
LA 11,Out_Inr1 GR11 points to 1st copy of Inner
In1 Using Inner,11 Labeled USING for 1st copy of Inner
LA 12,Out_Inr2 GR12 points to 2nd copy of Inner
In2 Using Inner,12 Labeled USING for 2nd copy of Inner

The implied addresses in both LA instructions will be resolved with register 10 as the base register.
The remaining defect in this example is the need to use three addressing registers when only one is actually needed. Labeled Dependent USINGs provide the desired saving.

39.6.3. Nested Structures Addressed with Labeled Dependent USINGs

The best solution involves Labeled Dependent USINGs: they allow the entire structure and all its components to be addressed with the minimum number of registers, and with proper naming for all components.

Assume again that the address of the containing Outer structure is placed in GR10; then, we can write:

```
Using Outer,10 GR10 addresses Outer DSECT
In1 Using Inner,Out_Inr1 Labeled Dependent USING for 1st Inner
In2 Using Inner,Out_Inr2 Labeled Dependent USING for 2nd Inner
```

Figure 643. Addressing two nested DSECTs with Labeled Dependent USINGs

The first instance of Inner is “anchored” at Out_Inr1, and references to its components are made using qualifier In1. Similarly, the second instance of Inner is anchored at at Out_Inr2, and its components can be qualified with In2. References to the fields in the three structures can then be made freely, and only a single register is needed to address the entire structure. Figure 644 shows how references can be made to fields within the three DSECTs:

```
CLC In1.IVarK,In2.IVarK Compare the two IVarK fields
- - -
MVC OutVarC,In2.IVarK Copy 3 bytes of 2nd IVarK
- - -
PACK In1.IVarK,OutVarC Pack part of OutVarC to 1st IVarK
```

Figure 644. Data in nested DSECTs addressed with Labeled Dependent USINGs

39.6.4. Multiple Nesting of Identical Structures

As the number and nesting of data structures increases, addressing the components becomes more difficult. For example, suppose we wish to create a data structure in which an outermost structure described by the Top DSECT contains three copies of a structure described by the Mid DSECT, and each of those contains three copies of a structure described by the Bot DSECT. The complete structure might look somewhat like Figure 645, where the three Mid DSECTs are identified as M1, M2, and M3, and the Bot DSECTs are identified as B1, B2, and B3.

![Diagram of multiply-nested data structures](image-url)

Figure 645. Multiply-Nested Data Structures
If ordinary USINGs address all components of this set of structures, we will need *thirteen* base registers! This is beyond the capabilities of most programs, so that we would be forced to use “unnatural” solutions if we are restricted to ordinary USING statements. Dependent USINGs will help only a little, because of the high degree of repetition among the inner structures.  

Suppose the three DSECTs named **Top**, **Mid**, and **Bot** in Figure 645 are described by the DSECTs in Figure 635:

| DSECT  | Description             | Addressing this structure with ordinary USINGs is nearly impossible to do cleanly, and a solution with Labeled USINGs also requires *thirteen* registers to address the thirteen different active DSECTs.  
Labeled Dependent USINGs provide the only manageable solution. Though the example in Figure 647 looks somewhat complicated, it has a simple basic structure. |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Bot</strong> DSect</td>
<td>Third-level DSECT (bottom level)</td>
<td><strong>Top</strong> DSect</td>
</tr>
<tr>
<td>X1 DS XL5</td>
<td>First data element</td>
<td>M1 DS XL(L_Mid)</td>
</tr>
<tr>
<td>X2 DS XL5</td>
<td>Second data element</td>
<td>M2 DS XL(L_Mid)</td>
</tr>
<tr>
<td>DS 0D</td>
<td>Round length to a doubleword</td>
<td>M3 DS XL(L_Mid)</td>
</tr>
<tr>
<td>L_Bot Equ *-Bot</td>
<td>Length of Bot DSECT</td>
<td>DS 0D</td>
</tr>
<tr>
<td><strong>Mid</strong> DSect</td>
<td>Second-level DSECT (middle level)</td>
<td><strong>MidVar1</strong> DS CL40</td>
</tr>
<tr>
<td>B1 DS XL(L_Bot)</td>
<td>First third-level DSECT</td>
<td><strong>MidVar2</strong> DS CL60</td>
</tr>
<tr>
<td>B2 DS XL(L_Bot)</td>
<td>Second third-level DSECT</td>
<td><strong>MidVar3</strong> DS CL20</td>
</tr>
<tr>
<td>B3 DS XL(L_Bot)</td>
<td>Third third-level DSECT</td>
<td><strong>MidVar4</strong> DS CL30</td>
</tr>
<tr>
<td>DS 0D</td>
<td>Round length to a doubleword</td>
<td>L_Mid Equ *-Mid</td>
</tr>
</tbody>
</table>

---

270 This example is rather artificial, but helps show the power of Labeled Dependent USINGs. Two more-realistic examples are described in Sections 39.6.6 and 39.7.
The three Labeled Dependent USING statements in Figure 647 (tagged 1) map the middle-level DSECT Mid into the outermost DSECT Top. Because there will be three instances of Mid simultaneously active, the qualifiers Mid1, Mid2, and Mid3 distinguish the first, second, and third instances of Mid within Top. The three instances of Mid are anchored at the positions within Top defined by the fields named M1, M2, and M3 respectively.

The three innermost instances of the Bot DSECT are mapped into the three instances of Mid similarly. For example, the three Labeled Dependent USING statements for the first instance of Mid (tagged 2) anchor the three instances of Bot within Mid at the positions named B1, B2, and B3 respectively. (Referring to Figure 645 may help.)

Because there will be three different active instances of those labels, we use the qualifier Mid1 to qualify the references to B1, B2, and B3. Thus the second operand of each of the three Labeled Dependent USING statements tagged 2 is qualified with Mid1. The qualifiers on those three USINGs, M1B1, M1B2, and M1B3, are used to qualify references to the first three of the nine possible instances of the fields X1 and X2. The qualifier M1B3 means “first Mid and third Bot”. This shows how appropriately chosen qualifiers can help you to understand complex structures more easily.

The mappings of the second and third sets of instances of the Bot DSECT are defined similarly, in the sets of three Labeled Dependent USINGs tagged 3 and 4. The qualifiers M2B1 through M3B3 are then used to qualify references to the fields within the DSECT named Bot.

We can then write instructions to reference these fields, with appropriate qualifiers, as illustrated in Figure 648. All symbolic references will be resolved with the base register (or registers) specified in the USING statement for Top.
* Move fields ‘X1’ and ‘X2’ within ‘Bot’ DSECTs
  MVC M1B1.X1,M1B1.X2 Within bottom-level DSECT M1B1
  MVC M1B3.X2,M1B1.X1 Across bottom-level DSECTs in M1
  MVC M3B2.X2,M3B3.X2 Across bottom-level DSECTs in M3
  MVC M2B1.X1,M3B2.X2 Across bottom-level DSECTs in M2, M3

* Move complete ‘Bot’ DSECTs within ‘Mid’ DSECTs
  MVC Mid3.B1,Mid3.B3 Within mid-level DSECT Mid3
  MVC Mid1.B3,Mid2.B1 Across mid-level DSECTs Mid1, Mid2

* Copy fields across ‘Mid’ DSECTs
  MVC Mid2.MidVar3,Mid3.MidVar1 Across two middle DSECTs

* Move complete ‘Mid’ DSECTs within ‘Top’ DSECT
  MVC M1,M2 Across top-level DSECTs Top

Figure 648. Using the Labeled Dependent USINGs to move data

As you can appreciate, coding instructions like these with ordinary USING statements would be much more difficult to write and understand.

Remember!
Qualified symbols may be used to declare the “anchor” operand in a Labeled Dependent USING statement that itself defines another qualifier!

39.6.5. Mapping an Array of Identical Data Structures

Suppose you have a small array of identical data structures, and you want to refer to fields within different array elements. First, you could define a DSECT describing the data structure:

<table>
<thead>
<tr>
<th>Structure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Struc Dsect , Structure of an array element</td>
<td></td>
</tr>
<tr>
<td>StrF1 DS CL8 First field</td>
<td></td>
</tr>
<tr>
<td>StrF2 DS F Second field</td>
<td></td>
</tr>
<tr>
<td>StrF3 DS A Third field</td>
<td></td>
</tr>
<tr>
<td>LStruc Equ *-Struc Structure Length</td>
<td></td>
</tr>
</tbody>
</table>

Then, suppose GR9 contains the address of the first element of the array. You can then map the first few elements of the array with Labeled Dependent USINGs:

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL1 Using Struc,9 Map first element</td>
<td></td>
</tr>
<tr>
<td>EL2 Using Struc,EL1.Struc+1*LStruc Map second element</td>
<td></td>
</tr>
<tr>
<td>EL3 Using Struc,EL1.Struc+2*LStruc Map third element</td>
<td></td>
</tr>
<tr>
<td>EL4 Using Struc,EL1.Struc+3*LStruc Map fourth element</td>
<td></td>
</tr>
<tr>
<td>- - -</td>
<td>etc.</td>
</tr>
</tbody>
</table>

Then, you can refer to fields within each element of the array:

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L 1,EL3.StrF2 Get field 2 from element 3</td>
<td></td>
</tr>
<tr>
<td>A 1,EL5.StrF3 Add field 3 from element 5</td>
<td></td>
</tr>
<tr>
<td>MVC EL2.StrF1,EL4.StrF1 Move field 1 from element 4 to 2</td>
<td></td>
</tr>
</tbody>
</table>

This technique is limited to small arrays because the number of Labeled Dependent USING statements grows with the number of elements to be referenced. If you need to refer to fields in two widely separated elements, it may be easier to assign a base register to each and map the elements with Labeled USINGs instead.
39.6.6. Two MVS Data Control Blocks (DCBs) in a Program

This small example shows how you can benefit from Labeled Dependent USINGs in a program, where the program base register also addresses two embedded DSECT-mapped structures.

Many programs contain two or more Data Control Blocks (DCBs) for input and output data sets, and are often coded in the same program as the instructions that refer to them. If only ordinary USINGs are available, (at least) three registers must be used for addressability: one (or more) for the program itself, and one for each DCB. Furthermore, only one of the DCBs can be mapped with the IBM-provided IHADCB DSECT because both cannot be mapped simultaneously with distinct registers.

With ordinary USING statements, a typical instruction sequence to copy the two-byte logical record length (DCBLRECL) from the input DCB to the output DCB might look like this:

```
Using *,12 Program base register
 LA 3,OutDCB Point GR3 to Output DCB
 LA 2,InDCB Point GR2 to Input DCB
 Using IHADCB,2 Map Input DCB
 MVC DCBLRECL-IHADCB(,3),DCBLRECL Copy InDCB LRECL to OutDCB

InDCB DCB DDNAME=..., etc. Input DCB
OutDCB DCB DDNAME=..., etc. Output DCB
- - -
DCBD ...,etc. Generate IHADCB DSECT
```

![Figure 649. Addressing two DCBs with ordinary USINGs](image)

Three registers must be assigned, and one of the operands in the MVC instruction must be written with explicitly assigned base and displacement.

It’s better to make symbolic references to fields in both DCBs at the same time. In Figure 650, the two Labeled Dependent USINGs with qualifiers `In` and `Out` let you make fully symbolic references to both DCBs, and without needing additional base registers.

```
Using *,12 Program base register
 In 1 Using IHADCB,InDCB Labeled Dependent USING
 Out 2 Using IHADCB,OutDCB Labeled Dependent USING
 MVC Out.DCBLRECL,In.DCBLRECL Addresses resolved with GR12
 2 1

InDCB DCB DDNAME=..., etc. Input DCB
OutDCB DCB DDNAME=..., etc. Output DCB
- - -
DCBD ...,etc. Generate IHADCB DSECT
```

![Figure 650. Addressing instructions and DCBs with one register](image)

The base address in the first USING can be “anchored” at any addressable location that provides addressability to the two DCBs and the MVC instruction.

**Exercises**

39.6.1.(2) Referring to Figure 645, sketch the movement of data caused by the instructions in Figure 648.

---

271 Generated by the DCBD macro. (IHADCB is sometimes nicknamed “I Had A Control Block”.)
39.6.2.(1) In Figure 642, write ordinary USING statements to provide addressability to all three DSECTs.

39.6.3.(2) In Figures 646 and 647, what are the offsets from the origin of the Top DSECT of these qualified symbols?

- MIB1.X1
- Mid1.MidVar1
- M3B2.X2
- Mid3.MidVar4

39.6.4.(3) Create a complete program and assemble the statements in Figures 646, 647, and 648. Study the generated object code to verify that all addressing halfwords are generated correctly.

39.7. Example of a Large “Personnel-File” Record (*)

The power of Dependent and Labeled Dependent USINGs is most evident when you must handle complex data records, especially when the structure of fields in later parts of the record depends on data values in earlier fields, or where repeated identically-structured fields (mapped by the same DSECT) appear several times within the record’s structure.

Note: This example, while rather complex, shows how you can use the Assembler’s Dummy Control Sections and Labeled Dependent USINGs for tasks once thought to be manageable only by high-level language.

Suppose our program must refer to various fields in records maintained in a personnel file. Each record contains information about an employee, and fields within the record contain different kinds of information.

First, we define the layout of the employee record with an Employee DSECT. All symbols start with the letter E.

```
Employee DSect ,
EPerson DS CL(PersonL) Person field
EHire DS CL(DateL) Date of hire
EAddr DS CL(AddrL) Work (external) address
EPhoneW DS CL(PhoneL) Work telephone
EPhoneF DS CL(PhoneL) Work Fax telephone
EMarital DS X Marital Status
ESpouse DS CL(PersonL) Spouse field
EDeps DS PL2 Number of dependents
EDep1 DS CL(PersonL) Dependent 1
EDep2 DS CL(PersonL) Dependent 2
EDep3 DS CL(PersonL) Dependent 3
Employeel EQU *-Employee Length of Employee record
```

Figure 651. Define a personnel-file record

The record contains information about the employee: a description of the person, the employee’s spouse and first three dependents, work address, date of hire, work telephone, and so forth. Space is provided in the Employee DSECT for several other “nested” or “overlaid” DSECTs described below.

The description of each person (employee, spouse, dependents) is similarly defined by a Person DSECT shown in Figure 652:
Person Dsect, Define a “Person” field
PFName DS CL20 Last (Family) name
PName DS CL15 First (Given) name
PInits DS CL3 Initials
PDoB DS CL(DateL) Date of birth
PAddr DS CL(AddrL) Home address
PPhone DS CL(PhoneL) Home telephone number
PSSN DS CL9 Social Security Number
PSex DS CL1 Gender
PersonL EQU *-Person Length of Person field

Figure 652. Employee-record Person DSECT

The fields in the Person DSECT describe their name, date of birth, home address and telephone, and other items. Again, space has been reserved for three other “nested” DSECTs describing a date, an address, and a telephone number.

Three more DSECTs might be defined as follows. First, the Date DSECT:

Date Dsect, Define a calendar date field
Year DS CL4 YYYY
Month DS CL2 MM
Day DS CL2 DD
DateL EQU *-Date Length of Date field

DateF DS 0CL(DateL) Full YYYYMMDD date field

Figure 653. Employee-record Date DSECT

The last three statements are used to define the symbol DateF as a single field containing the entire contents of the three Date fields.

The Addr DSECT, describing a postal address, is defined in a similar way:

Addr Dsect, Define an address field
AStr# DS CL30 Street number
APOBApDp DS CL15 P.O.Box, Apartment, or Department
ACity DS CL24 City name
AState DS CL2 State abbreviation
AZip DS CL9 U.S. Post Office Zip Code
AddrL EQU *-Addr Length of Address field

AddrF DS 0CL(AddrL) Full address structure

Figure 654. Employee-record Address DSECT

Again, the last three statements are used to define the symbol AddrF as a single field containing the entire contents of all the Addr fields.

Finally, we define the Phone DSECT, describing a (U.S.) commercial telephone number:

Phone Dsect, Define a Telephone field
PhCtry DS CL2 Country code
PhArea DS CL3 Area Code
PhLocal DS CL7 Local number
PhExt DS CL4 Extension
PhoneL EQU *-Phone Length of Phone field

PhoneF DS 0CL(PhoneL) Full telephone number structure

Figure 655. Employee-record Phone DSECT
As before, the last three statements define the symbol PhoneF to name a single field containing the entire contents of all the Phone fields.

At this point, it’s worth sketching the nesting of these various DSECTs.

- The Date DSECT appears at two different levels of nesting: the Date-of-Hire field (EHire) in the Employee DSECT is nested two levels deep, and the Date-of-Birth fields (PDoB) in each Person DSECT are nested three levels deep (because the Person DSECT is nested two levels deep in the Employee DSECT).
- The Addr DSECT is nested two levels deep (as the employee’s work address), and three levels deep (as the home-address field (PAddr) within each Person DSECT).
- Finally, the Phone DSECT is also nested two levels deep (PPhone, for the employee’s home) and three levels deep (EPhoneW, the employee’s work number).

These nesting levels are shown in the upper right corners of the boxes in Figure 656.

While this example may seem a bit complex, we will use it again in discussing Labeled Dependent USINGs, where the full power of those statements can be shown.

Assume that the Employee, Person, Date, Addr, and Phone structures have been defined as illustrated in Figures 651 through 655.

First, we show how Dependent USINGs can help with mapping this structure. Suppose such an employee record has been placed in memory and its address is in GR10; we now wish to manipulate various fields within the record. The necessary DSECT addressing can be established as follows:

USING Employee,10 R10 points to Employee record
USING Person,EPerson Anchor Person DSECT at EPerson
USING Date,PDoB Anchor Date DSECT at PDoB field
USING Addr,PAddr Anchor Addr DSECT at PAddr field
USING Phone,PPhone Anchor Phone DSECT at PPhone field

Figure 657. Anchoring various DSECTs within Employee record

The five USING statements in Figure 657 provide addressability to five different DSECTs:

- The Employee DSECT is based on an ordinary USING statement with base register GR10. All other implied address resolutions within the Employee DSECT will be resolved using GR10 as the base register.
- The Person DSECT is anchored by the first Dependent USING at the Eperson field in the Employee DSECT.
- Within the Person DSECT, the Date DSECT is anchored by the second Dependent USING at the PDoB field in the Person DSECT.
- Within the Person DSECT, the Addr DSECT is anchored by the third Dependent USING at the PAddr field in the Person DSECT.
- Within the Person DSECT, the Phone DSECT is anchored by the fourth and last Dependent USING at the PPhone field in the Person DSECT.

All symbolic references to fields in any of the five DSECTs will be resolved with a single base register, so long as the size of the Employee record does not exceed 4096 bytes. If it does, the problem is easy to fix: simply add another base register to the ordinary USING statement in Figure 657, and another 4096 bytes will be addressable automatically.

We can now use these definitions to access and manipulate some fields described by those five DSECTs, as in Figure 658:
Figure 656. DSECT nesting in an employee record
The primary limitation of the Dependent USINGs shown in this example is that only a single instance of each DSECT is addressable at any one time. In many applications this may be adequate; if not, Labeled Dependent USINGs will help.

If ordinary USING statements had been required in Figure 657, the resulting burden on the general registers could have been severe. Statements such as these might have been required:

```
USING Employee,10 R10 points to Employee record
LA 9,Eperson Address of EPerson field
USING Person,9 Anchor Person DSECT at EPerson field
LA 8,PDoB Address of PDoB field
USING Date,8 Anchor Date DSECT at PDoB field
LA 7,PAddr Address of PAddr field
USING Addr,7 Anchor Addr DSECT at PAddr field
LA 6,PPhone Address of PPhone field
USING Phone,6 Anchor Phone DSECT at PPhone field
```

The coding is likely to be less efficient, and the number of opportunities for misunderstanding and error has also increased.

Now, we will consider addressing multiple active instances of the inner structures in this Employee record. We assume that the program has placed the Employee record into memory at an address referenced by GR10 again.

### 39.7.1. Personnel-File Record Example: Comparing Birth Dates

Suppose we must compare the birth dates of the employee and the employee’s spouse. Because the birth date is a component of the Person DSECT, we must establish mappings of the two instances of that DSECT. In Figure 660 this is done with two Labeled Dependent USING statements:

```
* Example 1: Compare Employee and Spouse Family Dates of Birth

USING Employee,10 Assume R10 points to the record
PE 1 USING Person,EPerson Overlay Person DSECT on Empl. field
PS 2 USING Person,ESpouse Overlay Person DSECT on Spouse field

CLC PE.PDoB,PS.PDoB Compare Employee/Spouse birth dates
```

The first Labeled Dependent USING statement (1) maps the Person structure onto the Employee record at the position defined by EPerson with qualifier PE; this describes information about the employee. The second Labeled Dependent USING statement (2) maps the Person structure onto the Employee record at the position defined by ESpouse with qualifier PS, describing information about the employee’s spouse.

The CLC instruction compares the dates. Both instances of the Person structure are nested at the same level within the Employee structure, so that similar styles of qualification are used for the two occurrences of the symbol PDoB.
39.7.2. Personnel-File Record Example: Comparing Different Dates

Suppose our second requirement is to check the employee record to see if the date of birth of the first dependent is later than the employee’s date of hire. In this case, we must deal with two different levels of nesting of the Date structure: one (the employee’s date of hire) is nested directly within the Employee DSECT at the position named EHire, while the birth date of the first dependent is nested in the Employee DSECT at position EDep1 within the first-dependent Person DSECT at position PDoB. Thus, we will need additional Labeled Dependent USINGs to properly establish addressability to the PDoB field.

* Example 2: Compare Date of Hire to Birth Date of Dependent 1

\[
\begin{align*}
\text{EHD} &: \text{USING Date,EHire} & \text{Overlay Date DSECT on Date of Hire} \\
\text{PD1} &: \text{USING Person,EDep1} & \text{Overlay Person DSECT on Dependent 1} \\
\text{DD1} &: \text{USING Date,PD1.PDoB} & \text{Overlay Date DSECT on Dependent 1} \\
\text{CLC} &: \text{EHD.DateF,DD1.DateF} & \text{Compare hire date to Dep 1 DoB} \\
\text{DROP} &: \text{EHD,DD1} & \text{Remove both date associations}
\end{align*}
\]

Figure 661. Comparing date fields in different parts of an Employee record

In order to map the two instances of the Date DSECT, we first issue a Labeled Dependent using with qualifier EHD to describe the employee’s date of hire (at EHire). Then, to map the first dependent’s date of birth, we must first map a Person DSECT onto the employee record (at EDep1) with qualifier PD1. Finally, within that Person DSECT, we describe the dependent’s date of birth by mapping the Date DSECT onto the Person structure (at PDoB) with qualifier DD1.

The CLC instruction refers to two complete date fields DateF, qualified to associate one with the date of hire and the other with the first dependent’s date of birth.

This example, while not obvious at first encounter, is worth some study: it shows how you can use Labeled Dependent USINGs to map very complex structures in a natural, readable way that does not require you to understand what pointers may have been established in which registers many lines earlier in the program.

Note that the DROP statement, by specifying the two qualifiers, removes the mappings of both Date DSECTs.

39.7.3. Personnel-File Record Example: Copying Addresses

Suppose our third requirement is to update the employee record so that the second dependent’s address is made to be the same as that of the employee. In this case, the addresses are at the same level of nesting: the Addr structure: the person’s home address is nested within the Person DSECT at the position Labeled PAddr. This means that we must provide addressability to two different Addr DSECTs, as shown in Figure 662.
* Example 3: Copy Employee Address to Dependent 2 address

AE 6 USING Addr,PE.PAddr Overlay Addr DSECT on Employee name
PD2 7 USING Person,EDep2 Overlay Person DSECT on Dependent 2
AD2 8 USING Addr,PD2.PAddr Overlay Addr DSECT on Dep. 2 Person

MVC AD2.AddrF,AE.AddrF Copy Employee Addr to Dependent 2

DROP PD2 Remove all Dependent-2 associations

Figure 662. Copying addresses with an Employee Record

This technique is like that of the previous example: we establish addressability to the instances of the Addr DSECT within the two instances of the Person DSECT, one for the employee at EPerson, qualified with PE ( 1 ) in Figure 659, and one for the second dependent at EDep2, qualified with PD2 ( 7 ).

Within the two instances of the Person DSECT are the two instances of the Addr DSECT, one for the employee at PE.PAddr, qualified by AE ( 6 ), and one for the second dependent at PD2.PAddr ( 7 ), qualified by AD2 ( 8 ). The move instruction then uses the “address qualifiers” AE and AD2 to qualify the names of the field to be moved, AddrF.

The DROP statement specifies qualifier PD2. Because the Labeled Dependent USING with the AD2 qualifier was based (or “anchored”) on that with qualifier PD2, dropping PD2 automatically causes AD2 to be dropped also.

Exercises

39.7.1.(1)+ What are the lengths of the Date, Addr, and Phone DSECTs?

39.7.2.(2)+ Using the values you found in Exercise 39.7.1, find the lengths of the Person and Employee DSECTs.

39.7.3.(2)+ Assemble a program containing the five DSECTs used in the personnel record and the statements in Figures 657, 660, 661, and 662. Study the generated object code to see how the single ordinary USING statement provides a base register for all the instructions.

39.7.4.(2)+ Create a definition of a 120-byte data structure named Person containing these items, where their lengths are shown in parentheses:

- Name, consisting of
  - Family name (20)
  - Given name (15)
  - Initial (1)
- Address, consisting of
  - Number (5)
  - Street name (18)
  - Apartment number (3)
  - City (15)
  - State (13)
  - Postal ZIP code (5)

1. First, define each field using EQU statements as an offset from the symbol Person.
2. Second, define each field with DS statements.
3. Third, define each field in a Dummy Control Section named Person.

39.7.5.(2)+ Suppose the last three statements in Figure 653 are replaced by

DateF Equ Date,DateL,C"C"
Will all symbols in the Date DSECT have identical attributes? (Write and assemble a short program to verify your answer.)

39.8. Summary

Enhancements to the USING and DROP statements can help you to write simpler and more efficient programs.

39.8.1. USING Statement Summary

The Assembler provides two major extensions to the USING statement: Labeled and Dependent. They may also be used in combination, as Labeled Dependent USINGs, providing a choice of four different types of USING statement.

This gives you much greater control over assignment and resolution of base addresses in symbolic expressions and helps improve the reliability, maintainability, and efficiency of Assembler Language applications.

- **Labeled USINGs** let you simultaneously address multiple instances of a DSECT (or CSECT) without additional ordinary USING and DROP statements, and without the need to explicitly code offsets and base registers. Thus, you can concurrently manage multiple copies of the same DSECT- or CSECT-defined data structure using the full symbolic capabilities of the Assembler Language.

- **Dependent USINGs** let you address multiple DSECTs anchored by a single base register, so you can describe adjacent, nested, or overlapping code and data structures. This means that you can reduce the number of general registers required for addressing DSECTs and assign them to other uses, creating more efficient code while retaining the advantages of fully symbolic addressing.

  Dependent USINGs are “dynamic” because declarations can specify different mappings on different code paths.

- **Labeled Dependent USINGs** combine the benefits of both. For example, you can describe record structures containing multiple instances of nested substructures, or of substructures that depend on a variable elsewhere in the containing structure. Such complex data structures are commonly used in higher level languages; you can use them in your Assembler Language programs.

Here’s another way of viewing the difference between Labeled and unlabeled USING statements:

- An unlabeled USING requires a register to reference the data; or the base register implies the data that can be addressed.

- For a Labeled USING, the qualified data name implies the register: that is, the qualifier designates a specific base register.

The properties and behavior of the four types of USING statement are shown in Table 419:
### Table 419. Summary of USING Statements

<table>
<thead>
<tr>
<th>USING Type</th>
<th>Label</th>
<th>Register Usage</th>
<th>Operand 1 Based on</th>
<th>Operand 2</th>
<th>Operand 2 Location in Storage</th>
<th>Number of Instances of Active Objects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ordinary</td>
<td>No</td>
<td>1 register per object</td>
<td>Register</td>
<td>Absolute [0,15]</td>
<td>Anywhere in storage</td>
<td>Only one active instance of an object at a time</td>
</tr>
<tr>
<td>Labeled</td>
<td>Yes</td>
<td>1 register per object</td>
<td>Register</td>
<td>Absolute [0,15]</td>
<td>Anywhere in storage</td>
<td>As many active instances of an object as registers assigned</td>
</tr>
<tr>
<td>Dependent</td>
<td>No</td>
<td>Multiple objects per register</td>
<td>Operand 2</td>
<td>Relocatable, addressable</td>
<td>Addressable by ordinary USINGs</td>
<td>Multiple active objects of different types</td>
</tr>
<tr>
<td>Labeled Dependent</td>
<td>Yes</td>
<td>Multiple objects per register</td>
<td>Operand 2</td>
<td>Relocatable, addressable</td>
<td>Addressable by ordinary USINGs</td>
<td>Multiple different active objects of the same or different types</td>
</tr>
</tbody>
</table>

Table 419. Summary of USING Statements

### 39.8.2. DROP Statement Summary

The DROP statement supports the enhancements to the USING statement, as summarized in Table 419:

<table>
<thead>
<tr>
<th>USING Type</th>
<th>DROP Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ordinary</td>
<td>By register number</td>
</tr>
<tr>
<td>Labeled</td>
<td>By qualifying label (dropping the register has no effect)</td>
</tr>
<tr>
<td>Dependent</td>
<td>By register number (all sub-dependent USINGs are dropped automatically)</td>
</tr>
<tr>
<td>Labeled Dependent</td>
<td>By qualifying label (dropping the register has no effect)</td>
</tr>
</tbody>
</table>

Table 420. Summary of DROP Statement Behaviors

These may be described as follows:

- **Ordinary USINGs**
  
The normal rules for DROP statements apply, and the entry for the specified register is removed from the Assembler's Using Table.

- **Labeled USINGs**
  
The qualifying label from a previous Labeled USING is specified as the operand of the DROP statement. Only the USING with that qualifier is inactivated; other USINGs specifying the same base register (if any) are still active.

- **Dependent USINGs**
  
The syntax of the ordinary DROP statement is used: a register is specified as the operand. Any further Dependent USINGs based on the same register are automatically dropped at the same time. The Assembler's Using Table entry for that register is removed.

- **Labeled Dependent**
  
The qualifying label from a previous Labeled or Labeled Dependent USING is specified as the operand of the DROP statement. Any dependent or Labeled Dependent USINGs that relied on the qualifying label are also dropped. Other USINGs specifying the same base register (if any) are still active.
Terms and Definitions

DSECT
A Dummy Control Section used to map the components of a data structure.

Ordinary USING
A USING statement directing resolution of unqualified implicit references to a specific base register or registers.

Labeled USING
A USING statement directing resolution of implicit references to a specific base register. It is distinguished from an ordinary USING statement by the presence of a qualifier in the name field.

Dependent USING
A USING statement allowing implicit references to symbols in areas mapped by more than one control section to be resolved with a single base register.

Labeled Dependent USING
A USING statement allowing implicit references to symbols in areas mapped by more than one control section to be resolved with by a specific base register.

qualifier
A symbolic identifier defined in the name field of a Labeled USING or Labeled Dependent USING statement. It may be used only as a qualifier, and not as an ordinary symbol.

qualified symbol
An ordinary symbol prefixed by a qualifier and separated from it by a period, as in qualifier.symbol.
40. Basic Data Structures

In this section we discuss several widely used data structures such as arrays, stacks, lists, queues, trees, and hash tables.

The data structures used in computer programs are incredibly varied. For most purposes, understanding the simpler forms provides a basis for understanding all of the more complex ones.

- The simplest data structure is the **table** or **array**, a grouping of elements of uniform type and length into regularly spaced (and usually contiguous) memory locations. The major advantage of the array is that the address of an array element can be calculated and the element accessed directly, rather than searching the array to find the element.

- A **stack** is a specialized form of array, often represented in memory in varied ways.

Other data structures involve multiple elements of (usually) uniform type and length that are not contiguous or regularly spaced. Dummy Control Sections (“DSECTs”) and extended USING statements provide powerful mechanisms for describing, mapping, and manipulating them.

- A **list** or **linked list** is a linearly ordered structure in which each element contains a link to its successor.

- A **queue** or **doubly linked list** is a linearly ordered structure in which each element contains links to its successor and to its predecessor.

- The elements of a **tree** contain links to zero, one, two, or more successors.

Lists and trees can be used to store data in forms not well adapted to arrays, but their elements must be searched for, instead of addressed directly.

- A **hash table** provides a method for rapid retrieval of unordered data, by transforming an item into a “pseudo-subscript” to locate its value quickly.

We will examine each of these basic structures in turn.272 Because we often arrange data in linear, rectangular, or other array-like tabular formats, we will first examine some methods used to manipulate data stored in this form.

---

40.1. One-Dimensional Arrays

Many examples of loops in Section 22 involved indexing in an array, but we didn’t describe formal techniques for doing indexing arithmetic and selecting initial and final index values.

The most important new concept concerning array manipulation is that we may compute the position of an element at execution time. Up to now we have discussed many basic assembly-time addressing expressions; now we consider instruction sequences that evaluate more complex execution-time addressing expressions.

Suppose you have eleven halfword integers to manage as a group; the simplest arrangement is successive halfwords in memory. Here is an array of halfwords, starting at the halfword named $B$.

```
 ┌──────┬──────┬──────┬──────┬──────┬──────┬──────┬──────┬──────┬──────┬──────┐
 │ │ │ │ │ │ │ │ │ │ │ │
 └──────┴──────┴──────┴──────┴──────┴──────┴──────┴──────┴──────┴──────┴──────┘
```

Figure 663. Example of a one-dimensional array of halfwords

One-dimensional arrays are relatively simple: each successive data item or element is accessed by adding the element spacing (usually, the element length) to the address of the preceding element. If for example the eleven halfword integers in Figure 663 are stored starting at $B$, then the $n$-th element $B_n$ is found at $B+2n$. That is, if the element with zero subscript ($B_0$) is found at $B$, the address of an element with subscript $n$ is simply $B+2*n$. If the array elements were fullwords or doublewords, the corresponding addresses would be $B+4*n$ and $B+8*n$ respectively.

However, arrays may not contain a “zero-th” element, or the zero-th element may not be the lowest-numbered element. For programs in many higher-level languages, the first element of an array has subscript 1. Indeed, if the three low-numbered elements of the array are omitted, so that $B_4, B_5, ..., B_{14}$ are stored beginning at $B$, and the length of a single array element is $L$, then the $n$-th element $B_n$ is found at address $addr(B)+L*(n-4)$.

We can see how to do the required subscript arithmetic: if the subscripts start at $m$, and the lowest-subscripted element $B_m$ is stored at $B$, then the address of element $B_n$ is

$$addr(B(n)) = addr(B)+L*(n-m).$$

An example will help to illustrate this. Suppose an array of 13 fullword integers $X_5, X_6, ..., X_{17}$ is stored beginning at $XX$, and we want to store their sum at $XSum$. Thus, the array starts with the element with subscript 5. In Figure 664, we assume that the lower and upper subscript bounds of 5 and 17 are stored at $LowerSub$ and $UpperSub$ respectively. Because there are 13 elements in the array starting at $XX$, we could simply add the 13 words. However, we want to illustrate a more general technique for accessing array elements.

```
SR 0,0 Initialize sum in GRO to zero
L 1,LowerSub Initialize subscript n to c(Lower)
SetNdx LR 2,1 Index N is calculated in GR2
S 2,LowerSub (n-m)
SLL 2,2 4*(n-m): element length is 4
A 0,XX(2) Sum = Sum + X(n)
LA 1,1(,1) Increment subscript by 1
C 1,UpperSub Compare subscript to upper bound
JNH SetNdx If not greater, branch to repeat
ST 0,XSum Store sum
```

Figure 664. Sum of array elements with known subscript bounds
Now, suppose the lower and upper subscript bounds of the elements used in forming the sum don’t have known values like 5 and 17; we only know that the element with subscript 5 (X₅) is stored at XX. We can then include a portion of the indexing arithmetic into the program at assembly time. We extract the factor L*(-m) from the implied address XX+L*(n-m); m has value 5 in this example, and L has value 4.

SR 0,0 Initialize sum to zero
LA 4,'XX Increment = element length = 4
L 2,LowerSub Get initial (lowest) subscript
SLL 2,2 Multiply by element length, 4
L 5,UpperSub Get highest subscript
SLL 5,2 Multiply by length, = 4 also
AddElem A 0,XX-5*4(2) Add elements starting at X(5)
JXLE 2,4,AddElem Increment index and loop
ST 0,XSum ... etc.

Figure 665. Sum of array elements with unknown subscript bounds

In this more-efficient example, we see that if the contents of LowerSub and UpperSub are 5 and 17 respectively, the same result will be obtained as before. The address of the first element to be added will be XX-20+(4*5), which is the same as XX. The Assembler requires that the location of the implied address XX-5*4 be addressable; this requirement is sometimes a limitation on the use of this time-saving technique.

The loop in this program segment needs only two instructions, while the loop in Figure 664 uses seven. You can often improve the efficiency of array accesses by doing as much subscripting arithmetic as possible at assembly time.

Even though we usually store arrays with ascending subscripts, the array elements could also be stored in “reverse” order, from highest subscript to lowest: you can still calculate the address of B(n) this way, even if n is not greater than m.

Exercises

40.1.1.(2) Suppose the instructions in Figure 664 had been written so that the lower and upper subscript bounds were defined instead by the statements

LBound Equ 5
HBound Equ 17

Rewrite the three DC statements so that all values depending on the subscript bounds are defined through references to the symbols LBound and HBound.

40.1.2.(2) A programmer suggested the following technique as a method of indexing through a table of words:

Initialize, etc.
GetIt L 0,Table Get a table entry
- - - Do something with it
LH 1,GetIt+2 Fetch the addressing halfword
AH 1,=H′4′ Add 4 to displacement
STH 1,GetIt+2 Replace halfword in instruction
- - - Eventually branch back to ‘GetIt’

Assuming that this code sequence contains proper tests for reaching the end of the table, are there any grounds (other than aesthetic) for criticizing this method of address modification?

40.1.3.(2) An array contains 523 elements. Each element is 7 bytes long: a 2-byte binary integer followed by 5 characters.

| integer | 5 bytes of character data |
Give reasons for or against spacing successive elements of the array 8 bytes apart.

40.1.4.(2) In the example in Figure 665, what will happen if \( c(UpperSub) \) is less than \( c(LowerSub) \)?

40.1.5.(2) Each element of the array of 523 elements in Exercise 40.1.3 should be mapped by a DSECT; create one.

### 40.2. Two-Dimensional Arrays

Two- and higher-dimensional arrays present added considerations, but they can be handled easily; we will examine two simple methods for addressing array elements. In illustrating these methods, we discuss only the two-dimensional array, or *matrix*. Figure 666 illustrates a small matrix:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A(1,1)</td>
<td>A(1,2)</td>
<td>A(1,3)</td>
<td>Row 1</td>
</tr>
<tr>
<td>A(2,1)</td>
<td>A(2,2)</td>
<td>A(2,3)</td>
<td>Row 2</td>
</tr>
<tr>
<td>Column 1</td>
<td>Column 2</td>
<td>Column 3</td>
<td></td>
</tr>
</tbody>
</table>

Figure 666. Typical arrangement of elements of a matrix

The element \( A_{i,j} \) in the \( i \)-th row and \( j \)-th column of a matrix \( A \) is often denoted \( A(i,j) \). The row subscript is traditionally given first, followed by the column subscript.

The basic problem is that we rarely know the values of the subscripts \( i \) and \( j \) at assembly time. Instead, \( i \) and \( j \) are variables whose values are determined at execution time, so we must write instructions using those values to find the address of the array element \( A(i,j) \).

First, we must reorganize this rectangular array form into a linear structure conforming to the machine's linear addressing of memory. This can be done in two ways:

- **Store successive columns** of the array one after another. This is called “column order” or “column-major order”, and is used, for example, by Fortran for storing its arrays. If the column-ordered array \( A \) in Figure 666 has two rows and three columns, it would be stored as shown in Figure 667. Note that the leftmost subscript is “cycled” most rapidly, so the linear order of the elements is first column, then second column, etc.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A(1,1)</td>
<td>A(2,1)</td>
<td>A(1,2)</td>
</tr>
<tr>
<td>A(1,3)</td>
<td>A(2,2)</td>
<td>A(2,3)</td>
</tr>
</tbody>
</table>

Figure 667. Storing an array in column order

- **Store successive rows** of the array one after another. This is called “row order” or “row-major order”, and is used, for example, by PL/I for storing its arrays. The same array stored in row order would appear in storage as shown in Figure 668. Note that the rightmost subscript is “cycled” most rapidly, so the linear order of the elements is first row, then second row, etc.

  |     |     |     |     |     |
  |-----|-----|-----|-----|
  | A(1,1) | A(1,2) | A(1,3) | A(2,1) |
  | A(2,2) | A(2,3) |

Figure 668. Storing an array in row order

Either linear arrangement may be used; a choice between possibilities must be based on considerations such as convenience, the time and space required to retrieve a particular element, and (if
your array-handling instructions will be called from a program written in another language) the requirements of that programming language.\(^{273}\)

To retrieve element \(A(i,j)\) of the column-ordered array in Figure 667, we must calculate its address: suppose \(A(1,1)\) is stored at \(AA\). To obtain the address of the first element in the \(j\)-th column, \(A(1,j)\), we need the address

\[
\text{addr}(AA) + L \times (j-1) \times 2
\]

where \(L\) is the element length in bytes, and the factor of 2 is the number of rows, accounting for the presence of two elements in each column. Having obtained that address, the address of the \(i\)-th element in the indicated column is found by adding \(L \times (i-1)\) to the partially computed address, giving finally an address

\[
\text{addr}(A(i,j)) = \text{addr}(AA) + L \times [(i-1)+2\times(j-1)]
\]

For example, the address of element \(A(2,3)\) is

\[
\text{addr}(A(2,3)) = \text{addr}(AA) + 2 \times [(2-1)+2\times(3-1)] = \text{addr}(AA) + 10
\]

as we would expect from Figure 667.

The quantity added to \(\text{addr}(AA)\) is sometimes called a subscripting expression, a subscripting function, or a mapping function. We start with the address of the base element \(A(1,1)\) and the array subscripts \(i\) and \(j\) of a particular element, and use them to compute the linear subscript that gives the difference between the addresses of \(A(i,j)\) and \(A(1,1)\).

If a two-dimensional column-ordered array has \(r\) rows, the subscripting function is

\[
L \times [(i-1)+r\times(j-1)]
\]

Our choice of column ordering means that the subscripting function depends only on the number of rows \(r\) of the array, and not on the number of columns.

Suppose a column-ordered array of words having 5 rows and 7 columns is stored with base element \(A(1,1)\) at \(AA\). We want to retrieve element \(A(i,j)\) and store it at \(AIJ\). The subscripts \(i\) and \(j\) are contained in fullwords stored at \(ISub\) and \(JSub\) respectively. We assume values have been stored in the array at \(AA\) by other parts of the program.

```
NRow Equ 5 Number of rows
NCol Equ 7 Number of columns
L 6, JSub Get column index j
BCTR 6, 0 Form (j-1)
MHI 6, NRow Multiply by number of rows
A 6, ISub Add row index, i
BCTR 6, 0 Decrease by 1 to form ((i-1)+r*(j-1))
SLL 6, 2 Multiply by element length, 4
L 0, AA(6) Retrieve element A(i,j)
ST 0, AIJ Store it at AIJ

- - -

ISub DC F'3' Possible value for i
JSub DC F'6' Possible value for j
AIJ DS F Element A(i,j) stored here
AA DS (NRow*NCol)F ... Values already placed here
```

Figure 669. Retrieving a specified element of an array

As in Figure 665 on page 895 for one-dimensional arrays, part of the execution-time subscripting arithmetic can be absorbed into the assembly-time address of the instruction that references the array element. To do this, we must know the size of the array (at least, the number of rows, for a column-ordered array) when the program is assembled. We now see that

\(^{273}\) Many programming language standards require that arrays be stored in a specific ordering of rows and columns.
\[ \text{addr}(A(i,j)) = [\text{addr}(AA) - (L*(r+1))] + [L * (i + r*j)]. \]

Only the second square-bracketed expression depends on \( i \) and \( j \), so it must be computed at execution time. The instructions in Figure 669 can be rewritten as in Figure 670:

\[
\begin{align*}
\text{NRow} & \quad \text{Equ} & 5 & \text{Number of rows} \\
\text{NCol} & \quad \text{Equ} & 7 & \text{Number of columns} \\
L & \quad 6,\text{JSub} & \text{Column index} \\
\text{MHI} & \quad 6,\text{NRow} & \ast \text{(Number of rows)} \\
A & \quad 6,\text{ISub} & + \text{Row index} \\
\text{SLL} & \quad 6,2 & \text{(All this)} \ast \text{(element length)} \\
L & \quad 0,\text{AA-L} & \text{AA*(NRow+1)(6)} \\
c(GR0) & \quad = A(i,j) \\
\text{ST} & \quad 0,\text{AIJ} & \text{Store result at AIJ}
\end{align*}
\]

Figure 670. Retrieving a specified element of an array efficiently

The address \( \text{addr}(AA)-L*(r+1) \) is the address of the “element” \( A(0,0) \), which may not actually be a member of the array.\(^{274}\) The term “virtual origin” describes the base element \( A(0,0) \), and the term “actual origin” describes the address in memory where the array actually begins.

Most programming languages that support arrays allow many more than two dimensions, but the terms “row” and “column” ordering are still used for higher-dimension arrays, even though these names may seem misleading. (Should the third dimension be called a plane? The fourth dimension a cube or a parallelepiped?) Whatever the terminology, remember that the leftmost subscript varies fastest for column ordering, and the rightmost for row ordering.

We will assume for now that all subscripts begin at 1, unless stated otherwise.

**Exercises**

40.2.1.(3) Suppose an \( N \) by \( N \) array of words is stored starting at \( \text{SqArray} \), where \( N \) is greater than 6 and is defined symbolically. Write a sequence of statements that will transpose the array: that is, for all subscripts \( i \) and \( j \), swap element \( \text{SqArray}(i,j) \) with element \( \text{SqArray}(j,i) \).

Do you need to know whether the array is stored in row order or column order?

How many swaps are needed?

40.2.2.(3)+ There are two symbolically defined integers \( M \) and \( N \), both greater than 5, and \( M \neq N \). Given an \( N \) by \( M \) matrix of fullwords stored at \( \text{AA} \), store at \( \text{BB} \) the \( M \) by \( N \) transpose matrix of the matrix at \( \text{AA} \), whose elements are defined by \( B(i,j) = A(j,i) \).

Do you need to know the ordering of the array?

40.2.3.(3)+ Suppose you are given the address of the actual origin of a column-ordered array, \( \text{addr}(A(1,1)) \). You also know the number of rows \( R \) and the number of columns \( C \) of the array, and the length \( L \) of each element. Suppose the word at \( \text{ElemAddr} \) contains the address of an unknown array element \( A(i,j) \).

First, write expressions that determine the values of \( i \) and \( j \). Then, write instructions that calculate the subscripts \( i \) and \( j \), and store them at \( \text{ISub} \) and \( \text{JSub} \) respectively.

40.2.4.(2) Row-ordering an array requires that the linear arrangement corresponds to cycling the rightmost subscript most rapidly, then the next to last, and the leftmost most slowly. Show that the subscripting function for a two-dimensional array of \( r \) rows and \( c \) columns is

\[ \text{addr}(A(1,j)) = \text{addr}(A(1,1)) + L \ast \left[ c^{*}(i-1)+(j-1) \right]. \]

40.2.5.(4) A physicist needed a table of values of a function \( S(i,j) \) for integer values of \( i = 2, 4, 6, \ldots, 20 \), and \( j = -3, -2, -1, 0, \ldots, 10 \). He found that \( S(i,j) \) obeys the recurrence relations

---

\(^{274}\) Unfortunately, it’s sometimes called the “base address” of the array, which can be confused with the address where the array starts, or with a base address specified in a USING statement.
(a) \( S(i,j+2) = \frac{(j+1)S(i,j)+1/(i+j+2)}{(j+3)} \)
(b) \( S(i+2,j) = S(i,j) - \frac{1}{(i+1)(i+j+2)} \)

and that
\[
S(2,-3) = 0.5, \quad S(2,-2) = 0.3068528, \quad \text{and} \quad S(2,-1) = 0.23370055.
\]

Write instructions to compute the complete table of 140 values in hexadecimal or binary floating-point, applying first the relation (a) to compute \( S(2,j) \) for \( j = 0, 1, ..., 10 \), and then using (b) to fill out the table.

40.2.6.(3) We can define two “norms” of a matrix as (1) the sum of the magnitudes of its elements, and (2) as the magnitude of of the largest element. Write a program segment which will evaluate both norms of a square matrix of short hexadecimal or binary floating-point numbers stored beginning at \( \text{Matrix} \), and the dimension of the matrix is stored as a fullword integer at \( \text{MatDim} \).

40.3. General Array Subscripts

In the examples above we assumed that the subscripts took positive values only, and always had a lower bound of 1. (This is why our subscripting expressions contain terms like \((i-1)\) and \((j-1)\).) This is not a necessary condition; if the lower subscript bounds on \( i \) and \( j \) are \( i_0 \) and \( j_0 \) respectively, then the subscripting function for a two-dimensional column-ordered array with \( r \) rows becomes
\[
L * [(i-i_0)+r*(j-j_0)]
\]
and for a two-dimensional row-ordered array with \( c \) columns,
\[
L * [ c*(i-i_0)+(j-j_0)]
\]

In such cases it may be more difficult to include the constant factor that determines the array’s “virtual origin”.
\[-L*(i_0+r*j_0) \quad \text{or} \quad -(L*c*i_0)+j_0)\]
in an expression at assembly time, since the resulting implied address may not be addressable.

Many high-level programming languages let you define arrays dynamically, so that subscript bounds and origins are not known until execution time. References to such arrays customarily use array descriptors containing the necessary information.

Arrays can take many forms. We will examine two: arrays of many dimensions, and arrays whose columns are not identical.

40.3.1. Multi-Dimensional Arrays (*)

When you use arrays with more than two dimensions, you will need to calculate the linear index of an element. For example, suppose \( D \) is the base element of a three-dimensional column-ordered array with \( R \) rows, \( C \) columns, and \( P \) “planes” (for want of a better name for the third dimension). Then to access element \( D(i,j,k) \) you can generalize the expression given in Section 40.2 as follows:
\[
\text{Addr}(D(i,j,k)) = \text{addr}(D) + L * [(i-1) + R*[j-1] + C*(k-1)]
\]

To help understand this expression, consider the element \( D(1,1,2) \): to access it starting at \( D(1,1,1) \) you would cycle the \( i \) subscript \( R \) times, and the \( j \) subscript \( C \) times, once for each cycle of the \( i \) subscript. Thus,
\[
\text{Addr}(D(1,1,2)) = \text{Addr}(D) + L * [(1-1) + R*(1-1) + R*C*(2-1)]
\]
\[
= \text{Addr}(D) + L * (R*C)
\]

where \( R*C \) is the number of elements in the first “plane”, so the accessed element will be the first one in the second “plane” as desired.
In general, if an array A has p dimensions, and the subscripts k1, k2, ..., kp in each dimension range from 1 to Maxj (where “j” is the number of subscript kj), then the subscripting function for an element A(k1,k2,k3,...,kp) is

\[
\text{addr}(A(k1,k2,k3,...,kp)) = \text{addr}(A(1,1,1,...,1)) + L \times \left[ (k1-1) + (k2-1)\times\text{Max}_1 + (k3-1)\times\text{Max}_1\times\text{Max}_2 + \ldots + (kp-1)\times\text{Max}_1\times\text{Max}_2\times\ldots\times\text{Max}_{(p-1)} \right]
\]

Not obvious, perhaps, but sometimes useful to know!

As we noted in describing subscripts for two-dimensional arrays, the range of values for the rightmost subscript in a column-ordered array isn’t used in the subscripting function. That is, for a two-dimensional array, only the number of rows is important, not the number of columns. For a row-ordered array, the range of the leftmost subscript is not used in the subscripting function.

### 40.3.2. Non-Homogeneous Arrays (Tables)

The term “table” often describes a one-dimensional array in which the columns don’t necessarily contain data items with the same type and length. For example, you might have a table of names and identification numbers, where the numbers in the first column are 4-byte binary integers and the names in the second column are 36-byte character strings.

<table>
<thead>
<tr>
<th>ID Number</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>14142135</td>
<td>Billy Uss</td>
</tr>
<tr>
<td>17320508</td>
<td>Norm D. Plume</td>
</tr>
<tr>
<td>16180339</td>
<td>Anna Lepsis</td>
</tr>
<tr>
<td>28571428</td>
<td>Carol F. DeBelz</td>
</tr>
<tr>
<td>31415926</td>
<td>Warren Pease</td>
</tr>
<tr>
<td>33550336</td>
<td>Sarah Bellum</td>
</tr>
<tr>
<td>22360679</td>
<td>Pete Moss</td>
</tr>
<tr>
<td>40353607</td>
<td>Polly Andress</td>
</tr>
<tr>
<td>31622776</td>
<td>Hugo Furst</td>
</tr>
<tr>
<td>24137569</td>
<td>Lou Gubrius</td>
</tr>
<tr>
<td>16777215</td>
<td>Anna Lemma</td>
</tr>
<tr>
<td>27182818</td>
<td>Dad Gummitt</td>
</tr>
<tr>
<td>11235813</td>
<td>Polly Connick</td>
</tr>
</tbody>
</table>

Table 421. Example of a non-homogeneous array

The methods for indexing one-dimensional arrays are used to access the rows of such tables; the increment from row to row is the length of each row (40 in this example).

For example, suppose this table starts at `DataTbl` and there is an ID number at `WhoIsIt`. You want to find the table entry corresponding to that ID number, and put its address in `GR1`. A typical code fragment might look like Figure 671. (Note that it doesn’t test whether all table entries have been compared, to indicate there’s no matching entry.)

```
EntryLen Equ 40 Each table entry is 40 bytes long
LA 1,DataTbl c(GRI) = start of data table
L 0,WhoIsIt c(GRO) = IDNumber being sought
Search C 0,0(,1) Check for a matching ID number
JE FoundIt They’re equal, we have a match
LA 1,EntryLen(,1) Add length of each table entry
J Search And repeat the search

FoundIt - - -
```

Figure 671. Searching for a matching table entry

Each element in Table 421 might be described by this DSECT:
Because DSECTs generate no object code, you could also write the DSECT with DC statements:

- **ID_Name** DSECT , Dummy Control Section
- **IDNumber** DS F 4-byte integer ID number
- **Name** DS CL36 36-character name

The result is the same in both cases. Using DC statements can be helpful in cases where the same statements can be included in both a CSECT for a declaration and in DSECTs for references.

We can rewrite the example in Figure 671 to use the DSECT this way:

1. **LA 1,DataTbl** c(GR1) = start of data table
2. **Using ID_Name,1** Base reg for ID_Name data structure
3. **L 0,WhoIsIt** c(GRO) = IDNumber being sought
4. **Search C 0,IDNumber** Check for a matching ID number
5. **JE FoundIt** They’re equal, we have a match
6. **LA 1,EntryLen(,1)** Add length of each table entry
7. **J Search** And repeat the search
8. **FoundIt** - - -
9. - - -

**ID_Name** DSECT
- **IDNumber** DS F 4-byte integer ID number
- **Name** DS CL36 36-character name
- **EntryLen Equ *-ID_Name** Calculate length of each table entry

Figure 672. Searching for a table entry mapped by a DSECT

The second USING statement tells the Assembler that implicit references to any symbol in the DSECT **ID_Name** should be resolved using GR1 as a base register. The USING Table is sketched in Figure 673:

<table>
<thead>
<tr>
<th>basereg</th>
<th>base location</th>
<th>RA</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>00000002</td>
<td>01</td>
</tr>
<tr>
<td>1</td>
<td>00000000</td>
<td>FF</td>
</tr>
</tbody>
</table>

Figure 673. USING Table with two entries, one for a DSECT

Important differences between Figures 671 and 672 include:

- The instruction named **Search** makes no explicit reference to GR1, but relies on the Assembler to calculate the correct base and displacement.
- The second operand is the name of the field, and not its (known) offset in the table entry.

Advantages of this technique include:

- Readability: the referenced field is identified by name, so you need not know its offset within the table entry mapped by the DSECT.
- If other data elements are later added to the table entries in the table, only the DSECT needs to be changed. If explicit base and displacements had been used to reference components of a table entry, each would have to be found and modified.

---

275 The COPY assembler instruction statement inserts a block of statements in its place.
• The length of the table entry is calculated by the Assembler from information it knows about
the length of the DSECT.
• If new components are added to the table entry, the Equ statement in Figure 671 isn’t needed,
because the symbol EntryLen is automatically updated by the Assembler.

Exercises

40.3.1.(2) Do the same as in Exercise 40.2.2, but use no memory locations for temporary
storage. A simple solution will be satisfactory! “Optimal” solutions to this problem can be
rather complex.

40.3.2.(3)+ Given two N by N square matrices of fullword integers stored in column order at
AA and BB respectively, the “product matrix” CC is defined by

\[ C(i,j) = \sum_{k=1}^{N} (A(i,k) \times B(k,j)) \]

Assuming that N is defined symbolically and is greater than 4, write statements to store at CC in
column order the product matrix whose elements are given by the above rules for a product
matrix. Assume that no overflows occur in calculating C(i,j).

40.3.3.(2) Write the subscripting function for a p-dimensional row-ordered array.

40.3.4.(3)+ It often occurs in processing square matrices that a matrix is symmetric: that is,
\( A(i,j) = A(j,i) \) for all subscripts i and j. To save space, such matrices are usually stored in
either

• upper triangular form, where \( A(i,j) \) is not stored if \( i > j \); or
• lower triangular form, where \( (i,j) \) is not stored if \( i < j \).

This saves roughly half the space needed to store the matrix.
For an N by N matrix of elements of length L, determine the subscripting function needed to
retrieve element \( A(i,j) \) for each type of triangular matrix.

40.3.5.(3)+ Using your solution to Exercise 40.3.4, write instructions that place in GR1 the
address of the element \( A(i,j) \) of an upper triangular matrix, given that \( A(1,1) \) is stored at AA,
and the quantities i, j, N, and L are fullword integers stored at II, JJ, NN, and LL respectively.
Assume that the subscript values are valid.

40.3.6.(4) Suppose you have an n-dimensional column-ordered array for which the subscripts
range from 1 to Upper_k for each dimension k between 1 and n. Write an instruction sequence
that calculates the linear subscript of an arbitrary element, assuming:

• The (1,1,...,1) element of the array is stored at ARRAY.
• The subscripts from 1 to k of the desired element are fullword integers stored in an array at
SubScrS.
• The upper limits Upper_k for each subscript are word integers stored in an array at
UpperLim.
• The number of dimensions is stored in the word at NumDimen.
• The length of each array element is stored in the halfword integer at ElLength.

40.3.7.(2)+ In some applications involving large matrices, there may be few nonzero elements;
they are called “sparse” arrays. Instead of allocating storage for all \( N^2 \) elements of an \( N \times N \)
matrix, space can be saved by storing only the nonzero elements \( A(I,J) \) and their subscripts I
and J.
Suppose there are three linear arrays representing a sparse array A: IXVal and JXVal contain the
word subscripts I and J of the element stored at AXVal, and the number of elements in each
linear array is stored in the word at NbrEls. Write an instruction sequence that forms the transpose
of the matrix A. That is, for each element \( A(I,J) \), swap I and J.

40.3.8.(0) For fun: deduce the meanings of the ID Numbers in Table 421 on page 900.


40.4. Address Tables

A second method of array addressing is useful when processing speed is important, and occasionally finds application to arrays of irregularly-spaced or irregular-length data. We precompute the addresses of portions of the array, and store those addresses in a separate address table or access table. For example, suppose the addresses of the elements A(1,1), A(1,2), and A(1,3) in Figure 666 on page 896 are stored as words in a list beginning at ColAddr, as shown in Table 422.

<table>
<thead>
<tr>
<th>Location</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>ColAddr</td>
<td>addr(A(1,1))</td>
</tr>
<tr>
<td>ColAddr+4</td>
<td>addr(A(1,2))</td>
</tr>
<tr>
<td>ColAddr+8</td>
<td>addr(A(1,3))</td>
</tr>
</tbody>
</table>

Table 422. Array addressing with a table of addresses

The following example uses this table to retrieve element A(i,j) and store it at AIJ.

```
L 7,JJ Get column index j from JJ
BCTR 7,0 Decrease by 1 for indexing
SLL 7,2 Multiply by address length, 4
L 6,ColAddr(7) Get address of column j
L 5,II Get row index i from II
BCTR 5,0 Decrease by 1 for indexing
SLL 5,2 Multiply by element length, 4
L 0,0(5,6) Get A(i,j) from array
ST 0,AIJ Store at AIJ
```

Figure 674. Creating a table of addresses

An advantage of this scheme is that it avoids the previously required multiplication by the number of rows. The added expense is (1) the space required for the table, (2) the time required for forming it, either during assembly or at execution time, and (3) the cost of an additional memory access.

As a final example, suppose we want to store at AIJ the element A(i,j) of a 5-by-5 array of fullwords stored in column order at AA. First, we construct a table of column addresses and store them at AddrTab. If we actually compute the addresses of the first element in each column minus 4 (the length of each element), we can use the subscript “i” directly without subtracting 1 when accessing the desired array element.

```
NRols Equ 5 Number of rows
NCols Equ 5 Number of columns
LA 6,NRols c(GR6) = number of rows
SLL 6,2 Multiply by element length
LA 5,NCols c(GR5) = No. Columns = loop count
LA 9,AddrTab Beginning address of table
LA 0,AA-4 (array address)-(element length)
StoreAdr ST 0,0(0,9) Store an address in the table
AR 0,6 Increase to address of next column
LA 9,4(0,9) Increase table address to next word
JCT 5,StoreAdr Loop until all addresses computed
```

Figure 675. Creating a better table of addresses

Table 423 shows the table’s contents after executing this code segment. The zero subscript in the elements A(0,j) indicates that one element length has been subtracted from the address of the beginning of the j-th column of the array.
Now, we can use this table to retrieve the desired element:

```
L 2,II Get row index i from II
L 3,JJ Get column index j from JJ
SLDL 2,2 Multiply both indexes by 4
L 3,AddrTab-4(3) Get column address from table
L 0,0(2,3) Retrieve the element A(i,j)
ST 0,AIJ Store it at AIJ.
```

This example gives much faster access to the desired array element. It also uses the SLDL instruction to take advantage of the fact that the array elements and the entries in the table of addresses have the same length, which might not be true in general.

The address table can be constructed by the Assembler if the array dimensions are known. The items in the middle column of Table 423 can be used as operands in DC statements, because the expression in an A-type constant can be relocatable. Thus, we can generate the same address table at assembly time.

```
NRows Equ 5 Number of rows
L Equ 4 Length of array element
AddrTab DC A(AA-L) Addr(first column) - L
DC A(AA+L*(NRows)-L) Addr(second column) - L
DC A(AA+L*(NRows*2)-L) Addr(third column) - L
DC A(AA+L*(NRows*3)-L) Addr(fourth column) - L
DC A(AA+L*(NRows*4)-L) Addr(fifth column) - L
```

Figure 676. Creating a table of addresses at assembly time

The expressions in the address constants are written so that you need only specify the value of NRows in the first EQU statement, and the required addresses will be calculated by the Assembler.

The extension of address tables to higher-dimensioned arrays is straightforward. Each subscript is used in turn to retrieve the address of the next lower-level address table, and the next-to-last subscript accesses a table like the one in Figure 676. The final subscript then accesses the desired data element. This method is useful when the array cannot be kept entirely in storage, since only the top-level table and some “availability flags” need be retained; the lower-level tables and the array itself can be kept on secondary storage.

**Exercises**

40.4.1.(2) Create an address table (or address tables) for a three-dimensional array starting at Box having 3 rows, 4 columns, and 5 “planes”. Thus, the array element with highest subscripts is Box(3,4,5).

40.4.2.(2)+ Construct an address table for a three-dimensional array A that has maximum subscripts of 4, 7, and 5 for the first, second, and third subscripts, respectively. How do the entries in the address tables depend on the choice of row-ordering or column-ordering for the array?

40.4.3.(3) Improve the coding of Table 422 and Figure 674 by including factors of $L^*(-m)$ in the statements wherever possible.
40.4.4.(4) Given an N by M array P of fullword integers stored in column order at PP, replace each element by the average of its four “nearest neighbors”. That is, calculate

\[ P(i,j) = \frac{(P(i+1,j) + P(i-1,j) + P(i,j+1) + P(i,j-1))}{4} \]

For the “edge” elements, assume that the missing term (or terms) has value zero.

40.4.5.(3) A two-dimensional array of fullword integers is stored in column order with element X(1,1) at XX. The lower and upper bounds for the subscripts in each dimension are word integers stored at Lower1 and Upper1, and at Lower2 and Upper2, respectively. Write a program segment to load into GR9 the element of the array whose subscripts are the word integers at Sub1 and Sub2 respectively. That is, the desired element is X(c(Sub1),c(Sub2)).

If the subscripts lie outside the lower or upper bounds, branch to SubsErr.

40.4.6.(2) Generate the address table in Figure 676 with a single DC statement, retaining the symbolic definitions of NRows and L.

### 40.5. Searching an Ordered Array

We must often search an ordered array to find a match for a given value (called the key or search argument). Once found, that array element may be modified; more often, its index is used to retrieve associated data in other columns, or in similarly ordered arrays.

For a short array (of perhaps 10 or less elements), it is simplest to search the array linearly. To illustrate, suppose an array of word integers at AA is arranged in order of increasing values, and GR2 contains a positive integer. If a match is found between the search argument in GR2 and one of the array elements, branch to Found with GR9 containing the offset of the matching element; if no match occurs, branch to NoMatch.

```plaintext
N Equ 10 Number of table entries
LA 10,4 Increment = element length in GR10
LA 11,4*(N-1) Comparand = last element index in GR11
SR 9,9 Initial index value = 0 in GR9
Test C 2,AA(9) Compare c(GR2) to array element
JE Found Branch if a match occurs
JXLE 9,10,Test Increment index, try again
J NoMatch No match found
```

These instructions make no use of the fact that the array at AA is ordered. If the value in GR2 matches none of the array elements, we always scan the entire array before branching to NoMatch. We rectify this oversight with one added instruction, as follows:

```plaintext
N Equ 10 Number of table entries
LA 10,4 Increment = element length
LA 11,4*(N-1) Comparand = index of last element
SR 9,9 Initial index = 0
Test C 2,AA(9) Compare c(GR2) to array element
JL NoMatch No match if element is too small
JE Found Branch if a match occurs
JXLE 9,10,Test Bump index by 4 and try again
J NoMatch c(GR2) is too big to match
```

In this example, we will exit from the loop whenever we know the number in GR2 cannot match an array element. We might make use of the fact that taking the second branch to NoMatch implies that c(GR2) is greater than any array element.

A major weakness of this linear search technique becomes apparent as the length of the array increases. If we assume that GR2 contains one of the array elements chosen at random, then on the average we must compare it to half the array elements to find a match. If the array contains N elements, we will need an average of N/2 comparisons, which can become fairly expensive if the array contains (say) 2000 elements.
There are two good solutions to this problem of rapidly increasing search costs, *binary search* and *hashing*. Hash tables will be discussed in Section 40.10 on page 927.

For large *ordered* arrays, it is helpful to use the *binary search* or *binary chop* method. Rather than scan through the array in a sequential fashion, we start at the middle. If the search argument (the “key”) is less than that array element, we ignore the second half of the array, because all its elements must exceed the key; if the key is greater than the middle element, we ignore the first half of the array, because all its elements are smaller than the key.

Next, we compare the key to the middle element of the remaining half of the array. By “chopping off” half of the remaining array elements each time, we can greatly reduce the number of comparisons needed. Instead of the previous average of N/2 comparisons needed for a linear search, the binary chop requires a number close to \( \log_2(N) \), the base 2 logarithm of N. For an array of 2000 elements, there will be at most 11 comparisons, instead of as many as 2000 and an average of 1000 for a linear search.

We illustrate a binary search in Figure 677, using symbolically-defined registers and values. Its main feature is two registers symbolically named LP and HP that point to the low-addressed and high-addressed elements of the portion of the array \( AA \) being searched. The sequence of instructions beginning at *Setup* determines the address of a byte halfway between the low and high addresses. Because this midpoint might fall on an incorrect boundary, the NR instruction aligns the midpoint address properly.

```assembly
L Equ 4 \text{Length of an array element, which...}
* \text{...must be a power of two (for mask)}
N Equ 2000 \text{Number of array elements}
SA Equ 2 \text{Search argument register (key)}
X Equ 1 \text{Indexing register}
HP Equ 3 \text{High-address pointer register}
LP Equ 4 \text{Low-address pointer register}
M Equ 0 \text{Mask register (will contain -L)}
* Initialize
LHI M,-L \text{-L used as mask and increment}
L LP,=A(AA) \text{Initial low pointer}
L HP,=A(AA+L*(N-1)) \text{Initial high pointer}
* Set midpoint address
Setup LR X,HP \text{Move high pointer, ...}
SR X,LP \text{... - low pointer = portion size}
JM NoMatch \text{No match if pointers have crossed}
SRL X,1 \text{Halve size to get midpoint index}
NR X,M \text{Mask for proper alignment}
* Compare, and adjust the pointers
C SA,0(X,LP) \text{Compare to selected element}
JE Matched \text{If equal, found a matching element}
JL Lower \text{Branch if below midpoint}
LAY LP,L(X,LP) \text{Move low pointer upwards}
J Setup \text{And test for finish}
Lower LAY HP,-L(X,LP) \text{Move high pointer downwards, ...}
J Setup \text{And test for finish}
* Construct address of the item we found
Matched LA 9,0(X,LP) \text{Set addr of matched element in GR9}
J Found \text{And go away happy}
```

Figure 677. Example of a binary search

The last two instructions place the address (rather than the index) of the matching element into GR9.

---

276 You can impress your mathematically inclined friends by calling it the “Bolzano-Weierstrass Algorithm”.

906  Assembler Language Programming for IBM z System™ Servers  Version 1.00
There are many ways to sort arrays of data items, some very simple and some quite complex. For small arrays, you can use a simple “exchange” sort:

- Take the first element and compare it to the second. If the first is larger, exchange them.
- Now, compare the second and third, and again exchange them if the second is larger than the third.
- Continue this way until the last two elements have been compared (and possibly exchanged). The largest element will now be in the last element of the array.
- Start again with the first element, but continue only to the next to last item; this will become the second-largest item in the array.
- Repeat these steps until you have compared and exchanged only the first two elements; the first element will then be the smallest in the array.

The number of comparisons in an exchange sort is proportional to the square of the number of elements, so it should be used only for very small arrays.

**Exercises**

40.5.1.(1) If we must search through an entire two-dimensioned array for some value, is it preferable for the array to be stored in row order or in column order?

40.5.2.(2) Suppose the array AA in Figure 677 was ordered in descending order (the wrong way). What will happen?

40.5.3.(3) In Figure 677 we assumed that the byte length of an array element was a power of two; in this case, 4. Rewrite the code sequence assuming that the length of an array element is contained in the word at ElemLen. To simplify, assume also that the part of the element to be matched will be fullword-aligned at the start of the element.

40.5.4.(2) Suppose an ordered array contains both positive and negative values. Write a code sequence that takes advantage of this fact by searching the array sequentially in a forward direction if the search argument is negative, and in a backward direction if it is positive.

40.5.5.(3) Assume the same ordered array as in Exercise 40.5.4. Write instructions that take advantage of this fact to improve a binary search. What improvement do you expect?

40.5.6.(3) Given an array of N word integers stored at Data, write instructions to sort the integers using an exchange sort.

40.5.7.(3) What will happen if you do a binary search for an element in an array that is not strictly ordered? Give an example.

40.5.8.(3) The discussion of an exchange sort above says that the number of comparisons is proportional to the square of the number of elements. Give a more precise estimate.

40.5.9.(3) Suppose we must search an ordered array at Data that contains 2000 elements, each 53 bytes in length. The first 30 characters of an array element hold a name, and the remaining 23 bytes contain related data. The 30-byte search argument to be sought in the array is at SArg a branch to Found is to be made with the address of the matched element in R9, or to None if no match occurs. Write instructions to perform a binary search of the array, matching on the 30-character name.

40.5.10.(2) Compare the instructions you wrote in Exercise 40.5.9 to the following, and determine which is more efficient for an array of 2000 elements. Assume that matches are equally likely for all elements.

---

277 The classic reference for sorting and searching is *The Art of Computer Programming, Volume 3: Sorting and Searching*, by Donald Knuth.
LA 0,53 Element length, for compares
L 3,A(1024*53) Initial increment = (El Length)*...
* (Largest power of 2 contained in (number of elements))
L 1,A(Data) Bottom address
L 2,A(Data+53*2000) Top address, after last element
LA 9,0(1,3) Set initial compare address
Test CR 9,2 Check addr against top
JNL Low If off top, subtract increment
CR 9,1 Check addr against bottom
JL High If off bottom, add increment
CLC SArg(30),0(9) Compare search arg to element
JE Found Branch out if that’s it
JH High Jump if arg bigger than element
Low SR 9,3 Subtract current increment
J ChkEnd Jump to test for end
Hign AR 9,3 Add current increment
ChkEnd CR 3,0 Compare incr to element length
JL None If smaller, no match
SRL 3,1 Halve increment
J Test And try again

What modifications would be required to these instructions if we wanted to scan an array containing (1) 3 elements, (2) 2047 elements, (3) 2048 elements?

40.5.11.(3)+ In Figure 677 on page 906, the search argument is in a register and the array AA was a table of word integers. Revise the instructions in Figure 677 assuming the array contains the addresses of character strings of length SL and your search argument is the address of a similar character string.

In this case, the strings can be anywhere in storage, but their addresses in the array AA refer to them in sort order.

40.6. Stacks

Unlike an array, which usually contains a fixed number of elements, stacks, linked lists, and trees usually contain varying numbers of elements. They are dynamic data structures, containing different numbers of elements as your program executes. Also, the organization of an array is tightly constrained, usually to a contiguous grouping of elements. (If it wasn’t, we couldn’t use efficient addressing expressions!) Stacks can be organized somewhat more loosely, while linked lists and trees may be quite disjointed in their arrangement in memory.

A stack, as its name implies, is a data structure to which elements are added, and from which elements are removed, at the “top”. The requirement that data be added and removed at only one end is a characteristic property of a stack.

The terminology describing stack operations helps us visualize what is happening. When an element is added to the top of the stack, the other elements are “pushed down” one level; hence the name “push-down stack”. Similarly, removing an element from the top allows the others to “pop up” one level.

40.6.1. An Example Using a Stack

Stacks can be used to convert expressions from their familiar infix form\textsuperscript{278} such as $2+3\times5$, to a form more readily adapted to evaluation or (as in a compiler) code generation. For example, the

\textsuperscript{278} Our traditional form of writing arithmetic expressions puts the operators between operands, with parentheses to indicate sub-expressions. Two forms more convenient for computer processing are the prefix and postfix notations. Both involve the use of stacks.
expression $2+3\times5$ is by convention the same as $2+(3\times5)$, because we assign a higher priority to multiplication than to addition. This form of expression is inconvenient for direct evaluation: if in scanning this “infix” expression from left to right, we might place the value 2 in a register and prepare to add it to something, we would find that the “something” should have been evaluated first. It helps to have converted from the standard infix notation to an “operator suffix” or postfix form, but we won’t show how to do that conversion here.

To evaluate an expression in postfix form, two simple rules are used. When an operand is encountered in the left-to-right scan, its value is pushed onto the stack, and when an operator is encountered, the top two elements of the stack are removed, the operator is applied to them, and the result is pushed back onto the stack. For example, the infix expression $9\times3+2$ becomes $93\times2+$ in postfix form, and is evaluated this way:

1. Push 9 and then 3 onto the stack;
2. Remove them and apply the $\times$ operator, and place the result 27 back on the stack;
3. Push 2 onto the stack;
4. Remove the two values 27 and 2 from the stack, apply the $+$ operator, and push the result 29 back onto the stack.

The stack now contains a single element, the value of the expression.

The infix expression $3+5\times7$ is represented in postfix notation as $357*+$, so that all three operands are on the stack before the $\times$ operator is applied. The value of the expression will be $(5\times7)+3$, or 38. If the infix expression had been written $(3+5)\times7$, its postfix equivalent would be $35+7*$, implying a very different order of evaluation: the operands 3 and 5 are stacked and then replaced by their sum 8; the operand 7 is pushed onto the stack, and then the $\times$ operator replaces the 8 and 7 by 56, the value of the expression.

40.6.2. An Example Implementing a Stack

The simplest implementation of a stack uses two items: a linear array of elements, and a “stack pointer” that may be either the subscript or the address of one of the array elements. By convention, the stack pointer locates the element on top of the stack. For example, Figure 678 shows a stack containing the values 9, 2, and 6. It might be represented in memory as the first three elements of an array of fullwords.

```
Stack │ 9 │ /SM630000─ bottom element
 ├───┤
 │ 2 │
 ├───┤
 │ 6 │
 ├───┘
 stack pointer─/SM590000 │
 └/SM630000─ top element
 └SV040000 /SV040000 higher addresses
```

Figure 678. A stack growing toward higher addresses

The element 6 is at the top of the stack, and the element 9 is at the bottom.

We might implement this stack by allocating an array of 20 fullwords at Stack, and carrying the index of the top element in GR1.
SP EQU 1  
StkSize EQU 20  
LM 2,4,"9,2,6"  
STM 2,4,Stack  
LA SP,8  

GRI contains stack pointer  
Stack size (20 elements maximum)  
Initialize with 3 elements  
Put 3 items onto stack  
Set index of stack top to 3rd word  

Stack DS (StkSize)F  
Allocate space for the stack

Figure 679. A stack implemented as an array

Now, suppose the number in GR0 is to be pushed onto the stack: we simply increment the stack pointer and store GR0 using the new index.

AHI SP,4  
ST 0,Stack(SP)  

Figure 680. Pushing a data item onto a stack

If we think of the stack as an array, we have simply increased the subscript denoting the stack pointer by one; this is a common way to visualize a stack.

To remove an element from the stack, we need only move the stack pointer “down” one element, toward the bottom of the stack. Nothing need be done to the old top element, since it is now no longer a part of the stack.  

AHI SP,-4  

Figure 681. Adding top two elements of a stack

The second and third AHI instructions (marked “(**)” in the comment statements) aren’t needed: their actions mutually cancel. Because we know that something will immediately go back onto the stack, it is safe to omit those two statements and leave the stack pointer momentarily referring to an element that was removed.

Because we may want to refer to several elements at the top of the stack, we can take advantage of the z System base-displacement addressing structure by placing the bottom of the stack at the highest-addressed element.

---

There may be situations where you will want to erase or remove the data left in deleted stack elements, to protect the data from being visible to other programs using the same stack (or peeking at activities in your program).
The advantage of using instructions with nonnegative displacements may not be needed if you can access your stack elements using long-displacement instructions.

Pushing and popping are done as in Figure 681, except that the stack pointer now moves (arithmetically) in the opposite direction. We can refer to elements at and below the top of the stack using nonnegative displacements for instructions referring to the stack via the stack pointer. The example in Figure 683 evaluates the same sum as in Figure 681, except that the stack pointer now contains the address of the stack top rather than its index.

```assembly
SP EQU 1 Register GR1 contains stack pointer
StkSize EQU 20 Stack size
- - - Program puts data on stack
L 0,0(,SP) Get top stack element
A 0,4(,SP) Add next-to-top element
ST 0,4(,SP) Store sum at next-to-top position
LA SP,4(,SP) Pop stack once to adjust
- - -
DS (StkSize)F Define space for stack elements
Stack DS 0F Define stack name just past bottom
- - -
LA SP,4(,SP) Pop an element off the stack
CL SP,UStack Compare to underflow address
JNL UndrFlow Branch to error routine if underflow

UStack DC A(Stack) One past bottom of stack

AHI SP,-4 'Push' stack pointer one element
CL SP,OStack Check against stack overflow address
JL OverFlow Branch to overflow error routine
ST 0,0(,SP) It's safe to store on the stack
- - -
OStack DC A(Stack-StkSize*L'Stack) Overflow-test address
```

Checking for possible error conditions in manipulating stacks is strongly advised.

All these examples of stacks have used arrays as the underlying data structure. In Section 40.8, we will see how a linked list can also provide the structure needed to implement a stack.
Exercises

40.6.1.(1) Given the stack arrangement in Figure 682, which of the following statements cannot be used to push a new element on the top of the stack, and why?

(a) ST 0,Stack-4(SP)
    AHI SP,-4

(b) AHI SP,-4
    ST 0,Stack(SP)

(c) ST 0,Stack(SP)
    AHI SP,-4

40.6.2.(1) Using the stack illustrated in Figure 682 and the instruction sequence in Figure 683, write instructions to initialize the stack and the stack pointer to the contents shown in Figure 682.

40.6.3.(1) In Figure 678, an element can be pushed on the top of the stack by writing code as in Figure 680, or by writing

ST 0,Stack+4(SP)
LA SP,4(SP)

Is one method preferable to the other? Why?

40.6.4.(2)+ Show the result of evaluating the following postfix expressions, and show the contents of the operand stack at each step.

(a) 7 3 2 5 * * *
(b) 7 3 2 * 5 + *
(c) 7 3 + 2 5 * *

What would these expressions look like in “infix” notation?

40.6.5.(3)+ Suppose a postfix expression is represented in memory as an array of pairs of halfword integers. The first integer of the pair is a code describing the second integer: if the first integer is 0, the second is an operand; if the first is +4, the second is an operator; if the first is -1, it indicates “end-of-expression”. The values used to indicate operators are 0 for +, and +1 for *. Thus the expression 234*+ is represented by the integers

0, 2, 0, 3, 0, 4, 4, 1, 4, 0, -1.

Assuming that this representation is stored in an array at Expressn, write a program segment that will evaluate the expression and leave its value in GR1.

40.6.6.(3)+ Extend your solution to Exercise 40.6.5 to include tests for valid operator codes and for the possibility of stack overflow and underflow. Also, allow for subtraction and division, which have operator codes +2 and +3 respectively.

For subtraction, treat the stack top as the minuend, the number to be subtracted from the element below it; and for division, treat the stack top as the divisor and the element below it as the dividend.

40.6.7.(3)+ Show how two stacks of word elements Stk1 and Stk2 can be built in a single array A of N words, in such a way that either stack could use all N words if the other stack is empty; the two stacks grow from each end of the array toward each other.

Show how to implement Push1, Push2, Pop1, and Pop2 routines that will push and pop elements onto and from either stack, being careful to detect overflow and underflow conditions for each stack.
40.7. Lists

Most people use the word “list” to mean a linear table of items, like a shopping list. In computer-speak, a list has a more specific meaning.

The basic element of a linked list has two components, a data field and a link field. The data field may contain more than one data value. The link (or successor or chain) field contains a “pointer” to the next list element; the pointer may be its address, its offset relative to the current element, its array subscript, or whatever is appropriate to the application. Often, the actual address is used, especially when new list elements are allocated from available memory.

There are two ends to a list. The first element is sometimes called the head; it has no predecessor; and the last element, the tail, has no successor. The absence of a link in the link field of a list element is usually indicated by storing a special and easily identifiable null value such as 0 or −1.

Two basic operations on linked lists are insertion and deletion.

40.7.1. List Insertion

Suppose we have a list with elements E1 and E3 as shown in Figure 685, and we want to insert element E2 between them.

The insertion proceeds in two steps:
1. Move the link field pointing from E1 to E3 into the link field of E2, so that E2 now points to E3.
2. Store a link pointing to E2 into the link field of E1.

E3 is not referenced during the insertion, only the link to it from E1.

To illustrate, suppose a list element consists of two successive fullwords, the first containing the link and the second containing the data, as illustrated in Figure 684. (The link could be the actual address of the successor element.) Suppose also that GR1 contains the address of E1, and GR2 contains the address of E2. First, we’ll do this without using a DSECT:

```
Link Equ 0 Offset of link field in list element
L 0,Link,(1) Copy Link(E1) into GR0
ST 0,Link,(2) Link E3 to E2
ST 2,Link,(1) Now link E1 to E2
```

Figure 686. Example of inserting an element into a linked list
These instructions will work correctly even when \( E1 \) is the last element and \( E2 \) is to become the new tail, because the previous link field of \( E1 \) was a null link.

The example in Figure 686 uses explicit addresses in the three instructions. Now, we define a DSECT to describe the list element:

```
List_El DSECT , Describe a linked list element
Link DS A Link address to successor
Data DS XL20 20-byte Data field
Elem.Len Equ *-List_El Length of a list element
```

Figure 687. DSECT describing a list element

We will use the DSECT mapping for each reference to a list element. It has the benefits of DSECT mappings while letting the Labeled Using statements direct symbol resolutions to specific registers; \( E1 \) and \( E2 \) are symbol qualifiers.

```
E1 Using List_El,1 Map the E1 list element
E2 Using List_El,2 Map the E2 list element
 L 0,E1.Link Load link to E3 from E1
 ST 0,E2.Link Store link to E3 in E2’s link field
 ST 2,E1.Link Store link to E2 in E1’s link field
 Drop E1,E2 DROP both Labeled Usings
```

Figure 688. Mapping multiple list elements with Labeled USINGs

This is much simpler (and clearer) than similar statements based on Ordinary USING statements.

### 40.7.3. List Deletion

Removing an element from a list is very simple. To delete \( E2 \) from its position between \( E1 \) and \( E3 \), move the link field from \( E2 \) into the link field of \( E1 \), replacing the previous link to \( E2 \).

![Diagram of list deletion](image)

Figure 689. Deleting an element from a linked list

First, we delete \( E2 \) assuming the same register contents and definition of the Link offset as in Figure 686:

```
 L 0,Link(,2) Link from E2 to E3 in GR0
 ST 0,Link(,1) Now link E1 directly to E3
```

Figure 690. Example of deleting an element from a linked list

These instructions work even when \( E2 \) is the last element of the list, because the link field of \( E2 \) (which then becomes the link field of \( E1 \)) is then a null link.

With Labeled USINGs, the instructions in Figure 690 can be written as in Figure 691, where all symbol references are implicit.

```
E1 Using List_El,1 Map the E1 list element
E2 Using List_El,2 Map the E2 list element
 L 0,E2.Link Load link from E2 to E3
 ST 0,E1.Link Store link to E3 in E1’s link field
```

Figure 691. Example of deleting an element from a linked list
As your data structures become more complex, Labeled USINGs and qualified symbols let you write much clearer code.

These brief examples raise three questions that we’ll need to answer:

1. Where do list elements come from? For example, Figure 685 shows a new element E2 without indicating how it was created.

2. When an element is deleted, what happens to it? In Figure 689, element E2 has no link pointing to it; is it lost?

3. How do you find the first element (the head) of the list? In Figures 685 and 689, how should we find E1?

The simplest answers to these questions are a free storage list and a list header or anchor.

### 40.7.4. Free Storage Lists

There are many ways to obtain new list elements. Requesting the needed bytes from the program’s operating environment each time you need a new element can be expensive, so the more usual technique is to create a Free Storage List, or FSL. The program first acquires memory to hold enough list elements for the application, either by defining space at assembly time or by requesting the memory space when the program starts. For simplicity, our examples will define the FSL at assembly time.

The FSL initially contains all the unused and available list elements in a single list. As elements are needed for other lists, they are removed from the FSL, and as elements are deleted from other lists, they are added back onto the FSL.

To define a free storage list of 20 two-part elements like the one in Figure 687, we could write

```assembly
NLstItms Equ 20 ; Number of items on free storage list
FSLCount DC A(NLstItms) ; Count of free-storage list items
FSLHLink DC A(FSLHead) ; List anchor: link to head element
FSLTLink DC A(FSLTail) ; List anchor: link to tail element
* Now, define the FSL
FSLHead DC (NLstItms-1)A(**+Elem.Len-4,0,0,0,0,0) ; All but FSL tail
FSLTail DC (Elem.Len/4)A(0) ; Tail element with null link field
```

Figure 692. Defining a free storage list as an array

Figure 692 shows why it may be better to initialize a FSL at execution time. The statement named `FSLHead` required knowing the number of words in a list element, and the Assembler, Linker, and Program Loader must process blocks of list elements. Also, the number of elements in the FSL might be specified at execution time, when more elements can be added to the FSL as needed.

We can also initialize a FSL at execution time, as shown in Figure 693:

```assembly
Using List_El,1 ; Map the elements of the FSL
L 1,FSLHLink ; Point to first list element
LA 0,NLstItms-1 ; Count (no. elements)-1 in GR0
FSLoop LA 2,Elem.Len(,1) ; Addr of next element
ST 2,Link ; Store link in this element
LR 1,2 ; Move 'next' addr to 'this'
JCT 0,FSLoop ; Repeat for all but last
ST 0,Link ; Store 0 for null link in tail
```

Figure 693. Initializing a free storage list as an array
A simple way to locate the head element of a list is to maintain a separate list anchor whose location is known, and that points to the first (head) element on the list. If the list anchor contains a null link, the list it anchors is empty; otherwise it points to the head element.280

In addition to a pointer to the first list element, the list header might contain a count of list elements and a pointer to the last element in the list. Figure 694 illustrates such a list anchor.

![Figure 694. Example of a list anchor](image)

The free-storage list anchor can be mapped by its own DSECT:

```
FSLDSECT Dsect , Map a free storage list anchor
FSLCount DC A(0) Count of list items
FLSLLink DC A(0) Link to head element
FSLTLink DC A(0) Link to tail element
```

Figure 695. DSECT mapping a list anchor

The “count of list items” field and the link to the list tail are optional, but they can help if you need to know how many items are in the list. Also, keeping a count of the number of free elements makes it easier to know when you may need to allocate more free elements. These fields can also help you check to make sure no list elements have vanished.281 The link to the last item is useful if you need to insert an item at the end of the list, so you won’t have to search the entire list to find the last element.

If your program needs frequent access to the list anchor and a general register is readily available, you can keep the anchor in a register and never need to store it.

An anchor for a “working” list could take the same form as the anchor for the FSL shown in Figure 692:

```
WorkList DSECT , Map a free storage list anchor
LstCount DC A(0) Count of list items
LsthLLink DC A(0) Link to head element
LstTLLink DC A(0) Link to tail element
```

Figure 696. Defining an anchor for a working list

As items are taken from the FSL and added to the working list, the fields of the list anchor are updated. For example, suppose we remove an element from the FSL defined in Figure 692 and insert it at the head of the working list shown in Figure 696:

---

280 Sometimes it is convenient to include the first list element in the list anchor. Then, the list is never empty, and the function of the list head is performed by the list anchor.

281 Leaving chunks of previously referenced and now inaccessible storage (known as “memory leaks”) is a very poor programming practice. Some programming languages provide “garbage collection”, but garbage collectors still must know what can safely be collected and what cannot.
Using FSLDsect,9 Mapping of the FSL anchor
LT 0,FSLCount Check count of free elements
JNP NoneLeft Must take some corrective action
L 1,FSLHLink Link to first free element in GR1
Using List_E1,1 Map the new list element
L 2,Link Link to next free element in GR2
ST 2,FSLHLink Previous 2nd element becomes head
BCTR 0,0 Subtract 1 from availability count
ST 0,FSLCount Store updated free-element count
- - - Assume c(GR5) = A(work list anchor)
Using WorkList,5 Mapping of the FSL anchor
L 2,LstHLink Get link to current work list head
ST 1,LstHLink Link to new list-head element
ST 2,Link Old head becomes second element
L 0,LstCount Get current working list count
AHI 0,1 Increment by 1
ST 0,LstCount Restore updated working list count
Drop 9,5 Release mappings of list anchors

Figure 697. Moving a list element from the FSL to the working list

GR1 will contain the address of the newly acquired WorkList element.

Removing an element from the working list and returning it to the FSL uses a similar sequence of instructions.

The sum of the element counts in FSLCount and LstCount should always be the same as the number of items originally on the FSL.

Sometimes it’s useful to link the list tail back to the list head, making the list circular. (See Exercises 40.7.2 through 40.7.6.)

If we restrict list insertion and deletion to the head element, we have an implemented a stack! This can be useful in applications where a stack must share or compete for space with other list structures, because you can allocate stack elements as needed.

The examples in Figures 692 and 693 used addresses as links. Another way to implement a linked list is with a two-column array as the underlying structure. To illustrate, suppose we have an array of NLItms rows and two columns: the first column contains a “link” index to a successor element, and the second column holds the data for that element. Figure 698 shows how this might look:

<table>
<thead>
<tr>
<th>Index</th>
<th>Link</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td>NLItms</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 698. A two-dimensional array to implement a linked list

We need two additional values: HeadNdx, the index of the first element in the working list, and FreeNdx, the index of the first element of the free-element list. First, we initialize the “list” so that all elements are on the “free” list:

1. Set HeadNdx to zero (no elements in the list).
2. Set \texttt{FreeNdx} to 1.
3. Set each Link to the index of its successor, except the last, which is set to zero to indicate the end of the free list.

The list would then look like this:

<table>
<thead>
<tr>
<th>Index</th>
<th>Link</th>
<th>Data</th>
<th>HeadNdx = 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>:</td>
<td>:</td>
<td></td>
</tr>
<tr>
<td>NLItms</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 699. Initializing a two-dimensional array implementing a linked list

Exercises 40.7.10 through 40.7.14 use this form of a linked list.

**Exercises**

40.7.1.(2) In Figure 697, what will happen to the fields of the working list anchor at \texttt{LstAnchr} if deletions remove all list elements?

40.7.2.(1) Write instructions to initialize a circular free storage list.

40.7.3.(2) Write instructions to add an element to the end of a circular list.

40.7.4.(2) Write instructions to remove an element from a circular list.

40.7.5.(2)+ Suppose you have implemented a circular list without maintaining a count field in the list anchor. How can you tell when the list is empty?

40.7.6.(2)+ Suppose you have implemented a circular list without maintaining a count field in the list anchor. How can you tell when you have processed all the elements in the list?

40.7.7.(2) Rewrite the instructions in Figure 697 to delete the head element of the working list and return it to the FSL.

40.7.8.(3) Write an instruction sequence to take a new element from the FSL and add it to the tail of the working list.

40.7.9.(3) Write an instruction sequence to take an element from the tail of the working list and return it to the FSL.

40.7.10.(2) In Figure 698, suppose the link field of each row is a word integer, and the length of the data field is \texttt{DataLen} bytes, which has been defined symbolically and is a multiple of 4. Write statements to allocate an array of \texttt{NLItms} rows (also defined symbolically), starting at \texttt{ArrStack}.

40.7.11.(3) Using the definitions in your solution to Exercise 40.7.10, write a sequence of instructions that will initialize the list at \texttt{ArrStack} as shown in Figure 699, and initialize the values of \texttt{HeadNdx} and \texttt{FreeNdx}.

40.7.12.(3) Assume a list has been initialized as shown in Figure 699, and that the values of \texttt{HeadNdx} and \texttt{FreeNdx} have been initialized also.
First, show the steps needed to take an element from the “free list” referenced by FreeNdx and assign the index of this new element to NewNdx, and update FreeNdx appropriately.

Then, write a sequence of instructions to do these steps. If no free elements are left, branch to NoneLeft.

40.7.13.(3) Suppose two data elements have been added to the list shown in Figure 699, where the second element was added to the end of the list. Now, you need to add a new element with index NewNdx to the list, after the existing element in the list with index PrevNdx.

First, show the steps needed to put the new element into the list at the specified position. Then, write a sequence of instructions to do these steps.

40.7.14.(3) Suppose several elements have been added to the list shown in Figure 699, and you need to remove the element with index Currndx and return it to the free storage list.

First, show the steps needed to remove the specified element from the list and return it to the free list, and updating the working list to account for the removed element.

Then, write a sequence of instructions to do these steps.

40.7.15.(2) Suppose the free storage list in Figure 692 on page 915 had been defined by writing

\[
\text{FSLAnchr DC A(FSLHead)} \\
\text{DC (Elem_Len/4)A(0),(NLstItms-1)A(*-4,0,0,0,0,0)} \\
\text{FSLHead Equ *-Elem_Len}
\]

How would instructions using this new list differ from those using the list in Figure 692?

40.7.16.(2) Write a code sequence that obtains a list element from a free storage list anchored at FSL and inserts it at the head of a list anchored at ListHead. If the free storage list is empty, branch to AllOut.

40.7.17.(3) Do as in Exercise 40.7.16, with this added requirement: the fullword integer at DataInt is stored in the data field of the new element, and the new element is then inserted into the list at a position where its data value exceeds none of its predecessors. That is, the list must be arranged in descending order of data items.

40.8. Queues

Linked lists occur in many forms; an important form uses double chaining. We saw in the previous examples that simple lists can be scanned only in the “forward” direction, starting at the head and chaining toward the tail.

It is often useful to be able to move in both directions, so the list elements must contain both a forward link and a backward link. We call this doubly-chained structure a queue; elements can be added and removed at both ends of such a list.

Figure 700 illustrates the structure of a queue element:

![Diagram of a queue element]

Figure 700. Structure of a queue element

A queue element contains links to its predecessor and successor elements (sometimes called “forward” and “backward” links), as sketched in Figure 701.
Adding and deleting list elements other than the head or tail is more complicated than for singly-linked lists, because four links involving three elements must be manipulated. For example, suppose we have defined a DSECT describing the queue elements with these statements:

```
Q_El DSECT , Mapping of a queue element
LLink DS A Link to (left) predecessor element
RLink DS A Link to (right) successor element
ElemData DS XL(DataLen) Space for the element’s data
```

Figure 702. DSECT structure of a typical queue element

Now, suppose also that we have located two elements of the queue pointed to by GR2 and GR3, and we want to insert the new element pointed to by GR5 between them, as in Figure 703.

After the new element has been inserted, we want the result to look like this, where the links that must be changed during the insertion process are indicated in Figure 704 by the numbered keys 1 and 2 (the “left” links), and by 3 and 4 (the “right” links).

Four steps are needed to do the insertion:

1. Copy the LLink (predecessor link) field from the Right element into the LLink field of the New element (1). The predecessor of New is now Left.
2. Store a LLink to the New element into the LLink field of the Right element (2). The predecessor of Right is now New.
3. Copy the RLink (successor link) field from the Left element into the RLink field of the New element (3). The successor of New is now Right.
4. Store a RLink to the Right element into the RLink field of the New element (4). The successor of New is now Right.
If we use actual addresses as the links, we could do this (where the numbered steps above are shown in the comments fields):

```
L 0,LLink-Q_El(,3) Get left link from Right element
ST 0,LLink-Q_El(,5) Store as left link of New element
ST 5,LLink-Q_El(,3) Store left link from Right to New
L 0,RLink-Q_El(,2) Get right link from Left element
ST 0,RLink-Q_El(,5) Store as right link of New element
ST 5,RLink-Q_El(,2) Store right link from Left to New
```

Figure 705. Instructions to insert a new queue element

This style of coding is awkward and error-prone because explicit addressing is used for every instruction. If any of the registers must be reassigned, every instruction using that register must be found and updated.

We could use ordinary USING statements to refer to the fields in each element with proper symbolic addressing:

```
Using Q_El,3 Map RIGHT element
L 0,LLink Save old Right.LLink
ST 5,LLink Store new Right.LLink
Drop 3 Unmap RIGHT element
Using Q_El,2 Map LEFT element
L 1,RLink Save old Left.RLink
ST 5,RLink Store new Left.RLink
Drop 2 Unmap LEFT element
USING Q_El,5 Map NEW element
ST 0,LLink Store new New.LLink
ST 1,RLink Store new New.RLink
Drop 5 Unmap NEW element
```

Figure 706. Insert a new list element with ordinary USINGs

The primary shortcomings of this method are:
- intermediate temporaries (in this case, registers 0 and 1) are used to hold some of the pointers;
- it requires a precise sequence of USING and DROP statements to obtain correct address resolutions;
- two additional instructions are required (Load and Store via registers).

To eliminate the need for intermediate temporaries, we can use MVC instructions to move the fields (with a presumed gain in efficiency):

```
RNew Equ 5 R5 points to New element
USING Q_El,RNew Map NEW element
MVC LLink,LLink-Q_El(,3) Move old Right.LLink
ST RNew,LLink-Q_El(,3) Store new Right.LLink
MVC RLink,RLink-Q_El(,2) Move old Left.RLink
ST RNew,RLink-Q_El(,2) Store new Left.RLink
```

Figure 707. Ordinary-USING Code to Insert a New List Element

This sequence contains the “efficient” instructions, but its defects are:
- greater difficulty of understanding;
- increased likelihood of maintenance problems due to fixed register assignments in the instructions.

The simplest and clearest solution is to use Labeled USINGs, with appropriate descriptive qualifiers Left, Right, and New. Thus, three instances of the DSECT named Q_El are concurrently active.
RNew Equ 5 R5 points to New element
Left Using Q_El,2 Labeled USING for Left element
Right Using Q_El,3 Labeled USING for Right element
New Using Q_El,RNew Labeled USING for New element

- - -
MVC New.LLink,Right.LLink 1 Link from New to Left
ST RNew,Right.LLink 2 Link from Right to New
MVC New.RLink,Left.RLink 3 Link from Left to New
ST RNew,Left.RLink 4 Link from New to Right

Figure 708. Labeled USING example: inserting a new queue element

The advantages in clarity, readability, simplicity, and improved ease of maintenance are clear. The only references to specific registers are in the USING statements. Without Labeled USINGS, the code for these operations is more convoluted, and difficult to read, understand, and maintain.

A free storage list for queue elements can be the same as for a singly-linked list, because the free-list elements only need to be chained in one direction.

Queues are sometimes “circular”, where the last element is linked to the first and the first to the last. This allows searching in either direction, starting at the queue head.

Exercises

40.8.1.(2)+ Describe the steps necessary to delete element Q2 between elements Q1 and Q3 in a queue. Use the queue-element definition in Figure 702.

40.8.2.(3)+ Suppose you have defined a queue of elements with a 4-byte data field containing a word integer. The elements are ordered along the forward links in descending value: that is, the data in the element pointed to by the forward link (if it exists) is less than the value in the element containing the link. The list anchor points to an arbitrary element of the queue. Write instructions that search the queue for an element whose data item matches the word integer at Value. If no match exists, branch to InsertIt.

40.8.3.(4) When inserting elements into an ordered queue, the list may become unbalanced if most of the entries are added on one side of the “center” element pointed to by the anchor. To remedy this, maintain a flag indicating which side of the “center” received the most recent insertion. If two successive insertions occur on the same side, the anchor is changed so that the “center” element is moved one element in that direction.282

Write an instruction sequence that constructs such a balanced queue from the array of 100 fullword integers starting at DataVals.

40.9. Trees

Trees are structures whose elements may contain pointers to more than one “successor” element. In a binary tree, for example, each element (or node) contains a data field and links to at most two successors. Because the term “successor” is not well defined when more than one is possible, we sometimes use a more “personified” terminology and call the successors of the “parent” node its “left” and “right” children. One parent node is distinguished by having no parent of its own; it is called the root of the tree.

The literature on trees is vast, so we will simply give a few examples to illustrate possible implementations. The format of a typical tree element is illustrated in Figure 709.

282 This technique was used in the old IBM Fortran H compiler to construct its symbol tables.
We can map the structure in Figure 709 with a DSECT like that in Figure 702:

```
Tree_El DSECT , Mapping of a tree element
LLink DS A Link to left subtree
RLink DS A Link to right subtree
ElemData DS XL(DataLen) Space for the element's data
```

The topmost node of a binary tree is its "root" node. All accesses to nodes in the tree start at the root. An example of a binary tree with 3 nodes is shown in Figure 711.

Figure 711. Three nodes of a binary tree

This might look like a three-node queue with "empty" links, but a tree with more nodes might look like Figure 712; we see that a tree structure can't be represented by a queue.
Suppose we want to construct a symbol table using a binary tree, so that the symbols are maintained in alphabetic order. If we look at the symbol in a given node, all the symbols in the “left subtree” (that is, the left subtree and its subtrees) precede the given symbol in alphabetic order, and all the symbols in the “right subtree” and its subtrees follow the given symbol. Assume that the tree elements are composed of three successive words, as illustrated in Figure 709. Let GR0 contain a 4-character symbol to be entered into the tree, and suppose GR1 contains the address of an empty node obtained from a free storage list. As additional simplifications, we suppose the tree already contains some entries, and if one of them matches the new symbol, we will branch to FoundIt.

```
New Using Tree_E1,1 Map the new node based on GR1
RW Equ 3 Use GR3 as a work register
L RW,RootPtr Pick up pointer to root node
Compare LR 2,RW Point to node to be compared
Using Tree_E1,2 Anchor the tree element mapping
CL 0,ElemData Compare symbol to current node
JL GoLeft Symbol smaller, search left subtree
JE FoundIt Symbol already in tree, exit.
GoRight L RW,RLink Get link to right subtree
LTR RW,RW Check for right subtree
JNZ Compare Right exists, scan right subtree
ST 1,RLink New node becomes right subtree
J Store And go store symbol
GoLeft L RW,LLink Get link to left subtree
LTR RW,RW Check whether it’s there
JNZ Compare Branch if yes to search
ST 1,LLink New node becomes left subtree
Store ST 0,New.ElemData Store symbol into new node
XR 0,0 Clear GR0 for storing new links
ST 0,New.LLink Clear left and right links of...
ST 0,New.RLink ...new node: it has no subtrees
- - -
FoundIt - - - Data already entered in the tree
```

Figure 713. Entering a new node in a binary tree
This method can be inefficient: if the symbols being entered in the tree are received in ascending alphabetic order, we will generate a tree that is actually a linear list, chained along the right-tree links. Techniques for balancing binary trees are beyond the scope of this section, but are described in many programming references and textbooks if you're interested.

Having constructed a tree, we will need to search it to retrieve the symbols in alphabetic order. Because all left subtrees precede their parents, and the right subtrees follow their parents, we must scan the left subtrees of a node before “processing” the data in that node, followed by a scan of the right subtrees. There are two problems to be solved: how to “travel” through a tree structure, and how to keep track of which sons of a node have been visited, and which ones are still to be processed.

As we work our way from the root toward the lower levels of the tree, we must retain some information on how to return to the parents of the nodes already passed. This problem is easily solved if each node contains a link to its parent, but this requires an extra link field in each node. Similarly, if some space outside the data structure is available, we can also maintain a stack of return links; each time we move from a parent node to one of its sons, the address of the parent node is pushed onto the stack, to be popped off when we return to the parent. A third technique is to reverse the links as we pass over them: when moving from parent to son, one of the links in the son node is saved in a register, and the link field is replaced by a pointer to the parent node. Then, when returning from son to parent, the links are restored to their original and correct orientation. (This method cannot be used if the tree may be traversed by more than one process at a time, as might occur in large application programs such as reservation systems and similar data bases.)

The second problem, keeping track of which subtrees of a node are still to be processed, requires maintaining some kind of counter at each level. If we are using a stack to hold return links, we can push the number or address of the next subtree to be processed onto the stack at the same time. Otherwise, a field in the node must be available to hold the count. In a binary tree the counter can be a single bit.

We will traverse the binary tree constructed in Figure 713, extract the symbols in alphabetic order, and store them in a table of fullwords starting at \textbf{Ordered}. Assume there is a sufficiently large array of fullwords at \textbf{LStack} that can be used to hold the return links. Since the tree is binary, we need not maintain a count; to indicate that a node has been “processed”, the return link on the stack will be stored as a negative value.
RW   Equ 3          Use GR3 as a work register
Rtbl Equ 1         Pointer to output table
RStk Equ 4         Points to word past top of stack
L    RW,RootPtr    Initialize work pointer to root
LA   RStk,LStack   Initialize link stack pointer
LA   Rtbl,Ordered  Initialize output pointer
SR   2,2          Node pointer = 0 indicates root
StackLnk ST 2,0,(RStk) Put current node pointer on stack
LA   RStk,4,(RStk) Bump stack pointer by 4
LR   2,RW         Move to left subtree node
Using Tree_E1,2   Map the tree node’s structure
LookLft L    RW,LLink Get its left subtree link address
LTR  RW,RW       Does its left subtree exist...
JNZ StackLnk    If yes, stack link and continue
Output L 0,Data(2) ‘Process’ the data from the node...
ST  0,0,(Rtbl)   ...by storing it into the table
LA   Rtbl,4,(Rtbl) Increment table storage address
LookRgt L    RW,RLink Get the right subtree link address
LTR  RW,RW       Does the right subtree exist...
JZ    Return     Branch if not to return to parent
LCR  2,2       Form negative value for stack
J    StackLnk    Go stack link, look leftward
Return AHI RStk,-4 Pop stack pointer once
L    2,0,(RStk)  Retrieve popped return link
LTR  2,2       Check for already processed
JM    Return     Branch if yes, pop again
JP    Output     Go process the node if available
- - -          Otherwise if zero, we’re all done
LStack DS 20F    Stack for node links
Ordered DS 100CL4 Ordered output values

Figure 714. Retrieving data from a binary tree

The examples in Figures 713 and 714 have used one of three common ways to traverse a binary
tree. We assumed that each left subtree contains elements less than that of the parent node, and
each right subtree contains elements greater than the parent node’s. This is called “inorder” traversal. The other two forms are called “preorder” and “postorder”. The order of traversal for each
of the three forms is

- preorder: parent, left subtree, right subtree
- inorder: left subtree, parent, right subtree
- postorder: left subtree, right subtree, parent

Consider the small tree with 3 nodes and 7 elements shown in Figure 715:

Figure 715. Example of a binary tree of 7 elements

The order in which the elements are visited is

- preorder traversal: A B D E C F G
- inorder traversal: D B E A F C G
- postorder traversal: D E B F G C A

Other types of trees with more than one data element and more than two links per node are
widely used; they are sometimes called “B-trees” or “N-trees”. For example, a B-tree node with
two data elements and three links might look like this:
You will need to know the number of data items and links in a node so you can know how many comparisons are needed, either to locate an item in this node or to follow a link to a lower node.

B-trees can mean that fewer nodes need to be searched to locate a particular data item.

**Exercises**

40.9.1.(2) The description of tree traversal methods always visits a “left” subtree before a “right” subtree. What would happen if the order of left and right were interchanged?

40.9.2.(2) Figure 711 on page 923 shows a binary tree with 3 nodes. How many other 3-node binary trees are possible?

40.9.3.(2) Now that you have solved Exercise 40.9.2, suppose your 3-node binary trees contain the symbols A, B, and C in alphabetic order. If the trees are traversed using “inorder” traversal, sketch what your trees will look like.

40.9.4.(3) Suppose an element of a tree can have up to four subtrees, of which the values in the first two precede it and the values in the last two follow it, in whatever ordering is applied to the contents of the data field. In addition, the subtrees are ordered (by the same relation) from “left” to “right”. What additional fields are required in the node? What are the advantages of such a representation over a binary tree?

### 40.10. Hash Tables

As with the other structures, the literature on hash tables is large. We will give only enough background here to illustrate some implementation techniques for z System.

All of the previously described data structures suffer from one important defect: to locate an element, the structure must be searched in an orderly and sometimes sequential fashion. We have seen how to search arrays and lists linearly, and how to use binary trees, or binary search in an array, to search more efficiently. When the number of data elements is large, however, even these techniques become less efficient.

If the data need not be stored and retrieved in an ordered way, and if few deletions are performed, **hash addressing or hashing** is an attractive alternative. This “associative” form of addressing locates the element directly by its contents rather than by its position in an array, list, or tree.

There are many “hash functions”. The one you use is unimportant, so long as it creates a reasonably uniform distribution of hash values: you don’t want too many data items to have the same hash value, because your hash table will have too many items in some areas and too few in others.

The item to be inserted or found in the table (called the *key*) is used to form a “numeric hash”, a pseudo-random number generated from the datum itself. For example, the bits of the key may be
hashed by multiplying or dividing, or by adding or XORing pieces of the key together. This hash value is then used as an index to look into (or probe) a table. If the probed position is vacant, the datum is entered there; if it is not vacant and the datum occupying that position does not match the key, a collision has occurred. We can make further probes to find either a match or an empty place in the table, or create another data structure anchored at the hash position.

Figure 716 gives an example of a hash function; another is shown in Figure 717. Suppose the word at DataItem should be placed into a hash table with 73 entries. Our hash function will XOR the two halves of the data item, and divide the result by the number of table entries to create the hash-table index.

```
HashEnts Equ 73 Number of hash table entries
XR 0,0 Set GR0 to 0
LR 1,0 And also GR1
ICM 0,3,DataItem First 2 bytes of data item in GR0
ICM 1,3,DataItem+2 Last 2 bytes of data item in GR1
XR 1,0 XOR the halves into GR1
XR 0,0 Clear GR0 for a division
D 0,=A(HashEnts) Divide by hash table size
* Hash index is now in GR0
```

Figure 716. Example of searching a hash table

Suppose we have two fullword arrays starting at Symbols and Count, containing NE entries each. Each element in the Symbols array may contain a 4-character alphanumeric symbol, and each element of the Count array is an integer count of the number of occurrences of that symbol. We wish to test if the symbol stored at InData appears in the table; if not, it will be entered and its count will be set to 1; if there already, its count will be incremented by 1. A few further points remain:

1. The number NE of table entries is usually chosen to be prime, giving a more uniform distribution of entries. We will use as a hash value the remainder from dividing the EBCDIC representation of the key by NE.

2. If we encounter a non-matching table entry (a collision), we will probe further simply by moving to the next higher position in the table. If we run off the top, we begin again at the bottom.

3. If no vacant position remains, and no match occurs after searching the entire table, branch to FullUp.

In Figure 717, GR6 contains the hashed value of the key symbol; GR2 contains the symbol being sought; GR0 contains zero (to test for vacant positions); and GR1 is used as an index for the currently probed position of the table.
This example isn’t very useful, because the hash table cannot hold more data items than the number of elements.

Hashing can be advantageously combined with other structures. For example, if each element of the `Syms` array is the anchor for a linked list or a binary tree, the table can hold many more items without much increase in search time. In such cases, we needn’t worry about secondary probes in the event of a collision; the list or tree anchored at that position is searched for a match, and if none exists a new element is added to the structure.\(^{283}\) Searching such structures can be very efficient.

As with the other structures, the literature on hash tables is large.

### Exercises

40.10.1.(2) Reduce the number of instructions in Figure 716 by using shifts.

40.10.2.(2) In Figure 716, what will happen if the two ICM instructions are replaced by LH instructions? Will a valid hash index be generated?

---

\(^{283}\) This method, with a linked list anchored at each hash table entry, was used to construct the symbol table in the original System/360 IBM “F-level Assembler”.
40.11. Summary

The variety of data structures is huge; this section has tried to show how to handle some of the more common types.

Terms and Definitions

array
A collection of data items usually of the same data type and length, arranged in contiguous storage locations. Usually accessed using one or more index variables or “subscripts”.

table
A term often used to describe a one-dimensional array whose columns contain a mixture of different data types and lengths.

column order
A way to store arrays so that the elements of each column follow one another in memory. The normal ordering for one-dimensional arrays. For arrays of two or more dimensions, subscripts cycle most rapidly from left to right.

row order
A way to store arrays so that the elements of each row follow one another in memory. For arrays of two or more dimensions, subscripts cycle most rapidly from right to left.

linear subscript
For arrays of two or more dimensions, the evaluation of a subscript that treats the array as having been mapped into a one-dimensional array corresponding to the CPU’s linear arrangement of bytes in memory.

virtual origin
The address of a (possibly nonexistent) array element all of whose subscripts are zero.

address table
A table of addresses of individual rows or columns of an array, allowing faster access to the elements of that row or column.

binary search
A technique for searching ordered arrays by probing the midpoint of successively smaller portions of the array.

list
A sequence of data elements each containing a link to its successor. If the first and last elements are identified and the next element to be accessed is the last, sometimes called a “First In, First Out” (FIFO) list.

linked list
Same as list. Sometimes called a “single-threaded” list.

free storage list
A list containing unused and available elements. Abbreviated FSL.

stack
A data structure with a single visible element, the “stack top”. Sometimes called a “Last In, First Out” (LIFO) list or queue.

queue
A sequence of data elements each containing links to its successor and to its predecessor. Sometimes called a “doubly-linked list.”

doubly-linked list
Same as queue. Sometimes called a “double-threaded” list.

binary tree
A data structure in which each element contains links to two other elements, a “left subtree” or “left child”, and a “right subtree” or “right child”.


**preorder tree traversal**
A technique for traversing a binary tree, visiting first the parent node, then the left subtree, and then the right subtree.

**inorder tree traversal**
A technique for traversing a binary tree, visiting first the left subtree, then the parent node, and then the right subtree.

**postorder tree traversal**
A technique for traversing a binary tree, visiting first the left subtree, then the right subtree, and then the parent node.

**hash function**
A function that creates a randomized linear subscript from a data element. Used to avoid lengthy table searches for large or complex data items.

**hash table**
A table of data items (possibly including lists and pointers to other data items or structures) whose entries are accessed using the results of a hash function.

**B-tree**
A tree whose nodes contain more than one data element, and more than two links to successor nodes.

**infix notation**
The traditional form of writing arithmetic expressions, where operators are placed between operands, as in $2*(3+4)$.

**postfix notation**
A representation of expressions convenient for evaluation. The infix form $2*(3+4)$ is represented as $2\; 3\; 4\; +\; *$.

### Programming Problems

**Problem 40.1.(3)** This problem requires that you plot a graph to occupy a full page of printed output that we’ll assume is a two-dimensional array 60 lines high and 120 characters wide (that is, 60 rows and 120 columns). Suppose we divide the page into 119 horizontal divisions (columns) corresponding to X values in the range $-59 \leq X \leq +59$, and 59 vertical divisions (rows) corresponding to Y values in the range $-29 \leq Y \leq +29$.

Set the first character in each line to a blank character, except on the first line, set it to ‘C1’. On this “page” you should plot

1. an X-axis (use minus signs)
2. a Y-axis (use capital letter I’s or vertical bars)
3. the Y-values corresponding to the functions
   - (a) $Y = (X/2) + 6$ (use X’s for the points), and
   - (b) $Y = 25 - (X*X)/50$ (use asterisks for the points).

If a Y-value lies off the page, plot nothing. Your graph will look roughly like an inverted parabola with a diagonal line through it, as in the following sketch (so you can tell whether your graph is upside down or otherwise lopsided):
Problem 40.2. (3) Write a program to evaluate logical expressions of the form used in symbolic logic. For example, if “&” represents AND and “|” represents OR, and A, B, and C are logical variables, we might ask if the expression

\[ \text{A\&B(C|A)} \]

is true for all possible true-false values of the three variables.

Let the possible values of variables be 0 (meaning FALSE) and 1 (meaning TRUE). We can evaluate logical expressions in operator postfix notation using a stack; the above expression would then be written

\[ \text{AB\&CA|} \]

Use the values B’11110000’, B’11001100’, and B’10101010’ to represent A, B, and C respectively, and let B’1111111’ and B’00000000’ represent the constants 1 (TRUE) and 0 (FALSE) respectively.

Your program should read data records containing logical expressions in postfix notation, and evaluate them using a byte stack (not a word stack). If the final value is B’1111111’ the expression is always true, and if the value is B’00000000’ the value is always false; otherwise it is indeterminate. Print the original postfix expression and a message describing the result of the evaluation. Try your program with the expressions ABC01||| and ABC01&&& and as many others as you can devise.

Some possible extensions:

1. Support the unary operator N (NOT) that forms the one’s complement of the element on top of the stack, and the binary operator X (XOR).
2. Create a stack of word entries, and define additional variables D and E appropriately.

Problem 40.3. (3) Write a program that will read 4-character symbols from the first 72 columns of a record (there may be at most 18 symbols to a record). A “symbol” of all blank characters indicates the end of the record. Insert the symbols in alphabetical order into a linked list whose elements have two data fields (4 bytes for the symbol, and a word binary integer count) and a fullword link field.

As the symbols are read from the record, scan the list. If the symbol is in the list, increment its count by 1. If the symbol is not in the list, obtain a free element from a FSL, place the symbol in it, initialize its count to 1, and insert it in the list in the correct position. If a symbol on the record starts with an asterisk, print the contents of the list, giving each symbol and its count. After the data in an element has been printed, return the element to the free storage list. Thus, when the printing is done, all the data elements will be back on the FSL, and the data list will be empty. Then read some more data records and build a new symbol table, until no more data records are available.
Problem 40.4. (3) Write a program like that of Problem 40.3, but use a hash table to store the symbols. You will have to devise a method to sort the symbols into alphabetic order before printing them.

Problem 40.5. (4) Write a program like that of Problem 40.3, but use a binary tree to store the symbols.

Problem 40.6. (3) A matrix is a two-dimensional array, as described in “40.2. Two-Dimensional Arrays” on page 896. Matrix multiplication is a common problem in data analysis; to calculate the product matrix $C$ of two $N$-by-$N$ matrices $A$ and $B$, we use the following formula:

$$C(i,j) = \sum_{k=1}^{N} A(i,k) \times B(k,j)$$

Write a program to evaluate a product matrix containing fullword integer values. For example, let $N$ be 5, and initialize the $A$ matrix with rows containing 1, 2, 3, 4, and 5, and initialize the $B$ matrix with rows containing 5, 4, 3, 2, and 1. Then test your program with $A$ and $B$ with all elements initialized to 2. Assume that all sums and products don’t exceed 30 significant bits.

Problem 40.7. (4) Do the same as in Problem 40.6, but this time move as much of the subscripting arithmetic as possible outside the loops. Then, use Branch on Index instructions to increment and test the loop indices. Compare this solution to your solution to Problem 40.6.

Problem 40.8. Write a program to print a square centered on a 120-character print line (with one additional initial character for carriage control spacing), centered on a 60-line page. The square is 12 by 12; and its outer border is 12 '1' characters, and its inner border is 10 '0' characters. The rest of the page is blank. (Ignore the fact that character spacing on the printed page may be different in horizontal and vertical directions.) For example, the upper left corner of the square would look like this:

```
11111
10000
10
10
10
```

For extra credit: determine the actual character and line spacings used on your printer, and adjust your printed output to more accurately resemble a square rather than a rectangle.

Problem 40.9. Do as in Problem 40.8, but rotate the “square” by 45 degrees to create a diamond-shaped rhombus. Make the outer border 18 by 18 characters. The top of the diamond would look like this:

```
1
101
10 01
10 01
```

For extra credit: determine the actual character and line spacings used on your printer, and adjust your printed output to more accurately resemble a rotated square rather than a rhombus.

Problem 40.10. Write a program to print a circular ring centered on a 120-character print line (with one additional initial character for carriage control spacing), and centered on a 60-line page. The outer diameter of the ring is 60 characters (so it will fill a 60-line page). The width of the ring should be 10 characters, so there will be an empty inner circle with diameter 40 characters. Use '*' characters to fill the ring, and leave the rest of the page blank.

For extra credit: determine the actual character and line spacings used on your printer, and adjust your printed output to more accurately resemble a true circle rather than an ellipse.

Problem 40.11. (3) This problem uses the representations introduced in Exercise 40.6.4. Write a program that reads expressions in postfix form from data records, evaluates the expression, and prints the result. The data records are prepared according to these rules: (1) all operands are positive integers of 5 or fewer digits; (2) all operators and operands are separated by a single blank; (3) the operators + - * / are represented by themselves; (4) the data record ends in
Problem 40.12. (2) Build a table of the first 25 members of an integer sequence defined by
\[ S(N) = S(N-1) + S(N-2) + S(N-3), \]
where \( S(1) = 0, \ S(2) = 1, \) and \( S(3) = 2. \) Then, format and print all 25
members of the sequence; the largest is 1166220.

Then, “dump” the table and check that you can verify the values in hexadecimal.

Problem 40.13. (3) Revise your solution to Problem 40.12, but this time put the address of the
table in a register and don’t change it: all references to the table must be made using only its
address (as though the table is somewhere unknown). After building the table, format and print
the members of the sequence. Eliminate leading zeros from the results.

Problem 40.14. (3) Do as in Problem 40.13, but now build a second table containing the for-
matted values as character strings. Then, print the character values by stepping through the
array of character values.
The two sections of this chapter discuss some advanced topics:

- Section 41 sketches several types of operating system functions and how your programs can utilize them.
  - General characteristics of macro instructions used to request Operating System services.
  - Purposely causing abnormal program termination.
  - Simple forms of storage management: how to acquire and release blocks of memory.
  - An overview of key elements of input and output.
  - Techniques for managing program interruptions, and a description of handling abnormal terminations of any kind.

- Section 42 describes:
  - Program reenterability: what it means and why it can be important.
  - Program recursion, and how to write programs to handle it.
41. Using System Services

This section provides a brief overview of these topics:

- Macro instructions used to access system services, and their typical formats
- The SVC and PC instructions
- Voluntary and involuntary abnormal termination of your program
- Some basics of storage management
- A short introduction to one common form of sequential Input/Output
- Ways to handle some exceptions

This is only a sample of the many, many system services available to you. For all system services, you should have the relevant manuals available.

41.1. Invoking System Services

These two instructions are most often used to invoke operating system services:

<table>
<thead>
<tr>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
<th>Op</th>
<th>Mnem</th>
<th>Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0A</td>
<td>SVC</td>
<td>I</td>
<td>Supervisor Call</td>
<td>B218</td>
<td>PC</td>
<td>S</td>
<td>Program Call</td>
</tr>
</tbody>
</table>

Table 424. Supervisor and Program Call instructions

The SVC instruction has the form shown in Table 425 invokes the operating system Supervisor by causing a Supervisor-Call interruption.

```
0A I
```

Table 425. SVC instruction format

SVC I

where the second byte I of the SVC instruction contains an 8-bit number that is placed in the Interruption Code portion of the “old PSW” in the fixed area at the low-address end of main memory. (You may recall from Section 4.5 that Supervisor Call is one of the six classes of interruption: that is, execution of an SVC instruction invariably causes that type of interruption.) The new PSW gives control first to an “Interrupt Handler” that saves the registers and the old PSW in
a safe place, and then passes control to a routine that examines the 8-bit Interruption Code and decides what function is desired.

The Program Call instruction doesn’t cause a program interruption, so it can sometimes operate more efficiently than SVC. It normally causes a change from problem to supervisor state. Its format is shown in Table 426:

<table>
<thead>
<tr>
<th>B218</th>
<th>B1</th>
<th>D1</th>
</tr>
</thead>
</table>

Table 426. PC instruction format

Its single operand is

\[
\text{PC} \quad D_2(B_2)
\]

so it can handle at least \(2^{24}\) possible operand values. Conversely, SVC can support at most 256 possible values, some of which are reserved for customer use.

Usually, further information such as flags and values, or addresses of other data, is placed in the general registers just prior to executing the SVC or PC; registers 0 and 1, and sometimes 14 and 15, are almost always used. In some cases the Supervisor will place values into one or more registers before returning control to the program that executed the SVC or PC.

### 41.2. Invoking System Services with Macro Instructions

Most operating system services are invoked using macro instructions, or “macros”.

A macro instruction is an invocation of an assembly-time subroutine that is written in the conditional assembly language of the Assembler. You invoke (or “call”) it by writing its name in the operation field of a statement, possibly with a name-field entry, and the arguments to the macro in the operand field. The conditional assembly statements in the macro definition examine the arguments and generate statements in the “ordinary” Assembler language that then form part of your program.

There are generally two types of macro argument: positional, like the operands of a machine instruction, and keyword, of the form name=value. Macro arguments are usually self-defining terms or symbols naming objects or values in your program, or fixed character tokens known to the macro.

The arguments for a macro may also be parenthesized lists, as in Figure 718. For example, you might invoke the OPEN macro this way, using what is called the “Standard” form of the macro:

\[
\text{OpenOutS OPEN} \quad (\text{OutFile,OUTPUT})
\]

Figure 718. Sample macro invocation, Standard form

In Figure 718, the name field entry is the symbol OpenOutS, the macro name in the operation field is OPEN, and the (single) argument in the operand field is (OutFile,OUTPUT), where OUTPUT is one of several valid fixed tokens.

Because this OPEN macro generates statements that refer to the symbol OutFile, we must also define it (this is actually the name of a “Data Control Block”, or DCB, that we’ll describe shortly).

In this case, the statements generated by this macro call are:
2 OpenOutS OPEN (OutFile,OUTPUT)
000000 3+ CNOP 0,4  ALIGN LIST TO FULLWORD
000000 4110 C008 000B 4+OpenOutS LA 1,>*8  LOAD R1 W/LIST ADR @V6PXJRU
000004 47F0 C00C 000C 5+ B  *>+8  BRANCH AROUND LIST @V6PXJRU
000008 8F  6+ DC AL1(143) OPTION BYTE
000009 00030 7+ DC AL3(OutFile) DCB ADDRESS
00000C 0A13 8+ SVC 19  ISSUE OPEN SVC

Figure 719. Generated statements from an OPEN macro

In Figure 719, statement 2 is the macro invocation. Statements 3 through 8 have a + sign following the statement number; this is the Assembler’s indication that the statement is generated by conditional assembly, and not part of the original source program. The name field symbol OpenOutS was assigned to the first generated statement, and the final generated statement is a “Supervisor Call” instruction.

Note! Most System Interface macros and services save and restore general registers 2-13, but use (and don’t restore) general registers 0, 1, 14, and 15. Some macros return new values in one or more of those four registers.

Almost all macros that expect the name of a memory location or a length argument will accept an argument with a register number enclosed in parentheses. In this example, the length value (LV=) is in GR4, and the address argument (A=) is in GR7.

The examples below illustrate only a small subset of the options provided by these macros; see the manuals listing in the Bibliography on page 1041 for further information.

Exercises

41.2.1.(1)+ Write short programs that expand into instruction sequences, using the many variations on the SAVE and RETURN macros described in “37.5. Additional Conventions (*)” on page 762 and study the differences among the generated statements.

41.2.2.(1)+ Identify the types of macro arguments in the FREEMAIN macro above.

41.3. Macro Formats: Standard, List, and Execute

The example in Figure 718 on page 937 uses Standard form, in which all generated statements, including parameters to be passed to the Supervisor, are generated directly into the instruction stream, as we saw in Figures 718 and 719. There are two other forms, the List and Execute forms that don’t mix instructions and data like the Standard form. Almost all system service macros support all three forms.

The list form of a macro expansion simply generates the data structures to be passed to the Supervisor, but doesn’t generate executable instructions like the LA, branch, and SVC instructions in Figure 719. For example:

OpenOutL OPEN (OutFile,OUTPUT),MF=L

Figure 720. Sample macro invocation using List form

The only difference from Figure 718 on page 937 is the additional “keyword” argument, MF=L (where L means “List form”), that tells the OPEN macro to generate only the parameter list.
Figure 721. Generated statements from a List form OPEN macro

In Figure 721, only the parameters for the OPEN macro are generated, corresponding to statements 6 and 7 in Figure 719 on page 938. These parameters are then used by an OPEN macro in Execute form.

To write this sample macro in Execute form, we use the added argument \( MF=(E,\text{listname}) \), where \( E \) means “Execute form” and the \( \text{listname} \) is the name of the parameter list generated by the List form of the macro.

\textbf{OpenOutE OPEN \( MF=(E,\text{OpenList}) \)}

Figure 722. Sample macro invocation using Execute form

The expansion of this macro completes the set of instructions in statements 4 and 6 generated by the Standard form in Figure 719 on page 938: GR1 points to the parameters, and issues the SVC instruction:

```
15 OpenOutE OPEN \(MF=(E,\text{OpenOutL}) \)
```

Figure 723. Generated statements from an Execute form OPEN macro

In this case, we omitted the operand describing \( \text{OutFile} \) and that we wanted to open it for \textit{OUTPUT}; the Execute form of the OPEN macro assumes that we have generated the necessary data in the area named \textit{OpenOutL} as in Figure 721, and simply puts its address in GR1 and issues the SVC.

\subsection*{41.3.1. List form with Empty Argument List}

Sometimes we want to use the List form for other OPENs, so we first create an \textit{empty} List form:

\textbf{OpenLstX OPEN (,),\( MF=L \)}

Figure 724. Sample macro invocation using empty List form

The generated instructions are simple:

```
20 OpenLstX OPEN (,),\(MF=L \)
```

Figure 725. Generated instructions from an empty List form

Then, to use this empty list to insert the name of the file and its input/output status, we write

\textbf{OpenOutE OPEN (OutFile,\textit{OUTPUT}),\( MF=(E,\text{OpenList}) \)}

Figure 726. Sample macro invocation using Execute form

The macro expansion then inserts the parameter values into the argument list; note that GR14 is used as a work register by the macro in statements 20 and 23.

```
15 OpenOutE OPEN (OutFile,\textit{OUTPUT}),\(MF=(E,\text{OpenLstX}) \)
```

Figure 727. Generated statements from an Execute form OPEN macro
Because we have specified the original (OutFile,OUTPUT) argument, the macro expansion carefully inserts the new information into the empty parameter list at OpenListX, completes the list, and then issues the SVC.

This technique lets you use the same List form to open other data sets, as in

```
OpenOutE OPEN (InFile,INPUT),MF=(E,OpenList)
```

Figure 728. Another macro invocation using Execute form and same List form

### 41.3.2. Register Forms and Arguments

The examples of the OPEN macro above require that GR1 contain the address of a parameter list in storage. Some macros, however, pass their arguments entirely in registers, such as some forms of ABEND, GETMAIN, and FREEMAIN. We’ll see more examples of these “R-Type” macros in later sections.

For example, we can write an ABEND macro like this:

```
ABEND 42
```

Figure 729. An R-Type macro invocation generating an argument in a register

Its expansion is:

```
3 ABEND 42
000000 4+ DS 0H
000000 4110 002A 6+ LA 1,42 LOAD PARAMETER REG 1
000004 0A0D 7+ SVC 13 LINK TO ABEND ROUTINE
```

Figure 730. Generated statements from R-Type macro

and the only argument is passed directly in GR1, not in memory.

If the address of a macro argument is already in a register, you can provide it directly by parenthesizing the register number, rather than by the name of the argument. For example:

```
LA 4,INDATA
LA 9,OUTDATA
OPEN ((4),(INPUT),(9),(OUTPUT))
```

Figure 731. A macro invocation with arguments in registers

The macro expansion in Figure 732 shows how the addresses in the registers are stored into the generated argument list:

```
000002 4140 F0D0 000D0 35 LA 4,INDATA
000006 4190 F130 00130 36 LA 9,OUTDATA
37 OPEN ((4),(INPUT),(9),(OUTPUT))
00003A 0700 38+ CNOP 0,4 ALIGN LIST TO FULLWORD
00003C 4110 F044 0044 39+ LA 1,4+8 LOAD R1 W/LIST ADR
000040 47F0 F04C 004C 40+ B *+12 BRANCH AROUND LIST
000044 00000000 41+ DC A(0) OPT BYTE AND DCB ADDR.
000048 00000000 42+ DC A(0) OPT BYTE AND DCB ADDR.
00004C 5041 0000 43+ ST 4,0(1,0) STORE INTO LIST
000050 5091 0004 44+ ST 9,4(1,0) STORE INTO LIST
000054 92BF 1004 0004 45+ MVI 4(1),143 MOVE IN OPTION BYTE
000058 0A13 46+ SVC 19 ISSUE OPEN SVC
```

Figure 732. Generated statements from a Standard-form macro with arguments in registers

### 41.3.3. MODE=24, MODE=31

In the expansions of the executable form of the OPEN macro, the parameter list contains a 3-byte address of the Data Control Block (DCB). Sometimes it may be important for some parts of a macro expansion to use 4-byte addresses to refer to items “above the 16MB line”. Using the OPEN macro as an example, we specify an additional argument, **MODE=31**:

```
OPEN (OutFile,(OUTPUT)),MODE=31
```

Figure 733. A Standard macro invocation specifying MODE=31
In the macro expansion in Figure 734 on page 941, you can see in statement 41 that the address of the `OutFile` DCB is 4 bytes long.

```
35 OPEN (OutFile, (OUTPUT)), MODE=31
000032 0700 36+ CNOP 0,4
000034 4110 F03C 0003C 37+ LA 1,*+8
000038 47FO F044 00044 38+ B *+12
00003C 8F 39+ DC AL1[143]
00003D 000000 40+ DC AL3(0)
000042 1801 41+ DC A(OutFile)
000044 1811 42+ SR 1,1
000048 0A13 44+ SVC 19
```

Figure 734. Generated statements from a Standard-for macro with MODE=31

### 41.3.4. Mixed Case Macro Arguments

Be careful when using mixed-case characters in macro arguments. Some macros are fussy about the case of their arguments, as the following examples show.

In general, symbols and keyword `parameter` names can be any mixture of upper and lower case; positional and keyword arguments must often be in upper case only.

Compare Figure 735 to Figure 719 on page 938, where the positional argument `OUTPUT` was written in upper case.

```
5 OpenOut$ OPEN (OutFile, OUTPUT)
000000 6+ CNOP 0,4
000004 4110 C008 00008 7+ OpenOut$ LA 1,*+8
000004 47FO C00C 0000C 8+ B *+8
** ASMA254I *** MNOTE *** 10+ 12,*** IHB002 INVALID OPTION OPERAND SPECIFIED – Output
```

Figure 735. Example of a mixed-case positional macro argument

In Figure 736, the two keyword arguments `LV` and `A` are accepted in lower case; the positional argument `R` must however be in upper case.

```
000000 1804 14+ LR 0,4
000000 4110 7000 00000 15+ LA 1,0(0,7)
00000E 0AOA 16+ SVC 10
Figure 736. Example of mixed-case keyword macro arguments
```

In the two macro calls in Figure 737, the two macro-format (`MF=`) keyword arguments `l` and `e` are in lower case, which the macro doesn’t recognize:

```
** ASMA254I *** MNOTE *** 19+ 12,*** IHB002 INVALID MF OPERAND SPECIFIED-
** ASMA254I *** MNOTE *** 24+ OpenOut$ MF=(e,openout)$
```

Figure 737. Example of mixed-case keyword macro arguments

### 41.3.5. The SYSSTATE Macro

On z/OS systems, the SYSSTATE macro can help many system service interface macros to generate correct statement sequences depending on the level of the a/OS operating system. Check the documentation of the SYSSTATE macro to see which arguments and options will generate statements most applicable to your execution environment.

### Exercises

41.3.1.(2) + Assemble the statements in Figure 728 on page 940 (being careful to generate the `OpenList` also), and study the generated statements. Does it matter which of the List and Execute forms of the OPEN macro is generated first?

41.3.2.(1) In Exercise 41.2.1, why is it important to generate `OpenList` also?
41.4. Causing Abnormal Termination

Sometimes a program will find itself in a situation that should never occur, or when continuing could cause more damage than stopping immediately. There are several ways to force termination, including creating program interruptions such as executing an invalid operation code or branching to an invalid address:

- Discovered an unrecoverable error!
  - **DC** H’0’
  - Force program interruption

  **or**

  - **DC** X’00nn’
  - Where ‘nn’ describes your situation

  **or**

  - **LA** 1,X’BAD’
  - Set odd address in GRI
  - **BR** 1 Force program interruption

  **or**

  - X’COF4wxyz0002’
  - Simulate JL *+4; wxyz is your code

These will terminate the program unless some error recovery has been set up (see Sections 41.7 and 41.8 starting on page 957) that traps the program interruption. A more common, and more flexible, way to terminate a program is to cause an “abnormal end”, or “ABEND”\(^{284}\) with the ABEND macro.

The ABEND macro supports several useful arguments, including:

- a user code that you provide to indicate the specific termination condition;
- keyword arguments that let you specify whether a memory dump should be provided (you must provide a file where the dump can be written);
- keyword arguments that let you specify whether the entire job step should be ended;
- a reason code that you use to indicate greater detail about the condition causing the termination.

To terminate your program with user code 42, as in Figures 729 and 730 on page 940, you can write

```
ABEND 42 End the program immediately
```

As a more complex example, suppose you want to terminate your program with user code 42 and reason code X’BADCODE’\(^2\), and request a memory dump:

```
StopHere ABEND 42,DUMP,REASON=X’BADCODE’ Error in my code!
```

Figure 738. Sample ABEND macro

The macro expansion is shown in Figure 739:

```
000000 4+StopHere DS 0H
000000 4110 004F 004F 6+ LA 1,42 LOAD PARAMETER REG 1
000004 7+ CNOP 0,4 ALIGN ON WORD BOUNDARY
000004 47F0 F00C 0000C 8+ B *+8 BRANCH AROUND CONSTANTS
000008 OOADC0DE 9+ DC AL4(X’BADCODE’) REASON CODE
00000C 58F0 F008 00008 10+ L 15,*-4 LOAD REG15 WITH REASON CODE
000010 4100 0084 0084 11+ LA 0,132(0,0) DUMP/STEP/DUMPOPTS/REASON
000014 8900 0018 0018 12+ SLL 0,24(0) SHIFT TO HIGH ORDER
000018 1610 13+ OR 1,0 OR IN WITH COMPCODE
00001A 0A0D 14+ SVC 13 LINK TO ABEND ROUTINE
```

Figure 739. Generated statements from an ABEND macro

\(^{284}\) Usually pronounced “Ab-End”, rather than “A-Bend”.

942

Assembler Language Programming for IBM z System™ Servers

Version 1.00
The user code is in the rightmost 12 bits of GR1, the reason code is in GR15, and the high-order byte of GR1 contains bit flags that detail which options are specified and what should be done at termination.

You can also use the DUMPOUT macro for simple memory dumps, without causing program termination. It is described in “Appendix B: Simple I/O Macros” on page 1001.

Exercises

41.4.1.(1)+ What kind of program interruption will be caused by branching to address X′BAD′? Why should you not try to branch to address X′DIE′?

41.4.2(1)+ What kind of program interruption will be caused if you first load GR1 using this instruction?

\[
\begin{align*}
&\text{LGFI } 1, \text{C′BAD′} \\
&\text{BR } 1 \quad \text{Force program interruption}
\end{align*}
\]

What if the operand is C′DIE′ instead?

41.4.3.(1)+ There’s an intentional mistake in Figure 739 on page 942. What is it?

41.5. Storage Management

Many programs need to acquire additional working memory; and the two most commonly used macros are GETMAIN and STORAGE. To release the acquired storage you can use the FREEMAIN and STORAGE macros (with different operands for STORAGE) or simply terminate the program and let the operating system clean up for you.285

GETMAIN and FREEMAIN were the original OS/360 storage-management macros, and like STORAGE, are limited to memory below the 2GB “bar”. (Storage above the “bar” is managed with the IARV64 macro.)

Take Care!

All three of GETMAIN, FREEMAIN, and STORAGE may use general registers 0, 1, 14, and/or 15 as work registers for various combinations of macro arguments.

41.5.1. The GETMAIN Macro

GETMAIN provides several ways to request storage:

Conditional (C)

If the requested storage is available, GETMAIN will put zero in GR15; otherwise a nonzero value is in GR15.

Unconditional (U)

If the requested storage is not available, GETMAIN will terminate the program with an ABEND.

Register (R)

A request for a single block of storage. Parameters are passed in registers; some of them may have been constructed in storage and then loaded into registers.

---

285 But it’s much better that your program keep track of the storage it has acquired, and release it when it’s no longer needed. There may be a time when your program is part of a larger suite of programs that could possibly exhaust the available storage if all programs don’t release what they acquire.
Element (E)
A request for a single block of storage.

Variable (V)
A request for a single block of storage between a maximum and a minimum size.

List (L)
A request for several blocks of storage.

Some of these can be combined; for example, VRC means that you want to acquire storage between two limits, the arguments will be passed in registers, and the system puts a return code in GR15 to indicate the success or failure of the request.

The supported combinations that can be requested by the first (positional) operand of GETMAIN are summarized in Table 427:

<table>
<thead>
<tr>
<th>Type</th>
<th>Single</th>
<th>Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Register, Single Element</td>
<td>RC</td>
<td>R, RU</td>
</tr>
<tr>
<td>Single Element</td>
<td>EC</td>
<td>EU</td>
</tr>
<tr>
<td>List of Elements</td>
<td>LC</td>
<td>LU</td>
</tr>
</tbody>
</table>

Table 427. GETMAIN request options

As shown in the last column of Table 427, storage acquired using any of the five Register forms can be requested either below or above the 16MB “line”, and all addresses and lengths have 31-bit lengths. The storage is allocated in the same area of memory as the calling program (that is, below or above the 16MB “line”). For all other forms, the storage is allocated below 16MB.

Acquired storage is always aligned on a doubleword boundary, with length that is a multiple of 8 bytes. Sometimes, you can request page alignment on a 4K boundary.

Several forms require that you provide one or more words in memory into which lengths and/or addresses will be stored; be careful not to modify them during program execution, because they can be used to release the acquired storage using the FREEMAIN macro.

Figure 740 shows an example of a typical GETMAIN request:

```
GETMAIN R, LV=72
```

Figure 740. Sample R=type GETMAIN request

The expansion of this macro call is shown in Figure 741; note that the only value passed to SVC 10 is in GR0. (The BAL instruction sets the high-order bit of GR1 to 1; we’ll see why this is interesting when we discuss the FREEMAIN macro.)

```
000000 4100 07D0 007D0 6+ LA 0,72(0,0) LOAD LENGTH
000004 4510 C008 00008 7+ BAL 1,*+4 INDICATE GETMAIN
000008 0A0A 8+ SVC 10 ISSUE GETMAIN SVC
```

Figure 741. Expansion of a sample R-type GETMAIN request

For the Register forms, storage will be allocated by default in the area where the requesting program is executing, either below or above the 16MB “line”.

Figure 742 on page 945 shows an example of a VRU request:
34 GETMAIN VRU,LV=(144,72)

00003C 35+ CNOP 0,4 ALIGN DATA ON FULLWORD BDY
00003C 47F0 C04C 0004C 36+ B **+16-4*0-4*0-2*0 BRANCH PAST DATA
000040 00000090 37+ DC A(144) MAXIMUM LENGTH
000044 0000048 38+ DC A(72) MINIMUM LENGTH
000048 00 39+ DC A(0) RESERVED
000049 00 40+ DC AL1(0) RESERVED
00004A 00 41+ DC AL1(0) SUBPOOL
00004B 0A 42+ DC BL1’00001010’ MODE BYTE
00004C 9801 C040 00040 43+ LM 0,1,*-12+2*0 LOAD MAX AND MIN LENGTHS
000050 58F0 C048 00048 44+ L 15,1HB0004F LOAD GETMAIN PARMS
000054 0A78 45+ SVC 120 ISSUE GETMAIN SVC

Figure 742. Expansion of a sample VRU-type GETMAIN request

In this case, GR0, GR1, and GR15 all contain values used by SVC 120.

If you GETMAIN 8192 or more bytes, or a multiple of 4096 bytes on a page boundary, the
system will automatically clear the area to zeros.\footnote{With some rather specialized restrictions; see the reference manuals in the Bibliography.}

41.5.2. The FREEMAIN Macro

The FREEMAIN macro is used to release storage acquired by GETMAIN. For single elements, the values passed to the SVC routine are the length and address of the area to be freed.

FREEMAIN supports forms like those of GETMAIN:

Conditional (C)

If the requested storage can be freed, FREEMAIN will put zero in GR15; otherwise a nonzero value is in GR15.

Unconditional (U)

If the requested storage can’t be freed, FREEMAIN will terminate the program with an ABEND.

Register (R)

A request to return a single block of storage. Parameters are passed in registers; some of them may be constructed in storage and then loaded into registers.

Element (E) and Variable (V)

A request to free a single block of storage. Because both E and V GETMAIN requests allocate a single area of storage, the equivalent FREEMAIN forms release a single fixed-length area. (The GETMAIN and FREEMAIN argument lists are different.)

List (L)

A request to free one or more blocks of storage.

The supported combinations that can be requested by the first (positional) operand of FREEMAIN are summarized in Table 428:

<table>
<thead>
<tr>
<th>Type</th>
<th>Conditional</th>
<th>Unconditional</th>
<th>Where</th>
</tr>
</thead>
<tbody>
<tr>
<td>Register, Single Element</td>
<td>RC</td>
<td>R, RU</td>
<td>&lt;2 GB</td>
</tr>
<tr>
<td>Single Element</td>
<td>EC, VC</td>
<td>E, EU; V, VU</td>
<td>&lt;16 MB</td>
</tr>
<tr>
<td>List of Elements</td>
<td>LC</td>
<td>L, LU</td>
<td>&lt;16 MB</td>
</tr>
</tbody>
</table>

Table 428. FREEMAIN request options

As the last column of Table 428 indicates, the Register forms can free storage allocated either above or below the 16MB “line”; all the other forms can free storage only below 16MB.

Figure 743 on page 946 shows a simple example of a typical FREEMAIN request:
Figure 743. Example of an R-type FREEMAIN macro

In this case, the length is loaded into GR0 and the address is put in GR1. Note that the same SVC 10 is used as for GETMAIN; the key difference here is that the high-order bit of GR1 is zero (because the address of the acquired storage is below 2GB), while it was 1 for GETMAIN.\footnote{The BAL instruction in Figure 741 on page 944 is doing something important!}

### 41.5.3. The STORAGE Macro

The STORAGE macro combines the functions of acquiring and releasing storage in one macro, using the positional arguments OBTAIN and RELEASE to select the operation. To specify conditional and unconditional operations, you must specify \texttt{COND=YES} or \texttt{COND=NO}, respectively; \texttt{NO} is the default.

Figure 744 shows a simple request for 72 bytes using the STORAGE macro.

**STORAGE OBTAIN,LENGTH=72 Request 72 bytes**

The instructions generated from this request are shown in Figure 745. (Note that registers 0, 14, and 15 are used; compare this expansion to the equivalent request using GETMAIN in Figure 741 on page 944.)

Figure 745. Example of a STORAGE OBTAIN macro expansion

If the request was successful, the address of the obtained storage is returned in GR1.

To return the 72 bytes requested previously, we assume that their address is now in GR1, as indicated by the \texttt{ADDR=(1)} operand.

**STORAGE RELEASE,LENGTH=72,ADDR=(1) Return 72 bytes**

The instructions generated by this macro are shown in Figure 747 on page 947 (again, compare this to the equivalent FREEMAIN in Figure 743).
The STORAGE macro supports a greater variety of options compared to GETMAIN and FREEMAIN. Note also that it generates a PC instruction rather than the SVCs used by GETMAIN and FREEMAIN.

41.5.4. Subpools (*)

The three macros described above support subpools. A subpool is a way to group related requests. For example, if your program is creating variable-sized binary trees, linked lists, and tables, you may need to allocate additional storage for each as the need arises. By allocating each type in a separate subpool, you can then release all the storage allocated for one of those functions at once, without having to track each of the separately allocated segments.

Subpools (and their many types) are described in the references listed in the Bibliography on page 1041.

Exercises

41.5.1.(1) + Why does the BAL instruction in Figure 741 on page 944 always generate a high-order 1 bit in GR1, whether executed in 24-bit or 31-bit addressing mode?

41.6. Basic Input and Output

Input and Output ("I/O" for short) is a vast and complex subject, many aspects of which are well beyond the scope of this text. We will introduce key features used by many application programs.

41.6.1. A Simple Scenario

We'll start with a simple scenario in six basic steps, showing the key actions involved in your program's reading records from a Data Set. The figures are expanded in detail at each step.

Simple Scenario, Step 1: The Data Set

The Data Set is on some external storage medium such as tape or disk. Almost all Data Sets have some type of label describing the properties of the records in the Data Set. A part of the label is the Data Set Name (DSName) that you can use to refer to the Data Set.
You have written a program to read the records, and submit a job to the operating system to load and execute the program.

**Simple Scenario, Step 2: Submitting a job to execute the program**

When you submit the job to read from the Data Set, you specify in the *Job Control Language* (JCL) a *Data Definition Name* (DDName) that your program will need to access the data. The operating system Supervisor creates a *Job File Control Block* (JFCB) from information in the JCL statements you provided.

![Diagram: DDName, JCL, JFCB, Label, Data Set]

Figure 749. You submitted a job with a program to read the records

After the Supervisor processes the JCL statements, your program is ready to be loaded.

**Simple Scenario, Step 3: Your program after loading and before execution**

Your program has been loaded into memory. It contains the *Data Control Block* (DCB) you wrote, with information about how your program will access the records, as well as your OPEN, GET, and CLOSE macros, and a Record Buffer area where the records will be placed as they’re read.

- The OPEN macro, when executed, gives you access to your data.
- The GET macro requests a data record be read.
- The CLOSE macro terminates access to the Data Set.

The DCB contains the DDName that provides access to the Data Set whose DDName (now saved in the JFCB) was specified in JCL statements.
Your program is ready to start execution.

**Simple Scenario, Step 4: OPENing the data set**

After establishing addressability and initializing, your program executes the OPEN macro; many things happen.

1. Information from the JFCB, the Data Set Label, and from the DCB is merged into the DCB, as described in Section 41.6.5 on page 954.

2. Access Method routines appropriate to the type of device holding the Data Set, the type of records, the type of buffering, etc., are loaded automatically. These routines provide *device independence* to your program.

A lot can go wrong at this stage, typically causing an ABEND with system completion code x13, where “x” is a hexadecimal digit.
Simple Scenario, Step 5: GETting a record

The GET macro points to the DCB and to the Record Buffer, and calls the Access Method routines to read a record from the Data Set and place it in the Record Buffer. For example, you might write

```
GET MyDCB,RecBuf
```

Read a record from MyDCB into RecBuf

If you specified an end-of-data address (EODAD, described below) in the DCB, control goes there when there are no more records in the Data Set.

![Figure 752. Your program after executing the GET macro](image)

Simple Scenario, Step 6: CLOSeing the DCB

When you’re finished, you execute a CLOSE macro: it specifies the name of the DCB you want to close. Your DCB is restored to its initial status; the Data Set Label is updated if necessary (if you wrote to the Data Set), and the updated JFCB is retained in case you want to re-OPEN the Data Set.
Your program has been restored (almost) to its initial state, except for changes you may have made to data fields and work areas. The program then tidies up, and returns to the system.

This brief scenario should help you follow the details to follow.

41.6.2. Access Techniques and Access Methods

There are many access techniques available for data. Data items can be written or read sequentially (one after the other); directly (put the item in a specific position in a data set, or read it from that position, ignoring other items); by index (a field in the data is used to identify it), and so on. Each of these can be very complex; we will examine only sequential access, and only in its simple forms.

There are two main ways to read or write data sequentially:

**Basic** You manage blocks of data, independent of any internal structure each block may have, such as multiple records; you must organize the data items in each block. Each I/O operation is initiated by a READ or WRITE macro, and synchronization of the I/O operations with read or write completion is done with CHECK and WAIT macros.

**Queued** You manage individual data records. The Supervisor does almost everything for you: it handles I/O operations, synchronization of I/O activity and data availability, blocking and deblocking records, etc. Reading and writing records is done with macros like GET and PUT.

We will describe only the simplest form, queued access.

There are several ways to manage records using queued access; the simplest forms are called “BSAM” (Basic Sequential Access Method) and “QSAM” (Queued Sequential Access Method). Depending on values in your DCB, the system will load appropriate “access method routines” to support the various types of data movement.

With QSAM, you can choose one of the following modes (among others):

---

288 Pronounced “Bee-Sam” and “Cue-Sam”.

---
Move mode
Your GET macro points to your buffer where the system should place your input record; or, your PUT macro points to your buffer from which the output record should be written by the system.

Locate mode
Your GET macro returns a pointer to where your input record can be found; your PUT macro returns a pointer to where your output record should be placed.

In practice, QSAM is far easier to use than BSAM; Table 429 illustrates some differences.

<table>
<thead>
<tr>
<th>QSAM</th>
<th>BSAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Supports all record formats</td>
<td>• Supports all record formats</td>
</tr>
<tr>
<td>• Your interface is “logical records”</td>
<td>• Your interface is “physical blocks”</td>
</tr>
<tr>
<td>• Automatic blocking and deblocking</td>
<td>• Blocking and deblocking is your problem</td>
</tr>
<tr>
<td>• Automatic buffer management</td>
<td>• Buffer management is your problem</td>
</tr>
<tr>
<td>• Automatic I/O operation synchronization</td>
<td>• Synchronizing I/O operations with use of the data is your problem</td>
</tr>
</tbody>
</table>

Table 429. Comparing QSAM and BSAM

41.6.3. The Data Control Block (DCB)

The DCB macro is a complex structure, with nearly 100 parameters (almost all of which you won’t care about), some of which can have as many as 30 valid values (almost all of which you won’t care about). It is a part of your program. Some values in the DCB can come from other sources, such as JCL DD statements, a data set label, and from your program during execution. All fields must be completed by the end of the OPEN process, before I/O operations can begin.

The DCB contains 3-byte address fields such as the address of the access method routines and the EODAD and EXLST addresses described below, so it must reside below the 16MB “line”.

You must specify the DSORG and MACRF arguments at assembly time; and if you intend to provide a DCB OPEN exit to examine and/or modify the DCB during the OPEN process, you must specify the EXLST argument. Values for other arguments can be supplied during OPEN by the JCL DD statement, the data set label, and the OPEN exit.

**DSORG**
Must be coded in DCB macro; the most usual values are:

- **PS** Physical Sequential: strictly sequential access. Both of the following are defined when you specify PS:
  - **BS** Basic Sequential: strictly sequential access.
  - **QS** Queued Sequential: strictly sequential access.

- **PO** Partitioned Organization, for libraries, which are collections of sequential data sets identified by a member name that’s contained in a directory. All members have the same characteristics, and are accessed sequentially. The access technique for members of a library is called “BPAM”²⁸⁹ (Basic Partitioned Access Method); members are located with the FIND macro, and read and written with READ and WRITE macros.

If you code more than one DSORG value, you can re-OPEN the DCB for a different type of I/O after closing for the previous use.

**MACRF**
Must be coded in DCB macro; don’t omit it.²⁹⁰ These QSAM forms are the simplest to use:

²⁸⁹ Pronounced “Bee-Pam”.
²⁹⁰ If you omit a MACRF value, the assembly will assign the default E (with severity 8), which means (if you proceed) that you must write your own device-dependent channel programs and do everything yourself. It’s quite difficult.
GM  Get Move: Logical record processing, move mode input. The access method rou-
tines reads blocks of records into internal buffers, unblocks your record for you,
and moves it to the work area you defined as the second operand of the GET
macro. Your work area must have the same length as the record!

PM  Put Move: Logical record processing, move mode output. You tell the PUT
macro where your record is; the system moves it to its internal buffer for output
when the buffer is full.

GL  Get Locate: Logical record processing, locate mode input. The access method
tells you where in its internal buffers the record is.

PL  Put Locate: Logical record processing, locate mode output. The access method
tells you where to put your record in its internal buffer.

These are some other arguments that can be supplied during initialization or execution.

DDNAME Can be coded in the DCB macro, or supplied by the program before OPEN

RECFM Figures 755-757 illustrate the following record formats.
  F    Fixed length unblocked records (BLKSIZE=LRECL)
  FB   Fixed length blocked records (BLKSIZE=n×LRECL)
  V    Variable length unblocked records
  VB   Variable length blocked records
  U    Undefined (“None of the above”)

xxA  Records have ANSI carriage-control characters in the first byte

LRECL The length of each F record, or the maximum length for V records. Often omitted for
input data sets; it can be supplied from the data set label at OPEN time. The LRECL
field is updated after each read of a record or block.

BLKSIZE The maximum length of a block; for FB, it must be a multiple of the LRECL value;
for VB, the maximum block length.

EODAD For reads, the address to receive control on End of Data (EOD). The EOD routine
can either return to the address in GR14 on entry, or continue normal processing (this
is the most common way). If no EODAD address is provided at end of data, or if you
try to read after the end of data, the system will terminate your program with a 337
ABEND.

The 3-byte address of the EODAD routine means that it will be entered in 24-bit
addressing mode, so it must reside below the 16MB “line”. It can of course change
addressing modes so long as it changes back to 24-bit mode before returning to the
system.

EXLST  The exit list specifies special exit routines; the DCB OPEN exit is the most most usual,
for which you specify the name of a word-aligned list of the form
  X′85′,AL3(OPEN-exit_routine). The DCB OPEN exit routine can modify or complete
a DCB before the data set is completely open.

When it receives control, the low-order 3 bytes of GR1 point to the DCB (remember
that the DCB and the OPEN exit must be in 24-bit storage). GR14 must be preserved
and used to return to finish OPEN processing. You must not use the address in GR13
for a save area, and you need not preserve the contents of GRs 2-13 (the system does
that).

A typical DCB statement might look like this:
dcbname DCB DDNAME=xxxxxxxxx, To match up with the JCL DDName X
MACRF=xx, Macro Format: how to process records X
DSORG=xx, Data Set Organization X
LRECL=nnn, Logical Record Length X
BLKSIZE=nnnnn, For blocked records X
RECFM=xx, Record Format X
EODAD=xxxxxxxx End-of-data address for input

Figure 754. Example of typical DCB parameters

41.6.4. Important Record Formats

- Fixed: all records have the same length, and may be grouped into blocks containing (usually) a fixed number of records. It’s best to have no truncated (partially filled) blocks except the last.

- Variable: each record is preceded by a 4-byte Record Descriptor Word (RDW) giving the record length in the first two bytes; that length includes the 4-byte length of the RDW. V-format records may be blocked; a block of records is preceded by a 4-byte Block Descriptor Word (BDW) giving the length of the block (including its own length) in the first two bytes. For both the BDW and RDW, the remaining two bytes must be zero.

- Undefined: A single physical record; do any blocking/unblocking (if needed) yourself. You must understand the internal structure of U-format blocks that you read or write.

Figure 755. Unblocked and blocked F-type record and block formats

Figure 756. Unblocked and blocked V-type record and block formats

Figure 757. U-type block formats

41.6.5. Opening the DCB

Figure 758 on page 955 and the following explanations outline the steps taken during initialization of a DCB by OPEN:
The settings of the original DCB are saved so they can be restored when the DCB is closed.

Data from the JCL DD statement was used to create the Job File Control Block (JFCB).

Fields in the JFCB not already completed are filled from the data set label.

Fields in the DCB not already completed are filled from the JFCB.

If a DCB OPEN exit exists, it is given control to make any desired modifications to the DCB.

The merged and updated fields from the DCB are copied back into the JFCB.

If the data set has been opened for output, fields from the JFCB are used to create the new data set label.

OPEN then chooses and loads access method routines according to your choices of DSORG, buffering technique, access technique, and device type. If OPEN fails, you normally get a system 013 ABEND.

41.6.6. Closing the DCB

To close a DCB and terminate I/O to that DDName, simply write

```plaintext
CLOSE dcbname
```

For the QSAM macros we’ve seen, you should follow that with

```plaintext
FREEPOOL dcbname
```

so the access method routines will free the storage they acquired for internal buffers.

41.6.7. The DCBD Macro and the IHADCB Dummy Section

The DCBD macro generates symbolic names for all DCB fields, in the IHADCB Dummy Control Section. You specify at most two arguments:

```plaintext
DCBD DSORG=xx, DEVD=xx
```

Data Set Organization(s) X

Device type(s)

Figure 759. DCBD operands

DSORG Types of access for which your DCBs were written.
DEVD  Specifies the types of devices to be included.

However, if you write

```
DCBD DSORG=(PS,PO) Data Set Organization(s)
```

then the presence of the PS argument means you can omit the DEVD argument entirely.

If you code multiple DSORG values, you can use IHADCB to refer to multiple DCBs.

Important fields defined in the IHADCB DSect are the DCBOFLGS byte, which contains the DCBOFOPN bit you should test to verify that the DCB OPENed correctly, and the DCBLRECL field that you must use when reading and writing V- and U-format records.

For example, you can use the IHADCB dummy section to map each DCB in your program, with the help of Labeled Dependent USING statements:

```
OPEN (SYSINDCB,INPUT,SYSOUDCB,OUTPUT)
LA 11,SYSINDCB Point to SYSINDCB
Sysin USING IHADCB,11 Map it with IHADCB
TM Sysin.DCBOFLGS,DCBOFOPN Test if OPEN was successful
JZ BadSysin Go take recovery action
LA 11,SYSOUDCB Point to SYSOUDCB
Sysou USING IHADCB,11 Map it with IHADCB
TM Sysou.DCBOFLGS,DCBOFOPN Test if OPEN was successful
JZ BadSysou Go take recovery action
```

Figure 761. Using IHADCB to map two different DCBs simultaneously

### 41.6.8. The DCBE Macro and 31-bit Address Mode

All the I/O examples we’ve seen were required to execute in 24-bit addressing mode, and therefore reside below the 16MB “line”. There are other macros (like DCBE, the DCB Extension) that let you put things like buffers and exit routines above the line. This can be important if available storage below the line is limited. To learn more, see the “Data Sets” references in the Bibliography on page 1041.

### 41.6.9. I/O Summary

This has been a very simple overview of a vast and complex subject. z/OS supports the richest variety of facilities among modern operating systems, while some other operating systems have extremely simple I/O models. Most programs need only a small and useful subset of all the capabilities z/OS offers.

Why use BSAM? If you have large volumes of data in which records can be processed independently, you can assign parallel tasks to process the records in each block as it is read. This can give higher rates of “throughput” than QSAM could support, because QSAM handles one record at a time.

Another popular access method is the “Virtual Storage Access Method” (VSAM), which supports sequential, direct, and indexed access. It requires different macros and control, and its flexibility (and complexity) is beyond the scope of this text.

Some general guidelines:

- Specify INPUT or OUTPUT (etc.) on the OPEN macro
- Omit device-dependent parameters and macros when possible, to allow for varied devices, record formats, etc. at execution time. Put device-dependent and data-set-specific information on the DD statement.
Don’t code more in the DCB than is required to ensure correct processing. Other parameters can be completed during initialization or execution.\textsuperscript{291}

- Avoid unblocked records: there is a potential performance penalty in time and CPU costs.\textsuperscript{292}
- A DCB can be used for multiple data sets so long as it is closed before opening for a different data set. May need to modify fields if any differences in data set characteristics.

### 41.6.10. A Sample Program

This sample program uses the macros described above to write a printable record.

```
Sample Csect ,
Sample AMode 24
Sample RMode 24

STM 14,12,12(13) Save caller’s registers
LR 12,15 Copy base register
Using Sample,12 Establish addressability
LR 2,13 Copy caller’s save area address
LA 13,Save Point to local save area
ST 2,Save+4 Store back chain
ST 13,8(,2) Store forward chain
OPEN (PrintDCB,(OUTPUT)) Open the print DCB
PUT PrintDCB,Line Output the message
CLOSE PrintDCB Close the print DCB
FREEPOOL PrintDCB Release buffers
L 13,Save+4 Restore caller’s save area address
RETURN (14,12) Restore registers
BR 14 Return

Line DC CL121 ’Greetings from a sample program’
Print NoGen
PrintDCB DCB DSORG=PS,MACRF=PM,LRECL=121,BLKSIZE=121,RECFM=FA,
 DDNAME=PRINT
Save DC 9D ’0’ Local save area
End
```

Figure 762. A complete sample program

The output of this little program is:

Greetings from a sample program

### 41.7. Handling Program Interruptions

Programs can handle their own exception conditions on two levels:

1. Program interruptions can be investigated using a “Program Interruption Exit”; in the absence of an exit, the system will generate an ABEND using SVC 13, as illustrated in Figure 739 on page 942.

2. Abnormal terminations (ABENDs) can be investigated using a “Task Abnormal Termination Exit” that receives control on an ABEND. You can use an abnormal termination exit routine to handle program interruptions, but the interface is more complex than for a program interruption exit (see Section 41.8 on page 961).

\textsuperscript{291} Some systems will assign an “optimum” BLKSIZE for output data sets depending on its physical properties, and for input data sets based on its existing BLKSIZE.

\textsuperscript{292} I once saw a case where a program reading unblocked 80-byte records took nearly 10 minutes of elapsed clock time, but completed in about 10 seconds when the input data set was adequately blocked. (It was an old, slow machine.)
The basic mechanism used by the CPU for handling interruptions is illustrated in Figure 763 (also shown in Figure 16 on page 58).

![Diagram of instruction cycle with interruptions](image)

Figure 763. Instruction cycle with interruptions

After determining at A that the interruption can be processed, the system analyzes the cause and checks whether an exit routine has been established (by the interrupted program) for that type of interruption.

### 41.7.1. Program Interruptions

If a program interruption exit has been established, the system saves relevant status information in a work area called a “Program Interruption Element” or “PIE”, and the exit routine is given control with a pointer to the work area.

Your program can receive control when any of the 15 program interruptions occurs if the exit routine has requested control. The exit can take corrective action if it chooses.

You can also establish multiple exits: each supersedes the previous, and you can terminate them as needed. Only one exit is active at a time.

### 41.7.2. Establishing a Program Interruption Exit

Use the ESPIE or SPIE macro to establish a Program Interruption Exit. SPIE is for applications using only 24-bit addressing, while ESPIE is for 24- or 31-bit mode applications; we’ll use ESPIE for our examples.

The expansion of either macro creates a small “Program Interruption Control Area”, or PICA, that defines a data structure with the address of the exit routine, a pointer to an argument list to be passed to your exit, and mask bits indicating which of the 15 program interruption types should cause the system to pass control to your exit.

For example, to request that your exit routine named ProgInt be given control for any of the 15 possible program interruption types, you can write

\[
\text{ESPIE SET,ProgInt,((1,15))}
\]

Figure 764. Establishing a program interruption exit

where the first operand SET establishes the exit, the second operand is the name of your exit routine, and the third operand specifies interruption types 1 through 15. The expansion of this macro is shown in Figure 765 on page 959, where the PICA is in statement numbers 16-20.

---

293 The macro names can be understood to mean “(Extended) Set Program Interruption Exit”.

* This PICA is unrelated to typography or cravings for unnatural foods.
The 2-byte bit string in statement 19 contains a 1-bit for each type of program interruption you want to examine; in this case, all 15.

When the ESPIE macro is executed, the system first creates an “Extended Program Interruption Element” (EPIE) that will hold data about an interruption when it occurs, and then returns a 4-byte “token” in GRI for you to save.

For more information about the maskable exceptions, see the initial description at “4.6. Exceptions and Program Interruptions (*)” on page 59 and the examples of the SPM instruction at “16.9. Retrieving and Setting the Program Mask (*)” on page 235.

41.7.3. Terminating a Program Interruption Exit

The token returned to you when you established an exit identifies the PICA generated by the previous ESPIE macro (if any); you use it when you want to cancel the current program interruption exit and restore control to any previous interrupt.

You can consider program interruption exits as a stack of programs: the most recent is on top of the stack. Then, if another module in your program establishes its own program interruption exit, when that second exit is canceled, the most previously established exit resumes effect.

Note that if the active exit does not process a given type of program interruption, control is not passed “down the stack” to an earlier exit; the program will be ABENDed by the system.

To terminate the current program interruption exit, issue an ESPIE macro with the RESET operand, and the token that you received when you established the exit:

```
ESPIE RESET, MyToken End current exit
```

For more information about the maskable exceptions, see the initial description at “4.6. Exceptions and Program Interruptions (*)” on page 59 and the examples of the SPM instruction at “16.9. Retrieving and Setting the Program Mask (*)” on page 235.
41.7.4. Handling a Program Interruption

When a program interruption occurs and the currently active PICA requests control, the system places information in the EPIE:

- the general registers in effect at the point of interruption
- the 8-byte ESA/390-mode old PSW (see Figure 768), containing
  - the address and addressing mode of the instruction following the interrupted instruction (IA and A in Figure 768)
  - the condition code, program mask (see CC and PM in Figure 768) and the instruction length code
  - the interruption code and Data Exception Code; if the DXC field is zero, the exception was due to invalid decimal data; otherwise, see Section 34.4.1. on page 636 for a description of possible floating-point exceptions

<table>
<thead>
<tr>
<th>Offset (dec)</th>
<th>Offset (hex)</th>
<th>Length</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>4</td>
<td>CL4</td>
<td>Control block identifier 'EPIE'</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>A</td>
<td>Parameter list address</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>64</td>
<td>XL64</td>
<td>32-bit GPRs at time of interruption</td>
</tr>
<tr>
<td>72</td>
<td>48</td>
<td>8</td>
<td>XL8</td>
<td>8-byte ESA/390 old PSW at time of interruption</td>
</tr>
<tr>
<td>74</td>
<td>4A</td>
<td>1</td>
<td>BL1</td>
<td>Condition Code and Program Mask</td>
</tr>
<tr>
<td>76</td>
<td>4C</td>
<td>4</td>
<td>A</td>
<td>AMODE bit and 31-bit address of next instruction to execute</td>
</tr>
<tr>
<td>81</td>
<td>51</td>
<td>1</td>
<td>BL1</td>
<td>Instruction Length code (bit positions X'06')</td>
</tr>
<tr>
<td>83</td>
<td>53</td>
<td>1</td>
<td>XL1</td>
<td>Interruption code</td>
</tr>
<tr>
<td>87</td>
<td>57</td>
<td>1</td>
<td>BL1</td>
<td>Data Exception code (if Interruption code is 7)</td>
</tr>
<tr>
<td>153</td>
<td>99</td>
<td>1</td>
<td>BL1</td>
<td>Set bit X'40' to resume execution by restoring the 64-bit GPRs rather than the 32-bit GPRs</td>
</tr>
<tr>
<td>160</td>
<td>A0</td>
<td>128</td>
<td>XL128</td>
<td>64-bit GPRs at time of interruption</td>
</tr>
<tr>
<td>288</td>
<td>120</td>
<td>8</td>
<td>XL8</td>
<td>Breaking Event Address</td>
</tr>
<tr>
<td>296</td>
<td>128</td>
<td>16</td>
<td>XL16</td>
<td>16-byte old PSW at time of interruption</td>
</tr>
</tbody>
</table>

Figure 768. ESA/390-mode old PSW in EPIE

The most useful contents of the EPIE are sketched in Table 430. (The full EPIE is described in the MVS Data Areas manual referenced in the Bibliography on page 1041.)

Using the information in the EPIE, your Program Interruption Exit can do many things, such as:

1. Examine the interruption condition and do nothing; simply return to the address in GR14 on entry to the exit routine.
2. Print an error message and resume execution at the next instruction.
3. If the interruption was due to invalid data, analyze the instruction to determine where the data is; then try correcting the data or the register pointing to it. Then use the ILC in the EPIE to subtract the length of the interrupted instruction from the old PSW, and try again.
4. Modify the old PSW address in the EPIE so that control will resume at a different place in your program after your exit returns via the system.

5. If your exit determines that continuing execution is a bad idea, set bit ‘10’ at offset 153 (X’99’) and return to the system; it will automatically issue an ABEND. (Don’t modify anything else in the EPIE.)

Many other possibilities will come to mind.

Be Careful!

1. The linkage from the system to your program interruption exit is not standard: do not try to save any registers in the “caller’s” save area.
2. If you do I/O from your exit routine, you must establish a local save area pointed to by GR13. Because they are used by I/O routines, you must first preserve GR14, GR15, GR0, and GR1.
3. Your exit routine must return to the interrupted program via the return address in GR14 when the exit was entered.

Exercises

41.7.1.(2)) Write short examples of instruction sequences that will cause each of the 15 types of program interruption. (You will want to use this information when you solve Programming Problem 41.6.)

41.8. Abnormal Terminations of Any Kind

Note!

This topic is quite complicated; this section can at best give a brief outline of its key components and actions. For a detailed overview, see the topic “Providing Recovery” in the MVS Assembler Services Guide, referenced in the Bibliography on page 1041.

As when you establish an exit to handle program interruptions with ESPIE, you can specify a routine to be given control on any abnormal termination condition. That routine (called a recovery routine) can capture information about the cause and location of the problem, maybe take remedial action to repair or bypass the error and resume execution at a chosen point in your program, or release any resources the program may have acquired and terminate a bit more “gracefully”.

The overall flow of control can be visualized in simplified form in Figure 769 on page 962:

---

294 On a very early System/360 Model 67, one particular program interruption at an address at a specific offset from a doubleword boundary would resume execution not at the next sequential instruction, but at the previous doubleword boundary. If that was the address of the interrupted instruction, an interruption loop would occur.
In this basic scenario, you are responsible for writing three routines: the Application Program \(1\), the ESTAE recovery routine(s) (ESTAE exit(s)) \(4\), and the Retry Routine \(7\). These can be separate programs, or parts of the Application Program.

Under normal conditions, you expect the Application Program to complete with a Normal End \(2\), and control passes to the “Recovery/Termination Manager” (RTM) to do any necessary final actions. If an Interruption \(3\) occurs, or if your Application Program \(1\) issues an ABEND macro, the System will give control to the most recent of your Recovery Routines \(4\), and provide useful information in a “System Diagnostic Work Area” (SDWA). If no Recovery Routine is available, control will pass directly to the Recovery/Termination Manager (RTM) \(5\), which will do its best to clean up any resources held by your program and generate whatever diagnostic information it can.

Assuming a Recovery Routine is available, you can make several choices:

1. You can decide that the problem cannot readily be fixed, generate as much diagnostic information as you can, and pass control to the RTM \(5\) to terminate execution (possibly with additional diagnostic information such as a “memory dump”).

2. You can choose to do some repairs and pass control to the Recovery/Termination Manager \(5\), or you can decide that the problem may be identifiable by the next of the Recovery Routines on the “exit stack”, and indicate to the System that recovery control should “percolate” \(6\) to the next exit routine.

3. You can process the interruption condition so that it is partly or completely repaired, and decide to pass control back to the application program by way of the Retry Routine \(7\); it can complete fixing the problem, or completely bypass it.

Both percolation and retry require the SETRP macro, which we’ll review on page 964.

The most general form of exception handling is provided by the STAE, ESTAE, and ESTAEX macros, all of which support Standard, List, and Execute forms.

STAE was the earliest form, and executes only in 24-bit addressing mode. ESTAE was introduced next, and executes in both 24- and 31-bit modes. ESTAEX is the most general form, and can execute in all three modes. (See the details in the Assembler Services Reference manual listed in the Bibliography.) The following discussion will use ESTAE; ESTAEX is very similar.

---

295 The names are generally understood to mean “(Extended) Specify Task Abnormal Exit”.

962 Assembler Language Programming for IBM z System™ Servers  Version 1.00
41.8.1. The ESTAE Macro

Issuing ESTAE establishes an exit routine that will be given control on an abnormal termination condition in your program. If you issue multiple ESTAEs, you can either replace the current exit with a new one (like ESPIE), or (unlike ESPIE) you can form a “chain” or “stack” of exit routines, each of which can decide to take corrective action, or to pass the problem to the previous exit routine. This passing of control is called “percolation”.

Because program interruptions can also cause an abnormal termination, an ESTAE exit can also process program interruption conditions, but the interface is both more powerful and much more complex than ESPIE’s.

The ESTAE macro has this general form:

```
ESTAE two_positional_operands,multiple_keyword_operands
```

These are the most important operands for most programs; default values are underlined.

**exitname**
This is the first positional operand, giving the entry point name of the recovery routine to be placed at the top of the exit “stack”. If you specify 0 for this operand, the name of the current exit routine (at the top of the stack) is removed.

**CT|OV**
This second positional argument is either CT or OV. Specifying OV means that the current exit routine will be replaced (“overlaid”) by the new one provided in the first operand. Specifying CT means that the new exit routine will be added (“concatenated”) to the top of the stack of exit program names. It will be entered first by the operating system when an interruption occurs, but it can “percolate” control to the previous exit routine.

**PARAM=**
This keyword operand specifies the address of a “parameter area” created by the Application Program that can provide useful information for the Recovery Routine, and where that routine can place data that may be useful for the application.

**PURGE=**
This keyword operand specifies the actions you want to take with currently active I/O operations.

- **NONE** Don’t do anything; let the operations continue. (This means that any interruptions caused by the active I/O could cause re-entry to your exit routine.)
- **QUIESCE** Save the status of pending I/O requests so they can be restarted if desired. Currently active I/O operations will be purged.
- **HALT** Don’t save pending requests. Currently active I/O operations will be purged.

**ASYNCH=**
This keyword operand specifies whether certain types of interruption should be allowed while your recovery routine is in control:

- **NO** No other interruptions should be allowed.
- **YES** Must be specified if your exit routine will request system services that could generate interruptions, or if you specified PURGE=QUIESCE or PURGE=NONE and interruptions are required to complete processing of certain I/O activities.

**SDWALOC31=**
You can specify whether the “System Diagnostic Work Area” (SDWA) created by the System should be located in 24- or 31-bit addressable storage:

- **NO** The SDWA will be in 24-bit storage.
- **YES** Yes is required if the application program is running in 31-bit addressing mode, or if it is using 64-bit general registers.

The satisfactory-completion return codes (in GR15) from ESTAE are 0 and 4 (you specified OV but there was no previous exit to overlay, so the System treated your request as though you had specified CT). All other return codes indicate an error.

A simple example of an ESTAE macro is shown in Figure 770 on page 964:
You can see the references to the exit and parameter-area addresses; the other fields are for arguments we haven’t discussed.

41.8.2. Interruption Processing

Your ESTAE exit receives control from the System in the addressing mode that was in effect when the ESTAE macro was issued, not in the current mode. You should do several things first:

1. Save the return address in GR14, so you can return control to the System, and GR2 contains the address of the “parameter area” that you specified on the PARAM= operand of the ESTAE macro. (The parameter area address is also in the SDWA field SDWAPARM.)

2. Test GR0:
   - If c(GR0)=12 (X’0C’), no SDWA has been provided by the System, and GR13 does not point to a save area. Your options are quite limited, and it’s best to terminate the program.
   - If c(GR0)≠12, GR1 holds the address of the SDWA, GR13 points to a standard save area, and the address of the parameter area is also in the SDWAPARM field of the SDWA. (The names of the SDWA fields are defined in the DSECT generated by the IHASDWA macro, and described in the MVS Data Areas manual listed in the Bibliography.)
     - The completion code (also known as the ABEND code) is in the SDWA’s SDWACMPC field, and if the SDWARCF bit is 1, the SDWACRC contains the reason code (that you could have provided on an ABEND macro).
     - Check the SDWAPERC bit: if it’s 0, this is the first recovery routine, and there has been no previous percolation.

The information provided by the System in the SDWA to the exit routine is very rich, including the contents of the general registers, the 8-byte PSW in effect at the time of the original ABEND, and other useful data. The SDWA is described in the MVS Data Areas manual; see the Bibliography for details.

Your recovery routine may need to communicate with the application program. The best way to do this is to use the parameter area you specified on the PARAM= operand of the ESTAE macro. This area can contain addresses of parts of the application program and of acquired storage, addresses that may need to be used to locate data or that may be needed by your retry routine.

41.8.3. Percolation and Retry

If your exit wants to percolate to another exit, or retry execution at a point in the application, it must issue the SETRP (Set Return Parameters) macro, described in the Assembler Services Reference manual. Depending on the arguments on the SETRP macro when you have used it to return control to the System, the System will percolate to the next exit routine on the exit “stack”, or give control to your retry routine.

Note that if the SWDACLUP bit in the SDWA is 1, retry is not allowed.

The general form of the macro is:
SETRP keyword_arguments

You should use SETRP only if the System provided a SDWA to your exit routine. If there is no SDWA, it’s best not to retry.

These are the most important operands for most programmers; default values are underlined.

**RC=** 0|4. This argument specifies whether you want to percolate (0) or retry (4).

**REGS=** (reg1,reg2). The register or range of registers to be restored from the standard save area addressed by GR13. Specify the register values as you would for a Load Multiple instruction: (reg1,reg2). The macro will generate a BR 14 instruction to return control to the System. (If you omit this argument, you must create your own branch instruction to return control to the System.)

The following arguments may be specified only if you specified RC=4 (retry).

**RETTADDR=** The address of your retry routine. It can be a separate routine; your exit routine can request that the System resume execution of your program at whatever point you choose.

**FRESDWA=** NO|YES. This argument specifies whether (YES) or not (NO) you want the SDWA to be freed before your retry routine receives control. If you specify NO, the retry routine must free the SDWA, using length and subpool information in the SDWA.

There are many other macro operands not mentioned here; see the MVS Assembler Services Reference in the Bibliography for details.

**Percolation:** If you chose to percolate (RC=0) it’s best to repair as much of the problem as possible, such as releasing unneeded resources, depending on the type of interruption.

Before you issue the SETRP macro to return control to the System (and then to the next recovery routine on the “exit stack”), check whether a SDWA was provided: if not, set c(GR15) to zero. If yes, you could update the SDWA with data that might be useful if and when the program continues, or is terminated.

When the SERTP macro passes control to the system, the system removes the current ESTAE exit from the top of the exit stack; if the stack is now empty, the system will abnormally terminate your program and control will pass directly to the RTM.

**Retry:** If you choose to retry (RC=4), you are passing control back to the Application Program’s retry routine (which can be an existing module or part of the application). The current ESTAE exit on the top of the exit “stack” is not freed. If your retry routine creates another interruption, control will pass to the same recovery routine that just gave control back to the application via the retry routine. Be careful: you could cause an error-processing loop.

### 41.8.4. Summary

This topic is far more extensive than this overview can properly describe. The cited references provide all the information you may need.

From your perspective (not the System’s!) you can think of your program as being in one of several states:

1. Executing; it is doing what it was intended to do.
2. In your ESTAE-exit recovery routine, your program having created an interruption condition.
3. “Abnormal end”: no recovery routines, or your recovery routine(s) failed.
4. Terminated.

From the System’s perspective, your program can be in several states:

1. Executing; doing something.
2. Having executed an ESTAE macro, which creates an exit that can then be in one of four states:
a. Defined and activated: known to the System; you provided an exit name on ESTAE, and available to receive control if an interruption occurs.
b. In control; the System has passed control to the exit.
c. No longer in control, because it has either percolated or retried.
d. Deactivated and undefined: the System will no longer pass control to it, and not known to the System.

3. Terminating abnormally: you provided no exit routines, or your exit routines failed.
4. Terminating normally.

41.9. Summary

Instructions Discussed in this Section

The instruction mnemonics and opcodes are shown in the following table:

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Opcode</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC</td>
<td>B218</td>
</tr>
<tr>
<td>SVC</td>
<td>0A</td>
</tr>
</tbody>
</table>

The instruction opcodes and mnemonics are shown in the following table:

<table>
<thead>
<tr>
<th>Opcode</th>
<th>Mnemonic</th>
</tr>
</thead>
<tbody>
<tr>
<td>0A</td>
<td>SVC</td>
</tr>
<tr>
<td>B218</td>
<td>PC</td>
</tr>
</tbody>
</table>

Programming Problems

**Programming Problem 41.1.** (1) Revise the little program in Figure 33 on page 83 to use system macros rather than PRINTOUT.

**Programming Problem 41.2.** (3) Write a program to read 80-byte fixed length records, and write them to a 121-byte print data set (with carriage-control characters), preceded by a sequence number giving the number of the input record. Verify that each DCB opened correctly, and take appropriate actions to notify the user if not.

For sample input records, you can use the data from Programming Problems 24.13 or 24.14 on page 401.

**Programming Problem 41.3.** (3) Write a program with a program interruption exit that generates each of the 15 possible interruption types in turn. For each interruption, generate a message describing the interruption type and the address of the interrupted instruction. Then, return to the mainline program to generate the next interruption.

**Programming Problem 41.4.** (1) Write a program using ESPIE to establish a program interruption exit, and display the token returned in GR1. Then establish a second exit, and display the token returned in GR1. Can you determine what it might refer to? Then, use the RESET option of ESPIE to terminate both exits.

**Programming Problem 41.5.** (3) Write a short program that issues an ESPIE macro that designates an exit routine in your program. Then, generate a program interruption that causes entry to your ESPIE exit routine. The exit should display (print) information about the interruption:
• the interruption code
• the address of the failed instruction
• the failed instruction
• any relevant register contents
• any relevant storage fields
• anything else that might be helpful

Then, return to the main program following the failed instruction, to complete execution normally.

**Programming Problem 41.6.** (4) Using your solution to Programming Problem 41.5 as a starting point, write a program to generate as many of the 15 program interruptions as you can, displaying the same information as before, plus any additional information you believe may be useful. (For example, for a decimal data interruption, show the invalid operands; this may require calculating some Effective Addresses.) (Your solution to Exercise 41.7.1 will be useful.)

**Programming Problem 41.7.** (3) Write a program with an ESTAE exit. Then, generate a program interruption as in Programming Problems 41.5 or 41.6. Your recovery routine should provide at least the same information as in Problem 41.5.

**Programming Problem 41.8.** (4) Write a program with an ESTAE exit, and generate an interruption condition *other than* a program interruption, and provide at least the same information as in Problem 41.5.
42. Reenterability and Recursion

42.1. Reenterability

We’ll start by outlining what “reenterability” means technically, then what it implies in practice.

42.1.1. What it Means in General

There are many ways to understand reenterability:

1. A program does not modify itself.
2. A program does not modify itself and is loaded into memory-protected storage.
3. A program that produces correct results when multiple units of work execute it concurrently.
   It can modify itself if none of the units of work rely on or can detect the modification. For example:
   \[
   \begin{align*}
   &\text{L 0,X IC 0,*} \\
   &\text{ST 0,X STC 0,*-4}
   \end{align*}
   \]
   Such a program modifies itself, but the modification is not detectable unless the program has been loaded into protected storage.
4. Many programmers use the term “reentrant” to describe a reenterable program.\(^{296}\) Mathematically, “reentrant” describes a closed curve with at least one concave segment.

Sometimes people think reenterability also means recursion; they’re quite distinct. We’ll discuss recursion in Section 42.2 on page 972.

42.1.2. What it Means in Practice

Before starting, you should evaluate where, how, and when the module will be used, to decide whether or not it should be reenterable. But note that if you write all programs and subprograms

\(^{296}\) It has been claimed that “reenterable” was the original term, starting around 1964. Some years later someone apparently decided that word looked too complex, and substituted “reentrant”, without knowing its mathematical definition.
to be reenterable, you can use their components more easily in other applications, whether or not the complete application is reenterable.

42.1.3. Assembly-Time Considerations

1. Specifying the RENT option asks the Assembler to check for obvious cases of self-modification, but there are many ways for a program to modify itself that the Assembler cannot detect. Specifying a RSECT control section does the same checking on a per-section basis, but neither will detect d(b) references like this:

   LA 1,*  
   STC 1,0(1) Not detected by RENT or RSECT!  
   STC 2,* Detected by RENT and RSECT!

2. Anything the routine may modify should be in acquired storage, or in a work area provided by the caller.

3. These practices can make it easier to write a reenterable program (see Figure 771 on page 970):
   a. Define a DSECT for all local variables (but not constants). It should contain a local save area for calls to other external routines.
   b. On completion of entry linkage, allocate storage for the local variables, and assign a base register for this storage area.
   c. Initialize local variables as required.
   d. Release the local storage as part of the exit linkage.

4. Use the List and Execute forms of most macros, unless you have verified that the Standard form does not generate inline store instructions. See Figures 741, 743, 745, and 747 starting on page 944 for examples of macros that can be used in reenterable programs without needing to use the List and Execute forms.

42.1.4. At Linking Time

When you link a reenterable program using the z/OS Program Management Binder, you must specify either the RENT or REFR option; these options describe your program’s property (see the Binder manuals shown in the Bibliography for details):

- **NONE**: The module cannot be reused. A new copy must be brought into memory for each use.
- **SERIAL**: The module is serially reusable. It can only be executed by one task at a time; when one task has finished executing it another task can begin. A serially reusable module can modify its own code, but when it is re-executed it must initialize itself or restore any instructions or data that have been altered. (Sometimes known as **REUS**.)
- **RENT**: The module is reenterable. It can be executed by more than one task at a time. A task can begin executing it before a previous task has completed execution. A reentrant module cannot modify its own code. In some cases, the operating system may load a reentrant program into an area of virtual storage that cannot be modified. Reentrant modules are also serially reusable.
- **REFR**: The module is refreshable. It can be replaced by a new copy during execution without changing the sequence or results of processing. A refreshable module cannot be modified during execution. Refreshable modules are also reenterable and serially reusable. A module can be refreshable only if all the control sections within it are refreshable.

The Binder (like the Assembler) trusts your claims about your program’s reenterability, and does not try to verify them.

---

297 Except for enabling checks for simple cases of self-modification within its section, RSECT is the same as CSECT.
42.1.5. Techniques

This little example shows how you can write a reenterable program.

At the start of a reenterable program, you normally acquire storage for save areas, working data, macro lists, and so on. A partial sketch of the entry and exit linkages is shown in Figure 771; more will be added for a functioning program.

RentProg Rsect,
SAVE (14,12),,* Save caller’s registers
LR 12,15 Copy base register
Using RentProg,12 Establish addressability
GETMAIN R,LV=WorkLen Get working storage
ST 13,4,(1) Save back chain
ST 1,8,(13) Store caller’s forward chain
LR 13,1 Point R13 to the work area
Using WorkArea,13 Addressability for work area
XC 8(4,13),8(13) Clear our forward chain
- - - Do whatever needs doing
L 13,Save+4 Reload address of caller’s area
LR 1,13 Put work area address in GR1
FREEMAIN R,A=(1),LV=WorkLen Free the acquired storage
RETURN (14,12) Return to caller or system

WorkArea DSect,
Save DS 9D Local save area
Buffer DS CL80
OpenList OPEN (,,,),MF=L List to OPEN two DCBs
CloseList CLOSE (,,,),MF=L List to CLOSE two DCBs
- - - DS 0D Align to doubleword
WorkLen Equ *-WorkArea Length of the work area

Figure 771. Skeleton form of a reenterable program

Figure 771 shows how to allocate working storage, set up a save area, then to free it and return. Now, we’ll add some “working” statements.

Suppose this little program reads records from INDCB, processes them, and writes them to OUTDCB. In Figure 771 we omitted the DCB macros, so we’ll add those and the GET and PUT macros in Figure 772, assuming that the “housekeeping” instructions are unchanged. First, because the DCBs are modified during execution, they must be copied to the work area.

- - - MVC WDCB1(WDCB1L),INDCB Copy INDCB to the work area
MVC WDCB2(WDCB2L),OUTDCB Copy OUTDCB to the work area
LA 2,WDCB1 Point to working input DCB
LA 3,WDCB1 Point to working output DCB
OPEN ((2),INPUT,(3),OUTPUT),MF=(E,OpenList) Open both
GetRec GET (2),Buffer Read a record
- - - Process it
PUT (3), Buffer Write it out
J GetRec
EndFile CLOSE ((2), (3), ) Close the DCBs

INDCB DCB DDName=INFILE, LRECL=80, BLKSIZE=8000, MACRF=GM, DSORG=PS, X
EODAD=EndFile
OUTDCB DCB DDName=OUTFILE, LRECL=80, BLKSIZE=8000, MACRF=PM, DSORG=PS

WorkArea Dsect ,

WDCB1 DCB DSORG=PS, MACRF=GM, DDNAME=X Working DCB1
WDCB1L Equ *-WDCB1
WDCB2 DCB DSORG=PS, MACRF=GM, DDNAME=X Working DCB2
WDCB2L Equ *-WDCB1

Figure 772 (Part 2 of 2). I/O macros in a reenterable program

The use of unusual (and identical) DDNames on the working DCBs doesn’t matter because they are overwritten after the DCB skeletons are moved to the work area. However, you should always check your assembly listing to verify that the length of each DCB matches the length of the work area to which it’s moved. (Here, they should both have length X’60’.)

The complete assembled program is shown in Figure 773.

Chapter XII: System Services, Reenterability, and Recursion

971
42.1.1.(3) Note: This exercise is intended as a mental exercise in violating reenterability, not to illustrate a useful or proper programming technique!

Write a program with a loop, in which a single instruction modifies itself on each iteration through the loop, in such a way that the instruction is different each time. That is, an instruction like \( \text{MVI *+1,0} \) does not change on each iteration. Display enough of the program’s behavior to convince yourself that your solution works.

42.2. Recursion

Recursion appears in varied forms in many programming languages. For example, the common practice of grouping nested mathematical expressions in parentheses often implies the need for a recursive routine to parse the complete expression. In Section 8.6 on page 105, the Assembler Language defines an operand as formed from one to three expressions. Each expression is defined as a “factor” or as “\( \pm \) factor” or as “factor\( \pm \) factor”; a factor is defined in turn as a “primary” or as a “primary*primary” or as a “primary/primary”. Finally, a primary is defined as a “term” or as a parenthesized expression, “( expression )”. It is this last item that makes the definition of an expression recursive; you could be scanning an expression and encounter an opening parenthesis and find that you must (recursively) scan a new expression that is part of the expression you were previously scanning.

As another example, suppose the Assembler Language supported some types of nested literals, as in “\( =A(=F7) \)”. After recognizing the “\( =A( \) portion of the outer literal, the Assembler would normally parse an address-constant operand, but in this case the “\( =F7 \)” operand will require a recursive re-entry to the literal-operand scanner.

Mathematically, a recursive function is one that is defined in terms of itself. In programs, a recursive routine calls itself, either directly or indirectly. An example of a routine that can be implemented both with or without recursion is the familiar Factorial function; we saw iterative solutions in Programming Problems 18.5, 33.2, and 36.4. Its recursive definition is

1. Factorial: for integers \( N \geq 0 \).
   \[
   \text{Fact}(N) = \begin{cases} 
   1 & \text{if } N = 0 \text{ or } 1 \\
   N \times \text{Fact}(N-1) & \text{otherwise}
   \end{cases}
   \]

Some other functions having recursive definitions are:

2. Product: for integers \( M, N \geq 1 \).
   \[
   \text{Prod}(N,M) = \begin{cases} 
   M & \text{if } N = 1 \\
   N \times \text{Prod}(N,M-1) & \text{otherwise}
   \end{cases}
   \]

3. Greatest Common Divisor: for integers \( M, N \geq 1 \).

---

298 At the time of this writing, HLASM doesn’t support nested literals; but you can always ask.

299 Some very early computers evaluated products this way.

972 Assembler Language Programming for IBM z System™ Servers Version 1.00
GCD(N,M) = N if M = 0
GCD(N,M) = GCD(M,mod(N,M)) otherwise

Note that GCD(M,N) = GCD(N,M). Also, the Largest Common Multiple function
LCM(N,M) = N×M/GCD(N,M).

Another interesting GCD result is that GCD(n A−1,nB−1)=n GCD(A,B)−1.

FIBO(N) = 1 if N ≤ 2
FIBO(N) = FIBO(N-1) + FIBO(N-2) otherwise

We’ve seen many iterative solutions to generating the Fibonacci series; for example, see Programming Problems 16.7-10 and 30.7-8.

5. Remainder: given three positive integers A, b, C, calculate the remainder of A b/C.
REMDR(A b,C) = REMDR((A b/2),C) if A ≤ C and b ≥ 2 is even
REMDR(A b,C) = mod(A×REMDR((A b/(b-1)/2),C),C) if A < C and b ≥ 3 is odd
REMDR(A b,C) = A if A < C and b = 1
REMDR(A b,C) = REMDR((mod(A,C)) b,C) if A ≥ C

6. Partitions: PART(N) = number of ways to write N as a sum of positive integers.
PART(N) = 1 if N = 0
PART(N) = 0 if N < 0
PART(N) = R(1) - R(2) + R(3) - R(4) + R(5) - ...
where R(k) = PART(N-(3×k2-k)/2) + PART(N-(3×k2+k)/2)

7. Partitions: PART2(N,M) = number of ways to write M as the sum of not more than N positive integers. (Note that PART(N) = PART2(N,N).)
PART2(N,M) = 1 if (a) N = 1 and M ≥ 1, or (b) M = 0, or (c) M = 1
PART2(N,M) = 0 if M < 0
PART2(N,M) = PART2(N-1,M) + PART2(N,M-N)

8. Binomial Coefficients: BINC N,M = number of ways to select M objects from a set of N.
BINC N,M = 1 if M = 0 or M = N
BINC N,M = BINC N-1,M-1 + BINC N-1,M

9. Ackermann’s Function: for X, Y ≥ 0.
ACK(X,Y) = Y + 1 if X = 0
ACK(X,Y) = ACK(X-1,1) if X > 0 and Y = 0
ACK(X,Y) = ACK(X-1,ACK(X,Y-1)) otherwise

Be careful with the Ackermann function! It grows extremely fast, faster than any exponential function. For example, ACK(3,n) = 2(n+3)−3, while ACK(4,2) = 265536−3 = 1019728.

Note that 265536 = 2**2**(2**(2**(2**2))), an “exponentiation stack” or “power tower” of five 2’s. ACK(4,N) is a “power tower” of (N+3 2’s)−3.

10. The “Tower of Hanoi” is a famous problem often involving a recursive solution. suppose you have three pins P1, P2, and P3, and on P1 is a set of disks D1, D2, ... DN in increasing size from top to bottom. For example, with four disks:
The problem is to move the disks from P1 to P2, subject to these rules:

a. Only one disk may be moved at a time.
b. A larger disk is never put on a smaller disk.
c. At each stage, all disks must be on P1, P2, or P3 (no disks may be held temporarily “elsewhere”).

A recursive algorithm to accomplish the moves uses the function THMOVE(i,j,M), which moves the topmost M disks from pin Pi to pin Pj, using pin Pk if the topmost disks of pins Pk and Pj are larger than the M-th disk from the top of pin Pi. The steps of the algorithm are:

Step 1: If M=1, move the topmost disk from Pi to Pj, and return.
Step 2: Do THMOVE(i,k,M−1) where i≠j≠k.
Step 3: Move the topmost disk from Pi to Pj.
Step 4: Do THMOVE(k,j,M−1) where i≠j≠k.
Step 5: Return.

In the figure above, you would start with THMOVE(1,2,4).

We’ll see some of these recursive activities again as Programming Problems.

It is a common belief that a recursive routine must also be reenterable, but this is not so. The recursive routine can maintain its own internal stack; see Programming Problem 42.1 (which is highly recommended).

A common feature of recursive routines is that they must allocate and initialize instances of local variables on each entry, and free them on exit. Many implementations of recursive routines use a stack for local variables, save areas, and so on.

Making a recursive routine also be reenterable can simplify managing local variables if the routine can be loaded into protected storage; any attempt to store into the body of the routine will generate a memory protection error.

Here is an example of a reenterable, recursive routine to evaluate factorials and return the calculated value in GR0. (Remember that the largest argument that can be held in a fullword is 12; trying to evaluate larger values can lead to a variety of unexpected errors.)

* Reenterable, Recursive Factorial Routine

RFact RSect,
STM 14,3,12(13)  Save registers
LR 3,15         Copy base register
Using RFact,3   Provide addressability
LR 2,1         Preserve arglist pointer
Figure 774 (Part 2 of 2). Example of a reenterable, recursive routine

The assembly listing is shown in Figure 775 on page 976:
Figure 775. Assembly listing of the reenterable recursive routine

Several items are worth noting:

1. The routine tries to use a minimum number of general registers, while maintaining standard linkage and save area conventions. (This contributes nothing to efficient performance for this particular problem; an iterative solution would be much more efficient.)

2. The local base register in GR3 is needed only because the expansion of the GETMAIN macro must generate a BAL instruction, as we saw in Figure 741 on page 944. In some situations, the FREEMAIN macro may also generate instructions needing base-displacement resolution.

3. Returning the function value in GR0 can be done by reloading the other registers; storing the result into the caller’s GR0 slot in his save area is another method.
Exercises

42.2.1.(2) In Figure 774 on page 974, give two reasons why we can’t use BAS 14, RFACT to cause recursion, rather than the LR and BASR instructions in the figure? Both will go to the same place.

42.2.2.(2) If you call RFAC in Figure 774 on page 974 with argument 5, show (a) the ordered recursive calls with their arguments, and (b) the steps followed on recursion returns to evaluate the final result.

42.2.3.(3) By studying Figure 775 on page 976, what is the “earliest” position to which you can safely move the DROP 3 statement?

42.3. Summary

The general principles for writing reenterable programs are fairly simple:

- All local work areas must either be in acquired storage, or in storage provided by the caller. If acquired, the storage must be released on exit from your routine.
- The program must not modify itself.
- Note that some IBM macros make it difficult to write reenterable programs, because their expansions generate in-line data areas into which the macro stores argument values.

Programming Problems

Problem 42.1(4) Write a non-reenterable recursive subroutine with a single fullword argument N that evaluates N factorial and returns its value in GR0. Then write a program to call it with values from 12 to 1, and display the results to verify its execution.

Problem 42.2(2) You may have noticed that the program in Figure 773 on page 971 omitted any FREEPOOL macros. Rewrite, test, and run the program with the proper FREEPOOL macros.

Problem 42.3(1) Create your own version of the factorial routine in Figure 774 on page 974, and then create a calling program to request values of N! for values of N from 1 to 12. What happens on your system if you try calculating Factorial(13)?

Problem 42.4(2) Write a program to calculate the seventh Fibonacci number recursively. Include enough tracing output so you can see the great labors performed to achieve a simple result. (That is, FIB(7) requires calculating FIB(6) and FIB(5); but FIB(6) requires FIB(5) (again) and FIB(4), and FIB(5) requires FIB(4) (again) and FIB(3), etc. — many values are calculated repeatedly.)

Problem 42.5(2) The binomial coefficients can be defined both iteratively and recursively; the recursive definition is for 1 ≤ N ≤ M:

\[
\text{BINCO}(N,M) = \begin{cases} 
1 & \text{if } M = 0 \text{ or } M = N \\
\text{BINCO}(N-1,M-1) + \text{BINCO}(N-1,M) & \text{otherwise}
\end{cases}
\]

Write a program to evaluate the binomial coefficients up to M=10.

Problem 42.6(3) The definition above of the remainder function REM may seem unnecessarily complex. To show why it can be a great simplification, write a recursive program to evaluate the remainder when 1. A=24, b=48, C=11 (that is, the remainder of 24/11), (2) A=73, b=51, C=16 (that is, REM(73/16)).
Problem 42.7(4)+ The partition function $P(N)$ requires evaluating the $R$ expressions for each $N$ until successive values are zero. Write a recursive program to evaluate $P(N)$ for $N$ from 5 to 9.

Problem 42.8(3)+ The partition function $Q(N,M)$ is easier to evaluate than the $P(N)$ in Problem 42.7. Write a recursive Evaluate $Q(N,M)$ for $M$ from 5 to 9 and for $N$ from 1 to $M$. Compare your values of $Q(N,N)$ to the values of $P(N)$ you calculated in Problem 42.7.

Problem 42.9(3)+ The $Q(N,M)$ values of the partition function can be calculated iteratively using this algorithm:

array $Q(1:M,1:N)$
fors $k=1$ step 1 until $M$ do
\hspace{1cm} for $j=1$ step 1 until $N$ do
\hspace{2cm} $Q(k,j) =\begin{cases} 
1 & \text{if } k=1 \text{ or } j=1 \\
1+Q(k,j-1) & \text{if } k\leq j \\
Q(k,j-1) + Q(k-j,j) & \text{else}
\end{cases}$
\end{for}
Write a program to evaluate the $Q$ array up to $Q(9,9)$, and compare your results to the values you calculated in Problem 42.8. (Note that no element of the $Q$ array is calculated more than once.)

Problem 42.10(3)+ Write a recursive program using the formulae for evaluating REM($A^b/C$) to read values for $A$, $b$, and $C$ including at least these sets of three values:

- $A = 73$, $b = 23$, $C = 109$
- $A = 73$, $b = 79$, $C = 127$
- $A = 143$, $b = 204$, $C = 999$

Problem 42.11(3)+ Write a recursive program to evaluate Ackermann’s function $ACK(3,3)$. Your answer should be 61. (Be careful about exploring larger arguments: the function grows extremely rapidly!)

Problem 42.12(3)+ Write a program to solve recursively the “Tower of Hanoi” problem described above. If you can display or animate the steps of the algorithm, so much the better.

Problem 42.13(3)+ Write a program to solve the “Tower of Hanoi” problem described above, using this iterative method.\textsuperscript{301}

- Number the disks from 1 to $N$, smallest to largest.
- Order the posts so that moving clockwise and counterclockwise are meaningful.
- Then:
  - Move odd-numbered disks only clockwise and even-numbered disks only counterclockwise.
  - Don’t move the same disk twice in succession.
  - Don’t put a larger disk on a smaller.

\textsuperscript{301} Due to Wm. Randolph Franklin, published in SIGPLAN Notices Aug. 1984, page 87.
Appendix A: Conversion and Reference Tables

This appendix contains the following tables:

1. Table 431 gives the correspondences between hexadecimal digits and their decimal and binary representations.
2. Tables 432 and 433 are hexadecimal addition and multiplication tables.
3. Tables 434 and 435 give powers of 2 from 1 to 64 and from 65 to 128, respectively.
4. Tables 436 and 437 provide multiples of powers of 16, up to $15 \times 16^7$
5. Table 438 shows the powers of 10 expressed in hexadecimal.
6. The tables in “Hexadecimal and Decimal Integers” on page 989 provide rapid conversions between decimal and hexadecimal for integers between 0 and 4095.
7. The tables in “Conversion Tables for Hexadecimal Fractions” on page 997 provide conversions between decimal and hexadecimal fractions.
8. “EBCDIC Character Representation in Assembler Language Programs” on page 998 shows the encodings used by the Assembler for EBCDIC characters.
9. “ASCII Character Representation in Assembler Language Programs” on page 999 shows the encodings used by the Assembler for ASCII characters.
10. “DC Statement Types” on page 1000 shows the types of constants supported by the DC and DS statements.

### Hexadecimal Digits in Decimal and Binary

Table 431. Hexadecimal, decimal, and binary

<table>
<thead>
<tr>
<th>Hex</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decimal</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>Binary</td>
<td>0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111</td>
<td></td>
</tr>
</tbody>
</table>

Appendix A: Conversion and Reference Tables
### Hexadecimal Addition and Multiplication Tables

#### Table 432. Hexadecimal Addition Table

<table>
<thead>
<tr>
<th>+</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>00</td>
<td>01</td>
<td>02</td>
<td>03</td>
<td>04</td>
<td>05</td>
<td>06</td>
<td>07</td>
<td>08</td>
<td>09</td>
<td>0A</td>
<td>0B</td>
<td>0C</td>
<td>0D</td>
<td>0E</td>
<td>0F</td>
</tr>
<tr>
<td>1</td>
<td>01</td>
<td>02</td>
<td>03</td>
<td>04</td>
<td>05</td>
<td>06</td>
<td>07</td>
<td>08</td>
<td>09</td>
<td>0A</td>
<td>0B</td>
<td>0C</td>
<td>0D</td>
<td>0E</td>
<td>0F</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>02</td>
<td>03</td>
<td>04</td>
<td>05</td>
<td>06</td>
<td>07</td>
<td>08</td>
<td>09</td>
<td>0A</td>
<td>0B</td>
<td>0C</td>
<td>0D</td>
<td>0E</td>
<td>0F</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>03</td>
<td>04</td>
<td>05</td>
<td>06</td>
<td>07</td>
<td>08</td>
<td>09</td>
<td>0A</td>
<td>0B</td>
<td>0C</td>
<td>0D</td>
<td>0E</td>
<td>0F</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>04</td>
<td>05</td>
<td>06</td>
<td>07</td>
<td>08</td>
<td>09</td>
<td>0A</td>
<td>0B</td>
<td>0C</td>
<td>0D</td>
<td>0E</td>
<td>0F</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>05</td>
<td>06</td>
<td>07</td>
<td>08</td>
<td>09</td>
<td>0A</td>
<td>0B</td>
<td>0C</td>
<td>0D</td>
<td>0E</td>
<td>0F</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>6</td>
<td>06</td>
<td>07</td>
<td>08</td>
<td>09</td>
<td>0A</td>
<td>0B</td>
<td>0C</td>
<td>0D</td>
<td>0E</td>
<td>0F</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>07</td>
<td>08</td>
<td>09</td>
<td>0A</td>
<td>0B</td>
<td>0C</td>
<td>0D</td>
<td>0E</td>
<td>0F</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>08</td>
<td>09</td>
<td>0A</td>
<td>0B</td>
<td>0C</td>
<td>0D</td>
<td>0E</td>
<td>0F</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>9</td>
<td>09</td>
<td>0A</td>
<td>0B</td>
<td>0C</td>
<td>0D</td>
<td>0E</td>
<td>0F</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>A</td>
<td>0A</td>
<td>0B</td>
<td>0C</td>
<td>0D</td>
<td>0E</td>
<td>0F</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
</tr>
<tr>
<td>B</td>
<td>0B</td>
<td>0C</td>
<td>0D</td>
<td>0E</td>
<td>0F</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>1A</td>
</tr>
<tr>
<td>C</td>
<td>0C</td>
<td>0D</td>
<td>0E</td>
<td>0F</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>1A</td>
<td>1B</td>
</tr>
<tr>
<td>D</td>
<td>0D</td>
<td>0E</td>
<td>0F</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>1A</td>
<td>1B</td>
<td>1C</td>
</tr>
<tr>
<td>E</td>
<td>0E</td>
<td>0F</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>1A</td>
<td>1B</td>
<td>1C</td>
<td>1D</td>
</tr>
<tr>
<td>F</td>
<td>0F</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>1A</td>
<td>1B</td>
<td>1C</td>
<td>1D</td>
<td>1E</td>
</tr>
</tbody>
</table>

#### Table 433. Hexadecimal Addition Table

| × | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 0A | 0B | 0C | 0D | 0E | 0F |
| 1 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 0A | 0B | 0C | 0D | 0E | 0F | 10 |
| 2 | 02 | 04 | 06 | 08 | 0A | 0C | 0E | 10 | 12 | 14 | 16 | 18 | 1A | 1C | 1E | 20 |
| 3 | 03 | 06 | 09 | 0C | 0F | 12 | 15 | 18 | 1B | 1E | 21 | 24 | 27 | 2A | 2D | 30 |
| 4 | 00 | 04 | 08 | 0C | 10 | 14 | 18 | 20 | 24 | 28 | 2C | 30 | 34 | 38 | 3C | 40 |
| 5 | 00 | 05 | 0A | 0F | 10 | 14 | 18 | 20 | 24 | 28 | 2C | 30 | 34 | 38 | 3C | 40 |
| 6 | 00 | 06 | 0C | 12 | 18 | 24 | 30 | 36 | 40 | 46 | 50 | 56 | 60 | 66 | 70 | 76 |
| 7 | 00 | 07 | 0E | 15 | 23 | 31 | 39 | 47 | 55 | 63 | 71 | 7F | 85 | 93 | 9F | A7 |
| 8 | 00 | 08 | 10 | 18 | 20 | 28 | 30 | 38 | 40 | 48 | 50 | 58 | 60 | 68 | 70 | 78 |
| 9 | 00 | 09 | 12 | 24 | 2D | 36 | 3F | 48 | 51 | 5A | 63 | 6C | 75 | 7E | 87 | 90 |
| A | 00 | 0A | 14 | 1E | 28 | 32 | 3C | 46 | 50 | 5A | 64 | 6E | 78 | 82 | 8C | 96 |
| B | 00 | 0B | 16 | 21 | 2C | 37 | 42 | 4D | 58 | 63 | 6E | 79 | 84 | 8F | 9A | A5 |
| C | 00 | 0C | 18 | 24 | 30 | 3C | 48 | 54 | 60 | 6C | 78 | 84 | 90 | 9C | AB | B4 |
| D | 00 | 0D | 1A | 27 | 34 | 41 | 4E | 5B | 68 | 75 | 82 | 8F | 9C | A9 | B6 | C3 |
| E | 00 | 0E | 1C | 2A | 38 | 46 | 54 | 62 | 70 | 7E | 8C | 9A | AB | B6 | C4 | D2 |
| F | 00 | 0F | 1E | 2D | 3C | 48 | 5A | 69 | 78 | 87 | 96 | A5 | B4 | C3 | D2 | E1 |

Table 432. Hexadecimal Addition Table

Table 433. Hexadecimal Multiplication Table
## Powers of 2

### Table 434. Integer powers of 2

<table>
<thead>
<tr>
<th>$2^N$</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>32</td>
<td>5</td>
</tr>
<tr>
<td>64</td>
<td>6</td>
</tr>
<tr>
<td>128</td>
<td>7</td>
</tr>
<tr>
<td>256</td>
<td>8</td>
</tr>
<tr>
<td>512</td>
<td>9</td>
</tr>
<tr>
<td>K (kilo)</td>
<td>1,024</td>
</tr>
<tr>
<td>2,048</td>
<td>11</td>
</tr>
<tr>
<td>4,096</td>
<td>12</td>
</tr>
<tr>
<td>8,192</td>
<td>13</td>
</tr>
<tr>
<td>16,384</td>
<td>14</td>
</tr>
<tr>
<td>32,768</td>
<td>15</td>
</tr>
<tr>
<td>65,536</td>
<td>16</td>
</tr>
<tr>
<td>131,072</td>
<td>17</td>
</tr>
<tr>
<td>262,144</td>
<td>18</td>
</tr>
<tr>
<td>524,288</td>
<td>19</td>
</tr>
<tr>
<td>M (mega)</td>
<td>1,048,576</td>
</tr>
<tr>
<td>2,097,152</td>
<td>21</td>
</tr>
<tr>
<td>4,194,304</td>
<td>22</td>
</tr>
<tr>
<td>8,388,608</td>
<td>23</td>
</tr>
<tr>
<td>16,777,216</td>
<td>24</td>
</tr>
<tr>
<td>33,554,432</td>
<td>25</td>
</tr>
<tr>
<td>67,108,864</td>
<td>26</td>
</tr>
<tr>
<td>134,217,728</td>
<td>27</td>
</tr>
<tr>
<td>268,435,456</td>
<td>28</td>
</tr>
<tr>
<td>536,870,912</td>
<td>29</td>
</tr>
<tr>
<td>G (giga)</td>
<td>1,073,741,824</td>
</tr>
<tr>
<td>2,147,483,648</td>
<td>31</td>
</tr>
<tr>
<td>4,294,967,296</td>
<td>32</td>
</tr>
</tbody>
</table>

### Table 434. Integer powers of 2

<table>
<thead>
<tr>
<th>$2^N$</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>8,589,934,592</td>
<td>33</td>
</tr>
<tr>
<td>17,179,869,184</td>
<td>34</td>
</tr>
<tr>
<td>34,359,738,368</td>
<td>35</td>
</tr>
<tr>
<td>68,719,476,736</td>
<td>36</td>
</tr>
<tr>
<td>137,438,953,472</td>
<td>37</td>
</tr>
<tr>
<td>274,877,906,944</td>
<td>38</td>
</tr>
<tr>
<td>549,755,813,888</td>
<td>39</td>
</tr>
<tr>
<td>1,099,511,627,776</td>
<td>40</td>
</tr>
<tr>
<td>2,199,023,255,552</td>
<td>41</td>
</tr>
<tr>
<td>4,398,046,511,104</td>
<td>42</td>
</tr>
<tr>
<td>8,796,093,022,208</td>
<td>43</td>
</tr>
<tr>
<td>17,592,186,044,416</td>
<td>44</td>
</tr>
<tr>
<td>35,184,372,088,832</td>
<td>45</td>
</tr>
<tr>
<td>70,368,744,177,664</td>
<td>46</td>
</tr>
<tr>
<td>140,737,488,355,328</td>
<td>47</td>
</tr>
<tr>
<td>281,474,976,710,656</td>
<td>48</td>
</tr>
<tr>
<td>562,949,953,421,312</td>
<td>49</td>
</tr>
<tr>
<td>1,125,899,906,842,624</td>
<td>50</td>
</tr>
<tr>
<td>2,251,799,813,685,248</td>
<td>51</td>
</tr>
<tr>
<td>4,503,599,627,370,496</td>
<td>52</td>
</tr>
<tr>
<td>9,007,199,254,740,992</td>
<td>53</td>
</tr>
<tr>
<td>18,014,398,509,481,984</td>
<td>54</td>
</tr>
<tr>
<td>36,028,797,018,963,968</td>
<td>55</td>
</tr>
<tr>
<td>72,057,594,037,927,936</td>
<td>56</td>
</tr>
<tr>
<td>144,115,188,075,855,872</td>
<td>57</td>
</tr>
<tr>
<td>288,230,376,151,711,744</td>
<td>58</td>
</tr>
<tr>
<td>576,460,752,303,423,488</td>
<td>59</td>
</tr>
<tr>
<td>1,152,921,504,606,846,976</td>
<td>60</td>
</tr>
<tr>
<td>2,305,843,009,213,693,952</td>
<td>61</td>
</tr>
<tr>
<td>4,611,686,018,427,387,904</td>
<td>62</td>
</tr>
<tr>
<td>9,223,372,036,854,775,808</td>
<td>63</td>
</tr>
<tr>
<td>18,446,744,073,709,551,616</td>
<td>64</td>
</tr>
<tr>
<td>$2^N$</td>
<td>R</td>
</tr>
<tr>
<td>-------</td>
<td>----</td>
</tr>
<tr>
<td>36,893,488,147,419,103,232</td>
<td>65</td>
</tr>
<tr>
<td>73,786,976,294,838,206,464</td>
<td>66</td>
</tr>
<tr>
<td>147,573,952,589,676,412,928</td>
<td>67</td>
</tr>
<tr>
<td>295,147,905,179,352,825,856</td>
<td>68</td>
</tr>
<tr>
<td>590,295,810,358,705,651,712</td>
<td>69</td>
</tr>
<tr>
<td>1,180,591,620,717,411,303,424</td>
<td>70</td>
</tr>
<tr>
<td>2,361,183,241,434,822,606,848</td>
<td>71</td>
</tr>
<tr>
<td>4,722,366,482,869,645,213,696</td>
<td>72</td>
</tr>
<tr>
<td>9,444,732,965,739,290,427,392</td>
<td>73</td>
</tr>
<tr>
<td>18,889,465,931,478,580,854,784</td>
<td>74</td>
</tr>
<tr>
<td>37,778,931,862,957,161,709,568</td>
<td>75</td>
</tr>
<tr>
<td>75,557,863,725,914,323,419,136</td>
<td>76</td>
</tr>
<tr>
<td>151,115,727,451,828,646,838,272</td>
<td>77</td>
</tr>
<tr>
<td>302,231,454,903,657,293,676,544</td>
<td>78</td>
</tr>
<tr>
<td>604,462,909,807,314,587,353,088</td>
<td>79</td>
</tr>
<tr>
<td>Z (zetta)</td>
<td></td>
</tr>
<tr>
<td>1,208,925,819,614,629,174,706,176</td>
<td>80</td>
</tr>
<tr>
<td>2,417,851,639,229,258,349,412,352</td>
<td>81</td>
</tr>
<tr>
<td>4,835,703,278,458,516,698,824,704</td>
<td>82</td>
</tr>
<tr>
<td>9,671,406,556,917,033,397,649,408</td>
<td>83</td>
</tr>
<tr>
<td>19,342,813,113,834,066,795,298,816</td>
<td>84</td>
</tr>
<tr>
<td>38,685,626,227,668,133,590,597,632</td>
<td>85</td>
</tr>
<tr>
<td>77,371,252,455,336,267,181,195,264</td>
<td>86</td>
</tr>
<tr>
<td>154,742,504,910,672,534,362,390,528</td>
<td>87</td>
</tr>
<tr>
<td>309,485,009,821,345,068,724,781,056</td>
<td>88</td>
</tr>
<tr>
<td>618,970,019,642,690,137,449,562,112</td>
<td>89</td>
</tr>
<tr>
<td>1,237,940,039,285,380,274,899,124,224</td>
<td>90</td>
</tr>
<tr>
<td>2,475,880,078,570,760,549,798,248,448</td>
<td>91</td>
</tr>
<tr>
<td>4,951,760,157,141,521,099,596,496,896</td>
<td>92</td>
</tr>
<tr>
<td>9,903,520,314,283,042,199,192,993,792</td>
<td>93</td>
</tr>
<tr>
<td>19,807,040,628,566,084,398,385,987,584</td>
<td>94</td>
</tr>
<tr>
<td>39,614,081,257,132,168,796,771,975,168</td>
<td>95</td>
</tr>
<tr>
<td>79,228,162,514,264,337,593,543,950,336</td>
<td>96</td>
</tr>
</tbody>
</table>

Y (yotta)
<table>
<thead>
<tr>
<th>$2^n$</th>
<th>$n$</th>
</tr>
</thead>
<tbody>
<tr>
<td>158,456,325,028,528,675,187,087,900,672</td>
<td>97</td>
</tr>
<tr>
<td>316,912,650,057,057,350,374,175,801,344</td>
<td>98</td>
</tr>
<tr>
<td>633,825,300,114,700,748,351,602,688</td>
<td>99</td>
</tr>
<tr>
<td>1,267,650,600,228,401,496,703,205,376</td>
<td>100</td>
</tr>
<tr>
<td>2,535,301,200,456,802,993,406,410,752</td>
<td>101</td>
</tr>
<tr>
<td>5,070,602,400,912,965,896,812,821,504</td>
<td>102</td>
</tr>
<tr>
<td>10,141,204,801,825,835,211,973,625,643,008</td>
<td>103</td>
</tr>
<tr>
<td>20,282,409,603,651,670,423,947,251,286,016</td>
<td>104</td>
</tr>
<tr>
<td>40,564,819,207,303,404,847,894,502,572,032</td>
<td>105</td>
</tr>
<tr>
<td>81,129,638,414,606,681,695,789,005,144,064</td>
<td>106</td>
</tr>
<tr>
<td>162,259,276,829,213,363,391,578,010,288,128</td>
<td>107</td>
</tr>
<tr>
<td>324,518,553,658,426,726,783,156,020,576,256</td>
<td>108</td>
</tr>
<tr>
<td>649,037,107,316,853,453,566,312,041,152,512</td>
<td>109</td>
</tr>
<tr>
<td>1,298,074,214,633,706,907,132,624,082,305,024</td>
<td>110</td>
</tr>
<tr>
<td>2,596,148,429,267,413,814,265,248,164,610,048</td>
<td>111</td>
</tr>
<tr>
<td>5,192,296,858,534,827,628,530,496,329,220,096</td>
<td>112</td>
</tr>
<tr>
<td>10,384,593,717,069,655,257,060,992,658,440,192</td>
<td>113</td>
</tr>
<tr>
<td>20,769,187,434,139,310,514,121,985,316,880,384</td>
<td>114</td>
</tr>
<tr>
<td>41,538,374,868,278,621,028,243,970,633,760,768</td>
<td>115</td>
</tr>
<tr>
<td>83,076,749,736,557,242,056,487,941,267,521,536</td>
<td>116</td>
</tr>
<tr>
<td>166,153,499,473,144,484,112,975,882,535,043,072</td>
<td>117</td>
</tr>
<tr>
<td>332,306,998,946,228,968,225,951,765,070,086,144</td>
<td>118</td>
</tr>
<tr>
<td>664,613,997,892,457,936,451,903,530,140,722,888</td>
<td>119</td>
</tr>
<tr>
<td>1,329,227,995,784,915,872,903,807,060,280,344,576</td>
<td>120</td>
</tr>
<tr>
<td>2,658,455,991,569,831,745,807,614,120,560,689,152</td>
<td>121</td>
</tr>
<tr>
<td>5,316,911,983,139,663,491,615,228,241,121,378,304</td>
<td>122</td>
</tr>
<tr>
<td>10,633,823,966,279,326,983,230,456,482,242,756,608</td>
<td>123</td>
</tr>
<tr>
<td>21,267,647,932,558,653,966,460,912,964,485,513,216</td>
<td>124</td>
</tr>
<tr>
<td>42,535,295,865,117,307,932,921,825,928,971,024,432</td>
<td>125</td>
</tr>
<tr>
<td>85,070,591,730,234,615,865,843,651,857,942,052,864</td>
<td>126</td>
</tr>
<tr>
<td>170,141,183,460,469,231,731,687,303,715,884,105,728</td>
<td>127</td>
</tr>
<tr>
<td>340,282,366,920,938,463,463,374,607,431,768,211,456</td>
<td>128</td>
</tr>
</tbody>
</table>
Multiples of Powers of Sixteen

Table 436. Multiples of powers of sixteen (part 1 of 2)

<table>
<thead>
<tr>
<th>Hex Digit</th>
<th>× 16⁰</th>
<th>× 16¹</th>
<th>× 16²</th>
<th>× 16³</th>
<th>× 16⁴</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>16</td>
<td>256</td>
<td>4,096</td>
<td>65,536</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>32</td>
<td>512</td>
<td>8,192</td>
<td>131,072</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>48</td>
<td>768</td>
<td>12,288</td>
<td>196,608</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>64</td>
<td>1,024</td>
<td>16,384</td>
<td>262,144</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>80</td>
<td>1,280</td>
<td>20,480</td>
<td>327,680</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>96</td>
<td>1,536</td>
<td>24,576</td>
<td>393,216</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>112</td>
<td>1,792</td>
<td>28,672</td>
<td>458,752</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>128</td>
<td>2,048</td>
<td>32,768</td>
<td>524,288</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>144</td>
<td>2,304</td>
<td>36,864</td>
<td>589,824</td>
</tr>
<tr>
<td>A</td>
<td>10</td>
<td>160</td>
<td>2,560</td>
<td>40,960</td>
<td>655,360</td>
</tr>
<tr>
<td>B</td>
<td>11</td>
<td>176</td>
<td>2,816</td>
<td>45,056</td>
<td>720,896</td>
</tr>
<tr>
<td>C</td>
<td>12</td>
<td>192</td>
<td>3,072</td>
<td>49,152</td>
<td>786,432</td>
</tr>
<tr>
<td>D</td>
<td>13</td>
<td>208</td>
<td>3,328</td>
<td>53,248</td>
<td>851,968</td>
</tr>
<tr>
<td>E</td>
<td>14</td>
<td>224</td>
<td>3,584</td>
<td>57,344</td>
<td>917,504</td>
</tr>
<tr>
<td>F</td>
<td>15</td>
<td>240</td>
<td>3,840</td>
<td>61,440</td>
<td>983,040</td>
</tr>
</tbody>
</table>

Table 437. Multiples of powers of sixteen (part 2 of 2)

<table>
<thead>
<tr>
<th>Hex Digit</th>
<th>× 16⁵</th>
<th>× 16⁶</th>
<th>× 16⁷</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,048,576</td>
<td>16,777,216</td>
<td>268,435,456</td>
</tr>
<tr>
<td>2</td>
<td>2,097,152</td>
<td>33,554,432</td>
<td>536,870,912</td>
</tr>
<tr>
<td>3</td>
<td>3,145,728</td>
<td>50,331,648</td>
<td>805,306,368</td>
</tr>
<tr>
<td>4</td>
<td>4,194,304</td>
<td>67,108,864</td>
<td>1,073,741,824</td>
</tr>
<tr>
<td>5</td>
<td>5,242,880</td>
<td>83,886,080</td>
<td>1,342,177,280</td>
</tr>
<tr>
<td>6</td>
<td>6,291,456</td>
<td>100,663,296</td>
<td>1,610,612,736</td>
</tr>
<tr>
<td>7</td>
<td>7,340,032</td>
<td>117,440,512</td>
<td>1,879,048,192</td>
</tr>
<tr>
<td>8</td>
<td>8,388,608</td>
<td>134,217,728</td>
<td>2,147,483,648</td>
</tr>
<tr>
<td>9</td>
<td>9,437,184</td>
<td>150,994,944</td>
<td>2,415,919,104</td>
</tr>
<tr>
<td>B</td>
<td>11,534,336</td>
<td>184,549,376</td>
<td>2,952,790,016</td>
</tr>
<tr>
<td>C</td>
<td>12,582,912</td>
<td>201,326,592</td>
<td>3,221,225,472</td>
</tr>
<tr>
<td>D</td>
<td>13,631,488</td>
<td>218,103,808</td>
<td>3,489,660,928</td>
</tr>
<tr>
<td>E</td>
<td>14,680,064</td>
<td>234,881,024</td>
<td>3,758,096,384</td>
</tr>
<tr>
<td>F</td>
<td>15,728,640</td>
<td>251,658,240</td>
<td>4,026,531,840</td>
</tr>
</tbody>
</table>
## Powers of 10 in Hexadecimal

<table>
<thead>
<tr>
<th>$10^N$ in hexadecimal</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td>64</td>
<td>2</td>
</tr>
<tr>
<td>3E8</td>
<td>3</td>
</tr>
<tr>
<td>2710</td>
<td>4</td>
</tr>
<tr>
<td>18640</td>
<td>5</td>
</tr>
<tr>
<td>F4240</td>
<td>6</td>
</tr>
<tr>
<td>989680</td>
<td>7</td>
</tr>
<tr>
<td>5F5E100</td>
<td>8</td>
</tr>
<tr>
<td>389AC00</td>
<td>9</td>
</tr>
<tr>
<td>2540BE400</td>
<td>10</td>
</tr>
<tr>
<td>174B76E000</td>
<td>11</td>
</tr>
<tr>
<td>E80A51000</td>
<td>12</td>
</tr>
<tr>
<td>9184E72A000</td>
<td>13</td>
</tr>
<tr>
<td>5AF3107A400</td>
<td>14</td>
</tr>
<tr>
<td>3B07E46C8000</td>
<td>15</td>
</tr>
<tr>
<td>2386F26FC10000</td>
<td>16</td>
</tr>
<tr>
<td>16345785DB0000</td>
<td>17</td>
</tr>
<tr>
<td>DE0B683A76000000</td>
<td>18</td>
</tr>
<tr>
<td>8AC7230489E000000</td>
<td>19</td>
</tr>
<tr>
<td>568C7E2D63100000</td>
<td>20</td>
</tr>
<tr>
<td>3635C9AD5C5DEA000000</td>
<td>21</td>
</tr>
<tr>
<td>21E19E0C9B92B4000000</td>
<td>22</td>
</tr>
<tr>
<td>152D02C7E14A6F8000000</td>
<td>23</td>
</tr>
<tr>
<td>03C21B8ECEC9E8000000</td>
<td>24</td>
</tr>
<tr>
<td>845951614D41484A00000</td>
<td>25</td>
</tr>
<tr>
<td>52B702DCC0CD2E4000000</td>
<td>26</td>
</tr>
<tr>
<td>33B2E39F00B3C3EB00000</td>
<td>27</td>
</tr>
<tr>
<td>204FCE5E3E25026110000</td>
<td>28</td>
</tr>
<tr>
<td>1A31E0F56071217CA00000</td>
<td>29</td>
</tr>
<tr>
<td>C9F2C9C004674DE8A00000</td>
<td>30</td>
</tr>
<tr>
<td>7E37BE20222C0914B268000000</td>
<td>31</td>
</tr>
<tr>
<td>4E206D0415B5ACF8100000000</td>
<td>32</td>
</tr>
<tr>
<td>3140C6480933B15B0A00000000</td>
<td>33</td>
</tr>
<tr>
<td>1ED09B8D7C3728B8E0000000000</td>
<td>34</td>
</tr>
<tr>
<td>13426172C74D222878FEB0000000000</td>
<td>35</td>
</tr>
<tr>
<td>C097CE7C907153489F10000000000</td>
<td>36</td>
</tr>
<tr>
<td>7B884605D44609004F36A0000000000</td>
<td>37</td>
</tr>
<tr>
<td>4E384CA85A8C47A09BA2900000000000</td>
<td>38</td>
</tr>
<tr>
<td>2F050FE938943CC54565680000000000</td>
<td>39</td>
</tr>
<tr>
<td>106329F13C5CA4BFB89F56100000000000</td>
<td>40</td>
</tr>
<tr>
<td>125DF371A9E6F7C054395CA00000000000000</td>
<td>41</td>
</tr>
<tr>
<td>87ABC2750305A0F14A30E900000000000000</td>
<td>42</td>
</tr>
<tr>
<td>72C85B06321E38B6C66682E80000000000000</td>
<td>43</td>
</tr>
<tr>
<td>47BF19673DF52E7F21010000000000000000</td>
<td>44</td>
</tr>
<tr>
<td>2CD0F80E6B83E27F86A00082000000000000000</td>
<td>45</td>
</tr>
<tr>
<td>1C06A5EC5433C60DA16460F5A0000000000000000</td>
<td>46</td>
</tr>
<tr>
<td>1134273B4A0B58C8A4BE84598680000000000000</td>
<td>47</td>
</tr>
<tr>
<td>AF298005DEA3950D670B1287F410000000000000000</td>
<td>48</td>
</tr>
<tr>
<td>6079FB232E30DA16E66EE8EB2F88A00000000000000</td>
<td>49</td>
</tr>
<tr>
<td>446C3815F9926687D240534FB95640000000000000000</td>
<td>50</td>
</tr>
</tbody>
</table>

---

Appendix A: Conversion and Reference Tables 987
<table>
<thead>
<tr>
<th>$10^N$ in hexadecimal</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>2AC3A4EDBBFB8014EBA3411E915E8000000000000</td>
<td>51</td>
</tr>
<tr>
<td>1ABA4714957D30000E54920BB31AD80000000000</td>
<td>52</td>
</tr>
<tr>
<td>10846C6C6DEE3E082FB408B56F0C8E8A0000000000</td>
<td>53</td>
</tr>
<tr>
<td>A70C3CA64A6E519990090B65F670924000000000</td>
<td>54</td>
</tr>
<tr>
<td>6867A5A867F1032BFFFA5A71FBA0E7868000000000</td>
<td>55</td>
</tr>
<tr>
<td>410C78940F64A2FDFCC7883D49021000000000000</td>
<td>56</td>
</tr>
<tr>
<td>28C7C83C982571EFDC89B60A83A4000000000000</td>
<td>57</td>
</tr>
<tr>
<td>19704D7F09655767337F91D43E92B000000000000</td>
<td>58</td>
</tr>
<tr>
<td>FEE80B720256A002F360D473D5D9B48000000000</td>
<td>59</td>
</tr>
<tr>
<td>9F4F726179224501D6722C946590D010000000000</td>
<td>60</td>
</tr>
<tr>
<td>63917B77CEC5656212690695D0C7B87A00000000000</td>
<td>61</td>
</tr>
<tr>
<td>3E3ABA4EE138362F488261096977AC94A00000000000</td>
<td>62</td>
</tr>
<tr>
<td>26E403D7CC32150D8F315072E23AC0C6F680000000000</td>
<td>63</td>
</tr>
<tr>
<td>18F403E93F904DA797DE63E6B46F6A1F010000000000</td>
<td>64</td>
</tr>
<tr>
<td>F3162717CFC3908ABB46E4394F7EA25360A00000000000</td>
<td>65</td>
</tr>
<tr>
<td>97ED0817CFFA5369758BB0E3CB50AC5741C600000000000</td>
<td>66</td>
</tr>
<tr>
<td>5EF4A47421E64761E9777BB7F518BB6919EB00000000000</td>
<td>67</td>
</tr>
<tr>
<td>385B98C75313ED9329EB4A10F92F75215B7100000000000</td>
<td>68</td>
</tr>
<tr>
<td>2517915C73EC77E23F32A4F9D38A91340AEE60000000000</td>
<td>69</td>
</tr>
<tr>
<td>172EBAD6DCC73C8607C5FA125C465910795204000000000</td>
<td>70</td>
</tr>
<tr>
<td>E703D4E69CD544D0BACB81966181A4B01268000000000000</td>
<td>71</td>
</tr>
<tr>
<td>90823B097DA440237980160A1D91C940E2B57630C56900000000</td>
<td>72</td>
</tr>
<tr>
<td>5A8EB90D52544689D50B1C1C5E8F20A1A059E10C0000000000</td>
<td>73</td>
</tr>
<tr>
<td>389916269373A531A558F188B4B746504382CA7E0000000000000</td>
<td>74</td>
</tr>
<tr>
<td>235FAD0B1C2822B83F0B77973D50F28B2FA213BEBEB00000000000</td>
<td>75</td>
</tr>
<tr>
<td>161BCA711991B507644A4E6259779775A55F17195100000000000</td>
<td>76</td>
</tr>
<tr>
<td>0015FEB86AAD091294EF0B713F396EA807656F024000000000000</td>
<td>77</td>
</tr>
<tr>
<td>B28DF142DCC7A86E35693267B4372294F02505E3400000000000</td>
<td>78</td>
</tr>
<tr>
<td>565C96C9CB0FC8B2A161F83BC2A027A9397323A46EB800000000000</td>
<td>79</td>
</tr>
<tr>
<td>35F9DE3F6E80FCF7C0DB17852F41B41B3A2274CE1100000000000</td>
<td>80</td>
</tr>
<tr>
<td>218C2B2663A366BF5A8021EC756BC7F475E596013800000000000</td>
<td>81</td>
</tr>
<tr>
<td>15196FBB44443E237980160A1D91C940E2B57630C5690000000000</td>
<td>82</td>
</tr>
<tr>
<td>D208BBD02A8D62BF5A03A49C0319006953169E1C71EB00000000000</td>
<td>83</td>
</tr>
<tr>
<td>83C708B1E1AAB65C70296676C0A6790E0A0861DE2201CC53100000000000</td>
<td>84</td>
</tr>
<tr>
<td>52565S5D0AB1F92BB8804C8BB29453027447053C8F3E8A00000000000</td>
<td>85</td>
</tr>
<tr>
<td>3379BF57B26AFC9BB30089D5796E1A4B36C90599F3D07240000000000</td>
<td>86</td>
</tr>
<tr>
<td>202C1796B1280B51513E50C565C168008230A380386247680000000000</td>
<td>87</td>
</tr>
<tr>
<td>1418E62FEF17C3AC2DCC36C57B638E2467666630233D6CA0000000000000</td>
<td>88</td>
</tr>
<tr>
<td>C913396D571C84C03C83A19C1E36B9504A601D3E6663E400000000000</td>
<td>89</td>
</tr>
<tr>
<td>7D4C32C4A5671027B55452023239F32686C06AC3DF66E000000000000</td>
<td>90</td>
</tr>
<tr>
<td>4EB8A5967E60723017585B214FCE3837B03587C2C09AF5054E8000000000000</td>
<td>91</td>
</tr>
<tr>
<td>31117747E09C4766E9742F4C90E502FB021749DB8686FB63511000000000000</td>
<td>92</td>
</tr>
<tr>
<td>1EAEBCAEF261AC01951E8BB08D6CF6B2F120CE49E08133C995212AA00000000000</td>
<td>93</td>
</tr>
<tr>
<td>13D21ED57D8E40DF301279F3E19C3D9752A0CD11A050CBBB8CBAA00000000000</td>
<td>94</td>
</tr>
<tr>
<td>BC2EF456AE276E893FED0B3C21A67E934A8020727839310FB46800000000000000</td>
<td>95</td>
</tr>
<tr>
<td>77095B8620C845162F7A779F50BF1C4601A879602832880000000000000</td>
<td>96</td>
</tr>
<tr>
<td>4AE82577D1C0762D0DDEB83A09789979A124102E86F655CAEB9100000000000000</td>
<td>97</td>
</tr>
<tr>
<td>2ED1767A2994A07C0A29B916B3B3275E07A94A13F259F633D33A60000000000000000</td>
<td>98</td>
</tr>
<tr>
<td>10D42AE2879E2E4DEA51A3E46572706747C907C773B974740AE78000000000000000</td>
<td>99</td>
</tr>
<tr>
<td>1249A02594C37CEB082B784C0EBF3BACE408E2117CAAB2430B88E8F1000000000000000</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 438. Powers of 10 expressed in hexadecimal
Hexadecimal and Decimal Integers

These tables convert integers between 0 and 4095 (X'000' and X'FFF'). For example, to convert X'123' to decimal, find the first two digits (12) in the column headed 12*, and then find the row numbered 3. At the intersection you will find the decimal value 291.

<table>
<thead>
<tr>
<th>00*</th>
<th>01*</th>
<th>02*</th>
<th>03*</th>
<th>04*</th>
<th>05*</th>
<th>06*</th>
<th>07*</th>
<th>08*</th>
<th>09*</th>
<th>0A*</th>
<th>0B*</th>
<th>0C*</th>
<th>0D*</th>
<th>0E*</th>
<th>0F*</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>16</td>
<td>32</td>
<td>48</td>
<td>64</td>
<td>80</td>
<td>96</td>
<td>112</td>
<td>128</td>
<td>144</td>
<td>160</td>
<td>176</td>
<td>192</td>
<td>208</td>
<td>224</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>17</td>
<td>33</td>
<td>49</td>
<td>65</td>
<td>81</td>
<td>97</td>
<td>113</td>
<td>129</td>
<td>145</td>
<td>161</td>
<td>177</td>
<td>193</td>
<td>209</td>
<td>225</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>18</td>
<td>34</td>
<td>50</td>
<td>66</td>
<td>82</td>
<td>98</td>
<td>114</td>
<td>130</td>
<td>146</td>
<td>162</td>
<td>178</td>
<td>194</td>
<td>210</td>
<td>226</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>19</td>
<td>35</td>
<td>51</td>
<td>67</td>
<td>83</td>
<td>99</td>
<td>115</td>
<td>131</td>
<td>147</td>
<td>163</td>
<td>179</td>
<td>195</td>
<td>211</td>
<td>227</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>20</td>
<td>36</td>
<td>52</td>
<td>68</td>
<td>84</td>
<td>100</td>
<td>116</td>
<td>132</td>
<td>148</td>
<td>164</td>
<td>180</td>
<td>196</td>
<td>212</td>
<td>228</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>21</td>
<td>37</td>
<td>53</td>
<td>69</td>
<td>85</td>
<td>101</td>
<td>117</td>
<td>133</td>
<td>149</td>
<td>165</td>
<td>181</td>
<td>197</td>
<td>213</td>
<td>229</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>22</td>
<td>38</td>
<td>54</td>
<td>70</td>
<td>86</td>
<td>102</td>
<td>118</td>
<td>134</td>
<td>150</td>
<td>166</td>
<td>182</td>
<td>198</td>
<td>214</td>
<td>230</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>23</td>
<td>39</td>
<td>55</td>
<td>71</td>
<td>87</td>
<td>103</td>
<td>119</td>
<td>135</td>
<td>151</td>
<td>167</td>
<td>183</td>
<td>199</td>
<td>215</td>
<td>231</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>24</td>
<td>40</td>
<td>56</td>
<td>72</td>
<td>88</td>
<td>104</td>
<td>120</td>
<td>136</td>
<td>152</td>
<td>168</td>
<td>184</td>
<td>200</td>
<td>216</td>
<td>232</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>25</td>
<td>41</td>
<td>57</td>
<td>73</td>
<td>89</td>
<td>105</td>
<td>121</td>
<td>137</td>
<td>153</td>
<td>169</td>
<td>185</td>
<td>201</td>
<td>217</td>
<td>233</td>
</tr>
<tr>
<td>A</td>
<td>10</td>
<td>26</td>
<td>42</td>
<td>58</td>
<td>74</td>
<td>90</td>
<td>106</td>
<td>122</td>
<td>138</td>
<td>154</td>
<td>170</td>
<td>186</td>
<td>202</td>
<td>218</td>
<td>234</td>
</tr>
<tr>
<td>B</td>
<td>11</td>
<td>27</td>
<td>43</td>
<td>59</td>
<td>75</td>
<td>91</td>
<td>107</td>
<td>123</td>
<td>139</td>
<td>155</td>
<td>171</td>
<td>187</td>
<td>203</td>
<td>219</td>
<td>235</td>
</tr>
<tr>
<td>C</td>
<td>12</td>
<td>28</td>
<td>44</td>
<td>60</td>
<td>76</td>
<td>92</td>
<td>108</td>
<td>124</td>
<td>140</td>
<td>156</td>
<td>172</td>
<td>188</td>
<td>204</td>
<td>220</td>
<td>236</td>
</tr>
<tr>
<td>D</td>
<td>13</td>
<td>29</td>
<td>45</td>
<td>61</td>
<td>77</td>
<td>93</td>
<td>109</td>
<td>125</td>
<td>141</td>
<td>157</td>
<td>173</td>
<td>189</td>
<td>205</td>
<td>221</td>
<td>237</td>
</tr>
<tr>
<td>E</td>
<td>14</td>
<td>30</td>
<td>46</td>
<td>62</td>
<td>78</td>
<td>94</td>
<td>110</td>
<td>126</td>
<td>142</td>
<td>158</td>
<td>174</td>
<td>190</td>
<td>206</td>
<td>222</td>
<td>238</td>
</tr>
<tr>
<td>F</td>
<td>15</td>
<td>31</td>
<td>47</td>
<td>63</td>
<td>79</td>
<td>95</td>
<td>111</td>
<td>127</td>
<td>143</td>
<td>159</td>
<td>175</td>
<td>191</td>
<td>207</td>
<td>223</td>
<td>239</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10*</th>
<th>11*</th>
<th>12*</th>
<th>13*</th>
<th>14*</th>
<th>15*</th>
<th>16*</th>
<th>17*</th>
<th>18*</th>
<th>19*</th>
<th>1A*</th>
<th>1B*</th>
<th>1C*</th>
<th>1D*</th>
<th>1E*</th>
<th>1F*</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>256</td>
<td>272</td>
<td>288</td>
<td>304</td>
<td>320</td>
<td>336</td>
<td>352</td>
<td>368</td>
<td>384</td>
<td>400</td>
<td>416</td>
<td>432</td>
<td>448</td>
<td>464</td>
<td>480</td>
</tr>
<tr>
<td>1</td>
<td>257</td>
<td>273</td>
<td>289</td>
<td>305</td>
<td>321</td>
<td>337</td>
<td>353</td>
<td>369</td>
<td>385</td>
<td>401</td>
<td>417</td>
<td>433</td>
<td>449</td>
<td>465</td>
<td>481</td>
</tr>
<tr>
<td>2</td>
<td>258</td>
<td>274</td>
<td>290</td>
<td>306</td>
<td>322</td>
<td>338</td>
<td>354</td>
<td>370</td>
<td>386</td>
<td>402</td>
<td>418</td>
<td>434</td>
<td>450</td>
<td>466</td>
<td>482</td>
</tr>
<tr>
<td>3</td>
<td>259</td>
<td>275</td>
<td>291</td>
<td>307</td>
<td>323</td>
<td>339</td>
<td>355</td>
<td>371</td>
<td>387</td>
<td>403</td>
<td>419</td>
<td>435</td>
<td>451</td>
<td>467</td>
<td>483</td>
</tr>
<tr>
<td>4</td>
<td>260</td>
<td>276</td>
<td>292</td>
<td>308</td>
<td>324</td>
<td>340</td>
<td>356</td>
<td>372</td>
<td>388</td>
<td>404</td>
<td>420</td>
<td>436</td>
<td>452</td>
<td>468</td>
<td>484</td>
</tr>
<tr>
<td>5</td>
<td>261</td>
<td>277</td>
<td>293</td>
<td>309</td>
<td>325</td>
<td>341</td>
<td>357</td>
<td>373</td>
<td>389</td>
<td>405</td>
<td>421</td>
<td>437</td>
<td>453</td>
<td>469</td>
<td>485</td>
</tr>
<tr>
<td>6</td>
<td>262</td>
<td>278</td>
<td>294</td>
<td>310</td>
<td>326</td>
<td>342</td>
<td>358</td>
<td>374</td>
<td>390</td>
<td>406</td>
<td>422</td>
<td>438</td>
<td>454</td>
<td>470</td>
<td>486</td>
</tr>
<tr>
<td>7</td>
<td>263</td>
<td>279</td>
<td>295</td>
<td>311</td>
<td>327</td>
<td>343</td>
<td>359</td>
<td>375</td>
<td>391</td>
<td>407</td>
<td>423</td>
<td>439</td>
<td>455</td>
<td>471</td>
<td>487</td>
</tr>
<tr>
<td>8</td>
<td>264</td>
<td>280</td>
<td>296</td>
<td>312</td>
<td>328</td>
<td>344</td>
<td>360</td>
<td>376</td>
<td>392</td>
<td>408</td>
<td>424</td>
<td>440</td>
<td>456</td>
<td>472</td>
<td>488</td>
</tr>
<tr>
<td>9</td>
<td>265</td>
<td>281</td>
<td>297</td>
<td>313</td>
<td>329</td>
<td>345</td>
<td>361</td>
<td>377</td>
<td>393</td>
<td>409</td>
<td>425</td>
<td>441</td>
<td>457</td>
<td>473</td>
<td>489</td>
</tr>
<tr>
<td>A</td>
<td>266</td>
<td>282</td>
<td>298</td>
<td>314</td>
<td>330</td>
<td>346</td>
<td>362</td>
<td>378</td>
<td>394</td>
<td>410</td>
<td>426</td>
<td>442</td>
<td>458</td>
<td>474</td>
<td>490</td>
</tr>
<tr>
<td>B</td>
<td>267</td>
<td>283</td>
<td>299</td>
<td>315</td>
<td>331</td>
<td>347</td>
<td>363</td>
<td>379</td>
<td>395</td>
<td>411</td>
<td>427</td>
<td>443</td>
<td>459</td>
<td>475</td>
<td>491</td>
</tr>
<tr>
<td>C</td>
<td>268</td>
<td>284</td>
<td>300</td>
<td>316</td>
<td>332</td>
<td>348</td>
<td>364</td>
<td>380</td>
<td>396</td>
<td>412</td>
<td>428</td>
<td>444</td>
<td>460</td>
<td>476</td>
<td>492</td>
</tr>
<tr>
<td>D</td>
<td>269</td>
<td>285</td>
<td>301</td>
<td>317</td>
<td>333</td>
<td>349</td>
<td>365</td>
<td>381</td>
<td>397</td>
<td>413</td>
<td>429</td>
<td>445</td>
<td>461</td>
<td>477</td>
<td>493</td>
</tr>
<tr>
<td>E</td>
<td>270</td>
<td>286</td>
<td>302</td>
<td>318</td>
<td>334</td>
<td>350</td>
<td>366</td>
<td>382</td>
<td>398</td>
<td>414</td>
<td>430</td>
<td>446</td>
<td>462</td>
<td>478</td>
<td>494</td>
</tr>
<tr>
<td>F</td>
<td>271</td>
<td>287</td>
<td>303</td>
<td>319</td>
<td>335</td>
<td>351</td>
<td>367</td>
<td>383</td>
<td>399</td>
<td>415</td>
<td>431</td>
<td>447</td>
<td>463</td>
<td>479</td>
<td>495</td>
</tr>
</tbody>
</table>

Appendix A: Conversion and Reference Tables 989
### Appendix A: Conversion and Reference Tables

<table>
<thead>
<tr>
<th>Column 1</th>
<th>Column 2</th>
<th>Column 3</th>
<th>Column 4</th>
<th>Column 5</th>
<th>Column 6</th>
<th>Column 7</th>
<th>Column 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1024</td>
<td>1040</td>
<td>1056</td>
<td>1072</td>
<td>1088</td>
<td>1104</td>
<td>1120</td>
</tr>
<tr>
<td>1</td>
<td>1025</td>
<td>1041</td>
<td>1057</td>
<td>1073</td>
<td>1089</td>
<td>1105</td>
<td>1121</td>
</tr>
<tr>
<td>2</td>
<td>1026</td>
<td>1042</td>
<td>1058</td>
<td>1074</td>
<td>1090</td>
<td>1106</td>
<td>1122</td>
</tr>
<tr>
<td>3</td>
<td>1027</td>
<td>1043</td>
<td>1059</td>
<td>1075</td>
<td>1091</td>
<td>1107</td>
<td>1123</td>
</tr>
<tr>
<td>4</td>
<td>1028</td>
<td>1044</td>
<td>1060</td>
<td>1076</td>
<td>1092</td>
<td>1108</td>
<td>1124</td>
</tr>
<tr>
<td>5</td>
<td>1029</td>
<td>1045</td>
<td>1061</td>
<td>1077</td>
<td>1093</td>
<td>1109</td>
<td>1125</td>
</tr>
<tr>
<td>6</td>
<td>1030</td>
<td>1046</td>
<td>1062</td>
<td>1078</td>
<td>1094</td>
<td>1110</td>
<td>1126</td>
</tr>
<tr>
<td>7</td>
<td>1031</td>
<td>1047</td>
<td>1063</td>
<td>1079</td>
<td>1095</td>
<td>1111</td>
<td>1127</td>
</tr>
<tr>
<td>8</td>
<td>1032</td>
<td>1048</td>
<td>1064</td>
<td>1080</td>
<td>1096</td>
<td>1112</td>
<td>1128</td>
</tr>
<tr>
<td>9</td>
<td>1033</td>
<td>1049</td>
<td>1065</td>
<td>1081</td>
<td>1097</td>
<td>1113</td>
<td>1129</td>
</tr>
<tr>
<td>A</td>
<td>1034</td>
<td>1050</td>
<td>1066</td>
<td>1082</td>
<td>1098</td>
<td>1114</td>
<td>1130</td>
</tr>
<tr>
<td>B</td>
<td>1035</td>
<td>1051</td>
<td>1067</td>
<td>1083</td>
<td>1099</td>
<td>1115</td>
<td>1131</td>
</tr>
<tr>
<td>C</td>
<td>1036</td>
<td>1052</td>
<td>1068</td>
<td>1084</td>
<td>1100</td>
<td>1116</td>
<td>1132</td>
</tr>
<tr>
<td>D</td>
<td>1037</td>
<td>1053</td>
<td>1069</td>
<td>1085</td>
<td>1101</td>
<td>1117</td>
<td>1133</td>
</tr>
<tr>
<td>E</td>
<td>1038</td>
<td>1054</td>
<td>1070</td>
<td>1086</td>
<td>1102</td>
<td>1118</td>
<td>1134</td>
</tr>
<tr>
<td>F</td>
<td>1039</td>
<td>1055</td>
<td>1071</td>
<td>1087</td>
<td>1103</td>
<td>1119</td>
<td>1135</td>
</tr>
<tr>
<td>50</td>
<td>1280</td>
<td>1296</td>
<td>1312</td>
<td>1328</td>
<td>1344</td>
<td>1360</td>
<td>1376</td>
</tr>
<tr>
<td>1</td>
<td>1281</td>
<td>1297</td>
<td>1313</td>
<td>1329</td>
<td>1345</td>
<td>1361</td>
<td>1377</td>
</tr>
<tr>
<td>2</td>
<td>1282</td>
<td>1298</td>
<td>1314</td>
<td>1330</td>
<td>1346</td>
<td>1362</td>
<td>1378</td>
</tr>
<tr>
<td>3</td>
<td>1283</td>
<td>1299</td>
<td>1315</td>
<td>1331</td>
<td>1347</td>
<td>1363</td>
<td>1379</td>
</tr>
<tr>
<td>4</td>
<td>1284</td>
<td>1300</td>
<td>1316</td>
<td>1332</td>
<td>1348</td>
<td>1364</td>
<td>1380</td>
</tr>
<tr>
<td>5</td>
<td>1285</td>
<td>1301</td>
<td>1317</td>
<td>1333</td>
<td>1349</td>
<td>1365</td>
<td>1381</td>
</tr>
<tr>
<td>6</td>
<td>1286</td>
<td>1302</td>
<td>1318</td>
<td>1334</td>
<td>1350</td>
<td>1366</td>
<td>1382</td>
</tr>
<tr>
<td>7</td>
<td>1287</td>
<td>1303</td>
<td>1319</td>
<td>1335</td>
<td>1351</td>
<td>1367</td>
<td>1383</td>
</tr>
<tr>
<td>8</td>
<td>1288</td>
<td>1304</td>
<td>1320</td>
<td>1336</td>
<td>1352</td>
<td>1368</td>
<td>1384</td>
</tr>
<tr>
<td>9</td>
<td>1289</td>
<td>1305</td>
<td>1321</td>
<td>1337</td>
<td>1353</td>
<td>1369</td>
<td>1385</td>
</tr>
<tr>
<td>A</td>
<td>1290</td>
<td>1306</td>
<td>1322</td>
<td>1338</td>
<td>1354</td>
<td>1370</td>
<td>1386</td>
</tr>
<tr>
<td>B</td>
<td>1291</td>
<td>1307</td>
<td>1323</td>
<td>1339</td>
<td>1355</td>
<td>1371</td>
<td>1387</td>
</tr>
<tr>
<td>C</td>
<td>1292</td>
<td>1308</td>
<td>1324</td>
<td>1340</td>
<td>1356</td>
<td>1372</td>
<td>1388</td>
</tr>
<tr>
<td>D</td>
<td>1293</td>
<td>1309</td>
<td>1325</td>
<td>1341</td>
<td>1357</td>
<td>1373</td>
<td>1389</td>
</tr>
<tr>
<td>E</td>
<td>1294</td>
<td>1310</td>
<td>1326</td>
<td>1342</td>
<td>1358</td>
<td>1374</td>
<td>1390</td>
</tr>
<tr>
<td>F</td>
<td>1295</td>
<td>1311</td>
<td>1327</td>
<td>1343</td>
<td>1359</td>
<td>1375</td>
<td>1391</td>
</tr>
<tr>
<td>80* 81* 82* 83* 84* 85* 86* 87*</td>
<td>88* 89* 8A* 8B* 8C* 8D* 8E* 8F*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td>----------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 2048 2064 2080 2096 2112 2128 2144 2160</td>
<td>0 2176 2192 2208 2224 2240 2256 2272 2288</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 2049 2065 2081 2097 2113 2129 2145 2161</td>
<td>1 2177 2193 2209 2225 2241 2257 2273 2289</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 2050 2066 2082 2098 2114 2130 2146 2162</td>
<td>2 2178 2194 2210 2226 2242 2258 2274 2290</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 2051 2067 2083 2099 2115 2131 2147 2163</td>
<td>3 2179 2195 2211 2227 2243 2259 2275 2291</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 2052 2068 2084 2100 2116 2132 2148 2164</td>
<td>4 2180 2196 2212 2228 2244 2260 2276 2292</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 2053 2069 2085 2101 2117 2133 2149 2165</td>
<td>5 2181 2197 2213 2229 2245 2261 2277 2293</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 2054 2070 2086 2102 2118 2134 2150 2166</td>
<td>6 2182 2198 2214 2230 2246 2262 2278 2294</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 2055 2071 2087 2103 2119 2135 2151 2167</td>
<td>7 2183 2199 2215 2231 2247 2263 2279 2295</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 2056 2072 2088 2104 2120 2136 2152 2168</td>
<td>8 2184 2200 2216 2232 2248 2264 2280 2296</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 2057 2073 2089 2105 2121 2137 2153 2169</td>
<td>9 2185 2201 2217 2233 2249 2265 2281 2297</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A 2058 2074 2090 2106 2122 2138 2154 2170</td>
<td>A 2186 2202 2218 2234 2250 2266 2282 2298</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B 2059 2075 2091 2107 2123 2139 2155 2171</td>
<td>B 2187 2203 2219 2235 2251 2267 2283 2299</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C 2060 2076 2092 2108 2124 2140 2156 2172</td>
<td>C 2188 2204 2220 2236 2252 2268 2284 2300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D 2061 2077 2093 2109 2125 2141 2157 2173</td>
<td>D 2189 2205 2221 2237 2253 2269 2285 2301</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 2062 2078 2094 2110 2126 2142 2158 2174</td>
<td>E 2190 2206 2222 2238 2254 2270 2286 2302</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F 2063 2079 2095 2111 2127 2143 2159 2175</td>
<td>F 2191 2207 2223 2239 2255 2271 2287 2303</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Appendix A: Conversion and Reference Tables
0	2560 2576 2592 2608 2624 2640 2656 2672	0	2688 2704 2720 2736 2752 2768 2784 2800
1	2561 2577 2593 2609 2625 2641 2657 2673	1	2689 2705 2721 2737 2753 2769 2785 2801
2	2562 2578 2594 2610 2626 2642 2658 2674	2	2690 2706 2722 2738 2754 2770 2786 2802
3	2563 2579 2595 2611 2627 2643 2659 2675	3	2691 2707 2723 2739 2755 2771 2787 2803
4	2564 2580 2596 2612 2628 2644 2660 2676	4	2692 2708 2724 2740 2756 2772 2788 2804
5	2565 2581 2597 2613 2629 2645 2661 2677	5	2693 2709 2725 2741 2757 2773 2789 2805
6	2566 2582 2598 2614 2630 2646 2662 2678	6	2694 2710 2726 2742 2758 2774 2790 2806
7	2567 2583 2599 2615 2631 2647 2663 2679	7	2695 2711 2727 2743 2759 2775 2791 2807
8	2568 2584 2600 2616 2632 2648 2664 2680	8	2696 2712 2728 2744 2760 2776 2792 2808
9	2569 2585 2601 2617 2633 2649 2665 2681	9	2697 2713 2729 2745 2761 2777 2793 2809
A	2570 2586 2602 2618 2634 2650 2666 2682	A	2698 2714 2730 2746 2762 2778 2794 2810
B	2571 2587 2603 2619 2635 2651 2667 2683	B	2699 2715 2731 2747 2763 2779 2795 2811
C	2572 2588 2604 2620 2636 2652 2668 2684	C	2700 2716 2732 2748 2764 2780 2796 2812
D	2573 2589 2605 2621 2637 2653 2669 2685	D	2701 2717 2733 2749 2765 2781 2797 2813
E	2574 2590 2606 2622 2638 2654 2670 2686	E	2702 2718 2734 2750 2766 2782 2798 2814
F	2575 2591 2607 2623 2639 2655 2671 2687	F	2703 2719 2735 2751 2767 2783 2799 2815

<p>| 0 | 2816 2832 2848 2864 2880 2896 2912 2928 | 0 | 2944 2960 2976 2992 3008 3024 3040 3056 |
| 1 | 2817 2833 2849 2865 2881 2897 2913 2929 | 1 | 2945 2961 2977 2993 3009 3025 3041 3057 |
| 2 | 2818 2834 2850 2866 2882 2898 2914 2930 | 2 | 2946 2962 2978 2994 3010 3026 3042 3058 |
| 3 | 2819 2835 2851 2867 2883 2899 2915 2931 | 3 | 2947 2963 2979 2995 3011 3027 3043 3059 |
| 4 | 2820 2836 2852 2868 2884 2900 2916 2932 | 4 | 2948 2964 2980 2996 3012 3028 3044 3060 |
| 5 | 2821 2837 2853 2869 2885 2901 2917 2933 | 5 | 2949 2965 2981 2997 3013 3029 3045 3061 |
| 6 | 2822 2838 2854 2870 2886 2902 2918 2934 | 6 | 2950 2966 2982 2998 3014 3030 3046 3062 |
| 7 | 2823 2839 2855 2871 2887 2903 2919 2935 | 7 | 2951 2967 2983 2999 3015 3031 3047 3063 |
| 8 | 2824 2840 2856 2872 2888 2904 2920 2936 | 8 | 2952 2968 2984 3000 3016 3032 3048 3064 |
| 9 | 2825 2841 2857 2873 2889 2905 2921 2937 | 9 | 2953 2969 2985 3001 3017 3033 3049 3065 |
| A | 2826 2842 2858 2874 2890 2906 2922 2938 | A | 2954 2970 2986 3002 3018 3034 3050 3066 |
| B | 2827 2843 2859 2875 2891 2907 2923 2939 | B | 2955 2971 2987 3003 3019 3035 3051 3067 |
| C | 2828 2844 2860 2876 2892 2908 2924 2940 | C | 2956 2972 2988 3004 3020 3036 3052 3068 |
| D | 2829 2845 2861 2877 2893 2909 2925 2941 | D | 2957 2973 2989 3005 3021 3037 3053 3069 |
| E | 2830 2846 2862 2878 2894 2910 2926 2942 | E | 2958 2974 2990 3006 3022 3038 3054 3070 |
| F | 2831 2847 2863 2879 2895 2911 2927 2943 | F | 2959 2975 2991 3007 3023 3039 3055 3071 |</p>
<table>
<thead>
<tr>
<th>C0*</th>
<th>C1*</th>
<th>C2*</th>
<th>C3*</th>
<th>C4*</th>
<th>C5*</th>
<th>C6*</th>
<th>C7*</th>
<th>C8*</th>
<th>C9*</th>
<th>CA*</th>
<th>CB*</th>
<th>CC*</th>
<th>CD*</th>
<th>CE*</th>
<th>CF*</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3072</td>
<td>3088</td>
<td>3104</td>
<td>3120</td>
<td>3136</td>
<td>3152</td>
<td>3168</td>
<td>3184</td>
<td>3200</td>
<td>3216</td>
<td>3232</td>
<td>3248</td>
<td>3264</td>
<td>3280</td>
<td>3296</td>
</tr>
<tr>
<td>1</td>
<td>3073</td>
<td>3089</td>
<td>3105</td>
<td>3121</td>
<td>3137</td>
<td>3153</td>
<td>3169</td>
<td>3185</td>
<td>3201</td>
<td>3217</td>
<td>3233</td>
<td>3249</td>
<td>3265</td>
<td>3281</td>
<td>3297</td>
</tr>
<tr>
<td>2</td>
<td>3074</td>
<td>3090</td>
<td>3106</td>
<td>3122</td>
<td>3138</td>
<td>3154</td>
<td>3170</td>
<td>3186</td>
<td>3202</td>
<td>3218</td>
<td>3234</td>
<td>3250</td>
<td>3266</td>
<td>3282</td>
<td>3298</td>
</tr>
<tr>
<td>3</td>
<td>3075</td>
<td>3091</td>
<td>3107</td>
<td>3123</td>
<td>3139</td>
<td>3155</td>
<td>3171</td>
<td>3187</td>
<td>3203</td>
<td>3219</td>
<td>3235</td>
<td>3251</td>
<td>3267</td>
<td>3283</td>
<td>3299</td>
</tr>
<tr>
<td>4</td>
<td>3076</td>
<td>3092</td>
<td>3108</td>
<td>3124</td>
<td>3140</td>
<td>3156</td>
<td>3172</td>
<td>3188</td>
<td>3204</td>
<td>3220</td>
<td>3236</td>
<td>3252</td>
<td>3268</td>
<td>3284</td>
<td>3300</td>
</tr>
<tr>
<td>5</td>
<td>3077</td>
<td>3093</td>
<td>3109</td>
<td>3125</td>
<td>3141</td>
<td>3157</td>
<td>3173</td>
<td>3189</td>
<td>3205</td>
<td>3221</td>
<td>3237</td>
<td>3253</td>
<td>3269</td>
<td>3285</td>
<td>3301</td>
</tr>
<tr>
<td>6</td>
<td>3078</td>
<td>3094</td>
<td>3110</td>
<td>3126</td>
<td>3142</td>
<td>3158</td>
<td>3174</td>
<td>3190</td>
<td>3206</td>
<td>3222</td>
<td>3238</td>
<td>3254</td>
<td>3270</td>
<td>3286</td>
<td>3302</td>
</tr>
<tr>
<td>7</td>
<td>3079</td>
<td>3095</td>
<td>3111</td>
<td>3127</td>
<td>3143</td>
<td>3159</td>
<td>3175</td>
<td>3191</td>
<td>3207</td>
<td>3223</td>
<td>3239</td>
<td>3255</td>
<td>3271</td>
<td>3287</td>
<td>3303</td>
</tr>
<tr>
<td>8</td>
<td>3080</td>
<td>3096</td>
<td>3112</td>
<td>3128</td>
<td>3144</td>
<td>3160</td>
<td>3176</td>
<td>3192</td>
<td>3208</td>
<td>3224</td>
<td>3240</td>
<td>3256</td>
<td>3272</td>
<td>3288</td>
<td>3304</td>
</tr>
<tr>
<td>9</td>
<td>3081</td>
<td>3097</td>
<td>3113</td>
<td>3129</td>
<td>3145</td>
<td>3161</td>
<td>3177</td>
<td>3193</td>
<td>3209</td>
<td>3225</td>
<td>3241</td>
<td>3257</td>
<td>3273</td>
<td>3289</td>
<td>3305</td>
</tr>
<tr>
<td>A</td>
<td>3082</td>
<td>3098</td>
<td>3114</td>
<td>3130</td>
<td>3146</td>
<td>3162</td>
<td>3178</td>
<td>3194</td>
<td>3210</td>
<td>3226</td>
<td>3242</td>
<td>3258</td>
<td>3274</td>
<td>3290</td>
<td>3306</td>
</tr>
<tr>
<td>B</td>
<td>3083</td>
<td>3099</td>
<td>3115</td>
<td>3131</td>
<td>3147</td>
<td>3163</td>
<td>3179</td>
<td>3195</td>
<td>3211</td>
<td>3227</td>
<td>3243</td>
<td>3259</td>
<td>3275</td>
<td>3291</td>
<td>3307</td>
</tr>
<tr>
<td>C</td>
<td>3084</td>
<td>3100</td>
<td>3116</td>
<td>3132</td>
<td>3148</td>
<td>3164</td>
<td>3180</td>
<td>3196</td>
<td>3208</td>
<td>3224</td>
<td>3240</td>
<td>3256</td>
<td>3272</td>
<td>3288</td>
<td>3304</td>
</tr>
<tr>
<td>D</td>
<td>3085</td>
<td>3101</td>
<td>3117</td>
<td>3133</td>
<td>3149</td>
<td>3165</td>
<td>3181</td>
<td>3197</td>
<td>3208</td>
<td>3224</td>
<td>3240</td>
<td>3256</td>
<td>3272</td>
<td>3288</td>
<td>3304</td>
</tr>
<tr>
<td>E</td>
<td>3086</td>
<td>3102</td>
<td>3118</td>
<td>3134</td>
<td>3150</td>
<td>3166</td>
<td>3182</td>
<td>3198</td>
<td>3208</td>
<td>3224</td>
<td>3240</td>
<td>3256</td>
<td>3272</td>
<td>3288</td>
<td>3304</td>
</tr>
<tr>
<td>F</td>
<td>3087</td>
<td>3103</td>
<td>3119</td>
<td>3135</td>
<td>3151</td>
<td>3167</td>
<td>3183</td>
<td>3199</td>
<td>3208</td>
<td>3224</td>
<td>3240</td>
<td>3256</td>
<td>3272</td>
<td>3288</td>
<td>3304</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>D0*</th>
<th>D1*</th>
<th>D2*</th>
<th>D3*</th>
<th>D4*</th>
<th>D5*</th>
<th>D6*</th>
<th>D7*</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3328</td>
<td>3344</td>
<td>3360</td>
<td>3376</td>
<td>3392</td>
<td>3408</td>
<td>3424</td>
</tr>
<tr>
<td>1</td>
<td>3329</td>
<td>3345</td>
<td>3361</td>
<td>3377</td>
<td>3393</td>
<td>3409</td>
<td>3425</td>
</tr>
<tr>
<td>2</td>
<td>3330</td>
<td>3346</td>
<td>3362</td>
<td>3378</td>
<td>3394</td>
<td>3410</td>
<td>3426</td>
</tr>
<tr>
<td>3</td>
<td>3331</td>
<td>3347</td>
<td>3363</td>
<td>3379</td>
<td>3395</td>
<td>3411</td>
<td>3427</td>
</tr>
<tr>
<td>4</td>
<td>3332</td>
<td>3348</td>
<td>3364</td>
<td>3380</td>
<td>3396</td>
<td>3412</td>
<td>3428</td>
</tr>
<tr>
<td>5</td>
<td>3333</td>
<td>3349</td>
<td>3365</td>
<td>3381</td>
<td>3397</td>
<td>3413</td>
<td>3429</td>
</tr>
<tr>
<td>6</td>
<td>3334</td>
<td>3350</td>
<td>3366</td>
<td>3382</td>
<td>3398</td>
<td>3414</td>
<td>3430</td>
</tr>
<tr>
<td>7</td>
<td>3335</td>
<td>3351</td>
<td>3367</td>
<td>3383</td>
<td>3399</td>
<td>3415</td>
<td>3431</td>
</tr>
<tr>
<td>8</td>
<td>3336</td>
<td>3352</td>
<td>3368</td>
<td>3384</td>
<td>3400</td>
<td>3416</td>
<td>3432</td>
</tr>
<tr>
<td>9</td>
<td>3337</td>
<td>3353</td>
<td>3369</td>
<td>3385</td>
<td>3401</td>
<td>3417</td>
<td>3433</td>
</tr>
<tr>
<td>A</td>
<td>3338</td>
<td>3354</td>
<td>3370</td>
<td>3386</td>
<td>3402</td>
<td>3418</td>
<td>3434</td>
</tr>
<tr>
<td>B</td>
<td>3339</td>
<td>3355</td>
<td>3371</td>
<td>3387</td>
<td>3403</td>
<td>3419</td>
<td>3435</td>
</tr>
<tr>
<td>C</td>
<td>3340</td>
<td>3356</td>
<td>3372</td>
<td>3388</td>
<td>3404</td>
<td>3420</td>
<td>3436</td>
</tr>
<tr>
<td>D</td>
<td>3341</td>
<td>3357</td>
<td>3373</td>
<td>3389</td>
<td>3405</td>
<td>3421</td>
<td>3437</td>
</tr>
<tr>
<td>E</td>
<td>3342</td>
<td>3358</td>
<td>3374</td>
<td>3390</td>
<td>3406</td>
<td>3422</td>
<td>3438</td>
</tr>
<tr>
<td>F</td>
<td>3343</td>
<td>3359</td>
<td>3375</td>
<td>3391</td>
<td>3407</td>
<td>3423</td>
<td>3439</td>
</tr>
</tbody>
</table>

Appendix A: Conversion and Reference Tables
E8*

E9*

EA*

EB*

EC*

ED*

EE*

EF*

0
1
2
3

3712
3713
3714
3715

3728
3729
3730
3731

3744
3745
3746
3747

3760
3761
3762
3763

3776
3777
3778
3779

3792
3793
3794
3795

3808
3809
3810
3811

3824
3825
3826
3827

3700
3701
3702
3703

4
5
6
7

3716
3717
3718
3719

3732
3733
3734
3735

3748
3749
3750
3751

3764
3765
3766
3767

3780
3781
3782
3783

3796
3797
3798
3799

3812
3813
3814
3815

3828
3829
3830
3831

3688
3689
3690
3691

3704
3705
3706
3707

8
9
A
B

3720
3721
3722
3723

3736
3737
3738
3739

3752
3753
3754
3755

3768
3769
3770
3771

3784
3785
3786
3787

3800
3801
3802
3803

3816
3817
3818
3819

3832
3833
3834
3835

3676
3677
3678
3679

3692
3693
3694
3695

3708
3709
3710
3711

C
D
E
F

3724
3725
3726
3727

3740
3741
3742
3743

3756
3757
3758
3759

3772
3773
3774
3775

3788
3789
3790
3791

3804
3805
3806
3807

3820
3821
3822
3823

3836
3837
3838
3839

F4*

F5*

F6*

F7*

F8*

F9*

FA*

FB*

FC*

FD*

FE*

FF*

3888
3889
3890
3891

3904
3905
3906
3907

3920
3921
3922
3923

3936
3937
3938
3939

3952
3953
3954
3955

0
1
2
3

3968
3969
3970
3971

3984
3985
3986
3987

4000
4001
4002
4003

4016
4017
4018
4019

4032
4033
4034
4035

4048
4049
4050
4051

4064
4065
4066
4067

4080
4081
4082
4083

3876
3877
3878
3879

3892
3893
3894
3895

3908
3909
3910
3911

3924
3925
3926
3927

3940
3941
3942
3943

3956
3957
3958
3959

4
5
6
7

3972
3973
3974
3975

3988
3989
3990
3991

4004
4005
4006
4007

4020
4021
4022
4023

4036
4037
4038
4039

4052
4053
4054
4055

4068
4069
4070
4071

4084
4085
4086
4087

3864
3865
3866
3867

3880
3881
3882
3883

3896
3897
3898
3899

3912
3913
3914
3915

3928
3929
3930
3931

3944
3945
3946
3947

3960
3961
3962
3963

8
9
A
B

3976
3977
3978
3979

3992
3993
3994
3995

4008
4009
4010
4011

4024
4025
4026
4027

4040
4041
4042
4043

4056
4057
4058
4059

4072
4073
4074
4075

4088
4089
4090
4091

3868
3869
3870
3871

3884
3885
3886
3887

3900
3901
3902
3903

3916
3917
3918
3919

3932
3933
3934
3935

3948
3949
3950
3951

3964
3965
3966
3967

C
D
E
F

3980
3981
3982
3983

3996
3997
3998
3999

4012
4013
4014
4015

4028
4029
4030
4031

4044
4045
4046
4047

4060
4061
4062
4063

4076
4077
4078
4079

4092
4093
4094
4095

E0*

E1*

E2*

E3*

E4*

E5*

E6*

E7*

0
1
2
3

3584
3585
3586
3587

3600
3601
3602
3603

3616
3617
3618
3619

3632
3633
3634
3635

3648
3649
3650
3651

3664
3665
3666
3667

3680
3681
3682
3683

3696
3697
3698
3699

4
5
6
7

3588
3589
3590
3591

3604
3605
3606
3607

3620
3621
3622
3623

3636
3637
3638
3639

3652
3653
3654
3655

3668
3669
3670
3671

3684
3685
3686
3687

8
9
A
B

3592
3593
3594
3595

3608
3609
3610
3611

3624
3625
3626
3627

3640
3641
3642
3643

3656
3657
3658
3659

3672
3673
3674
3675

C
D
E
F

3596
3597
3598
3599

3612
3613
3614
3615

3628
3629
3630
3631

3644
3645
3646
3647

3660
3661
3662
3663

F0*

F1*

F2*

F3*

0
1
2
3

3840
3841
3842
3843

3856
3857
3858
3859

3872
3873
3874
3875

4
5
6
7

3844
3845
3846
3847

3860
3861
3862
3863

8
9
A
B

3848
3849
3850
3851

C
D
E
F

3852
3853
3854
3855

996

Assembler Language Programming for IBM z System™ Servers

Version 1.00


## Conversion Tables for Hexadecimal Fractions

The six pairs of columns give respectively a hexadecimal fraction and its decimal equivalent. For example, the decimal value of the hexadecimal fraction \(.FF\) is \(.9375+.05859375\), or \(.99609375\).

<table>
<thead>
<tr>
<th>.1</th>
<th>.0625</th>
<th>.01</th>
<th>.00390625</th>
<th>.001</th>
<th>.000244140625</th>
</tr>
</thead>
<tbody>
<tr>
<td>.2</td>
<td>.1250</td>
<td>.02</td>
<td>.00781250</td>
<td>.002</td>
<td>.000488281250</td>
</tr>
<tr>
<td>.3</td>
<td>.1875</td>
<td>.03</td>
<td>.01171875</td>
<td>.003</td>
<td>.00073241875</td>
</tr>
<tr>
<td>.4</td>
<td>.2500</td>
<td>.04</td>
<td>.01562500</td>
<td>.004</td>
<td>.000976562500</td>
</tr>
<tr>
<td>.5</td>
<td>.3125</td>
<td>.05</td>
<td>.01953125</td>
<td>.005</td>
<td>.001220703125</td>
</tr>
<tr>
<td>.6</td>
<td>.3750</td>
<td>.06</td>
<td>.02343750</td>
<td>.006</td>
<td>.001464843750</td>
</tr>
<tr>
<td>.7</td>
<td>.4375</td>
<td>.07</td>
<td>.02734375</td>
<td>.007</td>
<td>.001709843750</td>
</tr>
<tr>
<td>.8</td>
<td>.5000</td>
<td>.08</td>
<td>.03125000</td>
<td>.008</td>
<td>.001953125000</td>
</tr>
<tr>
<td>.9</td>
<td>.5625</td>
<td>.09</td>
<td>.03515625</td>
<td>.009</td>
<td>.002197265625</td>
</tr>
<tr>
<td>.A</td>
<td>.6250</td>
<td>.0A</td>
<td>.03906250</td>
<td>.00A</td>
<td>.002441406250</td>
</tr>
<tr>
<td>.B</td>
<td>.6875</td>
<td>.0B</td>
<td>.04296875</td>
<td>.00B</td>
<td>.002685546875</td>
</tr>
<tr>
<td>.C</td>
<td>.7500</td>
<td>.0C</td>
<td>.04687500</td>
<td>.00C</td>
<td>.002929687500</td>
</tr>
<tr>
<td>.D</td>
<td>.8125</td>
<td>.0D</td>
<td>.05078125</td>
<td>.00D</td>
<td>.003173828125</td>
</tr>
<tr>
<td>.E</td>
<td>.8750</td>
<td>.0E</td>
<td>.05468750</td>
<td>.00E</td>
<td>.003417968750</td>
</tr>
<tr>
<td>.F</td>
<td>.9375</td>
<td>.0F</td>
<td>.05859375</td>
<td>.00F</td>
<td>.003662109375</td>
</tr>
</tbody>
</table>

### Appendix A: Conversion and Reference Tables

<table>
<thead>
<tr>
<th>.0001</th>
<th>.00000152587890625</th>
<th>.00001</th>
<th>.00000095367431640625</th>
</tr>
</thead>
<tbody>
<tr>
<td>.0002</td>
<td>.00000305175781250</td>
<td>.00002</td>
<td>.00000190734863281250</td>
</tr>
<tr>
<td>.0003</td>
<td>.00000457763671875</td>
<td>.00003</td>
<td>.00000286102294921875</td>
</tr>
<tr>
<td>.0004</td>
<td>.00000610351562500</td>
<td>.00004</td>
<td>.00000381469726562500</td>
</tr>
<tr>
<td>.0005</td>
<td>.00000762939453125</td>
<td>.00005</td>
<td>.00000476837158203125</td>
</tr>
<tr>
<td>.0006</td>
<td>.00000915527343750</td>
<td>.00006</td>
<td>.00000572204589843750</td>
</tr>
<tr>
<td>.0007</td>
<td>.00001068115234375</td>
<td>.00007</td>
<td>.00000667572021484375</td>
</tr>
<tr>
<td>.0008</td>
<td>.00001220703125000</td>
<td>.00008</td>
<td>.00000762939453125000</td>
</tr>
<tr>
<td>.0009</td>
<td>.00001373291015625</td>
<td>.00009</td>
<td>.00000858306884765625</td>
</tr>
<tr>
<td>.00A</td>
<td>.00001525878906250</td>
<td>.0000A</td>
<td>.00000953674316406250</td>
</tr>
<tr>
<td>.00B</td>
<td>.00001678466679675</td>
<td>.0000B</td>
<td>.00001049041748046875</td>
</tr>
<tr>
<td>.00C</td>
<td>.00001831054687500</td>
<td>.0000C</td>
<td>.00001144409179687500</td>
</tr>
<tr>
<td>.00D</td>
<td>.00001983642578125</td>
<td>.0000D</td>
<td>.00001239766113281250</td>
</tr>
<tr>
<td>.00E</td>
<td>.00002136230468750</td>
<td>.0000E</td>
<td>.00001335144042968750</td>
</tr>
<tr>
<td>.00F</td>
<td>.00002288818359375</td>
<td>.0000F</td>
<td>.00001430511474609375</td>
</tr>
</tbody>
</table>

.000001	.0000000596046447575390625
.000002	.000000119209289550781250
.000003	.000000178813934326171875
.000004	.000000238418579101562500
.000005	.000000298023223876953125
.000006	.000000357627866523437500
.000007	.000000417232513427734375
.000008	.000000476837158203125000
.000009	.000000536441802975156250
.0000A	.000000596046447753906250
.0000B	.000000655651092529296875
.0000C	.000000715255737304687500
.0000D	.000000774860382080078125
.0000E	.000000834465026855468750
.0000F	.000000894069671630859375
# EBCDIC Character Representation in Assembler Language Programs

This table uses IBM code page 037.

<table>
<thead>
<tr>
<th>Char</th>
<th>Hex</th>
<th>Char</th>
<th>Hex</th>
<th>Char</th>
<th>Hex</th>
<th>Char</th>
<th>Hex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blank</td>
<td>40</td>
<td>e</td>
<td>85</td>
<td>y</td>
<td>A8</td>
<td>S</td>
<td>E2</td>
</tr>
<tr>
<td>.</td>
<td>4B</td>
<td>f</td>
<td>86</td>
<td>z</td>
<td>A9</td>
<td>T</td>
<td>E3</td>
</tr>
<tr>
<td>(</td>
<td>4D</td>
<td>g</td>
<td>87</td>
<td>A</td>
<td>C1</td>
<td>U</td>
<td>E4</td>
</tr>
<tr>
<td>+</td>
<td>4E</td>
<td>h</td>
<td>88</td>
<td>B</td>
<td>C2</td>
<td>V</td>
<td>E5</td>
</tr>
<tr>
<td>&amp;</td>
<td>50</td>
<td>i</td>
<td>89</td>
<td>C</td>
<td>C3</td>
<td>W</td>
<td>E6</td>
</tr>
<tr>
<td>$</td>
<td>5B</td>
<td>j</td>
<td>91</td>
<td>D</td>
<td>C4</td>
<td>X</td>
<td>E7</td>
</tr>
<tr>
<td>*</td>
<td>5C</td>
<td>k</td>
<td>92</td>
<td>E</td>
<td>C5</td>
<td>Y</td>
<td>E8</td>
</tr>
<tr>
<td>)</td>
<td>5D</td>
<td>l</td>
<td>93</td>
<td>F</td>
<td>C6</td>
<td>2</td>
<td>E9</td>
</tr>
<tr>
<td>-</td>
<td>60</td>
<td>m</td>
<td>94</td>
<td>G</td>
<td>C7</td>
<td>0</td>
<td>F0</td>
</tr>
<tr>
<td>/</td>
<td>61</td>
<td>n</td>
<td>95</td>
<td>H</td>
<td>C8</td>
<td>1</td>
<td>F1</td>
</tr>
<tr>
<td>,</td>
<td>6B</td>
<td>o</td>
<td>96</td>
<td>I</td>
<td>C9</td>
<td>2</td>
<td>F2</td>
</tr>
<tr>
<td>_</td>
<td>6D</td>
<td>p</td>
<td>97</td>
<td>J</td>
<td>D1</td>
<td>3</td>
<td>F3</td>
</tr>
<tr>
<td>#</td>
<td>7B</td>
<td>q</td>
<td>98</td>
<td>K</td>
<td>D2</td>
<td>4</td>
<td>F4</td>
</tr>
<tr>
<td>@</td>
<td>7C</td>
<td>r</td>
<td>99</td>
<td>L</td>
<td>D3</td>
<td>5</td>
<td>F5</td>
</tr>
<tr>
<td>*</td>
<td>7D</td>
<td>s</td>
<td>A2</td>
<td>M</td>
<td>D4</td>
<td>6</td>
<td>F6</td>
</tr>
<tr>
<td>=</td>
<td>7E</td>
<td>t</td>
<td>A3</td>
<td>N</td>
<td>D5</td>
<td>7</td>
<td>F7</td>
</tr>
<tr>
<td>a</td>
<td>81</td>
<td>u</td>
<td>A4</td>
<td>O</td>
<td>D6</td>
<td>8</td>
<td>F8</td>
</tr>
<tr>
<td>b</td>
<td>82</td>
<td>v</td>
<td>A5</td>
<td>P</td>
<td>D7</td>
<td>9</td>
<td>F9</td>
</tr>
<tr>
<td>c</td>
<td>83</td>
<td>w</td>
<td>A6</td>
<td>Q</td>
<td>D8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>84</td>
<td>x</td>
<td>A7</td>
<td>R</td>
<td>D9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
## ASCII Character Representation in Assembler Language Programs

<table>
<thead>
<tr>
<th>Char</th>
<th>Code</th>
<th>Char</th>
<th>Code</th>
<th>Char</th>
<th>Code</th>
<th>Char</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>blank</td>
<td>20</td>
<td>8</td>
<td>38</td>
<td>P</td>
<td>50</td>
<td>h</td>
<td>68</td>
</tr>
<tr>
<td>!</td>
<td>21</td>
<td>9</td>
<td>39</td>
<td>Q</td>
<td>51</td>
<td>i</td>
<td>69</td>
</tr>
<tr>
<td>&quot;</td>
<td>22</td>
<td>;</td>
<td>3A</td>
<td>R</td>
<td>52</td>
<td>j</td>
<td>6A</td>
</tr>
<tr>
<td>#</td>
<td>23</td>
<td>;</td>
<td>3B</td>
<td>S</td>
<td>53</td>
<td>k</td>
<td>6B</td>
</tr>
<tr>
<td>$</td>
<td>24</td>
<td>&lt;</td>
<td>3C</td>
<td>T</td>
<td>54</td>
<td>l</td>
<td>6C</td>
</tr>
<tr>
<td>%</td>
<td>25</td>
<td>=</td>
<td>3D</td>
<td>U</td>
<td>55</td>
<td>m</td>
<td>6D</td>
</tr>
<tr>
<td>&amp;</td>
<td>26</td>
<td>&gt;</td>
<td>3E</td>
<td>V</td>
<td>56</td>
<td>n</td>
<td>6E</td>
</tr>
<tr>
<td>'</td>
<td>27</td>
<td>?</td>
<td>3F</td>
<td>W</td>
<td>57</td>
<td>o</td>
<td>6F</td>
</tr>
<tr>
<td>(</td>
<td>28</td>
<td>0</td>
<td>40</td>
<td>X</td>
<td>58</td>
<td>p</td>
<td>70</td>
</tr>
<tr>
<td>)</td>
<td>29</td>
<td>A</td>
<td>41</td>
<td>Y</td>
<td>59</td>
<td>q</td>
<td>71</td>
</tr>
<tr>
<td>*</td>
<td>2A</td>
<td>B</td>
<td>42</td>
<td>Z</td>
<td>5A</td>
<td>r</td>
<td>72</td>
</tr>
<tr>
<td>+</td>
<td>2B</td>
<td>C</td>
<td>43</td>
<td>[</td>
<td>5B</td>
<td>s</td>
<td>73</td>
</tr>
<tr>
<td>,</td>
<td>2C</td>
<td>D</td>
<td>44</td>
<td></td>
<td>5C</td>
<td>t</td>
<td>74</td>
</tr>
<tr>
<td>-</td>
<td>2D</td>
<td>E</td>
<td>45</td>
<td>]</td>
<td>5D</td>
<td>u</td>
<td>75</td>
</tr>
<tr>
<td>.</td>
<td>2E</td>
<td>F</td>
<td>46</td>
<td>^</td>
<td>5E</td>
<td>v</td>
<td>76</td>
</tr>
<tr>
<td>/</td>
<td>2F</td>
<td>G</td>
<td>47</td>
<td>_</td>
<td>5F</td>
<td>w</td>
<td>77</td>
</tr>
<tr>
<td>0</td>
<td>30</td>
<td>H</td>
<td>48</td>
<td>`</td>
<td>60</td>
<td>x</td>
<td>78</td>
</tr>
<tr>
<td>1</td>
<td>31</td>
<td>I</td>
<td>49</td>
<td>a</td>
<td>61</td>
<td>y</td>
<td>79</td>
</tr>
<tr>
<td>2</td>
<td>32</td>
<td>J</td>
<td>4A</td>
<td>b</td>
<td>62</td>
<td>z</td>
<td>7A</td>
</tr>
<tr>
<td>3</td>
<td>33</td>
<td>K</td>
<td>4B</td>
<td>c</td>
<td>63</td>
<td>{</td>
<td>7B</td>
</tr>
<tr>
<td>4</td>
<td>34</td>
<td>L</td>
<td>4C</td>
<td>d</td>
<td>64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>35</td>
<td>M</td>
<td>4D</td>
<td>4</td>
<td>65</td>
<td>}</td>
<td>7D</td>
</tr>
<tr>
<td>6</td>
<td>36</td>
<td>N</td>
<td>4E</td>
<td>f</td>
<td>66</td>
<td>&quot;</td>
<td>7E</td>
</tr>
<tr>
<td>7</td>
<td>37</td>
<td>O</td>
<td>4F</td>
<td>g</td>
<td>67</td>
<td>(none)</td>
<td>7F</td>
</tr>
</tbody>
</table>

Table 440. 7-bit ASCII character representation
### DC Statement Types

Table 441. High Level Assembler DC-Statement Constant Types

<table>
<thead>
<tr>
<th>Type</th>
<th>Subtype(s)</th>
<th>Default Length(s)</th>
<th>Modifiers</th>
<th>Pad/Truncate</th>
<th>Constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>(D)</td>
<td>4 (8)</td>
<td>L</td>
<td>Left</td>
<td>Absolute or relocatable expression</td>
</tr>
<tr>
<td>B</td>
<td>Minimum</td>
<td>L</td>
<td>Left</td>
<td>Binary</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Minimum</td>
<td>L</td>
<td>Right</td>
<td>EBCDIC</td>
<td>Characters</td>
</tr>
<tr>
<td>C</td>
<td>A</td>
<td>Minimum</td>
<td>L</td>
<td>Right</td>
<td>ASCII characters generated</td>
</tr>
<tr>
<td>C</td>
<td>E</td>
<td>Minimum</td>
<td>L</td>
<td>Right</td>
<td>EBCDIC characters generated</td>
</tr>
<tr>
<td>C</td>
<td>U</td>
<td>Minimum</td>
<td>L</td>
<td>Right</td>
<td>Unicode characters generated</td>
</tr>
<tr>
<td>D</td>
<td>8</td>
<td>L,S,E</td>
<td>Right</td>
<td>Hexadecimal floating-point</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>B</td>
<td>8</td>
<td>L,E</td>
<td>Right</td>
<td>Binary floating-point</td>
</tr>
<tr>
<td>D</td>
<td>D</td>
<td>8</td>
<td>E</td>
<td>None</td>
<td>Decimal floating-point</td>
</tr>
<tr>
<td>D</td>
<td>H</td>
<td>8</td>
<td>L,S,E</td>
<td>Right</td>
<td>Hexadecimal floating-point (improved rounding)</td>
</tr>
<tr>
<td>E</td>
<td>4</td>
<td>L,S,E</td>
<td>Right</td>
<td>Hexadecimal floating-point</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>B</td>
<td>4</td>
<td>L,E</td>
<td>Right</td>
<td>Binary floating-point</td>
</tr>
<tr>
<td>E</td>
<td>D</td>
<td>4</td>
<td>E</td>
<td>None</td>
<td>Decimal floating-point</td>
</tr>
<tr>
<td>E</td>
<td>H</td>
<td>4</td>
<td>L,S,E</td>
<td>Right</td>
<td>Hexadecimal floating-point (improved rounding)</td>
</tr>
<tr>
<td>F</td>
<td>(D)</td>
<td>4 (8)</td>
<td>L,S,E</td>
<td>Left</td>
<td>Fixed-point binary</td>
</tr>
<tr>
<td>G</td>
<td>Minimum</td>
<td>L</td>
<td>Right</td>
<td>Graphic (usually Kanji)</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>(D)</td>
<td>2 (8)</td>
<td>L,S,E</td>
<td>Left</td>
<td>Fixed-point binary</td>
</tr>
<tr>
<td>J</td>
<td>(D)</td>
<td>4 (8)</td>
<td>L</td>
<td>Left</td>
<td>Class length</td>
</tr>
<tr>
<td>L</td>
<td>16</td>
<td>L,S,E</td>
<td>Right</td>
<td>Hexadecimal floating-point</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>B</td>
<td>16</td>
<td>L,E</td>
<td>Right</td>
<td>Binary floating-point</td>
</tr>
<tr>
<td>L</td>
<td>D</td>
<td>16</td>
<td>E</td>
<td>None</td>
<td>Decimal floating-point</td>
</tr>
<tr>
<td>L</td>
<td>H</td>
<td>16</td>
<td>L,S,E</td>
<td>Right</td>
<td>Hexadecimal floating-point (improved rounding)</td>
</tr>
<tr>
<td>P</td>
<td>Minimum</td>
<td>L</td>
<td>Left</td>
<td>Packed decimal</td>
<td></td>
</tr>
<tr>
<td>Q</td>
<td>(D)</td>
<td>4 (8)</td>
<td>L</td>
<td>None</td>
<td>DXD or Part offset</td>
</tr>
<tr>
<td>Q</td>
<td>Y</td>
<td>3</td>
<td>L3</td>
<td>None</td>
<td>Long-displacement DXD or Part offset</td>
</tr>
<tr>
<td>R</td>
<td>(D)</td>
<td>4 (8)</td>
<td>L</td>
<td>Left</td>
<td>PSECT address</td>
</tr>
<tr>
<td>S</td>
<td>2</td>
<td>L2</td>
<td>None</td>
<td>12-bit-displacement base-displacement address</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>Y</td>
<td>3</td>
<td>L3</td>
<td>None</td>
<td>Long-displacement base-displacement address</td>
</tr>
<tr>
<td>V</td>
<td>(D)</td>
<td>4 (8)</td>
<td>L</td>
<td>None</td>
<td>External symbol</td>
</tr>
<tr>
<td>Y</td>
<td>2</td>
<td>L</td>
<td>Left</td>
<td>Absolute or relocatable expression</td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>Minimum</td>
<td>L</td>
<td>Left</td>
<td>Zoned decimal</td>
<td></td>
</tr>
</tbody>
</table>
Appendix B: Simple I/O Macros

The forms that I/O takes within and across z/Architecture operating systems is varied enough that it takes many books to describe them. So that you won’t need to understand the I/O rules associated with a particular Operating System, the simple needs of small programs like the Programming Problems here can be satisfied by the following facilities:

1. An instruction (READCARD) to read 80-character records into a named area in your program, with provision for optionally transferring control to some out-of-line location if no further records are available.
2. An instruction (PRINTLIN) to print line images on a printer file, with carriage control characters and optional specification of the length of the character string to be printed.
3. An instruction (PRINTOUT) to:
   - print the value of the contents of an area of memory, giving its name as well as the value of the contents in an easily-readable format.
   - print the contents of the General Purpose and Floating-Point registers.
   - return control to the Supervisor when program execution has been successfully completed.
4. An instruction (CONVERTO) to convert the contents of a General Purpose register to a string of decimal characters in memory.
5. An instruction (CONVERTI) to convert decimal characters in memory to a signed binary value in a General Purpose register.
6. An instruction (DUMPOUT) to generate a formatted hexadecimal dump of specified areas of memory.

These macro instructions do not change the Condition Code.

Macro Facilities

These facilities are provided by the READCARD, PRINTLIN, CONVERTO, CONVERTI, DUMPOUT, and PRINTOUT macro-instructions.

First, here is a summary of the abbreviations used in the descriptions.

- `<name>` any valid symbol naming an area of memory which is addressable from the point where it is used in a macro-instruction.
- `<number>` any valid self-defining term; limits on the size of the term are described for each macro-instruction. In most cases, a predefined absolute symbol may be used.
- `<d(b)>` any valid operand providing an addressable displacement and base.
- `<nfs>` a valid (and optional) name-field symbol (label) naming the macro-instruction in whose name field it appears.
- `[optional]` square brackets around a term means that it is optional.
- `...` an ellipsis means that the preceding item may be repeated any number of times.
Examples of these macro-instructions are given below.

You may want to precede the first call to any of these macros with a

PRINT NOGEN

statement; otherwise your listing will include many generated statements that won’t have much meaning to you until you’ve had more experience with z System.

The READCARD Macro-Instruction

READCARD reads records into an 80-byte buffer in the program. This macro-instruction is written

<nfs> READCARD <name>[,<name>]

where either <name> operand may also be written as <d(b)>

It reads a record from the input file into the 80-byte area beginning at the first operand address. If no record is available, then (1) control is returned to the instruction specified by the second operand if it is present, or (2) if no second operand is present, execution is terminated with the message

*** Execution terminated by Reader EOF

For example,

READCARD MyRecord

will read the next record and place it as an 80-byte EBCDIC character string at the location named MyRecord; if no record is present, execution will be terminated. The instruction

GetARec READCARD MyRecord,EndFile

does the same as the previous example, except that if no record is available, control will be transferred to the instruction named EndFile.

The PRINTLIN Macro-Instruction

The PRINTLIN macro-instruction is written in the form

<nfs> PRINTLIN <name>[,<number>]

where the <name> and optional <number> operands may also be written as <d(b)>

PRINTLIN causes the character string beginning at the location defined by the first operand to be printed; the number of characters is specified by the second operand (which may be a predefined absolute symbol). The print-line length is limited to 121 characters.

The first character of the string will be detached and used for spacing control. The ANSI Standard carriage control characters are:

- an EBCDIC ‘ ’ (blank) means single space,
- an EBCDIC ‘0’ (zero) means double space,
- an EBCDIC ‘-’ (minus) means triple space,
- an EBCDIC ‘1’ (one) means start at the top of a new page, and
- an EBCDIC ‘+’ (plus) means no spacing (the new line will be printed over the previous one).

If the second operand is omitted, the length of the character string is assumed to be 121 bytes, which means that 120 characters will be printed after the first is detached. If the second operand is present, it is taken to be the length of the string; the number of characters specified will be placed at the left end of an internal buffer, extended to 121 bytes with blanks if necessary, and then sent to the printer file. For example, we could write

PrTtl PRINTLIN Title

" "

Title DC CL121'I'Title for top line of the page'

to print the indicated title at the top of a new page. If we wrote

PRINTLIN Title,1

then the printer would skip to the top of a new page and print a blank line there, because only the spacing control character (the “1”) is transmitted from the program to the print file.

---

302 See the discussion at “Operating System Environment and Installation Considerations” on page 1008 for information on setting the default print-line length.
The CONVERTO Macro-Instruction

The CONVERTO macro-instruction is written in the form

\[ \text{CONVERTO} \ <\text{number}> , \ <\text{address}> \]

where the \(<\text{number}>\) is the number of a general or floating-point register, and \(<\text{address}>\) points to a string of bytes in storage where the converted result is stored. The \(<\text{address}>\) operand may also be written as \(<d(b)>\).

CONVERTO converts the contents of the designated register from binary to decimal characters (for general registers) or to hexadecimal characters (for floating-point registers). The first character of the converted result is always blank, so it may be printed immediately using the PRINTLIN macro.

Note that the length of the generated character string is always as specified below; be careful to allocate enough space for the result so that you won't overwrite other data or instructions.

If the value of the \(<\text{number}>\) operand does not lie in the range \(0 \leq \ <\text{number}> \leq 47\), the macro call is ignored.

32-bit general register

A \(<\text{number}>\) between 0 and 15 specifies the corresponding 32-bit general register. For example, if the operand is 9, the contents of GR9 will be converted to a string of 12 characters. For example, if \(c(GR9)=X'80000000'\), the formatted string will be the 12 characters (where \(\bullet\) is our representation for a blank character):

\[ \bullet-2147483648 \]

64-bit general register

A \(<\text{number}>\) between 16 and 31 (less 16) specifies the corresponding 64-bit general register. For example, if the operand is 16, the contents of GGR0 will be converted to a string of 21 characters. For example, if \(c(GG9)=X'80000000 00000000'\), the formatted string will be the 21 characters (where \(\bullet\) is our representation for a blank character):

\[ \bullet-9223372036854775808 \]

Execution on z/Architecture is required.

Floating-Point Register

A \(<\text{number}>\) between 32 and 47 (less 32) specifies the corresponding Floating-Point Register. For example, if the operand is 36, the contents of FPR4 will be printed as a string of 20 characters (where \(\bullet\) is our representation for a blank character):

\[ X'FEDCBA9876543210' \]

Because there are three floating-point representations, and because accurate conversion from hexadecimal and binary floating-point formats is quite difficult, only hexadecimal values are displayed.

Be Careful!

If your system does not support z/Architecture instructions or the full set of 16 Floating-Point registers, trying to display their contents may cause a program interruption for an invalid operation code or a specification exception.

The CONVERTI Macro-Instruction

CONVERTI is generally used to scan a data record received by the READCARD macro instruction. It converts a string of optionally signed decimal characters to binary into a specified 32-bit or 64-bit general register, and sets GR1 to the address of the non-digit character at which scanning was stopped. This means that you can convert multiple values from the same character string.

The CONVERTI macro-instruction is written in the form

\[ \text{CONVERTI} \ <\text{number}> , \ <\text{address}> | (\text{ERR}=\ <\text{address}>) | (\text{STOP}=\ <\text{address}>) \]

where \(<\text{number}>\) specifies a general register, and \(<\text{address}>\) is the starting address of a string of bytes in storage of characters to be converted to binary. The \(<\text{address}>\) operand may also be written as \(<d(b)>\).

The first non-blank character must be a plus sign, a minus sign, or a decimal digit; otherwise, GR1 is set to the address of that character and the register specified by \(<\text{number}>\) is unchanged. (If you expect unusual characters to be scanned, you should specify the \text{STOP}=\ operand on the CONVERTI statement.)
Be Careful!

Don’t specify either 1 or 17 for the <number> operand, because any converted value in GR1 or GG1 will be replaced by the address of the “stop” character.

The optional keyword operands ERR= and STOP= specify locations in your program where the CONVERTI will transfer control if certain conditions occur:

- **ERR=** If the value of the <number> operand is greater than 31, or if the value of the significant decimal digits at the <address> operand is too large to be converted correctly to the general register specified by the <number> operand, control will be transferred to the <address> given by the ERR= operand.

- **STOP=** If an invalid character is found in the string of characters starting at the <address> operand, GR1 is set to the address of that character and control will be transferred to the <address> given by the STOP= operand. (See example 3 below.)

If either of these conditions occurs and the needed ERR= or STOP= <address> is not specified, CONVERTI will print a message and terminate the program.

**32-bit general register**

A <number> between 0 and 15 specifies the corresponding 32-bit general register. The number to be converted must have no more than 10 significant digits. Insignificant leading zero digits are ignored.

**64-bit general register**

A <number> between 16 and 31 (less 16) specifies the corresponding 64-bit general register. The number to be converted must have no more than 19 significant digits. Insignificant leading zero digits are ignored.

Execution on z/Architecture is required.

For example:

1. Convert the digits at D1 to binary in 32-bit GR3:

   ```
 CONVERTI 3,D1
 - - -
 D1 DC 'C' +019
   ```

   The contents of GR3 will be X’00000013’ and GR1 will contain the address of the blank character following the digit 9.

2. Convert the digits at D2 to binary in 64-bit GG5:

   ```
 CONVERTI 21,D2
 - - -
 D2 DC 'C'-9223372036854775808
   ```

   The contents of GG5 will be X’8000000 00000000’ and GR1 will contain the address of the blank character following the final digit 8.

3. The character string at D3 contains several values to be stored at Table. The scan is terminated by the character *.

   ```
 LA 3,Table
 LA 2,D3
 CvtLoop CONVERTI 0,0(2),STOP=Check Invalid character? Test at Check
 ST 0,0(,3) Store an entry at Table
 LA 3,4(,3) Point to next Table entry
 B CvtLoop Resume converting
 - - -
 Check CLI 0(1),C'*' Is the invalid character ours?
 JNE BadChar No, a bad character appeared
 - - -
 D3 DC 'C'+1 -2+3 -0000000000000004 '*'
   ```

   and the four words starting at Table will contain the values 1, −2, 3, and −4.

   Providing a known “stop” character lets you scan an input string for all the values provided. For example, a record stored at InRec by the READCARD macro could be followed by a stop character:

   ```
 InRec DS CL80 Buffer area
 StopChar DC 'C'' Stop character
   ```
The PRINTOUT Macro-Instruction

The PRINTOUT macro-instruction lets you print the value of the contents of named areas of memory, the contents of registers, and to terminate execution.

The operand field of the PRINTOUT macro-instruction may contain any number of <name>s or <number>s separated by commas, with no intervening blanks. An operand consisting of a single asterisk will terminate execution. The basic forms of the PRINTOUT macro-instruction are written

<nfs> PRINTOUT <name>[,<number>...]

<nfs> PRINTOUT *

where any combination of the <name> and <number> operands may be used in an operand list; either may be written in the form <d(b)>. If the asterisk operand is used, it is treated as the last operand in the list. For example,

AllDone PRINTOUT 0,*

will display the contents of GR0 and then terminate execution.

A <number> operand with value between 0 and 47 causes the contents of a register to be printed in hex and decimal; larger values are treated as addresses. The <number> may in most cases be a predefined absolute symbol.

32-bit general register
a <number> between 0 and 15 specifies the corresponding 32-bit general register. For example, if the operand is 12, the contents of GR12 will be printed:

GPR  12 = X’FFFFFFFF’ = -13

64-bit general register
a <number> between 16 and 31 (less 16) specifies the corresponding 64-bit general register. For example, if the operand is 16, the contents of GGR0 will be printed:

GGR  0 = X’1234567890ABCDEF’ = 1311768467294899695

Execution on z/Architecture is required.

Floating-Point Register
a <number> between 32 and 47 (less 32) specifies the corresponding Floating-Point Register. For example, if the operand is 36, the contents of FPR4 will be printed:

FPR  4 = X’FEDCBA9876543210’

Because there are three floating-point representations, and because accurate conversion from hexadecimal and binary floating-point formats is quite difficult, only hexadecimal values are displayed.

Be Careful!

If your system does not support z/Architecture instructions or the full set of 16 Floating-Point registers, trying to display their contents may cause a program interruption for an invalid operation code or a specification exception.

To print the contents of the “original” four floating-point registers F0, F2, F4, and F6, we could write

FourFPRs PRINTOUT 32,34,36,38

Printing the contents of any other Floating-Point Register requires those registers to be installed and available on your machine.

To print the contents of R14 and then terminate execution, we could write

PRINTOUT X’E’, *

To print the contents of memory areas named A, B, and C, we could write

PRINTOUT A,B,C

The format of the output depends on the type attribute of the symbol naming the memory area:

- Type attribute C (character) data is shown as strings of at most 100 characters.
- Type attribute F or H data are shown as signed decimal numbers.
- If you use forms like PRINTOUT d(b) and d has attributes C, F, or H, the result will be formatted as above; otherwise, the data is displayed as 16 hexadecimal digits.
- Other type attributes cause data to be displayed as 2 to 100 hexadecimal digits, depending on the length attribute of the operand.
Specifying PRINTOUT with no operand is useful for flow tracing; only a header line is printed. An example is shown below.

```
PRINTOUT
```

If you want a comment field on the statement, put a single comma as the operand:

```
PRINTOUT , Your comments here
```

Finally, if you want to terminate execution with no message:

```
PRINTOUT *,Header=NO Terminate quietly
```

Any value other than “No” (in any mixture of upper and lower case) will be treated as “yes”.

**The DUMPOUT Macro-Instruction**

The DUMPOUT macro-instruction is written in the form

```
<nfs> DUMPOUT <name>[,<name>]
```

where either `<name>` operand can be written as `<d(b)>`.

DUMPOUT prints a formatted hexadecimal dump of the area of memory starting with the fullword containing the first operand, 32 bytes to a line. If the second operand is omitted, one line will be printed. If the second operand is given, all of memory between the two addresses will be dumped. The dump starts from the lower of the two addresses and proceeds toward the higher. The lower address is “rounded down” to a fullword boundary, and 32 bytes are displayed on each line even if some bytes are at addresses greater than the higher address.\(^{303}\)

No checks are made to avoid possible storage access violations. For example,

```
DumpA DUMPOUT A
```

will cause the 32-byte area of memory starting at (or very near) A to be dumped. Similarly,

```
DumpAB DUMPOUT A,B
```

would print a dump of the area of memory starting with a line containing the byte at A and ending with a line which includes the byte named B.

**PRINTOUT and DUMPOUT Header**

Normally, the output produced by the PRINTOUT and DUMPOUT macros will be preceded by a “header” line:

```
*** PRINTOUT requested at Address xxxxxx, Statement sssss, CC=n
```

or

```
*** DUMPOUT requested at Address xxxxxx, Statement sssss, CC=n
```

where `sssss` is the statement number of the macro, and `CC=n` shows the current Condition Code setting.

To suppress this header line, you can specify an additional operand `HEADER=NO` on the PRINTOUT or DUMPOUT macro. For example:

```
PRINTOUT A,B,C,Header=No
```

```
ABDMP DUMPOUT A,B,header=no
```

The default is `HEADER=YES`.

**Usage Notes**

1. All five macros require residence in RMODE(24) storage below the 16MB “line”, and execute in AMODE(24). The generated code is frequently self-modifying, and is not re-enterable.
2. Most operands of the form `<name>`, `<d(b)>`, and `<number>` are resolved in S-type address constants, so addressability is required when all macros except `$$GENIO` are invoked.
3. When you execute a macro, be sure that the base register used at assembly time to resolve the S-type constants has the correct address at execution time.
4. Be careful not to reference areas outside your program, as you may risk interruptions for memory protection violations.

\(^{303}\) That is, the dump is from the smaller to the larger of 
\((\text{LowAddr}/4)\times4\) and 
\(((\text{HighAddr}+31)/32)\times32\).
5. If you use PRINTOUT to display named areas of memory, it uses the name's attributes for formatting the result.
6. At most eight characters of the <name> and <d(b)> operands are displayed. If you write
   
   PRINTOUT 00000000(3),00000000(7)

   the eight bytes addressed by registers GR3 and GR7 will be displayed in hexadecimal, but both with have the "name" 00000000.

Sample Program

Here is a small sample program that uses all of these macros. The assembly listing and its output are in the following figures.

```
Print Nogen Suppress expansions
IOMacs CSect , Sample Program
 Using *,15 Local base register
 SR 1,1 Clear card counter
 * Next statement for flow tracing
 PrintOut
Read ReadCard CardOut,EOF Read card until endfile
 LA 1,1(0,1) Increment card counter
 PrintOut 1 Print the count register
 PrintLin Out,Linelen Print a line
 ConvertI 0,CardOut Convert a number
 ConvertO 0,OutData Put it in printable form
 PrintLin OutData,L'OutData Print the value
 B Read Go back and read again
EOF DumpOut IOMacs,Last Dump everything
 XGR 3,3 Set GGR3 to 0 (z/Architecture!)
 BCTGR 3,0 Set GGR3 to -1 (z/Architecture!)
 PrintOut 1,19,* Print GR1, GG3, FPR0, terminate
Out DC C Input Record = 'First part of line
CardOut DC CL80 Card image here
LineLen Equ *-Out Define line length
OutData DS CL12 Converted chars/binary/chars
Last Equ * Last byte of program
End
```

The program uses READCARD to read two card images, keeps a count in GR1 which is displayed with PRINTOUT. The card image just read is shown with a prefix using PRINTLIN. Then, one number from each record is converted to binary using CONVERTI, and then to printable format using CONVERTO. The result of each conversion is printed using PRINTLIN.

When there are no more input records, DUMPOUT shows the entire program. Finally PRINTOUT * also displays the contents of GR1, GG3, and FPR0 before terminating the program.

The two input records look like this:

```
+123456 * First record
-00034567890 * Second and last record
```

Here is a portion of the assembly listing, including the carriage control characters.

```
0 1 Print Nogen Suppress expansions 000000 00000 001E2 PrintOut
000034 000000 0002 2 IOMacs CSect , Sample Program 0 1B 11 SR 1,1 Clear card counter
000000 1B11 4 SR 1,1 Clear card counter
000024 0700 749 Read ReadCard CardOut,EOF Read card until endfile
00004A 4110 1001 00001 760 LA 1,1(0,1) Increment card counter
00004E 90EF F058 00058 761 PrintOut 1 Print the count register
000076 B982 0033 817 XGR 3,3 Set GGR3 to 0 (z/Architecture!)
00007C B946 0030 818 BCTGR 3,0 Set GGR3 to -1 (z/Architecture!)
0000FC 47F0 F024 00024 805 B Read Go back and read again
000100 0700 806 EOF DumpOut IOMacs,Last Dump everything
000120 B932 0013 817 IGR 3,3 Set GGR3 to 0 (z/Architecture!)
00012C B946 0030 818 BCTGR 3,0 Set GGR3 to -1 (z/Architecture!)
```

Appendix B: Simple I/O Macros
The Macro Instruction Definitions

The following macro definitions can be used to implement the READCARD, CINVERTO, CONVERTI, PRINTLIN, PRINTOUT, and DUMPOUT macro-instructions. An important feature of these macro-instructions is that they may be used anywhere in a program; they make no changes to any register (except for CONVERTI, which changes the GR1 and the result register), do not change the Condition Code, and do not contain any USING or DROP instructions that could affect addressability in your program.

The last macro definition (for $GENIO) generates the code to perform the functions requested by the other macros. It does not require the user to do anything special about addressability, so the macros may be used in any program.

Operating System Environment and Installation Considerations

First, place the macro definitions in a macro library accessible to the Assembler. The default print-line length (121) can be changed in the PRINTLIN macro, and in the $GENIO macro by modifying the variable &PLL. The default DDnames are

- Print MVS/CMS=SYSPRINT, VSE=SYSLST
- Read MVS/CMS=SYSIN, VSE=SYSIPT

and can be changed by modifying the $ONAM and $INAM variable symbols in macro $GENIO.

The $GENIO macro is complex. It generates the $SOSECT CSECT with six entry points. It can be used in two ways:

1. The instructions in the $SOSECT can be generated as part of the user’s program, if the variable symbol &LIBIO is set to 0 in the first few lines of the $GENIO macro. This is simpler, but causes an “invisible gap” in the statement numbers of the listing. The hidden statements can be displayed by specifying the Assembler option PCONTROL(GEN,ON) but the generated code will be confusing to all but advanced students.
2. Alternatively, you can generate the $\$10SECT instructions into a separate module. (This has the advantage of hiding the complexities of the $\$GENIO macro, but requires a little bit more initial setup.) First, set the $\$S$LIBIO variable symbol to 0, and create and assemble this short program:

\begin{verbatim}
$\$GENIO
End
\end{verbatim}

Link the generated object module into a library accessible at program linking and loading time. Then, change the $\$SLIBIO variable symbol to 1 to suppress subsequent inline generation, and store the macro back in the macro library.

All symbols generated in the expansions of these macros begin with the two characters $\$$. If this conflicts with your conventions (or desires), change each occurrence of ' $$' to whatever two other characters you like. (The symbol cross-reference for any assembly using these macros will include many symbols starting with those two characters.)

The macros have been extensively tested under MVS, CMS, and VSE, and are set up to run under MVS or CMS as the default. To run them under VSE, change the $\$\$DOS SETB statement (near the front of the $\$GENIO macro definition) according to the instructions there. Similarly, to change the default file names or print line length, modify the following SETC statements as indicated there.
READCARD Macro

```
MACRO
&LABEL READCARD &DATA,&EOFADDR BOTH ARGS ADDRESSABLE

.* This macro reads a single 80-character card image into the *
.* buffer area provided by &DATA. If an end-of-file condition *
.* is sensed on the input file, and the end-file parameter *
.* &EOFADDR is present, then control will be returned to that *
.* location. If no end-file parameter is present, the job *
.* is terminated with an appropriate message. *
.*--
LCB &EOFFLG 1 IF THERE IS EOFADDR
LCLA &T
AIF (′&LABEL′ EQ ′′). AA SKIP LABEL DEFINITION
&LABEL DC OH′0′ DECLARE LABEL
.AA AIF (′&EOFADDR′ EQ ′′).DECLAB TEST IF EOFADDR PRESENT
&EOFFLG SETB 1 EOFADDR PRESENT
.DECLAB AIF (′&DATA′ NE ′′).PARDK SEE IF FIRST PARAM THERE
MMote 8,′Missing data area parameter. READCARD ignored.′
MEXIT ERROR EXIT FROM MACRO
.PARMOK ANOP ,
$$RC&SYSNDX DC OH′0′ DECLARE INTERNAL LABEL
CNOP 2,4 ALIGNMENT
STM 14,15,**+10 SAVE REGS 14 & 15
L 15,**+14 ADDRESS READCARD ROUTINE
BALR 14,15 CALL ROUTINE
AIF (′&DATA′ EQ ′′). AA SKIP LABEL DEFINITION
&LABEL DC OH′0′ DECLARE LABEL
.AA AIF (′&LABEL′ EQ ′′). AA SKIP LABEL DEFINITION
&LABEL DC OH′0′ DECLARE LABEL
.PARMOK ANOP ,
$$RC&SYSNDX DC OH′0′ DECLARE INTERNAL LABEL
CNOP 2,4 ALIGNMENT
STM 14,15,**+10 SAVE REGS 14 & 15
L 15,**+14 ADDRESS PRINTLIN ROUTINE
BALR 14,15 CALL ROUTINE
AIF (′&LEN′ EQ ′′). DEFLEN IF LEN OMIT. USE DEFAULT
DC 2F′0′.V($$PRTLIN),A($$RC&SYSNDX),S(&DATA)
LM 14,15,0(14) RESTORE R14 & R15
AIF (NOT(&EOFFLG)). GENIO NO EOFADDR, NO BC INSTR
BC 0,&EOFADDR COND. JUMP TO EOFADDR
.DEFLEN DC 2F′0′.V($$PRTLIN),S(&DATA),S(121) DEFAULT LENGTH
LM 14,15,0(14) RESTORE REGS.
$$GENIO GENERATE I/O SECTION
MEND
```

PRINTLIN Macro

```
MACRO
&LABEL PRINTLIN &DATA,&LEN

.* This macro sends a line image to the printer. The first *
.* character of the string starting at &DATA is assumed to be *
.* an ASA carriage control character. The default line length *
.* is 121 characters, but this value may be overridden by the *
.* value given in the optional second parameter, &LEN. If the *
.* value of &LEN is greater than 121, then 121 will be used. *
.*--
AIF (′&LABEL′ EQ ′′). AA SKIP LABEL DEFINITION
&LABEL DC OH′0′ DECLARE LABEL
.AA AIF (′&DATA′ NE ′′). PARMDK ERR IF NO DATA AREA
MMote 8,′Missing data area parameter. PRINTLIN ignored.′
MEXIT
.PARMOK CNOP 2,4 ALIGNMENT
STM 14,15,**+10 SAVE R14 & R15
L 15,**+14 ADDR PRINTLIN ROUTINE
BALR 14,15 CALL ROUTINE
AIF (′&LEN′ EQ ′′). DEFLEN IF LEN OMIT. USE DEFAULT
DC 2F′0′.V($$PRTLIN),A($$RC&SYSNDX),S(&DATA)
LM 14,15,0(14) RESTORE R14 & R15
AIF (NOT(&EOFFLG)). GENIO NO EOFADDR, NO BC INSTR
BC 0,&EOFADDR COND. JUMP TO EOFADDR
.DEFLEN DC 2F′0′.V($$PRTLIN),S(&DATA),S(121) DEFAULT LENGTH
.LM 14,15,0(14) RESTORE REGS.
$$GENIO GENERATE I/O SECTION
MEND
```
CONVERTO Macro

Macro

AL
CONVERTO BR, &A

**************************************************************
.* This macro converts the value in the register operand to *
.* a signed string of decimal characters, placing the result *
.* in the second operand field. If the register operand is *
.* between 32 and 47, the floating point register is converted *
.* to hexadecimal characters. *
.* *
.* Generated parameter list:
.* DC 2F’0’ For caller’s R14, R15 *
.* DC V($$CNVRTO) *
.* DC S(register), S(memory_address) *
**************************************************************

AIF (N’SysList eq 2).CVT1
.BADArg MNote 8, ‘Invalid CONVERTO argument list.’
 MExit .
.CV.T1 AIF (‘&L’ eq ‘’).CVT2
 &L DC 0H’0’
.CV.T2 CNop 2, 4
 STM 14, 15, **+10
 L 15, **+14
 BALR 14, 15
 DC 2F’0’, V($$CNVRTO), S(&R), S(&A)
 LM 14, 15, 0(14)
 $$GENIO
 MEnd

CONVERTI Macro

Macro

AL
CONVERTI BR, &A, &ERR=, &STOP=

**************************************************************
.* This macro converts a character string starting at the *
.* address to a binary integer in the register operand. If the *
.* register operand is greater than 31, and if the number being*
.* scanned is too large, the ERR= exit is taken, and R1 is set *
.* to the address of the next character to be scanned. If an *
.* invalid character is encountered, the STOP= exit is taken, *
.* and R1 is set to the address of that character. *
.* *
.* If either of these error occurs and no exit address is *
.* provided, a message is issued and the program halts. *
.* *
.* Generated parameter list:
.* DC 2F’0’ For caller’s R14, R15 *
.* DC AL1(Flag), VL3($$CNVRTI) *
.* DC S(register), S(memory_address) *
.* BC 0,&ERR+0 if register or number is invalid *
.* BC 0,&STOP+0 if an invalid character is found *
.* These two BCs are not generated if no keywords are present. *
**************************************************************

LCLA &F
AIF (N’SysList eq 2).A
 MNote 8, ‘CONVERTI: 2 operands required’
 MExit .
.A ANop ,
 &L CNop 2, 4
 STM 14, 15, **+10
 L 15, **+14
 BALR 14, 15
 AIF (‘&ERR’ eq ‘’).B
 &F SetA 1
 &B AIF (‘&STOP’ eq ‘’).GenData
 &F SetA &F+2
.GenData DC 2F’0’, AL1(&F), VL3($$CNVRTI), S(&R), S(&A)
 LM 14, 15, 0(14)
 AIF (NOT &F).GenIO
 BC 0,&ERR+0 Error in register or number
 BC 0,&STOP+0 Invalid character found in scan
.GenIO $$GENIO

Appendix B: Simple I/O Macros 1011
DUMPOUT Macro

MACRO

&LABEL DUMP.OUT &LOW,&HIGH,&HEADER=YES

.* This macro dumps out an area of memory between the addresses.*
.* specified by &LOW and &HIGH. The dump is in standard form, *
.* with eight words per line along with their EBCDIC character *
.* format at the right end. The header, giving the location *
.* from which the macro was called, is optional. *

**************************************************************

LCLA &HDR,&AN &HDR = 1 IF NO HEADER
LCLC &HDRC HEADER
&N SetA &SYSSTMT Save statement number

&LABEL DC 'OH'O' DEFINE MACRO NAME

&HDRC SetC Upper('HEADER') Force to uppercase case

AIF ('&HDRC' NE 'NO'). NDNR SKIP IF A HEADER

&NDC SETA 1 SET TO IGNORE HEADER

&HDR SETA 1 SET TO IGNORE HEADER

AIF ('&HDRC' NE 'NO'). NDNR SKIP IF A HEADER

&NDC DC S(&LOW),S(&HIGH) DUMPOUT ADDRESSES
AGO .FINIS

&HIGH DC 2S(&LOW) DUMPOUT ADDRESS
.FINIS LM 14,15,0(14) RESTORE REGISTERS

$&GENIO GENERATE I/O SECTION

MEND

PRINTOUT Macro

MACRO

&LABEL PRINTOUT &HEADER=YES

**************************************************************

.* This macro lets you print register contents, areas of *
.* memory, and terminate execution. To print an area of memory,*
.* specify its symbolic name. *
.* *
.* Memory operands must be addressable *
.* by an S-type address constant to be printed *
.* by this macro -- all such arguments must be addressable. *
.* There may be any number of arguments for each macro call. *
.* The printed output will contain the name of the item and *
.* the value of the named item. The output for each call may *
.* be preceded by a header message, which will be omitted if *
.* HEADER=NO is coded (after the last operand, usually). *
.* *
.* To terminate execution of the program, code * as the last *
.* (or only) operand. *

**************************************************************

LCLA &CNT,&LPcnt,&TCODE,&LENGTH,&A,&N
LCLB &BADOP Missing/Ignored operand
LCLC &HDRC Uppercase HEADER operand

.* &CNT is number of parameters; &LPcnt is loop counter;
.* &TCODE is operand code,

&N SetA &SYSSTMT Calling statement number

LCLC &T TYPE CODE OF PARAM.
&N SetA &SYSSTMT Calling statement number

LCLA &CNT,&LPcnt,&TCODE,&LENGTH,&A,&N

&LABEL STM 14,15,14 10 SAVE REGS.
L 15,*+14 ADDR PRINTOUT ROUTINE
BALR 14,15 CALL ROUTINE

$&GENIO GENERATE I/O SECTION

MEND
&HDRC  SetC Upper('&AHEADER')  Upper case
AIF ('&HDRC' NE 'NO'). NHDR
&AA  SETA 1  INDICATE NO HEADER
.&NHDR  AIF (&CNT NE 0). SS1
&AA  SETA &AA+240  INDICATE NO PARAMS
.&SS1  DC AL1(&AA),AL3($$PO&SYSNDX),A(&N-1) PARAMETER FLAGS
AIF (&CNT EQ 0). ENDLOOP EXIT IF NO PARAMS
&PARMLP AIF (&CNT LE &LPCTSTR). ENDLOOP TEST IF LOOP COMPLETE
&LPCTSTR  SETA &LPCTSTR+1  INC. LOOP CNTR
&TT  SETC T 'SYSLIST(&LPCTSTR) TYPE CODE OF OPERAND
&TCODE  SETA 32  HEX IS DEFAULT
&LENGTH  SETA 8  DEFAULT LENGTH
AIF ('&SYSLIST(&LPCTSTR) NE '). SS4 BRANCH IF NOT *
DC X '0800' PRINTOUT *
AGO .GENIO GENERATE I/O SECTION
.AIF ('&T' EQ 'C'). CHAR BRANCH IF OPER. CHAR.
AIF ('&T' EQ 'F' OR '&T' EQ 'H'). DEC PRINT AS DEC
AIF ('&T' EQ 'J' OR '&T' EQ 'M'). LOK DEFAULT ATTR.
AIF ('&T' EQ 'N'). LOKN DEFAULT ATTRIBUTES
AIF ('&T' NE '0'). GETLEN GET LENGTH ATTRIB.
MMOTE *, 'Omitted argument &LPCTSTR ignored.'
&BADOP  SETB (1) Indicate bad/missing operand
AGO .PARMLP
&LKN  ANOP
&A  SETA &SYSLIST(&LPCTSTR) GET VALUE OF ARGUMENT
AIF (&AA LT 48). LOK BRANCH IF VALID
MMOTE*, 'Operand &LPCTSTR ignored: value (&AA) too big.'
&BADOP  SETB (1) Indicate bad operand
AGO .PARMLP SKIP THIS ARGUMENT
&DEC  ANOP F OR H CONSTANT
&T CODE  SETA 64  PRINT AS DECIMAL HWORD
AIF ('&T' EQ 'H'). GETLEN GET LENGTH ATTRIB HWORD
&T CODE  SETA 65  PRINT AS DECIMAL FWORD
AGO .GETLEN GET LENGTH ATTRIB.
&CHAR  ANOP CHARACTER STRING
&T CODE  SETA 16  TYPE IS CHARACTER
&GETLEN ANOP
&LENGTH  SETA L'&SYSLIST(&LPCTSTR) LENGTH ATTRIBUTE
*. Max length chosen so printed data will fit on one print line
AIF (&LENGTH LE 50). LOK IF LENGTH < 50 O.K.
AIF (&LENGTH LE 100 AND '&T' EQ 'C'). LOK CHAR, 100 OK.
&LENGTH  SETA 100  MAX LENGTH FOR CHAR STR
AIF ('&T' EQ 'C'). LOK
&LENGTH  SETA 50  MAX LENGTH FOR HEX STR
&LOK  ANOP
AIF (&LPCTSTR NE &CNT). TCODEOK CHECK IF LAST OPERAND
&T CODE  SETA &TCODE+128  LAST OPERAND
&TCODEOK ANOP
&LENGTH  SETA &LENGTH-1 USE LENGTH-1 AS PARM.
DC AL1(&TCODE),AL1(&LENGTH),S(SYSLIST(&LPCTSTR))
DC CLB(SYSLIST(&LPCTSTR)' 8 Characters of print name
&BADOP  SETB (0) Indicate OK operand
*. PARAMS TO PRINTOUT--TYPE,LENGTH-1,S(ADDRESS),PRINTNAME
*. Type code: X'80' = last item
X'40' = decimal conversion
*. X'20' = hexadecimal
X'10' = character
*. X'O8' = Prout
X'O1' = decimal fullword
*. All zero halfword means last operand was bad
AGO .PARMLP GET NEXT OPERAND
.ENDLOOP AIF (NOT &BADOP). DOLM Check bad last operand
DC H'0' Indicate null last operand
&DOLM LM 14,15,0(14) RESTORE REGISTERS
&GENIO $$GENIO GENERATE I/O SECT
MEND

Appendix B: Simple I/O Macros  1013
**$GENIO Macro**

MACRO $GENIO
.* The following local set symbols determine various options
.* for the generated control section.
GBLB &$IOFLG 1 IF IOSECT GENERATED
LCLA &$PLL PRINT LINE LEN, .GE. 121
LCLB &$DOS SET TO 1 IF SYSTEM=DOS
&$DOS SETB 0 SYSTEM IS OS/360 et seq.
&$LIBIO SetB 0 Generate IOSECT inline if 0,
.* else generated code is in a runtime library if 1
LCC &$INAM INPUT DDNAME
LCC &$ONAM OUTPUT DDNAME
LCC &$CSNam,&$CSTyp Caller's Csect name and type
.AIF (&$IOFLG).MExit Exit if not required
&$CSNam SetC 'ASYSECT' Save caller's Csect name
&$CSTyp SetC 'ASYSTYP' Save caller's Csect type
&$IOFLG SetB 1 Set expansion not needed flag
AIF (Not &$LIBIO).Gen If not in library, gen
.MExit AIF
***********************************************************************
.* This macro generates the code which implements the READCARD,*
.* PRINTLIN, DUMPOUT, and PRINTOUT macros. the OS version was *
.* implemented by James R. Low, and modified for DOS by Paul M.*
.* Dantzig, students at Stanford University. Later additions *
.* by John Ehrman.
***********************************************************************
.* Register usage: R13 = local base *
.* R14,R15,R0,R1 = scratch and OS linkage *
.* R7 = local link register, R12 = call type *
.* R11 = parm ptr, retaddr, R10 = parm ptr(original R14) *
.* R9 = data length, R2,R3,R4,R8 = work registers *
***********************************************************************
.Gen Push Print Save PRINT status
Print OFF Suppress this stuff
&$IOFLG SetB 1 Set flag for $GENIO generated
.* SET OPTIONAL VALUES
&$PLL SETA 121 LINE LENGTH = 121
.* If the line length defined above is changed from 121 to 133,
.* remember to make the corresponding changes in the PRINTLIN *
.* macro definition.
.AIF ($DOS).OSNAME GO DO DOS FILENAMES
&$INAM SetC 'SYSIN' INPUT DDNAME
&$ONAM SetC 'SYSPRINT' OUTPUT DDNAME
.AgO .CSECT GO GENERATE CSECTNAME
.OSNAME ANOP
&$ONAM SetC 'SYSLST' DOS DEFAULT OUTPUT FILE
&$INAM SetC 'SYSIPT' DOS DEFAULT INPUT FILE
.CSECT ANOP
&$IOSECT CSECT
&$IOSECT AMode 24
&$IOSECT AMode 24
.ENTRY $READCD,$PRTLIN,$PRTOUT,$DMPOUT
.ENTRY $CNVRTO,$CNVRTI
.* $DMPOUT STM 0,15,$$REGS-*15) SAVE REGS. R15 AS BASE
.MVI $$FLGS-*415),1 INDICATE DUMPOUT CALL
.LA 12,8 CODE FOR DUMP/PRINTOUT
.J $$LOAD13 BRANCH TO COMMON CODE
.* $PRTLIN STM 0,15,$$REGS-*15) SAVE REGS. R15 AS BASE
.LA 12,4 CODE INDICATES PRINTLIN
.J $$LOAD13 BRANCH TO COMMON CODE
.* $PRTOUT STM 0,15,$$REGS-*15) SAVE REGS.
.MVI $$FLGS-*415),0 INDICATE PRINTOUT
.LA 12,8 CODE FOR DUMP/PRINTOUT
.J $$LOAD13 BRANCH TO COMMON CODE
.* $CNVRTO STM 0,15,$$REGS-*15) SAVE REGS.
.LA 12,12 CODE FOR CONVERTO
Appendix B: Simple I/O Macros
Assembler Language Programming for IBM z System™ Servers  Version 1.00
LTR 12,12 CHECK FOR READCARD
JZ $$OPNRD BRANCH IF READCARD to open input
JAS 7,$$OPNOUT OPEN PRINTER
B *-$$(12,13) Branch to processing routine
J $$SLNP PRINTLIN
J $$SPDO PRINTOUT/DUMPOUT
J $$SCVTO CONVERTO
J $$SCVTI CONVERTI (follows immediately!)

* CONVERTI -- convert to 32 or 64 bit signed integer in GR

.* State 0: validate register operand
LM 2,14,(11) Get memory addressing halfword
JAS 7,$$SEFADDR Convert to an address
LR 3,2 Pointer carried in R3
LH 2,12,(11) Get register addressing halfword
JAS 7,$$SEFADDR Convert to an address
LA 11,16,(11) Set return address
CH 2,$$31-$(13) Test register value
JH $$CVIER1 Value error if reg too big
LR 4,2 Carry register number in R4
MVI $$CVIFlg-$$(13),0 Initialize flags
TM $8(14),X’03’ Are there any exits?
JZ $$CVIS1 If no, nothing more to do
MVC $$CVIFlg-$$(13),8(14) Copy byte with exit flag bits
NI 21(14),X’0F’ Reset ERR= branch mask to zero
NI 25(14),X’0F’ Reset STOP= branch mask to zero

.* State 1: scan for non-blank: +, -, or digit
$$CVISt1 XR 2,2 Initial state
TRT 0(1,3),$$CVITbl-$$(13) Scan one character
LA 3,1,(3) Step to next char
LA 2,*+2-$$(2,13) Address-4 of first branch
BR 2 Branch per character type
J $$SCVIERC Invalid character; error exit
J $$CVIST1 Blank; repeat initial-state scan
J $$CVIP Plus
J $$CVIM Minus
J $$CVISIA Digit
$$CVIP OI $$CVIFlg-$$(13),X’CO’ Sign found, + value
ST 3,$$CVIASt-$$(,13) Save digit starting address
J $$CVIST2 Now scan for digits
$$CVIM OI $$CVIFlg-$$(13),X’AO’ Sign found, - value
ST 3,$$CVIASt-$$(,13) Save digit starting address
J $$CVIST2 Now scan for digits
$$CVISIA OI $$CVIFlg-$$(13),X’CO’ Set default + sign
LR 2,3 Copy pointer for digit start
BCTR 2,0 Back up to digit start address
ST 2,$$CVIASt-$$(,13) Save digit starting address
J $$CVIST3 Now scan for more digits

.* State 2: have a sign; scan for required digit; non-digit -> error
$$CVIST2 XR 2,2 Clear GR2 for TRT
TRT 0(1,3),$$CVITbl-$$(13) Scan one character
LA 3,1,(3) Step to next char
LA 2,*+2-$$(2,13) Address-4 of first branch
BR 2 Branch per character type
J $$SCVIER2 Invalid character
J $$CVIEr2 Blank = invalid char
J $$CVIEr2 + = invalid char
J $$CVIEr2 - = invalid char
CLI 0(3),C’O’ Is next char less than C’O’?
JL $$CVIS4C If yes, scan is ended
CLI 0(3),C’9’ Is it greater than C’9’?
JH $$CVIS4C If yes, scan ended, R3=A(stop char)

.* State 3: only digits allowed; everything else terminates scan
$$CVIST3 XR 2,2 Clear GR2 for TRT
TRT 0(1,3),$$CVITbl-$$(13) Scan one character
LA 3,1,(3) Step to next char
LA 2,*+2-$$(2,13) Address-4 of first branch
BR 2 Branch per character type
J $$SCVIEr2 Invalid char ends scan
J $$CVIST4 Blank = non-digit char
J $$CVIST4 + = non-digit char
J $$CVIST4 - = non-digit char
J $$CVIST3 Digit = repeat state 3

Appendix B: Simple I/O Macros
.*State 4: remove leading 0s; save end addr, new start addr

```assembly
$CVIS4A BCTR 3,0 # Back up to stop character
$CVIS4C ST 3,$CVIAEn-$$(,13) # Save stop address for user's R1
LR 0,3 # Copy end address
BCTR 0,0 # Back up to last digit
L 2,$CVIASt-$$(,13) # Get starting address
$CVIS4A CLI 0(2),C'0' # Check for leading zero
JNE $CVIS4B # Exit loop if nonzero
CR 2,0 # Is the number entirely zeros?
JNL $CVIS4B # Yes, have start of valid number
LA 2,1(2) # Step to next digit
J $CVIS4A # Repeat the scan
$CVIS4B ST 2,$CVIASt-$$(,13) # Save significance start address
LR 1,2 # Save start addr in GR1 for packing
SR 0,2 # Last-first = (Number-1) of digits
LR 2,0 # Save L-1 for packing and moving
.*State 5: check reg type vs. length of digit string
CHI 2,18 # More than 19 digits?
JH $CVIEr1 # Error if so
CH 4,$15-$$(,13) # Check for 32- bs 64-bit register
JH $CVISt6 # Go process data for 64-bit reg
CHI 2,9 # Check length of 32-bit data
AHI 2,'X'0070' # Include length 8 for the doubleword
STC 2,*+5-$$(,13) # Store L1,L2 in Pack instruction
PACK $DWORD-$$(,13),0(*-*,1) # Pack up to 10 digits
CP $DWORD-$$(,13),$CVIM32-$$(,13) # Check vs. max 32
JL $CVIS5A # If smaller, go ahead and convert
JH $CVIEr1 # Error if too big
TM $CVIFlg-$$(13),X'C0' # Equals max; is sign positive?
JO $CVIEr1 # Error if +max
LA 0,1 # Create max negative result
SLL 0,31 # Have -2**31 in R0
J $CVIV32 # Go store and test 32-bit value
$CVIS5A CVB 0,$DWORD-$$(,13),X'CO' # Convert to binary
TM $CVIFlg-$$(13),X'AD' # Was there a minus sign?
JNO $CVIV64 # If not, prepare to deliver result
LCGR 0,0 # Make result negative
J $CVIV64 # Go store result
$CVIS6B SRP $XTemp-$$(13),1,0 # Shift left once to eliminate sign
LA 1,1(1,2) # Address of remaining 15 digits
PACK $DWORD+8-$$(,13),0(15,1) # Pack remaining 15 digits
MVC $DWORD+5-$$(,13),$XTemp-$$(13) # Copy 1-4 digits
CP $DWORD-$$(16,13),$CVIM64-$$(,13) # Check digit magnitude
JH $CVIEr1 # Error if too large
JL $CVIS6C # If smaller, go ahead and convert
TM $CVIFlg-$$(13),X'CO' # Max magnitude: was there a - sign?
JO $CVIEr1 # No, number too large by 1 bit
LA 0,1 # Set up max negative value
SLG 0,0,63 # Now only a high-order bit in G0
J $CVIV64 # Go store result
$CVIS6C CVB 0,$DWORD-$$(,13) # Convert to 64-bit binary
TM $CVIFlg-$$(13),X'AD' # Was there a minus sign?
```

1018 Assembler Language Programming for IBM z System™ Servers  Version 1.00
Appendix B: Simple I/O Macros

1019
MVC O(L'$$Pat3,2),$$RCVT-$$(13) Move to caller’s area
J $$CVTX And return
*
$$CVTOF MVC 0(3,2),$$XQUOTE+1-$$(13) Initialize first 3 chars
NILL 9,X'000F' Mask off unwanted bits
SLL 9,4 Make a register number
STD '*' Store in STD
UNPK 3(16,2),$$RData-$$(9,13) Convert to spread hex
UNPK 18(2,2),$$RData+7-$$(2,13) Convert to spread hex
TR 3(16,2),$$STRTAB-240-$$(13) Translate to EBCDIC
MVI 19(2),C''/'/' Insert closing quote
*
$$CVTX LA 11,16(,11) Set return address
J $$RETURN Return to caller
.*-------------------------------------------------------------------
.* PRINTOUT/DUMPOUT HEADER LINE
.*-------------------------------------------------------------------
$$PODO MVC $$FLG2-$$(1,13),12(11) Copy No-header bit
TM 12(11),1 TEST NO-HEADER BIT
JO $$SNODMP SKIP HEADER IF SET
MVC $$OUTBUF+1-$$(L'$$PC,13),$$PC-$$(13) HEADER MSG
CLI $$FLGS-$$(13),0 CHECK FOR PRINTOUT
JE **+10 BRANCH IF PRINTOUT
MVC $$OUTBUF+5-$$(5,13),$$DC-$$(13) OVERLAY WITH DUMP
MVC $$DWORD-$$(3,13),13(11) MOVE CALL ADDRESS
JAS 7,$$HEXCV CONVERT TO HEX
MVC $$OUTBUF+L'$$PC+2-$$(6,13),$$DWORD-$$(13) TO LINE
LA 1,$$OUTBUF+L'$$PC+2+6-$$(,13) Do statement number
MVC 0(L'$$ST,1),$$ST-$$(13) Move text
LA 1,L'$$ST(,1) Step output pointer
L 0,16(,11) Get statement number
CVD 0(2,11),0(11) Check for null-last indicator
JNZ $$STAR Not null-last, check for *
LA 11,2(,11) Step over indicator
J $$RETURN And return to caller
$$STAR TM $$FLG2-$$(13),1 PRINTOUT * and no header?
JO $$TERM Yes, just terminate
MVC $$OUTBUF+2L'$$EX-$$(L'$$PEND,13),$$PEND-$$(13)
J $$TERM AND GO TERMINATE
.
$$GETADD LH 2,2(,11) ADDR HWORD PARAM.
JAS 7,$$EFADDR COMPUTE EFFECTIVE ADDR
MVC $$OUTBUF+2L'$$EX-$$(L'$$PEND,13),$$PEND-$$(13)
.
$$GETADD LH 2,2(,11) ADDR HWORD PARAM.
JAS 7,$$EFADDR COMPUTE EFFECTIVE ADDR
MVC $$OUTBUF+2L'$$EX-$$(L'$$PEND,13),$$PEND-$$(13)
.

LA 9,3
JAS 7,$$SPHEX PRINT HEX
MVI 2(3),C=' Put = sign in output line
JAS 7,$$CVT4 Convert it
MVC 3(L'$$PAT2,3),$$RCVT-$$(13) Move result to output
J $$SPNPNT Output the line

JH $$TSTGGR CH 2,$$31-$$(,13) SEE IF 64-bit GPR
JH $$TSTFLT IF NOT, TO NEXT TEST

*. Print contents of 64-bit General Register
MVI $$OUTBUF+2-$$(13),'G' Set msg to 'GGR'
LA 0,X'F' Set mask
NR 2,0 Clear high-order bits
SLL 2,4 Shift register number left
STC 2,4(=$$(13) Store in next instruction
STG 4-5-6-$$(13) Store GGRn high half
STC 2,*+5-$$(13) Store in next instruction
SRL 2,2 Reposition register number
LA 2,$$REGS-$$(2,13) Point to user's low half
MVC 4(L'$$PAT3,3),$$RCVT-$$(13) Move to output
J $$PNPUT Output the data

JH $$TSTFLT CH 2,$$47-$$(,13) SEE IF FLPTR
JH $$ISSYM IF NOT IS SYMBOL

*. KNOW IS FLOATING PT REG
MVI $$OUTBUF+1-$$(13),'F' Set msg to 'FPR'
SLL 2,4 PREPARE FOR STD
STC 2,5-$$(13) SELECT FLPTR
STD 2,5-$$(0,13) GET CONTENTS FLPTR
LA 2,$$WORD-$$(13) ADDR CONTENTS FOR PHEX
LA 9,7 LENGTH-1 OF DATA
JAS 7,$$SPHEX PRINT HEX
J $$SPNPNT Output the data

JH $$ISSYM MVC $$OUTBUF+1-$$(8,13),4(11) SYMBOL NAME TO BUFF.
TM $$FLGS-$$(13),64 SEE IF DECIMAL
JO $$DEC BRANCH IF DECIMAL
SR 9,9 PREPARE FOR IC
IC 9,1(11) GET LENGTH-1
TM $$FLGS-$$(13),32 TEST FOR HEX
JNO $$SYM2 BRANCH IF NOT HEX
JAS 7,$$SPHEX Convert the data
J $$SPNPNT Output the data

JH $$SYM2 DC 0H
MVI $$OUTBUF+12-$$(13),'C' Set for characters
STC 9,4(5-$$(13) STORE LENGTH INTO MVC
MVC $$OUTBUF+14-$$(8,13),0(2) MOVE CHARACTER DATA
LA 3,$$OUTBUF+15-$$(9,13) Address of trailing quote
MVI 0(3),C='/' Put trailing quote
J $$SPNPNT Output the data

*. DECIMAL FULLWORD OR HALFWORD
$$DEC CL1 1(11),7 Check for FD data type
JE $$DIEC Branch if yes, do long conversion
LH 3,0(0,2) GET HALFWORD
TM $$FLGS-$$(13),1 SEE IF WANTED FULLWORD
JNO *+8 IF NOT DON'T LOAD IT
L 3,0(2) REALLY WANTED FULLWORD
ST 3,$$WORD-$$(13) Store for conversion
JAS 7,$$CVT4 Convert to characters
MVC $$OutBuf+11-$$(L'$$PAT2,13),$$RCVT-$$(13) Move to output
J $$SPNPNT PRINT LINE

$$DECD MVC $$WORD-$$(0,13),0(2) Get the doubleword
JAS 7,$$CVT4 Convert to characters
MVC $$OutBuf+12-$$(L'$$PAT3,13),$$RCVT-$$(13) Move to output
J $$SPNPNT Point to next parameter

$$PUT JAS 7,$$PUTLIN PRINT LINE
TM $$FLGS-$$(13),128 SEE IF LAST PARAMETER
JNO $$OUTLP LOOP IF NOT
$$RETURN STM 10,11,$$REGS+56-$$(13) STORE PARM, RETURN ADDRS.
SPM 10 RESET CALLER'S COND CODE
LM 0,15,$$REGS-$$(13) RESTORE REGS

*. At this point all but R14 & R15 of user are restored;
R14 contains addr of parm list following the BALR, and R15 contains return addr.

BR 15 RETURN TO USER

DUMPOUT

$DUMP LH 2,22(,11) GET SECOND OPERAND
JAS 7,$$EFADDR SECOND EFFECTIVE ADDRESS
LR 9,2 SAVE FOR A WHILE
LA 11,24(,11) SET RETURN ADDRESS NOW
CR 2,9 COMPARE START TO END
JNH **+10 SKIP SWAP IF OKAY
LR 0,9 SWAP HIGH AND LOW BOUNDS
LR 9,2 2 HAS LOWER BOUND
LR 2,0 AND R9 HAS UPPER BOUND
LA 8,4 SET INCREMENT
LCCR 1,8 COMPLEMENT FOR MASKING
LR 2,9 COMPARE LOWER TO UPPER
J NH *+10 SKIP SWAP IF OKAY

$DUMPA ST 2,$$DWORD-$$-(,13) STORE LINE-START ADDRESS
JAS 7,$$HEXCV CONVERT INTO HEX
MVC $$OUTBUF+1-$$(5,13),$$DWORD+2-$$(13) TO LINE
LA 1,$$OUTBUF+6-$$(13) SET LINE POINTER
MVC $$OUTBUF+8-$$(13),$$HEXCV-$$ TO LINE
LA 8,4 SET INNER LOOP COUNT
AR 2,9 INCREMENT FETCH ADDRESS
JCT 0,$$DUMPB LOOP TILL LINE DONE
J $$RETURN

PRINTLIN

$LINP LH 2,24(0,11) ADDR. HWORD USER BUFFER
JAS 7,$$EFADDR CALC. LINE LENGTH
LA 4,8$$PLL MAX LINE SIZE
LTR 3,0 SEE IF CALC LENGTH ZERO
JZ **+10 IF ZERO USE LEN-MAX
CR 3,4 SEE IF LEN GT MAX
JNH **+6 IF NOT USE LEN
LR 3,4 USE LEN-MAX
LA 2,12(,11) ADDR HWORD. USER BUFFER
JAS 7,$$HEXCV CALC. EFFECT. ADDR.
BCTR 3,0 LENGTH -1 FOR MVC
STC 3,*+5-$$-(,13) STORE LENGTH INTO MVC
MVC $$OUTBUF-$$$(0,13),0(2) MOVE USER LINE TO BUFF
MVI $$FLGS-$$$(13),128 MARK AS LAST PARAM
LA 11,16(,11) RETURN ADDR
AIF (NOT &$$DOS).GOPUT SKIP ASA CODE IF NOT DOS
LA 2,L $$ASA LENGTH OF CHARACTERS
SR 0,0 USED FOR USER'S CONTROL
SR 1,1 FOR VALID CHARACTERS
IC 0,0$$OUTBUF-$$$(13) GET USER'S CONTROL CHAR
IC 1,$$ASA-1-$$(2,13) GET A VALID ASA CHAR
CR 1,0 COMPARE IT TO USER'S
JE $$PUT GO PRINT IF OKAY
JCT 2,*-10 INDEX DOWN BY 1 IF BAD
MVI $$OUTBUF-$$$(13),C' ' FORCE BLANK IF BAD
.JOPUT J $$PUT PRINT LINE AND RETURN

READCARD

$OPN RD TM $$FLGSIO-$$$(13),X'40' SEE IF INPUT FILE OPEN
JO $$INOPN IF SO DON'T OPEN AGAIN
AIF ($$DOS).OPENRD GO TO DOS OPEN CODE
* OPEN ($$INDCB,(INPUT)) OPEN INPUT FILE
LA 1,$$OPEN-$$(,13) ADDR OF OPEN LIST
OPEN MF=(E,(1)) OPEN INPUT FILE
AGO .MARKRD GO SET INPUT OPEN BIT

.OPENRD ANOP
* OPEN $$INDCB DOS OPEN MACRO
LA 1,$$OPEN-$$(,13) ADDR OF OPEN NAME
LA 0,$$ADDRI-$$(,13) ADDR OF INPUT DTF
SVC 2 DOS OPEN/CLOSE SVC

.MARKRD OI $$FLGSIO-$$(13),X'40' INDICATE FILE OPENED

.$$INOPN LA 11,18(,11) DETERMINE RETURN ADDR.
TM $$FLGSIO-$$(13),X'20' SEE IF EOF ENCONTRED
JG $$EOFERR IF SO ERROR

.*-------------------------------------------------------------------
.* TERMINATE
.*-------------------------------------------------------------------

.$$TERM TM $$FLG2-$$(13),1 Check for no message
JG $$TERM1 Branch if none

MVC $$OUTBUF+1-$$(L $$EX-$$(,13),$$EX-$$(13) FINIS MSG
MVC $$OUTBUF+$$LOC+$$(L $$ATLOC,13),$$ATLOC-$$(13)
MVC $$DWORD-$$(3,13),$$ACALL-$$(13) Get call address

.AIF (&$$DOS).CLOSP GO TO DOS CLOSE CODE

.* LENGTH-1 IS IN R9, SOURCE ADDRESS IS IN R2, TARGET ADDRESS IN R3.

.$$PHEX LA 3,$$OUTBUF+14-$$(,13) ADDRESS FOR HEX DIGIT
LA 8.1(0,9) NUMBER OF BYTES
AR 9,8 NUMBER OF HEX DIGITS -1
UNPK 0(3,3),0(2,2) SPREAD HEX DIGITS
LA 3,2(,3) INC. LINE POINTER
LA 2,1(,2) INCREMENT SOURCE PTR
JCT 8,*-14 LOOP IF MORE BYTES
STC 9,*+5$$,(13) STORE LENGTH INTO TR
TR $$OUTBUF+14$$-$$(*-*,13)$$, $$TRTAB-240$$-(13)
LA 3,$$OUTBUF+15$$-(9,13) ADDR. NEXT PRINT POS.
MVI 0(3),C′′′′ CLOSING QUOTE MARK
BR 7 Return to caller

$$CVT4 L 0,$$RDATA-$$((,13) GET 32-BIT BINARY INTEGER
CVD 0,$$DWORD-$$((,13) CONVERT TO PACKED DECIMAL
MVC $$RCVT-$$((L, $$SPAT2-$$((,13) MOVE PATTERN
LA 1,$$RCVT+L, $$SPAT2-$$((,13) POSSIBLE SIGN POSITION
EDMK $$RCVT-$$((L, $$SPAT2-$$((,13) EDIT IT
BMNR 7 Return if not -
BCTR 1,0 Back up
MVI 0(1),C′-′ Set - sign
BR 7 Return

$$CVT8 STG 0,$$SAVG0-$$((,13) SAVE GGR0 (CHANGED BY CVDG)
LG 0,$$RDATA-$$((,13) GET 64-BIT BINARY INTEGER
CVDG 0,$$DWORD-$$((,13) CONVERT TO PACKED DECIMAL
LG 0,$$SAVG0-$$((,13) RESTORE USER'S GGR0 (USED BY CVDG)
MVC $$RCVT-$$((L, $$SPAT3-$$((,13) MOVE PATTERN
LA 1,$$RCVT+L, $$SPAT3-$$((,13) POSSIBLE SIGN POSITION
EDMK $$RCVT-$$((L, $$SPAT3-$$((,13) EDIT IT
BMNR 7 Return if not -
BCTR 1,0 Back up
MVI 0(1),C′-′ Set - sign
BR 7 Return

$$EFADDR LA 0,X FFF DISPLACEMENT MASK
NR 0,2 DISPLACEMENT IN RO
N 2,$$F000-$$((,13) CALC WHICH BASE REG.
JZ *+16 RETURN IF BASE = 0
SRL 2,10 BASE REG NO. AS INDEX
AL 0,$$REGS-$$((2,13) FORM EFFECTIVE ADDR.
N 0,$$FFF-$$((,13) MASK OFF HIGH-ORDER BYTE
LR 2,0 RESULT IN R2 ALSO
BR 7 RETURN

$$OPNOUT TM $$FLGSIO-$$((13),X'80' IS OUTPUT FILE OPEN
BKR 7,7 RETURN NOW IF YES
OI $$FLGSIO-$$((13),X'80' OUTPUT FILE BEING OPENED
AIF ($$DOSS).OPENP DIFFERENT CODE FOR DOSS
OPEN ($$OUDCB,(OUTPUT)) OPEN OUTPUT FILE
LA 1,$$PROPEN-$$((13) ADDR OF OPEN LIST
OPEN MF=(E,(1)) OPEN OUTPUT FILE
AGO .CLEAR GO FINISH OPEN

.OPENP ANOP
* OPEN $$OUDCB DOS OPEN MACRO
LA 1,$$OPEN-$$((,13) ADDRESS OF ROUTINE NAME
LA 0,$$ADDR-$$((,13) ADDRESS OF DTF POINTER
SVC 2 DOS OPEN/CLOSE SVC
.CLEAR BR 7 RETURN TO CALLER

$$PUTLIN LA 1,$$OUDCB-$$((,13) ADDRESS OF OUTPUT DCB
LA 0,$$OUTBUF-$$((,13) ADDRESS OF OUTPUT BUFFER
PUT (1),0 PRINT THE LINE
MVC $$OUTBUF-$$(($$PLL,(13), $$OUTBUF-$$((13) CLEAR
BR 7 RETURN TO CALLER

$$HEXCV UNPK $$DWORD-$$((9,13), $$DWORD-$$((5,13) UNPACK 4 BYTES
TR $$DWORD-$$((8,13), $$TRTAB-240$$-(13) TO EBCDIC
BR 7 RETURN TO CALLER

AIF ('&SYSSTYP' eq ' ').NoSector
@@$.Snam $.SStyp RESTORE ORIGINAL SECTION
.NoSector Pop Print Restore PRINT status
MEnd , End of $$GENIO macro

1024 Assembler Language Programming for IBM z System™ Servers  Version 1.00
Glossary of Terms and Abbreviations

Special Characters

*  (1) Multiplication operator (2) Location Counter Reference.
+  Addition operator.
−  Subtraction operator.
/  Division operator.
( )  (1) Address constant delimiters.
     (2) Expression grouping delimiters.
=  (1) Literal-constant indicator.
     (2) Indicator of a keyword argument argument or parameter in a macro.
•  Indicator of a blank space.
′  Apostrophe. (1) Character string delimiter.
     (2) Attribute reference operator.
_  Alphabetic character in symbols.
$  Alphabetic character in symbols; not invariant across all EBCDIC code pages.
θ  Alphabetic character in symbols; not invariant across all EBCDIC code pages.
#  Alphabetic character in symbols; not invariant across all EBCDIC code pages.
&  Ampersand; indicates the start of a variable symbol.
.  (1) Qualified-symbol separator between qualifier and symbol. (2) Concatenation operator in conditional assembly SETC expressions.

A

absolute symbol
A symbol whose value behaves in expressions like a self-defining term. Its value does not change if the assumed origin of the program changes.

ACONTROL
Assembler instruction statement allowing dynamic modification of some Assembler options.

adcon
Abbreviation for “address constant”.

addend
see augend

addr(x)
Address of some operand “x”.

address
(1) (n) A number used by the processor at execution time to locate and reference operands or instructions in memory. Here, an address is what reference manuals (such as the Principles of Operation) would call a virtual address. Sometimes used (incorrectly) to mean an assembly time location. (2) (v) To reference; to provide an address (sense no. 1) that may be used to reference an item in storage.

address constant (“adcon”)
A field within a control section into which a value (typically, an address) is placed during assembly, program binding, relocation, and/or loading.

address resolution
The process whereby the Assembler converts implied addresses into base-displacement form using information in its USING Table, or resolves offsets in relative-immediate instructions.

address table
A table of addresses of individual rows or columns of an array, allowing faster access to the elements of that row or column.

address translation (“Dynamic Address Translation”, DAT)
The procedure used by the CPU to convert virtual addresses into real addresses.

addressable
(1) At assembly time an implied address is addressable if it can be validly resolved by the Assembler into a base-displacement address, using information contained in the USING Table at the time of the resolution, or the Assembler can assign a valid offset to a relative-immediate instruction. (2) At execution time an operand is addressable if it lies either in the bytes starting at address zero, or is within the base-displacement resolution range of one of general purpose registers 1 through 15, or can be referenced by a relative-immediate instruction.
addressability
The ability of the Assembler to calculate a displacement and assign a base register to an implicit addressing expression, using information in the USING Table; or the ability of the Assembler to assign a valid offset for a relative-immediate reference.

addressability error
1. Inability of the Assembler to derive a valid addressing field for an implicit operand. 2. An execution-time interruption for attempting to reference a non-existent address.

addressing halfword
A halfword containing a base register specification digit in the first 4 bits, and an unsigned displacement in the remaining 12 bits. A key element of z System addressing.

addressing mode
One of three modes supported by z System that determines the length of an Effective Address and the addressable areas of memory.

algorithm
A finite sequence of well-defined steps for solving a problem. 

AMode
An abbreviation for “addressing mode”.

anchor
(1) The base location or base register specified in the second operand of a USING statement. (2) The base location in a Dependent or Labeled Dependent USING statement. (3) The starting point of a chained list or queue.

AND operation
A logical (boolean) operation between two bits, whose result is 1 only if both operand bits are 1.

architecture
A description of “the attributes of a system as seen by the programmer, i.e., the conceptual structure and functional behavior, as distinct from the organization of the data flow and controls, and the physical implementation.”

argument
A value supplied by a calling program.

arithmetic division
Division of two signed operands, generating a signed quotient and signed remainder.

arithmetic multiplication
Multiplication of two signed operands, generating a signed product.

arithmetic representation
A signed number representation.

arithmetic shift
A movement of bits in a general register to the left or right, preserving the arithmetic sign of the operand.

array
A collection of data items of the same data types and lengths, arranged in contiguous storage locations. Usually accessed using one or more index variables or “subscripts”. (See also table.)

ASCII
American Standard Code for Information Interchange.

ASCII numeric characters
ASCII characters with representations between X’30’ and X’39’.

Assembler
A program that translates programs written in Assembler Language to machine language instructions and data, producing an object module.

Assembler Language
A lower-level language allowing programmers maximum freedom in specifying processor instructions, providing powerful “macro-instruction” facilities supporting encapsulation and economy of expression.

assembly time
The time when the Assembler is processing a program’s statements, as distinct from the time when the machine language instructions created from an Assembler Language program are executed by the processor.

attribute
A property of a symbol known to the assembler, typically the characteristics of the item named by the symbol, such as its type, length, etc. A program may request the assembler to provide values of symbol attributes using attribute references.

A variable symbol may have one attribute specific to the symbol itself (e.g., its number attribute), and many attributes specific to the value of the variable symbol.

attribute reference
A notation used to request the value of a symbol attribute from the assembler’s symbol table, or of a variable symbol or its value.

augend
When two numbers are added, the number being augmented (the first operand) is the augend, to which the addend (the second operand) is added.

B

Bn, b
Base register specification digit for machine instruction operand n.

B-tree
A tree whose nodes contain one or more data elements, and two or more links to successor nodes.

304 After al Khwarizmi, a nickname of the 9th century Persian astronomer and mathematician Abu Jafar Muhammad ibn Musa, who authored many books on arithmetic and algebra. He worked in Baghdad and his nickname alludes to his place of origin, Khwarizm (Khiva), in present-day Uzbekistan and Turkmenistan.

base address
The address in one of general purpose registers 1 to 15 to which a displacement is added to obtain an effective address. (2) The execution-time contents of a base register.

base digit
See base register specification digit.

base-displacement addressing
A technique for addressing memory using a compact base-displacement format for representing the derivation of storage addresses.

base location
(1) In base-displacement address resolution, the first operand of a USING statement, from which displacements are to be calculated. For ordinary USING statements, the base location is assumed to be at a relative offset (displacement) of zero from the address contained in the base register; for dependent USING statements, the base location may be at a positive or negative offset from the location specified in the base register eventually used to resolve an implied address. (2) Informally, this term is sometimes used to mean (a) the origin of a control section, (b) a base address in a register at execution time, and (c) whatever the speaker likes.

base register
(1) The second (and subsequent) operand(s) of a USING instruction. (2) A general register used at execution time to form an Effective Address.

base register specification digit
The first 4 bits of a 16- or 20-bit addressing field.

BEAR
The Breaking Event Address Register.

bias
A fixed value added to the exponent of a floating-point number so that its exponent field always contains a nonnegative value, the characteristic.

binary floating-point
A floating-point representation having a binary significand.

binary search
A technique for searching ordered arrays by probing the midpoint of successively smaller portions of the array.

binary tree
A data structure in which each element contains links to two other elements, a “left subtree” or “left child”, and a “right subtree” or “right child”.

bind time
A time following assembly time during which one or more object modules are combined to form an executable module, ready for loading into memory at execution time. Also known as “link time”.

Binder
The z/OS program that can generate load modules and program objects, as well as place a just-linked program directly into memory.

bit
A binary digit, taking values 0 and 1.

blank
A nonempty, finite-width invisible character; a space. In contexts where explicit blank spaces appear, we sometimes use the “•” character.

boundary alignment
(1) The Assembler’s action in incrementing the Location Counter so that its value is adjusted to the boundary required by an instruction or by a constant operand. (2) The binder’s action in ensuring proper alignment of the components of a load module or program object. (3) The Program Loader’s action in ensuring that memory alignment of the components of a loaded program are correct. (4) The alignment of the starting address of storage acquired at execution time.

branch address
The address from which the next instruction will be fetched if a branch condition is met.

branch condition
The CPU’s decision whether to alter the normal sequential execution of instructions by fetching instructions at the branch address.

branch mask
A 4-bit field in a Branch on Condition instruction used to test the value of the Condition Code. If a 1-bit in the branch mask matches the CC value, the branch condition is met.

byte
A group of 8 bits; the basic addressable unit of memory.

C

C(x)
Contents of something named “x”.

CC
Condition Code, a 2-bit field in the PSW used to indicate the status or result of executing certain instructions.

calling point identifier
A NOP instruction with a halfword identifying number in place of its addressing halfword, of the form X'4700nnnn’.

characteristic
The true exponent of a floating-point number plus the bias.

class
A cross-section of Program Object data with uniform format, content, and behavioral attributes.

code
An informal term for groups of Assembler Language statements.

code page
A collection of characters and their associated binary encodings.

cohort
In a given format, a set of decimal floating-point numbers having the same numeric value but different quanta.

column order
A way to store arrays so that the elements of each column follow one another in memory. For arrays of two or more dimensions, subscripts cycle most rapidly from left to right.
column-major order
Same as column order.

COM
An assembler instruction statement declaring the start or resumption of a common section.

common section
A control section having length and alignment attributes (but no text). Common sections receive special treatment during program linking: space is allocated for the greatest length received for all common sections with a given name.

comparand
(1) A quantity whose value is being compared. (2) A quantity to which the incremented index is compared to determine whether a loop should be repeated.

complement decimal addition
The addition of packed decimal operands of unlike sign.

complex relocatability
A property of a symbol or expression whose relocation attribute is neither absolute or simply relocatable.

conditional assembly
A form of assembly whose input is a mixture of conditional assembly language and ordinary assembly language statements, and whose outputs are statements of the ordinary assembly language. Statements of the ordinary assembly language are treated as character strings, and are not obeyed during conditional assembly.

conditional no-operation
An Assembler CNOP instruction that may generate NOP and NOPR instructions, causing the Location Counter to be aligned on a specified even boundary.

constant type
A letter specifying the desired internal data representation for a generated constant.

control section
An indivisible unit of instructions, data, or uninitialized space that is not further subdivided during linking and loading.

The smallest independently relocatable unit of instructions and/or data. All elements of a given control section maintain the same fixed relative positions to one another at assembly time. These fixed relative positions at assembly time are maintained by the program after control sections are placed into storage at execution time.

CPU
Central Processing Unit

CSECT
(1) An assembler instruction statement indicating the start or continuation of a control section. (2) An informal term for a control section

C-string
A string of zero or more bytes ending with a zero or “null” byte.

Cx
Characteristic part of a floating-point number “x”

CXD-type address constant
A word holding the length (not the address) of the virtual area created at link time from all the Dummy External Sections (PseudoRegisters) in the complete program.

D

Dn, d
Displacement specification for machine instruction operand n.

Data Exception Code
A field in the FPCR indicating which of various floating-point or packed decimal exceptions may have occurred.

DBCS
Double Byte Character Set, in which characters are represented by two bytes.

decimal exponent
A letter E attached at the end of a numeric constant, followed by a positive or negative integer giving the power of ten by which the preceding nominal value is multiplied.

decimal data exception
An exception condition caused by invalid numeric or sign digits in a packed decimal operand, or by invalid operand lengths for a packed decimal product.

decimal divide exception
An exception condition caused by a packed decimal quotient being too large for the available space in the first operand field, or by division by zero.

decimal floating-point
A floating-point representation having a decimal significand.

decimal overflow exception
An exception condition caused by a packed decimal sum or difference being too large for the receiving first operand field.

decimal specification exception
An exception condition caused by a packed decimal multiplication or division specifying incorrect lengths for one or both operands.

declet
A 10-bit encoding of three Binary Coded Decimal (BCD) digits. Declets may have two forms: (1) canonical: 1,000 preferred (and generated) values, and (2) non-canonical: any of 24 non-preferred encodings accepted as operands, but not generated by any arithmetic operation.

decode
The CPU action of analyzing the contents of the instruction register to determine the validity and type of instruction.

defined symbol
A symbol is defined when the Assembler assigns values to its value, relocation, and length attributes.

denormalization
A process of shifting the fraction of a floating-point number to the right by enough digit positions so its exponent will lie in a desired representable range.

denormalized number
(1) A floating-point number with denormalized significand. (2) A nonzero binary floating-point value with characteristic zero and a nonzero fraction.
dependent USING
A USING statement allowing implicit references to symbols in areas mapped by more than one DSECT to be resolved with a single base register, in which the first operand is based or anchored at a relocatable address. May also take the form of a labeled dependent USING statement. See also anchor, labeled USING, and ordinary USING.

destructive overlap
Destructive overlap occurs when any part of a target operand field is used for a source after data has been moved into it.

DH
In an instruction supporting signed 20-bit displacements, the 5th byte of the instruction containing the signed high-order 8 bits of the displacement.

digit selector
One of two pattern characters: a Digit Selector (DS) having representation X’20’, or a Digit Selector and Significance Starter (SS) having representation X’21’.

diminished radix-complement representation
A signed representation where the complement of a number is represented by subtracting each digit from (the radix minus 1). (See two’s complement representation.)

displacement
(1) The unsigned 12-bit integer field of an addressing halfword, or a signed 20-bit integer field, both used in generating Effective Addresses. (2) Sometimes used to describe the offset (difference) between a given storage address and a base address that might be used to address it.

dividend
A number to be divided by a divisor; the first operand; the numerator.

divisor
A number to be divided into a dividend; the second operand; the denominator.

DL
In an instruction supporting signed 20-bit displacements, the unsigned low-order 12 bits of the displacement.

double-ended queue
Same as queue. Sometimes called a “dequequeue”.

doubly-linked list
Same as queue. Sometimes called a “double-threaded” list.

DPD
Densely Packed Decimal, a representation used for encoding decimal floating-point significands.

DROP instruction
An assembler instruction telling the Assembler to eliminate one or more entries from its USING Table.

DSECT
(1) An assembler instruction defining the start or continuation of a Dummy Control Section. (2) A Dummy Control Section, a template used to map the components of a data structure. (3) An informal name for a Dummy Control Section.

duplication factor
The number of times a constant operand should be assembled.

DXC
Data Exception Code, a field in the Floating-Point Control Register (FPCR).

DXD
An assembler instruction statement defining an External Dummy Section.

E

EAR (Effective Address Register)
A (conceptual) internal register used to calculate Effective Addresses.

EBCDIC
Extended Binary Code Decimal Interchange Code, used to assign numeric values to character representations. The many EBCDIC encodings assign different values to some characters, but all the alphabetic, numeric, and other syntactic characters used in the Assembler Language are invariant across EBCDIC encodings, except for the characters “$”, “@”, and “#”.

Effective Address
The address calculated at execution time from a 16- or 20-bit addressing field of an instruction, possibly with indexing, or the address calculated from a relative-immediate offset and the address of its instruction.

Encoded Length
The contents $L_n$ of a Length Specification Byte or digit; one less than the value of the Length Expression $N_n$ (unless the Length Expression is zero, in which case the Encoded Length is also zero).

entry point
The first instruction to receive control when a routine is invoked.

entry point identifier
A string of characters following the first instruction at an entry point, providing descriptive information about the entry.

EQU Extended Syntax
Additional operands on EQU instructions that provide additional information about the attributes of the symbol defined by the EQU statement.

ESD
External Symbol Dictionary.

Ex
Exponent part of a floating-point number “x”

exception condition
A condition indicating an unusual result. Some exceptions can deliver a default result if an interruption has been masked off by appropriate settings, while others always cause an interruption.

executable control section
A control section containing machine language instructions or data, defined by CSECT, RSECT, or START instructions.

execute
The CPU’s action of performing the operation requested by the instruction in the instruction register.
execution time
The time when your program has been put in memory by the Program Loader and given control. This may happen long after assembly time.306

explicit address
An address in which you specify the base register specification digit and the displacement as absolute expressions.

explicit length
(1) A length value specified in a DC or DS statement.
(2) A length field that you specify explicitly, rather than having the Assembler assign the length field from the Length Attribute of an operand.

exponent
The power of the radix by which the significand of a floating-point number must be multiplied to determine its value.

exponent modifier
A modifier specifying a positive or negative power of ten to be multiplied by the nominal value of a constant.

exponent overflow
A condition arising when the exponent of a calculated floating-point result is too large to be contained in its representation.

exponent underflow
A condition arising when the exponent of a calculated floating-point result is too small to be contained in its representation.

expression
A combination of terms and operators to be evaluated by the Assembler.

expression evaluation
The procedure used by the Assembler to determine the value of an expression.

extended mnemonic
An instruction mnemonic provided by the Assembler allowing you to specify a branch mask or other instruction fields implicitly.

External Dummy Section
An area having length and alignment defined at assembly time in a DXD statement that will be assigned at link/bind time to a PseudoRegister Vector and for which memory is allocated at execution time.

external symbol
A symbol whose name (and possibly, value) are a part of the object module text provided by the Assembler. Such names include (1) control section names, (2) strong external names declared in V-type address constants or EXTRN statements, (3) weak external names declared in WXTRN statements, (3) names of common sections, (4) names of Pseudo Registers or external dummy sections, (5) referenced names declared on ENTRY statements, (6) class names, and (7) symbols and character strings renamed through the use of the ALIAS statement. Compare to internal symbol.

External Symbol Dictionary
The set of external symbols created by an assembly. They are displayed in the Assembler’s listing and are encoded in the ESD records of the generated object module.

extreme exponent
A floating-point number’s exponent with maximum positive or negative value.

F

fetch
The CPU’s action of bringing halfwords from memory into the conceptual Instruction Register to be interpreted as an instruction.

field separator
An edit-pattern character (FS) indicating that a packed decimal value from the second operand has been edited, and editing should continue with the following packed decimal value.

fill character
The first byte of an edit pattern.

firmware
A popular term referring to microcode or millicode.

floating-point
A data representation with a sign, an exponent, and a set of significant digits.

Floating-Point Control Register (FPCR)
A special register containing IEEE masks, status indicators, Data Exception Code, and rounding mode.

floating-point exception condition
One of five conditions defined by the IEEE Floating-Point Standard: invalid operation, division by zero, exponent overflow, exponent underflow, and inexact result.

floating-point system FP(r,p)
A floating-point data representation with a specified radix \( r \) and number of significant digits \( p \), sometimes denoted \( \text{FPF}(r,p) \) or \( \text{FPI}(r,p) \) depending on the type of encoding.

floating-point system FPFF(r,p)
A floating-point system with radix \( r \) and \( p \) digits of precision, in which the significant digits are represented as fractions.

floating-point system FPI(r,p)
A floating-point system with radix \( r \) and \( p \) digits of precision, in which the significant digits are represented as integers.

FPCR
Floating-Point Control Register

FPR
Floating-Point Register

FPRn, FR
Floating-Point Register n

free storage list
A list containing unused and available elements. Sometimes abbreviated FSL.

306 Or, the time at which programmers whose programs consistently fail to execute correctly are themselves executed.
Fx
Fraction part of a floating-point number “x”

G
General Register, General Purpose Register

GR
A notation referring to the rightmost 32 bits of the general register specified by R_n.

GR G
A notation referring to the 64-bit general register specified by G_n.

GRn
A notation referring to the rightmost 32 bits of general register “n”.

GGn
A notation referring to 64-bit general register “n”.

General Purpose Registers
A set of 16 64-bit registers used in the z System family of processors for addressing, arithmetic, logic, shifting, and other general purposes. Compare to other registers described in the z/Architecture Principles of Operation such as Access Registers, Control Registers, and Floating Point Registers.

GPR
See General Purpose Register

generalized object file format (GOFF)
An extended form of object module produced by High Level Assembler, providing numerous enhancements and extensions not supported by the traditional card-image object module format (“OBJ”).

GOFF
See generalized object file format.

GOFF option
An option that causes High Level Assembler to generate an object module using the generalized object file format.

gradual underflow
A technique allowing numbers to become denormalized when they are finite and smaller than the smallest normalized magnitude.

graphic data type
A representation of characters using a 16-bit encoding.

guard digit
An extra digit used to increase the accuracy of a calculated floating-point result.

H
hash function
A function that creates a randomized linear subscript from a data element. Used to avoid lengthy table searches for large or complex data items.

hash table
A table of data items (possibly including lists and pointers to other data items) whose entries are accessed using the results of a hash function.

hexadecimal
A base-16 representation, with digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, in increasing numerical order.307

hex
See hexadecimal.

HLASM
An acronym for the High Level Assembler.

High Level Assembler
IBM’s most modern and powerful symbolic assembler for the z System processors, running on the z/OS, z/VM, z/VSE, and zLinux operating systems.308 The Assembler we describe here.

I
Single operand of SVC instruction.

I’
Integer Attribute Reference to a symbol (as in I’SYM) or to a symbolic parameter in a macro (as in I’&PARAM)

I_n
Immediate value specification for machine instruction operand n

IA
Instruction Address (z/Architecture PSW bits 64-127).

IC
Interruption Code, a value indicating the cause of an interruption.

ILC
See Instruction Length Code.

immediate operand
An operand contained in a field of the instruction itself.

implied address
An address to which you expect the Assembler to assign a base register specification digit and a displacement, or a relative-immediate offset, to an addressing field.

implied length
A length field completed by the Assembler based on its analysis of an operand.

increment
A (normally) constant value used to update the value of the index for each iteration of a loop.

index
(1) The contents of an index register. (2) A varying quantity used to control each iteration of a loop.

307 The base 16 representation is properly called “sexagesimal”.

308 The name is not necessarily an oxymoron, as High Level Assembler can do much more than ordinary (low-level) assemblers.
interruptible
An instruction is interruptible if the CPU suspends its operation, updates the registers involved in the operation and subtracts the instruction’s length from the Instruction Address in the PSW, so that when the program resumes execution, the instruction will start from the point where it was interrupted.

ir

Instruction Address (IA)
A 64-bit field in the PSW giving the address of the next instruction to be executed.

Instruction Length Code
Instruction Length Code, a 2-bit field in the PSW indicating the length in halfwords of the currently executing instruction.

Instruction Register (IR)
A conceptual internal register used by the CPU to decode instructions.

Internal Symbol Dictionary
See symbol table.

interruptible
One of general purpose registers 1 through 15 specified by the index register specification digit in an RX-type instruction.

index register

index register specification digit
4 bits of an RX-type instructions specifying a register with a value to be added to the Effective Address calculated from a base-displacement address.

indexing
Computation of an Effective Address by adding a displacement to the contents of a base register and an index register.

infix notation
The traditional form of writing arithmetic expressions, where operators are placed between operands, as in $2^*(3+4)$.

inorder tree traversal
A technique for traversing a binary tree, visiting first the left subtree, then the parent node, and then the right subtree.

insert
Place one or more bytes into a register without changing other bytes.

J

Job Control Language
The statements needed to tell an Operating System how to process your program through the assembly, linking, and execution phases. “JCL” for short.

K

K’
Character count attribute reference to a conditional assembly symbolic parameter or SETC symbol (as in K’&PARAM).

L

L’
Length Attribute Reference to an ordinary symbol (as in L’ SYMBOL), or conditional assembler symbolic parameter (as in L’&PARAM). See Length Attribute Reference.

L_n
Length specification digits for operands in instructions that support variable-length operands (See also N_n).

Label
(1) Colloquially, the name of an instruction or data definition. This is more properly called a name field symbol. (2) In High Level Assembler, the name field symbol of a USING statement, designating that statement as a labeled USING. The symbol is then defined as a qualifier.

Labeled Dependent USING
A USING statement allowing implicit references to symbols in areas mapped by more than one DSECT to be resolved with by a specific base register.

Labeled USING
A USING statement directing resolution of implicit references to a specific base register, distinguished from an ordinary USING statement by the presence of a qualifier symbol in the name field. Symbolic expressions resolved with respect to a labeled USING must use a qualified symbol with the qualifier of that labeled USING.

LC
Location Counter. See Location Counter.

Length Attribute Reference
A term whose value is the length attribute of a symbol.

Length Expression
A length value (n) coded implicitly or explicitly in a machine instruction statement for an SS-type instruction, from which the Assembler derives the Length Specification Byte L or the Length Specification Digit L_n. In this text, often described by the terms N or N_n.

Length Modifier
A modifier specifying the exact length to be used for a constant, rather than its default length.
Length Specification Byte
The second byte (L) of an SS-type instruction, one less than the true length of its operand.

Length Specification Digit
A 4-bit hexadecimal digit (L<sub>n</sub>) in the second byte of an SS-type instruction, one less than the true length of its operand.

Linear subscript
For arrays of two or more dimensions, the evaluation of a subscript that treats the array as having been mapped into a one-dimensional array corresponding to the CPU’s linear arrangement of bytes in memory.

Linkage convention
A set of rules for transferring control between a calling and a called program, passing arguments and receiving results, and preserving caller information during the execution of the subroutine so it can be restored on return to the caller.

Linked list
Same as list. Sometimes called a “single-threaded” list.

Linkage Editor
The predecessor to the z/OS Binder; its functions are included in the Binder. A Linkage Editor is used on z/VSE.

Linking loader
Links and places modules directly into storage with linking, immediately prior to program execution.

Linker
A program that converts and combines object modules and load modules into an executable format ready for quick loading into memory by the Program Loader.

List
(1) A sequence of data elements each containing a link to its successor. (2) Colloquially, a table.

Literal
A special symbol with the side effect of defining a constant referenced by that symbol.

Literal pool
A set of literal-generated constants grouped together by the Assembler. A program may contain multiple literal pools.

Load module
(1) A generic name for the output of a Linker; a mixture of machine language instructions and data ready to be loaded directly into memory for execution. (2) The original form of System/360 executable, stored in a Partitioned Data Set (PDS) program library. in “record format”.

Load operation
Replace the contents of a register with a copy of data from a memory address or from another register. Other parts of the register may contain sign-extended bits (for arithmetic loads), or zero-extended bits (for logical loads). The original contents of the target register are not preserved.

Loader
(1) On z/VM systems, a program that can link object modules directly into memory for execution, or generate a relocatable MODULE. (2) On older OS/360 systems, a program that links object and load modules into memory for execution; now called the “Batch Loader”. (3) The Program Loader.

Location
A position within the object code of an assembled program, as determined by assigning values of the Location Counter during assembly. An assembly time value, sometimes confused with an execution time address.

Location Counter (LC)
A counter used by the Assembler at assembly time to construct its model of the relative positions of all components of an assembled program.

Logical division
Division of two unsigned operands, generating an unsigned quotient and unsigned remainder.

Logical multiplication
Multiplication of two unsigned operands, generating an unsigned product.

Logical shift
A movement of bits in a general register to the left or right, inserting zero bits into any vacated bit positions.

Logical representation
An unsigned number representation.

Logical arithmetic
Binary arithmetic and comparison operations with unsigned operands.

M

M<sub>n</sub>, m<sub>n</sub>
Mask digit in machine instruction operand n.

Machine language
The binary instructions and data interpreted and manipulated by the processor when a program is executed. Compare Assembler Language.

Machine length
An Encoded Length, one less than the Length Expression coded in the instruction statement.

Macro instruction
A powerful means to encapsulate groups of statements under a single name, and then generate them (with possible programmer-determined modifications) by using the macro-instruction name as an operation field entry. Often abbreviated “macro”.

Mantissa
A term sometimes used to describe the significand of a floating-point number. Because it can be confused with the mantissa (fractional part) of a logarithm, avoid its use when describing floating-point representations.

Mask
(1) A bit in an instruction controlling its behavior. (2) A bit in the FPCR controlling the actions to be taken when an exception condition occurs.

309 It is not meant to be intelligible to normal human beings.
MaxReal
The largest representable floating-point magnitude, also called Max.

MBCS
Multiple Byte Character Set, in which characters are represented by one to four bytes.

message character
Any character in an edit pattern that is not a Digit Selector (DS), a Field Separator (FS), or a Digit Selector and Significance Starter (SS).

millicode
Internal instructions used by the CPU to perform operations too complex to be done cost-effectively in hardware. (Sometimes called “microcode”.)

MinReal
The smallest representable floating-point magnitude. If normalized, it is also called Min; if denormalized, it is also called DMin.

minuend
see subtrahend

mnemonic
A character string representing an instruction name, intended to be easier to remember than the operation code of the instruction. A convenient shorthand for the name of an instruction. For example, the “Branch and Save” instruction has mnemonic “BAS”.

modal instruction
An instruction that places or updates addresses in the general registers, with results that depend on the addressing mode.

modifier
A value following the constant type, specifying other information about the constant's Length, Scale, and Exponent.

multiplicand
In a multiplication, the number that is to be multiplied (the first operand) by another, the multiplier (the second operand)

multiplier
See multiplicand

multiply and add/subtract
An instruction in which a double-length product is created internally to which a third operand is added or subtracted before truncating or rounding the result to the length of the original operands.

nominal value
The value you write between delimiters or value separators to specify the assembled value of a constant.

no-operation instruction
An executable instruction having no effect other than to occupy space.

normalization
A process of ensuring that the most significant digit in a fraction-based floating-point representation is nonzero.

null byte
A zero or X'00' byte, sometimes indicated by the character n.

numeric digit
The rightmost 4 bits of a byte.

object code
The machine language contents of an object module.

object module
Records created by the Assembler containing the external symbols, machine language text, and relocation dictionary information required for program linking.

offset
(1) The MVO instruction shifts or offsets the second operand to the left by one hex digit before appending it to the sign digit of the first operand. (2) A field in a relative-immediate instruction giving the distance in halfwords from the instruction.

ones' complement representation
A signed binary representation where negative numbers are represented by changing each 0 bit to a 1 bit and vice versa.

opcode
An abbreviation for operation code. Sometimes used when the term mnemonic is meant.

operand
(1) Something operated on by an instruction. (2) A field in a machine instruction statement.

operand order dependence
The results of many packed decimal arithmetic instructions depend on the order of the operands. For example (007+)+(7+) yields 014+, but (7+)+(007+) causes a decimal overflow.

operation code
The z/Architecture definition of that portion of an instruction specifying the actions to be performed by the CPU when it executes the instruction. Often abbreviated “opcode”, sometimes mistakenly used to refer to a “mnemonic”.

operator
One of * (meaning multiplication), / (meaning division), + (meaning addition), or − (meaning subtraction).

options
Directives to the Assembler specifying various “global” controls over its behavior. Options are specified by the user as a string of characters, usually part of the command or statement that invokes the
assembler, or on *PROCESS statements. Some options may be dynamically modified by ACONTROL statements.

**OR operation**
A logical (boolean) operation between two bits, whose result is 1 if either operand bit is 1.

**Ordinary USING**
A USING statement directing resolution of unqualified implicit references to a specific base register.

**ORG Statement Extended Syntax**
Additional operands on ORG statements that allow LC alignment to a specific power-of-two boundary, and an offset from that position.

**origin**
A starting value assigned by you (or by the Assembler), used to calculate offsets and displacements in your program. (Because most programs are relocated, it’s rarely necessary to specify an origin.)

**overflow**
The sum, difference, product, or quotient of two numbers is too large to be correctly represented in the number of digits or range of values available.

**P**

**padding**
Adding extra bits or bytes to a constant so that it will fill the space allotted to it.

**parameter**
A place holder in a called program, to be assigned a value from an argument provided by a calling program.

**parameterization**
A valuable technique for adding flexibility and generality to program definitions, typically by defining assembly-time values in EQU statements.

**pattern character**
Any byte in an edit pattern.

**payload**
Diagnostic information contained in a the significand of a NaN.

**pipeline**
A technique used in modern CPUs to speed instruction execution by dividing the fetch, decode, and execute phases into smaller stages.

**PM**
See Program Mask.

**postfix notation**
A representation of expressions convenient for evaluation. The infix form 2*(3+4) is represented as 2 3 4 + *.

**post-normalization**
A process of normalizing a floating-point operand after operating on it.

**postorder tree traversal**
A technique for traversing a binary tree, visiting first the left subtree, then the right subtree, and then the parent node.

**preferred exponent**
The exponent of the result of a decimal floating-point numeric operation has a preferred value, either that of one of the operands or a value providing the maximum number of significant digits.

**preferred quantum**
The quantum selected for the result of a decimal floating-point operation that maximizes the number of significant digits, including low-order zero digits. Equivalent to preferred exponent.

**preorder tree traversal**
A technique for traversing a binary tree, visiting first the parent node, then the left subtree, and then the right subtree.

**pre-normalization**
A process of normalizing floating-point operands before operating on them.

**problem state**
A state in which the CPU disallows the execution of certain instructions.

**program interruption**
An interruption condition caused by an executing program that can be handled by the interrupted program.

**Program Loader**
The component of the Operating System that brings load modules into memory, makes final relocations, and transfers control to the program.

**program length**
A Length Expression, not necessarily the length of a program.

**Program Mask**
A 4-bit field in the PSW used to control whether or not certain types of exception condition should cause an interruption or take a CPU-defined default action.

**PseudoRegister (PR), External Dummy (XD)**
A PseudoRegister or external data item having length and alignment attributes. Space in the loaded module is reserved for Common control sections; space for external dummy sections must be obtained at execution time. (See External Dummy Section.)

**PSW**
Program Status Word, containing information about the current state of a program.

**Q**

**QNaN**
A Quiet Not-a-Number that does not cause an exception condition in any arithmetic operation.

**Q-type address constant**
A field containing the offset (not the address) of a Dummy External Symbol (or PseudoRegister) from the start of a virtual area mapped at link time and allocated at execution time.

**qualified symbol**
A symbol prefixed by a qualifier and separated from it by a period, as in qualifier.symbol.

**qualifier**
A symbolic identifier defined in the name field of a Labeled USING statement. It may be used only as a qualifier, and not as an ordinary symbol.
quantum
The value of a unit in the low-order digit of a decimal floating-point number.

queue
A sequence of data elements each containing links to its successor and to its predecessor. Sometimes called a “doubly-linked list.”

quotient
The primary result of a division operation.

R
R_n, r_n
(1) Register specification digit for machine instruction operand n. (2) The field of a machine instruction designating the number of a general register.

R_{r_n}
The GPR designated by register number R_n.

R(r_1+1)
The GPR whose number is found by adding 1 to the even-numbered register specification digit r_1.

R(r_3|1)
The GPR whose number is found by forcing the low-order bit of the register specification digit r_3 to be a 1-bit. Thus, R(6|1) means R7, and R(7|1) means R7.

radix
The base in which the significant digits of fixed-point or floating-point numbers are represented.

radix-complement representation
A signed representation where the the complement of a number is formed by complementing each digit with respect to the radix minus 1, and then adding 1 to the lowest-order digit. The numerically significant high-order digit usually contains sign information.

real address
The “true” address of a byte in memory.

“real” numbers
A powerful abstraction used by mathematicians; numbers with unlimited range and precision.

“realistic” numbers
Numbers used for computation, having finite range, precision, and accuracy.

reentrant
See reenterable.

reenterable
A program is reenterable if (1) Its execution can be suspended, then executed by other processes, and then resumed by the original process with correct behavior for all processes; (2) It can be executed simultaneously by multiple processes, with correct behavior for all processes; (3) Capable of simultaneous execution by two or more asynchronously executing processes or processors, with only a single instance of the program image. Typically, reenterable programs do not modify themselves, but this is neither a necessary nor sufficient condition for reenterability.

reference control section
A control section containing no machine language instructions or data, defined by a DSECT, COM, or DXD instruction.

relative address
An Effective Address determined by an offset relative to the location of an instruction containing a relative-immediate operand.

relocatable
A property of a program allowing it to execute correctly no matter where it is placed in memory by the Program Loader.

relocate
Assign actual-storage or module-origin-relative addresses to address constants.

relocating loader
Places modules into storage and adjusts addresses to their correct “final” value.

relocation
A procedure used by the Linker and the Program Loader to ensure that addresses in a relocatable loaded program are correct and refer to the intended targets, no matter where it is loaded. This usually requires assigning true execution-time addresses to parts of a program.

remainder
The residual portion of a division left over when a dividend cannot be evenly divided by a divisor. Smaller in magnitude than the divisor.

RENT
An Assembler option requesting simple tests be made for conditions of obvious self-modification of the program being assembled. These tests are also done for control sections declared by the RSECT statement.

return address
The address of an instruction to which control should be passed when a routine completes its execution.

return code
A small integer value (usually a multiple of 4) placed in GR15 prior to returning to a calling program.

rotating shift
A movement of bits in a general register to the left in such a way that bits moved out of the high-order bit position are inserted into the low-order bit position. (Also called a “circulating” shift.)

rounding digit
An extra digit used to help correctly round a calculated floating-point result.

Rounding Mode
(1) A field in the FPCR indicating the rounding action to be taken after a binary floating-point operation. (2) A field in an instruction specifying the rounding to be performed by the instruction, independent of any rounding mode specified in the FPCR.

rounding-mode suffix
A suffix with the letter R and a number appended to the numeric value of a floating-point specifying the rounding used when converting the nominal value to hexadecimal or binary floating-point.

rounding modifier
A field in an instruction specifying the type of rounding to be performed on the result of the floating-point operation.

row order
A way to store arrays so that the elements of each row follow one another in memory. For arrays of two
or more dimensions, subscripts cycle most rapidly from right to left.

**row-major order**
Same as *row order*.

**RSECT**
A reenterable control section, distinguished from an ordinary control section (CSECT) only by (a) the presence of a flag in the External Symbol Dictionary and (b) that High Level Assembler will perform reenterability checking of instructions within the RSECT.

**run time**
See *execution time*.

**S**

*S*′
Scale attribute reference to a symbol (as in *S*′ABC), or a macro parameter (as in *S*′&PARAM).

*S*<sub>n</sub>
Implied address of machine instruction operand n.

**SBCS**
Single Byte Character Set in which characters are represented by a single byte.

**section**
A generic term for control section, dummy section, common section, etc.; a collection of items that must be bound or relocated as an indivisible unit.

**self-defining term**
One of binary, character, decimal, graphic, and hexadecimal. Its value is inherent in the term, and does not depend on the values of other items in the program.

**self-modification**
A program modifies its instructions or constants. Considered a very poor programming practice with severe execution-time performance penalties, and usually forbidden if the program must be reenterable.310

**Shift-In**
The single byte `X′0F′` indicating a change from double-byte mode to single-byte mode. That is, *shift into* single-byte mode.

**Shift-Out**
The single byte `X′0E′` indicating a change from single-byte mode to double-byte mode. That is, *shift out* of single-byte mode.

**sign extension**
The process of copying the sign bit of a shorter binary operand and extending it to the left, to the length of a target field.

**significance exception**
In hexadecimal floating-point, the result of an addition or subtraction yields a significand of all zero digits. This exception can either cause a program interruption with IC=15, or can be masked to produce a true zero.

**significance indicator**
An internal bit used by the CPU during ED and EDMK instructions to control subsequent editing operations.

**significance starter**
An edit-pattern character that sets the Significance Indicator ON. Also known as a “digit selector and significance starter” because it selects a digit if the Significance Indicator is already on.

**significand**
The numerically significant digits of a floating-point number, whether explicitly or implicitly represented.

**sign-magnitude representation**
The familiar signed representation of numbers with prefixed or suffixed `+` or `-` signs attached to the number’s magnitude.

**simple relocatability**
A property of an assembly-time symbol or expression whose value changes by the same amount as a change to the program’s assumed origin.

**SNaN**
A Signaling Not-a-Number that causes an exception condition in an arithmetic operation.

**special value**
A floating-point zero, a denormalized number, an infinity, a QNaN, or an SNaN.

**stack**
A data structure with a single visible element, the “stack top”. Sometimes called a “Last In, First Out” (LIFO) list or queue.

**statement**
The contents of the records read and processed by the Assembler. There are four types: comment statements, machine instruction statements, assembler instruction statements, and macro-instruction statements.

**statement field**
One of the four fields of an Assembler Language statement (other than a comment statement): the name, operation, operand, and remarks fields. Which fields are required and/or optional depends on the specific statement.

**status flag**
A bit in the FPCR indicating that an exception condition has occurred.

**store operation**
Place a copy of part or all of a register’s contents into memory.

**subtrahend**
When one number is subtracted from another, the number being diminished (the first operand) is the minuend, and the number being subtracted (the second operand) is the subtrahend.

**supervisor state**
A state in which the CPU allows the execution of all instructions.

**symbol**
A name known at assembly time, to which various values are assigned. The values may be absolute,

---

310 Technically, a self-modifying program can be reenterable if every execution instance makes exactly the same modifications. This is considered an even poorer practice.
symbol attribute
Information about the properties of a symbol, including value, relocation, length, type, scale, and integer. (Only the first three attributes are important for most uses.)

Symbol Attribute Reference
(1) A term whose value is that of a symbol’s attribute. The types of Symbol Attribute Reference are length, scale, integer, definition, type, and opcode. (2) Conditional assembly attribute references include the above six, plus count, number, assembler type, and program type.

Symbol Table
A table used by the Assembler to hold the names, values, and attributes of all symbols in a program.

T

T’
Type Attribute Reference to a conditional assembly symbolic parameter (as in T’&PARAM).

table
A term often used to describe a one-dimensional array whose columns contain a mixture of different data types and lengths. (See array.)

target instruction
(1) The instruction to which a branch instruction might transfer control. (2) An instruction addressed by an Execute instruction.

term
A symbol, self-defining term, Location Counter reference, literal, or symbol attribute reference.

text
The portions of an object module containing machine language instructions and data.

type extension
A second letter following the constant type, providing additional information about the constant’s length or representation.

U

UCS
Universal Character Set. UCS-2 was a predecessor of Unicode that defined only 65,536 values. Sometimes used as an alternative name for UTF.

ulp
An abbreviation for “unit in the last place”, a measure of the relative precision of a floating-point number.

Unicode
A standard for representing characters in almost all languages. Encodings vary from 1 to 4 bytes in length.

Unicode numeric characters
Unicode characters with representations between X’0030’ and X’0039’.

unnormalized add/subtract
Hexadecimal floating-point addition and subtraction in which the result is not normalized.

USING statement
A promise to the Assembler that addressing fields can be derived correctly from the base location and base address information provided in the statement.

USING Table
An internal table used by the Assembler to hold information provided in USING instructions.

UTF
Unicode Transformation Format. Three encodings (UTF-8, UTF-16, and UTF-32) that are easily converted (“transformed”) among one another.

V

virtual address
The address of a memory location that may physically reside at a different real address.

virtual origin
The address of a (possibly nonexistent) array element all of whose subscripts are zero.

X

Xn
Index register specification digit for machine instruction operand n.

XOR operation
A logical (boolean) exclusive-OR operation between two bits, whose result is 1 if either operand bit is 1 while the other is zero. If the operand bits are identical, the result is zero.

Z

zero duplication factor
A duplication factor that causes LC alignment without generating a constant. Skipped bytes are zeroed for DC instructions if the immediately preceding byte contains object code.

zero extension
The process of adding zero bits to the left of a shorter operand, to extend it to the length of a target field.

zone digit
The leftmost 4 bits of a byte.
zoned digit
   An edited packed decimal numeric digit.
Basic References

These are useful references you may want to have available. They should be available at these web sites:

http://www.ibm.com/systems/z/os/zos/bkserv/

• z/Architecture Processor
  – z/Architecture Principles of Operation, SA22-7832
  – z/Architecture Reference Summary, SA22-7871

• High Level Assembler
  – High Level Assembler Language Reference, SC26-4940
  – High Level Assembler Programmer’s Guide, SC29-4941

• z/OS System Services
  – z/OS MVS Programming: Extended Addressability Guide, SA22-7614
  – z/OS MVS System Codes, SA22-7626
  – z/OS MVS System Messages, Volumes 1-10, SA22-7631 – SA22-7640

• z/OS Data Areas and Control Blocks
  – z/OS MVS Data Areas, Volumes 1-6. GA32-0853 – GA32-0858

• z/OS Input/Output
  – z/OS DFSMS Using Data Sets, SC26-7410
  – z/OS DFSMS Macro Instructions for Data Sets, SC23-6852

• z/OS Binder
  – z/OS MVS Program Management User’s Guide and Reference SA22-7643
  – z/OS MVS Program Management Advanced Facilities SA22-7644

• z/VM
  – z/VM CMS Application Development Guide for Assembler, SC24-6070
**System/360 Architecture History**

  - Part II - System Implementations, by W. Y. Stevens.
  - Part III - Processing Unit Design Considerations, by G. M. Amdahl.
  - Part IV - Channel Design Considerations, by A. Padegs.
  - Part V - Multisystem Organization, by G. A. Blaauw.
- The functional structure of OS/360 Part II: Job and Task Management. IBM Systems Journal Vol. 5 No. 1, 12-29 (1966)

**Assembler Design and Implementation**

- Proceedings of the IBM Macro Assembler Conference, May 1-3, 1967, Los Gatos, California. (This collection of nine papers is an interesting source of “inside” information presented by assembler specialists in the computer industry.)

**Other General References**

Thanks to the following:

**ASSEMBLER_LIST** discussion group for many interesting suggestions and observations.

**Bryan Childs** for several helpful suggestions.

**Richard Corak** for thorough and helpful comments on many drafts.

**John Dravnieks** for helping me understand the High Level Assembler, and for being a valued colleague for many years.

**John Ganci** for permission to use several clever solutions to programming exercises, and for his sharp-eyed and knowledgeable reviews, and thoughtful suggestions.

**Dan Greiner** for many tutorials on the behavior of z System and its instructions, and for thorough and detailed reviews of drafts.

**Vicki Griffeth** for helping me to see an early version of these notes through a reader’s eyes.

**David Gross** for thorough proofreading and many helpful suggestions.

**John Kalinich** for reviewing several chapters.

**Melvyn Maltz** for suggestions and very careful proof-reading.

**Lisa Moore** for helping me understand and clarify the description of character encodings, especially Unicode.

**Ed Oddo, William Deason, and Ken Edwards** for supporting my efforts to complete these notes.

**Prof. Joshua Panar** of Ryerson University for extensive thoughtful comments, and “field testing” in a university environment.

**Wayne Rhoten** for help clarifying many important points.

**Michael Stack** of Northern Illinois University for his inspiration as a teacher of Assembler Language and as the creator of the SHARE “Assembler Boot Camp”.

**Romney White** for thorough and helpful comments on many drafts.

**Stanford University students** for their critiques of a very early version of these notes.
This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not give you any license to those patents. You can send license inquiries, in writing, to

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local law. INTERNATIONAL BUSINESS MACHINES PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials for this IBM product and use of those Web sites is at your own risk.

**Trademarks**

The following are trademarks of International Business Machines Corporation in the United States, or other countries, or both.

- BookMaster
- Enterprise Systems Architecture/390
- ESA/390
- MVS
- OS/390
- S/370
- System/370
- System z
- z/Architecture
- Z/VSE
- Enterprise Systems Architecture/370
- ESA/370
- IBM
- OS/360
- S/360
- System/360
- System/390
- VSE/ESA
- Z/VM
- zSeries
ANSI is a registered trademark of the American National Standards Institute in the United States, other countries, or both.

IEEE is a trademark of the Institute of Electrical and Electronic Engineers, Inc. in the United States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Unicode is a registered trademark of Unicode, Incorporated in the United States, other countries, or both.

Unix is a registered trademark of The Open Group in the United States and other countries.

Other company product and service names may be trademarks or service marks of others.
Suggested Solutions to Selected Exercises and Programming Problems
Section 1 Solutions

Section 1.2

1.2.1. The field is 8 digits wide.

Section 1.3

1.3.1. The reference is to GR9.
Section 2 Solutions

Section 2.1

2.1.1. (a) 22, (b) 44, (c) 170, (d) 127.

2.1.2. $2^n$.

2.1.3. Assuming the number is unsigned, $2^n - 1$. Later, when we discuss signed numbers in the twos’ complement representation, the answer will be $-1$.

Section 2.2

2.2.1. (a) $B’1010’$, (b) $B’101101’$, (c) $B’11 1110 1000’$.

2.2.2.

<table>
<thead>
<tr>
<th>Binary Digits</th>
<th>Decimal Value</th>
<th>Hex Digit</th>
<th>Octal Digits</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>8</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>1001</td>
<td>9</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>1010</td>
<td>10</td>
<td>A</td>
<td>12</td>
</tr>
<tr>
<td>1011</td>
<td>11</td>
<td>B</td>
<td>13</td>
</tr>
<tr>
<td>1100</td>
<td>12</td>
<td>C</td>
<td>14</td>
</tr>
<tr>
<td>1101</td>
<td>13</td>
<td>D</td>
<td>15</td>
</tr>
<tr>
<td>1110</td>
<td>14</td>
<td>E</td>
<td>16</td>
</tr>
<tr>
<td>1111</td>
<td>15</td>
<td>F</td>
<td>17</td>
</tr>
</tbody>
</table>

2.2.3. Groupings always begin at the radix point, which for integers lies to the right of the last digit. (Consider what would happen to $B’111111’$ if you grouped the bits from the left: should the result be $B’1111 1100’ = X’FC’, rather than $X’3F’$?)

2.2.4. These are the hexadecimal addition and multiplication tables.

<table>
<thead>
<tr>
<th>+</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>9</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>A</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
</tr>
<tr>
<td>B</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>1A</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>1A</td>
<td>1B</td>
</tr>
<tr>
<td>D</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>1A</td>
<td>1B</td>
<td>1C</td>
</tr>
<tr>
<td>E</td>
<td>E</td>
<td>F</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>1A</td>
<td>1B</td>
<td>1C</td>
<td>1D</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>1A</td>
<td>1B</td>
<td>1C</td>
<td>1D</td>
<td>1E</td>
</tr>
</tbody>
</table>
2.2.5.

1. $21474_{(8)} = X'233C'$.
2. $77777_{(8)} = 215_{(10)} - 1 = X'7{\text{FFF}}'$.
3. $1750_{(8)} = X'3E8'$.
4. $60341303_{(8)} = X'C1C2C3'$.
5. $4631_{(8)} = X'999'$.

2.3.1.

1. $26293 = X'66B5' = B'11011011 1011 0101' = 63265_{(8)} = 12122311_{(4)}$.
2. $X'2FACED' = B'10111111 1110 1000 1110 1111 1010 0010 1000$ = 3124461.
3. $X'BABEF00D' = 27257570015_{(8)} = 3133075469$. 
4. $X'COFFEE' = B'1100 0000 1111 1111 1110 1010' = 12648430$.

2.3.2.

1. $12698307$.
2. $1077952604$.

2.3.3.

1. $X'257' = 599$.
2. $X'7FFA' = 32762$.
3. $X'8008' = 32776$.
4. $X'E000' = 57344$.
5. $X'FFFA' = 65530$.

2.3.5. It is usually most convenient to do the arithmetic in base A (the original base) by expressing B in base A. Sometimes it is simpler to convert from base A to base 10, and from there to B using decimal arithmetic. (We can’t do the arithmetic in base B, since we would have to know the representation of the number to be converted in base B in order to do the arithmetic!) The result does not depend on the base used for the conversion.

2.3.6. (a) $5061_{(8)} = 2609_{(10)}$; (b) $111_{(8)}$, (c) $192_{(8)}$ is not a valid octal number (9 is not an octal digit!).

2.3.7. Referring to the tables of powers of 16, we find $9K = 589,284$; $5M = 83,866,080$; $2G = 2,147,483,648$.

Section 2.4

2.4.1.

1. $31659 = 75653_{(8)} = 13232223_{(4)} = B'111 1011 1010 1011'$.
2. $6917 = 210132_{(5)} = 31C1_{(13)} = X'1B05'$.
3. $X'EF2A' = 61226 = 21B39_{(13)}$.

2.4.2. The hex values are 1, A, 64, 3E8, 2710, 186A0, F4240, 989680, 5F5E100, 3B9ACA00. Did you do many tedious base-10 divisions by 16, rather than nine base-16 multiplications by $X'7{\text{FF}}'$? Try it, it’s good practice in hex arithmetic. (In this way, you can derive further values easily; the next three are 2540BE400, 174876E800, and E804A51D00.)

2.4.4. Your answer should be 1000 (decimal).
2.4.5. 73294 = 58001 (base 11) = 27490 (base 13) = 1C9D4 (base 14) = 16AB4 (base 15). The previously computed results are of little use in converting to each new base.

2.4.6. Here is a base-7 multiplication table:

<table>
<thead>
<tr>
<th>×</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>11</td>
<td>13</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>6</td>
<td>12</td>
<td>15</td>
<td>21</td>
<td>24</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>11</td>
<td>15</td>
<td>22</td>
<td>26</td>
<td>33</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>13</td>
<td>21</td>
<td>26</td>
<td>34</td>
<td>42</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>15</td>
<td>24</td>
<td>33</td>
<td>42</td>
<td>51</td>
</tr>
</tbody>
</table>

1. 526 (base 7) = 265 = X’109’.
2. 11010 (base 7) = 2751 = 5277 (base 8).
3. 61436 (base 7) = 35174 (base 8).
4. 666 (base 7) = 342, since 666 in base 7 is the same as \(7^3 - 1\), or 343.

2.4.7. 757 (base 10), 531 (base 12).

2.4.8. (1) 2F3 (base 25) = 1628. (2) 61436 (base 8) = 25374. (3) X’DEFACE’ = 14613198. (4) 999 = X’3E7’.

2.4.9. Whatever base is convenient; base A is most natural; occasionally it is simpler to use decimal arithmetic.

2.4.10. (1) 526 = X’10E’. (2) B’11010’ = 42 (base 5). (3) 61436 (base 8) = 25374. (5) 666 = 1641 (base 7).

2.4.11. 10, 11, 12, 13, 20, 22, 1000, 00000000 (or eight marks of some sort; the only reason to write zeros is because the numeric “digit” available in base 1 is zero).

2.4.12. One base must be a power of the other. (This doesn’t necessarily mean it will be easy!)

2.4.13. The values are 11, 12, 13, 14, 15, 16, 17, 20, 22, 31, 100, and 121. (You may have seen this sequence as a puzzle question “What is the next number in this series?”)

2.4.14. 435_7 = 222_{10}, and 64_7 = 46_{10}. Their sum in base 7 is 532, or 268 in decimal. Their base-7 product is 41526, or 10212 in decimal.

2.4.15. The base-3 * values are respectively 2, 20, 101, 121, 1001, 1112, 10200, and 10212.

Section 2.6

2.6.1.

1. X’DEADBEEF’ = 3735928559
2. X’FFFFFFFF’ = 4294967295
3. X’DEC0DED1’ = 3737181905

Section 2.7

2.7.1. The quotients and remainders for each division step are:

1. X’8675’, X’3’;
2. X’C29’, X’E’;
3. X’CF’, X’8’;
4. X’D’, X’C’;
5. X’0’, X’D’.

The converted value of X’AB0DE’ is DC8E3 (base 15).

2.7.2. (a) 0729, (b) 9271, (c) 9999, (d) 9999 (not valid), (e) 5000, (f) 5000 (not valid), (g) 0001 (not valid). Valid values in the 4-digit ten’s-complement representation must lie between \(-5000\) (the maximum negative number) and +4999 (the maximum positive number).

2.7.3. \(-2^{11} + 1\), or \(-2047\).

2.7.4. \(-2^{(n-1)} + 1\).

2.7.5. The three values are

---

* Mathematician’s joke: There are three types of people: those who can count, and those who can’t.
1. X'DEADBEEF' = -559038737
2. X'FFFFFFFF' = -1
3. X'DECD3ED1' = -557785391

Section 2.8

2.8.1. Because it was chosen that way. It would be awkward to use a representation in which the process of converting a positive number to negative was different from the process for converting from negative to positive.

2.8.2. (See Exercise 2.4.4 also)

1. X'0257' = 599
2. X'7FFFA' = 32762
3. X'E000' = -8192
4. X'FFFA' = -6

2.8.3. The two's complement of the binary representation of a number X is the two's complement binary representation of the number -X, unless X is the negative number of greatest representable magnitude.

2.8.4. In decimal, c(A) = +32064, c(B) = -12288, c(C) = +5538, c(D) = -32758.

2.8.5. The variables, their decimal values, and their 9-bit representations for both positive and negative values, are shown below. N.R. means the value cannot be represented.

<table>
<thead>
<tr>
<th>Positive</th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z 0</td>
<td>B'000000000' N.R.</td>
</tr>
<tr>
<td>A 1</td>
<td>B'000000001' B'111111111'</td>
</tr>
<tr>
<td>B 9</td>
<td>B'0000001001' B'111110111'</td>
</tr>
<tr>
<td>C 62</td>
<td>B'0000111110' B'111000010'</td>
</tr>
<tr>
<td>D 101</td>
<td>B'001100101' B'110011011'</td>
</tr>
<tr>
<td>E 255</td>
<td>B'011111111' B'100000001'</td>
</tr>
<tr>
<td>F 256</td>
<td>N.R. B'100000000'</td>
</tr>
</tbody>
</table>

2.8.6.

1. +10 X'0000000A', -10 = X'FFFFFF6'
2. +729 = X'0000002D9', -729 = X'FFFFFFD27'
3. +109 = 10000000 = X'000F4240', -1000000 = X'FFFOBDC0'
4. +109 = 1000000000 = X'3B9CA00', -1000000000 = X'CA643600'
5. +2147483648 = 2^{31} is not representable, -2^{31} = X'80000000'
6. +65535 = 2^{16} - 1 = X'0000FFFF', -65535 = X'FFFF0001'
7. +2147483647 = 2^{31} - 1 = X'7FFFFFFF', -(2^{31} - 1) = X'80000001'

2.8.7. The two processes give the same bit patterns. The only case where you might consider them different is in complementing the maximum negative number: our recipe would indicate an overflow in the second step (when we add a low-order 1 bit), whereas the suggested method would indicate an overflow in the first (subtraction) step. If subtraction plus complementation is thought of as a single operation, then the two procedures are the same.

2.8.8.

1. +13055 = X'32FF'
2. -9582 = X'DA92' (two's complement of X'256E')

2.8.9.

1. +5 = X'00000005'
2. -97 = X'FFFFFF9F'
3. +65795 = X'00010103'
4. -16777158 = X'FF00003A'
5. +16777219 = X'01000003'
6. -78606 = X'FDECCF2'

2.8.10. The values are:

1. X'8000' = -20465
2. X'FF1' = -15
3. X'0FF' = +4095
4. X'F001' = -4095
Section 2.9

2.9.1.
1. \(X'000000257' = B'0000 0000 0000 0000 0010 0101 0111'\)
2. \(X'000007FF' = B'0000 0000 0000 0000 0111 1111 1111'\)
3. \(X'FFFF8000' = B'1111 1111 1111 1111 1000 0000 0000'\)
4. \(X'FFFFE000' = B'1111 1111 1111 1111 1110 0000 0000'\)
5. \(X'FFFFFFFF' = B'1111 1111 1111 1111 1111 1111 1111 1111 1111 1010'\)

Section 2.10

2.10.1. No. Overflow must be detected using binary arithmetic. Since the four high-order bits are \(B'1 1111'\), their sum is \(B'1 1110'\), so the carries into and out of the high-order bit positions agree.

Section 2.11

2.11.1.
1. \(10−(−10) = X'00000000A' − X'FFFEFFEF' = X'00000014'\) (no overflow, no carry);
2. \(729−65535 = X'0000002D9' − X'000000FFF' = X'FFFDDB'\) (no overflow, carry);
3. \(2147483647 + 2 = X'7FFFFFFF' + X'00000002' = X'80000001'\) (overflow, no carry);
4. \(10^9+((3^{11}−1)) = X'3B9CA00' + X'80000001' = X'BB9CA01'\) (no overflow, no carry);
5. \(-0+(+0) = X'00000000' − X'00000000' = X'00000000'\) (no overflow, carry);
6. \((-10)+10 = X'FFFFFFFE' + X'0000000A' = X'00000000'\) (no overflow, carry).

2.11.2. \(C(X) = X'679E'\), no overflow; \(C(Y) = X'500A'\), overflow; \(C(Z) = X'F4A'\), no overflow.

2.11.3. The procedure is correct. Consider these examples, using 4-bit signed binary numbers.

<table>
<thead>
<tr>
<th>Number</th>
<th>Step 1</th>
<th>Step 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>1111</td>
<td>1111</td>
</tr>
<tr>
<td>0001</td>
<td>0000</td>
<td>0000</td>
</tr>
<tr>
<td>0111</td>
<td>0111</td>
<td>0111</td>
</tr>
<tr>
<td>1111</td>
<td>1111</td>
<td>1111</td>
</tr>
<tr>
<td>1000</td>
<td>1111</td>
<td>0111</td>
</tr>
</tbody>
</table>

2.11.5.
1. \(X'7D26F071'+X'B40E99A4' = X'31358A15'\), carry, no overflow
2. \(X'7D26F071'−X'B40E99A4' = X'C918B6CD'\), carry, overflow
3. \(X'FFFF39A'+X'F4E4B06' = X'FFE3E0A0'\), carry, no overflow
4. \(X'FFFF39A'−X'F4E4B06' = X'0001A94'\), carry, no overflow
5. \(X'80000003'+X'00000007C' = X'8000007F'\), no carry, no overflow
6. \(X'80000003'+X'80000007C' = X'0000007F'\), carry, overflow

Section 2.12

2.12.1. In a 9-bit hexadecimal representation,

(a) \(A+C = X'001+X'03E' = X'03F'\) (no carry, no overflow);
(b) \(D−E = X'065'−X'0FF' = X'166'\) (no carry, no overflow);
(c) \(Z+(−F) = X'000'+X'100' = X'100'\) (no carry, no overflow);
(d) \((-E)−C = X'101'−X'03E' = X'0C3'\) (carry, overflow);
(e) \((−E)+A = X'1F7'+X'001' = X'1F8'\) (no carry, no overflow);
(f) \(C−Z = X'03E'−X'000' = X'03E'\) (carry, no overflow);
(g) \(A+(−A) = X'001'+X'1FF' = X'000'\) (carry, no overflow).

Section 2.13

2.13.1. Consider subtracting \(X'80000000'\) from zero. If we assume that the two’s complement of \(X'80000000'\) is added to the first operand (zero), then no carries occur out of the two high-order bit positions, and no overflow condition is detected. If we add the ones’ complement of the second operand and a low-order 1-bit to the first operand, the two carries will differ and the overflow will be correctly detected. Any overflow that occurs in forming the two’s complement of the second operand will be lost prior to adding if we believe the incorrect description. Similarly, suppose we subtract zero from anything. If we add the two’s complement of zero, no carry occurs, but if we add its ones’ comple-
ment and a low-order 1-bit, a carry always occurs. Thus “our” rule describes both the carry and overflow cases correctly.

**Section 2.14**

2.14.1. The decimal values, and their corresponding logical and arithmetic representations (written as 11-bit hexadecimal numbers), are as follows; “N.R.” means that no valid representation exists to the given accuracy.

<table>
<thead>
<tr>
<th>Positive</th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) 200</td>
<td>X'0CB'</td>
</tr>
<tr>
<td>(b) 1023</td>
<td>X'3FF'</td>
</tr>
<tr>
<td>(c) -1000</td>
<td>N.R.</td>
</tr>
<tr>
<td>(d) 2047</td>
<td>X'7FF'</td>
</tr>
<tr>
<td>(e) -1</td>
<td>N.R.</td>
</tr>
<tr>
<td>(f) -1024</td>
<td>N.R.</td>
</tr>
<tr>
<td>(g) -1023</td>
<td>N.R.</td>
</tr>
<tr>
<td>(h) 1024</td>
<td>X'400'</td>
</tr>
<tr>
<td>(i) -0</td>
<td>N.R.</td>
</tr>
</tbody>
</table>

2.14.2. The following table shows the results, where the abbreviations “C” means “Carry”, “NC” means “No Carry”, “O” means “Overflow”, and “NO” means “No Overflow”.

<table>
<thead>
<tr>
<th>+</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>11110</td>
<td>0001</td>
<td>0111</td>
<td>01110</td>
</tr>
<tr>
<td>A</td>
<td>C, NO</td>
<td>C, NO</td>
<td>C, O</td>
<td>C, NO</td>
</tr>
<tr>
<td>B</td>
<td>---</td>
<td>00100</td>
<td>10010</td>
<td>10001</td>
</tr>
<tr>
<td></td>
<td>NC, NO</td>
<td>NC, NO</td>
<td>NC, O</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>---</td>
<td>---</td>
<td>00000</td>
<td>11111</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C, O</td>
<td>NC, NO</td>
</tr>
<tr>
<td>D</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>11110</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NC, O</td>
</tr>
</tbody>
</table>

2.14.3. Using the same abbreviations as in the previous exercise, the results will look like this (the values in the first row are A−A, B−A, C−A, D−A):

<table>
<thead>
<tr>
<th>−</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>00000</td>
<td>00111</td>
<td>10001</td>
<td>10000</td>
</tr>
<tr>
<td></td>
<td>C, NO</td>
<td>NC, NO</td>
<td>NC, NO</td>
<td>NC, O</td>
</tr>
<tr>
<td>−B</td>
<td>11101</td>
<td>00000</td>
<td>01110</td>
<td>01101</td>
</tr>
<tr>
<td></td>
<td>C, NO</td>
<td>C, NO</td>
<td>C, O</td>
<td>C, NO</td>
</tr>
<tr>
<td>−C</td>
<td>01111</td>
<td>10010</td>
<td>00000</td>
<td>11111</td>
</tr>
<tr>
<td></td>
<td>C, NO</td>
<td>NC, O</td>
<td>C, NO</td>
<td>NC, O</td>
</tr>
<tr>
<td>−D</td>
<td>10000</td>
<td>10011</td>
<td>00001</td>
<td>00000</td>
</tr>
<tr>
<td></td>
<td>C, NO</td>
<td>C, NO</td>
<td>C, O</td>
<td>C, NO</td>
</tr>
</tbody>
</table>

**Section 2.15**

2.15.1. (a) 0028, (b) 9951, (c) 0527, (d) 9667, (e) 8766, (f) 2469.

2.15.2.

(a) 0028  
(b) 0527  
(c) 8766

\[\begin{align*}
9951 + 9667 &= -21 \\
9979 &= 1235
\end{align*}\]

These calculations were simpler because no intermediate complementations were required.

2.15.3. (a) 0028, (b) 9950, (c) 0527, (d) 9666, (e) 8765, (f) 2469.

* The error wasn’t corrected until the 8th edition!
Section 3 Solutions

Section 3.1

3.1.1. Because \(X'30A6' - X'2EC9' = X'10D'\), the area contains \(X'10D'\) or 478 bytes. Because you must consider boundary alignments for half-, full-, and doublewords, some bytes on either end can't be used. Thus, the area can contain 238 halfwords, 118 words, and 58 doublewords. (Try the same exercise with the ending address at \(X'30A7'\), and note the differences.)

3.1.2. No. The smallest addressable entity in memory is a byte. The bits within a byte are not individually addressable.

3.1.3. The area contains \(X'17' = 23\) complete bytes, plus 3 bits at \(X'1A02'\) plus 2 bits at \(X'1A03'\), giving \(8*23+3+2 = 189\) bits in all.

3.1.4. (1) halfword; (2) none; (3) halfword, word, and doubleword; (4) halfword and word.

3.1.5. (1) 131,072; (2) 32,768; (3) 2,097,152.

3.1.6. 322 in octal, and D2 in hex.

3.1.7. Let "x" mean either a 0-bit or a 1-bit. Then these bit patterns of the rightmost hex digit mean the indicated alignments:

- 0000 quadword
- x000 doubleword
- xx00 word
- xxx0 halfword
- xxx1 byte

Section 3.3

3.3.1. No (GR7 and GR8 are not part of an even-odd pair); no (for the same reason); yes.

3.3.2. Sixteen. Actually, depending on the instructions used to load data from memory into the general registers, the number can vary from 1 to 16. (Prior to z System, each general register contained only four bytes, so a pair contained eight.)

Section 3.4

3.4.1. Only one: the right half of the register is ignored for 32-bit operands.

3.4.2. Probably so that the Floating-Point Feature could be omitted if the customer didn't want it.* In many programs, the amount of arithmetic involving exchanges of data between the general and Floating-Point registers is small, so that little would be gained by using a single register set for both types of operands. For other more complex programs, however, this capability is extremely valuable.

One useful aspect of such a shared-register arrangement is that the programmer can decide the most efficient use of the registers by his program; he can allocate as many or as few to floating-point operands as he feels are needed.

* Or, as one cynic put it, so IBM could charge more for a processor with a full instruction set.
Section 4 Solutions

Section 4.1

4.1.1. You can do this if each instruction contains the address of its successor. This technique was used on the IBM 650, but it also meant that instructions had to be longer, to hold both the operand memory address and the successor instruction address.

Section 4.2

4.2.1. No, only on a halfword boundary. It is possible to require a word alignment in memory for the operand referred to by the instruction, but not for the instruction itself.

4.2.2. Two bytes.

4.2.3. Because (1) each instruction is an integral number of halfwords in length, and (2) can start on any halfword boundary.

4.2.4. Yes. A word or doubleword boundary is also a halfword boundary.

4.2.5. There’s no way to tell the difference.

Section 4.3

4.3.1. No, because the first two bits of the operation code uniquely determine the length of the instruction.

4.3.2. Twenty-four (decimal) bytes. The instructions are 2, 4, 4, 4, 6, and 4 bytes long. (Types are RR, RX, RS, RX, SS, RX.)

4.3.3. In binary, the values are 01, 10, 10, 10, 11, 10.

4.3.4. $2times((\text{sum of first two opcode bits})+1)$ bytes.

4.3.5. The table entries could look something like this:

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>RR</td>
<td>2</td>
<td>01</td>
<td>0</td>
</tr>
<tr>
<td>01</td>
<td>RX</td>
<td>4</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>RS,SI</td>
<td>4</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>SS</td>
<td>6</td>
<td>11</td>
<td>2</td>
</tr>
</tbody>
</table>

(But you could also study Table 10!)

4.3.6. There are seven instructions, of lengths 4, 2, 4, 6, 2, 4, and 2 bytes respectively. The types are RS, RR, RX, SS, RR, RX, and RR.

4.3.7. In most cases, you can find the required address by subtracting twice the ILC (the number of halfwords in the previous instruction) from the IA in the PSW.

4.3.8. The z System CPU will fetch whatever bytes are in the gaps, and try to decode them as instructions. There is no escape.

(You can cheat by using a branch instruction to jump over each gap, but then your program would be much larger than necessary. Some early computers handled this problem by having each instruction contain the address of its successor, but those programs were also bigger. See Exercise 4.1.1 above.)

Section 4.4

4.4.1. (1) the RR-type instruction has opcode $X'05'$.

4.4.2. (2) the RX-type instruction has opcode $X'58'$.

4.4.3. (3) the RS-type instruction has opcode $X'89'$.

4.4.4. (4) the RX-type instruction has opcode $X'5A'$.

4.4.5. (5) the SS-type instruction has opcode $X'D2'$.

4.4.6. (6) the RR-type instruction has opcode $X'50'$.

Section 4.6

4.6.1. The Instruction Address in the PSW is odd, which violates the requirement that all instructions begin at a halfword boundary.

4.6.2. Because the New PSW’s Instruction Address is odd, the attempt to fetch the first instruction at memory location $X'A237'$ would cause another program interruption. The current PSW stored at the “old PSW” area would be the one shown, overlaying the “old PSW” that described the original error. The CPU would then stay in a program interruption loop until the processor was reset (which other executing programs would consider very unfriendly).
4.6.3. The causes of the Interruption Codes are:

1. 0001: an invalid instruction code that can’t be executed by the CPU.
2. 0009: your program tried to divide two binary numbers; either the divisor is zero, or the quotient is too large to be represented in a single general register.
3. 000C: the product of two hexadecimal floating-point numbers is too large to be correctly represented.
Section 5 Solutions

(All answers are in hexadecimal unless otherwise indicated.)

Section 5.1

5.1.1. Yes, and don’t forget it! (You can of course put an addressing halfword somewhere not on a halfword boundary, but then it can’t be part of an executable instruction.)

5.1.2. Sixteen and fifteen.

Section 5.2

5.2.1. (1) X’1AAF10’, (2) X’02AF0C’, (3) X’000FB0’.

5.2.2. (1) X’02B00F’, (2) X’000FC8’, (3) X’1ABD48’.

Section 5.3

5.3.2. If the instruction type is RX, then the fourth digit of the instruction is an index digit; if it is not zero, an indexing cycle is needed.

5.3.3. For RR instructions, none; for RX, two (the base and index registers); for RS and SI, one; for SS, two (one for each operand).

5.3.4. If the instruction is type RR, or if the CPU needs repair.

Section 5.4

5.4.1. Register zero is never used as a base or index register. In all other respects, however, GR0 is a perfectly normal and well-behaved general register. (Later, we’ll see instructions that use GR0 to hold addresses.)

5.4.2. (1) X’1AAF10’, (2) X’02AF0C’, (3) X’000323’, (4) X’8AADD2’, (5) X’000166’, (6) X’000FB0’. It is important to distinguish the RX and the RS-SI instructions.

5.4.3. (1) X’0710FC’ (the carry is lost!); (2) X’0903AA’; (3) X’000000’; (4) X’00006C’; (5) X’00004A’; (6) X’090518’; (7) X’071F49’.

Section 5.5

5.5.1. (1) X’1BAD’; (2) X’3A55’ or X’0A4D’; (3) not addressable; (4) not addressable; (5) not addressable.

5.5.2. It is most important to remember that addressability depends on the contents of the general registers. The fact that a byte has an address does not mean it is addressable; it is possible that it is inaccessible to the program. (1) not addressable (R0 can’t be used as a base register); (2) X’FO00’; (3) not addressable; (4) not addressable (R1 would require a displacement of 1002, and GR11 would require –1); (5) X’C3FC’; (6) X’5FC3’; (7) not addressable; (8) X’8921’ or X’BFE6’ (the Assembler has a problem deciding, too); (9) not addressable; (10) X’5000’.

5.5.3. (See the note in the solutions to Exercise 5.5.2 also.) We will write the index digit and addressing halfword as five hex digits in the form xBddd. (1) 010A20 is not addressable; (2) FFFFF is addressable by 0F000, F0000, FF001, EF000, EE000; (3) 6A0054 is not addressable; (4) 31AB7E is addressable by FB000, BF000, 19FF2, 91FF2, 1C1CA, C11CA; (5) 001234 is addressable by 0C3FC, C03FC, FC3FD, CF3FD, C93EC, C93EC, EC3FC, EC3FC; (6) 07DC3C is addressable by 0F03, 50F03, E5FO3, 5EF03, 55F04, 5FF04, 50CC, 50CC, 50F03, 5EFC, 50F03, 50F03; (7) 00A004 is addressable by DD004; (8) 31BB65 is addressable by 08921, 80921, E8921, 8E921, 98911, 89911, 0BFE6, B0FE6, BEFE6, EBFE6, 9FDF6, 9FDF6, 8F920, 8F920, FBFE7, BBFE7; (9) 9ABCDE is not addressable; (10) 07C401 is addressable by 05000, 50000, E5000, 5E000, F5001, 5F001.

5.5.4. The possible hex values are 0EEB, 3EEC, 6FEB, 7EEB, 8EEB, ..., FEEB (12 solutions); (2) no solutions; (3) 2F04.

5.5.5. We write the index digit and addressing halfword in the form xBddd. Then (1) 02ABCD may be addressed by 01BAD, 10BAD, 31BB5, 13BB5; (2) 00A4D may be addressed by 00A4D, 03A55, 03A55, 3A5D; (3-5) all of 001139, 8888E, and 02A010 are not addressable.
5.5.6. Even though the base register specification digit would be zero in each addressing halfword, GR0 would still not be used (or usable) as a base register!

5.5.7. (1) X’31C161’, X’07CBC5’; (2) X’005CFF’, X’2B42A3’; (3) X’023B43’, X’000050’; (4) X’000E4E’, X’000E4E’.

Section 5.6

5.6.1. Because 15 registers are available for addressing purposes, there is considerably less need to use addresses in memory to locate an operand; the added cost of accessing memory is also avoided. An additional bit would also be required in all instructions for which indirection was allowed. In some processors allowing indirect addressing, it is possible to put the CPU into a loop by having two instructions in an indirect-address chain refer to one another.
Section 6 Solutions

Section 6.2

6.2.1. The default rule is that columns 1 to 15 must be blank. It is a common practice to group comments into blocks of descriptive statements, all of which have an asterisk in column 1. If one of those statements has a nonblank character in column 72, the following record will not be blank in columns 1 to 15, as required.

Section 6.3

6.3.1. The statement will be read by the Assembler during assembly time, when it will be translated into a machine language instruction in the object module. This will be linked into the load module; after the load module has been placed in memory at the start of execution time, the CPU can fetch, decode, and execute the instruction.

6.3.2. The choice is up to you; any column at least one space past the operand field is acceptable.

6.3.3. Any column except 1. It should not extend into column 72!

6.3.4. The operation field is always required.

6.3.5. Comment statements have no operation field entry; some Assembler instructions (such as SPACE, EJECT, START, ORG, CSECT, etc.) require no operand field entry; any statement may be written without a remarks field.

6.3.6. Because column 1 is blank, the operation field entry is LOAD; the operand field entry is therefore “LR”; the rest of the statement is comments!

6.3.7. (a) Only comment statements; (b) All non-comment statements.

Section 6.5

6.5.2. The END statement is only an indication to the Assembler that the source module is complete, and it is not any part of the executing program. If you understand the phrase “control reaches the END statement” to mean that the CPU attempts to execute instructions outside the bounds of the program, an error is likely to cause the “end” (termination) of program execution. There’s no way to know how the CPU will interpret whatever bit patterns it may then “stumble” into.

6.5.3. Lines 4 and 10 have name-field entries; all but line 6 have operation field entries, operand field entries, and comment field entries.

Programming Problem 6.1.

Here is the Assembler’s listing of my program:

<table>
<thead>
<tr>
<th>Loc</th>
<th>Object Code</th>
<th>Addr1</th>
<th>Addr2</th>
<th>Stmt</th>
<th>Source Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>000000</td>
<td>00000 00038</td>
<td>1 Test</td>
<td>Start 0</td>
<td>First line of program</td>
<td>Line 4</td>
</tr>
<tr>
<td>000000</td>
<td>0000 0003B</td>
<td>2 Print</td>
<td>NoGen</td>
<td>Line 5</td>
<td></td>
</tr>
<tr>
<td>000000</td>
<td>0000 00040</td>
<td>3 *</td>
<td>Sample Program</td>
<td>Line 6</td>
<td></td>
</tr>
<tr>
<td>00002</td>
<td>0DF0</td>
<td>4 BASR</td>
<td>15,0</td>
<td>Establish a base register</td>
<td>Line 7</td>
</tr>
<tr>
<td>000002</td>
<td>R:F 0002</td>
<td>5 Using</td>
<td>*,15</td>
<td>Inform the assembler</td>
<td>Line 8</td>
</tr>
<tr>
<td>000002</td>
<td>90EF F00A 0000C</td>
<td>6 PRINTOUT</td>
<td>MyName,*</td>
<td>Print name and stop</td>
<td>Line 9</td>
</tr>
<tr>
<td>00002A</td>
<td>01968954094840</td>
<td>436 MyName DC C’John R. Ehrman’</td>
<td>Define constant with name</td>
<td>Line 10</td>
<td></td>
</tr>
<tr>
<td>000000</td>
<td>437 END</td>
<td>Test</td>
<td>Last statement</td>
<td>Line 11</td>
<td></td>
</tr>
</tbody>
</table>

When the program was executed, it produced this printed output:

*** PRINTOUT REQUESTED AT LOCATION 021002, CC=1
MyName  = ’John R. Ehrman’
*** EXECUTION TERMINATED BY PRINTOUT * AT LOCATION 021002
Section 7 Solutions

Section 7.1

7.1.1. (1) \( 12345 = X'3039' \); (2) \( X'15555' \); (3) \( X'B4AD' \); (4) too long (9 significant digits); (5) the \( + \) sign is not valid on a self-defining term; (6) \( X'3G33D' \); (7) too long (33 significant bits).

Section 7.2

7.2.1. (1) \( X'00787C5B' \); (2) incorrectly paired apostrophes; (3) \( X'40C140C2' \); (4) \( X'009E4C4' \); (5) \( X'0000F1F2' \); (6) too long (five characters).

7.2.2. The values are (1) \( X'007B7C5B' \); (2) \( X'40C140C2' \); (3) \( X'0000F1F2' \); (4) \( X'C37D' \); (5) \( X'F0' \); (6) \( X'E2C4E3' \).

7.2.3. This table shows the ASCII encodings for the same characters shown in Table 13 on page 89. (Here, they are not in order of increasing encoding values.)

| Table 442. ASCII Character Representation. (alntb7b) |
|-----------------|-----------------|-----------------|
| Char | Hex | Char | Hex | Char | Hex | Char | Hex |
| Blank | 20 | , | 2E | ( | 28 | + | 2B |
| & | 26 | $ | 24 | * | 2A | ) | 29 |
| - | 20 | / | 2F | , | 2C | _ | 5F |
| # | 23 | @ | 40 | ' | 27 | = | 3D |
| a | 61 | b | 62 | c | 63 | d | 64 |
| e | 65 | f | 66 | g | 67 | h | 68 |
| i | 69 | j | 6A | k | 6B | l | 6C |
| m | 6D | n | 6E | o | 6F | p | 70 |
| q | 71 | r | 72 | s | 73 | t | 74 |
| u | 75 | v | 76 | w | 77 | x | 78 |
| y | 79 | z | 7A | A | 41 | B | 42 |
| C | 43 | D | 44 | E | 45 | F | 46 |
| G | 47 | H | 48 | I | 49 | J | 4A |
| K | 4B | L | 4C | M | 4D | N | 4E |
| 0 | 30 | 1 | 31 | 2 | 32 | 3 | 33 |
| 4 | 34 | 5 | 35 | 6 | 36 | 7 | 37 |
| 8 | 38 | 9 | 39 |

7.2.4. (1) \( X'7070D70' \); (2) \( X'3E8' \); (3) \( X'8' \); (4) \( X'507D50' \); (5) \( X'6B' \); (6) \( X'C17EC2' \).

7.2.5.

(1) \( 64 = X'40' = B'01000000' = C' ' (in our notation, C'•')
(2) \( 245 = X'F5' = B'11110101' = C'5'\)
(3) \( 80 = X'50' = B'01010000' = C'& &'
(4) \( 16476 = X'405C' = B'0100000001011100' = C' ' (in our notation, C'••')
(5) \( -101058055 = X'F8F9F9F9' = B'111110011111111111111111' = C'99999'
(6) \( 12966353 = X'C59D01' = B'110001011100111101001' = C'ERJ'

7.2.6. The bits 11010010 are the EBCDIC representation of the capital letter K.

7.2.7. The terms and their values are:

(a) \( B'110010110000010111010110' = X'00CB05D0' \)
(b) \( C'A& &B' \) = \( X'00C150C2' \)
(c) \( 54721 \) = \( X'0000D5C1' \)
(d) \( X'B008000' \) = \( X'00B00B00' \)
7.2.8. The respective values are:

1. \( X'01C5' \)
2. 53701
3. \(-11835\)
4. \( C'JE' \)

7.2.9. The values are:

1. \( B'110010111000010111011001' = X'CB85D6' \)
2. \( C'R&Z' = X'D950E9' \)
3. 51401 = \( X'C8C9' \)

7.2.10. (a) \( B'011101011100010111011001' = X'1D62' \), (b) \( C''+'' = X'7D4E' \), (c) 10010 = \( X'271A' \)

Section 7.3

7.3.1. Symbols (1), (3), (4), and (9) are valid. The second is invalid if you think of it as a single symbol because the blank is not allowed, but \( \text{Captain} \) and \( \text{Major} \) are valid symbols. The other invalid symbols are (5) (exclamation point is not allowed, to say nothing of the language), (6) (starts with a digit), (7) (naturally), (8) (parentheses are not allowed).

7.3.2. Consider the “symbol” \( 1234567J \). The Assembler’s term-scanning routine might be well on its way into converting what appeared to be a decimal self-defining term when the letter \( J \) appeared. This would require either backing up, or necessitate multiple scans wherever a symbol could appear.

Section 7.5

7.5.1. All the symbols (EX7_5_1, BEGIN, DUMMY, N, and ONE) are relocatable. The LC values (and therefore the values of the symbols) are as shown.

<table>
<thead>
<tr>
<th>LC</th>
<th>Stmt</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5000</td>
<td>EX7_5_1</td>
<td>START X'5000'</td>
</tr>
<tr>
<td>5000</td>
<td></td>
<td>BASR 6,0</td>
</tr>
<tr>
<td>5002</td>
<td>BEGIN</td>
<td>L 2,N</td>
</tr>
<tr>
<td>5006</td>
<td></td>
<td>A 2,ONE</td>
</tr>
<tr>
<td>500A</td>
<td></td>
<td>ST 2,N</td>
</tr>
<tr>
<td>500E</td>
<td>DUMMY</td>
<td>DS XL22</td>
</tr>
<tr>
<td>5024</td>
<td>N</td>
<td>DC F'8'</td>
</tr>
<tr>
<td>5028</td>
<td>ONE</td>
<td>DC F'1'</td>
</tr>
</tbody>
</table>

Section 7.6

7.6.1. You shouldn’t need to check this answer!

7.6.2. The symbol TEN is three characters long.
Section 8 Solutions

Section 8.2

8.2.1. The results are \( A+B \), \( A-B \), and \( A-B \).

8.2.2. The expression has value 19.

8.2.3.

a. \( A++-B \) Valid \( A+(-(+(-B)))) \rightarrow A+B \\
b. \( A+-B \) Valid \( A*(-(-B)) \rightarrow A*B \\
c. \( A*-B \) Invalid \( A-(*(-B)) \)

d. \( A---B \) Valid \( A-(-(-B)) \rightarrow A-B \\
e. \( --A++B \) Valid \( -(-A-((+B)))) \rightarrow A-B \\

Section 8.3

8.3.1. If none of these expressions is further combined with other expressions, then \( A-R \) is invalid because the only relocatable term is preceded by a \(-\) sign. (If it was combined with another expression such as in \((A-R)+(A+R)\) the result would be valid and absolute. (It’s important to look at the whole expression!))

\( R+R \) is invalid because the sum will be complexly relocatable; all the expressions involving multiplication or division with a relocatable term are always invalid; the remaining expressions are always valid.

8.3.2. If you think so, you may still be uncertain about the difference between the Assembler’s computation of expression values at assembly time, and the program’s computation of whatever it likes at execution time. A program can compute remainders, as we will see when we discuss the Divide instructions.

8.3.3. The two symbols may have different relocatability attributes. (We will meet such symbols when we discuss external symbols and control sections.)

Section 8.4

8.4.1. 75, 32, and 2400 respectively.

8.4.2. \( R6 \) is the only absolute symbol, and it has value \( X’000009’ \) (a poor practice). The other symbols are relocatable; their values are \( A (X’000466’), B (X’00046C’), C (X’000470’), X (X’000474’). \) The expressions, their values, and their relocatability attributes, are:

B+X’1C’ X’000488’ relocatable
C-A+X’-2*(R6/2) X’000476’ relocatable
2*X’-C’A’+2 X’000001’ absolute
B’-2 X’00046A’ relocatable
R6’-2 X’000007’ absolute

8.4.3. Expressions 1 and 6 are relocatable; the rest are absolute. They have values \( X’10A99’ , X’FFFFFF88’ , X’7’ , X’3’ , X’8D’ , and X’12098’ \) respectively.

8.4.4. Item 4 is invalid; if you look at it long enough you will see why. Expressions 1, 3, 5, 6, and 7 are valid. Expressions 3 and 5 are syntactically valid, but the value overflows a word. Only the rightmost 32 bits would be retained.

8.4.5. (1) \( X’0000F0’ \), absolute; (2) \( X’172BE9’ \), relocatable; (3) \( X’001808’ \), absolute; (4) \( X’000180’ \), absolute; (5) \( X’173ACC’ \), relocatable.

8.4.6. Expressions 1 and 5 are invalid, because they contain products involving a relocatable expression. Except for expression 4, the other expressions are all absolute, and have the following values: (2) \( X’00558F’ \); (3) \( X’0020A9’ \) (if you got \( X’0020A8’ \), you forgot to do the multiplication before the division); (4) \( X’00142D0A’ \) (relocatable); (6) \( X’FFFFFFFE’ (-2 in decimal).

8.4.7. If we allowed relocatable terms in multiplications and divisions, it would no longer be possible to preserve the simple additive relationship between the location value of an assembly-time expression and its address value at execution time. Handling such constructions would require that we pass enough information about the expression to the Program Loader so that it could compute the correct value when the true address referred to by the symbol is known.

8.4.8.
1. B-A \ Value=X'FO8', absolute
2. A+C. \ Value=X'172BE9', relocatable

Section 8.5

8.5.1. (1) second; (2) first; (3) second; (4) second; (5) first; (6) third; (7) third; (8) third, (9) second. All the operands are valid!

Programming Problem 8.1.

Many of the Length Attribute References I tried were invalid. The reasons are explained among the lines of the Assembler’s listing.

Loc Object Code Addr1 Addr2 Stmt Source Statement

000000 0000 0024 1 P8_1 Start 0
R:F 0000 2 Using *,15
001A9 3 ABS425 Equ 425
000000 0000 0000 00000 4 LA 0,L
** ASMA147E Symbol too long, or first character not a letter - 2
The Length Attribute of a self-defining term is undefined; if it had been written X'2', the Assembler would produce a different error message.

000004 4100 0001 5 LA 0,L'ABS425
** ASMA019W Length of EQUated symbol ABS425 undefined; default=1
The Length Attribute of the absolute symbol is undefined, so the Assembler tells us that it has assigned a default length attribute, 1.

000008 4100 0004 6 LA 0,L'*
The Length Attribute of a Location Counter Reference is valid. The instruction is 4 bytes long, so that’s the value of the Length Attribute Reference.

00000C 0000 0000 00000 7 LA 0,L'*-10
** ASMA028E Invalid displacement
The expression L'*-10 is not addressable, because while L' has value 4, L'*-10 has value -6. The Assembler could not create a valid addressing halfword.

000010 0000 0000 00000 8 LA 0,L'(=*-10)
** ASMA147E Symbol too long, or first character not a letter - (*-10)
The Length Attribute of a parenthesized expression is undefined.

000014 4100 0004 9 LA 0,L'=F'10'
The Length Attribute of a literal is well defined.

000018 0000 0000 00000 10 LA 0,L'*
** ASMA150E Symbol has non-alphanumeric character or invalid delimiter - L'*
The Length Attribute of a Length Attribute Reference is not allowed.

11 End P8_1
000020 0000000A 12 =F'10'

Programming Problem 8.2.

Loc Object Code Addr1 Addr2 Stmt Source Statement

000005 1 A Equ 5
000003 2 B Equ 3
000003 3 C1 Equ L'A*B
** ASMA019W Length of EQUated symbol A undefined; default=1
000005 4 C2 Equ A*L'B
** ASMA019W Length of EQUated symbol B undefined; default=1
The Length Attribute of the symbols A and B is undefined, so the Assembler tells us that it has assigned a default length attribute, 1.
5 C3  Equ  L'(A*B)

** ASMA147E Symbol too long, or first character not a letter - (A*B)
** ASMA158E Operand expression is defective; set to *

A Length Attribute Reference to an expression is undefined. In this case, the Assembler tells us that it has assigned a default value, the Length Attribute of the current Location Counter.
Section 9.2 Solutions

Section 9.2

9.2.1. The values of the expressions are (a) 0, (b) 13, (c) 17, (d) 15, and (e) 16. This means that (c) and (e) are invalid.

9.2.2. Only (a) is valid; (e) is even, but too large.

Section 9.5

9.5.1. The operand \( D_2(X_2,B_2) \) is of the form \( \text{expr(expr,expr)} \); \( D_2(B_2) \) is of the form \( \text{expr(expr)} \); \( S_2(X_2) \) is of the form \( \text{expr(expr)} \).

9.5.2. (1) implied, no indexing; (2) implied, with indexing; (3) implied, with indexing; (4) explicit, with indexing; (5) implied, with indexing; (6) explicit, no indexing.

9.5.3. (1) implied (invalid if \( A \) and \( B \) are both relocatable); (2) implied (invalid if both \( A \) and \( B \) are relocatable); (3) implied, with indexing (but invalid, since \( C' \) exceeds 15); (4) implied, with indexing (but invalid, since the \( X_2 \) and \( B_2 \) expressions are both too large); (7) explicit, with an index expression; (8) explicit, no indexing.

Section 9.7

9.7.1. The implied addresses are \( S_1 \) and \( S_2 \).

(a) Can be only SI: 1=D_1, 2=B_1, 3=I_2.
(b) Can be only RS-1: 4=R_1, 5=D_2, 6=B_2.
(c) Can be only RS-2: 7=R_1, 8=R_2, 9=S_2.
(d) Can be either RS-1: 10=R_1, 11=S_2; or SI: 10=S_1, 11=I_2.
(e) Can be only RS-1: 14=R_1, 15=D_2, but 16 is not a valid value for \( B_2 \).
(f) Can be only SI: 100=S_1, 101=I_2.

Section 9.9

9.9.1. In the following table, the headings “SS-1” and “SS-2” refer to the two SS-type instruction formats.

<table>
<thead>
<tr>
<th>Operand</th>
<th>SS-1 Format</th>
<th>Length</th>
<th>SS-2 Format</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>1(2)</td>
<td>explicit</td>
<td>( S_1(N_1) ) or ( D_2(B_2) )</td>
<td>explicit</td>
</tr>
<tr>
<td>(b)</td>
<td>4(5,6)</td>
<td>explicit</td>
<td>( D_1(N_1,B_1) ) or ( D_2(N_2,B_2) )</td>
<td>explicit</td>
</tr>
<tr>
<td>(c)</td>
<td>( A(L'B) )</td>
<td>explicit</td>
<td>( S_1(N_1) ), ( D_2(B_2) ), ( S_2(N_2) ) or ( D_2(B_2) )</td>
<td>explicit</td>
</tr>
<tr>
<td>(d)</td>
<td>Line</td>
<td>implicit</td>
<td>( S_1, S_2 )</td>
<td>implicit</td>
</tr>
<tr>
<td>(e)</td>
<td>Line(80)</td>
<td>explicit</td>
<td>( S_1(N_1) )</td>
<td>Invalid!</td>
</tr>
<tr>
<td>(f)</td>
<td>XX(,5)</td>
<td>implicit</td>
<td>( D_1(B_1) ) or ( D_2(B_2) )</td>
<td>implicit</td>
</tr>
</tbody>
</table>

Note:

(c) The form \( D(B) \) is valid only if \( A \) is absolute and \( L'B \) is between 0 and 15; but it is very unlikely anyone would specify \( B_2 \) that way!

(e) 80 cannot be either a length or a base register for an SS-2-type instruction.

(f) The symbol XX must be absolute.
Section 10 Solutions

Section 10.5

10.5.1. The two statements are in reversed order. The value of the LC before the BASR is encountered may be 2 (or even 3) less than the value of the LC after the BASR has been assembled. Thus the value placed in the USING Table by the Assembler will cause it to calculate displacements that are 2 (or 3) bytes too large. This will undoubtedly lead to incorrect operand addresses when the program is executed.

Stated differently: the value of the USING base_location (at assembly time) relative to the start of the program will not be the same as the base address (at execution time), relative to the start of the program.

Section 10.6

10.6.1. If by chance the contents of the word at $N$ had been the decimal integer $20450_8 = \text{X}'4\text{FE}2'$ instead of 8, then the Effective Address of the A instruction would be $\text{X}'4\text{FE}2' + \text{X}'26' = \text{X}'5008'$, a perfectly acceptable memory address for a word (and, besides, it’s somewhere inside our program!). The subsequent instructions would have proceeded blindly, adding the contents of the word at memory location $\text{X}'5008'$ (portions of the A and ST instructions!) to the unknown contents of register 2, and storing the result at location $\text{X}'5004'$.

Following execution of the ST instruction, the first portion of the program segment would then contain

```
0060 5860 xxxx xxxx 6026 5020 6022 ...
```

where xxxx xxxx is whatever sum resulted in register 2. The constants named $N$ and ONE would be unchanged.

Section 10.7

10.7.1. The object code should be

```
0DA0
41DA12A
411A172
45EA19E
50FA176
```

10.8.1. The object code should be

```
5830B064
4A30B060
1043
9034B058
4240B056
4770B02A
```

Section 10.10

10.10.1. The statements are syntactically valid. However, the DROP statement should refer to the number of a general register, which must be between 0 and 15. The resulting diagnostic will likely say something about an invalid register number.

10.10.2. Following the first USING, the USING Table contains

<table>
<thead>
<tr>
<th>basereg</th>
<th>base location</th>
<th>RA</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>00004002</td>
<td>01</td>
</tr>
</tbody>
</table>

Following the second USING, the new entry in the USING Table will be

<table>
<thead>
<tr>
<th>basereg</th>
<th>base location</th>
<th>RA</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>00004008</td>
<td>01</td>
</tr>
</tbody>
</table>

The DROP 9 eliminates the first entry, and the DROP 10 eliminates the second. The generated code is as follows:
Because register 9 was unchanged when the last instruction was executed, it can still be used by the CPU to calculate effective addresses. Thus, the word at X'400C' will be loaded into register 1; its contents will therefore be X'5820A034'. The result does not depend on where the instructions were loaded into memory.

**Section 10.11**

10.11.1. The symbol at B is not addressable by the L instruction, because a displacement \(-2\) would be required. Execution would probably fail with a program interruption for an invalid operation code.

**Section 10.12**

10.12.1. This is generally desirable; an implied address such as X'356' in a statement should lead to an effective address of the same value. If the Assembler did not automatically supply a zero base digit, we would have to write machine instruction operands in the form X'356'(0,0) or XX'356'(0) which is less convenient, although it is more explicit.

### Programming Problem 10.1

Here is a source program:

```
TITLE 'SOLUTION TO PROBLEM 10.1'
P10_1 START X'5000'
 BASR 6,0
 USING BEGIN,6
BEGIN L 2,N
 A 2,ONE
 ST 2,N
 DS 22X
 N DC F'8'
 ONE DC F'1'
 END P10_1
```

The assembly listing looks like this:

```
005000 002C 2 P10_1 START X'5000'
005000 0060 3 BASR 6,0
05002 05024 4 USING BEGIN,6
05002 5820 6022 05024 5 BEGIN L 2,N
05006 5A20 6026 05028 6 A 2,ONE
0500A 5020 6022 05024 7 ST 2,N
0500E 8 DS 22X
05024 00000008 9 N DC F'8'
05028 00000001 10 ONE DC F'1'
05000 11 END P10_1
```

The addressing halfwords of the instructions in statements 5, 6, and 7 are the same as those we calculated by hand.
Section 11 Solutions

Section 11.1

11.1.1. Because z System supports a wide variety of data types, it would be difficult to know what conversion should be used to convert “8” to the correct internal representation. (Some assemblers use a different instruction mnemonic to indicate the desired type of internal representation.)

Section 11.4

11.4.1. The generated constants are

1. X’81’
2. X’0080’
3. X’FFFF90000063’
4. X’7F’

11.4.2. The alignments are halfword, word, and byte respectively.

Section 11.6

11.6.1. He defined four word constants, having values 1, 0, 0, and 0. (The four generated words contain the value 2^96 as a 128-bit binary constant, which might be useful to someone doing 128-bit binary arithmetic.) He could either rewrite the constant without the commas (and learn to count carefully), or use blanks, as in

TEN_to_9 DC F’1 000 000 000’

The resulting constant is X’3B9ACA00’.

11.6.2. The generated constant is X’00000001 FFFFFFFF 00000001 FFFFFFFF’ (where spaces have been inserted for readability).

Section 11.8.

11.8.1. The four values are

1. F’20000’ or F’2E4’ X’00004E20’ Aligned
2. F’50000’ or F’5E4’ X’0000C350’ Aligned
3. FL2’20000’ or FL2’2E4’ X’2710’ Not aligned
4. FL4’80’ or FL4’8E1’ X’00000050’ Not aligned

11.8.2. Consider these two constants:

TEN_to_9 DC F’1E9’
TEN_to_9 DC FE9’1’

11.8.3. The object code is X’5820F036, 5A20F03A, 5B20F03E, 5020F042’. The four missing LC values are X’000038, 00003C, 000040, 000044’.
Section 12 Solutions

Section 12.1

12.1.1. Try F’1E9’.

12.1.2. The first constant will generate X’00000001’; all the others generate zero.

12.1.3. The Assembler rounds the fraction part—the bits lost at the right of the radix point—so the generated constant is X’0001’. (If you use a scale or exponent modifier, you can create fixed-point binary constants with fractional parts. We’ll see some examples later.)

12.1.4. The generated constant will be X’80000000’, with an Assembler error message saying the value is too large. The operand is treated as a signed value, and exceeds 2^{31}−1 by 1.

12.1.5. The two binary integer constant words (named N and ONE) must be on a word boundary, so their addresses will increase by 4 (not 2!) to X’5028’ and X’502C’.

12.1.6. The values are:

DC F’−2147483620’ X’80000001C’
DC H’−32594’ X’80AE’
DC F’+2147483260’ X’7FFFFFF7C’

Section 12.2

12.2.1. The values are X’00000017C’, X’00000564’, and X’00000012’.

Section 12.3

12.3.1. The values are X’00C1’, X’0B5E’, and X’002D’.

12.3.2. S-constants 1, 3, 4, and 5 are valid, but S(A(N)) is not, since the displacement A is not absolute. Constants 1 and 5 depend on USING information, but normally there will be no USING statement that would affect S(N). In S(N(7)), N must have a value between 0 and 4095, and in S(7(N)), N must have a value between 0 and 15.

Section 12.4

12.4.1. 33, 7, and 5 bytes respectively. (Did you peek at Section 12.5?)

12.4.2. You’d really be doing it the hard way this way. Since the implied length is 100 bytes, you must write between 793 and 800 binary digits. Assuming you write 54 per record (using the usual continuation rules), you would need 15 records, which could exceed the allowable maximum for your Assembler. There may be a better way.

12.4.3. You can’t; think about it again. (In a character constant, a comma is part of the nominal value, not a separator.)

12.4.4. Two possible interpretations, and their Assembler Language defining statements, are:

DC F’1077952604’ Word binary integers
DC C’•••∗’ Characters (three blanks and an asterisk)

Other interpretations are possible, as we’ll see later.

12.4.5. The value of four blank characters interpreted as an integer is 1,077,952,576.

12.4.6. The generated constants are:

(1) X’F1’
(2) X’001F’
(3) X’00123456’

12.4.7. The generated constants are

1. X’C17DC250C3’
2. X’7DC150C270DCC3’
3. X’C1C2C3C670’

12.4.8. Just write
12.4.9. The generated constants for each symbol, and the differences, are:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Generated Constant</th>
<th>Differences</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>X'0000000000'</td>
<td>Both constants generate the same data, A and B have different length attributes.</td>
</tr>
<tr>
<td>B</td>
<td>X'0000000000'</td>
<td>Different data is generated, and</td>
</tr>
<tr>
<td>C</td>
<td>X'0707070707'</td>
<td>C and D have different length attributes.</td>
</tr>
<tr>
<td>D</td>
<td>X'4040404040'</td>
<td>Both constants generate the same data,</td>
</tr>
<tr>
<td>E</td>
<td>X'0000000000'</td>
<td>E and F have different length attributes.</td>
</tr>
<tr>
<td>F</td>
<td>X'0000000000'</td>
<td>Different data is generated, and</td>
</tr>
<tr>
<td>G</td>
<td>X'5C5C5C5C5C5C'</td>
<td>G and H have different length attributes.</td>
</tr>
<tr>
<td>H</td>
<td>X'5C5C5C5C5C5C'</td>
<td></td>
</tr>
</tbody>
</table>

12.4.11. X'F3F4F540'.

Section 12.5

12.5.1. The DC operand CL2'ABC' is truncated on the right, so the generated constant will be X'C1C2'. In the address constant, the value of the expression is X'00C1C2C3', which will be truncated on the left, giving X'C2C3' for the generated constant.

12.5.2. The constants and their alignments are

(1) F'1000'  X'000003EB'  Word
(2) H'1000'  X'03EB'    Halfword
(3) B'1000'  X'08'      Byte
(4) XLY'1000' X'00'     Byte (truncated)
(5) CLY'1000' X'F1'     Byte (truncated)
(6) AL1(1000) X'EB'     Byte (the last 8 bits of the term)
(7) YL3(1000) Length error

The constant AL1(1000) does not generate an error message!

12.5.3. The values are:

(1) X'00F1'
(2) X'01E2'
(3) X'001234'
(4) X'2345'

12.5.4. The constants that cannot be fit into smaller fields are X'56789' and Y(X'124').

Section 12.6

12.6.1. The generated constant is X'000005000002'.

12.6.2. The generated constant is X'C2D3C1D5D25040'.

12.6.4. If the constant named Message starts on a word boundary, it will end one byte past a word boundary, so that three bytes must be skipped to align the A-type constant named MsgLen. If it starts at a location one byte before a word boundary, zero bytes must be skipped. Thus, anywhere between zero and three bytes will be skipped.

Section 12.8

12.8.1. The generated values are

(1) X'4E20'  aligned by default
(2) X'0000C350'  aligned by default
(3) X'2710'  not aligned by default
(4) X'00000050'  not aligned by default
Section 13 Solutions

Section 13.1

13.1.1. Nothing is generated, since they are all DS statements. The length attribute of each symbol is 4, with the length of Y being implied. The values of the symbols are X'12345', X'1234C' (note alignment), and X'12350' respectively.

Section 13.2

13.2.2. The solutions are shown in this table:

<table>
<thead>
<tr>
<th>Sym</th>
<th>Value</th>
<th>LA</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>X'346'</td>
<td>2</td>
</tr>
<tr>
<td>K</td>
<td>X'34C'</td>
<td>1</td>
</tr>
<tr>
<td>L</td>
<td>X'350'</td>
<td>4</td>
</tr>
<tr>
<td>P</td>
<td>X'345'</td>
<td>3</td>
</tr>
<tr>
<td>Q</td>
<td>X'348'</td>
<td>3</td>
</tr>
<tr>
<td>R</td>
<td>X'350'</td>
<td>4</td>
</tr>
<tr>
<td>T</td>
<td>X'345'</td>
<td>2</td>
</tr>
<tr>
<td>V</td>
<td>X'348'</td>
<td>2</td>
</tr>
<tr>
<td>W</td>
<td>X'350'</td>
<td>4</td>
</tr>
</tbody>
</table>

13.2.3. The values and Length Attributes are:

1. A DC F'2' A has value X'348', Length Attr. = 4
2. DS OH
   DC C'*
   A DC C'Asterisk' Value=X'347', Length=8
3. DC OF'1'
   A DC 0XL27'0' Value=X'348', Length=27
4. A DC A(A) Value=X'348', Length=4
5. DS 19H
   A DC X'12345' Value=X'36C', Length=3
6. DC 3CL4'ABCDE'
   A DC C'A&&B' Value=X'351', Length=3
7. DS CL400
   A DC F'12,34,56' Value=X'4EO', Length=4

Section 13.3

13.3.1. The length attribute of a symbol is determined from the length attribute of the first term in the first-operand expression. In this case, that term is the symbol Table, which has length attribute 4.

13.3.2. The result will be incorrect only if the length attribute of the symbol HW8 is expected to be 2. This is considered a poor programming practice. It runs the risk that someone might change the constant named FW8 to some other value with another name, and then the symbol HW8 could be undefined!

13.3.3. The first two definitions are equivalent, and the last two are equivalent (the parentheses have no effect other than improving readability). The first two definitions, however, are incorrect: if the value of TblSiz is odd, the value assigned to MidTbl will be aligned on a halfword boundary between two word boundaries, and attempts to refer to the word at MidTbl would be erroneous.

13.3.4. (See your solution to Exercise 11.7.1 also.) The symbols A3 and A5 behave in exactly the same way as the symbols they are equated to. Symbol A4 will not have the expected value, because the Assembler does not allow literals as operands of EQU statements. (What advantages would there be to allowing literals as EQU operands?)

13.3.6. The definitions are circular, so the Assembler can't determine what should be done.

13.3.7. Both pairs are valid. (For some very old assemblers, the second pair would cause the symbol BAKER to be undefined because its operand was not yet defined.)

13.3.8. All symbols are relocatable. The symbols, their values, and their length attributes, are:
13.3.9. You will remember from Section 8.3 that the assembler evaluates division by zero in an expression as zero. First, we show how to break the calculation into four steps, using four auxiliary symbols $K_1$, $K_2$, $K_3$, and $K_4$.

$K_1$ Equ $A/B$ 0 if $A < B$, > 0 otherwise
$K_2$ Equ $B/A$ 0 if $B < A$, > 0 otherwise
$K_3$ Equ $K_1/K_2$ 0 if $A < B$, 1 otherwise
$K_4$ Equ $K_2/K_1$ 0 if $B < A$, 1 otherwise

MaxOfA_B EQU $A*K_3*(1-K_4)+B*K_4$ Final result

The factor $(1-K_4)$ is needed in case $A$ and $B$ are equal. Then, we can write the full expression as follows:

MaxOfA_B EQU $((A/B)/(A/B))*A+(1-((A/B)/(A/B)))*((B/A)/(B/A))*B$

It's not very pretty, but it works!

13.3.10. The values and Length Attributes are:

1. Value = X'2924', Length attribute = 4
2. Value = X'291', Length attribute = 3
3. Value = X'0009', Length attribute = 2

13.3.11. The symbols and their value and Length Attributes are:

1. A DS F Value=X'12348', Length=4
2. B DS 2H Value=X'1234C', Length=2
3. C DS 2CL2 Value=X'12350', Length=2
4. F DC A(F) Value=X'12348', Length=4
5. G DC 3AL3(F,G,H) Value=X'1234C', Length=4
6. H DC Y(‘-F,275’) Value=X'12368', Length=2
7. P DC 2C'3&&' Value=X'12345', Length=2
8. Q DC 2A(C'3&&') Value=X'1234C', Length=4
9. R DS 3XL3'FEDCBA93' Value=X'12354', Length=3
10. X DC 0FL5'5,10,20' Value=X'12345', Length=5
11. Y DC FL3'5,10,20' Value=X'12345', Length=3
12. Z DC 2C'5,10,20' Value=X'1234E', Length=7

13.3.12. The symbols and their generated data are:

- F X'000012348'
- G X'012348 01234C 012368' (repeated 2 more times!)
- H X'002000113'
- P X'F350F350'
- Q X'00000535000000F350'
- Y X'0000005000000A00014'

13.3.13. The symbols and their values and Length Attributes are:

1. STR DS 0CL8 Value=X'10DBC5', Length=8
2. W DS 0F Value=X'10DBC8', Length=4
3. X DS 2F Value=X'10BBD0', Length=4
4. P DS 0F Value=X'10DBC8', Length=4
5. Q DS 0H Value=X'10DBC8', Length=2
6. R DC 4X'40' Value=X'10DBC8', Length=1
7. S EQU *-P Value=X'000004', Length=1

13.3.14. The values of the symbols, the length attributes, the data locations, the final LC value, and the assembled data are given in hex. Underlined zeros indicate padding bytes inserted by the Assembler.
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Value</th>
<th>L.Att</th>
<th>DataLoc</th>
<th>LCval</th>
<th>data</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>128</td>
<td>4</td>
<td>128</td>
<td></td>
<td>000000FFFEFF</td>
</tr>
<tr>
<td>B</td>
<td>12C</td>
<td>2</td>
<td>12C</td>
<td>12E</td>
<td>0021</td>
</tr>
<tr>
<td>D</td>
<td>125</td>
<td>4</td>
<td>125</td>
<td></td>
<td>00000011</td>
</tr>
<tr>
<td>C</td>
<td>12A</td>
<td>2</td>
<td>12A</td>
<td>12C</td>
<td>00FFDF</td>
</tr>
<tr>
<td>E</td>
<td>125</td>
<td>8</td>
<td>125</td>
<td></td>
<td>000000000000C1C2C3C4C5C6C7C8</td>
</tr>
<tr>
<td>F</td>
<td>130</td>
<td>4</td>
<td>130</td>
<td>134</td>
<td>0000000000003E8</td>
</tr>
<tr>
<td>G</td>
<td>126</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>12C</td>
<td>4</td>
<td>12C</td>
<td>130</td>
<td>0000129E</td>
</tr>
<tr>
<td>J</td>
<td>126</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>126</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>128</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>128</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>128</td>
<td>4</td>
<td>128</td>
<td>12C</td>
<td>00FFFC18</td>
</tr>
<tr>
<td>P</td>
<td>125</td>
<td>3</td>
<td>125</td>
<td></td>
<td>000000C1C2C3C4C5C6C7C8</td>
</tr>
<tr>
<td>Q</td>
<td>130</td>
<td>4</td>
<td>130</td>
<td>13B</td>
<td>000000C1C2C3C4C5C6C7C8</td>
</tr>
<tr>
<td>R</td>
<td>128</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>288</td>
<td>50</td>
<td>308</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AB</td>
<td>128</td>
<td>4</td>
<td>128</td>
<td>134</td>
<td>00000000000384 0080000000000001</td>
</tr>
<tr>
<td>BC</td>
<td>125</td>
<td>2</td>
<td>125</td>
<td></td>
<td>000070007000701</td>
</tr>
<tr>
<td>CD</td>
<td>12C</td>
<td>2</td>
<td>12C</td>
<td>130</td>
<td>3FFFC001</td>
</tr>
<tr>
<td>DE</td>
<td>128</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EF</td>
<td>13C</td>
<td>4</td>
<td>13C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>125</td>
<td>2</td>
<td>125</td>
<td></td>
<td>000000000000384 0080000000000001</td>
</tr>
<tr>
<td>V</td>
<td>127</td>
<td>2</td>
<td>127</td>
<td></td>
<td>000070007000701</td>
</tr>
<tr>
<td>W</td>
<td>12B</td>
<td>8</td>
<td>12B</td>
<td>13B</td>
<td>000000000000384 0080000000000001</td>
</tr>
<tr>
<td>Y</td>
<td>126</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>128</td>
<td>2</td>
<td>128</td>
<td>12C</td>
<td>000000000000384 0080000000000001</td>
</tr>
<tr>
<td>Z</td>
<td>125</td>
<td>2</td>
<td>125</td>
<td></td>
<td>000000000000384 0080000000000001</td>
</tr>
<tr>
<td>ZZ</td>
<td>128</td>
<td>4</td>
<td>128</td>
<td>130</td>
<td>000000000000384 0080000000000001</td>
</tr>
</tbody>
</table>

### Section 13.4

13.4.1. The length and value attributes are:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Length</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>8</td>
<td>X'2024'</td>
</tr>
<tr>
<td>Desc</td>
<td>60</td>
<td>X'202C'</td>
</tr>
<tr>
<td>Fill</td>
<td>29</td>
<td>X'2068'</td>
</tr>
<tr>
<td>LFill</td>
<td>1</td>
<td>X'2010'</td>
</tr>
<tr>
<td>Pfx</td>
<td>24</td>
<td>X'2000'</td>
</tr>
<tr>
<td>Prod</td>
<td>12</td>
<td>X'2018'</td>
</tr>
<tr>
<td>Result</td>
<td>133</td>
<td>X'2000'</td>
</tr>
</tbody>
</table>

### Section 13.5

13.5.1. This technique will work correctly so long as nothing is ever stored at either FW8 or HW8. Another way to get the same result is to write

```
FW8 DC F'8'
HW8 Equ FW8+2,2 Define halfword, length attribute 2
```
13.5.2. The asterisk in column 1 indicates a comment, not the value of the LC! The last statement should be replaced by ORG Here.

13.5.3. (1) B has value X’9830’, and length attribute 2. (2) B has value X’9838’, and length attribute 8. (3) B has value X’9860’, and length attribute 4.

13.5.4. (1) B is relocatable, has value X’9837’, and length attribute 5. (2) B is relocatable, has value X’B942’, and length attribute 1.

13.5.5. We could write

<table>
<thead>
<tr>
<th>Sym</th>
<th>Value</th>
<th>LA</th>
<th>Generated constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>X’12345’</td>
<td>3</td>
<td>X’E450C9’</td>
</tr>
<tr>
<td>B</td>
<td>X’12348’</td>
<td>4</td>
<td>X’00012348’</td>
</tr>
<tr>
<td>C</td>
<td>X’12346’</td>
<td>2</td>
<td>X’0089’</td>
</tr>
<tr>
<td>D</td>
<td>X’12345’</td>
<td>3</td>
<td>X’00020002’</td>
</tr>
<tr>
<td>E</td>
<td>X’12345’</td>
<td>4</td>
<td>X’C1404055000000000000040’</td>
</tr>
<tr>
<td>F</td>
<td>X’12345’</td>
<td>1</td>
<td>X’0000010003’</td>
</tr>
</tbody>
</table>

The underscored bytes in the generated constant for E are zero bytes inserted for alignment in the middle of the constant. Whether or not the underscored bytes for F are generated depends on whether the immediately preceding field contains just-generated bytes (in which case the padding byte is present).

13.5.6. The symbol SET will be the operand of the ORG instruction, which is undoubtedly not what was intended. If a symbol SET has been defined somewhere in the program (which is just a matter of chance), the LC will be assigned its value, but that is quite unlikely to be the highest LC value attained in the program. (Or what is wanted!)

13.5.7. The assigned and desired lengths are both 80 bytes.

For the “Bonus” question, you could write something like

```assembly
DS (80-StmtLen)XL(StmtLen-80+1)
```

If StmtLen has exactly the desired value 80, this statement becomes

```assembly
DS 0XL1
```

but if its value is greater than 80 the duplication factor will be negative; and if its value is less than 80, the explicit length will not be greater than zero. In both cases, the Assembler will issue an error message.

**Section 13.6**

13.6.1. The storage definitions are the same, but the length attributes of the symbol FGroup are different. (What are their values?) One way to see the similarity of the definitions is to consider defining

```assembly
NWords Equ 1 Table has one word
```

Both definitions will allocate both Table and LastWord at the same location.

**Section 13.7**

13.7.1. The Assembler doesn’t rescan LC-dependent expressions unless they appear as nominal values in A-type or Y-type constants. The statements will generate ten copies of the first constant, X’00000001’ . (It would be helpful if the Assembler indicated that the operand has a modifier requiring re-scanning if a Location Counter Reference appears in the expression.)

13.7.2. The solutions are shown in this table:

<table>
<thead>
<tr>
<th>Sym</th>
<th>Value</th>
<th>LA</th>
<th>Generated constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>X’12345’</td>
<td>3</td>
<td>X’E450C9’</td>
</tr>
<tr>
<td>B</td>
<td>X’12348’</td>
<td>4</td>
<td>X’00012348’</td>
</tr>
<tr>
<td>C</td>
<td>X’12346’</td>
<td>2</td>
<td>X’0089’</td>
</tr>
<tr>
<td>D</td>
<td>X’12345’</td>
<td>3</td>
<td>X’00020002’</td>
</tr>
<tr>
<td>E</td>
<td>X’12345’</td>
<td>4</td>
<td>X’C1404055000000000000040’</td>
</tr>
<tr>
<td>F</td>
<td>X’12345’</td>
<td>1</td>
<td>X’0000010003’</td>
</tr>
</tbody>
</table>

The underscored bytes in the generated constant for E are zero bytes inserted for alignment in the middle of the constant. Whether or not the underscored bytes for F are generated depends on whether the immediately preceding field contains just-generated bytes (in which case the padding byte is present).

13.7.3. The expression ‘(*-Sqrs)’ increases by 2 each time a constant is generated; because the table starts at one-squared, we add 2. Then, because the product increases by 4 for each constant, we divide by 4.
13.7.4. Your assembled table should look like this (use the Assembler's PRINT DATA statement to see all the generated data):

```
0001010201020203 010202020302030304
0102020302030304 0203030403040405 <-- Note the '03' byte
0203030403040506 0304040504050506
0102020302030304 0203030403040405
0203030403040506 0304040504050506
0304040504050607 0405050605060607
0102020302030304 0203030403040405
0203030403040506 0304040504050506
0304040504050607 0405050605060607
0405050605060607 0506060706070708
```

To see how the DC statement works, consider the underscored byte at offset 19. The first term is \(^{-T}\), or 19. The next term subtracts \((^{-T})/2\), or 9. The next term subtracts \((^{-T})/4\), or 4. The fourth term subtracts \((^{-T})/8\), or 2, and the fifth term subtracts \(19/16\), or 1. All succeeding terms subtract zero. Thus the final value is 19-9-4-2-1, or 3. The binary representation of 19 is \(B'10011'\) which has three 3 1-bits.

**Programming Problem 13.2.**

You can write your program this way:

```
P13_2 Start 0
 Using *,15
 Printout Chars,*
 DS 0F Align to fullword boundary
Chars DS 0CL16
Ints DC F'-1046306171,-1803381883,-1723823710,1082565781'
End P13_2
```

You should believe the printed result!

```
Chars = C'Assembler is fun'
```
Section 14 Solutions

Section 14.1

14.1.1. The first pair of instructions will load the word from memory at address X′00000008′ into GR5 (and who knows what that will be?) The second will load a word integer constant X′00000008′ into GR5. The distinction here is between the value of an addressing expression, and the value of the object in memory referenced by an addressing expression.

Section 14.2

14.2.1. There is no difference in their actions. However, the ST instruction can be indexed, while STM cannot.

14.2.2. The first word of an area of memory occupied by successive words has displacement 0 from the start of the area; thus the fourth word has displacement 12.

14.2.3. All sixteen registers can be modified by an appropriate LM instruction.

14.2.4. (1) c(X) replaces c(GR15); (2) c(GR0) replaces c(X); (3) c(X) replaces c(GR0). In each case, only one register participates.

14.2.5. Let A be the R1 register expression, and B be the R3 register expression. Then NREGS is defined by

NREGS EQU (B-A)+17*(A/A)-((A-1)/(A+1))-16*((B/A)/(B/A))

The value is the sum of four expressions: the first parenthesized expression is simply the usual difference; the second is added if A is nonzero; the third is nonzero only when A is zero; and the last expression is added when B is greater than or equal to A. Try some actual examples to see how it works.

Section 14.3

14.3.1. This form of the STH instruction would produce a bit pattern with the correct sign and the 15 low-order bits of the true 32-bit representation. For example:

X′00010001′ when stored would become X′0001′
X′00000001′ when stored would become X′7FFF′
X′FFFF0001′ when stored would become X′8001′

so there would be no improvement; use halfword data carefully! To be truly useful, such “STH” instructions should indicate an overflow condition if the sign bit was not identical to the next 16 bits to its immediate right.

14.3.2. After the first execution, c(GR2)=X′00005678′. After the second, c(GR2)=X′FFFFBA98′.

14.3.3. It could be either. These three statements generate the same object code:

STH 4,X′05C′(0,4)
DC C′*′ 3 spaces and an asterisk
DC F′1077952604′ 4-byte binary integer

14.3.4. All the “L” opcodes end in 8, and all the “ST” opcodes end in 0. Similarly, the L/ST, LH/STH, and LM/STM pairs each start with the same first hex digit.

Section 14.4

14.4.1. A useful solution is to construct a table of bytes, each containing the count of 1-bits in the difference between its location and the location of the beginning of the table. Thus, we would define the constant

* 0 1 2 3 4 5 6 7 8 9 ... 15 16 ... (value of byte at XX)
NBits DC AL1(0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,...) (number of 1-bits)

and use it as follows:

L 1,F′0′ Set GR1 to zero for IC instruction
IC 1,XX Get byte at XX with bits to count
IC 0,NBits(1) Use it as index into NBits table
STC 0,XX Replace byte at XX by its bit count

Suggested Solutions to Selected Exercises and Programming Problems 1077
Section 14.5

14.5.1. These two instructions and a two-byte temporary memory area will do the job:

\[
\begin{align*}
\text{STCM} & \quad 1, \text{B}'0110', \text{Temp} \\
\text{ICM} & \quad 1, \text{B}'0110', \text{Temp} \\
\text{Temp} & \quad \text{DS} \quad \text{XL2}
\end{align*}
\]

Section 14.6

14.6.1. The Assembler could simply interpret

\[
\text{STR} \quad R_1, R_2
\]
as

\[
\text{LR} \quad R_2, R_1
\]

This can be done easily with a macro-instruction, and no changes to the Assembler would be needed.

14.6.2. For LR, LTR, and LNR, the CC will never be set to 3 for any operand in GR \( R_2 \). For LCR and LPR, the CC will be set to 3 if the GR \( R_2 \) operand is the maximum negative number \( X'80000000' \) or \(-2147483648\).

14.6.3. Suppose GR2 contains \( X'xxxxFEDC' \), where the rightmost 4 digits are a valid halfword integer and the “xxxx” are unwanted bits. Writing

\[
\text{LHR} \quad 2, 2
\]

will extend the sign, leaving \( X'FFFFFFFEDC' \) in GR2.

14.6.4. After the first execution, \( c(\text{GR2})=X'00005678' \) After the second, \( c(\text{GR2})=X'FFFFBA98' \).

Section 14.7

14.7.1. There is no STGH instruction because its function would be exactly the same as STH.

14.7.2. Here is a solution using Load and Store instructions:

\[
\begin{align*}
\text{STG} & \quad 0, \text{DSave} \quad \text{Save all of GR0} \\
\text{L} & \quad 0, \text{DSave} \quad \text{Load high-order half into low-order 32 bits} \\
\text{LMH} & \quad 0, 0, \text{DSave+4} \quad \text{Load low-order half into high-order 32 bits} \\
\text{DSave} & \quad \text{DS} \quad \text{D} \quad \text{Temporary storage}
\end{align*}
\]

There are easier ways to do this, as we’ll see when we examine the shift instructions.

Section 14.9

14.9.1. Indexing applies only to the RX- and RXY-type instructions L and LG, but the result is equivalent to using LT and LTG, both of which can be indexed.

14.9.1. None.

Section 14.10

14.10.1. The third digit of the opcode is 0 for the RRE-type instructions that deal with all 64 bits of a general register, and 1 for the equivalent instructions that extend 32-bit data to 64 bits.

14.10.2. Complementing before sign extension could produce incorrect overflow indications. Remember that all 32-bit binary numbers can be complemented in a 64-bit representation without overflow. Thus, the source operand \( X'80000000' (-2^{31}) \) would produce an overflow when complemented.

14.10.3. Complementing a 64-bit operand can cause overflow, but after extending a 32-bit operand to 64 bits, complementation cannot cause overflow.

14.10.4. The contents of general register 0 and the CC settings are:

\begin{enumerate}
\item \( X'........ 80000000' \), CC=3 (overflow), high-order 32 bits unchanged
\item \( X'FFFFFFF0 80000000' \), CC is unchanged
\item \( X'00000000 80000000' \), CC=2 (positive)
\item \( X'00000000 80000000' \), CC=1 (negative)
\end{enumerate}

14.10.5. All 32-bit integer complements can be correctly represented in 64 bits.
Section 14.11

14.11.1. Load zeros into the $R_1$ register, and then insert the desired byte using an IC instruction.

14.11.1. Load zeros into the $R_1$ register, and then load the desired word using a L instruction.
Section 15 Solutions

Section 15.2

15.2.1. The value of the CC is exactly the offset of the tested bit in the M field of the instruction.

15.2.2. The CC must take one of the values 0, 1, 2, or 3, each of which corresponds to a 1-bit in the mask. The branch condition is always met.

15.2.3. The next instruction to be fetched will come from memory address zero, which (very!) rarely contains your program’s instructions.

15.2.4. If \( n = 0 \), or the branch condition is not met, nothing happens. If \( n \neq 0 \) the Effective Address is \( n + c(GRn) + c(GRn) \). Then, if \( n \) is even and the branch condition is met, there could be an error if the Effective Address is too large or is the address of a non-instruction. If \( n \) is odd, a specification error would occur because the Effective Address is odd.

Section 15.4

15.4.1. The given code sequence correctly aligns the address constant on a word boundary immediately preceded by the BASR. However, the DS 0F may have caused one, two, or three bytes to be skipped preceding the NOPR!

15.4.2. There are many possibilities; you only need 2-byte or 4-byte instructions that do not branch “out of line” or change the CC. For example, in place of NOPR you could use LR 0,0; and in place of NOP you could use ICM 0,0,0 or LSR 0,0 or BC 15,++4. (Operands like ++4 are considered poor programming practice.) NOPR and NOP are preferred, because the CPU need not “move” data uselessly. For NOPR, the CPU can determine from the zero branch mask that it need not consider alternative targets for the next instruction to be fetched, which it must do for BC 15,++4.\(^{311}\)

15.4.3. No branch will occur, because the R2 digit is zero; this was described in Section 15.1. (Review the discussion in Section 15.4 about possible side-effects of this instruction.)

15.4.4. The first BCR branches to address zero, where something undesirable is likely to happen; the second BCR “drains the instruction pipeline” and then continues execution.

Section 15.5

15.5.1. The LC values are: (1) X’0246’ (2) X’0248’ (3) X’0246’ (4) X’024A’ (5) X’0254’ (6) X’0246’

15.5.2. The length and value attributes are:

<table>
<thead>
<tr>
<th>Sym</th>
<th>Len</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3</td>
<td>X’000743’</td>
</tr>
<tr>
<td>B</td>
<td>4</td>
<td>X’000748’</td>
</tr>
<tr>
<td>C</td>
<td>7</td>
<td>X’000743’</td>
</tr>
<tr>
<td>D</td>
<td>10</td>
<td>X’00074C’</td>
</tr>
<tr>
<td>E</td>
<td>4</td>
<td>X’00074C’</td>
</tr>
<tr>
<td>F</td>
<td>1</td>
<td>X’000754’</td>
</tr>
</tbody>
</table>

15.5.3. \( c(D) = X’C440C4C340C37DC4C37D’ \).

15.5.4. The values and Length Attributes are:

1. Value = X’346’, Length = 4
2. Value = X’34A’, Length = 4

15.5.5. Either zero, two, four, or six bytes of No-Ops, depending on the current value of the Location Counter.

\(^{311}\) Modern processors try to improve the performance of branch instructions by maintaining a “Branch History Table” containing the address of recent branch instructions, whether or not they branched, and their branch addresses. This lets the CPU guess more reliably whether an instruction will or won’t branch, and whether it might need to begin pre-fetching instructions at the branch address. Adding branch instructions like BC 15,++4 may force other useful entries out of the Branch History Table, possibly slowing execution of your program.
Section 15.6

15.6.1. Every branch condition specified by a set of mask bits has a complementary branch condition determined by forming the ones’ complement of the mask bits. Thus, pairs of branches such as

\[
\begin{align*}
&\text{BNZ Next} \\
&\text{B LOOP}
\end{align*}
\]

should be replaced by \text{BZ LOOP}.

15.6.2. If we think of the extended mnemonics as representing separate instructions, then this description is not misleading, but it implies that the opcode is 12 bits long. It is more accurate to say that the extended mnemonics provide statements that simplify the many ways to write conditional branch instructions.

15.6.3. An example of an instruction sequence:

\[
\begin{align*}
&\text{LT 0,VAL Load and test, set CC} \\
&\text{BP POS Branch if positive} \\
&\text{BM NEG Branch if negative} \\
&\text{B ZERO Branch if zero}
\end{align*}
\]

The last instruction is \text{B}. Should it be \text{BZ} instead?

15.6.4. The operation code \textit{X’40’} is the \text{STH} instruction, so that the “instruction” \textit{X’40404040’} appears to be the RX-type instruction

\[
\begin{align*}
&\text{STH 4,X’040’(0,4) Store a halfword}
\end{align*}
\]

Depending on the contents of GR4 (the apparent base register), its contents could be stored almost anywhere, 64 bytes beyond the address in GR4. Because there are 132 space characters, the instruction could be repeated 33 times if it does not cause a program interruption for a protection or addressing exception. The “instruction” executed after the 33rd STH will depend on what follows the constant named \textit{Target} in memory at execution time.

Section 15.7

15.7.1. The EQU statement is actually a comment statement! If it was in exactly the right place, his “solution” might work for a while, but if instructions between the BZ and the intended target were added or removed, the target location \text{*18} would be incorrect. This is why using * in branch instructions is a poor programming practice.

Section 15.8

15.8.1. All instructions begin on a halfword, or even, boundary.

Section 15.9

15.9.1. Yes. Many first-generation computers used branch instructions tested the sign bit of an “Accumulator” register. Later machines such as the IBM 7090 provided similar tests, and included comparison instructions that skipped none, one, or two of the following instructions, depending on whether the result of the comparison determined that the Accumulator’s contents were less than, equal to, or greater than the memory operand.

Most later machines had status flags such as “Accumulator Overflow” that served some of the function of a condition code.

15.9.2. Since the CC is a 2-bit unsigned integer, only a single value can be assigned in a single instruction execution.
**Section 16 Solutions**

**Section 16.2**

16.2.1. The BNM instruction will branch to ST if overflow occurs, so the result in c(ANS) = c(X)+c(Y) will undoubtedly be incorrect.

16.2.2. This solution uses “mathematical induction”: if (1) you can show that an assumption holds for the number 1, and (2) you can also show that if you assume it holds for a positive integer N then the assumption also holds for N+1, then (3) your assumption holds for all positive integers.

We assume that the sum of the first N odd integers is N^2.

- Our assumption is true for 1, since 1=1^2.
- Now we need to show that if the sum of the first N odd integers is N^2, it is true that the sum of the first N+1 integers is (N+1)^2.
- Now, the sum of the first N odd integers is
  \[1 + 3 + 5 + \ldots + 2\times N-1]\nand the sum of the first N+1 odd integers is
  \[1 + 3 + 5 + \ldots + 2\times N-1 + [2\times(N+1)-1]\nThe last term is 2\times N+2-1=2\times N+1, so we can write
  \[1 + 3 + 5 + \ldots + 2\times N-1 + [2\times(N+1)-1] = [N^2] + 2\times N + 1\nwhich is the same as (N+1)^2.

So our assumption is true for all positive integers.

16.2.3. The following instructions test for the possibility that N may be 1, so that only a single odd number (1) is stored.

```
LH 3,NN Get the value of N from c(NN)
LM 6,9,’0,2,1,1’ Load GR6-GR9 with 0,2,1,1
ADDUP AR 6,8 Add odd integer to sum in GR6
SR 3,9 Decrease N by 1
BZ ST If it was 1, exit the loop
AR 8,7 Next odd integer in GR8
B ADDUP Branch back (N-1) times
ST 6,ST Store result in GR6 at SUM
```

A useful exercise is to write a short program to test both forms of this instruction sequence: this one and the one in Figure 82 on page 220.

16.2.4. The values at ONE are alternately 1 and 3; other references to ONE probably did strange things! This “technique” is useful when you want to alternate between two values x and y: subtract x from x+y and save the difference for the next subtraction.

16.2.5. There are many ways to count the number of 1-bits in a word. This solution uses a table of bytes, each of which contains a number giving the number of 1-bits in the byte whose value is the offset of that byte from the first byte in the table. For example, the byte at offset 241 = X’F1’ = B’11110001’ contains 5, the number of 1-bits in B’11110001’.

```
SR 0,0 Answer value in GR0
SR 1,1 Work register
Byte1 IOM 1,1,Data Get 1st byte of Data
BZ Byte2 Skip if zero, no bits to count
IC 1,T(1) Get the count of 1-bits in this byte
AR 0,1 Add to answer
Byte2 IOM 1,1,Data+1 Get 2nd byte of Data
BZ Byte3 Skip if zero, no bits to count
IC 1,T(1) Get the count of 1-bits in this byte
AR 0,1 Add to answer
Byte3 IOM 1,1,Data+2 Get 3rd byte of Data
BZ Byte4 Skip if zero, no bits to count
IC 1,T(1) Get the count of 1-bits in this byte
```
AR 0,1  Add to answer
Byte4  ICM 1,1,Data+3  Get 4th and last byte of Data
BZ  Store  Skip if zero, no bits to count
IC 1,T(1)  Get the count of 1-bits in this byte
AR 0,1  Add to answer
Store STH 0,NBits  Store final bit count

This is the table with the “bits-per-byte” counts:

| T  | DC AL1(0,1,1,2,3,4,2,3,5,4,4,5,6,6,7) 00-0F |
| DC AL1(1,2,3,4,5,6,7,8,5,6,6,7,7,8) 10-1F |
| DC AL1(2,3,4,5,6,7,8,5,6,6,7,7,8) 20-2F |
| DC AL1(3,4,5,6,7,8,5,6,6,7,7,8) 30-3F |
| DC AL1(4,5,6,7,8,5,6,6,7,7,8) 40-4F |
| DC AL1(5,6,7,8,5,6,6,7,7,8) 50-5F |
| DC AL1(6,7,8,5,6,6,7,7,8) 60-6F |
| DC AL1(7,8,5,6,6,7,7,8) 70-7F |
| DC AL1(8,5,6,6,7,7,8) 80-8F |
| DC AL1(5,6,6,7,7,8) 90-9F |
| DC AL1(6,6,7,7,8) A0-AF |
| DC AL1(6,7,7,8) B0-BF |
| DC AL1(7,7,8) C0-CF |
| DC AL1(7,8) D0-DF |
| DC AL1(8) E0-EF |
| DC AL1(8) F0-FF |

16.2.6. As in the previous solution, we’ll use a table to simplify. Each byte in the table has a number corresponding to the number of leading 0-bits in the byte whose numeric value gives its offset from the start of the table. For example, the byte at offset 26=X’1A’=B’00011010’ contains 3, the number of leading 0-bits in B’00011010’.

| LA 0,31  Answer in GR0; initialize to 31 |
| SR 1,1  Work register in GRI |

Byte1  ICM 1,1,Data  Get 1st byte of Data
BP Finish Have found first nonzero bit; exit
BZ Byte1Z Skip if zero, test following byte
LCR 0,0 Negative argument; set error value
B Store And store the result

Byte1Z SH 0,=H′8′ Subtract 8 from GR0; no 1-bits found

Byte2  ICM 1,1,Data+1 Get 2nd byte of Data
BNZ Finish Have found first nonzero bit; exit
SH 0,=H′8′ Subtract 8 from GR0; no 1-bits found

Byte3  ICM 1,1,Data+2 Get 3rd byte of Data
BNZ Finish Have found first nonzero bit; exit
SH 0,=H′8′ Subtract 8 from GR0; no 1-bits found

Byte4  ICM 1,1,Data+3 Get 4rd byte of Data
BNZ Finish Have found first nonzero bit; exit
* If zero, c(Data) is identically zero, so result will be -1
Finsh IC 1,T(1) Get number of leading 0-bits in byte
SR 0,1 Deduct from running count for answer
Store STH 0,MaxPow Store the result

* T DC AL1(8,7,6,5,5,5,5,5,5,5) 8AL1(4)
DC 16AL1(3),32AL1(2),64AL1(1),128AL1(0)

There are other, simpler, and better ways to do this!

16.2.7. Because the first two bytes of the constant at NN are zero, the program would have looped until it either ran out of time, or was interrupted for a fixed-point overflow in GR6.

16.2.8. The assembled program looks like this:
16.2.9. The contents of the word at \( XX \) will be \( X'00F6FFF6' \).

16.2.10. Yes. Consider either of these instruction sequences:

\[
\begin{align*}
L & 0,=X'7FFFFFFF'' \\
L & 1,=X'80000000'' \\
AH & 0,=H'1'' \\
SH & 1,=H'1''
\end{align*}
\]

In both cases the magnitude of the result will be too large to represent correctly in 32 bits.

16.2.11. The first two instructions clear the work registers (R0 and R1) so that the original contents of their low-order bytes can’t cause a carry into the high-order 24 bits.

\[
\begin{align*}
SR & 0,0 \\
SR & 1,1 \\
ICM & 0,B'1110',X \\
ICM & 1,B'1110',Y \\
AR & 0,1 \\
STCM & 0,B'1110',W
\end{align*}
\]

Branch if the sum overflowed

16.2.12. The constant is \( X'74CBB1' \).

16.2.13. The first pair of instructions sets GR1 to zero, and then branches to address zero (not a good idea!). The second pair of sets GR0 to zero and then does not branch; BCR 15,0 is a no-operation instruction.

16.2.14. The assembled program looks like this:

\[
\begin{align*}
\text{Loc} & \quad \text{Object Code} & \quad \text{Assembler Language Statements} \\
8000 & 0D40 & \text{Ex16_2_E Start } X'8000'' \\
8002 & 9812 4016 & \text{BASR } 4,0 \\
8006 & BE27 401E & \text{Using } *,4 \\
800A & 1301 & \text{LM } 1,2,\text{Value} \\
800C & 47A0 4012 & \text{STCM } 2,B'111',\text{First} \\
8010 & 4001 4022 & \text{LCR } 0,1 \\
8014 & 07FE & \text{BCR } 15,14 \\
8016 & 0000 & \text{Followed by } ... \\
8018 & 00000005 & \text{Two padding bytes!} \\
801C & FFFFFFFF DC F'4' \\
8020 & FFFFFFA DC F'6' \\
8024 & 0000 0000 & \text{First DS } F \\
8028 & 0000 0000 & \text{Last DS } H'10' \\
\end{align*}
\]

16.2.15.

1. CC=3, \( c(\text{GR}2) = X'13579BDE' \)
2. CC=3, \( c(\text{GR}2) = X'80000001' \)
3. CC=2, \( c(\text{GR}2) = X'00010147' \) (set by ICM)
Section 16.3

16.3.1. Two possible instruction sequences are:

(1) LH 1,HW Load and extend 16 bits to 32 in GR1
AGFR 0,1 Extend 32-bit value to 64 and add

(2) STG 0,DTemp Save c(GG0) temporarily
LGH 0,HW Load and extend 16 bits to 64
AG 0,DTemp Add original contents of GG0

Both sequences have disadvantages: (1) requires an additional register, and (2) requires two accesses to a doubleword in memory.

16.3.2. Two possible instruction sequences are:

(1) LH 1,HW Load and extend 16 bits to 32 in GR1
SGFR 0,1 Extend 32-bit value to 64 and subtract

(2) STG 0,DTemp Save c(GG0) temporarily
LGH 0,HW Load and extend 16 bits to 64
LCGR 0,0 Complement the original halfword value
AG 0,DTemp Add original contents of GG0

Both sequences have disadvantages: (1) requires an additional register, and (2) requires two memory accesses to a doubleword in memory and two additional instructions. (1) is preferable unless all the other general registers contain data or addresses that you don’t want to have to save briefly in memory.

Section 16.4

16.4.1. Because a comparison does not produce an arithmetic result—only a CC setting—no overflow can occur.

16.4.2. If an overflow occurs, the difference must be nonzero; thus the “sense” of the comparison is either “greater-than” or “less-than”. If for example you perform the internal arithmetic for comparing 0 to X’80000000’, you will see that the CPU should reverse the “sense”, as implied by the sign of the internal difference. Practically speaking, if the result of nonzero, the CPU need only invert the sign bit when overflow occurs, and then set the CC in its usual way.

16.4.3. Because the CH instruction compares c(GR1) (which is zero) to only the first two bytes of =F5’ , the CC setting will be 0, implying that the operands are equal. (It’s easy to make this type of programming error!)

16.4.4. The assembled program looks like this:

<table>
<thead>
<tr>
<th>Loc</th>
<th>Object Code</th>
<th>Assembler Language Statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>4800</td>
<td>0DA0</td>
<td>BASR 10,0</td>
</tr>
<tr>
<td>4802</td>
<td></td>
<td>Using *,-10</td>
</tr>
<tr>
<td>4802</td>
<td>5800 A056</td>
<td>Loop L 0,1,One</td>
</tr>
<tr>
<td>4806</td>
<td>5A00 A056</td>
<td>A 0,1,One</td>
</tr>
<tr>
<td>480A</td>
<td>5000 A052</td>
<td>ST 0,Number</td>
</tr>
<tr>
<td>480A</td>
<td>5000 A052</td>
<td>ST 0,Number</td>
</tr>
<tr>
<td>480E</td>
<td>&lt;other ops&gt;</td>
<td>PrintOut Number</td>
</tr>
<tr>
<td>4824</td>
<td>5900 A05A</td>
<td>C 0,1,10</td>
</tr>
<tr>
<td>482B</td>
<td>4740 A000</td>
<td>BL Loop</td>
</tr>
<tr>
<td>482C</td>
<td>&lt;other ops&gt;</td>
<td>PrintOut *</td>
</tr>
<tr>
<td>4854</td>
<td>000000000</td>
<td>Number DC F’0’</td>
</tr>
<tr>
<td>4858</td>
<td>000000001</td>
<td>One DC F’1’</td>
</tr>
<tr>
<td>485C</td>
<td>00000000A</td>
<td>Ten DC F’10’</td>
</tr>
</tbody>
</table>

Section 16.5

16.5.2. First, we write the original instruction sequences in Figures 90 and 91 in two columns:
The only operand that properly causes overflow is the 64-bit maximum negative number $X'$ \text{8000000000000000}'$. The instructions in the first column use only logical addition and subtraction, so they cannot cause an overflow condition. Both LCR instructions in the second column can potentially cause an overflow condition, so we would have to take steps to suppress a Fixed-Point Overflow interruption. If we do this, then both instruction sequences could be followed by these:

- **LTR 1,1**: Check low-order word for zero
- **BNZ NoOverflow**: If it’s nonzero, operand can’t overflow
- **C 0,=A(X'8000000000000000')**: Check high-order word for max neg #
- **BE Overflow**: 64-bit complementation would indicate overflow

NoOverflow - - -

16.5.3. Consider the following instructions:

- **LM 0,1,A**: Get all 64 bits of 1st operand
- **AL 1,B+4**: Add low-order half of second operand
- **BC 12,NoCarry**: Branch if no carry, it’s easy
- **CProp A 0,=F’1’**: Now add the carry
- **BNO NoCarry**: If no overflow, finish up normally
- **Carry A 0,B**: Now add high-order halves
- **BNO Overflow**: If no oflo now, sum has overflowed
- **B Okay**: Sum is correct
- **NoCarry A 0,B**: Add high-order halves normally
- **Okay STM 0,1,C**: 64-bit sum stored at C
- **B0 Overflow**: If overflow now, it’s true

If an overflow occurs in propagating the low-order carry at the instruction named **CProp**, the original contents of GR0 (the first word of the first operand) must have been $X'$ \text{7FFFFFFF}'$. Thus, when adding the high-order words at the instruction named **Carry**, if no overflow occurs, the contents of the fullword at B must have been nonnegative, implying that the 64-bit sum must have overflowed.

This solution isn’t obvious; try writing a program with some sample data to test it.

16.5.5. With the LCR instructions, there’s no easy way to avoid the possibility of intermediate overflow conditions; and there is no “logical complement” instruction to help. Thus, the sequence shown in Figure 90 on page 227 could be used.

We’ll see in Section 16.9 the instructions that let us modify the bits in the Program Mask.

16.5.12. This figure shows how the CC bits are set:

<table>
<thead>
<tr>
<th>CC bits</th>
<th>Second bit=0</th>
<th>Second bit=1</th>
</tr>
</thead>
<tbody>
<tr>
<td>First bit=0</td>
<td>zero, no carry</td>
<td>nonzero, no carry</td>
</tr>
<tr>
<td>First bit=1</td>
<td>zero, carry</td>
<td>nonzero, carry</td>
</tr>
</tbody>
</table>

16.5.13. Subtraction requires adding the ones’ complement of the second operand (which will be all 1-bits) and a low-order 1-bit to the first operand (which will force a carry along the complete length of the sum, and off the left end). The CC value $B’10’$ reflects the zero result, with a high-order carry.

**Section 16.8**

16.8.1. If the CC settings following SL or SLR are 1, 2, or 3, then the settings following CL or CLR (with the same operands) will be 1, 0, or 2 respectively. Remember that the CC cannot be 0 following SL or SLR; see Exercise 16.4.1.

16.8.2. This is most easily done (now) with a CLM and CLMH instruction.
If a temporary register is available, the shift instructions we'll discuss in Section 17 can solve this problem more easily.

16.8.3. After executing the two instructions with the first pair of operands, the CC setting is 1 (c(GR0) < c(GR1)) for CR and 2 (c(GR0) > c(GR1)) for CLR. After executing the two instructions with the second pair of operands, the CC setting is 2 (c(GR0) > c(GR1)) for CR and 1 (c(GR0) < c(GR1)) for CLR.

This technique is often used in sorting, where many other types of data are compared logically. By inverting the sign bit of binary integers, (formerly) negative numbers are now logically less than (formerly) positive numbers. After the comparisons are complete, the sign bits are inverted again to restore the original values of the numbers.

16.8.5. With arithmetic comparison, all non-negative values are greater than all negative values; with logical values, all “negative” values are greater than all non-negative values. For example, compare +1 = X′00000001′ and −1 = X′FFFFFFFE′.

16.8.6. Consider this test program:

```assembly
X16_8_6 CSect ,
 Using *,15
L 0,Oldest
L 1,Later
L 2,Newest
LR 3,1 Copy Later value to GR3
SLR 3,0 Subtract Oldest value
LTR 3,3 Test result
Printout 3 *
 LR 3,2 Copy Newest value to GR3
 SLR 3,1 Subtract Later value
 LTR 3,3 Test result
 Printout 3,*.Header=No
 DS OF Align on fullword
Oldest DC X′FFFFFFFE′ Oldest value
Later DC X′FFFFFFFE′ A later value
Newest DC X′00000001′ Most recent value
EndX16_8_6
```

The calculated values in GR3 are both positive, as expected.

16.9.3.

```assembly
BALR 1,0 Program mask in GR1
SLL 1,4 Drop off ILC and CC bits
ICM 0,B′1001′,CCode New CC value in GR0
SRDL 0,4 Shift into GR1
SPM 1 Set new CC without changing pm
```

16.9.4.

```assembly
BALR 0,0 ILC, CC, PM, and IA in GR0
SLL 0,2 Drop ILC bits
SRL 0,30 Shift to right end of GR0
ST 0,CCode Store Condition Code
```

16.9.5.

```assembly
BALR 0,0 ILC, CC, PM, and IA in GR0
STCM 0,B′1000′,PMask Store that leftmost byte
NI PMask,B′1111′ Set all but Program Mask to zeros
```
Programming Problem 16.1.

The key to solving this problem is to define all the terms in A-type address constants.

* Display 3 arithmetic expressions as a 12-byte character string.
* \(c(X) = B'1000000000000000' + X'C7A98' - 231471192,
* c(Y) = X'C0FFEE' - C'@$' - 694895668, and
* c(Z) = 1073741824 + X'F194F6' + X'ABCD'.

P16_1 Start 0
Print Nogen
Using *,15
B Start
* X1 DC A(B'1000000000000000')
X2 DC A(X'C7A98')
X3 DC A(231471192)
* Y1 DC A(X'C0FFEE')
Y2 DC A(C'@$')
Y3 DC A(694895668)
* Z1 DC A(1073741823)
Z2 DC A(X'F194F6')
Z3 DC A(X'ABCD')
*
XANS DS 0XL12
ANS DS 0CL12
X DS F
Y DS F
Z DS F
*
Start DC 0H
L 0,X1
A 0,X2
S 0,X3
ST 0,X
*
L 1,Y1
S 1,Y2
S 1,Y3
ST 1,Y
*
L 2,Z1
A 2,Z2
A 2,Z3
ST 2,Z
*
Printout XANS,ANS,*
End

Your printed output will look something like this:

\[ \text{XANS} = X'F240C240D6D9405F40F240C2' \]
\[ \text{ANS} = '2 \text{ B OR } \neg 2 \text{ B'} \]
Programming Problem 16.2.

The key to solving this problem is to define all the terms with length attribute 4. This is different from Problem 16.1, because the alignment and padding of the terms is different.

* Display 4 arithmetic expressions as a 16-byte character string.
  * \( c(W) = c(WA) + c(WB) - 929065920 \), where
    * \( c(WA) = B'100000000000000' \).
    * \( c(WB) = X'1230000' \).
  * \( c(X) = c(XA) + 50344169 + c(XB) \), where
    * \( c(XA) = X'5CF17' \).
    * \( c(XB) = X'000' \).
  * \( c(Y) = c(YA) + c(YB) + c(YC) \), where
    * \( c(YA) = B'11111111' \).
    * \( c(YB) = X'1261F02' \).
    * \( c(YC) = C'ABCD' \).
  * \( c(Z) = c(ZA) + c(ZB) - c(ZC) \), where
    * \( c(ZA) = X'CAF75A' \).
    * \( c(ZB) = B'1000011' \).
    * \( c(ZC) = 511686493 \).

P16_2 Start 0
  * Print Nogen
  * Using *,15
  * B Start

CANS DS OCL16
XANS DS 0XL16
W DS F
X DS F
Y DS F
Z DS F
Start DC OH
  * L 0,=BL4'100000000000000'
A 0,=XL4'1230000'
S 0,=F'929065920'
ST 0,W
  * L 1,=XL4'5CF17'
A 1,=F'50344169'
A 1,=CL4'000'
ST 1,X
  * L 2,=BL4'11111111'
A 2,=XL4'1261F02'
A 2,=C'ABCD'
ST 2,Y
  * L 3,=XL4'CAF75A'
A 3,=BL4'1000011'
S 3,=F'511686493'
ST 3,Z
  * Printout CANS,XANS,*
End

Your printed output will look something like this:

CANS = 'IBM 360 BYTES.'
XANS = X'9C2D440F3F6F040C2EBE3C5E24B4040'
Programming Problem 16.3.

* \( c(W) = c(WA) + c(WB) - 759375551 \), where
* \( c(WA) = 'B'1000000000000000' \),
* \( c(WB) = 'X'CBA98' \).
* \( c(X) = c(XA) - c(XB) + 1386388536 \), where
* \( c(XA) = 'X'COFFEE' \),
* \( c(XB) = 'C'@#$' \).
* \( c(Y) = c(YA) + c(YB) + c(YC) \), where
* \( c(YA) = 'X'C0FFEE' \),
* \( c(YB) = 'X'1F7CD5' \),
* \( c(YC) = 'C'ABCD' \).
* \( c(Z) = c(ZA) + c(ZB) - 975583924 \), where
* \( c(ZA) = 'X'FFFF' \),
* \( c(ZB) = -65536 \).

P16_3 Start 0
    Print Nogen
    Using *,15
    B Start

    CANS DS OCL16
    XANS DS OXL16
    W DS F
    X DS F
    Y DS F
    Z DS F

    Start DC OH
    L 0,=BL4'1000000000000000'
    A 0,=XL4'CBA98'
    S 0,=F'759375551'
    ST 0,W

    L 1,=XL4'COFFEE'
    S 1,=CL4'0@#$'
    A 1,=F'1386388536'
    ST 1,X

    L 2,=BL4'111111111'
    A 2,=XL4'1F7CD5'
    A 2,=C'ABCD'
    ST 2,Y

    L 3,=XL4'FFFF'
    A 3,=A(-65536)
    S 3,=F'975583924'
    ST 3,Z

    Printout CANS,XANS,*
End

Your printed output will look something like this:

CANS = 'KILROY WAS HERE.'
XANS = X'D2C9D3D9D6EB40E6C1E240C8C5D9C548'
Programming Problem 16.4.

The three values starting at \texttt{Consts} define initial values that make it easier to start the sequence.

Title ′Solution to Problem 16.4′

\texttt{P16_4} START 0
BASR 15,0 Execution-time base register
USING *,15 Establish addressability
LM 0,2,\texttt{Consts} Initialize first 3 terms
L 3,\texttt{Count} Set print counter
LOOP
LR 4,0 Move oldest term
AR 4,1 Add middle term
AR 4,2 And youngest term
ST 4,\texttt{Value} Store for printing
PRINTOUT \texttt{Value} Print it next
LR 0,1 Move middle to oldest
LR 1,2 And previous new to middle
LR 2,4 And new one to youngest
S 3,\texttt{One} Subtract 1 from term counter
BP LOOP Branch if still positive
PRINTOUT * Stop here
\texttt{Consts} DC F′-1,0′ Previous 3 terms of sequence, with..
\texttt{One} DC F′+1′ Constant +1, third starting term
\texttt{Count} DC F′25′ Number of terms
\texttt{Value} DS F Space for printed value
END P16_4

This solution requires that the constant named \texttt{One} immediately follow the two constants named \texttt{Consts}. This is not a good programming practice; suppose someone replaced references to \texttt{One} with the literal \texttt{F′1′}?

The 25th term is $X'0011CB8C' = 1166220$.

This solution uses an array of values, adding three and storing the sum at the fourth. Halfword values can’t be used because the value of the 21st term exceeds 15 bits.

Title ′Solution to Problem 16.4′

\texttt{P16_4A} START 0
BASR 15,0 Execution-time base register
USING *,15 Establish addressability
LH 0,=H′22′ Count of new terms
LM 2,4,\texttt{Table} Get first three values
PRINTOUT 2,3,4,Header=No Print the first 3 terms
SR 1,1 Initialize index
Loop
L 2,\texttt{Table}(1) Get oldest value
A 2,\texttt{Table}+4(1) Add second-oldest value
A 2,\texttt{Table}+8(1) Add most recent value
ST 2,\texttt{Table}+12(1) Store in new position in table
PRINTOUT 2,Header=No Print the new value
AH 1,=Y(\texttt{Table}) Increment the index
SH 0,=H′1′ Decrement count
BP Loop Repeat until count = 0
PRINTOUT *,Header=No Stop
LTORG , Place literals here
\texttt{Table} DC F′0,1,2′ Three initial values
DS 22F Remaining values
END P16_4A

Programming Problem 16.7.
Using P16_7,15 Provide addressability

* Set up initial values.

LA 2,0 Previous value.
LA 3,1 Current value.

Loop PrintOut 3 Print a value.
LR 4,2 Get a copy of the previous value.
AR 4,3 Compute the next value
C 4,=F'1000000' Compare to one million
BNL Done If sum overflowed, we're done
LR 2,3 Copy current value to previous.
LR 3,4 Copy next value to current.
B Loop Repeat the calculation

Done PrintOut *,Header=No Terminate the program
End P16_7

The output will look something like this:

GPR 3 = X'00000001' = 1
GPR 3 = X'00000001' = 1
GPR 3 = X'00000002' = 2
. . . . . . . . . . . . . . . . . .
GPR 3 = X'00000003' = 3
GPR 3 = X'00040973' = 317811
GPR 3 = X'00070885' = 514229
GPR 3 = X'000C8228' = 832040

You may want to revise your solution to use the CONVERTO macro instead of PRINTOUT. (See Programming Problem 16.9.)

Programming Problem 16.8.

Using P16_8,15 Provide addressability

LA 2,0 Previous value.
LA 3,1 Current value.

Loop PrintOut 3 Print a value.
LR 4,2 Get a copy of the previous value.
AR 4,3 Compute the next value
BO Done If sum overflowed, we're done
LR 2,3 Copy current value to previous.
LR 3,4 Copy next value to current.
B Loop Repeat the calculation

Done PrintOut *,Header=No Terminate the program
End P16_8

The printed output looks something like this:

GPR 3 = X'00000001' = 1
GPR 3 = X'00000001' = 1
GPR 3 = X'00000002' = 2
. . . . . . . . . . . . . . . . . .
GPR 3 = X'43A53F82' = 1134903170
GPR 3 = X'6D73E55F' = 1836311903

It's not always a good idea to test for overflow, as an interruption may have occurred. Here are three other ways to test for the largest value:

1. Check for the largest number:

   \[
   C \quad r,=F'1836311903' \quad r = \text{register with current number}
   \]
   \[
   \text{BE Done}
   \]

   - Not an "honest" method, because you have to know the last value!

2. Use a logical addition that doesn't cause overflow, and check for an arithmetically negative result:
3. After output, test the current value against maximum positive number:

- If \((\text{max-current}) < (\text{previous})\), we know that previous+current will overflow.

**Programming Problem 16.9.**

Note that the DC statement labeled Title starts in column 15, so that the constant need not be continued (the terminal apostrophe is in column 71).

P16_9  Start 0
Using P16_9,15  Provide addressability
* Set up initial values.
  LA  2,0  Previous value.
  LA  3,1  Current value.
  PrintLin Title,TLen  Print a header line.
  PrintLin OutRec,1  Print a blank line.
Loop  CONVERTO 3,OutRec  Convert the number to characters
  PrintLin OutRec,OutLen  Print the results.
  LR  4,2  Get a copy of the previous value.
  AR  4,3  Compute the next value
  BD  Done  If sum overflowed, we're done
  LR  2,3  Copy current value to previous.
  LR  3,4  Copy next value to current.
  B  Loop  Repeat the calculation
Done  PrintLin EndRec,EndLen  Print an ending line
  PrintOut *,Header=No  Terminate the program
OutRec  DC  CL12' '  Output from CONVERTO
OutLen  Equ  '*-OutRec
Title  DC  C'Fibonacci Sequence to Maximum Positive Fullword Value'
TLen  Equ  '*-Title
EndRec  DC  C'OProgram ends.'
EndLen  Equ  '*-EndRec
End  P16_9

The output lines will look like this; note that the carriage control characters are shown.

1Fibonacci Sequence to Maximum Positive Fullword Value

1
1
2
...
701408733
1134903170
1836311903
OProgram ends.
Programming Problem 16.10.

P16_10 Start 0

USING P16_10,15 Establish addressability
SGR 2,2 Previous value in GG2; F(0)=0.
LGB 3,Byte1 Current value in GG3; F(1)=1.
Printlin Title,TLen Print a title line
Printlin OutRec,1 Print a blank line
Loop CONVERTO 19,OutRec Convert integer in GG3 to characters
Printlin OutRec,OutLen Print the results.
LGR 4,2 Get a copy of the previous value.
AGR 4,3 Compute the next value.
BO Done Overflow means we’re done.
LGR 2,3 Copy current value to previous.
LGR 3,4 Copy next value to current.
B Loop Repeat the loop
Done Printlin EndRec,EndLen Print an ending line.
PrintOut *,Header=No Terminate the program
Byte1 DC FL1′1′ Initial value for F(1)
OutRec DC CL21′ Carriage control for output.
OutLen Equ *-OutRec Length of record.
Title DC C′Fibonacci Sequence to Maximum Doubleword Value′
TLen Equ *-Title
EndRec DC C′Program ends.′
EndLen Equ *-EndRec
End P16_10

The output looks like this (with carriage control characters):

Fibonacci Sequence to Maximum Doubleword Value

1
1
2

................................
2880067194370816120
4660046610375530309
7540113804746346429

Program ends.

Programming Problem 16.11.

The assembled program looks like this:

000000 00000 0001A 1 P16_11 Csect ,
000000 00000 00018 1 P16_11 Csect ,
R:C 00000 2 Using *,12
000000 18CF 3 LR 12,15
000002 5AFO C008 00008 4 A 15,X
000006 0DCF 5 BASR 12,15
000008 00000012 6 X DC F′18′
00000C 00000004 7 DC F′4′
000010 07FE 8 Exit BR 14
000012 5BA0 C004 00004 9 L 10,X-4
000016 47FA C004 00004 10 B X-4(10)
000000 11 End P16_11

The key to following its execution is to not study the source code, because the BASR instruction changes the contents of GR12, the base register! You must calculate effective addresses carefully at each step.
Section 17 Solutions

Section 17.1

17.1.1. (1) 7, (2) 56, (3) 33, (4) 45, (5) 63, (6) 1, (7) 0.

Section 17.2

17.2.1. To find the bit, its byte address is simply K divided by 8, and the remainder of the division gives the position of
the bit within that byte.

L 2,KK Get bit number K
SRDL 2,3 Byte count in GR2
SRL 3,29 And bit number in GR3
IC 1,BStrg(2) Get desired byte in GR1
SLL 1,24 Position at left end of GR1
SLL 1,0(3) Shift off undesired bits
SR 0,0 Now clear GR0
SLDL 0,1 And move the bit into GR0 from GR1

17.2.2. First, we use a right shift:

L 1,K Shift amount in GR1
L 0,=A(X'80') Put a 1-bit in byte-position zero
SRL 0,0(1) Shift correct number of places
STC 0,KthBit Store result bit

Another solution, shifting left:

L 1,=F'7'
S 1,K Compute 7-K
L 0,=F'1' 1-bit in GR0, byte-position 7
SLL 0,0(1) Shift left 7-K places
STC 0,KthBit Store the k-th bit

17.2.3. The table at BTbl contains 8 bytes with a 1-bit in a position corresponding to its offset from BTbl.

L 1,K Load bit counter into GR1
IC 1,BTbl(1) Insert byte with indexing
STC 1,KthBit Store result

BTbl  DC X'8040201008040201' Bytes with bits 0-7

17.2.4. Even though the register is only 32 bits long, the shift amount is determined from the six (not five!) low-order
bits of the Effective Address. The shift will set all bits in GR0 to zero.

17.2.5. If you want to use the shift instructions, you could write:

IC 1,DPG+3 c(GR1)=xxxxx78
SLL 1,8 c(GR1)=xxxx7800
IC 1,DPG+2 c(GR1)=xxxx7856
SLL 1,8 c(GR1)=xx785600
IC 1,DPG+1 c(GR1)=xx786534
SLL 1,8 c(GR1)=78563400
IC 1,DPG c(GR1)=78563412

With ICM instructions, you could write:

ICM 1,B'0001',DPG+0 c(GR1)=xxxxxx12
ICM 1,B'0010',DPG+1 c(GR1)=xxxx3412
ICM 1,B'0100',DPG+2 c(GR1)=xx563412
ICM 1,B'1000',DPG+3 c(GR1)=78563412

17.2.6. These instructions do the job:
SR 1,1    Set GR1 to zero
Test C 0,=A(X'40000000')  Test value in GR0
BNL Done If c(GR0) not low, we’re done
A 1,'F'l'  Increment shift count
SLL 0,1 Shift left 1 bit
B Test Repeat test
Done -- --  Shift count in GR1

17.2.7. The representations of the data at X and Y are c(X)=X'12D687' and c(Y)=X'74CBB1'. These instructions will do the job:

   ICM 0,B'0111',X  Put X in right end of GR0
   ICM 1,B'0111',Y  Put Y in right end of GR1
   SLDL 0,8 Shift both left 8 bits
   AR 0,1 Add the values arithmetically
   STCM 0,B'1110',W Store result
   JO OverFlo Branch if the sum overflowed

The representation of c(W)=X'87A238'; the sum overflows.

17.2.8. If n=0, nothing happens; if n≠0, calculate n+c(GRn) (modulo 64: the rightmost 6 bits) and shift GRn that amount.

17.2.9. Yes: for signed integers, the LH instruction propagates the sign bit; but if the number is unsigned and its leftmost bit is 1, LH treats that bit as a sign that is propagated when it should not be. (Details like this can be very important!)

Section 17.3

17.3.1. Simulating SLDL in this case is fairly easy:

   LH 1,NShifts  Get shift amount N
   L 0,DataWord  Load the data word
   SLL 0,0(1)  Shift left N bits
   ST 0,DWord  Store high-order 32 bits
   SR 0,0  Set GR0 to zero
   ST 0,DWord+4 Store low-order 32 bits

17.3.2. Because we have assumed that the low-order word is zero, the solution to Exercise 17.3.1 will also work. (Remember that if N>32, all bits in GR0 will be lost, and c(DWord) will be zero.)

17.3.3. In this case, we must handle the portion of the high-order word that shifts into the low-order word of the double-length result.

   LH 1,NShifts  Load shift count N into GR1
   L 0,DataWord  Get high-order word into GR0
   SRL 0,0(1)  Shift off low-order bits
   ST 0,DWord  Store high-order half of result
   L 0,DataWord  Reload a copy of original data
   LCR 1,1  Complement shift count, now -N
   SLL 0,32(1)  Drop off high-order (N-32) bits
   ST 0,DWord+4 Store low-order half of result

17.3.4. In this case, we check for N≥32: if true, the high-order word of the resulting double-length logical right shift will be zero.

   LH 1,NShifts  Load shift count N into GR1
   L 0,DataWord  Get high-order word into GR0
   CH 1,'=H'32'  Check shift count
   BL Under32  Branch if less than 32 shifts
   SRL 0,32(1)  Shift N-32 bits (see note below)
   ST 0,DWord+4 Store low-order half of result
   SR 0,0  Set GR0 to zero
   ST 0,DWord  Store high-order half of result
   B Done  ... and finish
   Under32  SRL 0,0(1)  Shift off low-order bits
   ST 0,DWord  Store high-order half of result
   L 0,DataWord  Reload a copy of original data
   LCR 1,1  Complement shift count, now -N
   SLL 0,32(1)  Drop off high-order (N-32) bits
The shift amount of the instruction SRL 0,32(1) is $32+N \mod 64$; but since $N \geq 32$, the result gives the same shift count as $N-32$.

17.3.5. In this case, the initial data is 64 bits long, and is to be shifted left 0 to 31 bits. Some comment statements have been inserted to clarify the operation of the instructions.

- LH 1,NShifts Get shift count N
- LM 2,3,DWData 64-bit shifting data in (GR2,GR3)
  
  * GR2/GR3: HHH...HHHLLLLLLL...LLLLL High and low order bits
  - LR 0,3 Copy low-order word to GR0
  - SLL 0,0(1) Shift N bits left

  * GR0: LLLL0000...000
  - ST 0,DWord+4 Done with low-order half of result
  - LR 0,2 Copy high-order word to GR0
  - SLL 0,0(1) Shift left; now done with HO data

  * GR0: HHH...HHH...000
  - LCR 2,1 Put $-N$ in GR2
  - SRL 3,32(2) Shift low-order data right 32-N bits

  * GR3: 000...000...LLL
  - ALR 0,3 Merge the two pieces in GR0

  * GR0: HHH...HHHLLLLLL
  - ST 0,DWord Store high-order half of result
  
- Result: HHH...HHHLLLLLL LLLL0000...000

17.3.6. This solution is similar to that of Exercise 17.3.5:

- LH 1,NShifts Get shift count N
- LM 2,3,DWData Load 64 bits to be shifted right
- LR 0,2 Copy high-order half to GR0
- SRL 0,0(1) Shift N bits left

- ST 0,DWord Store high-order half of result
- LR 0,3 Copy low-order half to GR0
- SRL 0,0(1) Shift; low bits of low result word

- LCR 2,1 Put $-N$ in GR2
- SRL 3,32(2) Shift low-order data right 32-N bits

- ALR 0,3 Merge pieces of high/low halves

- ST 2,DWord+4 Store low-order half of result

17.3.9. The following sequence makes no checks for whether or not significant bits are lost in the rearrangement. The word containing four integers in the old format is at OLD, and the four in their new format are to be stored at NEW.

- L 0,OLD Fetch the word with 4 integers
- SRDL 0,6 Shift 6 bits of 4th integer into GR1
- SRL 1,2 Extend to 8 bits
- SRDL 0,13 All 13 bits of 3rd integer into GR1
- SRL 1,2 Extend to 15 bits
- SRDL 0,2 Shift 2 low-order 2nd integer bits
- SRL 0,2 Drop 2 high-order bits of 2nd
- SRDL 0,7 Shift last 7 bits into GR1
- ST 1,NEW Store final result

17.3.10. This first solution works so long as the number of bits allowed for the value of each integer is sufficient; the integers may then be in either the logical or the arithmetic representation.

- L 0,Fourth Get 4th integer
- SRDL 0,6 Shift into GR1
- L 0,Third Get 3rd integer
- SRDL 0,13 Shift into GR1 next to 4th
- L 0,Second Get 2nd integer
- SRDL 0,4 Shift into GR1 next to 3rd and 4th
- L 0,First Get 1st integer
- SRDL 0,9 Fill up the new word
- ST 1,NEW And store the result

A second solution using A instructions (to Add) also does the job economically, but only if the integers are unsigned.
(Explain why this is so.)
17.3.11. This solution is almost identical to that for Exercise 17.3.10.

\[
\begin{align*}
&L 0,\text{First} \quad \text{Get 1st integer} \\
&SLL 0,4 \quad \text{Make room for second} \\
&A 0,\text{Second} \quad \text{Add 2nd integer} \\
&SLL 0,13 \quad \text{Make room for third} \\
&A 0,\text{Third} \quad \text{Add 3rd integer} \\
&SLL 0,6 \quad \text{Make room for last} \\
&A 0,\text{Fourth} \quad \text{Add 4th and last integer} \\
&ST 0,\text{NEW} \quad \text{Store result} \\
\end{align*}
\]

17.3.12. The solution to Exercise 17.3.11 also works for integers in the arithmetic representation, provided that enough bits are allotted to correctly represent the given values.

17.3.13. In Figure 113 on page 249 the value zero would be stored. In Figure 114 on page 249 the program would stay in an unending loop comprising the SRDL, LTR, and BNM instructions until the program was halted.

17.3.14. For nonnegative values of \( N \), a solution might be:

\[
\begin{align*}
&L 1,\text{NN} \quad \text{Get } N \\
&LR 2,1 \quad \text{Move a copy to GR2} \\
&A 2,=F'1' \quad \text{Force a carry if low bit = 1} \\
&SRL 2,1 \quad \text{Now have Ceiling}(N/2) \text{ in GR2} \\
&AR 1,2 \quad \text{Ceiling}(N+N/2) \text{ now in GR1} \\
\end{align*}
\]

17.3.15. To set the flag bytes correctly, we must test each integer as it is packed into the result word.

\[
\begin{align*}
&LM 2,3,=F'0,1' \quad \text{For setting data-fit flags} \\
&L 0,\text{Fourth} \quad \text{Get 4th integer} \\
&SRDL 0,9 \quad \text{Shift 9 bits into GR1} \\
&STC 2,\text{FLAG4} \quad \text{Set 4th-integer FLAG4 to 'fit' value} \\
&LTR 0,0 \quad \text{Now test if it really did fit} \\
&BZ \text{OKFour} \quad \text{Skip one instruction if it did} \\
&STC 3,\text{FLAG4} \quad \text{Set data-fit FLAG4 to 'no-fit' value} \\
&OKFour L 1,\text{Third} \quad \text{Fetch 3rd integer} \\
&SRDL 0,13 \quad \text{Shift 13 bits into GR1} \\
&STC 2,\text{FLAG3} \quad \text{Set 4th-integer FLAG3 to 'fit' value} \\
&LTR 0,0 \quad \text{Now test if it really did fit} \\
&BZ \text{OKThree} \quad \text{Skip one instruction if it did} \\
&STC 3,\text{FLAG3} \quad \text{Set data-fit FLAG3 to 'no-fit' value} \\
&OKThree L 0,\text{Second} \quad \text{Get 2nd integer} \\
&SRDL 0,4 \quad \text{Shift 4 bits into GR1} \\
&\ldots \quad \text{similarly for the other integers} \\
\end{align*}
\]

17.3.16. We will illustrate two solutions: the first moves the bits from GR0 to GR1, then to GR3 and to GR2. (A sketch may help.)

\[
\begin{align*}
&L 4,=F'32' \quad \text{Set bit counter in GR4} \\
&\text{Loop} \\
&SRDL 0,1 \quad \text{Shift a bit off right end of GR0} \\
&LR 3,1 \quad \text{Move the shifted bit to GR3} \\
&SLDL 2,1 \quad \text{Move into GR2, going left} \\
&S 4,=F'1' \quad \text{Count down by 1} \\
&BP \text{ Loop} \quad \text{If count is positive, repeat} \\
&LR 1,2 \quad \text{Leave result in GR1} \\
\end{align*}
\]

The second solution uses logical addition to test for 1-bits at the left end of R0. (Again, a sketch may help.)
Section 17.4

17.4.1. The final CC setting in this instruction sequence is a correct emulation of SLDA:

SR 0,0 Set GR0 to zero
ST 0,DWord+4 Store low-order half of result
LH 1,NShifts Get shift count
L 0,DataWord Get datum to be shifted
SLA 0,0(1) Shift left N places
ST 0,DWord Store high-order half of result

17.4.2. The instruction sequence shown for the solution to Exercise 17.4.1 above can still be used, because the low-order half of the source operand was assumed to be zero.

17.4.3. In this instruction sequence, the final CC setting will not be correct:

LH 1,NShifts Get shift count N
L 0,DataWord Get data to be shifted
LR 2,0 Copy to GR2 (for low-order bits shift)
LCR 3,1 Complement N in GR3
SLL 2,32(3) Shift 32-N bits left
ST 2,DWord+4 Store low-order half of result
SRA 0,0(1) Now, shift high-order half
ST 0,DWord Store high-order half of result

The reason the CC setting is not reliable is that if the original operand was nonnegative, a nonzero bit may have been shifted into the low-order half of the result, leaving the high-order half zero. The SLA instruction would indicate CC=0, whereas SRDA would indicate CC=2 for a positive nonzero result.

17.4.4. Here, we must test for 32 or more shifts:

L 0,DataWord Get data to be shifted
LR 2,0 Copy it to GR2
LH 1,NShifts Get shift count N
CH 1,+H’32’ Check its size
BL Under32 Branch if less than 32
SRA 2,32(1) Shift right N-32 bit positions
ST 2,DWord+4 Store low-order half of result
SRA 0,32 Shift GR0 32 bits: only sign bits left
ST 0,DWord Store high-order half of result
B Done ...and exit

The CC setting at Done will not be correct. The first SRA instruction shifts N-32 positions because N≥32, and adding 32 is equivalent to subtracting 32 in the rightmost 6 bit positions of the Effective Address.

17.4.5. In this case, we must shift a 64-bit signed operand:
17.4.6. We must right-shift a 32-bit operand right \( N \) bits:

```
LH 1,NShifts Get shift count
LM 2,3,DWData Put 64-bit operand in (GR2,GR3)
LR 0,3 Copy low-order word to GR0
SRL 0,0(1) Shift right \(N \) bits
ST 0,DWord+4 Store low-order half of result
LR 0,2 Copy high-order word to GR0
SRA 0,0(1) Shift right arithmetically \(N \) bits
ST 0,DWord Store high-order half of result
LCR 1,1 Complement N
SLL 2,32(1) Shift out unneeded bits of high half
AL 2,DWord+4 Add back the low-order half’s bits
ST 2,DWord+4 Store low-order half of result
```

The CC setting is not correct.

17.4.10. Because two bits are to be removed from the high-order part of the first and second integers, sign extension is required only for the third and fourth integers.

```
L 0,OLD Fetch the word with 4 integers
SRDL 0,6 Shift 6 bits of 4th integer into GR1
SRA 1,2 Sign-extend to 8 bits
SRDL 0,13 All 13 bits of 3rd integer into GR1
SRA 1,2 Sign-extend to 15 bits
SRDL 0,2 Shift 2 low-order bits of integer 2
SRL 0,2 Drop 2 high-order bits of integer 2
SRDL 0,7 Shift last 7 bits into GR1
ST 1,NEW Store final result
```

17.4.11. Since \( c(\text{NUM}) \) is positive and nonzero, we will count the number of arithmetic right shifts:

```
L 1,NUM Get number to be checked
L 0,=F’1’ Place starting exponent in GR0
Test SRA 1,1 Shift number right once
BZ Done Finished if now zero
SLL 0,1 Double the power of 2 in GR0
B Test And try again
DONE - - - \(2**N \) now in GR0
```

Check your solution carefully to ensure that it handles cases near a “boundary”, such as an exact power of two or a number very near a power of two.

17.4.12. Because \( c(\text{NUM}) \) could be the maximum negative number, we should (in that case) consider the result in GR0 to be a number in the logical representation.
L 0,NUM Load number to be tested into GR0
LPR 1,0 Move its magnitude to GR1, set CC
L 0,=F′31′ Maybe exponent is 31?
BO Done If the LPR overflowed, we’re done
SRL 0,5 Force c(GR0)=0 without CC setting
BZ Done If CC=0, c(NUM) was zero
L 0,=F′1′ Put starting power of 2 in GR0
ShiftR SRA 1,1 Shift right once
BZ STOP Stop if we lost most significant bit
SLL 0,1 Double the power of 2
B ShiftR And try again
Done C(GR0) = the positive power of 2

You may have tried another approach: shift a “power-of-two” bit to the right, while shifting c(NUM) to the left and testing for overflow. (If you didn’t, try it!)

17.4.13. The modifications are simple:
L 1,NUM Get number to be checked
SR 0,0 Set exponent to 0
ShiftR SRA 1,1 Shift right once
BZ Done Exit if now zero
A 0,=F′1′ Add 1 to exponent
B Test And try again
Done Exponent N now in GR0

17.4.14. It is always true for nonnegative register contents, and for negative values in which the rightmost N bits are zero. Other positive values will be forced to the next lower integer. For negative integers where nonzero bits are lost, we can see that the truncation is still “downwards” toward more negative values: consider a single right shift of X′FFFFFFFFFD′, or −3. After the shift, the result is X′FFFFFFFFFE′, which has value −2.

17.4.15. Testing for the possibility of overflow is more difficult than in Exercise 17.3.15, because we cannot simply examine the high-order bits remaining after shifting the desired part out of the register. Even if the bits to the left of the shifted part are all 0 or all 1, the most significant bit of the shifted part might be different, which would imply that the value was too large for the allotted field.

17.4.16. Here is one way to do the bit count:
SR 0,0 Clear GR0 for byte to be counted
SR 2,2 Clear GR2 for bit count
IC 0,XX Pick up data byte
Loop SR 1,1 Clear GR1 for shifting a bit
SRDA 0,1 Shift a bit into GR1, set CC
BZ Store Exit loop if no 1-bits left
LTR 1,1 Check GR1 for a 1-bit
BZ Loop Loop if it was a 0
A 2,=F′1′ Increment bit count
B Loop Continue testing
Store STC 2,XX Store bit-count back at XX

17.4.17. The values are
17.4.18. The results are:

1. SRA 0,20 – c(GR0) = X'FFFFFFF76', CC=1
2. LPR 0,0 – c(GR0) = X'789ABCDF', CC=2
3. SLA 0,28 – c(GR0) = X'90000000', CC=3

17.4.19. This is one of many ways to do this:

LA 0,8	Count bits in GR0
LA 1,Char	Address of output characters
ICM 3,B'1000',Byte	Insert the byte to be formatted
Loop SR 2,2 Clear GR2	
SSDL 2,1 Shift a bit into GR2	
LA 2,X'FO'(0,2) Make an EBCDIC character	
STC 2,0,(1) Store the formatted digit	
LA 1,1,(1) Step to next output character	
SH 0,'M'1 Reduce bit count	
BP Loop Repeat for all 8 bits	

17.4.20. We’ll assume the shift count N in GR2 lies between 0 and 63; if not, we can first isolate the rightmost 6 bits of GR2.

| LTR 0,0 Check sign of c(GR0) |
| SRDL 0,0(2) Shift original argument by N bits |
| BNM NonNeg Branch if original value nonnegative |
| L 4,'F'-1' Put 32 1-bits in GR4 |
| C 2,'F'32' Check shift N count < 32? |
| BL ShortShf Branch if shift count N < 32 |
| LR 0,4 Put 32 1-bits in GR0 |
| SSDL 4,32(2) Shift N-32 bits into GR5 |
| ALR 1,5 Insert leading sign bits in GR1 |
| B SetNegCC Finish by setting Condition Code |
| ShortShf SRDL 4,0(2) Shift N 1-bits into GR5 |
| ALR 0,5 Insert leading sign bits in GR0 |
| SetNegCC LTR 0,0 Set CC=1 |
| B Done |
| NonNeg LTR 0,0 Check for nonzero bits in GR0 |
| BP Done CC=2 if c(GR0)>0 |
| LTR 1,1 Otherwise CC=0 or 2 |
| Done - - - Shifted result in c(GR0,GR1) |

17.4.21. The solution is to check whether a one bit was shifted out; if so, add 1 to the shifted operand.

| L 0,'F'-5' c(GR0) = X'FFFFFFFB' = -5 |
| SR 1,1 Clear GR1 |
| SRDA 0,1 c(GR0) = X'FFFFFFFD' = -3 |
| BNM OK OK if number was non-negative |
| LTR 1,1 Test shifted bits |
| BZ OK Some bit is not 1 |
| A 0,'F'1' Add 1 to GR0, c(GR0) = -2 |
| OK - - - |

Note that if the original value is even, the shifted bit is always zero. What happens if you start with -1? (See Exercise 17.4.14 also.)

17.4.22. Use an arithmetic shift (in either direction) with a zero shift amount.

17.4.23. 0 and -1.
Section 17.5

17.5.1. Here's a possible solution:

```
LH 2,NN Get shift count
SRDL 2,5 Shift 5 bits right
SR 2,2 Now set GR2 to zero
SLDL 2,5 Rotate count (modulo 32) in GR2
L 0,DataWord Get data to be rotated (abc...xyz)
LR 1,0 Copy it to GR1
SLL 0,0(2) Shift left N (cd...xyz00)
LCR 2,2 =-N in GR2
SRL 2,32(2) Shift right 32-N (00abc...x)
ALR 0,1 Merge the parts (cd...xyzab)
ST 0,RotateWd Store the rotated result
```

17.5.2. Here, we can use SLDL to help:

```
LH 2,NN Get shift count
SRDL 2,6 Shift 6 bits into GR3
SR 2,2 Set GR2 to zero
SLDL 2,6 Shift count (modulo 64) in GR2
LM 0,1,DWData Get operand to be rotated
CH 2,=H'32' Rotating more than 32 bits?
BL Under32 Branch if yes
 * Swap the halves, and then rotate N-32 bits
 LR 3,0 Copy high-order half to GR3
 LR 0,1 Move low-order half to GR0
 LR 1,3 And high-order half to GR1
 SH 2,=H'32' Reduce count by 32
Under32 LR 3,0 Copy high-order half to GR3
 SLDL 0,0(2) Shift both halves left N(mod 32) bits
 STM 0,1,RotatWd Store both parts of (temporary) answer
 LCR 2,2 Complement N (now within (-31,0))
 SRL 3,32(2) Shift high-order part right 32-N bits
 AL 3,RotatWd+4 Add low-order piece of result
 ST 3,RotatWd+4 Store final low-order half of result
```

17.5.3. RLLG  r,r,32

Section 17.6

17.6.1. The statement will be assembled as though we had written

```
SLL 9,0(2)
```

The contents of GR2 will depend on its position in the program, so the shift amount could vary with each assembly. (Not a good idea!) It's possible that some USING statements specifying the same relocatable value as A and a higher register number were available for resolving Addressing Halfwords, in which case that register would be used as the base register for the shift. (An even worse idea!)

17.6.2. Assuming normal base register usage conventions, the shift amount might be any even number from 0 to 62. In any given execution of the program, the number of shifts will be fixed, but it will depend on where the program was placed in memory. (Again, not a good idea!)

17.6.3. The number of shifts is not 12! As in Exercise 17.7.2, the number of shifts will be found when the address of AAA is evaluated; this could be any multiple of 4 between 0 and 60, because AAA is fullword aligned.

17.6.4. Be careful! If the original value in Rx is negative, SLDA and SRDA won't be able to set it to zero. Furthermore, if x is an odd-numbered register, none of the double-length shift instructions can be used. If x is even, SLDL and SLDA clear register x+1 instead, and SRDL and SRDA effectively move c(GRx) to c(GRx+1). Thus, (4), (6), (7), and (8) should be avoided.

17.6.5. Your table might look like this:
17.6.6. There is no reason to shift more than 31 positions in a single register; the result can be obtained either with a
shift of 31 or fewer positions, or with a different (and probably faster) instruction.

17.6.7. We will see later that the UNPK instruction provides a simpler solution to this problem.

<table>
<thead>
<tr>
<th>Shift</th>
<th>Direction</th>
<th>Length</th>
<th>Type</th>
<th>Mnemonic</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>L</td>
<td>S</td>
<td>L</td>
<td>SLL</td>
</tr>
<tr>
<td>S</td>
<td>L</td>
<td>S</td>
<td>A</td>
<td>SLA</td>
</tr>
<tr>
<td>S</td>
<td>L</td>
<td>D</td>
<td>L</td>
<td>SDL</td>
</tr>
<tr>
<td>S</td>
<td>L</td>
<td>D</td>
<td>A</td>
<td>SLD</td>
</tr>
<tr>
<td>S</td>
<td>R</td>
<td>S</td>
<td>L</td>
<td>SRL</td>
</tr>
<tr>
<td>S</td>
<td>R</td>
<td>S</td>
<td>A</td>
<td>SRA</td>
</tr>
<tr>
<td>S</td>
<td>R</td>
<td>D</td>
<td>L</td>
<td>SRDL</td>
</tr>
<tr>
<td>S</td>
<td>R</td>
<td>D</td>
<td>A</td>
<td>SRDA</td>
</tr>
</tbody>
</table>

17.6.8. The values by which the Effective Address should be divisible are:
1. L - 4
2. BC - 2 (it must be!)
3. LH - 2
4. ICM - 1
5. LR - Irrelevant: LR generates no Effective Address!
6. SRDA - 1
7. STM - 4
8. STC - 1

17.6.9. The shift amount depends on the Effective Address, so it could be any multiple of 4 between 0 and 60
(assuming the Assembler has placed the literal on a word boundary).

Section 17.7

17.7.1. The three statements will generate the same bit patterns, but only the constant named A will always be aligned
on a word boundary.

17.7.2. The generated constant is X’D864E26F’. If the letter U is omitted, all four data items are too large for the
allotted fields.

17.7.3. The generated constant is X’8C4417E1’.

17.7.4. You could write the constants as

<table>
<thead>
<tr>
<th>DS</th>
<th>0F</th>
</tr>
</thead>
<tbody>
<tr>
<td>UnsVals DC</td>
<td>FL.(LA)’U432’,FL.(LB)’U12’,FL.(LC)’U5001’,FL.(LD)’U47’</td>
</tr>
<tr>
<td>SgndVals DC</td>
<td>FL.(LA)’-232’,FL.(LB)’-8’,FL.(LC)’-4001’,FL.(LD)’-31’</td>
</tr>
</tbody>
</table>

17.7.5. Write the length modifier as L.(8*A+B)

Programming Problem 17.1.

This solution uses a logical left shift to move bits into the sign position, where they are tested with the LTR instruction.
Can you think of a way to use an SLA instruction and a test for overflow instead? Modify this solution to test for several
data values.
Title `Solution to Problem 17.1`
* Count the number of 1-bits in a word
  Print NoGen

P17_1

  START 0
  BASR 15,0       Set GR15 as base register
  USING *,15     Inform the assembler
    L 0,DATA     Get data from memory
      SR 1,1    Set shift counter to zero
  Loop        
    SLL 0,1    Shift data left one bit
      LTR 0,0  See if sign bit is a one
        BZ Error Error if zero, no one-bits there
        BM Finish Branch if yes, all done
        A 1,=F'1' Add one to shift count
      B Loop    And go shift the data again
    * Finish     
      STH 1,Count Store the shift count
      SRL 0,1 Move the data back once
      ST 0,Norm Store shifted result
      PrintOut Data,Norm,Count,*,'Header=NO' Print answers and stop

  Data DC F'7294' A number to be tested
  Norm DS XL4 Space for shifted result
  Count DS H Space for final shift count
  * Error PRINTOUT * Error stop for bad data

  END P17_1

The output for this sample Data item is:

Data    = 7294
Norm    = X'71F80000'
Count   = 18

Programming Problem 17.3.

This solution uses the arithmetic shifts:

P17_3

  Start 0
  * Unpack four signed integers packed in a word.
    Print NoGen
    Using *,15
    LA Equ 9  Bit length of integer A
    LB Equ 4  Length of B
    LC Equ 13 Length of C
    LD Equ 6  Length of D
    L 0,SgndVals Get data word into GR0
      SRDA 0,LD Shift 6 bits into GR1
      SRA 1,32-LD Sign-extend to right
      ST 1,Fourth Store fullword result D
      SRDA 0,LC Shift off 13 more bits into GR1
      SRA 1,32-LC Shift with sign extension
      ST 1,Third Store signed result of C
      SRDA 0,LB Shift off next 4 bits for B
      SRA 1,32-LB Sign-extend second integer
      ST 1,Second Store final result of B
      ST 0,First Store correct first integer A
      PrintOut First,Second,Third,Fourth,*,'Header=NO

First DS F
Second DS F
Third DS F
Fourth DS F
SgndVals DC 0F,FL.9'-'232',FL.4'-'8',FL.13'-'4001',FL.6'-'31'

The printed output shows the desired values:
First = -232
Second = -8
Third = -4001
Fourth = -31
Section 18 Solutions

Section 18.2

18.2.1. For 32-bit operands using signed multiplication, the product of two maximum negative integers yields the 64-bit signed product \(+2^{62} = X'40000000 00000000^0\), or 4611686018427387904.

18.2.2. If the operands \(x\) and \(y\) are positive, the products \(XY\) and \(xy\) are identical. If \(x\) is negative and \(y\) is positive, the logical product \(XY\) is actually \((2^{32}+x)y\); thus we need to add \(Y\) to the high-order half of the product \(xy\) as computed by the M (or MR) instruction. Similarly, if both \(x\) and \(y\) are negative,

\[XY = (2^{32}+x)(2^{32}+y) = 2^{32}(x+y) + xy\]

The \(2^{64}\) term is ignored in our 64-bit product, so we simply add \(x\) and \(y\) to the high-order half of the product \(xy\).

L 2,X Get first logical operand
L 1,Y Get second logical operand
LTR 3,1 Save for addition, and set CC
MR 0,2 Form arithmetic product
BNM NonNeg1 Branch if 2nd operand not negative
ALR 0,2 Add first operand to high-order half

NotNeg1 LTR 2,2 Check sign of first operand
BNM NotNeg2 Branch if arithmetic rep. not minus
ALR 0,3 Add 2nd operand to high-order half
NotNeg2 STM 0,1,LogProd Store 64-bit logical product

Thus:

- If \(X < 0\), add \(Y \times 2^{32}\)
- If \(Y < 0\), add \(X \times 2^{32}\)

18.2.3. The largest signed 32-bit magnitude is \((-2^{31})\), and the largest signed 16-bit magnitude is \((-2^{15})\), so the largest 48-bit product is \(2^{46} = 70368744177664\). The largest signed 64-bit magnitude is \((-2^{63})\), so the largest 96-bit product is \(2^{94} = 19807040628566084398385987584\).

18.2.4. Because the two operands are positive, the test is simple:

L 1,A Get multiplier
M 0,B Form product
LTR 0,0 Test high-order half
BNZ Overflow Error if not all zero
LTR 1,1 Test leftmost bit of low-order half
BM Overflow If a 1-bit, result is too large

18.2.5. In this case it is simplest to use SLDA for the test. Because the product must be left intact in (GR0,GR1), the shift must be done in a different register pair.

L 1,A Load multiplier
M 0,B Form product
LR 2,0 Copy left and...
LR 3,1 Right halves to (GR2,GR3)
SLDA 2,32 Now test for fit in one word
BO Overflow If overflow, product won’t fit

18.2.6.

L 1,A Load A into GR1
M 0,B Multiply by B in (GR0,GR1)
LR 2,0 Copy high-order word to GR2
LR 3,1 Copy low-order word to GR3
SLDA 2,32 Test for any overflow
BN0 Okay Branch if no overflow
LTR 0,0 Test sign of original result
BM OverNeg Branch if negative result is too big
B OverPos Branch if positive result is too big
Okay Result is representable in a fullword

18.2.7. This solution references each pair of halfwords using the addresses in GR11 and GR12, incrementing them by 2 each time. The accumulating sum is in (GR0,GR1):
L  2,=F’10’ Count items in GR2
SR  0,0 Accumulate sum in (GR0,GR1)
LR  1,0 Initialize sum to zero

Loop LH 4,0({11}) Get an operand
MH 4,0({12}) Multiply by the other
SRDA 4,32 Extend word product to 64 bits
ALR  1,5 Add low-order words
BC 12,NoCarry Skip carry add if none to add
AL  0,=F’1’ Add a carry bit
NoCarry ALR 0,4 Now add high-order words
AL 11,=F’2’ Add 2 to address of first table
AL 12,=F’2’ And to the address of second table
S  2,=F’1’ Count down items by 1
BP Loop Repeat if not done
STM 0,1,DwSum Store accumulated sum

18.2.8. Since x is always positive, we only need to test the sign of y:
L  2,Y Get (possibly negative) 2nd operand
LTR 1,2 Move to GR1 and set CC
M  0,X Multiply to form arithmetic product
BNM Y_NonNeg Now skip if y is nonnegative
AL  0,X Otherwise add correction term
Y_NonNeg STM 0,1,LProd Store 64-bit logical product

18.2.9. Because the CPU must eventually access the even-numbered register, its “address” is needed anyway. Furthermore, it is consistent to require all instructions referring to a register pair to do so with the even-numbered register.

18.2.10. Only one instruction is needed:
SLDA 0,32 Destroys original (GR0,GR1) contents
BO  Overflow Branch if overflow is indicated

18.2.11. The largest positive 32-bit magnitude is (\(2^{31}-1\)), and the largest positive 16-bit magnitude is (\(2^{15}-1\)), so the largest 48-bit product is 7036596661249. The largest positive 64-bit magnitude is (\(2^{63}-1\)), so the largest 96-bit product is 19807040619342712359383728129.

18.2.12. This technique is used: form the 64-bit product of A and B; then, if an arithmetic test of B indicates that it’s negative, add B\(\times2^{32}\) to the product.
L  1,A A in GR1
L  0,B B in GR0
LTR 0,0 Test sign of B
MR  0,0 Form the product A*B
BNM Skip Skip adding if B is not negative
AL  0,B Complete the 64-bit product

18.2.13. His instructions are incomplete. Consider multiplying 75141\(\times\)56789: the product X’FE5808A9’ is indeed 32 bits long but appears to be negative, −27785047. An additional test is needed:
L  1,X Load first operand
M  0,Y Multiply by second operand
LTR 0,0 Check high-order 32 bits
BNZ NotOK If not zero, product is too big
LTR 1,1 Check high-order bit of GR1
BZ  ProdOK Branch if high-order 33 bits are 0s

18.2.14. In the following sketch, the characters “\(\leq\)” and “\(\geq\)” mean “Logically Less Than” and “Logically Greater Than Or Equal”, respectively

\(X \ DC \ F’75141’\)
\(Y \ DC \ F’56789’\)
\(x\)
Some instructions to determine which of the two possible product fields should be used could be like these:

SRDA 0,0  
BZ P32  
BP Plus  
C 0,"F'-1"  
BNE P64  
CL 1,"X'80000000'"  
BNL P32  
B P64  
Plus LTR 1,1  
BNE P64  
CL 1,"X'80000000'"  
JL P32  
P64 STM 0,1,Prod64  
P32 ST 1,Prod32  
Done

The solution above illustrates the general idea that testing only the high-order half of the product is not sufficient. This more elegant solution takes many fewer instructions:

LR 2,1  
SRA 2,31  
CR 2,0  
JNE Prod64  
ST 1,Prod32  
J Done

Prod64 STM 0,1,Prod64

The key to this solution is that the SRA fills R2 with sign bits of the low-order half of the product, so R2 contains either 0 or $-1$. If that compares unequal to c(R0), we know there are significant bits in R0; and if it compares equal, we know that the sign bit of R1 is the same as the bits in R0 so the product has only 32 significant bits. Worth studying!

18.2.15. $X'FFFFFC0' = -64$.

**Section 18.3**

18.3.1. For 32-bit operands using logical multiplication, the product of two 32-bit maximum unsigned integers ($2^{32}-1$, $X'FFFFFFFF'F'$) yields the 64-bit unsigned product $X'FFFFFFFFFE0000001'$, or 18446744065119617025.

18.3.2. Using the same analysis as in Exercise 18.2.2, we form an arithmetic product using logical multiply instructions:

L 1,P  
L 2,Q  
LTR 1,1  
MLR 0,Y  
BNM B1  
SLR 0,2  
B1 LTR 2,2  
BZ B2  
SL 0,P  
B2 STM 0,1,ArProd

Store signed product
Section 18.5

18.5.1. The range of QD values is \(1 \leq \text{QD} \leq \text{ND}\), and the range of RD values is \(1 \leq \text{RD} \leq \text{DD}\). (The lower bound of 1 is because zero is a one-digit number.)

Section 18.6

18.6.1. Because the quotient is represented as a signed two’s complement number, its magnitude is less than or equal to \(2^{31}\). We might say that room must be left for the quotient’s sign bit.

18.6.2. A specification error occurs if \(n\) is odd. If \(n\) is even, a divide-check interruption occurs only if the dividend is not a negative number between \(-1\) and \(-(2^{31}-1)\) and the divisor is \(-1\). Thus it is highly probable that an interruption will occur. Here’s a more detailed analysis:

- If \(c(\text{GR}_n)\) is positive, the inequality in Figure 132 on page 277 is not satisfied.
- If \(c(\text{GR}_n)\) is zero, an immediate interruption occurs.
- If \(c(\text{GR}_n)\) is negative and not equal to \(-1\), the inequality in Figure 132 on page 277 is not satisfied.
- If \(c(\text{GR}_n)\) is negative and equal to \(-1\), we must then consider the contents of \(c(\text{GR}_{n+1})\):
  - If \(c(\text{GR}_{n+1})\) is non-negative, the inequality in Figure 132 on page 277 is not satisfied.
  - If \(c(\text{GR}_{n+1})\) is negative, and equal to the maximum negative number, \((-2^{31}-1)*(-1)\) fails because the quotient would be \(+2^{31}\).
  - Any other negative value is satisfactory.

18.6.3. A fixed-point divide interruption can occur only if the divisor is zero. The quotient may be too large to fit in a halfword, but no error indication is given.

\[
\begin{align*}
\text{L} &\quad 0,\text{W} & \quad \text{dividend} & \quad \text{Fetch 32-bit dividend} \\
\text{SRDA} &\quad 0,32 & \quad \text{Extend sign to 64 bits} \\
\text{LH} &\quad 2,\text{H} & \quad \text{Divisor} & \quad \text{Extend divisor to 32 bits} \\
\text{DR} &\quad 0,2 & \quad \text{Divide} \\
\text{STH} &\quad 0,\text{H} & \quad \text{Store halfword remainder} \\
\text{STH} &\quad 1,\text{H} & \quad \text{And halfword quotient}
\end{align*}
\]

18.6.4. A fixed-point divide exception is possible only if you divide the maximum negative number \(-2^{31}\) by \(-1\), because the quotient \(+2^{31}\) cannot be represented correctly.

18.6.5. A fixed-point divide interruption cannot occur: the dividend must be less than \(2^{31}\) in magnitude, so division by 3 must yield a quotient whose magnitude is less than \(2^{30}\).

18.6.6. Because \(c(\text{NN})\) is positive, there is no need to worry about a carry: at worst, a carry could propagate into the sign bit of the low-order half of the dividend. Since that bit is not a sign bit, no overflow need be signaled.

\[
\begin{align*}
\text{L} &\quad 7,\text{NN} & \quad \text{Get positive dividend} \\
\text{SR} &\quad 6,6 & \quad \text{Set high-order half to zero} \\
\text{AL} &\quad 7,\text{=}F'5' & \quad \text{Add rounding factor logically} \\
\text{D} &\quad 6,\text{=}F'10' & \quad \text{Compute rounded quotient} \\
\text{ST} &\quad 7,\text{QQ} & \quad \text{And store the result}
\end{align*}
\]

18.6.7. As in the solution to Exercise 18.6.6, it can be shown that subtracting 5 from the low-order half of a dividend cannot cause a borrow from the high-order register. Thus we could write the code sequence as follows:

\[
\begin{align*}
\text{L} &\quad 0,\text{=}F'5' & \quad \text{Set up rounding factor} \\
\text{L} &\quad 6,\text{NN} & \quad \text{Get signed dividend} \\
\text{SRDA} &\quad 6,32 & \quad \text{Extend to 64 bits, and set CC} \\
\text{BNM} &\quad \text{Skip1} & \quad \text{Branch if nonnegative} \\
\text{LCR} &\quad 0,0 & \quad \text{Complement the rounding factor} \\
\text{Skip1} &\quad \text{ALR} &\quad 7,0 & \quad \text{Add signed roundoff to right half} \\
\text{D} &\quad 6,\text{=}F'10' & \quad \text{Divide by 10} \\
\text{ST} &\quad 7,\text{QQ} & \quad \text{Store signed rounded quotient}
\end{align*}
\]

18.6.8. Simulating logical division using arithmetic divide instructions is more difficult than it might first appear. It can be done, however. If you try, be sure to test your code sequence with many values representing “boundary” conditions.

18.6.9. This solution shows one way to do it:

\[
\begin{align*}
\text{SR} &\quad 0,0 & \quad \text{Assume c(\text{GR}1) is nonnegative} \\
\text{LTR} &\quad 1,1 & \quad \text{Check sign of c(\text{GR}1)} \\
\text{BNM} &\quad \text{Next} & \quad \text{Branch if not negative} \\
\text{L} &\quad 0,\text{=}F'-1' & \quad \text{Fill \text{GRO} with sign bits} \\
\text{Next} &\quad \text{DR} &\quad 0,2 & \quad \text{Do the division}
\end{align*}
\]
This exercise was provided purely for its educational (and entertainment) value; the coding technique is clumsy and unnecessary.

18.6.11. Because you can’t represent 1/2 as an integer, you can revise the rounding formula like this:

(a) \( \text{quotient} = \frac{((2 \times \text{dividend}) + \text{divisor})}{(2 \times \text{divisor})} \)

or

(b) \( \text{quotient} = \frac{\text{dividend} + (\text{divisor}/2)}{\text{divisor}} \)

Your choice of formulas might depend on the magnitudes of dividend and divisor, and whether the divisor is even. Here’s how you might code formula (a):

```
L 0,Dividend Assume a 32-bit dividend
L 2,Divisor Assume a 32-bit divisor
AR 0,0 2*dividend
AR 0,2 (2*dividend+divisor)
SRDA 0,32 Extend to 64 bits for division
AR 2,2 2*dividend
DR 0,2 Rounded quotient now in GR1
```

We’ve assumed that magnitudes are small enough that no overflows will occur.

18.6.12. It’s simpler to write

```
SRA 5,2 Divide c(GR5) by 2
```

Because c(GR5) is nonnegative, SRL could also be used.

18.6.13. Let \( N, D, Q, \) and \( R \) represent the numerator, divisor, quotient, and remainder respectively. Then we want to calculate \( Q = \frac{N}{D} + \frac{1}{2} \). We can rewrite this as \( Q = \frac{N+D /2}{D} \). After dividing, if \( 2 \times R \geq D \), we add 1 to \( Q \). For positive \( N \) and \( D \), we can write these instructions:

```
L 2,N Get numerator
L 4,D Get divisor
LR 3,4 Copy to GR3
SRA 3,1 Form D/2
AR 2,3 Form modified numerator
SRDA 2,32 Form 64-bit
DR 2,4 Calculate tentative quotient in R3
AR 2,2 Calculate 2*R
CR 2,4 Compare to divisor
BL NoRound If less, no rounding
A 3,=F'1' Round up the quotient
```

NoRound - - -

Now, you should revise these instructions to handle \( N \) and \( D \) with arbitrary signs.

Section 18.7

18.7.1. Simulating arithmetic division using logical division instructions is more complex than a related simulation of arithmetic multiplication. This sequence of instructions handles most cases, but does not test for possible divide exceptions and does not preserve the Condition Code.

```
LM 0,1,NumL Get signed dividend in (GR0,GR1)
LTR 3,0 Check dividend sign; save in GR3
BNM GetDivsr Not negative, no need to complement
LCR 0,0 Complement high-order dividend
LCR 1,1 Complement low-order half
BZ GetDivsr If low word zero, high word is OK
S 0,=F'1' Complemented dividend now +
GetDivsr L 2,DenL Divisor in GR2
LTR 4,2 Check divisor sign; save in GR4
BNM Divide If not negative, skip complement
LCR 2,2 Complement to make + divisor
Divide DLR 0,2 Logical division, positive operands
LTR 2,2 Check dividend sign
BNM PosDvnd Branch if nonnegative dividend
LCR 0,0 Must have negative remainder
LTR 4,4 - dividend; check sign of divisor
BNM CompQuot Mixed signs, complement quotient
B Store Both -, store result
PosDvnd LTR 4,4 + dividend; check divisor sign
```
You may want to test this code sequence with some sample data, and compare the results of “normal” and simulated arithmetic division operations.

18.7.2. Both quotient and remainder are $2^{32} - 2$, and the divisor is $2^{31} - 1$. Thus, $\text{quotient} \times \text{divisor} = 2^{64} - 2^{33} - 2^{32} + 2$; adding the remainder gives $2^{64} - 2^{33}$, the dividend.

Section 18.8

18.8.1. Though ease of hardware implementation is important, the method you choose is up to you, and depends mainly on your habits and intuitive expectations. Consider the following examples:

<table>
<thead>
<tr>
<th>dividend / divisor</th>
<th>z System</th>
<th>rem $\geq$ 0</th>
<th>rounded</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>quot.</td>
<td>rem.</td>
<td>quot.</td>
</tr>
<tr>
<td>$+8 / +3$</td>
<td>+2</td>
<td>+2</td>
<td>+2</td>
</tr>
<tr>
<td>$+8 / -3$</td>
<td>-2</td>
<td>+2</td>
<td>-2</td>
</tr>
<tr>
<td>$-8 / +3$</td>
<td>-2</td>
<td>-2</td>
<td>-3</td>
</tr>
<tr>
<td>$-8 / -3$</td>
<td>+2</td>
<td>-2</td>
<td>+3</td>
</tr>
</tbody>
</table>

Table 443. Examples of different types of integer division

1. With the z System rules, you expect the integer division of 8 by 3 to give quotient 2 and remainder 2, “except for signs”.
2. With a nonnegative remainder, the magnitudes of quotient and remainder behave less comfortably.
3. The quotient of $\pm 8/\pm 3$ should be “near” 3, and the remainder will “fix it up”. The “rounded” rule might be chosen if the processor architecture represented all integer quantities in floating-point format.

18.8.2. Errors might occur in each case:

1. AR n,n will generate a fixed-point overflow if the result is not representable and an interruption if it is not masked off. This occurs if $c(\text{GR}n) \geq 2^{30}$ or $c(\text{GR}n) < -2^{30}$.
2. A specification error will occur if n is odd.
3. A specification error will occur if n is odd; if n is even, a fixed point divide exception always occurs either because $c(\text{GR}n,\text{GR}n+1) \geq 2^{32} \times c(\text{GR}n)$, or because $c(\text{GR}n)=0$.

Programming Problem 18.1.

We start with a value of x=F/2, and reduce x until a divisor is found.

```
* Find prime divisors of N**3-1

PI8_1
START 0
BASR 15,0 Set base register
USING *,15
L 1,N Get n
Outer
MR 0,1 n*n
M 0,N n*n*n
S 1,=F’1’ F(n)
LR 0,1 Initial x = F/2
SRA 0,1 x in GR0
Inner
LR 3,1 Set up divide
SR 2,2 Extend dividend
DR 2,0 F(n)/x
LTR 2,2 Check remainder
BZ Store Branch if zero
S 0,=F’1’ x=x-1
B Inner Loop for next trial

Store ST 0,X Store x
PrintOut N,X Print values
L 1,N Pick up n again
A 1,=F’1’ n=n+1
```
Programming Problem 18.2.

The only real difficulty in this problem is computing the numerator function. In subtracting the final term 14, a logical subtract must be used to detect carry conditions correctly. The method used in this solution for computing the denominator avoids the possibility of the fixed-point overflow that will occur when computing 2*Xn-5 for the last time.

Title 'Solution to Problem 18.2'

P18_2 START 0
BASR 15,0 Set base register
USING *,15
LA 3,1 Xn in GR3
LA 10,11 n in GR10
SR 5,5 3*n in GR5
Begin LR 4,3 Calculate denominator
S 4,=F'5' Xn-5
AR 4,3 Xn + (Xn-5)
LR 1,3 Now start on numerator
A 1,=F'10727' Xn + 10727
SR 0,0 Clear GR0
SLDA 0,0(5) Xn*(Xn + 10727) in (GR0,GR1)
SL 1,=F'14' -14
BC 3, Skip Branch if a carry
S 0,=F'1' Else borrow one
Skip DR 0,4 Quotient in GR1, remainder in GR0
STM 0,1,REM Store both for print
ST 3,XN Store Xn for print
PrintOut XN,Quot,Rem print results
SLL 3,3 Form new Xn
A 5,=F'3' 3*n
S 10,=F'1' Count down on number of tests
BP Begin Loop for next n value
PrintOut *,Header=NO Terminate
Rem DS F
Quot DS F
XN DS F
END P18_2

Programming Problem 18.3.

By using an integer table containing values of length 1 byte, this solution can use the same numeric quantity to index through the list of primes and to count for termination.

Title 'Solution to Problem 18.3'

P18_3 START 0
BALR 12,0
USING *,12
LA 11,10 Number of primes p to test
SR 10,10 Carry p in GR10
LoopA IC 10,Table-1(11) Get a prime from table
ST 10,P Store p for printing
LA 9,1 Compute 2**p; set GR9 = 1
SLL 9,0(10) Shift left p places
S 9,=F'1' M(p) now in GR9
ST 9,MP Store M(p) for printing
LA 7,4 Set up SI=4
S 10,=F'2' Set counter for p-2 calculations
LoopB MR 6,7 Sn*Sn
Programming Problem 18.4.

Title ‘Solution to Problem 18.4’

P18_4 START 0
BASR 15,0 Set base register
USING *,15 Inform assembler
SR 1,1 Initial value of X
* Assume worst case (denominator = 0)
Loop L 2,Max Set remainder
LR 3,2 And quotient
* Calculate denominator
LR 5,1 c(GR5) = X
SH 5,=H’21’ Subtract 21
MR 4,1 X*(X-21)
AH 5,=H’131’ Add 131
MR 4,1 X*(X*(X-21)+131)
SH 5,=H’231’ Subtract 231
BZ Print Go print if zero
* Calculate numerator
LR 7,1 Move X to GR7
MR 6,7 X squared in GR7
LR 3,7 Move X**2 to GR3
AH 3,=H’7’ Add 7
MR 2,7 Multiply by X**2
LR 2,3 Move to GR2 for shift
SH 2,=H’11’ Subtract 11
SRDA 2,32 Position for division
DR 2,5 Divide by denominator
* Store for printing
Print STM 1,3,X Store X, Rem, Quot
PrintOut X,Rem,Quot Print results
AH 1,=H’1’ Add 1 to X
CH 1,=H’12’ Compare to 12
BNH LOOP Branch if less or =
PrintOut *,Header=NO Terminate program
* Data areas
X DS F Value of argument X
Rem DS F Calculated remainder
Quot DS F Calculated quotient
Max DC F’-2147483648’
END P18_4
Programming Problem 18.5.

The largest value printed is 12 factorial = 479001600

Print NoGen

P18_5 Start 0
Using *,15
LA 1,1 Start with 1!

Loop L 3,NFact Get current value
ST 1,N Store value of N
MR 2,1 Form N!
ST 3,NFact Store new value
SLDA 2,32 Check for overflow
JD Done If overflow, all done
PrintOut N,NFact Print values
LA 1,1(,1) Increment N
J Loop Repeat

Done PrintOut *,Header=No Stop
N DS F Current value of N
NFact DC F'1' 0! = 1

End P18_5
Programming Problem 18.6.

Note that all arithmetic is done in the general registers!

Title 'Solution to Problem 18.6'

P18_6 START 0

* Calculate date of Easter for a specified year.
Using *,15

* Step (1)
  LHI 0,19 Step (1) divisor
  L 2,Year Get year
  SRDA 2,32 Extend to 64 bits
  LR 5,3 Copy to GR5
  LR 4,2 Copy high-order zeros to GR4
  DR 2,0 Calculate Y/19, A in GR2

* Step (2)
  LHI 0,100 Step (2) divisor
  DR 4,0 B in GR5, C in GR4

* Step (3)
  LR 6,5 Copy B to GR6
  SRDL 6,2 D in GR6
  SRL 7,30 E in GR7

* Step (4)
  LHI 0,25 Step (4) divisor
  LR 8,5 Copy B to GR8
  SLA 8,3 8B in GR8
  AHI 8,13 8B+13 in GR8
  SRDL 8,32 Extend to 64 bits
  DR 8,0 G in GR9

* Step (5)
  LHI 0,30 Step (5) divisor
  LR 10,2 Copy A to GR10
  MHI 10,19 19A
  AR 10,5 19A+B
  SR 10,6 19A+B-D
  SR 10,9 19A+B-D-G
  AHI 10,15 19A+B-D-G+15
  SRDL 10,32 Extend to 64 bits
  DR 10,0 H in GR10

* Step (6)
  LHI 0,319 Step (6) divisor
  LR 3,10 Copy H to GR3
  MHI 3,11 11H
  AR 3,2 A+11H
  SR 2,2 Clear GR2
  DR 2,0 M in GR3

* Step (7)
  SRDL 4,2 Divide C by 4
  SRL 5,30 J in GR4, K in GR5

* Step (8)
  LHI 0,7 Step (8) divisor
  AR 7,7 2E in GR7
  AR 7,4 2E+J
  AR 7,4 2E+2J
  SR 7,5 2E+2J-K
  SR 7,10 2E+2J-K-H
  AR 7,3 2E+2J-K+H+M
  AHI 7,32 2E+2J-K+H+M+32
  SR 6,6 Clear high-order 32 bits
  DR 6,0 L in GR6

* Step (9)
  LHI 1,25 Step (9) divisor
  LR 0,10 H in GR0
  SR 0,3 H-M

Assembler Language Programming for IBM z System™ Servers  Version 1.00
Programming Problem 18.7.

Title 'Problem 18.7: Create a hexadecimal addition table'
Print Nogen
P18_7 Start 0
Using *,15 Establish addressability
PrintLin HeadLine,L'HeadLine Print heading line
SR 0,0 Initialize row value in GR0
L 6,='A(X') Initialize digit mask
Col Loop SR 1,1 Initialize column value in GR1
LR 2,1 Copy column value to GR2
IC 2,Chars(2) Get its EBCDIC representation
STC 2,Line+1 Store in the print line
L 3,='A(Line+3) Initialize product-value position
Row Loop LR 5,1 Copy column value
AR 5,0 Multiply by row value
LR 4,5 Copy product to GR4
SRL 4,4 Move to rightmost 4 bits
NR 4,6 Leave high-order digit in GR4
NR 5,6 Leave low-order digit in GR5
IC 4,Chars(4) Get EBCDIC char for high digit
IC 5,Chars(5) And for low digit
STC 4,0,(3) Store high digit in print line
STC 5,1,(3) Store low digit in print line
A 3,'F' Step to next print-line position
A 1,='F' Increment column value
C 1,='F'16 Check for finished with this line
BL Row Loop If not done, repeat for next column
PrintLin Line,L'Line Print a line of the table
A 0,='F'1 Step to next row
C 0,='F'16 Check if all rows done
BL Col Loop If not done, repeat for next row
Printout *,Header=NO Terminate the program
Chars DC C'0123456789ABCDEF' EBCDIC characters
HeadLine DC C'1 0 1 2 3 4 5 6 7 8 9 A B C D E F'
Line DC CL(L'Headline)',
End P18_7

Programming Problem 18.8.
Title 'Problem 18.8: Create a hex multiplication table'
Print Nogen

P18_8 Start 0
Using *,15 Establish addressability
PrintLin HeadLine,L'HeadLine Print heading line
SR 0,0 Initialize row value in GR0
6,'A(,'F') Initialize digit mask
Col_Loop SR 1,1 Initialize column value in GR1
LR 2,1 Copy column value to GR2
IC 2,Chars(2) Get its EBCDIC representation
STC 2,Line+1 Store in the print line
L 3,'A(Line+3) Initialize product-value position
Row_Loop LR 5,1 Copy column value
MR 4,0 Multiply by row value
LR 4,5 Copy product to GR4
SRL 4,4 Move to rightmost 4 bits
NR 4,6 Leave high-order digit in GR4
NR 5,6 Leave low-order digit in GR5
IC 4,Chars(4) Get EBCDIC char for high digit
IC 5,Chars(5) And for low digit
STC 4,0(,3) Store high digit in print line
STC 5,1(,3) Store low digit in print line
A 3,'F(3) Step to next print-line position
A 1,'F(1) Increment column value
C 1,'F(16) Check for finished with this line
BL Row_Loop If not done, repeat for next column
PrintLin Line,L'Line Print a line of the table
A 0,'F(1) Step to next row
C 0,'F(16) Check if all rows done
BL Col_Loop If not done, repeat for next row
Printout *,Header=NO Terminate the program

Chars DC C'0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ'
HeadLine DC C'0123456789ABCD EFGH'
Line DC CL('Headline')
End P18_8

Programming Problem 18.9. This solution uses a symbolic constant ND to define the number of terms in the sequence, and the number of fraction digits to be printed. The suggested limit of 115 digits is simply because the result displayed by the PrintLin macro is limited by the length of a print line to 121 bytes.

P18_9 CSect , Calculate E to ND digits (ND < 115)
Print NoGen
Using *,15
ND Equ 60
XR 1,1 Output digit index
LA 2,ND Counter for digit index
A XR 6,6 Q = 0
LA 3,ND-1 Count K
LA 4,1(,3) K
B XR 7,7 Inner loop to generate a digit
IC 7,N(3) Get working fraction R(K)
MHI 7,10 10*R(K)
AR 7,6 10*R(K)+Q(K+1)
XR 6,6 Clear high-order dividend
DR 6,4 Divide by K
STC 6,N(3) Save new R(K)
LR 6,7 Copy Q(K)
BCTR 4,0 K=K-1
JCT 3,B Repeat inner loop
LA 6,'X,F(6) Make a zoned digit
STC 6,D(1) Store in output string
LA 1,N(1) Step output-digit index
JCT 2,A Repeat for next digits
PrintLin V,L'V+ND Print the result
The printed output is:
\[-E=2.7182818284590452353602874713526624977572709369959574966967\]

By choosing a larger size for each array element, you can make the number of terms greater; and by multiplying by a larger power of 10 you can generate multiple fraction digits on each iteration. You might enjoy using (for example) halfword terms and generating four fraction digits on each iteration. You’ll have to work out how best to display the result on multiple print lines.

**Programming Problem 18.10.** This solution is not a very efficient way to search for prime numbers: test divisors need not be larger than the largest number less than the square root of the tested value.

```
Print NoGen
P18_10 CSect ,
MaxTest Equ 99 Largest Odd value to test
Using *,15
LA 2,2
PrintOut Prime,Header=No Print the only even prime
LA 2,3
STH 2,Prime
PrintOut Prime,Header=No Print the smallest odd prime
LoopA LA 2,2(,2) Generate next test value
LA 3,3 Initial test divisor
LoopB LR 4,2 Copy test number to GR4
SRDA 4,32 Position test number for division
DR 4,3 Divide by test divisor
LTR 4,4 Test remainder
BZ NotPrime Zero remainder, not prime
LA 3,2(,3) Next test divisor
CR 3,2 Test for enough tests done
BL LoopB Try again if test divisor not too big
STH 2,Prime
PrintOut Prime,Header=No Print the next odd prime
NotPrime C 2,=A(MaxTest) See if test value is too big
BL LoopA Repeat if not
PrintOut *,Header=No Stop
Prime DC 'H'2' Initial value
End P18_10
```
Section 19 Solutions

19.2. I can’t think of a good reason. Maybe they thought it wouldn’t happen often enough?

19.3. This can be done using the instruction

\[ N \, 8,=A(X'01FFFFFF') \]  First seven mask bits are zero

We will see in Section 21 that newer instructions can eliminate the need for a mask operand in memory!

19.4. The only important feature of the solution is the logical AND instruction. Since we are shifting in a 64-bit register pair, we must guard against the possibility that a shift amount greater than 31 is specified, since this would lead to loss of bits when the SLDL is executed. Thus, we mask off all but the rightmost 5 bits of the shift amount. (A circular shift of 32 bits produces the original argument.)

\[
\begin{align*}
SR & \ 0,0 \quad \text{Clear high-order register, GR0} \\
L & \ 1,\text{Data} \quad \text{Get word to be shifted into GR1} \\
L & \ 2,\text{NShifts} \quad \text{Load shift count into GR2} \\
N & \ 2,=A(X'1F') \quad \text{Mask shift count to 5-bit value} \\
SLDL & \ 0,0(2) \quad \text{Shift by required amount} \\
OR & \ 1,0 \quad \text{Rotate high bits to bottom end} \\
ST & \ 1,\text{Data} \quad \text{Store rotated data}
\end{align*}
\]

19.4.2. A simple solution follows from the observation that a 32-bit circular right shift of N places is the same as a circular left shift of 32−N places.

\[
\begin{align*}
SR & \ 0,0 \quad \text{Clear GR0} \\
L & \ 1,\text{Data} \quad \text{Get data to be shifted into GR1} \\
L & \ 2,\text{NShifts} \quad \text{Get the shift count in GR2} \\
LTR & \ 2,2 \quad \text{Check sign of shift} \\
BNM & \ \text{GoAhead} \quad \text{Proceed if nonnegative} \\
LCR & \ 2,2 \quad \text{Form -N} \\
A & \ 2,'F'32' \quad \text{And now 32-N} \\
\text{GoAhead} & \ N \, 2,=A(X'1F') \quad \text{Mask shift amount to 5 bits} \\
SLDL & \ 0,0(2) \quad \text{Shift by required amount} \\
OR & \ 1,0 \quad \text{Rotate high bits to bottom end} \\
ST & \ 1,\text{Data} \quad \text{Store rotated data}
\end{align*}
\]

Alternatively, and maybe more obviously:

\[
\begin{align*}
- & - \quad \text{Initialize GR0, GR1, and GR2} \\
LTR & \ 2,2 \quad \text{Check sign of N} \\
BNM & \ \text{Go} \quad \text{Proceed if not negative} \\
SLDL & \ 0,32 \quad \text{Exchange GR0 and GR1} \\
N & \ 2,=A(X'1F') \quad \text{Mask shift amount to 5 bits} \\
SRL & \ 0,0(2) \quad \text{Shift right the specified amount} \\
B & \ \text{Finish} \quad \text{And go complete the result} \\
\text{Go} & \ N \, 2,=A(X'1F') \quad \text{Mask for left shift} \\
SRL & \ 0,0(2) \quad \text{Shift left the specified amount} \\
\text{Finish} & \ OR \ 1,0 \quad \text{Complete the circular shift} \\
ST & \ 1,\text{Data} \quad \text{Store the rotated answer}
\end{align*}
\]

19.4.3. The register contents are unchanged, and the CC setting indicates a zero or a nonzero result. The LTR instruction sets the CC for nonzero results depending on the sign, so the methods are not strictly equivalent, because NR and OR will not set the CC to 2.

Section 19.5

19.5.1. Consider all four possible bit combinations:

<table>
<thead>
<tr>
<th>Initially</th>
<th>After XR 1,2</th>
<th>After XR 2,1</th>
<th>After XR 1,2</th>
</tr>
</thead>
<tbody>
<tr>
<td>c(GR1) = 1100</td>
<td>0110</td>
<td>0110</td>
<td>1010</td>
</tr>
<tr>
<td>c(GR2) = 1010</td>
<td>1010</td>
<td>1100</td>
<td>1100</td>
</tr>
</tbody>
</table>
and the two bit patterns have been interchanged. This can’t be done in the same way between registers and memory, because there is no Exclusive OR instruction that operates between operands in memory and in a register, and leaves the result in memory.

19.5.2. Useless and unintelligible junk.

19.5.3. Consider a 2-bit register (no pun intended), and the four possible values 00, 01, 10, and 11 for A and B. Make a table with 16 rows corresponding to the combinations of values of A and B, and columns for A, B, A+B, A AND B, (A+B) – (A AND B), A OR B, (A OR B) – (A AND B), and A XOR B. It works!

19.5.4. XOR is commutative—that is, (A XOR B) is always the same as (B XOR A). The order of the operands doesn’t affect the final result, which is B in each case.

19.5.5. It works! The reasoning is the same as in Exercise 19.5.4:

<table>
<thead>
<tr>
<th>XR</th>
<th>1,0</th>
<th>means Old XOR New</th>
</tr>
</thead>
<tbody>
<tr>
<td>XR</td>
<td>0,1</td>
<td>means Old XOR (Old XOR New)</td>
</tr>
</tbody>
</table>

so the final result is the same as “New” because (Old XOR Old) is zero!

19.5.6. The second use of =F’1′ can be replaced by SL 8,=F’-1′.

Now: if we replace the preceding AL by SL 9,=F’-1′, do we need to worry about the following BC? If you recall that the subtraction is performed by adding the ones’ complement of the second operand (that will be zero) and a low-order 1-bit to the first operand, we see that nothing need be changed in the other instructions.

19.5.7. This statement also eliminates the need for the DS 0F:

DC A(X’7FFC0′)

Section 19.6

19.6.10. These instructions need only as many iterations as there are numbers of 1-bits in c(GR0).

<table>
<thead>
<tr>
<th>SR</th>
<th>2,2</th>
<th>Set count of 1-bits to zero</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>LTR 1,0</td>
<td>Test if any 1-bits of X are left</td>
</tr>
<tr>
<td>JZ</td>
<td>Done 1,0</td>
<td>Finished if none are left</td>
</tr>
<tr>
<td>BCTR</td>
<td>1,0</td>
<td>Form X-1</td>
</tr>
<tr>
<td>NR</td>
<td>0,1</td>
<td>Eliminate a 1-bit</td>
</tr>
<tr>
<td>JCT</td>
<td>2,A</td>
<td>Count down and test for completion</td>
</tr>
<tr>
<td>Done</td>
<td>LCR 2,2</td>
<td>Count of 1-bits now in GR2</td>
</tr>
</tbody>
</table>

19.6.11. Yes. Consider X=2^{31}−1’X’FFFFFFFFFF’; then X+1 is X’80000000’. Try the same for X=2^{32}−1.

19.6.12. If X=-1, the mask is zero: (NOT X) is zero, and (X+1) is also zero, so their AND is necessarily zero.

19.6.13. If X=0, the mask is all 1-bits.

19.6.14. If X=0, the mask is all 1-bits: (X-1) is all 1-bits, and XORing that with zero produces all 1-bits.

Section 19.7

19.7.1. Start with A=B′1010′ and B=B′1100′, and see what results from NOT(A), NOT(B), AND(A,B), OR(A,B), and XOR(A,B). The tables below show some combinations; note that not all combinations appear to be possible.

- Simulating AND(A,B):

<table>
<thead>
<tr>
<th>OR and NOT</th>
<th>OR and XOR</th>
<th>XOR and NOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOT((NOT A) OR (NOT B))</td>
<td>(A OR B) XOR (A XOR B)</td>
<td></td>
</tr>
</tbody>
</table>

- Simulating OR(A,B):

<table>
<thead>
<tr>
<th>AND and NOT</th>
<th>XOR and NOT</th>
<th>XOR and AND</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOT((NOT A) AND (NOT B))</td>
<td>(A XOR B) XOR NOT(A XOR B)</td>
<td></td>
</tr>
</tbody>
</table>

- Simulating XOR(A,B):

1121
<table>
<thead>
<tr>
<th>AND and OR</th>
<th>AND and NOT</th>
<th>OR and NOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not possible: (1 AND 1) and (1 OR 1) can never be 0.</td>
<td>NOT NOT((NOT A) AND B) AND (NOT(A AND (NOT B))))</td>
<td>(NOT(A OR (NOT B))) OR (NOT((NOT A) OR B))</td>
</tr>
</tbody>
</table>

- Simulating NOT(A): remember that (NOT 0) is always 1, but none of (0 AND 0), (0 OR 0), and (0 XOR 0) can ever return 1. Thus there's no way to simulate NOT using any two of the other logical operators.

### Programming Problem 19.1

This solution does not calculate the CC value for an arithmetic sum.

```assembly
Print NoGen

P19_1 Start 0
RCar Equ 10 Carries kept in GR10
RAop Equ 4 A operand in GR4 (even)
RA Equ 5 'A' bit kept in GR5 (next odd)
RBop Equ 6 B operand kept in GR6 (even)
RB Equ 7 'B' bit kept in GR7 (next odd)
RCC Equ 12 Condition code formed in GR12
RSum Equ 8 Sum developed in GR8
Rct Equ 11 Count reg for number of bits
RT Equ 0 Temporary register

* Using *,15
LM 1,3,DataPtr Set loop registers for cases

Start SR RCC,RCC Initial CC set to 0
LR RCar,RCC Initial carry = 0
LR RSum,RCC Initial sum = 0
L RAop,Data(1) Initial 'A' operand
L RBop,Data+4(1) Initial 'B' operand
LA Rct,32 Initialize bit counter
ST RAop,A Save A for printing
ST RBop,B Same with B

* Inner SRDL RAop,1 Shift out the 'A' bit
 SRL RA,31 Position at right end
 SRDL RBop,1 Shift out 'B' bit
 SRL RB,31 Position at right end
 OR RSum,RA Insert the new 'a' bit
 XR RSum,RA Exclusive or with 'B' bit
 XR RSum,RCar And with old carry bit.
 OR RCC,RSum Use sum for zero/nonzero CC
 SRDL RSum,1 Move sum bit 1 place to right
 LR RT,RCar Compute new carry bit
 NR RT,RA (Old carry) and ('A' bit)
 NR RA,RB ('A' bit) and ('B' bit)
 NR RCar,RB ('B' bit) and (old carry)
 OR RCar,RA
 OR RCar,RT New carry bit now complete
 S Rct,=F'1' Reduce count
 BP Inner Process next bit
 ALR RCar,RCar Double final carry bit
 OR FCC,RCar Pack into condition code
 STC RCC,CCL Store for printing
 ST RSum+1,Sum Store sum for printing
 PrintOut A,B,Sum,CCL,Header=No Print results

AR 1,2 Increment data index
CR 1,3 Compare to last address
BNH Start Continue with next data pair
PrintOut *,Header=No Terminat program

* Data DS 0D Start of test cases
DC X'FFFFFFF,00000001' Sum zero, carry: LCC=2, ACC=3
DC X'11111111.12345678' Sum nonzero, nocarry: LCC=1, ACC=2
DC X'00000000.00000000' Sum zero, nocarry: LCC=0, ACC=0
```
DC X'FEDCBA98',12345678' Sum nonzero, carry: LCC=3, ACC=1

EnData Equ *

DataPtr DC A(0,8,EnData-Data-8)
Sum DS XL4 Final sum
A DS XL4 Initial A operand
B DS XL4 Initial B operand
CCL DC X'FF' Logical-Add Condition Code

END P19_1

Programming Problem 19.2.

In we first initialize S(0) to A and 2*C(0) to B, we are ready to enter the loop. The sum is accumulated in GR1, carries are “carried” in GR3, and GR4 holds the working CC setting.

SR 4,4 Cet CC to ‘zero, no carry’ condition
L 1,A Initialize GR1 to S(0)
L 3,B initialize GR3 to 2*C(0)

Loop LR 2,1 Move S(n) to temporary in GR2
XR 1,3 Form S(n+1) in GR1
NR 3,2 Form C(n+1)
ALR 3,3 ‘Shift’ carries left by 1 position
BC 8,Done If zero and no lost bit, we’re done
BC 4,Loop If nonzero and no lost bit, repeat
L 4,A,F2’ A bit carried out: set partial CC
BC 1,Loop If more carries to do, repeat

Done ST 1,Sum Store final sum
LTR 1,1 Check for nonzero result
BZ StoreCC Jump if sum is zero, CC is okay
A 4,F1’ Set CC to indicate nonzero sum

StoreCC ST 4,CCodeL Store final Condition Code

Determining the CC setting for arithmetic addition is left as an additional exercise for you.

Programming Problem 19.4.

The value NMax is defined so that the number of values tested is a multiple of 8; this allows proper packing of the results in the bit string at PrimeBts.

Print NoGen

P19_4 CSeq ,
N Equ 400 Maximum number to test
NMax Equ ((N/8)*8) Round to a multiple of 8
Mark Equ 0 Mark composites with zero

Using *,15
LA 0,NMax Maximum value to test
LA 1,2 Starting value

MarkLoop LR 2,1 Stepping increment
LA 3,0(2,2) Starting index
CR 3,0 Check for end of table
JNL MarkDone Done with marking if so

Marking LA 4,Table-1(3) Address of a Table entry
MVI 0(4),Mark Mark the entry as composite
AR 3,2 Step to next
CR 3,0 Test for past end of table
JL Marking Repeat if not done

FindNext LA 1,1(,1) Increment starting value
CR 1,0 Done all values?
JNL MarkDone Branch if yes
LA 4,Table-1(1) Point to next position in Table
CLI 0(4),Mark Check for marked position
JE FindNext This one marked, look again
J MarkLoop Try next values

MarkDone LA 4,PrimeBts Address of bit string
LA 1,Table Address of marked table entries

ByteLoop LA 2,8 Count bits packed in a byte
SR   3,3  Bits packed in GR3
PackLoop SLL 3,1  Make room for next bit
  CLI 0(1),Mark  Was this byte marked?
  JE NotPrime  Skip bit insertion if yes
  LA 3,1(,3)  Insert a 1-bit for a prime
  NotPrime LA 1,1(,1)  Point to next byte for mark test
  S 2,"F'1'"  Count down bits in the byte
  JP PackLoop  Repeat for all 8 bits
  STC 3,0(,4)  Store the packed byte in the string
  LA 4,1(,4)  Step to next packed byte position
  S 0,"F'8'"  Count down number of bytes tested
  JP ByteLoop  Repeat if more bytes to be packed
  PrintOut PrimeBts,*,Header='No Show the results'
  Table DC (NMax)X'
  PrimeBts DC XL(NMax/8)"0'  Prime bits
End P19_4

The output is:
PrimeBts = X'EA28A20A08A2082822820A282B282B2028A282828282828028282028208208089'

Programming Problem 19.5.

The modifications to the solution to Problem 19.4 are simple; the output is:
PrimeBts = X'F6D32D265948B6814C325261B0416984932C205A0486912522'

The largest prime representable in a string of 2^30 bits would be less than 2^34.
Section 20 Solutions

Section 20.1

20.1.1. The generated Effective Addresses are:

1. X’0174629A’
2. X’0174981E’
3. X’0172629C’
4. X’0174629E’

20.1.2. The generated Effective Addresses are:

1. X’007B1EEE’
2. X’007D68D2’
3. X’00734EC4’
4. X’007B1EF6’

20.1.3. The generated Effective Addresses are:

1. X’9610C63C’
2. X’9610D2FC’
3. X’9610C640’
4. X’9610A63A’

20.1.4. The IA has already been incremented by the length of the current instruction, which could be either 4 or 6 bytes long.

20.1.6. The respective Effective Addresss are:

(a) X’27B984’
(b) X’27B976’
(c) X’2839CC’
(d) X’26B9AE’

20.1.7. You can’t. The address of an instruction is always even, and $2 \times I_2$ is also even.

20.1.8. This might better be called “offset” addressing. It’s a risky technique, because something might be inserted between the symbolic target A or * and whatever is at the offset from that location; finding and correcting such usage is tedious and error-prone.

Section 20.2

20.2.1. The generated Effective Address in 24-bit mode is X’00360A’, in 31-bit mode is X’0200360A’, and in 64-bit mode is X’000000008200360A’.

20.2.2. The generated Effective Addresses are shown in the following table:

<table>
<thead>
<tr>
<th>No.</th>
<th>24-bit mode</th>
<th>31-bit mode</th>
<th>64-bit mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X’10C63C’</td>
<td>X’1610C63C’</td>
<td>X’000000009610C63C’</td>
</tr>
<tr>
<td>2</td>
<td>X’10D2FC’</td>
<td>X’1610D2FC’</td>
<td>X’00000000961002FC’</td>
</tr>
<tr>
<td>3</td>
<td>X’10C640’</td>
<td>X’1610C640’</td>
<td>X’000000009610C640’</td>
</tr>
<tr>
<td>4</td>
<td>X’10A63A’</td>
<td>X’1610A63A’</td>
<td>X’000000009610A63A’</td>
</tr>
</tbody>
</table>

Section 20.3

20.3.1. LARL always adds its address to $2 \times I_2$, so the value in R1 depends on the address of the LARL itself!

20.3.2. If we write LA reg,0(0,reg) we get the same effect: in 24-bit addressing mode, the high-order byte is set to zero. The value of “reg” cannot be zero for the LA (why?). It may make a difference in some cases that the N instruction sets the condition code, but LA leaves it unchanged.

20.3.3. No, because the second operand appears to be an implied indexed address: A may not be a defined symbol, and NoErr is relocatable and therefore invalid as an index register specification.
20.3.4. No, because GR9 will contain the address of the literal, not the address of NoErr. Yes, if the LA is replaced by L and the literal is addressable.

20.3.5. The differences depend on three factors: whether NoErr is addressable, whether the literal is addressable, and the current addressing mode.

1. If both are indeed addressable, the results will be equivalent. This is true whether NoErr is absolute or relocatable. LA is preferable if NoErr is addressable, since it saves the four bytes required for the literal and the extra execution-time memory reference.
2. The second form is necessary if NoErr is not addressable. They are not equivalent if the literal is not addressable.
3. A-type constants don’t depend on the addressing mode, while the LA and LAY instructions do. Normally this won’t be a concern.

20.3.6. The claim is true. You could also write this code sequence:

```
LA 8,X’101′(,5)
SRL 8,0(8)
```

It’s worth understanding how this works!

20.3.7. Using LA to increment general register contents is limited to

(1) values of “number” between 0 and 4095, and to
(2) nonzero values of GRx, and
(3) depends on the current addressing mode. For AMode 24, the sum cannot exceed $2^{24} - 1$, and for AMode 31, the sum cannot exceed $2^{31} - 1$. There is no limit on the sum for AMode 64.

If “number” is defined in an EQU statement, the halfword literal can’t be used. (But, you could then use =Y(number) instead!)

In each case, it’s possible for the sum to exceed the given limit and “wrap around” to zero. Consider incrementing c(GR1)=X’00FFFFFF’ by 2 in 24-bit addressing mode: the Effective Address is 1!

In most cases, these three restrictions are satisfied. The CC setting is rarely interesting in such situations, so there is little reason to use AH. Also, the two bytes for the literal and an execution-time memory reference are saved.

20.3.8. The object code from the assembled instructions looks like this:

```
E300 0120 7A71 LAY 0,500000
E310 0EE0 8571 LAY 1,-500000
```

In the second instruction, you will see that the high-order bit of DH is X’80’, indicating a negative long displacement. If the addressing mode is 24- or 31-bit mode, the result of the second LAY instruction will be X’00F85EE0’ or X’7FF85EE0’, respectively: neither is ~500000! You will get the intended negative value only if the addressing mode is 64-bit mode.

20.3.9. In the first case, the initial c(GR6) is X’00FFFFFF’ and the result will be +1, because the generated Effective Address X’01000001’ retains only the low-order 24 bits. In the second case, the generated Effective Address will be X’00F0FF02’.

20.3.10. Unless the LAY instruction is executed in 64-bit addressing mode, the Effective Address in GR3 will be X’00FFFFFF’ in 24-bit mode, and X’7FFFFFFF’ in 31-bit mode.

20.3.11. The results depend on the contents of the two registers. If c(GRy) is a non-negative integer with value less than $2^{24}$, they are equivalent. Otherwise, the LA instruction will truncate significant high-order bits if the value is either negative or greater than or equal to that value, for addressing modes 24 and 31. For addressing mode 64, they are (almost) equivalent except that LA will change the high-order 32 bits of GGx.

20.3.12. You could use something like the following:

```
LARL 0,BList Address of branch list
AR 15,0 Form address of selected branch
BR 15 Branch to the correct one
- - -
BList J A
J B
J C
J D
```

None of the instructions requires a base register.

20.3.13. Remember: specifying register zero as a base or index register means “no register”!
20.3.14. In 24-bit addressing mode, the results in GR10 are:

1. X'00001234'
2. X'0000ABCD'

and in 31-bit addressing mode, the results in GR10 are

1. X'00001234' (the same)
2. X'007FABCD'

20.3.15. The Effective Addresses in 24-bit and 31-bit addressing modes are:

1. X'0000FE'(24), X'000000FE'(31)
2. X'01831B'(24), X'1B01831B'(31)
3. X'000009'(24), X'01000009'(31)

20.3.16. The resulting Effective Addresses are:

(a) No Effective Address can be generated, because the instruction cannot be addressed by the IA in the PSW! The CPU will attempt to fetch an instruction at address X'003B6D0E'.
(b) The Effective Address is X'543B6D0E'.
(c) The Effective Address is X'0000000543B6D0E'.
Section 21 Solutions

21.1. The operand 76543 is too large for a halfword operand, so the instruction can’t be assembled without error.
You can use either of these instructions instead:

- LGFI 0,76543 ...clears high-order half of GR0
- IILF 0,76543 Insert operand into GR0

In each case, the assembled I2 operand is X’00012AFF’.

21.1.2. The difference is in notation: an I2 immediate operand is used in an arithmetic or logical operation, while an RI2 immediate operand is used in a relative-offset instruction such as a branch.

21.2.1. The AFI instruction with a negative operand does what the SFI instruction would do with an operand of the opposite sign. But: why is there a SLFI instruction?

21.2.2. This is the same solution as for Exercise 18.2.7, but with literal references replaced by immediate operands.

- LHI 2,10 * Count items in GR2
- SR 0,0 Accumulate sum in (GR0,GR1)
- LR 1,0 Initialize sum to zero
- Loop LH 4,0(,11) Get an operand
- MH 4,0(,12) Multiply by the other
- SRDA 4,32 Extend word product to 64 bits
- ALR 1,5 Add low-order words
- BC 12,NoCarry Skip carry add if none to add
- ALFI 0,1 * Add a carry bit
- NoCarry ALR 0,4 Now add high-order words
- AHI 11,2 * Add 2 to address of first table
- AHI 12,2 * Add to the address of second table
- AHI 2,-1 * Count down items by 1
- BP Loop Repeat if not done
- STM 0,1,DwSum Store accumulated sum

21.3.1. Consider the (possible) XIHH instruction: its 16-bit operand would be XORed with the high-order 16 bits of GR R1, where X’wxyz’ represents any arbitrary bit pattern.

Because XORing a 0-bit to any other bit leaves it unchanged,

- XIHH reg,X’wxyz’ is equivalent to
- XIF reg,X’wxyz0000’ ... so XIHH is not needed.

21.3.2. Consider the NIHH instruction. Because ANDing a 1-bit to any other bit leaves that bit unchanged,

- NIHH reg,X’wxyz’ is equivalent to
- NIHF reg,X’wxyzFFFF’ ... so NIHH is not needed.

So, why are NIHH/HL/LH/LL present? z System implemented 16-bit immediate operands much earlier than support for 32-bit immediate operands, and RI-type instructions like NIHF and NIHL appeared much later. But, the RI-type instructions also save 2 bytes in the instruction stream, in case your program needs to be as small as possible.

21.3.3. Consider OIHH: ORing a 0-bit to any other bit leaves the other bit unchanged, so that
OIHH reg,X′wxyz′ is equivalent to
OIHF reg,X′wxy20000′ ... so OIHH is not needed.
See the last paragraph of the previous solution for details.

21.3.4. Use NILH 1,X′FF00′

21.3.5. Use XIHF 7,X′80000000′

21.3.6. You can use these three instructions:
   AHI 2,15 Force carry if not multiple of 16
   OILL 2,15 Set low-order 4 bits to 1
   XILL 2,15 Set low-order 4 bits to 0

21.3.7. The code will probably fail to give the intended result, because the NILL instruction operates only on the rightmost 16 bits of GR3. Thus, if GR3 had contained X′FFFFFFFFFF′, after the NILL instruction c(GR3)=X′FFFFFF00F0′, which is smaller than X′00000000′. Similarly, if GR3 had contained X′12345678′, its contents after the NILL instruction would be X′12340000′, and the branch to BitWas1 would be successful. These might not be the intended results.

21.3.8. These are possible critiques of the three sequences:
   1. A word is required in storage for the literal.
   2. Two instructions are required.
   3. Three instructions are required, and the contents of GR5 is destroyed.

A better solution is
   NILF 4,X′3F′ Fullword immediate operand

21.3.9. This solution is almost correct (see the solution to Exercise 21.3.8). Because NILL uses a 16-bit immediate operand, it fails if there are any nonzero bits in the high-order half of GR4. Suppose c(GR4)=X′12345678′: then
   NILL 4,X′003F′ yields c(GR4) = X′12340038′
which is probably not a satisfactory result.

Programming Problem 21.1. This is another way to produce a hexadecimal addition table:

   Title ‘Create a hexadecimal addition table’
   Print Nogen

   P21_1 Start 0
   Using *,15 Establish addressability
   PrintLin HeadLine,L′HeadLine′ Print heading line
   LHI 0,0 Initialize row value in GR0
   LHI 6,X′F′ Initialize digit mask
   Col_Loop LHI 1,0 Initialize column value in GR1
   LR 2,0 Copy column value to GR2
   IC 2,Chars(2) Get its EBCDIC representation
   STC 2,Line+1 Store in the print line
   LA 3,Line+3 Initialize product-value position
   Row_Loop LR 5,1 Copy column value
   AR 5,0 Multiply by row value
   LR 4,5 Copy product to GR4
   SRL 4,4 Move to rightmost 4 bits
   NR 4,6 Leave high-order digit in GR4
   NR 5,6 Leave low-order digit in GR5
   IC 4,Chars(4) Get EBCDIC char for high digit
   IC 5,Chars(5) And for low digit
   STC 4,0(,3) Store high digit in print line
   STC 5,1(,3) Store low digit in print line
   AHI 3,3 Step to next print-line position
   AHI 1,1 Increment column value
   CHI 1,16 Check for finished with this line
   JL Row_Loop If not done, repeat for next column
   PrintLin Line,L′Line′ Print a line of the table
   AHI 0,1 Step to next row
   CHI 0,16 Check if all rows done
JL Col Loop If not done, repeat for next row
Printout *,HEADER=NO Terminate the program
Chars DC C'0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ' EBCDIC characters
HeadLine DC C'1 0 1 2 3 4 5 6 7 8 9 A B C D E F' Line DC CL('Headline')" "
End P21_1
Section 22 Solutions

Section 22.1

22.1.1. Unfortunately, the letter “L” is used in many mnemonics to mean “Low” as well as “Long”. The branch relative on condition with a 16-bit \( I_2 \) operand and mask 4 already uses the JL mnemonic, so the unconditional long relative branch needed a different name.

22.1.2. If your program uses no “program base” registers for instructions, it’s possible that an instruction like

```
NOP X
```

could require base-displacement resolution. Using JNOP and JLNOP means you won’t need a base register to resolve the operand address. (You could always write your NOP instruction using explicit base and displacement, but why do the extra work?)

Sometimes the operands of NOPs are used to indicate a position in the program. For example, if you wanted to “mark” a set of instructions that can be viewed by debuggers and other diagnostics, you could write

```
JNOP 137 Marker for item 137’s position
```

22.1.3. The generated machine instructions are:

(a) \( \text{A7F4 FFB} \)
(b) \( \text{A7F4 03FF} \)
(c) \( \text{A7F4 FF8} \)
(d) \( \text{C0F4 0000 0001} \)

Executing the last instruction will cause an operation exception, because it will branch into the second halfword of the instruction that contains zeros.

Section 22.2

22.2.1. The result will be the same as if you had written

```
Str DC CL80’String to be Scanned For Special Characters’
```

22.2.2. The only changes needed are to these three statements:

```
JNL Okay Branch if a letter or digit
 - - -
CHI 1,80 Compare count to 80 (string length)
 - - -
JL GetChar Loop if less than 80 done so far
```

Section 22.3

22.3.2. The indexed branch instruction labeled \( A2 \) cannot be changed, because relative branch instructions cannot be indexed. However, you can fix this by rewriting it as

```
A2 LA 1,BrTbl(1) Form address of target instruction
 BR 1 Branch to it
```

If local addressability for the LA instruction is not available, you could use this approach:

```
A2 LARL 0,BrTbl Address of start of branch table
 AR 1,0 Add to offset into the table
 BR 1 Branch to it
```

Section 22.4

22.4.1. Replace the two instructions

```
Loop LA 2,0(1,1) (Count + Count) in GR2
 BCTR 2,0 (2 * Count) - 1
```

with the single instruction

```
Loop LAY 2,-1(1,1) (Count+Count) - 1 in GR2
```

22.4.2. Fixed-point overflows never occur in executing Branch on Count instructions.

22.4.4. A direct solution tests every bit, counting the one-bits, until the K-th bit is found. This solution uses some arithmetic-immediate instructions.
SR 0,0 Initialize bit offset
L 1,KK Initialize 1-bit count
LA 2,Str Initialize byte pointer
Outer IC 3,0,(2) Pick up a byte for testing
SLL 3,24 Position at left end
LA 4,8 Initialize shift count
Inner LTR 3,3 Is the bit a 1-bit?
JNM ZeroBit Branch if not
AHI 1,-1 Have a 1-bit, deduct 1 from K
JZ Found Finished if it's the K-th one
ZeroBit AHI 0,1 Increment bit offset
SLL 3,1 Out with the old, in with the new
JCT 4,Inner Count bits in this byte and loop
AHI 2,1 Increment byte pointer
J Outer ... and go get a new byte
Found ST 0,BitOff Store the desired bit offset

22.4.5. Probably, something strange. If c(GRb) is even (as an instruction address must be) before executing the BCT, control will arrive at the branch location with an odd value (that address, minus 1) in GRb. If c(GRb) is +1, no branch occurs and the next instruction after the BCT will be executed. If c(GRb) is odd (and not +1), the program will try to branch to an odd address, but the number in GRb will then be even; a specification error will occur due to the odd branch address, which will be hard to find because the contents of the register will now be even. Don’t do this!

22.4.6. The only thing needing care here is to be sure we store the first value.

LA 1,100 Count list items in GR1
LA 2,NewList-4 Output table addr in GR2 (delayed)
LA 3,IntList Input table addr in GR3
L 0,IntList Pick up first item
J Store And enter in output list
Loop L 0,0,(3) Get item from list
C 0,0,(2) Compare to previous
JE Next Don’t store if equal
Store LA 2,4,(2) Increment storage address
ST 0,0,(2) Store into 'NewList' table
Next LA 3,4,(3) Increment ’IntList’ address
JCT 1,Loop And repeat
S 2,=A(NewList-4) Subtract start address
SRL 2,2 Divide by element length
ST 2,NumNews Store number of new elements

22.4.7. It makes one extra iteration of the loop, and therefore calculates (N+1)^2.

22.4.8. The USING and BASR are reversed. At execution time, the “implied addresses” AA and Loop will actually refer to AA+2 and Loop+2 instead! The sum in GR2 is therefore 2+3+4+5 instead of 1+2+3+4. (It may be worth reviewing Section 10.)

Here’s the assembled program:

22.4.10. This solution uses the techniques of Section 19:
XGR 0,0 Set count in G0 to zero
X LTGR 2,1 See if all bits of G1 are zero
JZ Done If all zero, count is finished
BCTGR 2,0 Decrement G2 by 1
NGR 1,2 Set rightmost bit of G1 to zero
AH1 0,1 Increment count
J X Repeat until c(G1) = 0
Done - - - Count of 1-bits now in G0

22.4.11. Consider these instructions:

XR 1,1 Set shift count to zero
Test CLM 0,8,X′40′ Check for 1-bit in bit position 1
JNL Done Branch if it’s there
ALR 0,0 Shift c(GR0) left one bit
BCT 1,Test Count down and loop
Done LCR 1,1 Make shift count positive

22.4.12. This shows the generated object code:

<table>
<thead>
<tr>
<th>Loc</th>
<th>Object Code</th>
<th>Assembler Language Statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0DC0</td>
<td>BASR 12,0</td>
</tr>
<tr>
<td>0002</td>
<td>4130 0040</td>
<td>LA 3,64</td>
</tr>
<tr>
<td>0006</td>
<td>4170 C03A</td>
<td>LA 7,A</td>
</tr>
<tr>
<td>000A</td>
<td>5800 7000</td>
<td>Loop L 0,A</td>
</tr>
<tr>
<td>000E</td>
<td>5A00 7100</td>
<td>A 0,B</td>
</tr>
<tr>
<td>0012</td>
<td>5800 7200</td>
<td>ST 0,C</td>
</tr>
<tr>
<td>0016</td>
<td>4630 C008</td>
<td>BCT 3,Loop</td>
</tr>
<tr>
<td>001A</td>
<td>&lt;something&gt;</td>
<td>PrintOut *</td>
</tr>
<tr>
<td>003C</td>
<td>A</td>
<td>DS 64F</td>
</tr>
<tr>
<td>013C</td>
<td>B</td>
<td>DS 64F</td>
</tr>
<tr>
<td>023C</td>
<td>C</td>
<td>DS 64F</td>
</tr>
</tbody>
</table>

22.4.13. The program actually calculates \( C(1)=A(1)+B(1) \) 64 times! To make it work correctly, insert

\[
\text{LA 7,4(,7)}
\]

before the BCT instruction.

22.4.14. The errors are:

1. The SLL instruction should occur after testing the sign bit; otherwise only 31 bits will be tested.
2. The BZ instruction should be BNM; BZ will branch only if the entire contents of GRI is zero.
3. An LA instruction can’t be used to increment GR0.

The corrected code might look like this:

SR 0,0 Set count to zero
LA 2,32 Count 32 bits
Loop LTR 1,1 Test sign bit
BNM Next Branch if sign bit is zero
A 0,=F′1′ Add 1 to count of 1-bits
SLL 1,1 Shift a bit into sign position
Next BCT 2,Loop Repeat for all 32 bits

22.4.15. This solution uses the RLL (Rotate Left Logical) instruction:

SR 0,0 Set count to zero
LA 2,32 Count 32 bits
Loop LTR 1,1 Test sign bit
BNM Next Branch if sign bit is zero
AH1 0,1 Add 1 to count of 1-bits
RLL 1,1,1 Rotate a bit into sign position
Next BCT 2,Loop Repeat for all 32 bits
22.4.16. All five sequences yield the same result, the two’s complement of the number in R0. The first two give the same (arithmetically valid) CC setting. The third will indicate CC values of either 2 (the result is zero), or 1 (the result is not zero). The fourth and fifth lead to CC settings of 0 (the result is zero) or 1 (the result is not zero).

22.4.17.

(1) The instructions add 1 arithmetically to c(GR0). If c(GR1)=X, the first LCR generates −X. The BCTR generates −(−X−1) = X+1.
(2) They imitate the action of (a) AHI 0,1 or (b) A 0,=F’1’ (among other possibilities).
(3) The Condition Code settings are identical for the two instructions noted in (2).312

Section 22.5

22.5.1. This solution uses indexed LH and STH instructions:

```
LA 2,2 FOR incrementing/decrementing
LH 1,NN Start at end of HH array
AR 1,1 N*2 (for halfword indexing of HH)
SR 3,3 Index at RR starts at 0
LOOP LH 0,HH-2(1) Get word from high end of HH
STH 0,RR(3) Store at low end of RR
AR 3,2 Increment RR index
SR 1,2 Decrement HH index
JP LOOP Repeat until index = 0
```

22.5.3. Do-Until.

Section 22.7

22.7.1. For BXLE, the branch will not be taken, and c(GR3) = 2. For BXH, the branch will be taken, and c(GR3) = 2 again.

22.7.2. For BXLE, c(GR3) = 6, and no branch occurs. For BXH, c(GR3) = X’C0000000’! The BXH instruction was executed 29 times.

22.7.3. The branch will occur only if the remainder was zero! If the remainder is greater than zero, the sum of remainder and quotient will be greater than the quotient in GR7, and no branch will occur.

22.7.5. The claim is true. If the sum c(GRx)+c(GRy) is non-negative, it is also ≤ 231−1, so the claim holds. If the sum is less than zero it has overflowed, and the BXLE instruction does not branch. Logically, the sum cannot exceed 2×231−1, so subtracting 231−1 gives the correct result modulo 231−1.

Another way to say this: if a,b are ≤m, and if a+b>m, then a+b−m = a+b (mod m).313

22.7.6. Suppose the next-to-leftmost bit of the positive number is 1. Then the SLA will indicate an overflowed (not a negative) result. Then (1) the JM should be be JO or JNP, and (2) GR0 should be initialized to contain 1, not 0. The shift count in GR3 can be reduced to 31:

```
LA 0,1 Initialize bit position
LR 2,0 Increment of 1 in GR2
LA 3,31 Comparand in GR3
X SLA 1,1 Shift, test bit next to sign
JO Y Exit if it was 1
JXLE 0,2,X Count and loop if it was 0
Y - - -
```

22.7.9. The BXLE instruction is executed 6 times, and branches 5 times. The sequence of values in GR1 is 7, 24, 41, 58, 75, and 92.

22.7.10. (C−A)/B+1 times. (If the value of the expression is not positive, the body of the loop is executed only once.)
Section 22.8

22.8.1. The results are shown in this table:

<table>
<thead>
<tr>
<th>c(GR1)</th>
<th>BXH</th>
<th>BXLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0, 1</td>
<td>c(GR1)=0 (sum and comparand are 0)</td>
<td>Endless loop (sum and comparand are 0)</td>
</tr>
<tr>
<td>positive, ≥ 2</td>
<td>Endless loop (sum &gt; comparand)</td>
<td>Set low-order bit of GR1 to 0 (sum &gt; comparand)</td>
</tr>
<tr>
<td>negative</td>
<td>Set low-order bit of GR1 to 0 (sum - , comparand +)</td>
<td>Endless loop (sum - , comparand +)</td>
</tr>
</tbody>
</table>

Section 22.9

22.9.1. c(GR2) will be 40. The instructions calculate the largest doubling of c(GR2) not exceeding c(GR3). But be careful: If c(GR3)=X’7FFFFFFF′ and c(GR2)=1, 2*c(GR2) will eventually overflow and become negative. At that point, after at most 32 iterations, c(GR2) will become zero, and the BXLE instruction will then loop endlessly. (Don’t try it!)

22.9.2. After the BXLE instruction has been executed once, c(GR5)=2. This is compared to the original value in GR5 (the comparand), which was 1. This is no longer less than or equal to the sum, so the final value in GR5 is 2.

For BXH, the sum is greater than the comparand each time BXH is executed, until the sum overflows after 31 iterations. c(GR5) then is negative, which when compared to the comparand X’40000000′ is no longer greater, so the final value in GR5 is X’80000000′.

22.9.3. The two leftmost bits of the positive number in GR1 can be either 00 or 01. If they are 00, then the first BXH produces a larger but still positive number in GR1, and will branch to ZBit to increment the count. If the leftmost two bits are 01, the sum (formed by the BXH) in GR1 will become negative, and the BXH at Loop will not branch.

If the number in GR1 was arbitrary, a test for zero would be needed to exit the entire code sequence; if the number could be negative, LTR/JM instructions could indicate that bit number 0 was a 1-bit.

22.9.4. Consider the two high-order bits of GR1:

1. B’00′ means that c(GR1) is positive, and the sum of the index and comparand will not overflow. The sum is greater than the comparand (the original c(GR1)), so the instruction will branch.
2. B’01′ means that c(GR1) is positive, but the sum of the index and comparand will overflow and appear negative. The sum is then less than the comparand (the original c(GR1)), so the instruction will not branch.
3. B’10′ means that c(GR1) is negative, but the sum of the index and comparand will overflow and appear positive. The sum is then greater than the comparand (the original c(GR1)), so the instruction will branch.
4. B’11′ means that c(GR1) is negative, and the sum of the index and comparand will not overflow. The sum is then less than the comparand (the original c(GR1)), so the instruction will not branch.

22.9.5. Consider the two high-order bits of GR1:

1. B’00′ means that c(GR1) is positive, and the sum of the index and comparand will not overflow. The sum is greater than the comparand (the original c(GR1)), so the instruction will not branch.
2. B’01′ means that c(GR1) is positive, but the sum of the index and comparand will overflow and appear negative. The sum is then less than the comparand (the original c(GR1)), so the instruction will branch.
3. B’10′ means that c(GR1) is negative, but the sum of the index and comparand will overflow and appear positive. The sum is then greater than the comparand (the original c(GR1)), so the instruction will not branch.
4. B’11′ means that c(GR1) is negative, and the sum of the index and comparand will not overflow. The sum is then less than the comparand (the original c(GR1)), so the instruction will branch.

22.9.6. This exercise is most easily analyzed with a table:

c(GR1)		
--------		
0, 1	BXH	BXLE
0, 1	c(GR1)=0 (sum and comparand are 0)	Endless loop (sum and comparand are 0)
positive, ≥ 2	Endless loop (sum > comparand)	Set low-order bit of GR1 to 0 (sum > comparand)
negative	Set low-order bit of GR1 to 0 (sum - , comparand +)	Endless loop (sum - , comparand +)

---

314 I did, and that’s why I know you shouldn’t.
You can sometimes make efficient use of BXH and BXLE if the operands in the index and increment/comparand registers fit one of the patterns above.

22.9.7. The solution to this exercise uses the same table as in Exercise 22.9.6, except that each “Yes” and “No” is reversed.

22.9.8. If the R₃ operand is not equal to either the R₃ or R₃’₃ operands, this description is correct. And since most uses of the branch on index instructions are used this way, little harm is usually done. However, consider these instructions:

LHI 6,2 c(GR6) = 2
LHI 7,2 c(GR7) = 2
BXLE 7,6,XXX Will it branch?

In our description, the sum of the index in GR7 (2) and the increment in GR6 (2) is greater than the comparand in GR7 (2), so the branch will not occur.

In the incorrect description, the sum replaces the index before comparison: the sum (4) replaces the original index in GR7, which then becomes the comparand. Since those values are equal, a programmer could be misled into believing the branch will occur.

22.9.9. This is a form of what is known as the “shift-and-square” method for calculating integer powers. For example, suppose you must evaluate X**5.

- The first exponent bit tested is 1, so the code branches to OneBit, where the BXLE instruction finds that c(GR0) is not zero, so X is squared in GR5; this result is called the “work value”.
- Then the next exponent bit (0) is shifted into GR1; the BXLE finds that it’s zero, and branches to TestMore. (Remember that the BXLE instruction also leaves zero in GR1.) Since there is still a 1-bit in GR0, the BXH instruction branches to “Square”, where the work value is squared, leaving X**4 in GR5.
- The last 1-bit of the exponent is shifted into GR1, and the BXLE test does not branch, so the work value is multiplied by c(GR3)=X, giving X**5.
- The final test at TestMore finds that c(GR0) is now zero, and control passes to Finished, leaving X**5 in GR3.

### Programming Problem 22.1.

We will show two solutions to this problem. Both use similar techniques to generate the table; the first solution assumes fixed positions for all the data in the table.
Solution to Problem 22.1

P22_1 Csect  ,  Print a hexadecimal multiplication table
Using *,15  Establish base register
Print NoGen
PrintLin Head,L'Head  Print heading line
XR 0,0  Initialize row counter
Row_Loop DC 0H
LR 2,0  Get row value
IC 2,Chars(2)  Get character for this row
STC 2,Line+1  Store at left end of print line
XR 1,1  Initialize column counter
LA 4,Line+3  Point to first table position
Col_Loop DC 0H
LR 3,0  Put row value in GR3
MR 2,1  Multiply by column value
LR 2,3  Copy product to GR2
SRL 2,4  Position high-order product digit
NILL 3,X 'F  Low-order product digit in GR3
IC 2,Chars(2)  Get equivalent EBCDIC character
STC 2,0,(4)  Store high-order digit in print line
IC 3,Chars(3)  Get equivalent EBCDIC character
STC 3,1,(4)  Store low-order digit in print line
AH 4,3  Step to next print line position
AH 1,1  Increment column counter
CH 1,16  See if this row is complete
JL Co l_Loop  Branch if not
PrintLin Line,L'Line  Print this row
AH 0,1  Increment row counter
CH 0,16  See if all rows are complete
JL Row_Loop  If not, do another row
PrintOut *,Header=NO  Terminate the program
Chars DC C'0123456789ABCDEF'
Head DC C'1 0 1 2 3 4 5 6 7 8 9 A B C D E F'
Line DC CL(L'Head)'  ' Print line
End

In this second solution, the symbols Margin and Space defined by EQU statements at the beginning of the program control the position of the left margin and the spacing between columns of the table. Otherwise, the program is straightforward.

P22_1A START 0
Margin Equ 15  Indentation from left edge
Space Equ 5  Space between columns
BASR 15,0  Establish run-time base
Using *,15  Let assembler know about assumption
PrintLin Title  Print title at the top of the page
LA 1,15  Set up 15 X values on the top line
SR 2,2  Initialize pickup index to zero,
LR 3,2  And the character storage index
TopRow IC 0,Char+1(2)  Pick up an EBCDIC character
STC 0,Line+Margin+Space+1(3)  Store in line
LA 2,1(0,2)  Increment X value by 1
LA 3,Space(0,3)  Move store index over to next slot
JCT 1,TopRow  Do 15 digits in all
PrintLin Line  Print the top row of the table
  *  c(GR1) = 0, c(GR2) = 15
  *
NextRow LA 4,1  Initial X value for each row
LA 1,1(0,1)  Increment Y value by 1
SR 3,3  Reset line store index
IC 0,Char(1)  Fetch left-column character
STC 0,Line+Margin  Store in line in left column
LA 0,15  Set column count in GR0 for loop
  *
NextCol LR 7,1  Y value
MR 6,4  * Y value
SLDL 6,28  
Place high-order digit in GR6
SRL 7,28  
Move low-order digit to end of GR7
IC 6,Char(6)  
Get appropriate ...
IC 7,Char(7)  
...EBCDIC characters, and
STC 6,Line+Margin+Space(3)  
...store first in line
STC 7,Line+Margin+Space+1(3)  
...and second
LA 3,Space(0,3)  
Increment line index
LA 4,1(0,4)  
Increment X value
JCT 0,NextCol  
Loop until line is complete
PrintLin Line  
Print the line
JCT 2,NextRow  
And loop until 15 rows are done
* PrintLin Title,1  
Skip a page to get a clean result
PrintOut *,Header=NO  
Stop
* Char DC C'0123456789ABCDEF'  
Ebcdic form of hex digits
Title DC CL121'Hexadecimal Multiplication Table'
Line DC CL121'O'  
Print line, with double spacing
END P22_1A
Section 23 Solutions

Section 23.2

23.2.1. Only the first is valid; the $I_2$ operands of the other two require more than 8 bits, so the Assembler will indicate an error.

23.3.1. The table of EBCDIC character encodings in Table 13 on page 89 shows that $C'a'$ has representation $X'81'$ and $C'A'$ has representation $X'C1'$. ORing the representation of $C'a'$, or $X'40'$, into $C'a'$ produces $X'C1'$.

Section 23.3

23.3.2. NI Flags, $b'01111110'$

23.3.3. 0I Flags, $b'10000001'$

Section 23.4

23.4.1. Consider the following:

<table>
<thead>
<tr>
<th>LA</th>
<th>1,Data-1</th>
<th>Set pointer to left of string</th>
</tr>
</thead>
<tbody>
<tr>
<td>LR</td>
<td>0,1</td>
<td>Save start address for later</td>
</tr>
<tr>
<td>Loop</td>
<td>LA</td>
<td>1,1(0,1) Point to next byte</td>
</tr>
<tr>
<td>CLI</td>
<td>0(1),$X'FF'$</td>
<td>Check for all 1-bits</td>
</tr>
<tr>
<td>JNE</td>
<td>Loop</td>
<td>Branch if not all ones</td>
</tr>
<tr>
<td>SR</td>
<td>1,0</td>
<td>Subtract start addr to get count</td>
</tr>
</tbody>
</table>

23.4.2. No, because SI-type instructions can’t be indexed!

23.4.3. This solution scans characters from right to left.

<table>
<thead>
<tr>
<th>LHI</th>
<th>0,80</th>
<th>Record length</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA</td>
<td>1,Record+80-1</td>
<td>Point GR1 to last character</td>
</tr>
<tr>
<td>Test</td>
<td>CLI</td>
<td>0(1),$C'$'</td>
</tr>
<tr>
<td>JNE</td>
<td>Store</td>
<td>Branch if it’s not a blank</td>
</tr>
<tr>
<td>BCPT</td>
<td>1,0</td>
<td>Move pointer left by 1 byte</td>
</tr>
<tr>
<td>JCT</td>
<td>Test</td>
<td>Count down and repeat</td>
</tr>
<tr>
<td>Store</td>
<td>ST</td>
<td>0,DataLen</td>
</tr>
<tr>
<td></td>
<td>ST</td>
<td>1,LastChAd</td>
</tr>
</tbody>
</table>

If there are no nonblank characters, the address stored at LastChAd will be A(Record-1).

23.4.4. Try CLI *,$X'FF'$ — the opcode for CLI is $X'95'$, which is less than $X'FF'$.

23.4.5. Try CLI *,$0$ — the opcode for CLI is $X'95'$, which is greater than 0.

23.4.6. He can write the test in either of two ways:

1. CLI Char,$C'$

2. LowerF Equ $C'$
   CLI Char,LowerF

23.4.7. Try CLI *+1,0 — the CLI compares its immediate operand to itself. A better instruction is CLR 0,0 which makes no memory reference, but does refer to a register.

Section 23.5

23.5.1. This is essentially the definition of a 9-bit two’s complement binary integer, which has values between $-2^8$ and $+2^8-1$.

23.5.2. In step 1, if the $I_2$ mask AND the first-operand byte is zero, all the tested bits were zero. In step 2, some or all bits from the first step must have been ones. After XORing this field with the $I_2$ mask again, if all the remaining bits from step 1 were ones, the result is now zero, meaning all tested bits were ones. In step 3, if the result of the XOR is not zero, the tested bits were mixed zeros and ones.

*Suggested Solutions to Selected Exercises and Programming Problems* 1139
23.5.3. Try TM *+1,AnyNonZeroValue — because the I_2 mask has at least one nonzero bit, each one-bit in the mask will test itself, so all tested bits will be one.

23.5.4. TUM is not the mnemonic for Test Under Mask; the second operand is written as a decimal term (with value X'50'), and the branch mnemonic for a zero sign bit is BZ; BP would never branch, because TM doesn’t set CC=2. He should have written:

```
TM BIN,X'80' Test for zero sign bit
BZ POS Branch if nonnegative
```

23.5.5. You can use TM *+1,0. (Is there any limitation on the first operand address?)

23.5.6. Yes, because BNM has mask B'1011'. But be careful! There are other TM-like instructions that don’t behave like TM!

Section 23.6

23.6.1. There are many ways to do this; this is a representative solution:

```
LHI 0,8 Initialize bit count
LA 1,BitChars Point to output character string
IOM 3,B'1000'.BitData Source byte in leftmost byte of GR3
Repeat SR 2,2 Clear GR2 for shift
SLDL 2,1 Move a bit into GR2
AHI 2,C'0' Form ECBDIC 0 or 1 character
STC 2,0(,1) Store character in output area
AHI 1,1 Increment output address
JCT 0,Repeat Repeat until 8 bits are done
```

23.6.2. No, because it doesn’t correctly handle the mixed case.

Section 23.7

23.7.1. Yes. After the ‘DS B’ the Location Counter has been advanced by 1.

23.7.2. Consider these instructions:

1) NI BitA,255-L’BitA-L’BitB Set both bits to zero
2) XI BitB,L’BitB Invert BitB
3) TM BitA,L’BitA+L’BitB Test both bits
   JO Both Branch if both are ones
4) LA 0,2 Assume both bits are ones
   TM BitA,L’BitA+L’BitB Test the two bits
   JO Done Finished if both are ones
   BCTR 0,0 Reduce the ones-count by 1
   JM Done Finished if only one is one
   BCTR 0,0 Both 0, reduce ones-count to zero
Done - - -

Why can’t you use AHI 0,-1 instead of BCTR 0,0? Because AHI sets the Condition Code, and the JM instruction will branch incorrectly.

Section 23.9

23.9.1. The number in GR6 is alternately 2 and 4, because the SLL instruction is alternately SLL and SRL. (To understand this, you’ll have to revisit the opcodes shown in Table 78 on page 242!) The values in GR4 are therefore the odd numbers which are not multiples of 3.315

23.9.2. The OI and XI have zeros in the right hex digit of the immediate operand, and the NI has all ones.

23.9.3. It saves allocating a byte for Flag! But it also makes the program self-modifying. (At the time HASP was written, self-modifying programs weren’t unusual.)

315 An interesting bit of code from a prime-number generator by Valdo Androsciani.
Section 24 Solutions

Section 24.2

24.2.1. None.

Section 24.3

24.3.1. (1) 2 (the length attribute of A is implicitly 2 bytes), X’0102’; (2) 4 (the length attribute of B is explicitly 4), C’ABCD’; (3) 3 (the Length Expression is specified explicitly), X’000000’!

24.3.2. The possible operand formats are shown in this table:

<table>
<thead>
<tr>
<th>Format</th>
<th>As first operand</th>
<th>As second operand</th>
</tr>
</thead>
<tbody>
<tr>
<td>7(4)</td>
<td>S(N)</td>
<td>D(B)</td>
</tr>
<tr>
<td>24(6,12)</td>
<td>D(N,B)</td>
<td>Invalid</td>
</tr>
<tr>
<td>A(B)</td>
<td>S(N) if B is absolute, otherwise invalid</td>
<td>D(B) if A and B are absolute, otherwise invalid</td>
</tr>
<tr>
<td>5(,1)</td>
<td>D(,B)</td>
<td>Invalid</td>
</tr>
</tbody>
</table>

24.3.3. Suppose the comma is omitted, so that the operand looks like this:

\[
\text{MVC } D_1(B_1),S_2
\]

Because this first operand of the MVC instruction was intended to specify an explicit address, it should have the third operand format described in Section 8.5. As written, the \(D_1\) expression will be interpreted as an implied address, and the \(B_1\) expression will be interpreted as the Length Expression.

Section 24.4

24.4.1. No.

24.4.2. Yes and No. This may seem puzzling, because the assembler can derive an implied length attribute of an operand expression. But consider these statements:

A LA 0,L’* c(GRO) = 4
B LA 0,L’*+3 c(GRO) = 7
C LA 0,L’3++ Error, L’ operand not a symbol
D LA 0,L’B c(GRO) = 4
E LA 0,B+L’B c(GRO) = 12
F LA 0,L’(8+L’B) Error, L’ operand not a symbol

The operand of a Length Attribute Reference must be either a valid symbol or a Location Counter Reference. In the third and sixth examples, the expressions are 3++ and (8+L’B). Since the Length Attribute of an expression is that of its leftmost term, the Assembler issues an ASMA147E error message.

Section 24.6

24.6.1. The result would be C’54345’. You might want to experiment with the CPU you are using to see what happens when you use MVCIN to move various strings onto themselves.

24.6.2.

\[
\begin{align*}
\text{MVC } & \text{ Prefix,PText Move prefix string} \\
\text{MVCIN } & \text{ Insert,IText+L’Insert-1 Move insert string} \\
\text{MVC } & \text{ Suffix,SText Move suffix string}
\end{align*}
\]

24.6.3. C’DataData’.

24.6.4. The result fields are:

Result2 DS C’PQRS’ From the first 4 bytes at Data2
Data2 DC C’TUWTVUU’

24.6.5. The effective address of the STC is the same in both cases. However, suppose you needed later to insert an instruction or two between the STC and the MVC; the **5 operand would then refer to the wrong instruction. This shows why references between instructions should use symbols, not expressions involving the Location Counter. (But you should use an EX instruction, anyway!)
24.6.6. Sketching the operations may help. The first MVCIN moves the last byte of the second operand, \( C'G' \), to the first byte of the first operand, etc. The final byte of the second operand, \( C'A' \), is moved to the last byte of the first operand, which is at the same address!

A similar analysis holds for the second MVCIN, except that the initial byte moved from the second operand is at the same address as the first byte of the first operand. Thus, the one-byte overlap is harmless in both cases.

The result at \( X \) is \( C'GFE\)\( DCA' \), and the result at \( Q \) is \( C'54321' \).

### Section 24.7

#### 24.7.1.

```
MVC Temp,ZZ Move to work area
NC Temp,='X'00780000' Isolate second integer
NC XX,='X'FF87FFFF' Set new-integer position to zeros
OC XX,Temp Insert new second integer value
```

#### 24.7.3.

The instructions work correctly. Just before executing the NC instruction, the eight bytes at \( \text{BitChars} \) will contain \( 'X'9148241980040201' \)

The NC instruction will change the bytes to \( 'X'0100000100000001' \)

and the OC instruction inserts the high-order \( 'X'F0' \) bits to form the eight EBCDIC characters \( 'C'10011001' \).

### Section 24.8

#### 24.8.1.

Consider \(-1 > -2\). Because CLC does unsigned byte comparisons, \( 'X'FFFFFFFE' > 'X'FFFFFFFE' \), and the assertion is true.

#### 24.8.2.

Because negative binary integers have a 1 in the sign bit, a logical comparison will consider all negative numbers to be greater than all non-negative numbers.

Now, suppose you invert the sign bits: now, a logical comparison will consider all non-negative values to be greater than the originally negative values. For example:

<table>
<thead>
<tr>
<th>arithmetically smallest</th>
<th>(-20='X'FFFFFFFE')</th>
<th>becomes</th>
<th>( 'X'7FFFFFE' )</th>
<th>logically smallest</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-10='X'FFFFFFF6')</td>
<td>becomes</td>
<td>( 'X'7FFFFF6' )</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(+10='X'0000000A')</td>
<td>becomes</td>
<td>( 'X'8000000A' )</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| arithmetically largest  | \(+20='X'00000014'\) | becomes | \( 'X'80000014' \) | logically largest |

So, these instructions will compare \(+10\) to \(-10\) correctly:

```
XI M10,X'80 Invert sign of -10
XI P10,X'80 Invert sign of +10
CLC P10,M10 Compare (modified) +10 to -10
JH P10Big Branch if +10 > -10
JL M10Big Branch if +10 < -10
J Equal Branch if they're equal
```

M10 DC F',-10'  
P10 DC F'+10'

Comparisons using this technique should reset all inverted signs to their correct values.

#### 24.8.3.

It is not true for (3). The CC would be set to 0 if all the bytes were identical, whether or not they were zero.

#### 24.8.4.

Since only a single length is provided in the CLC instruction, there is no way to determine a “shorter operand”. The maximum number of bytes compared is always the number specified; if an inequality occurs, the comparison stops immediately. Also, there is no reference in the CLC instruction to “blanks” or “padding”. (We’ll see padding in Section 25.)

#### 24.8.5.

This solution uses the “one byte at a time” property of the CLC instruction:
CLI Chars,C' ' Check first character for blank
JNE NotBlank If not blank, don't bother the rest
CLC Chars+1(71),Chars Compare the rest of the characters
JE AllBlank Jump if all were blanks
NotBlank - - - Not all 72 characters are blanks

24.8.6. Because the length attribute of the literal =120C' is 1, only a single byte will be compared.

24.8.7. The instruction will set CC=0 if all 8 bytes of the field addressed by GR4 are identical. (So the instruction is very useful.)

Section 24.9

24.9.1. Here is an Assembler listing showing the generated data:

If you want to see all 256 bytes of generated data, add a
Print Data assembler instruction statement at the start of your program.

24.9.2. Only a single TR instruction is needed. The translate table replaces each byte with its rotated equivalent; it begins like this:

RotaTabl DC X'0008018102030405060708090A0B0C0D0E0F101112...'
* Argument: 000102030405060708090A0B0C0D0E0F101112...

24.9.3. This translation table uses no hand-counted duplication factors:

TRTable DC (C'a')C' Anything less than C'a' is blanked
DC C'abcdeghi' Letters are unchanged
DC (C'j'-C'i'-1)C' Non-printing characters are blanked
DC C'klmnopqr' Print letters as is
DC (C's'-C'r'-1)C' More non-printing characters
DC C'stvwxyz' Last of the lower-case letters
DC (C'A'-C'z'-1)C' Blank anything between 'z' and 'A'
DC C'ABCDEFGHI' Letters are unchanged
DC (C'j'-C'I'-1)C' Non-printing characters are blanked
DC C'JKLMNOPQR' Print letters as is
DC (C'S'-C'R'-1)C' More non-printing characters
DC C'STVWXYZ' Last of the upper-case letters
DC (C'O'-C'Z'-1)C' Non-printing characters are blanked
DC C'0123456789' Digits print okay
DC (X'100'-C'9'-1)C' Tail-enders are blanked too

24.9.4. First, define the following data areas and tables; their order is important:

Blank DC C' ' Moved by 0'S in Table
InputRec DS CL80 Moved by 1-80 in Table
Aliformat DS OF
Table DC 80A(+(+4-Aliformat)/4) 320-byte string
DC 3X'00' Three bytes of zeros

Note that the table at Aliformat begins X'0000001000000200000003...'. Then, the following instructions do the job:
MVC A1Format(240),A1Format+3   Shift Table left by 3 bytes
MVC A1Format+240(80),A1Format+243 Shift rest of Table
TR  A1Format(240),InputRec "Unpack" 60 characters
TR  A1Format+240(80),InputRec "Unpack" last 20 characters

The string at A1Format moved by the MVC’s begins X’0100000020000003’.

24.9.5. The table must be 256 bytes long, because any bit combination is possible. The table is constructed so that the function byte is the "hex transpose" of the argument byte that would access it. The table would start like this:

TRANS DC X'00,10,20,30,40,50,60,70,80,90,A0,B0,C0,D0,E0,F0 '
DC X'01,11,21,31,... etc. ...
- - -
DC X'0F,1F,..., ... DF,EF,FF'

24.9.7. Using a TR instruction is simpler than the solution to Exercise 17.4.6. The bytes in the translate table contain the bit counts:

BitNoTbl DC AL1(0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,...)

24.9.8. First, define the translate table:

Gather DS 0CL40
DC 40AL1(4*(*-Gather))  40-byte string

Then the following instructions do the job.

MVC OutRec(40),Gather
MVC OutRec+40(40),Gather
TR OutRec(40),A1Format
TR OutRec+40(40),A1Format+160

The “translation” must be done in two steps, because we cannot define a full 80-byte table at Gather. (Why? Because the values stored in the bytes would exceed 255.)

24.9.9. This can be done in several ways; this is one approach.

ASMTbl DC (X’100’)C’,’ Initialize to 256 blanks
ORG ASMTbl+C’.’ Position at .
DC C’.’
ORG ASMTbl+C’(’ Position at (.
DC C’(’
ORG ASMTbl+C’+’ Position at +
DC C’+’
ORG ASMTbl+C’&’ Position at &
DC C’&’
ORG ASMTbl+C’$’ Position at $
DC C’$’
- - - Etc., for other special chars
ORG ASMTbl+C’=’ Position at =
DC C’=’
ORG ASMTbl+C’/’ Position at /
DC C’/’
ORG ASMTbl+C’a’ Position at a
DC C’abedefghi’
- - -
ORG ASMTbl+C’A’ Position at A
DC C’ABCDEF’
- - -
ORG ASMTbl+C’0’ Position at 0
DC C’0123456789’
ORG , Set LC to end of table
ASMTbEnd Equ *

24.9.10. This solution shows a complete program that does both the right and left shifts. As with many problems involving TR and TRT, the important part of the solution is in the translate tables. The table named TLeft translates every byte whose leftmost digit is X’X’ into a byte X’OX’ (shifting the left digit right), and the table named Right translates every byte whose rightmost digit is X’Y’ into a byte X’YO’ (shifting the right digit left). The OC instructions then merge the translated strings.
24.9.12. The instruction at Q1 adds C'0' to the hex digit; if it is numeric (between 0 and 9), this is its EBCDIC representation. The comparison at Q2 tests to see if it is as large as 250 (or C'0'+X'A'); if so, the hex digit must have been A through F. The AHI instruction at Q3 then corrects the representation; it might better have been written

Q3     AHI 8,C'A-0'C'0'-X'A'  Map A-F back to correct values

24.9.14. The second byte can be translated with the table constructed in the solution to Exercise 24.9.5. The X'F' can be inserted most easily with an OI instruction, but you could use another TR instruction and a new table if you were feeling extravagant.

24.9.15. The result at OddTable will be X'0000002020404040'

24.9.16. The program does work. The precautions are:

1. Be sure that L'InString truly represents the number of input bytes, and that it does not exceed 128. (What would need to be done if is greater than 128?)
2. Be sure that the length attribute of OutString is twice the number of input bytes, by defining OutString as

   OutString DS CL(2*L'InString)

3. Assuming that the previous two conditions have been satisfied, write the TR instruction as

   TR  OutString(2*L'InString),+C'0123456789ABCDEF'

   so that all operations depend only on the length of InString.

24.9.17. The required translate table can be created in several ways. First, you can do each byte “manually” so that the table starts like this:

   RevBits DC X'008040C020A060E0109050D030B070F00804...

   but this is clearly a tedious and error-prone approach. A better approach is to let the Assembler do the work, but constructing the operand is not obvious.

   We start with the observation that a bit representing the N-th power of 2 can be extracted from a byte named X using the expression

   \[ (X - (X/2^{(N+1)}) \cdot 2^{(N+1)}) / 2^N \]

   To put this bit in the reversed position in the output byte, it must be multiplied by 2(7-N). Using these expressions, we can create the translate table this way:
Consider the second expression $2*(\text{of the offset from the start of the table, corresponding to value 26})$, and multiplies it by 2 so it will be the second bit from the right in the corresponding byte of the translate table.

24.9.19. After first time, the table will be $X'00010203...7D7E7F 7F7E7D...03020100'$ each time after the first. The original table is never recovered!

24.9.20. The table is unchanged every time the TR instruction is executed.

Section 24.10

24.10.2. You can’t replace DC XL256’0’ by DS because the other 254 bytes of the table won’t be correctly initialized.

24.10.7. This complete program uses a translate-and-test table with nonzero entries for all nonblank characters.

X24_10_7 Csect,
Using *,15
Print NoGen
RecLen Equ 80 Record length
XR 1,1 Clear GR1
XR 3,3 c(GR3) = worst-case string length
LA 4,Record+RecLen-1 c(GR0) = A(last byte of Record)
MVCIN Temp,0(4) Move Record to Temp in reverse order
TR Temp,FindNonB Scan in reverse to find a nonblank
JZ Store Branch if record was all blanks
LA 3,Temp+RecLen c(GR3) = 1 byte after Temp
SR 3,1 c(GR3) = length of string
LA 4,Record-1(3) c(GR4) = A(last nonblank character)
Store 3,DataLen Store length of string
ST 4,LastChAd Store address of last nonblank
Printout DataLen,LastChAd,* Header=NO Print results
DataLen DS F Significant length of string
LastChAd DS A Address of last nonblank char
Record DC CL(RecLen)’This is a test to see what happens.’
Temp DS CL(RecLen)
FindNonB DC 256X‘1’ Set all 256 bytes to X‘1’
Org FindNonB+X’0’ Position at offset X’40’
DC X’0’ We won’t stop on blanks
Org , Reset Location Counter
End X24_10_7

24.10.8. Suppose the second TRT does not find a nonzero function byte. Then the LTR 2,2 instruction would use the function byte from the first TRT, probably giving incorrect results.

24.10.9. The first operand generates 64 X‘01’ bytes, corresponding to offsets from X‘00’ to X‘3F’. The second operand generates a single X‘00’ byte at offset X‘40’. Finally, the third operand generates 256-C’-1, or 256-64-1=191 bytes containing X‘01’ bytes. Thus, a total of 256 bytes are generated.

24.10.11. The TRT scan stops at the X‘02’ function byte of XX, with Condition Code 1 meaning the scan is incomplete, and c(GR2)=X‘00000002’.

Section 24.11

24.11.1. The two sets of USING statements are distinct and independent. The EX reference to the target instruction is resolved at the location of the EX instruction, while the operands of the target instruction are resolved with the USINGs in effect at that location. Be careful!

24.11.2. If EX “branched” to the target instruction, he would expect GR1 to contain the address of whatever is named There. Because EX does not branch, GR1 will actually contain the address of Here.

24.11.3. GR1 will contain the address of the LR instruction, not the address of the AR instruction! This is because the BASR places the Instruction Address into R1; the PSW still contains the address of the instruction following the EX.
The target instruction (the BASR) does not modify the IA in the PSW, because its R2 digit is zero. The ILC will contain B′10′ (indicating a 4-byte instruction), because EX is an RX-type instruction.

24.11.5. In this solution, we must make two checks: (1) to verify that the number of bytes to move is positive, and (2) test whether the number is greater than 256. If so, we move blocks of 256 bytes until the residual amount to move is ≤ 256 bytes.

LTR  3,3	Check number of bytes to move
JNP Finished	If not positive, we’re done
Test	
LHI  3,256	Test if number to move is > 256
JNH LastG	If not, go handle residual group
MVC  0(256,2),0(1)	Move 256 bytes
AHI  1,256	Increment ’from’ address
AHI  2,256	Increment ’to’ address
AHI  3,-256	Decrement count by 256
J Test	And see of any more blocks to move
LastG	
BCTR 3,0	Make an machine length
EX  3,MoveL	Move the residual byte count
Finished - - - - - - - -	
MoveL MVC 0(*,-2),0(1)	Executed MVC

Compare this to the instructions in Figure 220 on page 393, and explain the differences.

24.11.6. This solution handles pairing, but does not enforce the HLASM rule that character constants and self-defining terms must always have paired ampersands and apostrophes.

LA  1,DCData	Initialize ’From’ pointer
LA  4,DCG	Initialize ’To’ pointer
LR  3,4	Save ’To’ start address for length
LHI  2,DCData	Get ’From’ string length
TestCh	
CLI  0(1),C&’	Check for ampersand
JE HaveChar	Branch to check for pair
CLI  0(1),C’’’’	Check for apostrophe
JE HaveCh	Branch to check for pair
CopyCh MVC  0(1,4),0(1)	Move ’From’ character to ’To’
AHI  1,1	Step ’From’ pointer
AHI  4,1	Step ’To’ pointer
JCT  2,TestCh	Test next character
SLR  4,3	Final ’To’ final addr - start addr
ST  4,DCG	Store length of result
J Done	
HaveCh	
CHI  2,1	Was it the last character?
JE CopyCh	Branch if yes, include it
CLC  0(1,1),1(1)	Does next character match?
JNE CopyChar	Branch if not to keep it
BCTR  2,0	Decrement count of remainder
AHI  1,1	Step over the paired character
J TestCh	And check for more characters
Done - - - - - - - -	
DCD Data DC C’ This ’string’ contains &’s and ’’s	
DCG	
DCG	
DCG	
DCG	

24.11.8. The easiest way to do this is to “pre-pad” the receiving field if N > M.
LHI 2,M 
LHI 3,N 
CR 2,3 
JE Move 
JH Pad 
LR 2,3 
J Move 
Pad MVI DataPad,C  
""Initialize first pad byte 
LR 1,3 
AH 1,-2 
JNP Move 
EX 1,PadBlank 
Move BCTR 2,0 
--- 
MoveData MVC DataPad(*-*),Data Move the data 
PadBlank MVC DataPad+1(*-*),DataPad Ripple blanks

24.11.9. Suppose the two operands are byte strings named A and B, and we want to compare A to B.

LHI 2,L′A 
LHI 3,L′B 
CR 2,3 
JE Compare 
JH A Longer 
B Longer CLC A,B A is shorter, compare to B 
JNE Done 
LA 1,L′B-L′A Calculate length of A pad 
LA 2,L′A+B Where to start padded compare 
APad CLC =C′,0(2) Compare tail of B to blank 
JNE Done 
LA 2,1(2) Step to next byte of B, CC unchanged 
JCT 1,APad And compare again 
J Done 
A Longer CLC B,A B is shorter, compare to A 
JNE Done 
LA 1,L′A-L′B Calculate length of B pad 
LA 2,L′B+A Where to start padded compare 
B Pad CLC 0(1,2),=C′ Compare tail of A to blank 
JNE Done 
LA 2,1(2) Step to next byte of A, CC unchanged 
JCT 1,B Pad And compare again 
Done - - - CC set correctly for all compares

While it is possible at assembly time to determine which of L′A and L′B is larger and then define a string of blanks whose length is the absolute difference, the above approach seems simplest.

24.11.12. The key to this solution is the translation table, in which each function byte rotates the bits of the source byte to the right by one bit position.

NILL 1,B′111′ Use only 3 rightmost bits of GR1 
JZ Done Finished if shift count was zero 
Rotate1 TR Rotator, RoTable Rotate by 1 bit position 
JCT 1,Rotate1 Repeat until N shifts are done 
Done - - - 
--- 
RoTable DC X′00,80,01,81,02,82,03,83,04,84,05,85,06,86,07,87′ 
DC X′08,88,09,89, ... etc. ... 
--- etc. 
DC X′ ... etc. ... 77,F7′ 
DC X′78,F8,79,F9,7A,FA,7B,FB,7C,FC,7D,FD,7E,FE,7F,FF′

You could avoid looping by choosing one of seven different “rotation” translate tables, but the gain seems less than the needed effort.
You can’t rotate by N bits using a single translate table, because the source byte could contain any of 256 bit combinations, and the function bytes for each of 7 possible rotations are at different offsets in the table. *

24.11.13. Suppose the rightmost 8 bits of GR9 are B’00000011’, indicating an odd number. Then, the executed TM instruction is effectively

\[ \text{TM OneBit, B'00000011'} \]

But because only one of the tested bits at OneBit is one, the JO instruction would not branch to OddReg as required, because the tested bits are mixed zero and one.

24.11.14. This can be done by testing the N rightmost bits one at a time in a loop; assume GR0 can be used as a working register, and the number to be tested is in GR9.

\[
\begin{align*}
\text{LA} & \quad 0, N \\
\text{Test} & \quad 9, \text{TMTest} \\
\text{JNZ} & \quad \text{NotPower} \\
\text{SRL} & \quad 9, 1 \\
\text{JCT} & \quad 0, \text{Test} \\
\text{TMTest} & \quad \text{TM OneBit, 0} \\
\text{NotPower} & \quad - - - \\
\text{TMTest} & \quad - - - \\
\text{Test} & \quad \text{TM OneBit, 0} \\
\text{OneBit} & \quad \text{B'00000001'} \\
\end{align*}
\]

The limitations of this technique are:

1. GR0 cannot be the register tested.
2. If we aren’t allowed to shift the contents of the register, we can’t test for powers greater than 8.
3. If we can shift, the original contents of the register is destroyed, and there is no way to check the lost bits.

To do this more general test, if N is known at assembly time we could write

\[
\begin{align*}
\text{L} & \quad 0, \text{PowerN} \\
\text{BCTR} & \quad 0, 0 \\
\text{NR} & \quad 0, 9 \\
\text{JNZ} & \quad \text{NotPower} \\
\text{PowerN} & \quad \text{DC FS(N)'}1' \\
\end{align*}
\]

24.11.15. The main problem is that the rightmost 4 bits of GR1 will modify the operation code of the executed LHI instruction! Thus, he should have written

\[
\begin{align*}
\text{SLL} & \quad 1, 4 \\
\text{EX} & \quad 1, \text{LHIOp} \\
\text{LHI} & \quad 0, 137 \\
\end{align*}
\]

24.11.16. This solution uses EX and MVI instructions:

\[
\begin{align*}
\text{LHI} & \quad 0, 8 \\
\text{LA} & \quad 1, \text{Char} \\
\text{ICM} & \quad 3, \text{B'1000', Byte} \\
\text{A XR} & \quad 2, 2 \\
\text{SRL} & \quad 2, 1 \\
\text{EX} & \quad 2, \text{MVI} \\
\text{AHI} & \quad 1, 1 \\
\text{JCT} & \quad 0, A \\
\text{MVI} & \quad \text{0(1), X'FO'} \\
\text{Byte} & \quad \text{DC X'CD'} \\
\text{Char} & \quad \text{DS CL8} \\
\end{align*}
\]

24.11.18. First, we create a translate table that can be used to reverse the order of a string of up to 256 bytes:

\[
\text{RevTbl DC 256AL1(255-(*-RevTbl))}
\]

* In other words, I couldn’t figure out how to do it. Can you?
This table contains 256 byte values starting at X'FF' and decreasing by 1 for each generated byte. Then, we can do the "inverse move" by first computing the position of the last L bytes of the table, moving them to the Target field, and then translate the source using these instructions:

```
LR 1,0 Copy L to GR1
BCTR 1,0 Make effective length in GR1
LA 2,RevTbl+256 Point to byte past end of table
SR 2,0 Point to last L bytes of table
EX 1,Move2Tgt Move those last L bytes to Target
EX 1,Tran2Tgt Translate from Source to Target
```

Move2Tgt MVC Target(*=*),0(2) Moves L bytes to Target field
Tran2Tgt TR Target(*=*),Source Moves L bytes in inverse order

This technique was often used before MVCIN was available.

24.11.19. Since the rightmost byte of GR1 is ORed into the second byte of the EX target instruction now in the IR, that second byte will be 9|5 for the first operand digit and 8|2 for the second operand digit, yielding SR 13,10 as the executed instruction.

24.11.20. EX is an RX-type instruction, so it can be indexed.

**Programming Problem 24.2.**

This solution uses three translate tables: one to do the shuffling, one to convert the hex digits to EBCDIC, and a third to place all the EBCDIC characters (including the shuffle count) into two output lines. (Note that this is the “Vertical hex” technique used in Problem 24.12!) The first output line has a blank carriage control character (single space), the shuffle count, a space, and then a blank followed by the two hex digits of a shuffled value. The second output line has the same format, except that the first four characters are blank.

Note that only the (even!) value of the symbol NC needs to be changed to modify the number of cards to shuffle.

```assembly
Print Nogen,Data
P24_2 CSECT
USING *,15
NC Equ 52 Number of playing cards
MaxCount Equ NC Maximum number of shuffles?
* Arbitrary upper limit
XR 1,1 Initialize shuffle counter
XR 2,2 Clear even work register
XR 3,3 Clear odd work register
NextOut DC 0H Top of shuffling loop
STC 1,Count Store shuffle count
LA 0,NC+1 Number of digits to format
LA 4,Count Addr(start of digit string)
LA 5,Expand Addr(start of expansion string)
ToHex DC 0H Top of expansion loop
IC 2,0,(4) Get a byte
SRDL 2,4 Move low-order digit to GR3
STC 2,0,(5) Store high-order digit
SRL 3,28 Position low-order digit
STC 3,1,(5) Store in next output position
AHI 4,1 Increment input pointer
AHI 5,2 Increment output pointer
JCT 0,ToHex Expand all the digits
TR Expand,Hex2Char Convert X'0?' digits to EBCDIC
MVC Out,Format Move formatting translate table
TR Out,Blank Translate complete output lines
PrintLin Out,L'Out/2 Print first set of shuffled values
PrintLin Out+L'Out/2,L'Out/2 Print second set
PrintLin Blank,1 Blank line
AHI 1,1 Increment count
C 1,=A(MaxCount) Test for enough shuffles
JH Finish Exit if yes
MVC Temp,Shuffle Copy shuffle table
TR Temp,Cards Do the next shuffle
MVC Cards,Temp Put the shuffled cards back
```
The output from this program showing the original order of the cards and the results after the first shuffle:

<table>
<thead>
<tr>
<th>Cards</th>
<th>Shuffles</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>24</td>
<td>11</td>
</tr>
<tr>
<td>52</td>
<td>8</td>
</tr>
<tr>
<td>64</td>
<td>6</td>
</tr>
</tbody>
</table>

Some sample results with other numbers of cards:

<table>
<thead>
<tr>
<th>Cards</th>
<th>Shuffles</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>24</td>
<td>11</td>
</tr>
<tr>
<td>52</td>
<td>8</td>
</tr>
<tr>
<td>64</td>
<td>6</td>
</tr>
</tbody>
</table>

**Programming Problem 24.3.**

The key to this solution is the translate table, which has zero function bytes in the positions of a blank and the decimal digits. There are better ways to create the (printable) column number!
EndFile  BR  14                Return to the caller
Table   DC  (C' ')X'1',X'0'    Blank valid, lower characters not
         DC  (C'O'-C'9'-1)X'1',10X'0' Numeric digits valid, rest not
         DC  (255-C'9')X'1'      Remaining characters invalid
TabLen   Equ  '*-Table'        Must be 256 (X'100')
ErrorMsg DC  C'Invalid character, column'
Record   DS  CL80               Input buffer for 80-byte records
   *         OutLine DC  C' '    Carriage control character
         OutRec DC  CL(L'Record) '  Space for the record
         DC  C' '    Space
         InvalMsg DC  CL(L'ErrorMsg) '  Space for error message
         DC  C' '    Space
         ErrorCol DC  2C' '    Space for column number
OutLen   Equ  '*-OutLine'     Length of the display line
End      P24_3
Section 27 Solutions

Section 27.1

27.1.1. Both instructions in Figure 261 on page 455 use implied lengths, relying on the length attribute of the target operand. Thus, they move 8 zones or digits. If the fields are defined as 8’00’ their length attribute is 1, and only one zone or numeric will be moved. Thus, the results would be

\[
\begin{align*}
\text{c(Numerics)} &= X'0E' \\
\text{c(Zones)} &= X'F0'
\end{align*}
\]

27.1.2. The result will be the same as executing

\[
\text{MVC Target,Source}
\]

except that it will take more time.

27.1.3. The key to this solution is the translate table, which is arranged like this:

<table>
<thead>
<tr>
<th>0</th>
<th>9</th>
<th>A</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
\text{XR} & \quad 2,2 \\
\text{TRT} & \quad ZTest+l'ZTest-1(1),ZDLast \\
\text{B} & \quad *(2) \\
\text{J} & \quad \text{BadSign} \\
\text{J} & \quad \text{ZPlus} \\
\text{J} & \quad \text{ZMinus} \\
\text{J} & \quad \text{BadDigit} \\
\text{J} & \quad \text{BadByte} \\
\end{align*}
\]

* 4=Bad Sign, 8=Plus, 12=Minus, 16=Bad Digit, 20=Bad Byte

\[
\begin{align*}
\text{ZDLast} & \quad \text{DC 10A1}(4,4,4,4,4,4,4,4,4,4,4,8,12,8,12,8,8) \\
\text{DC} & \quad \text{6A1}(20,20,20,20,20,20,20,20,20,20,20,20,16,16,16,16,16,16,16,16) \\
\end{align*}
\]

You might try extending the translate table to detect value of ±0 in the last byte, and branch to \text{Plus0} and \text{Minus0} as appropriate. (The TP instruction described in Section 29.1 is much simpler!)

27.1.4. The translate table checks for zoned numerics:

\[
\begin{align*}
\text{TRT} & \quad ZTest(l'ZTest-1),ZDNums \\
\text{JNZ} & \quad \text{BadZDig} \quad \text{Condition Code not zero} \\
\text{ZDNums} & \quad \text{DC 240A1}(4) \quad X'00'-X'EF' \text{ invalid} \\
& \quad \text{DC 10A1}(0) \quad X'F0'-X'F9' \text{ valid} \\
& \quad \text{DC 6A1}(4) \quad X'FA'-X'FF' \text{ invalid}
\end{align*}
\]

27.1.5. The printed characters will be E, N, C, and R.

27.1.6. For EBCDIC, the rows punched for the + character are 12-8-6, and for the − character only row 11. For BCD, the − character is also row 11 only, and the + character is row 12 (the top row).

27.1.7. Since only the zone portion of the byte is being moved, any five-byte literal with X’F’ zone digits would work.

27.1.8. The second form is incorrect because the duplication factor is not an absolute expression.
27.2.1. All of the constants are 5 bytes long, so the generated data for the last two constants will be different.

27.2.2. The values are (1) \( X' D1' \), (2) \( X' C0' \), (3) \( X' F0F4D2' \), (4) \( X' F0C5' \).

27.2.3. The values are (1) \(-09\), (2) \(+2\), (3) \(+007\), (4) \(-0\).

27.2.4. The generated values are (1) \( X' F0F0F0F0F0F0F1F2F3F4F5F6F7F8C9' \) (7 leading zeros), (2) Length error (too many digits), (3) \( X' F5F4F3F2C1' \) (high-order digit truncated), (4) Error (length modifier greater than 16).

27.2.5. In the rightmost byte, \( 6 \times 10 = 60 \); in any other byte, \( 10 \times 10 = 100 \).

27.2.6. Because the constant is type C, only the first 5 characters will be present in the assembled constant! (Remember, the commas are part of the nominal data.)

27.2.7. Both have Length Attribute 5.

Section 27.3

27.3.1. The integer part of \((N+2)/2\), or \((N/2)+1\).

27.3.2. In the rightmost byte, \( 6 \times 10 = 60 \); in any other byte, \( 10 \times 10 = 100 \).

27.3.3. The possible bit combinations in each byte of the packed decimal number at Pack need to be analyzed to determine where they might occur. This diagram divides the possible byte values into four groups:

<table>
<thead>
<tr>
<th>Box</th>
<th>CC=0</th>
<th>CC=1</th>
<th>CC=2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>All bytes contain only numeric digits so the number has an invalid sign.</td>
<td>A byte before the last contains a second digit greater than 9, so it has an invalid digit.</td>
<td>The last byte has a valid numeric digit but an invalid sign.</td>
</tr>
<tr>
<td>B</td>
<td>Should not occur.</td>
<td>Sign digit before the last byte is invalid.</td>
<td>Valid positive or negative data.</td>
</tr>
<tr>
<td>C</td>
<td>Should not occur.</td>
<td>An invalid digit appears in a byte before the last.</td>
<td>The last byte contains an invalid digit and sign.</td>
</tr>
<tr>
<td>D</td>
<td>Should not occur.</td>
<td>A byte before the last contains an invalid digit.</td>
<td>The last byte contains an invalid digit.</td>
</tr>
</tbody>
</table>

Box A contains bytes all of whose digits are 9 or less; Box B contains bytes whose first digit is 9 or less and whose second digit is \( X' A' \) or greater. Box C contains bytes whose first digit is greater than \( X' A' \) and whose second digit is 9 or less. The remaining bit combinations are in Box D.

By examining the contents of each box, we can use the Condition Code setting after TRT to distinguish many cases:

Now, we can construct and use the required translate table:

\[
\begin{array}{l}
\text{LA} & 1,\text{Pack}+L \text{Pack}-1 & \text{Point to last byte of Pack (for CC=0)} \\
\text{XR} & 2,2 & \text{Set GR2 to zero} \\
\text{TRT} & \text{Pack}, \text{PDTest} & \text{Test the packed data} \\
\text{B} & \text{JO}(2) & \text{Branch to check resulting CC} \\
\text{J0} & \text{J BadSign} & \text{All numerics, sign is invalid} \\
\text{P} & \text{Equ} & \text{*-J0} & \text{Box B Offset for + result} \\
\text{JZ} & \text{Error} & \text{CC=0: something went wrong} \\
\text{JM} & \text{BadDigit} & \text{CC=1: sign before last digit} \\
\text{J} & \text{PPlus} & \text{CC=2: + sign on valid number} \\
\text{M} & \text{Equ} & \text{*-J0} & \text{Box B Offset for - result} \\
\text{JZ} & \text{Error} & \text{CC=0: something went wrong} \\
\text{JM} & \text{BadDigit} & \text{CC=1: sign before last digit}
\end{array}
\]
J PMinus CC=2: - sign on valid number

C Equ *-J0 Box C offset
JZ Error CC=0: something went wrong
JM BadDigit CC=1: bad digit
JP BadByte CC=2: bad sign and digit

D Equ *-J0 Box D offset
JZ Error CC=0: something went wrong
J BadDigit CC=1,2: bad digit

PDTest DC 0X
Row0_9 DC 10AL1(0,0,0,0,0,0,0,0,0,0,P,M,P,M,P,M,P) 1st digit 0-9

27.3.4. One way to do this is with
NI SomeVal+L SomeVal-1,X FE Force last bit to 0
Any sign code with rightmost bit zero (A, C, E) indicates a plus sign.

27.3.6. It can't be done with a single instruction. (Compare this exercise to Exercise 27.3.4.) Sign codes X' B' and X' D' indicate a negative value, but X' F' indicates a positive value. With two instructions, it's easy. (Show how!)

Section 27.4

27.4.1.
- c(Z1) = X' X' F2F1F4F7F4F8F3F6F4F8'
- c(Z2) = X' X' F1F4F7F4F8F3F6F4F7' (truncation of one digit)
- c(P3) = X' 99999999999'
- c(P4) = X' 123456789C' (three separate constants);
- The explicit length of 20 is illegal for both the packed and the zoned constants.
- c(P6) = X' 31415926535C' (decimal point ignored)
- c(P7) = X' 0CF0' (both constants truncated)
- c(Z8) = X' X' F1F2FOF4F0F8F0...FO'

27.4.2.
- L' Z1 = 10
- L' Z2 = 9
- L' P3 = 6
- L' P4 = 2 (!)
- L' P6 = 6
- L' P7 = 1
- L' Z8 = 1

27.4.3. The generated constant, X'000D', is truncated.

27.4.4. No. The Assembler complains only if the number of digits in the nominal value is greater than 31, even if removing leading zero digits would leave fewer than 32 significant digits! (Do you think the Assembler should be less or more fussy?)

27.4.5. Because signed packed decimal numbers always have an odd number of digits, the high-order zero digits in the nominal values are the same as the (default) zero digits inserted by the Assembler to ensure an odd number of digits.

27.4.6. This can be done with an EX instruction:
XR 6,6 Set GR6 to zero
LA 1,L'P Length of the packed operand
IC 1,T-1(1) Insert appropriate mask bits
EX 1,ICM Insert bytes at right end of GR6
- - -
ICM ICM 6,*-*,P Executed to insert 1-4 bytes
T DC X'1,3,7,F' Masks for ICM instruction

27.4.8. Four possible interpretations, and their Assembler Language defining statements, are:
Further interpretations are possible, as we'll see later.

27.4.9. This solution is due to John Ganci:

```
Print Data To verify all data is generated
S1 DS OD
DC 1000AL2((((*-S1)/2)/100)*16*16*16+(((*-S1)/2-(((*-S1)/2)/X
100)*100)/10)*16*16+(((*-S1)/2-(((*-S1)/2)/100)*100)-(((X
(*-S1)/2-(((*-S1)/2)/100)*100)*100)*100)*10)*16+12)
```

To describe this solution, he writes:

1. Let \( V = (*-S1)/2 = H*100 + T*10 + U \) (Hundreds, Tens, and Units)
2. \( H = V/100 = ((*-S1)/2)/100 \)
3. Remove the Hundreds digit: \( TU = T*10+U = V-H*100 = (*-S1)/2-(((*-S1)/2)/100)*100 \)
4. \( T = TU/10 = ((*-S1)/2-(((*-S1)/2)/100)*100)/10 \)
5. Remove the Tens digit: \( U = TU - T*10 = (TU/10)*10 = (*-S1)/2-(((*-S1)/2)/100)*100-(((*-S1)/2-(((*-S1)/2)/100)*100)/10)*10 \)
6. Then, generate the packed decimal constant \( X'HTUC' = H*16*16*16+T*16*16+U*16+12 \)

What will happen if you replace the constant type AL2 with Y? Try it!

27.4.10. Like the solution to Exercise 27.4.9, this is also due to John Ganci:

```
Print Data To verify all data is generated
Z3 DS OD
DC 1000AL3((((*-Z3)/3)/100)*16*16*16*16+(((*-Z3)/3-(((*-Z3)/3)/X
3)/100)*100)/10)*16*16+(((*-Z3)/3-(((*-Z3)/3)/100)*100)-X
(((*-Z3)/3-(((*-Z3)/3)/100)*100)*100)*100)*100)*10)*16+X'FOFOC0'
```

The analysis of this exercise is similar to that in Exercise 27.4.9, but the generated data doesn’t line up as neatly in the listing.

27.4.11. The Scale Attribute values are: \( S'A=7, S'B=3, S'C=1, S'D=4, S'E=0 \).

27.4.12. The number of packed decimal digits is \( 2*L'X-1 \), so the value of the Integer Attribute is \( I'X = 2*L'X-1-S'X \). That is, the total number of digits minus the number of fraction digits.

27.4.13. The attributes of the symbols are:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>( L' )</th>
<th>( I' )</th>
<th>( S' )</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>4</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>E</td>
<td>6</td>
<td>11</td>
<td>0</td>
</tr>
</tbody>
</table>

Section 27.5

27.5.1.

```
PACK AA(5),BB(5) F244 ----- -----
UNPK BB,AA F3A1 ----- -----
PACK 0(16,9),65(,2) F2F0 9000 2041
PACK AA(0),BB(0) F200 ----- -----
UNPK BB-AA(,9),BB(L' AA) F3A1 9002 -----
PACK AA,BB+11(3) F212 ----- -----
```
Section 27.6

27.6.1. \( NP = (NZ+2)/2 \), or \((NZ/2)+1\).

27.6.2. The results for the three operands are:

1. \( 'X'0000000000FF7F' \)
2. \( 'X'336B066934A5' \)
3. \( 'X'CCFC07F2C412' \)

27.6.4. The address of the rightmost byte of the first (target) operand must be greater than or equal to the address of the rightmost byte of the second (source) operand. This is perhaps deceptive: it might seem that the first operand’s rightmost byte address could be as much as 2 less than the second operand’s rightmost byte address, since “the result byte is stored immediately after fetching the necessary operand bytes”. However, the fetched bytes are those for the current result byte, not the next result byte!

27.6.5.
- \( c(P1) = 'X'468C' \)
- \( c(P2) = 'X'02468C' \)
- \( c(P3) = 'X'6C' \)
- \( c(P4) = 'X'00000681357C' \)
- \( c(P5) = 'X'002468135F' \)

27.6.6. The result is correct for any length, so the maximum length is 16 and the minimum length is 1.

27.6.7. \( 'X'000000013579BDFE' \).

27.6.8. Packing a string of blanks gives \( 'X'0000...04' \), which has an invalid sign code for arithmetic purposes. The rightmost byte could be corrected with an OI instruction with mask \( 'X'0C' \).

27.6.9. The result will be valid for any value of \( K \) satisfying \( 1 \leq K \leq N \).

27.6.10. The length digit for \texttt{PackData} is in the \( L_1 \) field, so it must be positioned correctly:

\[
\begin{array}{ll}
\text{BCTR} & 2,0 \quad \text{Reduce count for EXecute} \\
\text{SLL} & 2,4 \quad \text{Position the count digit correctly} \\
\text{EX} & 2, \text{PackOp} \quad \text{Do the Pack instruction} \\
\end{array}
\]

- \( \text{PackOp} \quad \text{Pack PackData(*-*)},ZData \quad \text{Executed instruction} \)

27.6.11. The result will be \( 'X'00BDFFE' \).

27.6.12. The result will be \( 'X'00BEFE' \).

27.6.13. The result will be \( 'X'00BDFFE' \).

27.6.14. There is no difference so long as there is at least one zoned decimal digit at the right end of the source operand, because both zeros and blanks have numeric digit zero.

Section 27.7

27.7.1. \( c(\text{PackOp}) = 'X'12345C' \); \( c(\text{ZonOp}) = 'X'F1F2F3F4C5' \).

27.7.2. The results are:

1. \( 'X'F0F0FFFFFFFFFFFFF7F' \)
2. \( 'X'F9F6F9F9F9F8F4A5' \)
3. \( 'X'F6FFFFF2F6CF6F412' \)

27.7.3. \( 'X'FFFFFFFFCFCFDFFE' \). (Were you surprised?)

27.7.5. If the length of either operand is 1 byte, there is no problem with overlap.

Now, assume neither operand is one byte long. Then, the address of the rightmost byte of the first (zoned) operand must be greater or equal to than the address of the rightmost byte of the second (packed) operand plus the length of the second operand, minus 2. That is, if \( Z_L \) is the address of the last byte of the zoned operand, and \( P_L \) for the second operand, then

\[
Z_L \geq P_L + L'P - 2
\]
where \( L' \) is the length of the packed second operand. This avoids the possibility that the byte pairs of the first operand being stored before single bytes are fetched for the second operand.

27.7.6.

- \( c(Z1) = X'F1F2F3F4F5C6' \)
- \( c(Z2) = X'F0F1F2F3F4F5C6' \)
- \( c(Z3) = X'F5C6' \)
- \( c(Z4) = X'F0F0F0F4F5C6' \)
- \( c(Z5) = X'F1F2F354' \).

The contents of Z6 is unknown, since the implied length (4) of \( PData \) means that unpacking will start with the byte at \( PData+6 \). If we assume that the byte at \( PData+3 \) contains the two hex digits \( X'xy' \), then \( c(Z6) = X'FCyx' \).

27.7.7. The minimum length is of course 1; the maximum length is 3. (See the solution to Exercise 27.7.3 for an illustration.)

27.7.8. NZ = \( 2 \times NP - 1 \). They are different because we discarded the remainder in evaluating \( NP=(NZ/2)+1 \).

27.7.11. The result is \( X'FFFFFFFFDEF' \).

27.7.12. Use implied lengths for the second operand of PACK and UNPK.

27.7.14. The result will be \( X'F0F1F2F3F465' \).

27.7.15. The result will be \( X'F0FFFFF2F3F465' \).

27.7.16. The result will be \( X'F0FFFF5F6F565' \).

27.7.17. The result at Answer will be \( X'F0F0F7F6F54C3' \).

Section 27.8

27.8.1. The result is 16 bytes long: \( X'00000000 12345678 90123456 789ABCDC' \) (the spaces are inserted to improve readability).

27.8.2. The result will be \( X'08DFBD1FBD0FBD0FBD0FBD0FBD0FBD0FC' \).

27.8.3. The result will be \( X'0DBD1FBD0FBD0FBD0FBD0FBD0FBD0FC' \).

27.8.4. Because the required 16 bytes of the packed decimal operand would overlap the source operand, the results are unpredictable. (Try it, and see what happens!)

27.8.5. Assuming that no test is made for all unpacked characters being zeros, CC1 should indicate a negative packed operand, and CC2 should indicate a positive packed operand. If the test for zero characters was made, CC0 should be set. (Question: should such a test for zeros check the entire packed operand, or only the digits actually unpacked?)

27.8.6. \( X'0000 0000 0000 0000 0000 0009 8765 432C' \), where the spaces were inserted for readability.

27.8.7. The CC setting will be zero in both cases!

Section 27.9

27.9.1. Because all of the bytes being translated have values between \( X'F0' \) and \( X'FF' \), we must ensure that the first byte of the translate table at TRTab is accessed if the source byte is \( X'F0' \).

27.9.2. \( X'OFC' \), from swapping the digits of the first byte of the translate table.

27.9.3. Be careful! It is tempting to start by writing

\[
\text{UNPK String(17),DW(9)}
\]

only to discover that the length of 17 is invalid. The unpacking must be done in two steps, as in

\[
\text{UNPK String(9),DW(5) \quad First 4 bytes} \\
\text{UNPK String(8),DW(4) \quad Last 4 bytes} \\
\text{TR String(16),=C0123456789ABCD} -X'F0' \quad \text{Translate}
\]

Does it matter in which order the above two UNPK's are executed? Try it, and then explain why or why not.*

* The order does matter. If the UNPKs are reversed, the byte at String+8 will contain the swapped digits of the byte at DW+5.
27.9.4. The second operand was exhausted before the first operand field was filled.

27.9.5. Suppose a (non-zero) register (say, 7) is free. Then rewrite the TR either as

\[
\begin{align*}
L & 7,=A(TR\text{Tab}-X' F0') \quad \text{Point to offset from table} \\
TR & \text{Char}(8),0(7) \quad \text{Use the same translate table}
\end{align*}
\]

Of course, the literal must be addressable! If not, use LY instead of L. Or, write

\[
\begin{align*}
\text{LAY} & 7,TR\text{Tab}-X' F0' \quad \text{Point to offset from table} \\
TR & \text{Char}(8),0(7) \quad \text{Use the same translate table}
\end{align*}
\]

If neither of these methods work, consider rewriting that part of your program.

27.9.6. This elegant technique is due to D. R. Page.** The code is surprisingly simple:

\[
\begin{align*}
\text{UNPK} & \text{BinaryCh}(3),\text{Byte}(2) \\
\text{TR} & \text{BinaryCh}(2),\text{TBL}-X' F0' \\
\text{UNPK} & \text{BinaryCh}(5),\text{BinaryCh}(3) \\
\text{TR} & \text{BinaryCh}(4),\text{TBL}-X' F0' \\
\text{UNPK} & \text{BinaryCh}(9),\text{BinaryCh}(5)
\end{align*}
\]

27.9.7. The solution is obtained by “inverting” the solution to Exercise 27.9.6. The translate table is different, however: although only 16 bytes are used for the translation, an area 86 bytes long is required. (The gaps could be filled with other data if you like; “Q” can represent any byte value, because those bytes of the table are not referenced.)

\[
\begin{align*}
\text{Q} & \text{Equ} 0 \quad \text{Or any other value} < 256 \\
\text{PACK} & \text{BinaryCh+4}(5),\text{BinaryCh}(9) \\
\text{TR} & \text{BinaryCh+4}(4),\text{Table} \\
\text{PACK} & \text{BinaryCh+6}(3),\text{BinaryCh+4}(5) \\
\text{TR} & \text{BinaryCh+6}(2),\text{Table} \\
\text{PACK} & \text{BinaryCh+7}(2),\text{BinaryCh+6}(3) \\
\text{MVC} & \text{Byte}(1),\text{BinaryCh+7} \quad \text{Move result byte}
\end{align*}
\]

27.9.7. The solution is obtained by “inverting” the solution to Exercise 27.9.6. The translate table is different, however: although only 16 bytes are used for the translation, an area 86 bytes long is required. (The gaps could be filled with other data if you like; “Q” can represent any byte value, because those bytes of the table are not referenced.)

\[
\begin{align*}
\text{Q} & \text{Equ} 0 \quad \text{Or any other value} < 256 \\
\text{PACK} & \text{BinaryCh+4}(5),\text{BinaryCh}(9) \\
\text{TR} & \text{BinaryCh+4}(4),\text{Table} \\
\text{PACK} & \text{BinaryCh+6}(3),\text{BinaryCh+4}(5) \\
\text{TR} & \text{BinaryCh+6}(2),\text{Table} \\
\text{PACK} & \text{BinaryCh+7}(2),\text{BinaryCh+6}(3) \\
\text{MVC} & \text{Byte}(1),\text{BinaryCh+7} \quad \text{Move result byte}
\end{align*}
\]

Section 28 Solutions

Section 28.1

28.1.1. Even though the result is X'00000000C', it’s unlikely any packed decimal operand would be generated this way. (Suppose the second operand of the AHI instruction had been 2140: would you expect the result at PWord to be a valid packed decimal number?) (Is it?) (If yes, what is its value?)

Section 28.2

28.2.1. Decimal operands may have differing lengths, whereas both operands in a binary addition or subtraction have the same length (perhaps after internal sign extension). If the decimal operands have the same length, then no decimal overflow will occur when adding numbers of unlike sign.

28.2.2. The results are:

(a) X'04294967295C', CC=2, no overflow.
(b) X'000001C', CC=3, overflow
(c) X'999997D', CC=1, no overflow
(d) X'4D', CC=3, overflow
(e) X'111C', CC=2, no overflow
(f) X'0C', CC=0, no overflow
(g) X'0000D', CC=3, overflow
(h) X'7D', CC=3, overflow

28.2.3. The results are:

(a) X'12690C', CC=2, no overflow.
(b) X'0000D', CC=3, overflow
(c) X'0000C', CC=0, no overflow
(d) X'458C', CC=3, overflow
(e) X'00000000D', CC=1, no overflow
(f) X'000000C', CC=0, no overflow

Section 28.3

28.3.1. The subtraction would overflow, setting the Condition Code incorrectly to 3 instead of 2, and possibly also causing an interruption for decimal overflow.

28.3.2. The CC will be set to 1, because the first operand (X'0C') is logically less than the second (X'0D'). Remember that the Assembler generates the preferred sign codes!

28.3.3. The CC settings are:

(a) CC=1
(b) CC=2
(c) CC=1
(d) CC=1
(e) CC=2
(f) CC=0
(g) CC=1
(h) CC=1

28.3.4. The CC settings are:

(a) CC=2
(b) CC=1
(c) CC=0
(d) CC=0
(e) CC=1
(f) CC=0

28.3.5. The operands may overlap only if their rightmost bytes coincide.
Section 28.4

28.4.2. Let the first and second operands be $N_1$ and $N_2$ bytes long respectively. Then operand 2 (the multiplier) can have at most $2 \times N_2 - 1$ nonzero digits, and operand 1 (the multiplicand) is required to have at most $2 \times (N_1 - N_2) - 1$ nonzero digits. (Remember that $N_1 > N_2$.) The largest number of nonzero digits in the product is the sum of these, or $2 \times N_1 - 2$, but the product is $2 \times N_1 - 1$ digits long.

28.4.3. Because the product is at most 16 bytes long, the shorter operand must be at most 8 bytes long. Even though multiplication is commutative ($a \times b$ is the same as $b \times a$), the fact that operand 1 is to receive the product forces operand 2 to be the shorter operand.

28.4.4. The largest valid first and second operands are

Operand1 DC PL16'9999999999999999' (15 9’s)
Operand1 DC PL8'9999999999999999' (15 9’s)

so the largest product is X'0999 9999 9998 0000 0000 001C'. (Spaces added for readability.)

28.4.5. The products are shown in this table:

<table>
<thead>
<tr>
<th>Original Pair</th>
<th>Product</th>
<th>Reversed Pair</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) (9+) × (9-)</td>
<td>X'081D'</td>
<td>(9-) × (9+)</td>
<td>X'081D'</td>
</tr>
<tr>
<td>(b) (72-) × (7+)</td>
<td>X'00504D'</td>
<td>(7+) × (7-)</td>
<td>X'00504D'</td>
</tr>
<tr>
<td>(c) (44+) × (44+)</td>
<td>X'0001936C'</td>
<td>(44+) × (44+)</td>
<td>X'0001936C'</td>
</tr>
<tr>
<td>(d) (15-) × (55+)</td>
<td>X'0000825D'</td>
<td>(55+) × (15-)</td>
<td>X'0000825D'</td>
</tr>
<tr>
<td>(e) (107+) × (107+)</td>
<td>X'0011449C'</td>
<td>(107+) × (107+)</td>
<td>X'0011449C'</td>
</tr>
<tr>
<td>(f) (28+) × (3-)</td>
<td>X'00084D'</td>
<td>(3-) × (28+)</td>
<td>X'00084D'</td>
</tr>
</tbody>
</table>

28.4.6. The result will not be 063+. Even though the first operand field is long enough to hold the product, it does not have as many leading zero bytes as the length of the second operand. This will lead to a Data exception, and the IC will be set to 7.

Section 28.5

28.5.2.

(a) 113+055+
(b) decimal divide interruption
(c) 67957045711–1+
(d) 520322163+202+
(e) 38460–018+

28.5.3. In 08–35– the quotient sign digit is not in the low-order position of the second byte.

Section 28.7

28.7.4. It seems simplest to add positive and negative terms separately, and then add those two results. But if the list is long, the number of digits needed to hold the intermediate sums increases, and the addition time for each term therefore increases also. The choice probably depends on operand sizes and the number of items in the list. (There’s no simple answer, unfortunately.)
Section 29 Solutions

Section 29.1

29.1.1. The CC settings are:

(a) CC=3
(b) CC=0
(c) CC=1
(d) CC=2: the operand is X'00FF'
(e) The operand is invalid because it is more than 16 bytes long.
(f) CC=0: the operand is X'818283846F', or 818283846+

29.1.2. Not really. You could start with the rightmost byte and step the starting address of the operand to the left one byte at a time; but if any byte had two invalid digits, you couldn't tell which it was. You might get better results with a TRT instruction and an appropriate translate table.

Also, stepping from right to left would also require remembering which byte had the most recent bad digit.

29.1.3. Because valid digits are in the range from 0 to 9, you could use this test:

\[
\begin{align*}
\text{CLI} & \quad \text{BadByte,X'9F'} \\
\text{JH} & \quad \text{BadLeft} \quad c(\text{BadByte}) > X'9F' \\
\text{J} & \quad \text{BadRight} \quad c(\text{BadByte}) < X'9F'
\end{align*}
\]

This test fails if the byte is actually valid. (Why?)

Section 29.2

29.2.1. The second bytes containing the two length digits for the 7 ZAP instructions are respectively X'10', X'10', X'12', X'12', X'11', X'10', and X'11'.

29.2.2. When (1) a preferred sign digit is desired, (2) when validity checking of sign and digits is desired, or (3) to set the CC to reflect the sign of the operand.

29.2.3.

(1) C(X) = X'123D', CC = 1;
(2) C(X) = X'405C', CC = 2;
(3) C(X) = X'000C', CC = 0;
(4) C(X) = X'753C', CC = 2;
(5) data exception, caused by invalid digit;
(6) data exception, caused by invalid sign.

29.2.4. It might be tempting to try

\[
\begin{align*}
\text{XI} & \quad \text{PackVal+L'PackVal-1,1}
\end{align*}
\]

However, this won't work if the sign code is E or F, both of which indicate +.) One way is to construct a translate table which leaves the left half of the byte unchanged, and which changes the right half to a preferred sign code of the opposite sense. One way is this:

\[
\begin{align*}
\text{ZAP} & \quad \text{Temp,PackVal} \quad \text{Copy to a temporary} \\
\text{ZAP} & \quad \text{PackVal,=P'O'} \quad \text{Clear the original field} \\
\text{SP} & \quad \text{PackVal,Temp} \quad \text{Copy back with opposite sign} \\
\end{align*}
\]

\[
\begin{align*}
\text{Temp} & \quad \text{DS} \quad \text{PL(L'PackVal)} \quad \text{Temporary, same size as PackVal}
\end{align*}
\]

An even simpler way to do this (courtesy of John Ganci) is:

\[
\begin{align*}
\text{ZAP} & \quad \text{PackVal,PackVal} \quad \text{Make a preferred sign (C or D)} \\
\text{XI} & \quad \text{PackVal+L'PackVal-1,1} \quad \text{Invert the sign}
\end{align*}
\]

29.2.5. These are two possible disadvantages; there may be others!

- You must remember to check for operand fields of equal length. Because MVC has only a single length field, it might be easy to change the length of one of the operands and forget that the MVC statement will not be correct after the program is re-assembled.
- MVC doesn't set the Condition Code, and does not check for invalid results.

29.2.6. The maximum value of the Length Expression in the MVC instruction is 256, so we must have
\[ \text{NDec-1} = \frac{256}{L'} \text{Dec} \]

which (with \(L'\text{Dec} \) equal to 3) gives \( \text{NDec}=86 \). (Why is there a \(-1\) in the above expression?)

29.2.7. These two instructions will do the job:

\[
\begin{align*}
\text{ZAP} & \quad \text{SomeVal}, \text{SomeVal} \quad \text{Force preferred sign code} \\
\text{NI} & \quad \text{SomeVal} + L' \text{SomeVal-1}, X' \text{FE}' \quad \text{Set low-order bit to zero}
\end{align*}
\]

The \text{ZAP} instruction will not change the value of the operand, but will ensure that the sign code is one of the preferred values, \(X' \text{C}'\) or \(X' \text{D}'\). The \text{NI} instruction sets the low-order bit of the sign code to zero, making the sign code \(+\). Note that

\[
\text{OI} \quad \text{SomeVal} + L' \text{SomeVal-1}, X'0 \text{F}'
\]

sets the sign to \(+\), but \(X' \text{F}'\) isn’t the preferred plus sign. (This can be important if you’re using CLC to compare lots of packed decimal data: two equal values like \(X'1 \text{C}'\) and \(X'1 \text{F}'\) could compare as unequal.)

Section 29.3

29.3.1. The results will be

at A: \(X'005 \text{C}'\) After adding \(X'3 \text{F}'\) to \(X'002 \text{F}'\)
at B: \(X'3 \text{F}'\) The operation code for \text{UNPK}
at C: \(X' \text{F05FCF3}'\) The unpacked value (?!

Revising the code is left as another exercise for you.

29.3.2. The overflow will occur on the 127th addition.

This result is not obvious. Consider the first several additions: the results will be 368+, 376+, 382+, 384+, 388+, etc. You can see that the low-order digit takes values 4, 8, 6, and 2 in cycles that increase the original value by 20. When the value arrives at 984+, we will have performed \((984-364)/20\times4=124\) additions; the next two additions give 988+ and 996+, and the next addition will overflow, leaving 002+ as the result. Thus, there are 124 additions to get to 984+, and 3 more additions cause the overflow.

Don’t just calculate \((1000-364)/4=159\), assuming an increment of 4 each time!

29.3.3. XC may be useless if a valid sign is required.

29.3.4. The only change occurs after the first addition, which produces 370+ and a CC setting of 2. Further additions cause no changes, because the rightmost byte at \(XX\) contains 0+. (Don’t try this in a program; it might loop indefinitely!)

29.3.5. Yes. Consider \((9-)-(999-):\) the result is 0+, the Condition Code is 3, and a decimal overflow has occurred.

29.3.6. Suppose the length of the first operand \(XX\) is \(N\) bytes, and that we want to zero the rightmost \(D\) digits, where \(D\) is an odd number. (Why an odd number?) Then the \text{SP} instruction of Figure 290 on page 494 can be written

\[
\text{SP} \quad XX(N),XX+(N-1)-D/2((D+1)/2)
\]

To do this with an \text{NC} instruction, we might write

\[
\text{NC} \quad XX+(N-1)-D/2((D+1)/2), \text{Mask}
\]

\[
\text{Mask} \quad \text{DC} \quad (D/2)X'00',X'0F'
\]

Leaves sign intact

\[
N \quad \text{Equ} \quad \text{(an odd number satisfying } 0 < D < 2^N\text{)}
\]

29.3.7. The results are:

Case 1: Decimal Overflow, CC=3, c(A)=X'5 \text{C}'.
Case 2: CC=2, c(B)=X'075 \text{C'}

Note that the result in both cases has the preferred plus sign code.

29.3.8. A decimal overflow can only be caused by packed decimal instructions, all of which are 6 bytes long. Thus, the Instruction Length code cannot be 1.

29.3.9. A 4-byte packed decimal number can hold 7 digits, while each element of the \text{Dec} array is at most 5 digits long. Thus, adding 50 elements can’t overflow.

---

* Because the first element is already initialized before the MVC is executed.
Section 29.4

29.4.1. To test for valid signs and digits, or to set the CC to zero.

29.4.2. The last.

29.4.3. With the CP instruction, the CC setting will be 0, because positive and negative zeros are equal. With the CLC instruction, the CC will be 1 because X'000C' < X'000D'. A different choice of sign codes can change the results!

29.4.4. These instructions don’t use a temporary variable; the address in GR2 points to the current maximum value.

```
NDec Equ 50 Number of table entries
LA 0,NDec-1 Initialize count to (#entries-1)
LA 2,Dec Current largest
LA 1,Dec+L Start compare with second entry
Compare CP 0(L'Dec,2),0(L'Dec,1) Compare current max to element
JH Next Branch if max is bigger
LR 2,1 Save address of new max value
Next LA 1,L'Dec(,1) Step pointer to next element
JCT 0,Compare Count and loop
ST 2,BigItemA Save address of max value

- - -
BigItemA DS A Address of largest element
Dec DS (NDec)PL3 Table of elements
```

How would you modify these instructions to set GR3 to the index of the largest element (for example, to 1 for the first element, 2 for the second, etc.)?

29.4.5. Remember that the hex representation of the two literals: +10' is X'010C', and -20' is X'0200'. The CP instruction will set the CC to 2 (the first operand is greater), but the CLC instruction will set the CC to 1 (the first operand is lower). This shows why you must know the data types when choosing instructions to compare operands.

Section 29.5

29.5.1. 2 ≤ N1 ≤ 16, 1 ≤ N2 ≤ 8, N1 > N2. (That was easy, wasn’t it!)

29.5.2. Eight, because it is used as the length of the multiplier in the MP instruction, and because 2*LD is used in the length expression for several other operands.

29.5.4. An MP instruction with identical operands will create a specification exception, because L1 is equal to instead of greater than L2.

29.5.5. If the multiplier is a single digit, as in

```
007+ × 7+
```

and we assume that the multiplier digit 7+ is fetched once, then the result should be the expected 049+. However, if the multiplier is longer than one byte, as in

```
0000777+ × 077+
```

the result would be unpredictable, depending on the order in which multiplicand and multiplier bytes are fetched. In general, it’s best to avoid overlapping operands in decimal multiplication.

29.5.6. X'049C'.

29.5.7. X'0003969C'.

29.5.8. X'07151577489C'.

Section 29.6

29.6.1. If we assume that the preferred sign codes (X'C' and X'D') are used, then the test for a zero element could be written

```
Test CP 0(Elen,1),=P'0' Check for zero magnitude
JNE AddUp Okay to add
TM Elen-1(1),X'01' Test rightmost sign bit
JO Divide Finished (almost) if it's 1
```

If the other four sign codes are used, we must modify the tests to also check for a sign code of X'F':
Test CP 0(ELen,1),=P′0′ Check for zero magnitude
JNE AddUp Okay to add
TM ELen-1(1),X′01′ Test rightmost sign bit
JZ Addup Not negative; OK to add
TM ELen-1(1),X′0F′ Check for + sign with X′F′
JNO Divide Branch if not +0 to divide

29.6.2. \(2 \leq N_1 \leq 16, 1 \leq N_2 \leq 8,\) and \(N_1 > N_2\)

29.6.3. A DP instruction with identical operands will cause a specification error, because \(L_1\) is equal to \(L_2\) instead of being greater.

29.6.4. You could do a decimal divide by 2 and test the remainder; or, you could use a TM instruction like this:

```
TM PData+L′PData-1,X′10′ Test rightmost decimal digit
JO Even Branch if it's even
- - -
PData DC P′1234567′ Sample data
```

29.6.5. The condition code setting for a +0 and a −0 is always zero, so you can’t know what the sign is.

29.6.6. This is guaranteed to produce a specification exception, because \(L_1\) will necessarily be less than or equal to \(L_2\).

29.6.7. If the divisor is one digit long, as in

```
00000067+ ÷ 7+
```

then the result might be the expected 000009+4+. However, if the divisor is longer than a single digit, it is difficult to predict the result. In general, it’s best not to use overlapping operands in decimal division.

29.6.8. X′000009C4C′ (quotient 9, remainder 4).

29.6.9. X′000001C00C′. (quotient 1, remainder 0)

29.6.10. X′00016C495C′. (quotient 16, remainder 495)

29.6.11. There is no obvious reason why this should be the case; you can easily visualize dividing a 31-digit dividend by a 25-digit divisor to give a 25-digit remainder and a 5-digit quotient. The answer may be that (a) limited CPU internal space for long operands, since division by a 25-digit divisor could involve many repeated subtractions. By limiting the divisor to 15 digits and sign, the internal circuits would not have to carry more than 8 bytes at a time.

29.6.12. Review the discussion at the end of Section 28.5.

29.6.14. The result is X′82479C030C047C′, with quotient 82479 and remainder 30. (The fact that the divisor is adjacent to the dividend and divisor is only meant to make the problem a little more confusing.)

29.6.15. Number of quotient digits = \(2 \times (\text{dividend_length} - \text{divisor_length}) - 1\)

**Section 29.7**

29.7.1. Both expressions result in an unsigned displacement X′FFFFFFFFFE′. This is then larger than 4095, the largest possible value for the displacement \(D_2\). The statement should be written

```
SRP A,64-2,0 Shift 2 digits to the right
```

She could also specify a USING statement like

```
USING 5,-2
```

but (as with all similar promises to the Assembler) would have to be sure that GR5 contains −2 when the SRP instruction is executed. (Try it, and see what the assembled instruction looks like!)

29.7.2. Because at least one high-order zero digit must have been introduced, any carry generated by the rounding process cannot propagate past the end of the shifted operand.

29.7.3. If the rounding digit is added in binary, a carry might not propagate into the next higher-order decimal digit of the first operand, or an invalid digit might be generated.

29.7.4. Both instructions will cause decimal data exceptions.

29.7.5. The results are

1. 998+ (no shift!)
2. \(950^+\)
3. \(010^+\)

29.7.6. The shift amount is \(-1\), a one-digit right shift, and the resulting data will be \(X'00457D' = PL3' -457'\).

29.7.7. The shift operand (63) is the same as \(-1\), so a single right shift with rounding will be done. The result will be \(X'00457D'\), not \(X'00456D'\), because the rounding digit is given the same sign as the shifted operand.

29.7.9. Feel free to stop when you’ve written 100 statements in your attempted solution. Congratulate yourself if you can find a solution (including CC settings) less than 100 statements long. Now you know why SRP was invented!

29.7.10. Using a signed shift amount meant that only one shift instruction was needed, rather than two, one for left shifts and one for right shifts. Also, the maximum length of a packed decimal operand is 31 digits, while binary shifts can handle up to 63 bits.

29.7.12. Our programmer friend forgot that the rounding digit is (internally) given the same sign as the decimal operand. The Assembler will complain that the rounding operand digit I3 is not between 0 and 9.

29.7.13. The result is \(c(E)=X'500C'\) with decimal overflow causing CC3. Note the preferred plus sign.

29.7.16.
1. If the left shift causes no decimal overflow, and
2. shifting the operand does not cause a decimal divide exception, then
3. the method will give a rounded quotient.

29.7.17. Consider these: (1) add \(-5^-\) to \(-5^-\); the (overflowed) result will be \(0^-\). (2) multiply \(0^+\) by \(0^-.\) (3) divide \(000^+\) by \(1^-\). (4) use SRP to shift all significant digits of (say) \(-5^-\) off the right end of the field.

Section 29.8

29.8.2. The results are
1. \(X'00000123456C'\)
2. \(X'000C1C23C4C'\)
3. \(X'000001E240C'\)
4. \(X'23456789ABCC'\)

29.8.3. The number of numeric digits moved is always odd.

29.8.4. The number of numeric digits truncated is always odd.

29.8.6. The possible movements for the digits, and an instruction that does the movement, are shown below:

\[
\begin{align*}
1L \rightarrow 2L & : \text{MVZ Byte2,Byte1} \\
1R \rightarrow 2R & : \text{MNV Byte2,Byte1} \\
1R \rightarrow 2L & : \text{MVO Byte2,Byte1} \\
1L \rightarrow 2L, 1R \rightarrow 2R & : \text{MVC Byte2,Byte1} \\
1L \rightarrow 2R, 1R \rightarrow 2L & : \text{PACK Byte2,Byte1 (OR UNPK)} \\
1L \rightarrow 2R & : \text{Let me know how you did it.}
\end{align*}
\]

29.8.7. First, the operation of the instructions:

- The two MVC instructions create an 8-byte field at \(0ut\) with copies of the byte.
- The NC instruction masks off all but the single bit at each of the bit offsets from zero to seven. For example, the first four bytes will contain \(X'80\ 40\ 00\ 10'\).
- The MVO instruction moves the first four bytes to the \(Work\) field, offset to the right by 4 bits (effectively right-shifting).
- The following MVC moves the four right-shifted bytes back to their original positions at \(0ut\).
- The TR instruction converts each bit value to an EBDCIC 0 or 1 character.

The literal must be nine characters long, because the possible offsets into the string (from the bit values at \(0ut\)) can take values from 0 to 8.

Section 29.9

29.9.1. The operand \(0001234^+\) has only one byte of high-order zeros, but the operand \(100^+\) is two bytes long.

29.9.2. The most important restriction is that the result operand must be 16 or fewer bytes long; this can be written
L + N/2 < 16.

Similarly, the original operand must be 15 or fewer bytes long, so L < 16 and N > 0. The required instruction sequence then takes the form

\[
\begin{align*}
&MVN\ A+L+N/2(1),A+L-1 \\
&MVO\ A(L+1),A(L) \\
&NC\ A+L(N/2+1),=XL(N/2+1)'F'
\end{align*}
\]

29.9.3. We require L < 16, N > 1, and N < 2L-1. Then we can use the code sequence

\[
\begin{align*}
&MVN\ B+L-1(1),A+L-1\ Move\ sign \\
&MVO\ B((L-N)/2),A\ Move\ digits \\
&NC\ B+L-N/2-1(N/2+1),=XL(N/2+1)'F'
\end{align*}
\]

\[
\text{A}\ DC\ \text{PL(L)}'\text{initial value}'
\]

\[
\text{B}\ DS\ \text{PL(L)}\ Shifted\ result\ goes\ here
\]

29.9.4. We require L \leq 16 and 0 < N < 2L. The MVN instruction can then be written

\[
\begin{align*}
&MVN\ A+L-N/2-1(1),A+L-1 \\
\end{align*}
\]

\[
\text{B}\ DS\ \text{OPL(L-N/2)}\ Define\ length\ attribute\ of\ result
\]

\[
\text{A}\ DS\ \text{PL(L)}\ Original\ L-byte\ operand
\]

29.9.5. Suppose N = 2L-1, which means that all the digits of the operand are to be “shifted off”. Then the MVO instruction

\[
\begin{align*}
&MVO\ A,A(0)
\end{align*}
\]

might appear to do the job. However, as you remember from the discussion of the length digits in two-length SS-type instructions, a zero in the Length Expression is assembled as a zero length digit in the instruction. This is equivalent to

\[
\begin{align*}
&MVO\ A,A(1)
\end{align*}
\]

which performs a shift of N-2, or 2L-3, digits, rather than N as required.

29.9.6. The code sequence below illustrates a possible solution.

\[
\begin{align*}
&\text{LA}\ 1,\text{Over}\ Set\ address\ of\ overflow\ branch \\
&\text{CLI}\ A,X'09'\ Check\ for\ high-order\ zero\ digit \\
&\text{JNH}\ \text{Okay}\ Skip\ if\ digit\ is\ zero \\
&\text{SR}\ 1,1\ Reset\ branch\ address \\
&\text{Okay}\ MVO\ A(L),A(L)\ Perform\ the\ single\ shift \\
&\text{NI}\ A+L-1,X'F'\ Reset\ the\ low-order\ digit\ to\ zero \\
&\text{LTR}\ 1,1\ Now\ test\ the\ overflow\ switch \\
&\text{BNZR}\ 1\ Branch\ to\ Over\ if\ an\ overflow
\end{align*}
\]

29.9.7. We require L \leq 16 and 0 < N < 2L. The following instructions perform the required shift.

\[
\begin{align*}
&MVC\ A(L-N/2),A+N/2\ Shift\ left\ N\ digits \\
&NC\ A+L-N/2-1(N/2+1),\text{Mask}\ Mask\ out\ vacated\ digits \\
\end{align*}
\]

\[
\text{Mask}\ DC\ X'F0',(N/2-1)X'O',X'OF'
\]

29.9.8. The test for lost significant digits might be written

\[
\begin{align*}
&\text{LA}\ 1,\text{Over}\ Set\ branch\ address \\
&\text{OC}\ A(N/2),A\ Check\ n\ high-order\ digits \\
&\text{JNZ}\ \text{BadNews}\ Branch\ if\ not\ all\ zeros,\ overflows \\
&\text{SR}\ 1,1\ Set\ branch\ flag\ for\ no\ overflow \\
&\text{BadNews}\ \text{DC}\ \text{OH}\ Shift\ as\ in\ previous\ solution \\
&\text{LTR}\ 1,1\ Check\ overflow\ flag \\
&\text{BNZR}\ 1\ Branch\ if\ something\ was\ lost
\end{align*}
\]

29.9.9. Because the result must be 16 or fewer bytes long, we must have L+N/2 \leq 16; in addition, N > 0 and 0 < L \leq 15. The instructions can then be written

\[
\begin{align*}
&MVC\ A+L+N/2-1(1),A+L-1\ Move\ sign \\
&NC\ A+L-1(N/2+1),\text{Mask}\ Zero\ intervening\ digits \\
\end{align*}
\]

\[
\text{Mask}\ DC\ X'F0',(N/2-1)X'O',X'OF'
\]
29.9.10. Consider the following instructions:

\[
\text{MVC } A + L', A - 1 + N/2(1), A + L', A - 1 + N/2(1), A + L', A - 1 (N/2 + 1), \text{Mask}
\]
\[
\text{A DC } X'0F', (N/2 - 1)X'0', X'0F'
\]
\[
\text{A DC } \text{PL(length)}', \text{value}'
\]
\[
\text{DS } \text{PL(N/2)}
\]

The length of A, plus N/2, should be less than or equal to 16; otherwise the result will be too long to be used as a valid packed decimal operand. The value of N must be even and greater than zero.

29.9.12. We require \( L \leq 16 \) and \( N \leq 2 \times (L - 1) \).

Section 29.10

29.10.1. The values are:

- A (3,0)
- B (3,3)
- Sum (7,0)

Section 29.11

29.11.1. The values are:

1. \( P'1024.2048' \quad I' = 5 \), \( S' = 4 \)
2. \( P'-0.98765' \quad I' = 2 \), \( S' = 5 \)
3. \( P'+2235058.4' \quad I' = 8 \), \( S' = 1 \)
4. \( P'72.3456' \quad I' = 3 \), \( S' = 4 \)

Programming Problem 29.2.

This little program shows the result. The first two executable instructions set the decimal overflow bit in the Program Mask to zero, to disable the interruption for decimal overflow.

P29_2 CSect ,
Using *,15 Establish addressability
Print NoGen Don't generate the macro expansions
XR 1,1 Set GR1 to zero
SPM 1 Set decimal overflow interrupt off
AP M5,M5 Add (5-) and (5-)
Printout M5,* ,Header=No Print the result and stop
M5 DC P'-5' Single-byte 5-
End P29_2

Note that CC=3 is displayed on the Printout message, as expected.

Programming Problem 29.3.

This little program shows the result.

P29_3 CSect ,
Using *,15 Establish addressability
Print NoGen Don't generate the macro expansions
MP P2,M0 Multiply (2+) and (0-)
Printout P2,* ,Header=NO Print the result and stop
M0 DC P'-0' Single-byte 0-
P2 DC PL2'1' Two-byte 002+
Section 30 Solutions

Section 30.1

30.1.1. Twelve. The largest 64-bit signed magnitude is $2^{63} = 9,223,720,368,547,758,088$ (19 digits), and the 16-byte receiving field can handle 31 digits.

30.1.2. An 8-byte field holding a packed decimal number has room for 16 hex digits, of which 15 are numeric decimal digits and the last is a sign code.

30.1.3. $c(X) = X'0000002147483648D'$. (That should have been easy!)

30.1.4. The first character string printed would be Page 00021, with a letter I where the “9” should be. This is caused by the UNPK instruction leaving the sign code digit “C” as the zone of the low-order byte of the page number. When the page number is 30, the field will print as “Page 0003?”, where the rightmost character position indicated by ? is an unprintable character having representation $X'CO'$. (What will actually appear on the printed page depends on the behavior of your printers and your Operating System.) When the page number is 31, Page 0003A will be printed.

30.1.5. Here’s one way to do it:

```assembly
- - -
01 ZonePn+NDigits-1,C’0’ Set zone of final digit
LA 0,NDigits-1 Set digit count less 1
LTR 0,0 Test if only 1 digit wanted
JNP Finish Exit if so
LA 1,PageNo+L’PageNo-NDigits Address of first digit
Blot CLI 0(1),C’0’ Check for leading zero
JNE Finish Exit loop if nonzero
MVI 0(1),C’ ‘ Set to blank
LA 1,1(1) Step to next digit position
JCT 0,Blot Count down and loop
Finish - - -
```

If we knew that the digit count specified by NDigits would always be greater than 1, we could omit the test for a single digit. Note that we always leave one visible digit, even if the page number is zero.

30.1.6. The values are

1. $X'0000000000000001D'$
2. $X'00000214748321C'$
3. $X'00000204318083C'$
4. $X'000001077952604C'$

30.1.7. The values are

1. $X'0000000000000000000000000000001D'$
2. $X'00000000000000000000009223372036854775807C'$
3. $X'0000000000000000000826260414904981820C'$
   (Be careful! the argument value has 17 hex digits, so the high-order digit was lost.)
4. $X'000000000000067172502283901756D'$

Section 30.2

30.2.1. A fixed-point divide exception will occur, because the packed decimal operand is $+2^{31}$. The result in the first operand register will be $X'80000000'$.

30.2.2. The instructions will execute correctly. GR0 will contain $X'0000007B'$, and the contents of Dwork will be $X'0000000000123C'$.

30.2.3. The Assembler will issue an error message for the PACK instruction, because the (implied) length of the second operand exceeds 16 bytes!

30.2.4. Converting a blank data field is a common error in using CVB. After the PACK instruction is executed, the contents of WorkArea will be $X'0000000000000004'$, which has an invalid sign code. Thus, the CVB instruction will cause a program interruption for a data exception, and the IC will be set to 7.

30.2.5. Because $\log_2(1015) = 9.83$, at least 50 binary digits would be needed to compute the magnitude correctly. Since the high-order bits will be lost even if the result is complemented, 50 bits would be sufficient.
One way to do the conversion is by successive multiplications and additions; no divisions need be done! If the partial terms of the intermediate value are multiplied by 10 and the new low-order digit is added, only 32 bits need to be carried, but overflows must be detected so that an invalid result can be indicated. It would be inadvisable to indicate a fixed-point overflow condition, since the program mask can be set to ignore them, and the program would have to check the CC for an overflow indication; but CVB doesn’t set the CC!

30.2.7. The low-order 32 bits of the result might be useful if the remainder (mod 2^32) has some significance to the program. But to use the result, the program would first have to handle the program interruption.

30.2.8. The resulting values are:

- X'0098967F'
- X'D3A8C00E'
- X'FFFFFFF'
- X'000003E7'

(Note that the high-order digit of the DC statement operand was truncated!)

Section 30.3

30.3.1. The patterns are:

1. FC is a blank; the pattern is C’•dddddsd’.
2. FC = C’*’; the pattern is C’*ddsd.s’'. The only Message Character is the period before the last two Digit Selectors.
3. FC = C’*’; the pattern is C’*ddsd•Total=ddsd.dd’. The Message Characters are the blanks before and after the first set of selectors, the characters C’•Total=’’ and the period before the last two Digit Selectors.
4. FC is a blank; all other bytes are Message Characters.

30.3.2. The pattern is represented by C’ ‘ ‘ ‘(‘CR)(‘’. One problem with reading this pattern is that each interior apostrophe represents a single byte, and they aren’t paired; however, if they’re paired, then it’s even harder to tell what the pattern is!

Section 30.4

30.4.1. The result at LineX will be C’••123456789•’, because the final digit of the decimal number will not be accessed.

30.4.2. The Fill Character can be a digit selector; thus L – 1 digits, and therefore as many as (L – 1)/2 + 1 bytes, might be taken from the second operand. If there are no digit selectors in the pattern, no bytes would be taken from the second operand.

30.4.3. The results will be

- C’••••••••729413’, where ● represents a blank space.
- C’**000729413’
- C’*****0729413’

30.4.4. The results will be

- C’••••••••7294’, where ● represents a blank space.
- C’**000007294’
- C’*****0007294’

30.4.5. Because the SS character in the pattern immediately precedes the last DS of the pattern, eleven blanks followed by a single zero digit will replace the pattern. The DS marks the position of the last leading zero to be suppressed.

30.4.6. Because there are at most 10 significant digits in the decimal representation of the value contained in a fullword, the first digit of the 6-byte (11-digit) packed decimal number is always zero. Thus the first DS is always replaced by the Fill Character.

30.4.7. Since no decimal digits will be sought at the second operand address, no exception condition due to the invalid address will be recognized.

---

316 It is strange that an error in a multiplicative process can be indicated by a divide exception!
Section 30.5

30.5.1. Be careful! Pattern characters may affect the Significance Indicator, but no Message Character affects the SI.

30.5.2. The SS character must appear one byte earlier, so the pattern becomes C′ dd,isd.dd•CREDIT′:

Pat2 DC C′ ,X′20206B202120482020′,C′ CREDIT′ Pattern

If the amount was 0000002+, the edited result would be “•••••0.02•CREDIT”.

30.5.3. There should be 2×P−1 d and s selectors.

30.5.4. A packed decimal operand P bytes long contains 2×P−1 digits. Also, to produce any useful results at all, we must have D < P. For example, if D=P−1, only a single digit can be formatted.

1. Even if the desired number of digits N is even, there must be an odd number of selectors: 2×(P−D)−1. The leftmost digit of the packed decimal operand must be zero if an even number of digits is to be displayed correctly.
2. To display N digits requires B=[(N+2)/2] bytes, where the square brackets mean that the quotient should be rounded down to the next lower integer. Thus, the offset D is P−B. (In mathematical notation, we should write B=floor(N+2)/2, where floor(X) is the largest integer less than or equal to X.)

30.5.5. If c(Num) = 0, only a single zero digit will be printed; all the preceding Message Characters are insignificant. If c(Num) = 512, no commas will appear in the result because the SI is turned on by the first significant digit (“5”), which follows the last comma.

Section 30.6

30.6.1. This code fragment shows one way this can be done:

MVC Display,Pattern Move pattern to print line
LA 1,Display+L′Display-1 Point to possibly forced digit
EDMK Display, PackVal Edit and mark up to 7 digits
JNZ DoSign If not zero, set sign
XR 2, 2 Clear GR2
IC 2, PackVal+L′PackVal-1 Insert rightmost byte
NILL 2, X′000F′ Clear all but sign digit
IC 2, SignBits-X′A′(2) Get sign indicator
LTR 2, 2 Set CC (0 means -, 1 means +)
DoSign BCTR 1, 0 Adjust to preceding byte
DoPlus MVI 0(1), C′+′ Assume result was +
JP Print Branch if the guess was right
DoMinus MVI 0(1), C′-′ Negative result, set - sign
Print PrintLin Display, L′Display Print result

SignBits DC AL1(1,0,1,0,1,1) Sign indicators +,-,+-,++,+
PackVal DC PL4′O′ Packed decimal operand
Pattern DC C′ ,5X′20′,X′2120′ Pattern
Display DS CL8

30.6.2. The CC setting will be zero, because all the digits of the result are zero. It is possibly misleading that the SI will still be ON at the end of the operation, due to the − sign code in the right half of the last source byte.

Section 30.7

30.7.1. If each of the second operand bytes contains a sign code in the right digit, N bytes will be taken from the second operand. If none of the first N digits of the second operand is a sign code, as few as (N+1)/2 bytes might be taken from the second operand. (Remember, the Field Selector FS doesn’t cause any second operand access.)

30.7.2. The CPU retains the digit it has, and doesn’t reset the second-operand “digit fetcher” to get a new left-hand digit.

30.7.3. GR1 will point to a character in the last source field only if there are significant nonzero digits stored into that field, and significance was not forced by a SS character in the pattern.

Section 30.8

30.8.1. The Significance Indicator is set OFF as follows:

• at the start of the operation,
• after a Field Separator (FS) pattern character, and
• after a source byte containing a + sign code in the right-hand digit.

The Significance Indicator is set ON as follows:

• pattern = SS, source = any nonterminal digit;
• pattern = DS, source = nonzero terminal digit;
• pattern = SS, source = terminal digit with − sign code;
• pattern = DS, source = nonzero terminal digit with − sign code.

**Programming Problem 30.3.**

This program scans for multiple data values on each input record.

```assembly
P31_3 Csect , Problem 30.3
Print NoGen Don't show macro expansions
Using *,15 Establish addressability
PrintLin Title,L'Title Print a title line
LA 10,10 Initialize multiplier

* GetRec ReadCard InBuff,EndFile
MVI OutLine,C‘′
MVC OutLine+1(L'Outline-1),OutLine Initialize output line
LA 2,InBuff Point to start of record
LA 3,L'InBuff-1 Set effective length of record
Scan EX 3,ScanTRT Scan over leading blanks
JZ GetRec No more data on this record
LR 7,1 Save pointer to initial digit
XR 5,5 Initialize accumulated value

GetDigit CLI 0(1),C‘′ Check for terminating blank
JE Display Go display this result
IC 6,0(.1) Insert a numeric character
N 6,'XL4'F' Mask all but numeric digit
MR 4,10 Multiply partial value by 10
ALR 5,6 Add new digit
BC 3,TooBig Carry out means overflow
LR 8,4 Copy accumulated value
LR 9,5 ...both halves
SLDA 8,32 Check for overflow
JO TooBig Value is too large
LA 1,1(.1) Step to next character
J GetDigit And get additional digits

* Display CVD 5,Work8 Convert value to packed decimal
MVC OutVal,ValPatt Move pattern to output area
ED OutVal,Work8+2 Convert to edited characters
J MovChars Go move the input characters

* TooBig MVC OutVal,=CL12'**Overflow**' Insert overflow message
StepOver CLI 0(1),C‘′ Check for end of digits
JE MovChars Reached the end, go move them
LA 1,1(.1) Step to next character
J StepOver Continue looking

* MovChars LR 8,1 Copy pointer to ending blank
SR 8,7 Subtract string start address
BCTR 8,0 Make an effective length
EX 8,OutMVC Move the character string
PrintLin OutLine,L'Outline Display the results
MVC OutLine+1(L'Outline-1),OutLine Clear the print line

* LR 2,1 Point where rescan starts
LA 3,InBuff+L'InBuff-1 Point to end of record
SR 3,2 Remaining length to scan
BCTR 3,0 Make it an effective length
J Scan Look for another digit string
EndFile PrintOut *,Header=NO End the program
```

1172 Assembler Language Programming for IBM z System™ Servers Version 1.00
Programming Problem 30.7. This solution uses a loop to eliminate leading zeros from the unpacked value. (Compare it to your solution for Problem 17.4.)

P30_7 CSect, Using P30_7,15 Provide addressability.
* Set up initial values.
LA 2,0 Previous value F(0).
LA 3,1 Current value F(1).
PrintLin Title,LTitle
PrintLin OutRec,1
*
Loop CVD 3,WrkArea Convert to packed decimal
UNPK Number,Wrkarea+2(6) Unpack to EBCDIC
OI Number+L’Number-1,X’FO’ Set correct zone on last digit
LA 5,Number Start of output value
Check CLI 0(5),C’O’ Is it a leading zero?
BNE PrintNum If not, print the result
MVI 0(5),C’ ‘ If yes, replace it with a blank
LA 5,1(5) Step to next character
B Check And try the next digit
PrintNum PrintLin OutRec,OutLeng Print the result
LR 4,2 Get a copy of the previous value.
AR 4,3 Compute the next value.
BD Done Overflow means we're done.
LR 2,3 Copy current value to previous.
LR 3,4 Copy next value to current.
B Loop Play it again, Sam.
*
DONE PrintLin EndRec,L’EndRec Print an ending line.
BR 14 Return to caller.
*
Programming Problem 30.8. This solution uses the ED instruction to format the result with commas separating each group of three digits. (Compare it to your solution for Problem 30.7.)

* Print a Fibonacci Sequence up to Maximum Fullword Value.

P30_8 Csect,

Using P30_8,15 Provide addressability

* Set up initial values.

* LA  2,0 Previous value F(0).
LA  3,1 Current value F(1).
PrintLin Title,L'Title
PrintLin OutRec,1

* Loop CVD 3,WorkArea Convert to packed decimal
UNPK Number,Workarea+2(6) Unpack to EBCDIC
MVC OutRec(OutLeng),EdPat Move edit pattern to output area
ED OutRec(OutLeng),WorkArea+2 Format the result
PrintLin OutRec,OutLeng Print the result
LR  4,2 Get a copy of the previous value.
AR  4,3 Compute the next value.
BD Done Overflow means we’re done.
LR  2,3 Copy current value to previous.
LR  3,4 Copy next value to current.
B  Loop Play it again, Sam.

* Done PrintLin EndRec,L'EndRec Print an ending line.
BR  14 Return to caller.

* WorkArea DS  D
EdPat DC C‘ ’ Fill character
DC X'20206B2020206B2020206B20202120' dd,ddd,ddd,dss
OutRec DC C‘ ’ Carriage control for output.
Number DS CL15 Output from ED
OutLeng EQU *-OutRec Length of record.

* Title DC C‘1Fibonacci Sequence to Maximum Positive Fullword Value’
EndRec DC C‘0Program ends.’
END P30_8

The printed output looks like this:
Fibonacci Sequence to Maximum Positive Fullword Value

1
1
2
............
987
1,597
............
3,524,578
............
701,408,733
............
1,134,903,170
1,836,311,903

Program ends.
Section 31 Solutions

Section 31.2

31.2.1.
1. 0.1 (base 10) = .00011001 (base 2), X′19′ (base 16).
2. 0.3142 (base 10) = 0.0221110011 (base 3) = 0.458244 (base 14).
3. X′BBBB...′ = 0.733333333... (base 10) = 0.AEEE... (base 15).
4. 3.6 (base 8) = 3.75 (base 10) = X′3C′.

31.2.2.
1. X′0.DEFACE′ = 0.87101448
2. X′0.5′ = 0.3125
3. X′0.C285′ = 0.75984573
4. X′0.333333′ = 0.19999999
5. X′0.BEEF′ = 0.74583435

31.2.3. These are the four hexadecimal fractions:
1. X′0.10504816F...′
2. X′0.00068DB8BAC7...′
3. X′0.FCD3BDA...′
4. X′0.00003C53E2D6...′

31.2.4. (1/3) base 2 = .0101010101...

31.2.5. The values are shown, where underscored groups of digits are repeated indefinitely.
0.1₁₀ = 0.06314
0.2₁₀ = 0.1463
0.3₁₀ = 0.23146
0.4₁₀ = 0.3146
0.5₁₀ = 0.4
0.6₁₀ = 0.4631
0.7₁₀ = 0.54631
0.8₁₀ = 0.6314
0.9₁₀ = 0.71463

Section 31.3

31.3.1. The values could be defined as follows:

<table>
<thead>
<tr>
<th>Amount</th>
<th>DC</th>
<th>F′1174949′</th>
<th>Amount in cents (scaled by 10**2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent</td>
<td>DC</td>
<td>F′5147′</td>
<td>Percentage rate (scaled by 10**3)</td>
</tr>
<tr>
<td>Round</td>
<td>DC</td>
<td>F′0.5E5′</td>
<td>Rounding factor</td>
</tr>
<tr>
<td>Correct</td>
<td>DC</td>
<td>F′1E5′</td>
<td>Correction factor</td>
</tr>
</tbody>
</table>

31.3.2. The generated constant is X′08D4A51′.

31.3.3. The two constants will generate X′1174949C′ (4 bytes) and X′05147C′ (3 bytes) respectively. The product work area must therefore be at least 7 bytes long.

31.3.4. The hexadecimal values are:
1. X′6.5F5C285F...′
2. X′3DB.9A5E353...′
3. X′13A.28C59E0...′

31.3.5. With signed 32-bit words, you can create 32 different representations, and with unsigned words, 33. This may seem surprising, but remember that the radix point can be placed to the left of the leftmost significant digit as well as to the right of the rightmost digit.

31.3.6. You need 10 bits for the integer part (2^9<604<2^10). The fraction part isn’t finite (or at least, appears not to be!).

31.3.7. The hexadecimal constant is X′3243F6A9′.
31.3.9. This way of writing the constant seems natural, as it looks like “Ten to the 12th power”. But it’s actually 10 followed by 12 zeros, which is too large for a signed constant.

31.3.10. This solution is partially parameterized using the symbols SF and SD:

X31_3_10 Csect ,
Using *,15
SF Equ 24 Binary Scale Factor
SD Equ 5 Significant fraction digits
L 1,A Get value to convert
LR 0,1 Copy to GRO
SRL 1,5 Discard fraction digits
CVD 1,D Convert integer portion
UNPK Int,D Unpack to EBCDIC
OI Int+L’Int=1,X’FO’ Correct low-order zone digit
CLI Int,’C’’ Is high-order digit zero?
JNE DoFrac If not, continue
MVI Int,’C’’ Set the zero to space
DoFrac DC 0H Now do the fraction part
L 1,A Get value to convert
SLL 1,32-SF Eliminate integer portion
SRL 1,32-SF Reposition fraction digits
M 0,=FE(SD)’1’ Multiply to 10**SD (significance)
SRDL 0,5-Drop all but rounding bit
AHI 1,1 Add 1 to round
SRL 1,1 Drop off rounding bit
CVD 1,D Convert to packed decimal
UNPK Frac,D Unpack fraction digits
OI Frac+L’Frac=1,X’FO’ Set correct zone digit
Printout Result,* ,Header=No Print result
A DC FS(SF)’98.234567’ Value to convert
D DS D CVD conversion area
Result DS OCL(3+1+SD)
Int DC CL(3+1+SD)’ Integer portion
DC C’’ Decimal point
Frac DC CL(3+1+SD)’’ Fraction digits
End X31_3_10

Section 31.4

31.4.1. Avogadro’s Number is 6.022×10^23, and Planck’s constant is 6.626×10^-34.

31.4.2. Avogadro’s Number is slightly less than 10^24, and Planck’s constant is slightly greater than 10^-35, so you would need enough bits to represent 10^59, or about 200 bits. (Now you can see why floating-point is useful for some types of applications!)

Section 31.5

31.5.1. Zero will have representations with a zero fraction, and 19 possible exponent values from –9 to +9, including zero. Usually the preferred representation of zero will use a zero exponent, so that the other 18 are redundant.

31.5.2. There are six possible representations, three with the significant digits represented as fractions and three with the significant digits represented as integers.

Fractions: 0.0047 e=+3 0.0470 e=+2 .4700 e=+1
Integers: 0047. e=-1 0470. e=-2 4700. e=-3

Section 31.7

31.7.1. The original implementation of floating-point registers on System/360 provided only registers 0, 2, 4, and 6, so it was natural to pair them as (0,2) and (4,6). When the remaining 12 registers were added, it was important to retain the original pairings (so that existing programs would continue to execute correctly); the other pairings were made to follow the same pairing style.
31.7.2. The CPU need only OR the given register digit with $B'0010'$.

Section 31.8

31.8.1. DD, EB, L or LH, LD.

Section 31.9

31.9.1. Here are three possibilities: the first requires two storage references and a doubleword in memory; the second uses FPR6 as a temporary, and the third uses GGR1 as a temporary.

```
STD 0,DTemp LDR 6,0 LGDR 1,0
LDR 0,4 LDR 0,4 LDR 0,4
LD 4,DTemp LDR 4,6 LGDR 4,1
```

```
DTemp DS D
```

You can create other (more elaborate) ways to do this, such as

```
LDGR 1,0 Copy FPR0 to GG1
LDGR 2,4 Copy FPR4 to GG2
XGR 1,2 Do the
XGR 2,1 .. XOR
XGR 1,2 .. swap
LGDR 0,2 Copy original contents of FPR4 to FPR0
LGDR 4,1 Copy original contents of FPR0 to FPR4
```

but no reasonable programmer would do it this way.

31.9.2. Use the floating-point registers as intermediate “storage”.

31.9.3. LXY and STXY for single load and store, and perhaps LMF and STMF (or LMFP and STMF) for multiple load and store. The most important exception condition would be to check that the register operand is a valid reference to an extended register pair.

Programming Problem 31.1.

This solution uses packed decimal arithmetic:

```
P32_1 Csect ,
Using *,15
Print NoGen
ZAP PDProd,PDAmt Copy amount to work area
MP PDProd,PDTax Multiply by tax rate
SRP PDProd,64-5,5 Convert to cents and round
MVC PDAns,PDPat Move pattern to output area
LA 1,PBAns+7 Point just past possible $ sign
EDMK PDAns,PProd+3 Edit the result
BCTR 1,0 Move pointer left 1 byte
MVI 0(1),C' ' Insert dollar sign
PrintOut PDAns,* ,Header=NO Print result
```

```
PDAmt DC P'11749.49' Amount to be taxed
PDTax DC P'.05147' Tax rate
PDProd DS PL8 Work area for product
PDPat DC C' ',X'40202020202020202020202020' Formatting pattern
PDAns DC CL12' ' Output area for result
End P32_1
```

The printed result will look like this:

```
PDAns = $604.75
```

* Some people think Assembler Language programmers are inherently unreasonable.
Programming Problem 31.2.

This solution uses scaled fixed-point binary arithmetic:

```
P32_2 CSect ,
 Using * ,15
 Print NoGen
 L 1,FBAmt Put argument in GR1
 M 0,FBTax Multiply by tax rate
 AL 1,FBRnd Add rounding factor
 JC 12,FBNoC Skip if no carry
 AHI 1,1 Propagate carry
 FBNoc D 0,FBConv Correct to get result in cents
 CVD 1,FBWork Convert to decimal
 MVC FBAns,FBPat Move pattern to output area
 LA 1,FBAns+7 Point just past possible $ sign
 EDMK FBAns,FBWork+3 Edit, mark first significant digit
 BCTR 1,0 Move pointer left 1 byte
 MVI 0(1),C ' $ ' Insert dollar sign
 PrintOut FBAns,*,Header=NO Print result

FBAmt DC F '1174949' Rate in cents
FBTax DC F '5147' Tax rate per 100,000 cents
FBRnd DC F '0.5E5' Round to nearest cent
FBConv DC F '1E5' Convert result to cents
FBWork DC D '0' Integer part in packed decimal
FBPat DC C ' ,X'40202020202021204 Formatting pattern
FBAns DC CL12 ' ' Output area for result
End P32_2
```

The printed result will look like this:

```
FBAns = ' $604.75'
```

Programming Problem 31.3.

This isn't an easy problem, but it shows the efforts that programmers made when only fixed-point binary arithmetic was available.

```
P32_3 CSect ,
 Using * ,15
 Print NoGen
 SF Equ 28 Scale factor
 FBLoo L 0,FB Put argument in GRO
 SRDA 0,32-SF Shift right, now scaled by 2**28
 D 0,FBX Divide by current scaled estimate
 S 1,FBX Subtract it to get the correction
 SRA 1,1 Divide by 2
 LPR 2,1 Copy magnitude for tolerance test
 A 1,FBX Add original estimate
 ST 1,FBX Store new value
 LPR 2,2 Take magnitude of correction
 CHI 2,3 Check correction smaller than 3
 JH FBLoo Repeat if not converged yet
 LR 4,1 Copy for formatting
 SRDA 4,SF Split integer and fraction parts
 CVD 4,DFBW Convert integer part to decimal
 UNPK FBAns(1),DFBW+7(1) Move to answer string
 OI FBAns,'X'FO' Put correct zone
 MVI FBAns+1,C.' Place the decimal point
 SRL 5,32-SF Reposition fraction part
 M 4,FBConv Convert 9 fraction digits
 SRDL 4,SF-1 Position as integer value
 AHI 5,1 Add 1 for rounding
 SRDL 4,1 Final shift
 CVD 5,DFBW Convert to integer
```

Suggested Solutions to Selected Exercises and Programming Problems 1179
OI DFW+7,X'OF'  Set correct zone
UNPK FBA+2(9),DFBW+3(5)  Move fraction part to output area
PrintOut FBA+*,Header=NO
FBA DC FS(SF)'2'  Value whose root is to be found
FBX DC FS(SF)'1'  Initial estimate
FConv DC F'1E9'  For converting fraction part
DFBW DC D'0'  Work area for CVD results
FBA+ DC CL12' '  Output area for result
End P32_3

The printed result will look like this:
FBA+ = '1.414213563'
Section 32 Solutions

Section 32.1

32.1.1. The three values are:

1. \(0.9450 \times 10^3\) (\(0.7654 \times 0.1235 = 0.09452690\))
2. \(0.5859 \times 10^4\) (\(0.7655 \times 0.7655 = 0.58599025\))
3. \(0.1000 \times 10^1\) (\(0.0333 \times 0.0321 = 0.00106893\))

Section 32.2

32.2.1. A nonzero operand can have at most \(p-1\) leading zero digits, so at most \(p-1\) shifts are required.

32.2.2. The two products are:

<table>
<thead>
<tr>
<th>Not pre-normalized</th>
<th>Pre-normalized</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0.1000 \times 10^2)</td>
<td>(0.1029 \times 10^2)</td>
</tr>
<tr>
<td>Zero</td>
<td>(0.5183 \times 10^1)</td>
</tr>
</tbody>
</table>

Section 32.3

32.3.1. The (possibly unexpected) results are the following:

(a) \(0.9995\) for each iteration
(b) 1.001, 1.002, 1.003, 1.004
(a) 1.000 for each iteration

Section 32.4

32.4.1. Any operand of the form \(\text{xxxxD with digit D \not= 0}\). Its exponent doesn’t matter.

32.4.2. The values are shown in this table:

<table>
<thead>
<tr>
<th>Product</th>
<th>No guard, no round</th>
<th>Guard, no round</th>
<th>Guard and round</th>
</tr>
</thead>
<tbody>
<tr>
<td>155\times165</td>
<td>.2550\times10^5</td>
<td>.2557\times10^5</td>
<td>.2558\times10^5</td>
</tr>
<tr>
<td>45\times2469</td>
<td>.1111\times10^6</td>
<td>.1111\times10^6</td>
<td>.1111\times10^6</td>
</tr>
<tr>
<td>21\times1117</td>
<td>.2340\times10^5</td>
<td>.2345\times10^5</td>
<td>.2346\times10^5</td>
</tr>
<tr>
<td>127\times137</td>
<td>.1730\times10^5</td>
<td>.1739\times10^5</td>
<td>.1740\times10^5</td>
</tr>
</tbody>
</table>

32.4.3. The values are shown in this table:

<table>
<thead>
<tr>
<th>Product</th>
<th>No guard, no round</th>
<th>Guard, no round</th>
<th>Guard and round</th>
</tr>
</thead>
<tbody>
<tr>
<td>509\times101</td>
<td>.5140\times10^5</td>
<td>.5140\times10^5</td>
<td>.5141\times10^5</td>
</tr>
<tr>
<td>509\times555</td>
<td>.2824\times10^6</td>
<td>.2824\times10^6</td>
<td>.2825\times10^6</td>
</tr>
<tr>
<td>509\times150</td>
<td>.2790\times10^6</td>
<td>.2799\times10^6</td>
<td>.2800\times10^6</td>
</tr>
<tr>
<td>407\times515</td>
<td>.2090\times10^6</td>
<td>.2096\times10^6</td>
<td>.2096\times10^6</td>
</tr>
</tbody>
</table>

32.4.4. With only a guard digit, the results are these:

1. \(0.9452\times10^3\)
2. \(0.5859\times10^4\)
3. \(0.1068\times10^1\)

With both guard and rounding digits, the results are these:

1. \(0.9453\times10^3\)
2. \(0.5860\times10^4\)
3. \(0.1069\times10^1\)
Section 32.5

32.5.1. One advantage is that steps of the multiplication process can stop when the remaining multiplier or multiplicand digits are known to be zero; it can also avoid the necessity of right-shifting the product digits if the product would be longer with rightmost zeros.

For example, \((1230 \times 10^0) \times (4500 \times 10^0) = 5535000\) has 3 low-order zeros; in FPI(10,4) three corrective right shifts would be needed. If internal arithmetic used only 4 digits, it’s possible some high-order digits could be lost, or an error condition might be indicated.

Section 32.6

32.6.1. The shift requirements are shown in this table:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Quotient</th>
<th>Shifts</th>
<th>Rounded quotient</th>
</tr>
</thead>
<tbody>
<tr>
<td>.1428 + .7142</td>
<td>.2000</td>
<td>0</td>
<td>.2000</td>
</tr>
<tr>
<td>.6667 + .6666</td>
<td>1.00015</td>
<td>1</td>
<td>.1000</td>
</tr>
<tr>
<td>.1277 + .3456</td>
<td>.3695</td>
<td>0</td>
<td>.3695</td>
</tr>
<tr>
<td>.3456 + .1275</td>
<td>2.71059</td>
<td>1</td>
<td>.2711</td>
</tr>
<tr>
<td>.9999 + .9999</td>
<td>1.0000</td>
<td>1</td>
<td>.1000</td>
</tr>
</tbody>
</table>

If the dividend (“numerator”) fraction is greater than or equal to the divisor (“denominator”) fraction, the quotient will be greater than 1, requiring a shift.

Section 32.7

32.7.1. The calculated results are shown in this table:

<table>
<thead>
<tr>
<th>Operation</th>
<th>No guard, no round</th>
<th>Guard, no round</th>
<th>Guard and round</th>
</tr>
</thead>
<tbody>
<tr>
<td>( (.7435 \times 10^3) - (.9621 \times 10^1) )</td>
<td>.7338 \times 10^3</td>
<td>.7338 \times 10^3</td>
<td>.7339 \times 10^3</td>
</tr>
<tr>
<td>( (.7435 \times 10^1) - (.6994 \times 10^1) )</td>
<td>.4410 \times 10^0</td>
<td>.4410 \times 10^0</td>
<td>.4410 \times 10^0</td>
</tr>
<tr>
<td>( (.1043 \times 10^5) - (.9527 \times 10^4) )</td>
<td>.9000 \times 10^3</td>
<td>.9030 \times 10^3</td>
<td>.9030 \times 10^3</td>
</tr>
<tr>
<td>( (.1000 \times 10^9) - (.9992 \times 10^{-2}) )</td>
<td>.9000 \times 10^{-1}</td>
<td>.9000 \times 10^{-1}</td>
<td>.9001 \times 10^{-1}</td>
</tr>
</tbody>
</table>

32.7.2. If you subtract zero, the magnitude of the other operand doesn’t decrease.

Section 32.8

32.8.1. The relative sizes of the largest ulps are these:

<table>
<thead>
<tr>
<th>Representation</th>
<th>Max relative ulp</th>
</tr>
</thead>
<tbody>
<tr>
<td>FPF(16,14)</td>
<td>( = 16^{-13} )</td>
</tr>
<tr>
<td>FPF(2,24)</td>
<td>( = 2^{-23} )</td>
</tr>
<tr>
<td>FPF(10,34)</td>
<td>( = 10^{-33} )</td>
</tr>
</tbody>
</table>

Section 32.9

32.9.1. Consider these three pairs:\[1\]

   which if denormalized becomes \([-9] + .0050] \).

32.9.2. These are the results:

1. \([+9] + .1038] \) (Normal)
2. \([+7] - .4830] \) (Normal)

---

\[1\] You could just provide the examples shown in Section 32.9 (with keys 1, 2, and 5) but that would be less interesting.
Section 32.10

32.10.1. Max=\([+63\parallel X' FFFFFF'\), which with bias=\(X'7 FFFFFF'\); and Min=\([-64\parallel X'100000'\) which with bias=\(X'00100000'\).

32.10.2. Because Min is approximately \(16^{-65}\), its reciprocal is about \(16^{+65}\). Since Max is approximately \(16^{+63}\), the range asymmetry means that there are about \(p \times 16^2\) more small values than large, where “\(p\)” is the precision of the fraction.
Section 33 Solutions

Section 33.1

33.1.1. Five possible interpretations, and their Assembler language defining statements, are shown in these statements:

- **DC F’1077952604’** Fullword binary integer
- **DC C’•••’** Characters (three blanks and an asterisk)
- **STH 4,’X’05C’(0,4)** Store halfword
- **DC P’+40400405’** Packed decimal
- **DC E’250982046’** Hexadecimal floating-point

Other interpretations are possible.

33.1.2. For short hexadecimal floating-point numbers, (a) 5, (b) 6, (c) 6, (d) 256. For long numbers, (a) 13, (b) 14, (c) 14, (d) 256. (The reason there are 256 redundant values for zero is that pseudo-zeros of either sign are included.)


33.1.4. The 14-bit characteristic would have a range from $\text{−}2^{13}$ to $+2^{13}$, or approximately ($\text{−}8192$, $+8191$), assuming the bias is chosen to provide range symmetry.

Section 33.2

33.2.1. The easiest way to tell is to assemble a long constant also:

- **DC E’1E13’** generates X’4B9184E7’
- **DC D’1E13’** generates X’4B9184E72A000000’

So the short constant does not contain all the significant bits. (You could also check the table of the hexadecimal representation of powers of ten in the Appendix.)

33.2.2. This is one of many possibilities:

- **DC E’1,e1,e2,e3,e4,e5,e6,e7,e8,e9,e10’**

33.2.3. The tables in the Appendix showing the hexadecimal representations of powers of 10 are helpful!

1. Short: $10^9 = \text{X’3B9ACA00’}$ (or $\text{X’4B3B9AC’}$ in short HFP format) has six nonzero significant digits.
2. Long: $10^{22} = \text{X’21E19E0C98AB24000000’}$ (or $\text{X’5321E19E0C98AB24’}$ in long HFP format) has fourteen nonzero significant digits.
3. Extended: $10^{46} = \text{X’1C06A5EC5433C60DDA16406F5A40000000000000000’}$ (or $\text{X’671C06A5EC5433C6 590DDA16406F5A4’}$ in extended HFP format), has 28 nonzero significant digits.

33.2.4. The nine values are:

- 401999999999999A DC D’0.1’
- 4033333333333333 DC D’0.2’
- 404CCCCCCCCCCCCDC DC D’0.3’
- 4066666666666666 DC D’0.4’
- 4080000000000000 DC D’0.5’
- 4099999999999999A DC D’0.6’
- 40B3333333333333 DC D’0.7’
- 40CCCCCCCCCCCCD DC D’0.8’
- 40E66666666666666 DC D’0.9’

Section 33.3

33.3.1. For the constants named A and D, only a single byte is available to hold the sign and characteristic, leaving no room for the fraction! So, the Assembler will complain about lost precision. For the other constants, the generated data is

- **B X’401A’** The fraction is rounded to 8 bits
- **C X’433E’** 999=X’3E7’, and the 7 is truncated
- **E X’433F’** 1000=X’3EB’, and the 8 causes rounding up

33.3.2. These are the values and their generated constants:
Section 33.4

33.4.2. With half-even rounding, the L-type constant generates $X^{1E177FF8800000000000000} 10000000000000000$ so you can’t tell whether the rounding digit (the last 8) should be rounded up (if there are any nonzero bits in the distance) or not (that is, to the even final digit 8). So, the Assembler must calculate the value of the constant to more than 112 bits. (Some nonzero bits do appear with additional precision, so the Assembler knows the value should be rounded up, as shown.)

33.4.3. The rounding modifiers and the generated values are:

- **R1** $X^{3E189374B6A7FO}$
- **R4** $X^{3E189374B6A7FO}$
- **R5** $X^{3E189374B6A7E}$

Section 33.6

33.6.1. The result in FPR(0.2) will be

- **FPR0:** $X^{50123456789ABCDE}$ (unchanged)
- **FPR2:** $X^{420C8B9B76543210}$ (corrected characteristic and sign)

and the CC will be 2 indicating a positive result.

33.6.2. These are the CC settings and register contents:

1. CC=2, c(FPR4) = $X^{4C2B8571}$
2. CC=1, c(FPR2) = $X^{CC2B8571968B93}$
3. CC=1, c(FPR4,6) = $X^{8A12345689ABCDE FC428571968B93}$
4. CC=2, c(FPR4) = $X^{4C2B8571968B93}$

Section 33.7

33.7.1. The primary change is to use MER rather than MEER.

- **W** $3.7 \times 10^3$
- **X** $1.0 \times 10^{55}$
- **Y** $8.8 \times 10^6$
- **Z** $1.0 \times 10^{18}$

- **XR** 5,5 GR5 contains index for XX and YY
- **XR** 6,6 GR6 contains index for ZZ
- **LZDR** 4,4 Set long FPR4 to zero
- **LH** 2,Count Counter in GR2

Loop
- **LE** 0,XX(5) Load X(i) in FPR0 (short)
- **LE** 4,YY(5) Load Y(i) in FPR4 (now, long)
- **MER** 0,0 Long X(i)*X(i) in FPR0
- **MDR** 0,4 Multiply by Y(i)
- **STD** 0,ZZ(6) Store long result Z(i)
- **LA** 5,XX(5,5) Increment XX, YY index by 4
- **LA** 6,ZZ(6,6) Increment XX index by 8
- **JCT** 2,Loop Count down and loop

- **XX** DC E1.2,3,4,5,6,7,8,9,10 Values of X(i)
- **Count** DC Y((XX)/L’XX) Count of X(i) entries
- **YY** DC 5E3.14159,2.71828 Values of Y(i)
- **ZZ** DS 10D Long results Z(i)

33.7.2. The resulting fraction has only 12 significant digits, and the two low-order fraction digits are always zero.

33.7.3. They could be different. ME generates an 8-byte product that needs no rounding, because the low-order byte of the product is $X^{00}$. MEE generates only a 4-byte product, for which a rounded result would depend on the leftmost bit of the right half of the long product.

33.7.4. Here’s one way to calculate the table of cubes:

- **W** $3.7 \times 10^3$
- **X** $1.0 \times 10^{55}$
- **Y** $8.8 \times 10^6$
- **Z** $1.0 \times 10^{18}$

**Suggested Solutions to Selected Exercises and Programming Problems** 1185
LA 0,100 Set count of results wanted
LE 2,'E'1' Constant 1 in FPR2
LER 6,2 Initialize N
LA 1,Cubes Set GR1 to start of table
CubeIt LER 4,6 Copy N to FPR4
MER 4,4 Form N\(^2\)
MER 4,6 Form N\(^3\)
STE 4,0(,1) Store in the table of cubes
LA 1,L' Cubes Increment table address
AER 6,2 Increment N by 1
JCT 0,CubeIt Repeat for 100 values

Cubes DS 100E

33.7.5. \(c(FPR0)=X'4112345699999999'\); the right half of FPR0 is unchanged.

33.7.6. This leads to the peculiar (and possibly disturbing) circumstance that for a large class of hexadecimal floating-point numbers (those with a nonzero low-order digit), multiplication by 1 would not yield the original operand!

33.7.7. Simply XOR \(X'40\) to the sum.

**Section 33.8**

33.8.1. The Assembler generates the rounded constant \(E'0.6' = X'4099999'\).

33.8.2. The results are \(X'3F9ABC8' \text{ and } X'3E9AB80'\) respectively.

33.8.3.

1. \(c(FPR0)=X'427093482D35B9E'\).
2. \(c(FPR0)=X'C53B9A816A780C7'\).

33.8.4. An exponent underflow interruption will occur if the Program Mask bit is one, and \(c(FPR4)=X'7F100000'\). If the Program Mask bit is zero, \(c(FPR4)=0\), and no interruption occurs.

33.8.5. HER and HDR can be thought of as analogs of

\[
\text{SRA} \quad x,1
\]

and

\[
\text{SRDA} \quad x,1
\]

**Section 33.9**

33.9.1. The result is \(X'5812345698765400'\).

33.9.2. The instruction will generate a specification exception, because both operands don’t refer to the lower-numbered register of a floating-point register pair. FPR2 will be unchanged.

33.9.3. The mnemonic for “Add Unnormalized” is AU, and the mnemonic for “Add Double Unnormalized” is AW, or “A Double U”.

33.9.4. The results are:

1. \(c(FPR0)=X'40130000'\), CC=2
2. \(c(FPR0)=X'51540000'\), with an exponent overflow interruption
3. \(c(FPR0)=X'45000000'\), CC=0
4. \(c(FPR0)=X'C2831693'\), CC unchanged

33.9.5. The results are:

1. \(c(FPR0)=X'42FE00F0'\), CC=2
2. \(c(FPR0)=X'41104F3D'\), CC=2
3. \(c(FPR0)=X'42800078'\), CC unchanged
4. \(c(FPR0)=X'00222242'\), with an exponent overflow interruption
5. \(c(FPR0)=X'46384000'\), with an exponent underflow interruption
6. \(c(FPR0)=X'C1170861'\), CC=1

* Engineers find humor wherever they can.
33.9.6. The results are:
1. c(FPR0)=X'C1200000', CC=1
2. c(FPR0)=X'44002000', CC=2
3. c(FPR0)=X'44000000', with an HFP lost-significance interruption
4. c(FPR0)=X'04000000', with an HFP lost-significance interruption
5. c(FPR0)=X'0B012335', CC=2
6. c(FPR0)=X'4601579A', CC=2

33.9.7. The AER instruction will cause an interruption for exponent overflow, and the result in FPR0 is X'801FFFF'.

33.9.8. Consider this addition:

| LE  | 2,=X'7FFFFFFF' |
| AE  | 2,=X'7E0FFFFF' |

Because the characteristic difference is one, the second operand must be right-shifted one digit, so that the CPU adds the fractions X'FFFFFFF' and X'00FFFFF', giving the sum X'1.00FFFFFFE', which after a normalizing right shift gives the result characteristic X'100', indicating an exponent overflow and a final characteristic of zero. Any smaller second operand would produce a smaller sum.

33.9.9. This operation subtracts (1–16–6) from 1, so the expected result is +16–6.

1. SE produces c(FPR0) = X'3B100000', or 16–6 as expected.

The result of the unnormalized subtraction may be surprising:

2. SU produces c(FPR0) = X'41000000', with a significance exception. To see how this happens:

\[
\begin{array}{c|c}
41100000(0) & 41000000(0) \\
-40FFFFFF(0) & -410FFFFF(F) \\
3B100000(0) & 40000000(1)
\end{array}
\]

Remember, the guard digit does not participate in the test for a zero intermediate fraction.

33.9.10. None.

33.9.12. Because the first operand is 10^6 and the second is 10^-6, their sum must be able to represent at least 12 decimal digits. This means that either long or extended hexadecimal floating-point operands and arithmetic must be used.

33.9.13. The result is X'57234569'; the guard digit (the high-order digit “9” of the smaller operand) appears in the result.

33.9.14. The results are:
(a) X'41110005'
(b) X'4080004B'
(c) X'40FFFFFF'
(d) X'41100000'
(e) X'40223456'

Section 33.11

33.11.1. The result would have been X'3F0CF140', showing that an additional digit of precision is generated.

Section 33.12

33.12.1. The fraction of the X'3B10wxzy' operand must be shifted right five digits for operand alignment, giving the internal subtraction

\[
\begin{array}{c|c}
40000001(0) & 40000000(0) \\
-40000001(w) & 40000000(?)
\end{array}
\]

Because the guard digit is ignored for comparisons, the two operands appear to be equal, and the Condition Code is set to zero. (Try it!)

33.12.2. These are the resulting Condition Code settings:
1. (1) CC = 1
2. (2) CC = 2
3. (3) CC = 0
4. (4) CC = 2
Section 33.13

33.13.1. Since the carry that caused the overflow was the result of adding a low-order 1-bit, the result fraction must be \(X'.1000\ldots'\). Because the characteristic “wraps around” from 127 to 0, the result must be either \(X'00100\ldots'\) or \(X'80100\ldots'\).

33.13.2. The three results are:

1. \(c(FPR0)=X'0010000087654321'\), rounded, with an interruption for exponent overflow.
2. \(c(FPR0)=X'4000000187654321'\) (rounded).
3. \(c(FPR0)=X'4000000012345678'\) (not rounded).

33.13.3. The sequence works. For example, if FPR2 is initialized to \(X'4200000080000000'\), the rounded result stored at \(\text{Round3}\) is \(X'42100001'\).

33.13.4. There will be no difference. The LDER instruction extends the short number from \textbf{Variable} with zero, so the LEDR instruction cannot round the result in FPR0.

Section 33.14

33.14.2. The largest positive integer is \(X'7\text{FFFFFFFFFFFF00}' = +9223372036854775552\), and the result is \(X'50\text{FFFFFFFFFFFF}'\). The largest negative value is \(X'8000000000000000' = -9223372036854775808\), and its result is \(X'0800000000000000'\).

The magnitude of the negative number is 256 larger than the magnitude of the positive number because not all 63 bits of the positive number can be held in the 14 hex digits of the long hexadecimal floating-point result.

33.14.3. No, because the largest 64-bit integer is less than \(10^{19}\), well within the range of all three hexadecimal floating-point formats.

33.14.4. The first instruction changes the sign bit of the integer operand. Remember that the two's complement representation of a 32-bit binary integer \(X\) is \((2^{32}+X)\) (modulo \(2^{32}\)). Thus, if the integer was originally positive,

\[ (2^{32} - X) - 2^{31} = 2^{31} - X \]

is stored. This quantity is placed in FPR0 and \(2^{31}\) is subtracted from it. The result is the normalized value of \(X\).

33.14.8. All three can be generated as hexadecimal floating-point D-type constants, but the first causes an Assembler error:

\[
\begin{align*}
000008 & \text{ 4E00000000000000} \text{ DCon1 DC DS(14)'0.1'} \text{ Error, lost significance} \\
\text{** ASMA073E Precision lost} \\
000018 & \text{ CE00000000000000} \text{ DCon2 DC DS(6)'-2147483648'} \text{ -2**31, unnormalized} \\
000028 & \text{ 4F08000000000000} \text{ DCon3 DC DS(1)'}36028797018963968' \text{ +2**55, unnormalized}
\end{align*}
\]

The obscurity of these constants shows why a hexadecimal constant can be simplest.

33.14.12. The statement is

\[
\text{Float DC DS6'2147483648'}
\]

33.14.13. This is one way to do it:

\[
\begin{align*}
\text{L} & 0,\text{IntVal}\quad \text{Get the integer} \\
\text{ST} & 0,T+4\quad \text{Store in pseudo-zero} \\
\text{LZDR} & 6\quad \text{Set FPR6 to zero} \\
\text{AD} & 6,T\quad \text{Create the normalized HFP value} \\
\text{STD} & 6,W\quad \text{Store the result for testing} \\
\text{TM} & W+4,X'80'\quad \text{Is the 'lost' bit 1?} \\
\text{JZ} & OK\quad \text{If not, no rounding needed} \\
\text{XC} & W+1(3),W+1\quad \text{Clear high-order 6 digits of result} \\
\text{AD} & 6,W\quad \text{Add the rounding bit} \\
\text{OK} & \text{STE} 6,\text{Result}\quad \text{Store the rounded} \\
\text{T} & \text{DC 0D,X'4E',7X'0'}\quad \text{Doubleword aligned pseudo-zero} \\
\text{W} & \text{DC D'0'}\quad \text{Doubleword temporary}
\end{align*}
\]

33.14.14. This is one way to do it:
L 0,IntVal  Get the integer
ST 0,T+4  Store in pseudo-zero
LZDR 6  Set FPR6 to zero
AD 6,T  Create the normalized HFP value
STD 6,W  Store the result for testing
CLC W+4(4),=X′80000000′  Is it exactly halfway between?
JNE Round If not, do normal round up
TM W+3,X′1′  Is the low-order bit zero?
JZ OK If so, result is even, don’t round
Round TM W+4,X′80′  Is the ‘lost’ bit 1?
JZ OK If not, no rounding needed
XC W+1(3),W+1  Clear high-order 6 digits of result
AD 6,W  Add the rounding bit
OK STE 6,Result  Store the rounded

33.14.15. The results are shown in this table:

<table>
<thead>
<tr>
<th>HFP_Number</th>
<th>c(GR3)</th>
<th>CC</th>
<th>c(GG3)</th>
<th>CC</th>
</tr>
</thead>
<tbody>
<tr>
<td>X′46000000′</td>
<td>X′00000000′</td>
<td>0</td>
<td>X′0000000000000000′</td>
<td>0</td>
</tr>
<tr>
<td>X′C7654321′</td>
<td>X′F9ABCD0F′</td>
<td>1</td>
<td>X′FFFFFFFF9ABCD0′</td>
<td>1</td>
</tr>
<tr>
<td>X′7FEDCB49′</td>
<td>X′7FEDCB49′</td>
<td>3</td>
<td>X′7FFFFFFFFFFFF′</td>
<td>3</td>
</tr>
<tr>
<td>X′ABCD7E74′</td>
<td>X′00000000′</td>
<td>1</td>
<td>X′0000000000000000′</td>
<td>1</td>
</tr>
<tr>
<td>X′49746628′</td>
<td>X′7FFFFFFFF′</td>
<td>3</td>
<td>X′0000000746628000′</td>
<td>2</td>
</tr>
</tbody>
</table>

33.14.16. The converted 32-bit value is X′000010001′. Unfortunately, the halfword value is then X′0001′!

33.14.17. Using the value at DFloat, the result stored at DTemp will be X′4E0000001000000′, and the number at NF will be X′01000000′.

**Section 33.15**

33.15.1. The results in FPR0 after each step are:

- After DE: X′41140000′ (1.25)
- After FIER: X′41100000′ (1.0)
- After ME: X′42100000′ (16.0)
- After AE: X′41400000′ (4.0)

33.15.2. The AU instruction causes the fraction part of c(FPR0) to be shifted off; the ME instruction will pre-normalize the integer part in FPR0, so the results will be the same.

33.15.3. In this case, the addition could cause the guard digit to be part of the normalized result. In Exercise 33.15.2, the guard digit is not shifted left because there is no post-normalization. If the quotient of the DE instruction is greater than or equal to X′46100000′, no “fraction” digits will be shifted off.

33.15.4. This is one way to do it:

| LD 0,A: Load A into FPR0  |
| DD 0,B: Divide by B  |
| FIDR 0,0: Drop off the fraction part  |
| MD 0,B: Form product with integer part  |
| LCDR 0,0: Form -B*IntPart(A/B)  |
| AD 0,A: Add A to form remainder  |
| STD 0,AmoDB: Store result  |

- AModB DS D: Remainder
- A DC D′20′: A value for A
- B DC D′16′: And for B

33.15.5. The results in FPR0 are:
Section 33.16

33.16.1. Using short HFP arguments (the results would not change for long or extended arguments):

- $\sqrt{\text{Max}} = '60400000'$
- $\sqrt{\text{Min}} = '20400000'$
- $\sqrt{\text{DMin}} = '1E100000'$

33.16.2. If a carry occurred, the result fraction would have to be all one-bits, or $(1-\text{ulp})$. But this would mean that the source operand would have to be $(1-\text{(ulp/2)})$, which can't happen.

33.16.3. First, remember that the argument and the result have the same length. Now, if the result were to lie exactly half way between two representable target values, it would have to be finite in length. But that would mean that for some exponent, it’s an integral value, and hence its square (the source operand) would also be integral. (A number whose square root is an integer itself is an integer.) But square roots have about half as many digits as the source value; and since source and target have the same number of digits, the square root must be shorter than the source, so it can't lie exactly halfway between two representable values.

Section 33.19

33.19.1. This operation subtracts $(1-16^{-6})$ from 16, so the expected result is $15+16^{-6}$. The actual results are:

1. $SE$ produces $c(FPR0) = '41F00001' or 15 + 16^{-5}$ with an error of $15/16$ ulp.
2. $SU$ produces $c(FPR0) = '420F0000'$, an unnormalized value of $15$ with error $16^{-6} or 1/16$ ulp.

So the unnormalized result is more accurate! This peculiarity is caused by unrounded hexadecimal floating-point arithmetic.

33.19.2. This table shows the approximate values:

<table>
<thead>
<tr>
<th>Exponent width</th>
<th>Fraction digits</th>
<th>Exponent range</th>
<th>Fraction accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 bits</td>
<td>8</td>
<td>$-64 \text{ to } +63$</td>
<td>$1.6<em>10^{-58} \text{ to } 7.8</em>10^{56}$</td>
</tr>
<tr>
<td>4 bits</td>
<td>9</td>
<td>$-16 \text{ to } +15$</td>
<td>$3.6<em>10^{-13} \text{ to } 3.5</em>10^{13}$</td>
</tr>
</tbody>
</table>

These choices also depend on the expected uses of the representation: if customer data needs only a limited exponent range, a 4-bit characteristic might give more fraction accuracy.*

33.19.3.

- XGR 0,0 Clear 64-bit general register
- IOMH 0,8,X Get sign/characteristic of X
- OIHL 0,1 Set bit 31 to 1
- LFGR 0,0 Copy X’s value to FR0
- DE 0,X Divide by X
- STE 0,ULPX Store short precision ulp(X)

33.19.5.

- XGR 0,0 Clear 64-bit general register
- IOMH 0,8,X Get sign/characteristic of X
- OILL 0,1 Set bit 63 to 1
- LFGR 0,0 Copy X’s value to FR0
- DD 0,X Divide by X
- STD 0,ULPX Store long precision ulp(X)

---

* If you are interested in the reasons the designers of System/360 chose hexadecimal instead of base-8 floating-point, you might consult this article: “An Analysis of Floating-Point Addition”, by D. W. Sweeney, IBM Systems Journal, Volume 4, Number 1, 1965.
33.19.7.

LD 4,X  Put high half of X in FR4
LD 6,X+8 Put low half of X in FR6
XGR 0,0  Clear 64-bit general register
ICMH 0,8,X Get sign/characteristic of X
LFGR 0,0  Copy X’cc000000 00000000’ to FR0
LGHI 0,1  Put 1 in G60
LFGR 2,0  Copy X’00000000 00000001’ to FR2
DXR 0,4  Divide by X
STD 0,ULPX Store high half of ulp(X)
STD 2,ULPX+8 Store low half of ulp(X)

Programming Problem 33.1.
P33_1 START 0
BASR 15,0  Set base register
USING *,15  And inform the assembler
LE 4,=E’1’  Carry 1.0 in FPR4
LE 6,=E’-5’  And X in FPR6
Loop STE 6,X Store X value for printing
LER 2,6  Set up denominator
MER 2,2  Form X squared
SE 2,=E’3’  Subtract 3.0
MER 2,6  (X*X-3.0)*X
SE 2,=E’2’  -2.0; now have denominator
JNZ Calc Branch if nonzero to compute
LE 0,Max Otherwise set max value
J StoreF And go store result
Calc LER 0,4 Numerator = 1.0
DER 0,2 Form F(X)
StoreF STE 0,FX Store value of function
PrintOut X,FX Print values
AER 6,4  Increase X by 1.0
CE 6,=E’+5’  Compare to last value
JNH Loop Branch if not bigger to do next X
PrintOut *,Header=NO Terminate program
FX DS E Value of F(X)
X DS E Value of X
Max DC EH’(Max)’ Maximum hexadecimal floating-point value
END P33_1

The maximum hexadecimal floating-point value will be printed when X = −1 and X = +2.

Programming Problem 33.2. This program displays the long hexadecimal floating-point values.
P33_2 Csect ,
Print NoGen
Using *,15
LA 0,55  Set count of largest factorial
LD 0,=D’1’  Initialize factorial value in FPR0
LDR 2,0  Initialize N in FPR2
LDR 4,0  Set increment in FPR4
STD 0,Facts Store 0 factorial
LA 9,Facts+L  Set GR9 to next entry in table
FactIt MDR 0,2 Form F*N to form N!
STD 0,0,(9)  Store in table
PrintOut 32,Header=NO Print contents of FPR0
ADR 2,4  Increment F
LA 9,L’Facts(9) Increment table address
JCT 0,FactIt Repeat for remaining values
PrintOut *,Header=NO Terminate
Facts DS 56D Storage for the factorial values
End P33_2
The largest precisely representable short hexadecimal floating-point value is easy to find by examining the long results to see which has nonzero digits extending past the sixth fraction digit; the last precise value is 12 factorial (12!). Finding the equivalent long value is more difficult, because the last nonzero digit of 22! (X′3CEAA4C2B3E0D80000′) is X′8′ and the last significant digit of 23! (X′57970CD7E2933680000′) is X′6′, so it’s not easy to know whether the three low-order zero bits of 22! might be enough to hold the low bits of 23!, without going to higher precision.

By evaluating those two numbers in extended precision (as the hex values show), we find that 23! has a single one-bit in the 15th hex digit, so that 22! is the largest that can be stored without loss of precision in long hexadecimal floating-point format.

**Programming Problem 33.3.**

This solution first checks the input value for zero; otherwise, it multiplies or divides by powers of ten until the result is a fraction less than 1 but greater than 0.1, keeping track of the decimal exponent. This fraction is multiplied by 10^6, converted to integer form, and formatted for printing.

```
P33_3 Csect ,
 Print NoGen
FO Equ 0 Floating-point work register
BASR 12,0 Set base register
USING *,12 Provide addressability
Read ReadCard InRec,Exit Read a record
OC InRec(8),=8C′ Make upper-case characters
MVC PHex,InRec Move to output line for display
TR Inrec(8),HexCh Translate digits to 0-F
PACK DWord(5),Inrec(9) Pack into a 4-byte word
LDE 0,DWord Load and extend to long format
XR 1,1 Clear GR1 for decimal exponent
MVI ESign,C′+′ Assume positive result
TM DWord,X′80′ Check sign of input value
JZ PlusSign Skip setting - sign, + is correct
MVI ESign,C′-′ Result is negative.
PlusSign LPER F0,F0 Force argument sign + in register
JZ Zero Fraction is zero, finish up easily
CD F0,=D′1′ See if argument has +/- exponent
JE FractOne All done if exactly 1.0
JH PosExp Branch if positive exponent
AHI 1,-10 And count decimal exponent down
CD F0,=D′1′ Where did that take us?
JL NegExp If it’s still too small, go again
JE FractOne If exactly equal, that’s nice.
PosExp MD F0,=D′1.E10′ Positive exponent; check size
JL Reduce If in range, reduce slowly
MD F0,=D′1.E-10′ Multiply gives more accuracy.
AHI 1,10 Bump decimal exponent accordingly
J PosExp And do another reduction cycle
Reduce CD F0,=D′1′ Exponent in (+10,0); check for 10**0
JE FractOne Fraction now is 1
JL Convert Ready to convert if now a fraction
MD F0,=D′.1′ Reduce by 10**1
AHI 1,1 Increment exponent accordingly
J Reduce And go around again
Convert MD F0,=D′1.E6′ Convert to integer in (1,10**6)
AD F0,=D′.5′ Round it properly
CD F0,=D′1.E6′ Did it round up to 1000000?
JNL FractOne It did, use fraction .100000
CFER 0.5,F0 Convert to binary integer in GRO
CVD 0,DWord Convert to packed decimal
OI DWord+7,X′0F′ Set correct zone
UNPK EDigits,DWord Place digits into string
DoExpon DS OH Convert exponent
MVI ExpSign,C′+′ Assume positive exponent
LTR 1,1 Check for correct assumption
JMM DoExpon2 Skip if it was right
```
MVI ExpSign,C -’ Set exponent sign -
DoExpon2 CVD 1,DWord Convert to decimal
  O1 DWord+7,X’0F’ Set correct (positive) zone
  UNPK Exponent,DWord Unpack to zoned decimal
  Printlin PLIn,Exponent-PLIn+2 Print result
  J Read Repeat for more values
Zero MVC EDigits,=6C’0’ Set fraction to zeros
  J DoExpon And go do exponent
FractOne MVC EDigits,=C’100000’ Set fraction digits to .100000
  AHI 1,1 Compensate by upping exponent
  J DoExpon And go do exponent
Exit Printout *,Header=NO Terminate
LtOrg Insert literals
DWord DC D’0’ Work area
PLine DC C’X’ Start of print line
PHex DS CL8 Input value
  DC C’’’ = ’
ESign DS C Sign of fraction
DecPt DC C’.’ Decimal point
EDigits DS CLB Fraction digits
ExponE DC C’E’ Exponent indicator ‘E’
ExpSign DS C Exponent sign
Exponent DS CL2 Decimal exponent
HexCh DC 256AL1(*-HexCh) Define no-effect table
  Org HexCh+C’A’ Set origin to offset of ‘A’
  DC X’FABFCDFDEFF’ Translate numeric digit to hex
  Org , Reset location counter
InRec DS CL80 Input area for records

Programming Problem 33.6.

P33_6 Csect , Using *,15
HFPLoop LD 0,HFP A Put argument in FPR0
  DD 0,HFPX Divide by current estimate
  SD 0,HFPX Subtract current estimate
  HDR 0,0 Divide by 2
  LFDR 2,0 Copy for convergence test
  AD 0,HFPX Add original estimate
  STD 0,HFPX Store updated estimate
  CD 2,*D’1E-10’ See if correction is small enough
  JH HFPLoop If not, iterate again
  LDR 2,0 Save final result in FPR2
  SDR 4,4 Set FPR4 to zero for renormalization
  AW 0,HFPUnn Unnormalize to extract integer part
  STD 0,HFPDW Store temporarily
  ADR 0,4 Renormalize the integer part
  SDR 2,0 Remove integer part in FPR2
  L 0,HFPDW+4 Get low-order word
  CVD 0,HFPDW Convert integer part to decimal
  O1 HFPDW+7,X’0F’ Set proper zone
  UNPK HFPAns(1),HFPDW+7(1) Unpack the integer part
  MVI HFPAns+1,C’.’ Place the decimal point
  MD 2,HFPCon Convert fraction digits to integer
  AD 2,HFPRmd Add rounding factor
  AW 2,HFPUnn Unnormalize to form fullword integer
  STD 2,HFPDW Store temporarily
  L 0,HFPDW+4 Get low-order word
  CVD 0,HFPDW Convert integer part to decimal
  O1 HFPDW+7,X’0F’ Set proper zone
  UNPK HFPAns+2(9),HFPDW+3(5) Move fraction part to output
Printout HFPAns,*,Header=NO
HFP A DC D’2’ Argument
HFPX DC D’1’ Initial estimate
The printed result is

\[ \text{HFPAns} = C'1.414213562' \]
Section 34 Solutions

Section 34.1

34.1.1. The three values are:

- Min = 2−126
- DMax = 2−126−2−149
- DMin = 2−149

34.1.2. There are 23 fraction bits in a short binary floating-point number, of which we must exclude the case of all zero bits. So there are 2^{23}−1 possible bit combinations. Allowing for either sign, there are 2×(2^{23}−1) or 16,777,214 denormalized numbers.

34.1.3. The three values are:

- Short format: X’7F800000’
- Long format: X’7FF0000000000000’
- Extended format: X’7FFF000000000000 0000000000000000’

Section 34.2

34.2.1. The constants are shown in this table:

<table>
<thead>
<tr>
<th>Format</th>
<th>2 Bytes</th>
<th>3 Bytes</th>
<th>4 Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short</td>
<td>3DCD</td>
<td>3DCCCD</td>
<td>3DCCCD</td>
</tr>
<tr>
<td>Long</td>
<td>3FBA</td>
<td>3FB99A</td>
<td>3FB999A</td>
</tr>
<tr>
<td>Extended</td>
<td>3FFC</td>
<td>3FB99A</td>
<td>3FB999A</td>
</tr>
</tbody>
</table>

In the 2-byte extended format, there is no fraction, only the implied 1-bit!

34.2.2. Six possible interpretations and the corresponding Assembler language defining statements can be written this way:

- DC F’1077952604’ Fullword binary integer
- DC C’•••’ Characters (three blanks and an asterisk)
- STH 4,X’05C’(0.4) Store halfword
- DC P’+4040405’ Packed decimal
- DC E’250982046’ Hexadecimal floating-point
- DC EB’3.0039281845’ Binary floating-point

Other interpretations are possible, as we’ll see later.

34.2.3. The types of the six values are:

1. X’7FFFFFFF’ – QNaN
2. X’007FFFFFF’ – Denormalized
3. X’80000000’ – –0
4. X’00000000’ – Normal
5. X’FF800000’ – QNaN
6. X’FF800000’ – –infinity

34.2.4. You won’t be happy with the results, because

- Short generates X’3FB9999A’, which has value +1.4500000 as a short operand, not 0.1!
- ShortOne generates X’3FF00000’, which has value +1.875 as a short operand, not 1!
- Long generates X’3DCCCCCCCCCCCCCD’, which has value +5.238689482212067E-11 as a long operand, not even close to 0.1!
- LongOne generates X’3F80000000000000’ as a long operand, which has value +7.8125E-3, not 1!

This shows why you should be very careful when using BFP constants defined with length modifiers.
Section 34.3

34.3.1. The resulting value is \(X'007FFFFFF'\), one ulp smaller than \(EB'(Min)'\).

Section 34.4

34.4.1. The exception conditions are “o” and “u” (overflow and underflow), and the rounding mode is set to “Down” (round toward \(-\infty\)).

34.4.2. The instructions will (a) set the invalid-operation mask bit to zero, and (b) reset all the status flags to zero.

34.4.3. You would get a program interruption with \(IC=X'01'\), meaning the instruction is invalid.

Section 34.5

34.5.1. The tested data classes are:

(a) \(-\infty\), any QNaN, and \(-SNaN\).
(b) Any and all data classes, so it tells you nothing useful!
(c) Any NaN operand with any sign.
(d) A zero operand.

34.5.2. In each case, the type of the operand is inconsistent with the type of the instruction. You should analyze the operands carefully to see what each instruction “thinks” it is testing.

34.5.3. The redundant instruction is at (b): it tests for all data classes, so it will always set \(CC=1\).

Section 34.6

34.6.1. The result in \(FPR(0,2)\) will be

\[
\begin{align*}
FPR0: & \quad X'50123456789ABCDE' \text{ (unchanged)} \\
FPR2: & \quad X'FEDCBA9876543210' \text{ (unchanged)}
\end{align*}
\]

and the \(CC\) will be 2 indicating a positive result. (Compare this to the result of Exercise 33.6.1)

34.6.2. The four results and the \(CC\) settings are:

1. \(LPEBR\ 4,2\) \(CC=2\), \(c(FPR4)=X'4285719600000000'\)
2. \(LTDBR\ 2,2\) \(CC=2\), \(c(FPR2)\) is unchanged
3. \(LCXBR\ 4,0\) \(CC=1\), \(c(FPR4,6)=X'8A123456789ABCDE 4285719600000000'\)
4. \(LCDBR\ 4,2\) \(CC=1\), \(c(FPR4)=X'C285719600000000'\)

34.6.3. The resulting settings are (a) \(CC=2\), (b) \(CC=3\).

34.6.4. The TCDB instruction at (d) tests for a zero operand, so it could be replaced by

\[
LTDBR\ 0,0 \quad \text{Test c(FPR0) for zero}
\]

Section 34.7

34.7.2. Here’s one way to calculate the table of cubes:

\[
\begin{align*}
\text{LA} & \quad 0,100 \quad \text{Set count of results wanted} \\
\text{LE} & \quad 2,EB'1' \quad \text{Constant 1 in FPR2} \\
\text{LER} & \quad 6,2 \quad \text{Initialize N} \\
\text{LA} & \quad 1,\text{BCubes} \quad \text{Set GR1 to start of table} \\
\text{CubeIt} & \quad \text{LER} \quad 4,6 \quad \text{Copy N to FPR4} \\
\text{MEEBR} & \quad 4,4 \quad \text{Form N**2} \\
\text{MEEBR} & \quad 4,6 \quad \text{Form N**3} \\
\text{STE} & \quad 4,0(1) \quad \text{Store in the table of cubes} \\
\text{LA} & \quad 1,\text{L'BCubes}(1) \quad \text{Increment table address} \\
\text{AEBR} & \quad 6,2 \quad \text{Increment N by 1} \\
\text{JCT} & \quad 0,\text{CubeIt} \quad \text{Repeat for 100 values} \\
\text{- - -} \\
\text{BCubes} & \quad \text{DS} \quad 100EB \quad \text{Table of cube values}
\end{align*}
\]

34.7.3. This solution relies on setting the mask bits and the rounding mode in the FPCR:
34.8. As in the solution to Exercise 34.7.3, this solution relies on setting the mask bits and the rounding mode in the FPCR:

\[
\begin{align*}
&LFPC = 'X'D0000003' \quad \text{No underflow or inexact,} \\
&\ast \quad \text{round to } -\infty \\
&LE 0, 'EB'(Max)' \quad \text{Maximum value} \\
&MEEBR 0,0 \quad \text{c(FPR0)='}'X'7F7FFFFF', \text{rounded down to (Max)}
\end{align*}
\]

34.8.2. The results are:

1. 'X'3FB00000' = −1
2. 'X'80000000' = 0
3. 'X'FF800000' = −∞

34.8.3. The three values are

1. −0
2. +0
3. −1.0

34.8.4. Divide the signed zero into +1, and check the sign of the resulting \(\pm\infty\), using a Load and Test of the appropriate operand length.

Section 34.9

34.9.1. The representation of each (DMin) is 'X'000...001'. When added to itself, the result is 'X'000...002'. The need to mask off all exception conditions is explained in the z/Architecture Principles of Operation; if the underflow exception is enabled, an interruption occurs and the final exponent is scaled to be in a valid range.

34.9.2. Because the value of (Min) is a power of two, adding (Min) to itself in each representation will simply double its value, by increasing the exponent by one. Thus, the results are

- 'X'01000000' (short precision)
- 'X'0020000000000000' (long precision)
- 'X'0002000000000000 0000000000000000' (extended precision)

34.9.3. (a) \(\pm\infty\), (b) invalid operation.

Section 34.10

34.10.1. The CC values resulting from the comparisons are shown in this table:

<table>
<thead>
<tr>
<th>Operand 1</th>
<th>Operand 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>A</td>
<td>–</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 444. Comparing five binary floating-point operands

34.10.2. No.

Section 34.11

34.11.1. Yes, but be careful. You could “shorten” a binary floating-point operand by truncating the low-order portion, but then you can’t use the truncated operand as a shorter-format operand, because the exponent field will be too long. They can be considered “truncating” only if the rounding mode is B’01’ (toward zero), which chops off the low-order digits.
34.11.2. The short format has 23 significand bits; when lengthened to long format only its leading 22 or 23 bits will match those of the original long format. Thus the difference between the original and final values will be approximately $X^\times(2^{-22})$.

34.11.3. The long precision values will be:

1. $X'3F800000 00000000' \approx +7.8125E-3$
2. $X'00800000 00000000' \approx +2.848E-306$
3. $X'00000001 00000000' \approx +2.121E-314$
4. $X'7FE00000 00000000' \approx +8.988E+307$
5. $X'7F800000 00000000' \approx +5.618E+306$
6. $X'7F800000 00000000' \approx +1.404E+306$

You must be careful to know the true length of each binary floating-point operand!

Section 34.12

34.12.2. No, because the largest 64-bit integer is less than $10^{19}$, well within the range of all three binary floating-point formats.

Section 34.13

34.13.1. The results are:

1. $X'40800000' = 4$
2. $X'40800000' = 4$
3. $X'40400000' = 3$
4. $X'40800000' = 4$
5. $X'40400000' = 3$

34.13.2. The long precision value loaded into FPR0 is $X'40230000 00000000'$. But the FIEBR instruction treats it as a short precision operand, which has value 2.54685, so the rounded value in FPR2 is $X'40400000'$, with value $+3$.

The fact that the original operand $+9.5$ didn’t round to $+10$ shows why you must be careful to match operand lengths expected by the instructions to the length of the data items.

Section 34.14

34.14.1. From Table 264 on page 625 we can see that

(Max) $\approx 3.4\times10^{+38}$ so its square root is $\approx 1.84\times10^{+19}$.
(Min) $\approx 1.2\times10^{-38}$ so its square root is $\approx 1.08\times10^{-19}$.
(DMin) $\approx 1.4\times10^{-45}$ so its square root is $\approx 3.74\times10^{-23}$.

34.14.2. Because the operand is long precision but the instruction extracts the square root of a short precision operand, the result is not $+4.0$, but $+1.6583$ instead.

Programming Problem 34.2. This solution illustrates a way to derive useful results with low overhead.

```assembly
P35_2 CSect,
Print NoGen
F0 Equ 0 Floating-point work register
BASR 12,0 Set base register
USING *,12 Provide addressability
Read ReadCard InRec,Exit Read a record
OC InRec(8),=8C' Make upper-case characters
MVC PHex,InRec Move to output line for display
TR Inrec(8),HexCh Translate digits to 0-F
PACK DWord(5),Inrec(9) Pack into a 4-byte word
LE F0,DWord Load to FPR0
XR 1,1 Clear GRI for decimal exponent
MVI ESign,C'+' Assume positive result
TM DWord,X'80' Check sign of input value
JZ PlusSign Skip setting - sign, + is correct
MVI ESign,C'-' Result is negative.
NI DWord,X'7F' Set original sign to 0
PlusSign LPEBR F0,F0 Force argument sign + in register
JZ Zero Fraction is zero, finish up easily
```

1198 Assembler Language Programming for IBM z System™ Servers Version 1.00
Suggested Solutions to Selected Exercises and Programming Problems

CLI DWord,X'7F' Check possible Infinity or NaN
JL Finite Skip if value is finite
TM DWord+1,X'80' Check next bit
Jordan Special If 1, it's a special value

Finite CEB F0,'EB' Check if argument has +/- exponent
JE FractOne All done if exactly 1.0
JH PosExp Branch if positive exponent

NegExp MEEB F0,'EB' Negative exponent; increase by 8
AHJ 1,-8 And count decimal exponent down
CEB F0,'EB' Where did that take us?
JL NegExp If it's still too small, go again
JE FractOne If exactly equal, that's nice.

PosExp CEB F0,'EB' Positive exponent; check size
JL Reduce If in range, reduce slowly
MAEB F0,'EB' Multiply gives more accuracy.
AHJ 1,8 Bump decimal exponent accordingly
J PosExp And do another reduction cycle

Reduce CEB F0,'EB' Exponent in (+10,0); check for 10**0
JE FractOne Fraction now is 1
JL Convert Ready to convert if now a fraction
MEEB F0,'EB' Reduce by 10**1
AHJ 1,1 Increment exponent accordingly
J Reduce And go around again

Convert MEEB F0,'EB' Convert to integer in (1,10**5)
AEB F0,'EB' Round it properly
CEB F0,'EB' Did it round up to 100000?
JNL FractOne It did, use fraction .10000
CFEBR 0,5,F0 Convert to binary integer in GR0
CVD 0,DWord Convert to packed decimal
OI DWord+7,X'OF' Set correct zone
UNPK EDigits,DWord Place digits into string

DoExpon DS OH Convert exponent
MVI ExpSign,'+' Assume positive exponent
LTR 1,1 Check for correct assumption
JNM DoExpon2 Skip if it was right
MVI ExpSign,'-' Set exponent sign -

DoExpon2 CVD 1,DWord Convert to decimal
OI DWord+7,X'OF' Set correct (positive) zone
UNPK Exponent,DWord Unpack to zoned decimal
MVI DecPt,'.' Place the decimal point
MVI ExponentE,'E' And the exponent indicator

PrintIt PrintLin PLin,Exponent=PLin+2 Print result
J Read Repeat for more values
MVC EDigits,=5C0' Set fraction to zeros
J DoExpon And go do exponent

FractOne MVC EDigits,=C0000' Set fraction digits to .100000
AHJ 1,1 Compensate by upping exponent
J DoExpon And go do exponent

Special CLC DWord(2),='X'F80' Check for infinity
JNE ItsaNaN Skip if not infinity
MVC DecPt(10),='CL10'(Infinity)' Indicate special value
J Print It Print the result

ItsaNaN MVC DecPt(10),='CL10'(NaN)' Indicate special value
J Print It Print the result

Exit PrintOut *,Header=NO Terminate
LtOrg , Insert literals

DWord DC 'D' Work area
PLine DC C'X ' Start of print line
PHex DS CL8 Input value
DC C'=' Sign of fraction
DecPt DC C'. ' Decimal point
EDigits DS CL5 Fraction digits
Exponent DC C'E' Exponent indicator 'E'
ExpSign DS C Exponent sign
Programming Problem 34.3. This solution displays the values in hexadecimal. You will see that many of the squared square roots match the original integer value.

P35_3 CSect,
Print NoGen
USING *,15  Provide addressability
LFPC =F'O'  Mask off exceptions
LA 0,20  Count number of values
LE 0,'EB'1'  Constant 1 in FPRO
LER 2,0  Integer value to be incremented
Loop STE 2,FPInt  Store for display
SQEBR 4,2  Calculate the square root
STE 4,FPRoot  Store for display
LER 6,4  Copy it to FPR6
MEEBR 6,6  Squared square root
SEBR 6,2  Calculate (squared root)-(integer)
STE 6,FPDiff  Store for display
PrintOut FPInt,FPRoot,FPDiff  Display the results
AEBR 2,0  Increment the integer value
JCT 0,Loop  Repeat for next value
PrintOut *,Header=NO  Terminate
DS 0F  Align to fullword boundary
FPInt DS XL4
FPRoot DS XL4
FPDiff DS XL4
END P35_3

The only reason to mask off the exceptions is that the square roots of non-square integers are necessarily inexact.

Programming Problem 34.3. This is one way to calculate the list of square roots and display the requested values in hexadecimal:

P34_3 CSect,
Print NoGen
Using *,15  Provide addressability
LFPC =F'O'  Mask off floating-point exceptions
LA 0,20  Count number of values
LE 0,'EB'1'  Constant 1 in FPRO
LER 2,0  Integer value to be incremented
Loop STE 2,FPInt  Store for display
SQEBR 4,2  Calculate the square root
STE 4,FPRoot  Store for display
LER 6,4  Copy it to FPR6
MEEBR 6,6  Squared square root
SEBR 6,2  Calculate (squared root)-(integer)
STE 6,FPDiff  Store for display
PrintOut FPInt,FPRoot,FPDiff  Display the results
AEBR 2,0  Increment the integer value
JCT 0,Loop  Repeat for next value
PrintOut *,Header=NO  Terminate
DS 0F  Align to fullword boundary
FPInt DS XL4
FPRoot DS XL4
FPDiff DS XL4
End P34_3
Programming Problem 34.4. You will find the claim to be true for these values:

- Short binary floating-point: 41, 47, 55, 61, 82, 83, 94, 97
- Long binary floating-point: 49, 98
- Extended binary floating-point: 43, 86, 87, 97

Mathematically inclined readers may find it interesting to explain the discrepancies detected above, and determine why only the value 99 is shared between representations.

Programming Problem 34.5.

P34_5 Csect,
Using *,15
BFLoop LD 0,BFPA Put argument in FPR0
DDB 0,BFPX Divide by current estimate
SDB 0,BFPX Subtact current estimate
DDB 0,=DB'2' Divide by 2
LPDR 2,0 Copy for convergence test
ADB 0,BFPX Add original estimate
STD 0,BFPX Store updated estimate
CDB 2,=DB'1E-10' See if correction is small enough
JH BFPLoop If not, iterate again
ADB 0,BFPRnd Round to 9 significant digits
LDR 2,0 Copy answer to FPR2
CFDBR 0,0,0 Convert integer part to fixed
CVD 0,BFPDW Convert that to packed decimal
OI BFPDW+7,X'0' Set proper zone
UNPK BFPAns(1),BFPDW+7(1) Unpack the integer part
MVI BFPAns+1,C'.' Place the decimal point
CDB 0,0 Subtract integer part back to float
MDB 2,BFPCon Convert fraction digits to integer
CFDBR 0,0,2 Convert fraction part to fixed
CVD 0,BFPDW Convert that to packed decimal
OI BFPDW+7,X'0' Set proper zone
UNPK BFPAns+2(9),BFPDW+3(5) Move fraction part to output
Printout BFPAns,* Header=NO

BFPA DC DB'2' Argument
BFPX DC DB'1' Initial estimate
BFPCon DC DB'1E9' Conversion constant for fraction
BFPRnd DC DB'0.5E-9' Constant for rounding
BFPDW DC D'O' Work Area
BFPAns DC CL12' ' Output area for result
End P34_5

The printed result is

BFPAns = C'1.414213563'
Section 35 Solutions

Section 35.0

35.0.1. I sometimes explain what I call “Cartoon” (four-finger) arithmetic by holding my hands against the edge of a table, with the thumb and first three fingers (or the four fingers) on the surface and the little fingers (or the thumbs) hidden below the edge. Then, I ask a child to count from one to “ten”, where “ten” is the last finger counted: 1, 2, 3, 4, 5, 6, 7, 10. Then, I ask them to add 5 and 5.

35.0.2. Clocks use base 12 or base 24 arithmetic for hours, and base 60 for minutes and seconds; circular measure uses base 360; weekly calendars use base 7. You will enjoy browsing for others.

Section 35.1

35.1.1. Your representation could look like this:

<table>
<thead>
<tr>
<th>s</th>
<th>char</th>
<th>6 BCD-digit fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>24</td>
</tr>
</tbody>
</table>

Because the characteristic is 7 bits wide, it can accommodate characteristic values from 0 to 127. To avoid the range asymmetry of hexadecimal floating-point data, EMax should be +64 and EMin should be −63. Then, the characteristic bias is +63. (See the footnote on page 668.)

35.1.2. The three quanta are $1 \times 10^7$, $1 \times 10^6$, and $1 \times 10^3$ respectively.

35.1.3. Yes. The quantum in each case is $10^{\text{exponent}}$.

35.1.4. The number of significant digits is 5, 6, and 9 respectively.

35.1.5. The pictured representation has precision of 19 digits, and the given value has five nonzero digits between its leftmost and rightmost nonzero digits, so the cohort has 15 members in each case.

35.1.6. $p - n + 1$.

Section 35.2

35.2.1. The cohort members and their quanta are

1. $[-2][0743]$ and $[-3][7430]$, with quanta $1 \times 10^{-2}$ and $1 \times 10^{-3}$ respectively.
2. $[+1][0009]$, $[0][0090]$, $[-1][0900]$, and $[-2][9000]$, with quanta $1 \times 10^1$, $1 \times 10^0$, $1 \times 10^{-1}$, and $1 \times 10^{-2}$ respectively.
3. $[-3][3400]$, $[-2][0340]$, and $[-1][0034]$, with quanta $1 \times 10^{-3}$, $1 \times 10^{-2}$, and $1 \times 10^{-1}$ respectively.

35.2.2. 2, 5, and 11. (That wasn’t too hard, was it!)

35.2.3. Nine. A long-precision number supports 16 digits, so we can have from 0 to 8 high-order (or low-order) zeros.

35.2.4. Assuming all exponents are valid, you can’t tell unless you know how many low-order zero digits are in the significand. For example, if the significand is 1000000, its cohort has 16 members. Similarly, if the significand is 12345678, its cohort has 9 members.

35.2.5. The encoding is $X'38F'$.  

35.2.6. The BCD digits are 945.

35.2.7. The values are:

1. $X'827C000000000000' = -0$: first 5 CF bits = 00000, TSF=0 bits = 11111 1
2. $X'7EF000498268A3B' = +SNaN$: first 5 CF bits = 11111, next bit = 1 bits = 11111 0
3. $X'FB73882151420357' = -QNaN$: first 5 CF bits = 11111, next bit = 0

35.2.9. The two values are

Short DFP: $X'2DF306BB'$  
Long DFP: $X'2200000003306BB'$
35.2.10. Examine Table 313 on page 672: for decimal digits 0-7, the bit patterns in the rightmost encoded hexadecimal digit are the same as those of the “source” digit. Decimal digits 8 and 9 may sometimes be encoded to $X'F'$ and $X'F'$ respectively.

**Section 35.3**

35.3.1. Seven possible interpretations, and their Assembler Language defining statements, are:

- DC F'1077952604' Word binary integers
- DC C'•••' Characters (three blanks and an asterisk)
- STH 4,$X'05C'(0,4) Store Halfword
- DC P'+4040405' Packed decimal
- DC E'.250982046' Hexadecimal floating-point
- DC EB'.0039282' Binary floating-point
- DC ED'.0850E+35' Decimal floating-point

The decimal floating-point value is a member of a cohort: members with the same value can have different representations:

- DC ED'10850E31' Representation X'4040405C'
- DC ED'1085E32' Representation X'4050044B'
- DC ED'1.085E35' Representation X'4050044B'

The last two of these show that the presence of the low-order zero digit in the nominal value changes the generated constant.

35.3.2. The three constants are

- Short DC ED'.9999998E97' Generates X'77F3FCFE'
- Long DC DD'.999999999999998E385'
- Extend DC LD'.999999999999999999999999999999999E6145'

It’s instructive to assemble these three constants together with the following three (specify the PRINT DATA statement!). You’ll see that the results for the first three constants are identical to the Max values except that the low-order bit is one less.

- DC ED'(Max)' Generates X'77F3FCFF'
- DC DD'(Max)' 
- DC LD'(Max)'

35.3.3. The three constants are

- Short DC ED'.9999999E97'
- Long DC DD'.999999999999999E385'
- Extend DC LD'.999999999999999999999999999999999E6145'

If you don’t like writing it as a fraction, you could also write (for example)

- Long DC DD'9999999999999999E369'

35.3.4. The sketches of the hexadecimal and binary floating-point representations in Figure 431 on page 668 imply that those representations can safely be lengthened or shortened. However, decimal floating-point values depend on maintaining the precise structure of the Combination Field and of the declets in the Trailing Significand Field. Truncating or padding a constant could produce a bit string unrecognizable as a decimal floating-point value.

35.3.5. Because short decimal floating-point exponents range from −95 to +95, the cohort of +0 has 192 members, not 191: remember that +0 and −0 are different members of the cohort.

35.3.7. NMin = 1.E-95, and DMin = .000001E-95.

**Section 35.4**

35.4.1. The tested data classes are:

(a) −infinity, any QNaN, and −SNaN (The Effective Address bit pattern is B'11101')
(b) Any and all data classes, so it tells you nothing useful!
(c) Any NaN operand with any sign.
(d) A zero operand.
Section 35.5

35.5.1. Yes: if the result has fewer significant digits than the representation provides, the cohort member with smallest quantum will have a nonzero leftmost digit.

35.5.2. A program interruption with IC=1 (operation exception) will occur.

Section 35.6

35.6.1. Both instruction sequences do the same, and both sequences require four bytes. Depending on the z System model, the single instruction could be slightly faster than the two LDRs.

Section 35.7

35.7.1. The results are

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td><code>X'0000000000000000' = +0</code></td>
</tr>
<tr>
<td>(b)</td>
<td><code>X'7800000000000000' = +infinity</code></td>
</tr>
<tr>
<td>(c)</td>
<td><code>X'7800000000000000' = +infinity</code></td>
</tr>
<tr>
<td>(d)</td>
<td><code>X'F800000000000000' = -infinity</code></td>
</tr>
</tbody>
</table>

Section 35.8

35.8.1. The CC settings are shown in this table:

<table>
<thead>
<tr>
<th>Operand 1</th>
<th>Operand 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finite</td>
<td>Infinity</td>
</tr>
<tr>
<td>Finite</td>
<td>1 or 2</td>
</tr>
<tr>
<td>Infinity</td>
<td>3</td>
</tr>
<tr>
<td>NaN</td>
<td>3</td>
</tr>
</tbody>
</table>

Section 35.9

35.9.1. To avoid an invalid operation exception, the rounding masks must round the decimal floating-point value toward zero.

- For Mp, the mask values are 9, 11, 13, and 15 (and 0 if the Decimal Rounding Mask in the FPCR has values 1, 3, 5, or 7).
- For Mn, the mask values are 8, 9, 10, 13, and 15 (and 0 if the Decimal Rounding Mask in the FPCR has values 1, 2, 5, or 7).

There is one more mask value for Mn because –263 is even, while +263 – 1 is odd, and can round (up) to an even final digit, making the result larger than the maximum positive integer.

Section 35.10

35.10.1. You could compare the decimal floating-point operand to a constant. Suppose a nonnegative long operand is in FPR2:

```assembly
LD 0,"0D'1E16" 10**16 (16 significant digits)
CDTR 2,0 Compare operand to constant
JNL LostDigit Branch if a digit will be lost
```

and similarly for extended precision, where the constant would be "0D'1E32".

Alternatively, you could use the “Extract Significance” instructions to determine the actual number of significant digits.

35.10.2. Because the result is unsigned, there is no need to choose a sign code.

35.10.3. Because the source operand in (GG8,GG9) has at most 31 packed decimal digits, but the extended decimal floating-point operand supports 34 digits, the LMD must necessarily be zero.

35.10.5. Let ZD represent the numeric value of the zoned decimal digits of the result.
Section 35.11

35.11.2. The value of \(\frac{24}{7}\) is 3.428571, where the underlined group of digits is repeated indefinitely.

35.11.3. Use these two instructions to load the complement of the extended operand in (FPR0,FPR2) to (FPR4,FPR6):

\[
\begin{align*}
\text{LCDR} & \ 4,0 \quad \text{Complement high-order half} \\
\text{LDR} & \ 6,2 \quad \text{Copy low-order half}
\end{align*}
\]

35.11.4. If the operand is a SNaN, Load and Test will cause an invalid operation exception, but Test Data Class will not.

Section 35.12

35.12.1. The results are:

(a) SLDT 2,2,0 Significance = 8
(b) SLDT 2,2,3 Significance = 11
(c) SRDT 2,2,6 Significance = 2
(d) SLDT 2,2,10 Significance = 16
(e) SRDT 2,2,8 Significance = 0

35.12.2. Remember that the significand of a DFP number is encoded in declets. Thus, the low-order 24 bits of the DFP number are \(X'2500000'\), representing a declet \(X'025'\) followed by two \(X'000'\) declets. Referring to Figure 464 on page 721, their values are 025, 000, and 000, so there are 8 significant digits.

35.12.3. An advantage of using shifts might include simplicity. Some disadvantages include (a) lack of rounding choices on right shifts and (b) lack of overflow detection on left shifts.

35.12.4. Consider

\[
\begin{align*}
\text{LD} & \ 0,=\text{DD}'12789' \quad \text{Source operand} = X'2238000000004BCF' \\
\text{LD} & \ 2,=\text{DD}'12789E+07' \quad \text{Second operand} = X'2254000000004BCF' \\
\text{QADTR} & \ 4,0,2,8 \quad c(\text{FPR4}) = X'2254000000000000'
\end{align*}
\]

The result has zero significand and nonzero exponent.

35.12.5. The Assembler limits the length of P-type constants to 16 bytes.

Section 35.14

35.14.1. Consider the value \(X'77FFFFFF'\). Following the zero sign bit, the first two \(ab'\) bits are 11, so the biased exponent is formed from all but the last CF bit (cdefghij), giving \(B'10111111'=X'BF'=191\). Subtracting the exponent bias (101) means that the exponent is 90. The significand's high-order bits are \(B'1001'\) \((8+k)\) so the significand is \(X'9FFFF'=10485760\). But the largest valid significand is \(10^7-1=X'96967F'=9999999\), so the significand is too large. The value is non-canonical, and will be treated as zero.

35.14.2. Using the values calculated in Exercise 35.14.1, we can easily construct the Max value: \(X'779696F'\).

35.14.3. \(X'000000001'\). The biased exponent is zero, so the true exponent is \(-101\), and the significand is 1. Thus its value is \(1\times10^{-101}\).

35.14.4. Starting with \(X'5FFFFFF'\), the \(ab'\) bits are 10, so the biased exponent is formed from bits abcdedefgh, giving \(B'10111111'=X'BF'=191\) for the biased exponent. Subtracting the bias (101) means the exponent is 90. The first 3 bits (1jk) of the significand are 111, so the significand is \(X'7FFF'=223-1=8388607\), which is less than 9999999, so this is a valid representation of \(8388607\times10^{90}\).
Section 35.15

35.15.1. The M₄ mask is used in four different ways:

<table>
<thead>
<tr>
<th>M₄</th>
<th>Use and Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Used by CSDTR, CSXTR to select the sign code of the packed decimal result.</td>
</tr>
<tr>
<td>4</td>
<td>For FIDTR and FIXTR; and for FIEBRA, FIDBRA, and FIXBRA; and for CEBRA, CFDBRA, CXFBRA, CEGBRA, CDGBRA, and CXGBKRA; and for CFKIIA, CFDBRA, CFXBRA, CGEGBRA, CGDBRA, and CGXGBRA; and for CEBRA, CDGBKRA, and CXLGBKRA; and for CDBLIR, CXLIR, CDFIRL, and CXFLIR; and for CGDTRA, CGXTRA, CDFDR, and CFXFTR; suppresses the inexact exception.</td>
</tr>
<tr>
<td>8</td>
<td>For LDETR and LXDTTR, to indicate an invalid operation exception; for LEDTR and LDXTR, to truncate the payload.</td>
</tr>
<tr>
<td>any</td>
<td>Used by Add (ADTRA, AXTRA), Divide (DDTRA, DXTRA), Divide to Integer (DIEBRA, DIDBRA), Multiply (MDTRA, MXTRA), Quantize (QADTRA, QAXTRA), Reround (RRDTRA, RRRTRA), and Subtract SDTRA, SXTRA), instructions as a 4-bit rounding mask.</td>
</tr>
</tbody>
</table>

Programming Problem 35.2. The values of N that fail for both long and extended precision decimal floating-point arithmetic are 3, 9, 22, 28, 33, 34, 45, 48, 49, 55, 63, 65, 66, 74, 75, 84, 88, 90, 95, and 99.

The values of N that fail only for long precision decimal floating-point arithmetic are 31, 41, 43, 51, 59, 71, 73, 82, 85, 92, 93, and 98.

The values of N that fail only for extended precision decimal floating-point arithmetic are 47, 67, 83, 86, and 89.

The failing values share the property that they are divisible by a prime number other than 2 or 5.

Programming Problem 35.3. This solution uses a specialized interface between DPD2BCD and its caller: the input and returned values are in the left and right halves of a word argument.

Title `DPD2BCD: Convert a 10-bit declet to 3 BCD digits`
* Entry via R15, return via R14; R1=A(A(fullword)), where the first 2 bytes of the fullword are the (right-justified) declet, and the last 2 bytes are the 3 converted BCD digits, also right-justified.
* Declet format: PQ RSTU VWXY
* BCD digits: ABCD EFGH IJKM

```
DPD2BCD Csect ,
DPD2BCD RMode Any
DPD2BCD AMODE 31
Using *,15
STM 14,4,12(13) Save some regs
L 3,0(0,1) A(fullword)
Using Fullword,3
LR 4,0 Carry declet in R4
XR 1,1 Clear R1
SRDL 0,1 Isolate Y bit (+M)
SRL 0,3 Drop VWX bits
SRDL 0,1 Isolate U bit (+H)
SRL 0,2 Drop ST bits
SRDL 0,1 Isolate R bit (+D)
SRL 1,28 Now have 2*DHM bits
LH 2,DHMBCD(1) Carry BCD digits in R2
* RUY=DHM bits now completed
SLL 0,9 PQ bits positioned OPQ 0000 0000
* OPQ(R) bits for BCD1: ABC(D)
TML 4,VBit = 0? (WWST bits 0----)
JZ Case_A Jump if yes
* Know V=1
LA 1,8′1100000′ Prepare for cases B and D
TML 4,WBit*XBit WX=00? (100--)
```
JZ Case_B Jump if yes
* Know V=1, XW not 00
TML 4,WBit
W=0? (10---)
* JZ Case_C Jump if yes
* Know V=1, W=0
TML 4,XBit
X=0? (110---)
JZ Case_D Jump if yes
* Know V=1, X=1, W=1
TML 4,SBit+Tbit
ST=00 or 11?
JZ Case_E Jump if ST=00 (11100)
JO Case_H Jump if ST=11 (11111)
* Know VXW=111, and ST mixed
JZ Case_F Know VXW=11, S=0, T=1
Case_G DC OH Do OPQ(R), 100(U), 100(Y)
OR 2,0 Complete the OPQ(R) bits
STH 2,BCD
OI BCD+1,X’80’+X’08’ Do 100U = 100H, 100Y = 100M
J Finis Return
Case_A DC OH Do OPQ(R), OST(U), OWX(Y)
OR 2,0 Complete the OPQ(R) bits
LA 1,B’1100110’ Extract ST and WX bits
NR 4,1 Isolate ST and WX bits
OR 2,4 Insert the ST and WX digits
STH 2,BCD
J Finis Return
Case_B DC OH Do OPQ(R), OST(U), 100(Y)
OR 2,0 Complete the OPQ(R) bits
NR 4,1 Extract ST bits
OR 2,4 Insert
STH 2,BCD
OI BCD+1,X’08’ Do 100Y = 100M
J Finis Return
Case_C DC OH Do OPQ(R), 100(U), OST(Y)
OR 2,0 Complete the OPQ(R) bits
* Do OST(Y) inline
SRL 4,4 Position for 3rd digit
LA 1,B’1110’ Extraction bits for ST
NR 4,1
OR 2,4 Insert the ST digits
STH 2,BCD
OI BCD+1,X’80’ Do 100U = 100H
J Finis Return
Case_D DC OH Do 100(R), OST(U), OPQ(Y)
SRL 0,8 Reposition PQ bits
OR 2,0 Done with OPQ(Y)
NR 4,1 Extract ST bits
OR 2,4 Insert
STH 2,BCD
OI BCD+1,X’08’ Do 100R = 100D
J Finis Return
Case_E DC OH Do 100(R), 100(U), OPQ(Y)
SRL 0,8 Reposition PQ bits
OR 2,0 Insert the bits
STH 2,BCD
OI BCD+1,X’80’ Do 100U = 100H
OI BCD,X’08’ Do 100R = 100D
J Finis Return
Case_F DC OH Do 100(R), OPQ(U), 100(Y)
* Do OPQ(U) inline
SRL 0,4 Position PQ bits for 2nd digit
OR 2,0 Insert the PQ digits
STH 2,BCD
J Case_H_1 Complete the rest
Case_H DC OH Do 100(R), 100(U), 100(Y)
STH 2,BCD Store OHM bits
OI  BCD+1,X'80'  Do 100U = 100H
Case_H_1 DC  OH
OI  BCD,X'08'  Do 100R = 100D
OI  BCD+1,X'08'  Do 100Y = 100M
J Finis  Return
Finis DC  OH
LM  14,4,12(13)
BR  14
Drop 15
DHMBCD DC  XL2'000,001,010,011,100,101,110,111'

Fullword DSect ,
Declet DS  OH
DS  X  O000 00PQ
DS  X  RSTU WXYY
SBit Equ X'40'
TBit Equ X'20'
VBit Equ X'08'
WBit Equ X'04'
XBit Equ X'02'
BCD DS  H  Digits: 0, BCD1, BCD2, BCD3
End

A sample program to print the table of all possible declet values and their converted results:

Prob35_3 CSect ,
Prob35_3 RMode 24  Only needed to use Printlin and...
Prob35_3 AMode 24  Printout macros.
Using *,15
STM  14,12,12(13)  Save registers
LA  12,Savearea  Point to save area
ST  13,4,(12)  Chain caller’s area to ours
ST  12,8,(13)  Chain ours to caller’s
LR  13,12  R13 now points to ours
LR  12,15  Set new base address
Drop 15
Using D2B,12
NTry Equ 1023  Do declet values from 0 to 1023
LHI  10,NTry  Set loop counter
LHI  9,8  Number of values per line
LA  8,Line  Point to the print line
MVC Line,Line-1  Propagate blanks
Loop DC  OH
LHI  3,NTry  Load maximum number to convert
SR  3,10  Subtract current loop count
STH  3,Input  Store declet value in argument
LA  1,ArgAddr  Point to it
L  15,SubAddr  Get address of DPD2BCD
BASR  14,15  Call the subroutine
*  CVD  3,DW  Convert declet value to packed
Using Out,8  Map output group onto print line
UNPK N,DW+5(3)  Unpack the decimal value
OI  N+L,N-1,X'F0'  Set correct zone on last digit
CLI  N,'0'  Blank leading zeros
JNE DoD  Jump if none
MVI N,'.'  Blank leading zero
CLI N+1,'0'  Check next digit
JNE DoD  Jump if not zero
MVI N+1,'.'  Blank it
CLI N+2,'0'  Check next digit
JNE DoD  Jump if not zero
MVI N+2,'.'  Blank it otherwise
DoD UNPK DU,Input(3)  Unpack the declet’s three digits
TR D,HEX-C'0'  Translate to hex
MVI D+L,D'0'  Blank the trailing ‘swap’ byte
UNPK BU,Output(3) Unpack the declet’s decimal value
TR B,HEX-C’O’ Translate to hex
MVI B+L’B,C’ Blank the trailing ‘swap’ byte
LA 8,OutL(,8) Step to next output-line field
JCT 9,Next Loop back for more if line not full
Println Line Output the print line
MVC Line,Line-1 Clear the print line
LHI 9,8 Reset the number of values per line
LA 8,Line Point to start of print line

Next AHI 10,-1 Count number of conversions
JNM Loop If not negative yet, repeat
CHI 9,8 Did the last line yet?
JE Done If yes, we’re done.
Println Line Otherwise, output the last line

Done Printout *,Header=NO Terminate

SubAddr DC V(DPD2BCD)
ArgAddr DC A(Input) Address of the argument to DPD2BCD
Input DS H Input value in left halfword
Output DS XL2 Output value in right halfword
Savearea DS 18F
DW DS D Work area for CVD
DC C’,
Line DC CL121’
HEX DC C’0123456789ABCDEF’
Out DSect Mapping of an output group
N DS CL4,C
DU DS OCL4
D DS CL3,C
BU DS OCL4
B DS CL3,C
OutL Equ *-Out
End Prob35_3

The last line of printed output looks like this:
1016 3F8 778 1017 3F9 779 1018 3FA 796 1019 3FB 797 1020 3FC 976 1021 3FD 977 1022 3FE 998 1023 3FF 999
Section 36 Solutions

Section 36.1

36.1.1. When converting short-precision data from hex to binary, some magnitudes may be unrepresentable; when con-
verting from binary to hex, from 1 to 3 bits of precision may be lost, and special values cannot be converted.

36.1.2. When converting long-precision data from hex to binary, 1 to 3 bits of precision may be lost; when converting
from binary to hex, some magnitudes may be unrepresentable, and special values cannot be converted.

36.1.3. When converting extended-precision data from hex to binary there are no problems, but when converting from
binary to hex there may be unrepresentable magnitudes, loss of 1 to 4 bits of precision, and unrepresentable special
values.

Section 36.2

36.2.1. The result is 3.00001 in both cases.

36.2.2. The result is 3.00000 in both cases.

Section 36.4

36.4.1. A usable hexadecimal floating-point value requires at least one hex digit in the fraction. Consider two other
constants:

| E1 | DC | EL.9’1’ |
| E15 | DC | EL.9’1.5’ |

The nominal value of each is one hexadecimal digit; but the only significant bit (8’0001’) in the fraction of the constant
named E1 is lost, so the assembler will flag this statement. Similarly, the constant named E15 is rounded up to appear
to have nominal value 16, which then has the same fraction digit as the first constant.

36.4.2. The binary constant interpreted as a hexadecimal constant would appear to have value +1.953125E−4, and the
decimal constant would appear to have value +1.880791E−37! This shows why you must be careful not to mix
floating-point data types.

36.4.3. The BFP value is +2.4, and the DFP value is +4613008E+20.

36.4.4. The HFP value is +2.2350989E−37, and the BFP value is +2.818926E−18. (Neither seems very close to 1.)

36.4.5. The values of the four constants are:

<table>
<thead>
<tr>
<th>Bit Pattern</th>
<th>HFP Value</th>
<th>BFP Value</th>
<th>DFP Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) ‘3F800000’</td>
<td>0.03125</td>
<td>1.0</td>
<td>7.0000000E25</td>
</tr>
<tr>
<td>(b) ‘41100000’</td>
<td>1.0</td>
<td>9.0</td>
<td>0</td>
</tr>
<tr>
<td>(c) ‘42640000’</td>
<td>100.0</td>
<td>57.0</td>
<td>2.0000000E70</td>
</tr>
<tr>
<td>(d) ‘7FFFFFFF’</td>
<td>MaxReal</td>
<td>QNaN</td>
<td>SNaN</td>
</tr>
</tbody>
</table>

Be very careful when mixing data types; remember that most bit patterns are valid in FP instructions.

Section 36.5

36.5.1. All the constants are represented by X40100001’.

36.5.2. The result is 0.625000596...E−1.

Section 36.6

36.6.1. Any finite unnormalized value A such as X00010000’ with characteristic zero will fail. If exponent underflow
is masked off the result is X00000000’, and if exponent underflow occurs the result is X7F100000’. Neither result
equals the original value of A.

36.6.2. If A is a QNaN or SNaN, the result will be “Not any Number”. (You might want to claim that the result is the
value you started with; but remember that the “law” stated in Table 389 applies only to numbers!)

36.6.3. Several unnormalized values of A show this behavior:
36.6.4. \( \text{HexMax} = 16 + 63 - \text{ulp} \), and \( \text{HexMin} = 16 - 65 \), so their product is approximately \( 16^{2} \), or \( 1/64 \).

**Section 36.7**

36.7.1. There are 127 nonzero characteristic values and two sign values, so you can create 254 pseudo-zeros in each representation.

36.7.2. Because the characteristics differ by 1, the first operand fraction will be shifted right by one digit position. That digit will be shifted left from the guard digit position, so the result will be the same as the first operand.

**Section 36.8**

36.8.1. The formats would look like this:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>( s )</td>
<td>2’s complement fraction</td>
<td>expon.</td>
<td>Prime 550</td>
</tr>
<tr>
<td>1</td>
<td>23</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>( s )</td>
<td>expon.</td>
<td>unsigned integer</td>
<td>CDC 6600</td>
</tr>
<tr>
<td>1</td>
<td>48</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>( s )</td>
<td>expon.</td>
<td>unsigned fraction</td>
<td>Cray-2</td>
</tr>
<tr>
<td>1</td>
<td>48</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

36.8.2. Consider adding a tiny unnormalized value to zero:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>( \text{LZER} )</td>
<td>0</td>
<td>Set FPRO to zero</td>
<td></td>
</tr>
<tr>
<td>( \text{AE} )</td>
<td>0, ( \times'00000003' )</td>
<td>Add a tiny unnormalized value</td>
<td></td>
</tr>
</tbody>
</table>

If program interruptions are enabled the result is an exponent underflow, and the result in FPRO is \( X'7B300000' \) (not exactly equal to \( X'00000003' \)). If disabled, the result is zero.

36.8.3. Consider \( z = X'44200000' \) and \( y = X'47000200' \). These two values compare equal, so \( z = y \). Now, if \( t = X'42000010' \), we find that \( z-t = X'441FFFFF' \) and \( y-t = X'47000200' \), so \( z-t \neq y-t \).

36.8.4. The Burroughs 6700 used a 48-bit word; its short floating-point representation had one unused high-order bit followed by the significand sign bit \( S \) and the exponent sign bit \( s \):

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>( S )</td>
<td>( s )</td>
<td>expon.</td>
<td>unsigned integer</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>39</td>
<td></td>
</tr>
</tbody>
</table>

36.8.5. The values are shown in this table:

<table>
<thead>
<tr>
<th>Hex</th>
<th>Char</th>
<th>Integer</th>
<th>BFP</th>
<th>HFP</th>
<th>DFP</th>
</tr>
</thead>
<tbody>
<tr>
<td>( X'81818181' )</td>
<td>C'aaa'</td>
<td>-2122219135</td>
<td>-4.7572945E-38</td>
<td>-6.9902216E-77</td>
<td>-6.0301E-73</td>
</tr>
<tr>
<td>( X'A3A3A3A3' )</td>
<td>C'tttt'</td>
<td>-1549556829</td>
<td>-1.774180E-17</td>
<td>-7.694278E-36</td>
<td>-1.68723E+26</td>
</tr>
<tr>
<td>( X'F5F5F5F5' )</td>
<td>C'5555'</td>
<td>-168430091</td>
<td>-6.235846E+32</td>
<td>-6.323899E+63</td>
<td>-9.873375E+64</td>
</tr>
<tr>
<td>( X'FEEFEFEFE' )</td>
<td>C'0000'</td>
<td>-16843010</td>
<td>-1.694740E+38</td>
<td>-4.505390E+74</td>
<td>-5Nan</td>
</tr>
</tbody>
</table>

* Words were actually 52 bits long: the four high-order bits were parity and three reserved “tag” bits. Application programmers saw only the 48 bits.
Programming Problem 36.3.

Long BFP values have greater exponent range than long HFP values, and also support special values; these cases must be detected. Because long BFP operands are 53 bits long while HFP operands are 56 bits long, no rounding is required.
Suggested Solutions to Selected Exercises and Programming Problems
37.1.10. Consider these instructions:

ShftRt4A STM 1,2,ShftJG1    Save GR1 through GR2
    LM 1,2,0(1)                Get argument addresses
    L 0,0(0,1)                 Get first argument in GR0
    L 1,0(0,2)                 Get second argument in GR1
    LTR 1,1                    Test sign of shift amount
    JNM ShftOK                Branch if non-negative
    SR 1,1                    Set shift amount to zero
    ShftOK SRL 0,2(1)         Shift by required amount
    LM 1,2,ShftJG1            Restore GR1-GR2
    BR 14                     Return to caller

ShftJG1 DS 2F              Save area for 2 registers

37.1.11.

ShftRt4B ST 1,ShftJG2      Save GR1
    L 1,0(0,1)                 Get first argument address
    L 0,0(0,1)                 Get first argument in GR0
    L 1,ShftJG2                Restore GR1
    L 1,4(0,1)                 Get second argument address
    L 1,0(0,1)                 Get second argument in GR1
    LTR 1,1                    Test sign of shift amount
    JNM ShftOK                Branch if non-negative
    SR 1,1                    Set shift amount to zero
    ShftOK SRL 0,2(1)         Shift by required amount
    L 1,ShftJG2                Restore GR1
    BR 14                     Return to caller

ShftJG2 DS F               Save area for 1 register

This solution is probably less efficient than that in Exercise 37.1.10 because (a) it has more instructions, and (b) it must load GR1 from the save area twice.

Section 37.3

37.3.1.

ShftRt STM 1,3,SaveRegs    Save working registers
    LM 1,3,0(1)                Get all argument addresses
    L 1,0,(1)                 Get word to be shifted
    L 2,0,(2)                 Get shift count N
    LTR 2,2                   Check sign of shift count
    JNM ShftOK                Skip next instruction if nonnegative
    SR 2,2                    Set count to zero if negative
    ShftOK SRL 1,2(2)         Shift 2+N places
    ST 1,0,(3)                Store result at specified place
    LM 1,3,SaveRegs           Restore caller's registers
    BR 14                     And return

SaveRegs DS 3F             Save area for registers GR1-GR3

37.3.2. If more than one element has the same maximum value, which will appear in GR0 on return?

AMax STM 1,2,Saver         Save GR1, GR2
    LM 1,2,0(1)                Get array and length addresses
    L 0,0,(1)                 Load 1st element of array
    L 2,0,(2)                 Load length of array
    CHI 2,1                   See if array is short (1 element)
    JNH Exit                  Return if 1 (or fewer) items
    Comp C 0,0,(1)            Compare current max to an element
    JNL Skip                  Skip if max is still a max
    L 0,0,(1)                 Else element is the new max
    Skip LA 1,4,(1)           Step to next element of array
    JCT 2,Comp                And try again
    Exit LM 1,2,Saver         Restore registers
    BR 14                     And return

Saver DS 2F                 Save area for GR1, GR2

37.3.4. This solution counts the bits using logical addition.
NBits  Csect ,  Count 1-bits in a byte string
Using *,15  Local base register
STM  0,4,LocalSav  Save GR0-GR4 locally
LM  1,3,0(1)  Get argument addresses
XR  4,4  Initialize bit count
L  2,0(2)  Get string length
LTR  2,2  Check length
JNP  Store  If not positive, return zero
LR  0,4  Clear GR0 for byte insertion
Loop  ICM  0,'B'1000',0(1)  Get a byte from the string
Test  ALR  0,0  Add GR0 to itself, check for carry
JZ  Next  If c(GR0)=0, no 1-bits in the byte
JM  Test  CC=1 means no carry, bit was zero
LA  4,1(4)  Increment the count
JO  Test  Repeat for next 1-bit
Next  LA  1,1(1)  Step to next byte
JCT  2,Loop  Count down, get another byte if any
Store  ST  4,0,(3)  Store bit count
LM  0,4,LocalSav  Restore registers
BR  14  Return to caller
LocalSav  DS  5F  Save area for GR0-GR4
End

37.3.5. Suppose you wrote

    ORG *,8,-2

If the LC is already aligned on a doubleword boundary, it would remain at the same location; the “offset” operand -2
would then subtract 2 from the LC, meaning that the Y-con might overlay the last 2 bytes of whatever preceded the
doubleword boundary.

Section 37.4

37.4.1. The low-order bit of the character A is 1; but the back chain address of a standard save area points to a word
address, so its two low-order bits would be zeros.

37.4.2. If the caller had entered your routine in 64-bit addressing mode, he would have provided a Format-4 save area.
Because your routine was called in 24- or 31-bit addressing mode, the return address doesn’t depend on the high half
of GG14.

Section 37.5

37.5.1. In the early days, only BALR and BAL were available; BASR and BAS were introduced later. The BALR
and BAL instructions put the right half of the PSW into the R1 register. In 24-bit addressing mode, the leftmost byte of
the register always contains the Instruction Length Code (2 bits), the Condition Code (2 bits) and the Program Mask
(and may therefore be slower than BASR and BAS). The rightmost 6 bits of that byte could be all 1-bits, but because
BALR and BAL are respectively 2-byte and 4-byte instructions, the ILC will never be B’11’.

When 31-bit addressing mode was introduced, executing

    MVI 12(13),X'FF'

would have destroyed the high-order 7 bits of the return address in the save area (after GR14 had been loaded from
the save area!), making it difficult to know where the call came from. This was solved by setting the low-order bit of the
return address to 1.

Be careful, though: you should set a return flag only if the calling and called routines both execute in 24- or 31-bit
addressing mode.

37.5.2. It does conform to standard linkage conventions: GR13 contains the address of a save area; GR14 contains the
return address; GR15 contains the entry point address of the subroutine; and GR1 contains the address of the argument
list. Also, the calling-point identifier is at the return address.

This isn’t standard coding practice, though.

37.5.3. The instructions could be revised like this:
BASR 14,15  Link to subroutine as usual
LTR 15,15  Test sign of return code
JM Set12  If negative, set to 12
CHI 15,12  Compare to 12
JH Set12  If greater, set to 12
TMLL 15,'X3'  Test two low-order bits of retcode
JZ Proceed  If 0, multiple of 4; OK to proceed
AHF 15,'X3'  Force carry to round to next value
NILF 15,'FFFFFFFC'  Set 2 low-order bits of GR15 to zero
J  Proceed  OK to branch to return code handler
JList LA 15,12  Return code forced to 12
Proceed LARL 14,JList  Address of branch list
AR 14,15  Add return code to list address
BR 14  One-hop branch to correct routine
JList J Ret000  Return code = 0
J Ret004  Return code = 4
J Ret008  Return code = 8
J Ret012  Return code = 12
- - -  etc...

All these instructions need no base register.

37.5.7. Assuming the identifier isn’t a negative number, and you write the statement in the form

DC  X’4700nnnn’  Max value is X’7FFF’

then its maximum value is 2\(^{15} - 1\) = 32767. But if you write it in the form

NOP  X’nnnn’  Max value is X’FFF’

then its maximum value is 2\(^{12} - 1\) = 4095.

37.5.8. It works correctly. The MVC instruction puts the return code in the caller’s save area where GR15 was originally saved.

37.5.9. Consider these instructions: they use a based branch B, but make no reference to a base-displacement addressing halfword that was assigned by the Assembler.

37.5.10.

37.5.11. The claim is true. Suppose the value in GR15 has nonzero bits a and b in the rightmost two bit positions. Then the ORed expression in the internal register (when the target instruction is built by the CPU) will be

CLI  *+1,'B1111111ab’

where *+1 is the address of the unmodified instruction. Any nonzero value of bits a or b will cause an inequality.

While an ingenious use of CLI and EX, this technique should not be used because it makes a data reference to the instruction stream. It’s better to use

37.6. Section 37.6

37.6.1. Once the true entry address of the called program is in GR15, we can use it to reference its entry-point ID. This shows possible modifications to Figure 515 on page 771:
37.6.2. In this case, we must work back up the save area chain to the caller of this caller’s routine, retrieve its entry point address, and use that to find this routine’s entry-point ID. This shows possible modifications to Figure 515 on page 771:

```
STM 14,2,12(13) Save GR14-GR2
L 15,0,(14) Load true entry point address
XR 2,2 Clear GR2 for EPID length
IC 2,5,(14) Get EPID length
LA 1,6,(14) Address of EPID string
* - - - Process the EPID somehow
LM 0,2,20(13) Restore GR0-GR2
L 14,12,(13) Restore caller’s return address
BR 15 Branch to chosen subroutine
```

37.6.3. It won’t matter, because the c(GR13) are unchanged; but it will waste a few CPU cycles.

37.6.4. You might modify the interface this way:

```
BAS 14,Caller Link to caller routine
NOP ShftRt# Pass # of subroutine to be called

Caller AH 15,2(0,14) Add subroutine number to GR15
L 15,AdrTbl Address in GR15 was modified!
BR 15 Enter the called routine
AdrTbl DC A(ShftRt) Actual address of ShftRt
DC A(Print) Actual address of Print
------ Etc., for other assisted routines
```

When control is returned to the instruction addressed by GR14, the NOP will pass control to the following instruction. You would normally write the linkage routine to provide much more in the way of optional tracing and diagnostic information. The examples given here simply pass control directly to the (indirectly) called program.

37.6.5. The program using assisted linkage to call the ShftRt subroutine could use instructions like these:

```
LHI 0,Print# Put subroutine number in GR0
BAS 14,Caller Link to ‘Caller’ routine
------ Return here from called routine
```

The Caller routine could be revised like this:

```
LARL 15,AdrTbl Address of zero-th target routine
ALR 15,0 Add subroutine number to GR15
L 15,0(0,15) Load correct entry point address
BR 15 Enter called routine
AdrTbl DC A(ShftRt) Address of ShftRt
DC A(Print) Address of Print
------ ...etc...
```

Section 37.7

37.7.1. Because GR14 and GR15 were not modified, and the the result is returned in GR0, we need to restore only GR1-GR3:
ShftRt5 STM 14,3,12(13) Save registers in caller's save area
LM 2,3,0(1) Get argument addresses in GR2, GR3
L 0,0(0,2) Get 1st (logical) argument in GR0
L 1,0(0,3) Get 2nd (integer) argument in GR1
SRL 0,2 Shift 2 places
LTR 1,1 Test second argument
JNP Ret Return if it's not positive
SRL 0,0(1) Otherwise shift N places
Ret LM 1,3,24(13) Restore modified registers
BR 14 And return

37.7.2. This solution needs to save and restore only GR1; the initial value passed by the caller in GR0 is sometimes called the seed of the random number sequence.

RanInt CSect ,
Using *,15 Establish addressability
ST 1,SaveR1 Save GR1
LR 1,0 Move XOld to GR1
M 0,A Multiply by A
D 0,P Divide Xold*16807 by P
L 1,SaveR1 Restore GR1
BR 14 Return with XNew in GR0
A DC F'16807' Multiplier
P DC F'2147483647' Prime P = 2**31-1
SaveR1 DS F Save area for GR1
End , It's a complete program

This is a simple example of a very large class of “multiplicative congruential” generators. It has some weaknesses and shouldn't be used for serious simulations.

Programming Problem 37.1.

The internal subroutine is named Print. This (inefficient) solution first prints the even prime 2, and then tests each successive odd number by dividing it by increasing odd values and rejecting the test value if the remainder is zero. Otherwise, the test divisor is squared and compared to the test number; if the square is larger, the test number is prime.

P37_1 Start 0
BASE 15,0 Establish a base register
Using *,15 Provide addressability
LA 1,2 Starting even prime
JAS 14,Print Print the only even prime
LA 11,999 Last value to test
LA 10,2 Increment 2 for next odd number
LA 1,3 Starting odd-number test value
Outer LA 2,3 Trial divisor starts at 3
Inner LR 5,2 Set up multiply
MR 4,5 Square divisor
CR 5,1 Compare to test number
JH Prime Branch if the test number is a prime
LR 5,1 Copy test number
SR 4,4 Clear high order register GR4
DR 4,2 Divide
LTR 4,4 Test remainder
JZ NotPrime Branch if zero
AR 2,10 Increment trial divisor by 2
J Inner And try another test value
Prime JAS 14,Print Print the prime value
* NotPrime JXLE 1,10,Outer Increment by 2, test, and loop
PrintOut *,Header=NO Stop
* Print CVD 1,Space Convert to packed decimal
MVC Line,Pattern
ED Line,Space+6 Maximum of 3 digits in result
PrintLin Line,L'Line Print the line
BR 14 Return to caller
Line DC CLS' ' Output line
The initial and final output lines look like this:

```
2
3
5
7
-
-
983
991
997
```

Programming Problem 37.2.

This little subroutine will do the job very simply:

```
PD2CH CSect ,
**
* Convert 6-byte packed decimal numbers to numeric characters.
* Calling sequence:
* CALL PD2CH(packed,character)
* where
* packed is a 6-byte packed decimal value
* character is a 12-byte area to hold the result characters
**
USING *,15 Local base register
STM 14,2,12(13) Save R14-R2
LM 1,2,0(1) Get argument addresses
MVC 0(12,2),Pattern Move pattern to output area
ED 0(12,2),0(1) Edit the input value
LM 1,2,24(13) Restore R1,R2
BR 14
```

Programming Problem 37.4.

This subroutine uses registers 0-4, and restores only registers 2-4.

```
GCD CSect ,
**
* GCD, Greatest-Common-Divisor routine: returns the GCD of two 32-bit *
* positive integers in GR0 or in memory. Calling sequence, using *
* standard linkage conventions:
* Call GCD(I,J) returns the result in GR0. *
* Call GCD(I,J,K) returns the result at K. *
**
STM 2,4,28(13) Save working registers
LM 2,4,0(1) Addresses of I, J, and K
L 0,0(.3) Argument J in GR0
L 2,0(.2) Argument I in GR2
GCDA LR 1,2 Copy I to GR1 as first dividend
LR 2,0 Copy J to GR1 as first divisor
SR 0,0 Clear high-order register
DR 0,2 Divide I by J
CHI 0,1 Is remainder 1?
JH GCDA If greater than 1, try again
JE GCDB Branch if exactly 1
LR 0,2 If zero, last divisor is the GCD
GCDB LTR 3,3 Check if J was the last argument
JM GCDRet If so, return with GCD in GR0
ST 0,0(.4) Store GCD at K
GCDRet LM 2,4,28(13) Restore registers
```
BR 14 Return
Section 38 Solutions

Section 38.1

38.1.1. At the point where the Assembler encounters the USING statements, the value of * is 12 larger than the value of BaseLoc. (Each LAY instruction is 6 bytes long.)

38.1.2. Because no instructions containing implied addresses appear between the BASR and the USINGs.

38.1.3. This might work if all instructions in the range of the USING statement use 20-bit signed displacements, for which addressability would be available over most of the program. But if statements like

```
MVC A,B
A DS CL5
B DC C'Bytes'
```

appeared anywhere in the first 500K bytes of the program, neither operand of the MVC instruction would be addressable.

38.1.4. The Assembler often places literals at the far end of the program, so they might not be addressable. But even if the literal is addressable with a valid base register, there's still an error: the wrong base address is assumed. (See the solution to Exercise 38.1.5.)

38.1.5. Now, at least, the literal is correctly addressable. Registers 3, 4, and 5 will therefore contain the addresses BEGIN+2, BEGIN+4096, and BEGIN+8192. However, the USING promises that they contain BEGIN+2, BEGIN+4096, and BEGIN+8192. Thus, parts of the program will work (those using GR3 as a base register), and other parts mysteriously won't.

38.1.6. This has the same difficulty as in Exercise 38.1.5. The programmer thought he'd get rid of the problems in Exercises 38.1.4 and 38.1.5 by getting rid of the literal.

38.1.7. For the LA 2,Origin statement to work correctly, the location named Origin must be addressable by some other register. (And if it is, why did we need to use R2 as a base register in the first place?)

38.1.8. There would be no base register available to resolve the implied address Addrs in the LM instruction into base-displacement form. The Assembler would indicate an addressability error for that statement. Even if Addrs is addressable, all the values promised in the USING statement would then be incorrect.

38.1.9. The Location Counter may not be on an even boundary before the entry point:

```
BigProg Start 0
 Entry SubRtn
 DC F'9,33' Two aligned constants
 DC C'Trouble' Odd-length constant
 Using *,15 Value of * is now odd!
 SubRtn ST 2,SaveR2 An alignment byte precedes this!
```

The USING base address will be too small by 1.

38.1.10. The second USING specifies base addresses that are too large by 4, the length of the LM instruction.

38.1.11.

- The second instruction is BAS, not BASR; it will branch to memory address zero!
- The address promised by the USING statement for the contents of GR3 is First+4100 (the BAS is four bytes long) so that even if the first error is corrected, the wrong address will be placed in GR3. The generated LA instruction is 41BOAFFC.

38.1.12. If the literal pool containing *=H'4096' lies at the end of the assembly (as is often the case), the literal may not be addressable. Even if it is addressable, the Assembler will assume GR12 can be used as a base register for the AH instruction, before GR12 (at execution time) contains the correct value. Judicious use of LTORG and USING will avoid the difficulty.

38.1.13.

- The USING statement makes no reference to GR10;
- as written, the USING specifies an incorrect value for R11. Even if the USING statement is corrected to read USING *,10,11 we have another error, because
• The USING statement promises that Prog+4098 will be in GR11, not Prog+4096.

38.1.14 Both LA instructions refer to the START statement; they would be assembled as LA 11,4094,(10) and LA 12,4094,(11) which could generate entertaining (or horrifying) results as the program was executed.

38.1.15. You can’t define a relocatable symbol on a USING statement! The name-field symbol would be treated as a qualifier on a Labeled USING statement. (There are several other errors that you might want to find, but this one is enough to start with.)

38.1.16. The LA instruction would be assembled as LA 11,0,(11) because the USING statement promises that the address of *+4096 is already in GR11 when the LA is encountered.

38.1.17. The address placed in GR10 by the BASR is Here+2, not Here. Thus all implied addresses will be incorrect when the program is executed. Even if the USING statement is corrected to read USING Here+2,10,11 then the LA instruction cannot be correct.

38.1.18. This is essentially the same as in Exercise 38.1.16, but with * changed to Here. GR10 will still contain an undefined value.

38.1.19. By the time the Assembler arrives at the second USING, the LC has increased by 8, so we must write USING *+4088,11 instead.

38.1.20. There’s nothing wrong. Base-displacement addresses with GR11 as base may look peculiar, having many odd displacements.

38.1.21. Yes, so long as HW4096 is (1) on a halfword boundary, as assumed, and (2) is less than 4094 bytes distant from BasLoc.

38.1.22. If the DC operand was H′4000′, the USING statement would have to be replaced by the three statements

Using *,10
Using *+4000,11
Using *+8000,12

If the operand was H′5000′, a similar set of statements would be needed. However, there would be 904-byte portions of the program that could not be addressed, since the end of the range of GR10’s USING statement does not overlap the start of GR11’s, and similarly for GR11 and GR12.

38.1.23. First, “AH 11,HW4096” is assembled to X′4AB0B232′, and “AH 12,HW4096” is assembled to X′4AC0B232′. Second, GR10 would contain X′00020002′, and GR11 and GR12 would contain whatever they contained on entry to PROG plus some unknown halfword retrieved from an offset X′232′ beyond whatever address was in GR11 (which might even have been odd).

When the constant at HW4096 has value X′2234′, the two AH instructions are assembled as X′4AB0C232′ and X′4AC0C232′. When executed, GR12 will be used as a base register to find the mystery halfword to be added to GR11 and GR12. If the symbol HW4096 has value X′3234′, it is not addressable at all! Thus, if the code in Figure 522 on page 778 is to work, the value of symbol HW4096 must be X′1000′ or less. (Why not “X′FFE′ or less”?)

38.1.24. Replace the two AH reg,HW4096 instructions with AHI reg,4096 instructions.

Section 38.2

38.2.1. The address in GR15 is the address of the entry point ShftRt, not the address of the instruction following it. Remember that BASR sets the first operand register to contain the address of the instruction following the BASR!

38.2.2. Remember that the branch address is formed before the branch instruction is executed. Then, the address of the instruction following the BASR (the ST 0,Result) is put in the IA portion of the PSW, so the next instruction is fetched from the branch address. The address of the target instruction (at ShftRt) will initially be in GR14; after executing the BASR, the next instruction fetched is at ShftRt; GR14 contains the return address of the ST instruction.

38.2.3. Because the value of * will be wrong; it will be the address of the instruction following the BASR, not the address of the entry point! If the ShftRt subroutine in Figure 526 on page 784 contained any instructions with implied addresses, they would not be resolved relative to the start of the subroutine!

The technique in Figure 526 applies only to subroutines without implied addresses, or that establish their own (local) base registers.

* To be fair, machine language looks peculiar anyway.
38.2.4. LGFI will set all 64 bits of GG5, whereas L leaves the high-order 32 bits unchanged. Also, LGFI will be be faster.

**Section 38.4**

38.4.1. Two instances of the literal \( \text{F}'1' \) will be generated, both at the end of section AAA, the first control section. The reference to the literal in section BBB will fail with an addressability error.

38.4.2. Two instances of the literal \( \text{F}'1' \) will be generated, each following the LTORG instruction at the end of each section.

38.4.3. The END statement ends the assembly, so a DROP isn’t needed. But it’s *always* a good practice to insert the DROP, because someone else may add more instructions or data to your program.

38.4.4. For this simple little ShftRt subroutine, no implied addresses are used (the JNM instruction is a *relative* branch instruction), so no problems will (or should!) occur. But this technique isn’t recommended in general.

38.4.5. Suppose someone decides to reorganize the program, and add some more instructions to the ShftRt subroutine that require based addresses. It’s worth retaining the USING statement in case someone later adds instructions to the routine that will require base-displacement addressing.

38.4.6. The values of the symbols are

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>X'001240'</td>
</tr>
<tr>
<td>B</td>
<td>X'001248'</td>
</tr>
<tr>
<td>C</td>
<td>X'00124C'</td>
</tr>
<tr>
<td>D</td>
<td>X'00125C'</td>
</tr>
<tr>
<td>N</td>
<td>X'000005'</td>
</tr>
</tbody>
</table>

38.4.7. After the 5 (N) bytes at A are reserved, the LC value is X'00004B'. Because the next statement defines a fullword area of memory, the LC is rounded up to the next fullword boundary, or X'00004C'.

38.4.9. The values of the four symbols are:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>X'002000'</td>
</tr>
<tr>
<td>B</td>
<td>X'002008'</td>
</tr>
<tr>
<td>C</td>
<td>X'002004'</td>
</tr>
<tr>
<td>D</td>
<td>X'00200C'</td>
</tr>
</tbody>
</table>

38.4.10. Consider the terms in the duplication factor expression:

- \((\ast-\text{Prog})\) is the length of the current section.
- \((\ast-\text{Prog})+4095\): if the section length is not an exact multiple of 4096, this term will have a value exceeding a multiple of 4096.
- \(((\ast-\text{Prog})+4095)/4096\): gives the smallest number of 4096-byte “blocks” into which the current section will fit.
- \(-((\ast-\text{Prog})\mod 4096)\) subtracts the number of bytes already allocated in the section, leaving the number of bytes in the section needed to extend the section to the next 4096-byte boundary.
- The resulting duplication factor generates the desired number of X'00' bytes (any other constant value could be used).

You should do the above arithmetic steps with LC values like \text{Prog}+1, \text{Prog}+4095, \text{Prog}+4096, and \text{Prog}+4097.

38.4.11. The constants will be at these locations:

- Csect A: X'01' at location 0, X'06' at location 1.
- Csect B: X'02,04' at locations X'8-9'.
- Csect C: X'03,05,07' at locations X'10-12'.

38.4.12. The values of the symbols are:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>X'000003'</td>
</tr>
<tr>
<td>B</td>
<td>X'000005'</td>
</tr>
<tr>
<td>C</td>
<td>X'000001'</td>
</tr>
<tr>
<td>D</td>
<td>X'000004'</td>
</tr>
<tr>
<td>E</td>
<td>X'000006'</td>
</tr>
<tr>
<td>F</td>
<td>X'000002'</td>
</tr>
<tr>
<td>H</td>
<td>X'000000'</td>
</tr>
</tbody>
</table>

38.4.13. The values of the symbols are given in the Loc column.
38.4.14. When the Assembler processes your END statement, it inserts two invisible statements:

<first> CSECT,

LTORG

where <first> is the name of the first executable control statement.

Section 38.5

38.5.1. The program in Figure 566 on page 811 assembled with the NOTHREAD Assembler option produces this External Symbol Dictionary listing. The only changes from Figure 567 on page 811 are that each control section after the first has starting location zero, and the address of the ENTRY symbol ASECENT has been adjusted relative to its owning section’s zero start address.

<table>
<thead>
<tr>
<th>Symbol Type</th>
<th>Id</th>
<th>Address</th>
<th>Length</th>
<th>Owner Id</th>
<th>Flags</th>
<th>Alias-of</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAIN</td>
<td>SD</td>
<td>00000001</td>
<td>00002400</td>
<td>000000C0</td>
<td>00</td>
<td></td>
</tr>
<tr>
<td>SOMESYM</td>
<td>ER</td>
<td>00000002</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASECTION</td>
<td>SD</td>
<td>00000003</td>
<td>00000000</td>
<td>0000010C</td>
<td>00</td>
<td></td>
</tr>
<tr>
<td>ASECENT</td>
<td>LD</td>
<td>00000089</td>
<td>00000000</td>
<td>00000095</td>
<td>08</td>
<td></td>
</tr>
<tr>
<td>RSECTION</td>
<td>SD</td>
<td>00000004</td>
<td>00000000</td>
<td>00000095</td>
<td>00</td>
<td></td>
</tr>
<tr>
<td>COMSECT</td>
<td>CM</td>
<td>00000005</td>
<td>00000000</td>
<td>00000320</td>
<td>00</td>
<td></td>
</tr>
<tr>
<td>ADUMMY</td>
<td>XD</td>
<td>00000006</td>
<td>00000000</td>
<td>0000002C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

38.5.2. START, CSECT, and RSECT define executable control sections, and COM and DSECT define reference control sections. Only DSECT does not declare space in the object program.

38.5.3. As noted in the statement of the exercise, this type of coding is strongly discouraged!

Shifter Csect,
ENTRY ShftRt,Shflft Declare two entry points
Using *,15 Set by caller of ShftRt
ShftRt MVI ShftOp,X’88’ Set SRL opcode
B ShftAA Branch to entry code
Using *,15 Set by caller of Shflft
Shflft MVI ShftOp,X’89’ Set SLL opcode
ShftAA LTR 1,1 Check shift amount
JNM ShftOp Skip if not minus
SR 1,1 Otherwise set to zero
ShftOp SLL 0,2(1) *** Opcode modified to be SLL or SRL
BR 14 Return
End ,

Note that the instructions starting with ShftAA do not need a base address, so it doesn’t matter that the Shifter program can be entered with two different addresses in GR15.
38.5.4. First, some specialized instructions require that their operands be quadword aligned. Second, some instruction sequences will operate more efficiently if their operands are aligned on boundaries that lie within cache lines.

38.5.5. They can be useful for small test programs. Otherwise they mainly exist to let the Assembler generate usable object code in case someone forgot to start a program with a named control section.

38.5.6. You’ll generate two unnamed control sections. What your linker does with them should be interesting, depending on how and whether blank section names are also distinguished by type.

38.5.7. You can reference the blank control section by adding an ENTRY statement for the first byte, as in

<table>
<thead>
<tr>
<th>Csect</th>
<th>Unnamed control section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entry BlankCS</td>
<td>Entry name</td>
</tr>
<tr>
<td>BlankCS DSXL23</td>
<td></td>
</tr>
</tbody>
</table>

but you can’t define an entry point in a common control section.

38.5.8. If we assume that the address of ShfLft is in GR15 on entry at ShfLft, the instruction named ShftRt is not addressable. However, because there is only a single USING statement, the LA is equivalent to simply LA 15,0(15).

To correct the program, change LA 15,ShftRt to AHI 15,ShftRt-ShfLft.

38.5.9. Without the third USING statement, displacements will be calculated by the Assembler relative to the address of ShfLft as a base, so calls to ShfLft will work correctly.

When ShftRt is called, only the first two instructions will be executed with the correct base register. Control will be correctly transferred to ShftAA, and the LTR will be executed. Now, if the number in GR1 is not negative, the branch condition will be met, and the BNM instruction will be executed. However, its addressing halfword is X'F00C'; because GR15 contains the address of ShftRt, the branch address is actually the address of ShftAA! Thus if c(R1)≥0, the program loops on the two instructions at ShftAA.

If c(R1)<0, the BNM instruction is not executed, and control passes to ShftOK. The bit tested will actually be at ShfFlag-8, which is the first byte of the “BR 14” instruction! This byte contains X’07’, so the tested bit will be one and the branch condition for the following BZ will not be met. The operand will be shifted left instead of right!

This exercise shows why you must be careful in establishing correct USING statements in routines with multiple entry points.

38.5.10.

<table>
<thead>
<tr>
<th>BYTE</th>
<th>Start 0 Conversion subroutine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using</td>
<td>*,15 Caller provides GR15 base register</td>
</tr>
<tr>
<td>STM</td>
<td>14,2,12(13) Save GR14-GR2</td>
</tr>
<tr>
<td>LM</td>
<td>1,2,0(1) Load pointers to the two arguments</td>
</tr>
<tr>
<td>ICM</td>
<td>1,B’1000’,0(1) Insert the byte argument</td>
</tr>
<tr>
<td>LA</td>
<td>0,8 Initialize bit counter</td>
</tr>
<tr>
<td>MVC</td>
<td>0(8,2),ZChars Move zero-characters to argument 2</td>
</tr>
<tr>
<td>Loop</td>
<td>LTR 1,1 Test sign bit of GR1</td>
</tr>
<tr>
<td>JNM</td>
<td>Next Branch if it’s zero</td>
</tr>
<tr>
<td>OI</td>
<td>0(2),X’01′ Make the output character a ‘1’</td>
</tr>
<tr>
<td>Next</td>
<td>LA 2,1,(2) Increment output-character address</td>
</tr>
<tr>
<td>ALR</td>
<td>1,1 Shift the byte left by 1 bit</td>
</tr>
<tr>
<td>JCT</td>
<td>0,Loop Repeat for all 8 bits</td>
</tr>
<tr>
<td>LM</td>
<td>0,2,20(13) Restore GR0-GR2</td>
</tr>
<tr>
<td>BR</td>
<td>14 Return to caller</td>
</tr>
<tr>
<td>ZChars</td>
<td>DC 8C’0’ Eight zero characters</td>
</tr>
<tr>
<td>End</td>
<td></td>
</tr>
</tbody>
</table>

38.5.11. Consider this subroutine: no implicit addresses are used, so there’s no need for the normal Using *,15 statement.
SIGNUM  Start 0  Start of SIGN control section
STM  14,12(13)  Save registers
SR   0,0      Initialize result
L    1,0,(1) Get address of the argument
LT   1,0,(1) Get the integer argument, set CC
L    1,24(13) Restore GR1 without changing CC
BZR  14     Return directly if argument = 0
BCTR 0,0 Make c(GR0) = -1 (no change to CC)
BMR  14     And return
LCR  0,0 Make c(GR0) = +1
BR   14     Return to caller
End

Note that the BCTR instruction can’t be changed to AHI 0,-1 because AHI changes the condition code.

38.5.12. Because Data is an external symbol, and is not addressable.

38.5.13. This subroutine assumes that the MemDump subroutine uses a local register save area so that it won’t modify the contents of the caller’s save area (which may be in an area to be dumped).

MemDump  Start 0  Memory-dump subroutine
Using *,15 Establish addressability
STM  1,5,Save Save modified registers
LM   1,2,0(14) Load start and end addresses

MainLoop MVC Line,CC Set carriage control character
ST   1,Loc Store starting address for this line
MVC Loc+4(16),0(1) Move 16 bytes for unpacking/formatting
LA   5,Loc Initialize UNPK source address
LA   3,5 Format 5 words into printable hex
LA   4,Line Initialize output line position

LineLoop UNPK 0(9,4),0(5,5) Unpack a word
TR 0(8,4),TRTab Translate to EBCDIC
MVI 8(4),’ ‘ Blank out the swap byte
LA 5,4,(5) Increment input address by 4
LA 4,9(4) Increment output address by 9 (space!)
JCT 3,LineLoop Finish one line of output
PrintLin CC,1+L’Line Print the line
LA 1,16(1) Increment starting address by 16
CR 1,2 Compare to end address
JNH MainLoop Repeat for another line
LM 1,5,Save
B 8,(14) Return to caller

Save DS 5F Save area
Loc DS 5F Work area for address, dump words
CC DC C’ ‘ Blank carriage control character
Line DS CL4S Output line
DS X Padding byte for UNPK byte swap
TRTab DC 240C’,C0123456789ABCDEF’ Translate table
End

38.5.15. This can be done in many ways; first, we illustrate a technique used before z/Architecture instructions were available.

I2O  Csect ,  Word integer to long hex float
Using *,15 Assume standard entry-address reg
ST 0,Float+4 Store integer value
XI Float+4,X’80’ Invert sign bit only
LD 0,Float Pick up integer and exponent
SD 0,Const Subtract magic constant
BR 14 Return

Const DC DS6’2147483648’ Scaled 2**31
Float DC X’4E’,7X’0’ Temporary with hex exponent 14

This solution uses z/Architecture instructions:
I2D Csect , Word integer to long hex float
Using *,15 Assume standard entry-address reg
LGFR 0,0 Extend 32-bit operand to 64 bits
LDGR 0,0 Copy GGO to FPR0
LNDR 0,0 Invert sign bit of FPR0
SD 0,Const Subtract magic constant
BR 14 Return
Const DC DS6′2147483648′ Scaled 2**31

38.5.18. The SUB operand of the BAS instruction can’t be resolved at assembly time. However, changing BAS to BRAS or BRASL will resolve correctly at assembly time; whether the external reference can be resolved at link time depends on the availability of SUB to the linker, and on how widely separated are the calling and called routines.

38.5.19.

Section 38.6

38.6.2. Both generate an ER entry for X in the ESD record, but the V-type constant generates a different RLD entry that lets the Linker assign an indirect resolution to X.

Section 38.7.

38.7.1. An ENTRY name always has the same “owning” ESDID as its containing control section, but does not have an ESDID of its own. (That’s why the * is attached to the ESDID.)

38.7.2. This can be done by using the fact that the owner of a COM section can refer to its internal names as ordinary symbols. Thus, the owner of the MyCom section can define an address constant pointing to the symbol YourData and give the adcon a name like DataAddr declared in an ENTRY statement:

```
Owner Csect , Owner of the MyCom common section
- - -
DataAddr DC A(YourData) Address of the data area
ENTRY DataAddr Define its name externally
- - -
MyCom COM , The Owner’s common section
- - - Parts of the MyCom section
YourData DS XL(23456) The data area you need to reference
- - - Other parts of the MyCom section
```

Then, in your program you can write

```
YourProg Csect . Program to reference YourData
EXTRN DataAddr Name of the YourData pointer
- - -
L 3,DataPtr Get the Owner’s ‘YourData’ pointer
L 3,0,(3) Get the YourData pointer
- - - ... and work with the data
DataPtr DC A(DataAddr) Point to MyCom’s YourData pointer
```

38.7.3. Use the contents of the Address as both an addend and as a mask to round up the current offset to the required boundary. Suppose the current offset is in register ROff:

```
L 0,Addr Get the XD item’s Address field
ALR ROff,0 Add to the current offset
NR ROff,0 Set low-order bits to zero
```

38.7.4. If there were more than 1024 PR items each having length 4, the offset in the QL2-con would have a nonzero high-order digit. That digit would appear in the base-register digit position of the base-displacement field of the L instruction.

Section 38.10

38.10.5. Since the four instructions all set bit 32 of the R2 operand register (the “b” bit) to 0 in 24-bit mode and to 1 in 31-bit mode, these are the settings that BSM uses to set the AMODE before branching. It will set the PSW AMODE bits to the same value they had at the time of the call.

38.10.6. BSM: yes; BASSM: no, because the first operand register is always changed in ways that depend on the current addressing mode.
38.10.7. Remember that BAL is a 4-byte instruction that sets the ILC to B’10’, which means the high-order bit of the R1 register will be 1. If your program runs in 24-bit addressing mode and you try to return from the called routine with BSM, it will set the addressing mode to 31, and any address with nonzero bits in positions 32-40 will try to address something beyond the bounds of your program.

Executing in AMODE 31 is safe for calling another AMODE 31 program, because both BAL and BALR set the high-order bit of the 32-bit return address to 1; returning with BSM doesn’t change the addressing mode.

38.10.8. It would work, but you’d have to set the appropriate bits in the R1 and R2 registers, which isn’t necessary for the “ordinary” linkage instructions that don’t change addressing mode.

Programming Problem 38.2.

The Zeller subroutine has three arguments, the year, month, and day of month. Note that this solution makes no local storage references, and therefore has no USING statement!

Zeller CSect, No base register needed!
* Zeller’s Congruence for the day of the week (0=Saturday, 6=Friday).
* \( D_W = (D_M + Y + Y/4 + Y/100 + Y/400 + ((M + 1) \times 26) / 10) \mod 7. \)
* All divisions truncate, and return floor(quotient)

```
STM 14,5,12(13) Save registers
LM 1,3,0(1) Addr(Year, Month, Day_of_Month)
L 5,0(1) Get Y (year)
L 1,0(3) Get D_M (day of month)
AR 1,5 D_M+Y
SRA 5,2 floor(Y/4)
AR 1,5 D_M+Y+floor(Y/4)
LA 3,25 Constant 25
XR 4,4 Clear high-order register
DR 4,3 floor(Y/100)
LR 4,5 Copy to GR4
SRA 4,2 floor(Y/400)
AR 1,4 D_M+Y+floor(Y/4)+floor(Y/400)
MHI 5,6 6*floor(Y/100)
AR 1,5 D_M+Y+fl(Y/4)+fl(Y/400)+6*fl(Y/100)
LA 3,5 Constant 5
L 5,0(2) Get M (month)
AH 5,1 M+1
MHI 5,13 (M+1)*13
XR 4,4 Clear high-order register
DR 4,3 ((M+1)*13)/5
AR 1,5 Add to sum
LA 4,7 Constant 7
XR 0,0 Clear high-order register
DR 0,4 Divide by 7, leave remainder in GR0
LM 1,5,24(13) Restore all but GR0
BR 14
End
```

The calling program could be written like this:

```
P38_2 CSect,
Print NoGen
STM 14,12,12(13) Save registers
LR 2,13 Copy address of caller’s area
CNOP 0,4 Align to 4-byte boundary
BRAS 13,EndSave Set GR13 to address of our save area
Using Save,13 Use GR13 as local base register
Save DC 18F’0’ Local save area
EndSave ST 2,4(,13) Store back chain in our area
ST 13,8(,2) Put forward chain in caller’s area
*
Read ReadCard Inrec, NoData Read an input record
MVC CYear, InRec+6 Move year characters for output
MVC CDay, InRec+28 Move day characters for output
PACK DWork, InRec(10) Convert Year to packed decimal
CVB 0, DWork Convert to binary
```

1228 Assembler Language Programming for IBM z System™ Servers Version 1.00
ST 0, Year
PACK DWork, Inrec+10(10)
CVB 0, DWork
ST 0, Month
PACK DWork, Inrec+20(10)
CVB 0, DWork
ST 0, DayofM
CVB 0, DWork

MVI Line, C‘ ‘
MVC Line+1(L’Line-1), Line

LA 1, ArgList
L 15, AZeller
BASR 14, 15
ST 0, WeekDay

LR 1, 0
AR 1, 1
LA 3, Line+1
XR 2, 2
IC 2, Days+1(1)
IC 1, Days(1)
LA 1, DCh(1)
EX 2, MoveDay
LA 3, 3(3,2)
L 1, Month
AR 1, 1
IC 2, Months-1(1)
IC 1, Months-2(1)
LA 1, MCh(1)
EX 2, MoveDay
LA 3, 2(2,3)
MVC 0(2,3), CDay
CLI 0(3), C‘ ‘
JNE DoYear
MVC 0(1,3), CDay+1
BCTR 3, 0
MVI 2(3), C‘.’

NoData

MoveDay MVC 0(*-*+, 3), 0(1)

AZeller DC V(Zeller)  Address of Zeller subroutine
ArgList DC A(Year, Month, DayofM)  Argument addresses
WeekDay DS F
DayofM DS F
Month DS F
Year DS F
DWork DS D  Doubleword work area
CYear DS CL4
CDay DS CL2

Days DC AL1(DSat-DCh, L’DSat-1)
DC AL1(DSun-DCh, L’DSun-1)
DC AL1(DMon-DCh, L’DMon-1)
DC AL1(DTue-DCh, L’DTue-1)
DC AL1(DWed-DCh, L’DWed-1)
DC AL1(DThu-DCh, L’DThu-1)
DC AL1(DFri-DCh, L’DFri-1)
DCh DS OC
DSat DC C‘ Saturday’
DSun DC C‘ Sunday’
DMon DC C‘ Monday’
DTue DC C‘ Tuesday’
DWed DC C‘ Wednesday’
The printed output from the suggested test cases is:

Tuesday June 30, 2009
Friday January 1, 2000
Saturday January 1, 1900

Programming Problem 38.3. Note that this solution modifies none of the registers that must be restored on return.

**HexUlp** CSect , Return ulp of hex float arguments
* Calling sequences:
* Call HxUlpE(X) Calculate ulp(X) for short X
* Call HxUlpD(X) Calculate ulp(X) for long X
* Call HxUlpL(X) Calculate ulp(X) for extended X
* ulp(x) is returned in FPR0 (for short and long X), and in FPR0/2 for extended X.
  ENTRY HxUlpE,HxUlpD,HxUlpL
* 
**HxUlpE** L 1,0,(1) Get address of argument X
XGR 0,0 Clear GGO
OIIH 0,1 Set bit 31 to 1
ICMH 0,8,0(1) Insert characteristic ’cc’ of X
LFGR 0,0 Copy X’cc000000 00000000’ to FPR0
DE 0,0,(1) Divide by X
BR 14 Return short ulp(X) to caller
* 
**HxUlpD** L 1,0,(1) Get address of argument X
XGR 0,0 Clear GGO
OIIH 0,1 Set bit 63 to 1
ICMH 0,8,0(1) Insert characteristic ’cc’ of X
LFGR 0,0 Copy X’cc000000 00000000’ to FPR0
DD 0,0,(1) Divide by X
BR 14 Return long ulp(X) to caller

HxUlpL L 1,0(,1) Get address of argument X
XGR 0,0 Clear G0
LD 4,0(,1) Put high half of X in FPR4
LD 6,8(,1) Put low half of X in FPR6
ICMH 0,8,0(1) Insert characteristic 'cc' of X
LFGR 0,0 Copy X 'cc000000 00000000' to FPR0
LGH 0,1 Put X '00000000 00000001' in G0
LFG 2,0 Copy it to FPR2
DXR 0,4 Divide by X
BR 14 Return extended ulp(X) to caller

End

Programming Problem 38.9. The changes of addressing mode in this little program are needed because the PrintOut macro operates only in AMODE(24):

AM Csect,
Using *,15
LG 0,='FD'-1' Preset G0
LGR 1,0 Copy to G1
SAM24 , Set addressing mode 24
BASSM 1,0 BASSM sets G1
LGR 2,0 Copy G0 to G2
SAM31 , Set AM31
BASSM 2,0 BASSM sets G2
LGR 3,0 Copy G0 to G3
SAM64 , Set AM64
BASSM 3,0 BASSM sets G3
SAM24 , Reset to AM24 for PRINTOUT
PrintOut 16,17,18,19,Header=No Display the results

End

The results look like this (explanations added):

GGR 0 = X'FFFFFFFFFFFFFFFF' (Initialization value)
GGR 1 = X'FFFFFFFF00002100E' (AM24: b bit 32 = 0)
GGR 2 = X'FFFFFFFF80021016' (AM31: b bit 32 = 1)
GGR 3 = X'000000000002101F' (AM64: e bit 63 = 1)
GGR 4 = X'FFFFFFFF0002107C' (AM24: b bit 32 = 0)
GGR 5 = X'FFFFFFFF80021084' (AM31: b bit 32 = 1)
GGR 6 = X'000000000002108C' (AM64: e bit 63 = 0)

so the first-operand mode-bit settings are the same in AM24 and AM31.

Programming Problem 38.10.
<table>
<thead>
<tr>
<th>HexExp</th>
<th>Csect</th>
<th>Return exponent of HFP argument</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>1,0(1)</td>
<td>Get argument address</td>
</tr>
<tr>
<td>XR</td>
<td>0,0</td>
<td>Clear GRO</td>
</tr>
<tr>
<td>ICM</td>
<td>0,1,0(1)</td>
<td>Insert sign and characteristic</td>
</tr>
<tr>
<td>NULL</td>
<td>0,01111111</td>
<td>Eliminate sign bit</td>
</tr>
<tr>
<td>AHI</td>
<td>0,-64</td>
<td>Remove bias</td>
</tr>
<tr>
<td>BR</td>
<td>14</td>
<td>Return to caller</td>
</tr>
<tr>
<td>End</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Section 39 Solutions

Section 39.1

39.1.1. The symbols and their values are:

<table>
<thead>
<tr>
<th>Value</th>
<th>Symbol</th>
<th>Value (Hex)</th>
</tr>
</thead>
<tbody>
<tr>
<td>000000</td>
<td>D39_1_1</td>
<td>DSect ,</td>
</tr>
<tr>
<td>000000</td>
<td>A</td>
<td>DS CL9</td>
</tr>
<tr>
<td>000000</td>
<td>B</td>
<td>DS F</td>
</tr>
<tr>
<td>000010</td>
<td>C</td>
<td>DS X</td>
</tr>
<tr>
<td>000012</td>
<td>D</td>
<td>DS H</td>
</tr>
<tr>
<td>000018</td>
<td>E</td>
<td>DS D</td>
</tr>
<tr>
<td>000020</td>
<td>F</td>
<td>Equ *-D39_1_1</td>
</tr>
</tbody>
</table>

39.1.2. Using the same symbols as in Figure 57 on page 163, we can define the DSECT this way:

- **ALStmt** DSect , Assembler Language statement
- **Statement** DS OCL80 Define 80-column record area
- **Name** DS OCL8 Define name-field symbol
- **DS** CL9 Reserve space for name-field symbol
- **Mnemonic** DS OCL5 Define 5-character mnemonic field
- **MnemOpnd** DS OCL25 Define both mnemonic and operands
- **DS** CL6 Reserve space for mnemonic
- **Operand** DS OCL19 Define 19-character operand field
- **DS** CL20 Reserve space for operand field
- **Comment** DS CL36 Allocate 36 columns for comments
- **Continue** DS C Define continuation-indicator column
- **Sequence** DS CL8 Define sequencing columns
- **ALStmt_L_Equ** Equ *-ALStmt Length of the DSECT

39.1.3. As defined in the solution to Exercise 39.1.2, the values and length attributes of all symbols are:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Value (Hex)</th>
<th>Length Attr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statement</td>
<td>000000</td>
<td>80</td>
</tr>
<tr>
<td>Name</td>
<td>000000</td>
<td>8</td>
</tr>
<tr>
<td>Mnemonic</td>
<td>000009</td>
<td>5</td>
</tr>
<tr>
<td>MnemOpnd</td>
<td>000009</td>
<td>25</td>
</tr>
<tr>
<td>Operand</td>
<td>00000F</td>
<td>19</td>
</tr>
<tr>
<td>Comment</td>
<td>000023</td>
<td>36</td>
</tr>
<tr>
<td>Continue</td>
<td>000047</td>
<td>1</td>
</tr>
<tr>
<td>Sequence</td>
<td>000048</td>
<td>8</td>
</tr>
<tr>
<td>ALStmt_L</td>
<td>000050</td>
<td>1</td>
</tr>
</tbody>
</table>

Section 39.2

39.2.1. Following the Equ statement defining the value of the symbol RecLen, add these two statements:

- **Org** Record Position LC at start of DSECT
- **RecBase** DS XL(RecLen) Define symbol with record length

39.2.2. You can do this with a single statement:

- **NewRec** DS OD,XL(RecLen)

Section 39.3

39.3.1. We assumed in Figure 618 on page 860 that the offset of the symbol RecID in the Record DSECT is greater than 4096. So that the displacement of the second operand will be less than 4096, we must subtract 4096 and assign the base register (GR8) with contents 4096 greater than the contents of GR7. You should never program this way!

39.3.2. The generated instruction is X’D204 000A 700A’. The base register for the first operand is zero, so the target address is at address X’000000A’, very probably causing a protection exception. (Note also that the Effective Length is 4, meaning that the MVC is attempting to move 5 bytes.)

39.3.3. The generated instruction is X’D203 500A 700A’. Both the target address and the Effective Length are correct.
39.3.4. The LAY instruction (assuming the USING 0+X’F999’, 7 statement in the footnote on page 863) will generate E320 7D07 0871, with GR7 as base register. (Note that the base value X’F999’ plus the displacement X’8007’ is X’186A0’=100000.)

Section 39.4

39.4.1. The instructions and their generated object code are:

```
LA 1,ABC 4110 C008
LA 2,Qual.ABC 4120 9004
```

39.4.2. The instructions and their generated object code are:

```
Qual Using *,9
Using *,6
LA 1,ABC 4110 6008
LA 2,Qual.ABC 4120 9008
```

Even though both instructions have the same displacement, the first USING specifies the higher-numbered register, so it cannot be used to resolve the unqualified implied address of the first LA instruction. The lower-numbered register, GR6, is assigned as base.

39.4.3. The three instructions and their generated object code are:

```
4100 9028 LA 0,A+40 Ordinary USING
4110 9028 LA 1,QQ,A+40 Labeled USING
4120 9028 LA 2,QQ,A+40 Labeled USING
```

All three generate the same object code.

39.4.4. You might expect the generated object code to be X’4130 7200’. However, the Assembler doesn’t resolve qualified absolute symbols, so the statement generates a diagnostic.

Section 39.5

39.5.2. The three DSECTs as written are short enough that all three can be addressed with a single base register, so the order of their mapping with the Dependent USING statements does not matter. However, if one of the DSECTs is very long (for example, DSECT A is defined with a DS XL6000 statement), it might be best to map the three DSECTs with the longest one last.

39.5.3. If the two CSECTs are not assembled together, none of the symbols in the Msg$skels CSECT would be known in the Program CSECT.

39.5.4. Consider these DSECT definitions:

```
A DSect ,
B DSect ,
C DSect ,

DS CL32 B1 DS0 C1 DS CL80
BLoc DS XL(Blen) B2 DS D C2 DS XL8
CLoc DS XL(Clen) BLen Equ *-B CLen Equ *-C
DS (256-(*-A))
```

Section 39.6

39.6.2. Assuming that GR9 provides addressability to the Outer DSECT, you could write something like this:

```
Using Outer,9
LA 10,Out_Inr1 A(Out_Inr1) in GR10
Using Inner,10 Addressability for first instance
LA 11,Out_Inr2 A(Out_Inr1) in GR11
Using Inner,11 Addressability for second instance
```

Three base registers are needed, rather than one.

39.6.3. The Top DSECT starts at location zero. The length of the Bot DSECT is 16 (X’10’) bytes because it is rounded to the next doubleword boundary. The Mid DSECT length is X’C8’ bytes. The Top is three times as long as Mid, or X’258’ bytes. Offsets of the other variables within their respective DSECTs are easy to determine. The offsets of the four variables are:

- M1B1.X1 X’028’
- Mid1.MidVar1 X’038’
- M3B2.X2 X’209’
- Mid3.MidVar4 X’238’
39.6.4. The generated instructions are:

<table>
<thead>
<tr>
<th>Object Code</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>D204 7028 702D</td>
<td>MVC M1B1.X1,M1B1.X2</td>
</tr>
<tr>
<td>D204 709D 7028</td>
<td>MVC M1B3.X2,M1B1.X1</td>
</tr>
<tr>
<td>D204 7209 722D</td>
<td>MVC M3B2.X2,M3B3.X2</td>
</tr>
<tr>
<td>D204 70F0 7209</td>
<td>MVC M2B1.X1,M3B2.X2</td>
</tr>
<tr>
<td>D20F 71B8 722B</td>
<td>MVC Mid3.B1,Mid3.B3</td>
</tr>
<tr>
<td>D20F 7098 70F0</td>
<td>MVC Mid1.B3,Mid2.B1</td>
</tr>
<tr>
<td>D213 714C 7190</td>
<td>MVC Mid2.MidVar3,Mid3.MidVar1</td>
</tr>
<tr>
<td>D2C7 7000 70C8</td>
<td>MVC M1,M2</td>
</tr>
</tbody>
</table>

Section 39.7

39.7.1. The DSECTs and their lengths are:

- **Date**: X'008' = 8
- **Addr**: X'050' = 80
- **Phone**: X'010' = 16

39.7.2. The DSECTs and their lengths are:

- **Person**: X'098' = 152
- **Employee**: X'373' = 883

39.7.5. Yes.
Section 40 Solutions

Section 40.1

40.1.1. The three statements should be written

LowerSub DC A(LBound)
UpperSub DC A(HBound)
XX DC (HBound-LBound+1)F'12345'

40.1.2. Yes, it is open to criticism on many grounds.318

1. Consider what happens if the addressing halfword of the L instruction named GetIt could address the start of the table, but not the end.
2. Suppose the initial addressing halfword is X’FFFF’: what happens when we want to fetch the fifth table element?
3. The method is quite inefficient, especially considering the availability of many instructions to do indexing automatically,
4. Modifying instructions is considered an extremely poor technique under any circumstance: you can’t debug the code by reading the source or the listing, and the code cannot be shared by more than one process.
5. It’s terribly inefficient, because storing into the instruction stream makes the CPU stop pre-processing instructions and start over.

40.1.3. You can make a good case for either view:

- In favor of spacing by 8: Each element of the table is aligned on a halfword boundary, making the halfword integer more likely to be aligned on correct boundaries; and calculating index offsets can use shift logical instructions instead of multiplying by 7.
- Not in favor of spacing by 8: In programs needing to conserve memory space, adding the extra byte to each entry could cause addressability problems.

In general, speed of access and simplicity of indexing code are more important considerations.

40.1.4. Only the single element of XX whose index is found at LowerSub will be stored at XSum.

40.1.5. Consider writing the DSECT this way:

Elem DSect ,
El_Int DS HL2
El_Chars DS CL5

The reason for writing the operand of El_Int as HL2 rather than H is to remind the reader that the integer field may not always be aligned on a halfword boundary.

Section 40.2

40.2.1. To answer the last two questions first:

- The ordering of the array does not matter. Suppose the elements are stored in row order. Then

\[
\begin{align*}
\text{Addr}(A(i,j)) &= \text{Addr}(A) + L[N*(i-1)+(j-1)] \quad (\text{`from' element}) \\
\text{Addr}(A(j,i)) &= \text{Addr}(A) + L[N*(j-1)+(i-1)] \quad (\text{`to' element})
\end{align*}
\]

If the elements are stored in column order,

\[
\begin{align*}
\text{Addr}(A(i,j)) &= \text{Addr}(A) + L[(i-1)+N*(j-1)] \quad (\text{`from' element}) \\
\text{Addr}(A(j,i)) &= \text{Addr}(A) + L[(j-1)+N*(i-1)] \quad (\text{`to' element})
\end{align*}
\]

Since the array A is square, and we are simply exchanging elements, there is no difference between row and column order.

- We don’t have to swap the N “diagonal” elements A(i,i), so the number of elements involved is N*N=N, or N*(N−1). The elements are swapped in pairs, so the number of swaps is N*(N−1)/2.

The code will need to do swaps only for subscripts j<i, for values of i from 2 to N and for values of j from 1 to i−1. (The inner loop is indented to help readability.)

---

318 Fortunately, that programmer has been out of business for many years.
RI Equ 2 Register for i values
RiMax Equ 3 Register for maximum i value
RJ Equ 4 Register for j values
RjMax Equ 5 Register for maximum j value
LA RiMax,N Maximum value of i
LA RI,2 Initial value of i
Outer LR RjMax,RI Copy current value of i
BCTR RjMax,0 Maximum value of j = i-1
LA Rj,1 Initial value of j
Inner LR 8,RI Copy i
BCTR 8,0 Form (i-1)
LR 10,8 Copy (i-1) to GR10
LR 9,RJ Copy j
BCTR 9,0 Form (j-1)
LR 11,9 Copy (j-1) to GR11
MHI 9,N Form N*(j-1)
SLDL 8,2 Form L*(i-1) and L*N*(j-1)
ALR 8,9 For linear subscript for A(i,j)
MHI 10,N Form N*(i-1)
SLDL 10,2 Form L*N*(i-1) and L*(j-1)
ALR 10,11 For linear subscript for A(j,i)
L 0,Array(8) Get Array(i,j) for swap
L 1,Array(10) Get Array(j,i) for swap
ST 0,Array(10) Store Array(i,j) at old A(j,i)
ST 1,Array(8) Store Array(j,i) at old A(i,j)
AHI Rj,1 Increase j by 1
CR Rj,RjMax See if we've completed a j cycle
JNH Inner If not, repeat
AHI RI,1 Increment i by 1
CR RI,RiMax Compare to upper limit for i
JNH Outer Repeat another cycle on i

Array DS (N*N)F N by N array

40.2.3. In a column-ordered array with R rows, we know that the address of an element A(i,j) is given by
addr(A(i,j)) = [addr(A(1,1))-(L*(R+1))]+[L*(i+R*j)].
We know the address of A(i,j); so after rearranging, we find
(i-1)+R*(j-1) = [addr(A(i,j))-addr(A(1,1))]/L
If we divide the right-hand expression by R, the remainder is (i-1) and the quotient is (j-1).

L Equ 4 Assume elements are 4 bytes long
R Equ 7 Assume 7 rows
L 1,ElemAddr Address of A(i,j)
S 1,BaseAddr Subtract address of A(1,1)
SRL 1,2 Divide by L
SR 0,0 Clear high-order register for divide
D 0,=A(R) Divide by number of rows
AHl 0,1 Add 1 to remainder (i-1)
ST 0,ISub Store i subscript
AHl 1,1 Add 1 to quotient (j-1)
ST 1,JSub Store j subscript

Section 40.3

40.3.7. We simply exchange the corresponding elements of the IVal and JVal arrays. These instructions will transpose the sparse matrix A:
L 1,NbrEls    Get number of array elements
BCTR 1,0     Decrement by 1
SLA 1,2      Make into a word index
JNP Done     Exit if no elements today
LA 0,4       Set word increment
SR 0,0       Initialize index
Next L 3,IVal(2) Get an I subscript
L 4,JVal(2)   And a J subscript
ST 3,JVal(2)  Store I where J used to be
ST 4,Ival(2)  Store J where I used to be
JXLE 2,0,Next Increment index, test, and loop
Done - - -    Transposition complete

Section 40.4

40.4.6. Here's one solution:

AddrTab DC (NRows)A(AA-L+L*(NRows*(~AddrTab)/4))

Section 40.5

40.5.1. It will not matter, because you will be searching through the entire array.

40.5.2. Unless we were lucky enough to find the desired item on the first comparison, the search would end with the element not found. For example, if the array elements were 5, 4, 3, 2, and 1 and we search for the value 2, the first comparison (2 to 3) would show that we should move lower in the array. But all those elements are larger than 2, so the search would never find the correct element.

40.5.5. You won't see much improvement, because the effort of comparing the sign of the search argument to the sign of the current table “probe” element is about the same as just comparing the argument to the table entry.

40.5.7. The best estimate is N*(N-1)/2 comparisons.

Section 40.6

40.6.1. (c) will overwrite the element currently at the top of the stack, and then set the stack pointer to the address of an empty stack position.

40.6.2. The LM/STM/LA instructions will do the initialization:

SP   Equ 1    GRI contains stack pointer
StkSize Equ 20  Number of elements for full stack
DS   (StkSize)F Allocate space for the stack
Stack DS 0F  Define name of stack area
        LM 0,2,=F'6,2,9'  Set values
        STM 0,2.Stack-3*L.Stack  Initialize stack pointer

40.6.3. The main disadvantage of this method is that a check for stack overflow might be done after the “push”, which might be too late. One (very) small advantage is that a CPU that overlaps the execution of several instructions need not wait for the address of the stack top to be generated before it can use that address to store the new data item.

40.6.4. The values of the expressions are 210, 77, and 100.

a. A possible infix notation is 2*3*5*7

Operator   *   *   *
Operand 7 3 2 5 10 30 210
Stack 7 3 2 3 7
       7 3 7
       7

b. A possible infix notation is 7*((3*2)+5)

Operator   *   +   *
Operand 7 3 2 6 5 11 77
Stack 7 3 7 6 7
       7 7
c. A possible infix notation is \((3+7)*(2*5)\)

<table>
<thead>
<tr>
<th>Operator</th>
<th>+</th>
<th>*</th>
<th>*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operand</td>
<td>7</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>Stack</td>
<td>7</td>
<td>10</td>
<td>2</td>
</tr>
</tbody>
</table>

40.6.5. The first 5 statements define some symbolic names for registers.

EP   Equ 11   Expression scan pointer
SP   Equ 10   Stack pointer
StkSize Equ 10   Stack size
WT   Equ 8   Work reg for type codes
WV   Equ 9   Work reg for values, operators

SR   SP,SP   Initialize SP to 'empty stack'
LA   EP,Exprsn   Initialize expression scan pointer

Fetch LH WT,0(,EP) Get expression item type code
LH WV,2(,EP) Get operand or operator
LTR WT,WT Check type of expression item
JF Finis Done if less than 0
JP Oprtr Branch if an operator
LR 1,WV Move to GR1 for storing

Push AHI SP,-4 Push stack contents down once
ST 1,Stack(SP) Place new operand onto stack

Step LA EP,4(,EP) Step pointer to next expression item
J  Fetch And get next item

*   Set up for operation on top two stack elements

Oprtr   L 1,Stack+4(SP) Get next-to-top stack item
L 2,Stack(SP) Get top stack element in GR2
LA SP,8(,SP) Get both elements off the stack
LTR WV,WV Check the operator code
JZ AddTwo If zero, add operator
MR 0,2 Otherwise, multiply
P Push And push the result back on stack

AddTwo AR 1,2 Add the operands
J Push Go push sum onto stack

Finis   PrintOut 1,* Print result and stop

DS (StkSize)F Space for stack
Stack DS 0F
Exprsn DC H'0,2,0,3,0,4,4,1,4,0,-1' Expression 234**

40.6.7. Suppose the top of the two stacks are represented by values Stk1T and Stk2T; the bottom of Stk1 is A(1) and the bottom of Stk2 is A(N). Then we can represent the four functions with this pseudo-code:

Push1(X): Stk1T = Stk1T+1;
           if Stk1T = Stk2T then Stk1 Overflow
           A(Stk1T) = X

Push2(X): Stk2T = Stk2T-1;
           if Stk2T = Stk1T then Stk2 Overflow
           A(Stk2T) = X

Pop1(X): if Stk1T < 1 then Stk1 Underflow
          X = A(Stk1T)
          Stk1T = Stk1T-1;

Pop2(X): if Stk2T > N then Stk2 Underflow
          X = A(Stk2T)
          Stk2T = Stk2T+1;

You can now write the appropriate instructions without difficulty.

**Section 40.7**

40.7.1. You could write the DSECT this way:

Array_El DSECT
Integer DS HL2 2-byte integer
CharData DS CL5 5 bytes of character data
It’s useful to define the Integer field with an explicit length because you don’t necessarily know whether each array element will be aligned on a halfword boundary.

40.7.5. The list is empty when both the forward and backward link addresses are the address of the list anchor.

40.7.10. We’ll choose arbitrary values for the symbols DataLen and NLItms to show how the array can be allocated.

NLItms Equ 20  Assume a list of 20 elements
DataLen Equ 40  Assume data field length = 40

ArrStack DS F,XL(DataLen)  Space for first list element
ElemLen Equ *-ArrStack  Length of each list element
DS (NLItms-1)XL(ElemLen)  Space for remaining elements

40.7.11. These instructions will initialize the list:

1. LHI 0,NLItms-1 One less than all list elements
2. LHI 2,2 Initial link value
3. LA 1,ArrStack Point to first list element
4. InitLoop ST 2,0(,1) Store a successor index
5. AHI 2,1 Increment the index
6. AHI 1,ElemLen Add the length of each list element
7. JCT 0,InitLoop Count down until last element
8. ST 0,0(,1) Last element has a null link
9. LA 0,1 Index of first free-list element
10. ST 0,FreeNdx Initialize index of free-list head

40.7.12. The steps would be like these:

1. If the FreeNdx is zero, there are no more free elements; branch to NoneLeft
2. NewNdx ← FreeNdx [The index of the “New” element is taken from the head of the free list]
3. FreeNdx ← Link(FreeNdx) [The new head of the free list is the previous second element on the free list]
4. Link(NewNdx) ← 0 [Assume the new element might be the end of the list]

40.7.13. We have already added elements with indexes 1 and 2 to the list, and the first element of the free list has index 3. After taking this free element from the list, the list would look like this:

Having acquired the New element, you can use steps like these to add it to the head of the list:

1. Data(NewNdx) ← NewData [Put the new data in the new element]
2. Link(NewNdx) ← HeadNdx [The link in the new element points to the previous head element]
3. HeadNdx ← NewNdx [Make the new element the head of the list]

After adding the new element to the head of the list, the list would look like this:
40.7.15. As written each element in the FSL links into the data field of the next element. If the second DC statement is corrected to read

\[
DC \ (Elem\_Len/4)A(0),(NLstItms-1)A(*-Elem\_Len,0,0,0,0,0)
\]

there will be no difference in the way the two lists are used.

Section 40.8

40.8.1. Only two links need to be updated:

- **Q1**: Using Q\_El,5 Address of Q1
- **Q2**: Using Q\_El,9 Address of Q2
- **Q3**: Using Q\_El,2 Address of Q3

\[
\text{MVC Q1.RLink,Q2.RLink}\quad \text{Forward chain Q1 to Q3}
\]

\[
\text{MVC Q3.LLink,Q2.LLink}\quad \text{Backward chain Q3 to Q1}
\]

Section 40.9

40.9.1. It will make no difference, so long as elements are entered into the tree using the same left-right convention as when they are retrieved.

40.9.2. There are four other 3-node binary trees, for a total of five. Let the nodes be indicated by “*” characters:

\[
\begin{array}{cccc}
* & * & * & * \\
/ & \backslash & / & \backslash \\
* & * & * & * & * & * \\
/ & \backslash & / & \backslash
\end{array}
\]

40.9.3. These “inorder” configurations should help you understand how the order of traversal affects the trees:

\[
\begin{array}{ccccc}
B & C & C & A & A \\
/ & \backslash & / & \backslash & \backslash \\
A & C & B & A & C \\
/ & \backslash & / & \backslash & \backslash \\
A & B & B & C
\end{array}
\]

You’ll enjoy sketching these five trees for preorder and postorder traversal.

Section 40.10

40.10.1. You might use shift instructions this way:

\[
\text{HashEnts Equ 73}\quad \text{Number of hash table entries}
\]

\[
\begin{align*}
L \ 0,\text{DataItem} & \quad \text{Load data item into GR0} \\
\text{SRDL} \ 0,16 & \quad \text{Last 2 bytes of data item in GR0} \\
\text{SRL} \ 1,16 & \quad \text{First 2 bytes of data item in GR1} \\
\text{XR} \ 1,0 & \quad \text{XOR the halves into GR1} \\
\text{XR} \ 0,0 & \quad \text{Clear GR0 for a division} \\
D \ 0,=\text{A(HashEnts)} & \quad \text{Divide by hash table size}
\end{align*}
\]

Not a significant savings, but one less memory reference may help.

40.10.2. If the high-order bit of one of the 2-byte fields is 1 (but not in both fields), a different but still valid hash index will be generated.
Programming Problem 40.1.

The main feature of this solution is that the size of the graph is defined by the two EQU statements at the beginning. All other quantities that depend on the length and width of the graph are then defined in terms of those values.

Title ‘Solution to Problem 40.1’
P40_1 Start 0 Graph-plotting problem
*  
XLen Equ 119 Number of X values
YLen Equ 59 Number of Y values
  
BASR 12,0 Using *,12 Inform assembler
PrintLin,Page,L’Page Print title line
LA 11,XLen Initial X position at ’XLen’
XLoop LR 10,11 Carry X value in GR10
SH 10,MiddlX Form true X value from index
JNZ NotYAxis If X not zero, no Y axis yet
LA 2,Graph+(XLen+1)/2 Position of Y-axis
LA 3,YLen Number of lines
  
YLoop MVI 0(2),C’|’ Put Y-axis marker in line
LA 2,XLen(0,2) Increment by line length
JCT 3,YLoop Do YLen times
NotYAxis LR 1,10 Set up for parabola calculation
MR 0,1 X squared
AHI 1,25 Add roundoff factor
D 0,F50 Divide by 50
AHI 1,25 Subtract 25 giving -y
AH 1,HalfY Add YLen/2 to get line index
JM NotStar If negative, off top of page
CH 1,HYLen See how close to bottom
JNL NotStar If bigger than YLen, off low end
MH 1,HXLen Otherwise multiply by line length
LA 2,Graph-1(11) Address of X position in top line
AR 2,1 Add line index
MVI 0(2),C‘*’ Store asterisk in graph
NotStar LCR 1,10 Set up for straight line
AHI 1,-12 Subtract 12
SRA 1,1 Divide by 2, giving -Y
AH 1,HalfY Add YLen/2 to get line index
BM NotX If negative, off the top
CH 1,HYLen See if off the bottom
JNL NotX Jump if so
MH 1,HXLen Multiply line index by line length
LA 2,Graph-1(11) Construct X-position in top line
AR 2,1 Add line factor to get array loc
MVI 0(2),C’X’ Store ’X’ in the array
NotX JCT 11,XLoop Count down on X position
LA 4,YLen Set up for printing Ylen lines
LA 3,Graph Establish initial line address mover

Mover MVC Line+1(XLen),0(3) Move line to print position
PrintLin Line,L’Line Print line with space at left
LA 3,XLen(0,3) Increment address
JCT 4,Mover Loop until all lines are done
Printout *,Header=NO Exit

*  
Page DC C‘1 Solution to Problem 40.1’ Heading line
DC CL(XLen+1)’ ’ Space for lines to be printed
F50 DC F’50’
HXLen DC AL2(XLen)
HalfX DC AL2(XLen/2)
HYLen DC AL2(YLen)
HalfY DC AL2(YLen/2)
Programming Problem 40.2.

Title ‘Solution to Problem 40.2’
* As each character is read from the input record, it is
  * immediately converted to a numeric index which controls
  * all further operations. This master index selects the
  * operation, determines the stack increment, and chooses
  * the operands.
* P40_2 START 0

StkSiz  Equ  20  Size of stack
BASR 12,0 Use register 12 for base
Using *.12
J Begin Branch around data definitions

Formula DC OCL82 '.C'O' Define print line and carriage ctrl
Record DC CL80 '.C' ' Define record, 1 blank to force stop
Master DC 256'X'0' Initialize table to all zeros

ORG Master+'A' Variable A
DC 'X'1'
ORG Master+'B' Variable B
DC 'X'2'
ORG Master+'C' Variable C
DC 'X'3'
ORG Master+'O' Constants 0,1
DC 'X'0405'
ORG Master+'N' NOT operation
DC 'X'6'
ORG Master+&&' AND operation
DC 'X'7'
ORG Master+'|' OR operation
DC 'X'8'
ORG Master+'X' XOR operation
DC 'X'9'
ORG * Set LC to end of translate table

Stack DC XL(StkSiz)'0' Stack
StkLim DC Y(StkSiz) Size of stack, for checking
Data DC X'FOCCAA00FFFF' Values for A,B,C,0,1,NOT
Incr DC H'0,1,1,1,1,1,0,-1,-1,-1,-1' Stack ptr increments
IncrX DC AL(0,2,4,6,8,10,12,14,16,18) Offsets into incr
Branch DC AL(EndForm-Operate) Offset for all other chars
DC AL(OprndA-Operate) Offset for 'A'
DC AL(OprndB-Operate) Offset for 'B'
DC AL(OprndC-Operate) Offset for 'C'
DC AL(Oprnd0-Operate) Offset for '0'
DC AL(Oprnd1-Operate) Offset for '1'
DC AL(NOT-Operate) Offset for 'N'
DC AL(AND-Operate) Offset for '&'
DC AL(OR-Operate) Offset for '|'
DC AL(XOR-Operate) Offset for 'X'

M0 DC C' Result is always False'
M1 DC C' Result is always True'
MM DC C' Result is indeterminate'
Quit DC C'OEnd of tests'
StkMsg DC C' *** Stack Overflow'
SynMsg DC C' *** Stack holds more than 1 item at end'
MsgList DS OF Start of message list
M0P DC AL(l'M0),AL3(M0) Result all zero
M1P DC AL(l'M1),AL3(M1) Result all ones
**MMP**

DC AL1(L'MM),AL3(MM) Result mixed bits

* Register usage -- (all are set to 0 when record is read)
* R0 = Result of operation
* R1 = Master index and branch index
* R2 = Stack index increment table index
* R3 = Stack pointer
* R4 = Old stack top value
* R5 = Data value for variables and constants
* R6 = Input record scan pointer and message index

Begin ReadCard Record,Stop Read a record, stop if no more
PrintLin Formula,L'Formula
LM 0,6,=7F'0' Initialize all registers to 0
Fetch IC 1,Record(6) Get a character from the record
IC 1,Master(1) Replace it by its master index
IC 2,IncrX(1) Get (stack index increment) index
AH 3,Incr(2) Add increment to stack index
BNP StkErr Stack underflow if not positive
CH 3,Stklmm Compare to stack size
BH StkErr Stack overflow if exceeds StkSiz
IC 0,Stack-1(3) Get new stack top
IC 4,Stack(3) Get old stack top
IC 5,Data-1(1) Get operand, if any
IC 1,Branch(1) Now set up branch index

****** PrintOut 0,1,2,3,4,5,6,Stack for debugging
Operate Equ * Start of operation list
OprndA Equ * Character is 'a'
OprndB Equ * Character is 'b'
OprndC Equ * Character is 'c'
OprndD Equ * Character is '0'
OprndE Equ * Character is 'I'
LR 0,5 Move data to result register
B EndOps And go complete the operation
AND NR 0,4 Perform 'AND' operation
B EndOps Go store the result
OR OR 0,4 Perform 'OR' operation
B EndOps
NOT XR 0,5 Perform 'NOT' operation
B EndOps
XOR XR 0,4 Perform 'XOR' operation
EndOps STC 0,Stack-1(3) Store result back on stack

****** PrintOut 0,1,2,3,4,5,6,Stack for debugging
LA 6,1(0,6) Increment record scan pointer
B Fetch And go get next character
StkErr PrintLin StkMsg,L'StkMsg Indicate stack error
B Begin And start with a new record
SynErr PrintLin SynMsg,L'SynMsg Bad formula
B Begin Read next formula
EndForm CHI 3,1 Check final stack index
BNE SynErr Syntax error, stack holds too much
LA 6,MOP-MsgList Set for result being all zeros
TM Stack,X'FF' Test all bits on first stack entry
BZ PRINT
LA 6,MMP-MsgList Assume now the bits are mixed
BM PRINT Branch if that's true
LA 6,MIP-MsgList Otherwise they're all ones
PRINT L 1,Msglist(6) Get pointer to message
IC 2,Msglist(6) And message length
PrintLin 0(1),0(2) Print result message
B Begin And start all over again
Stop PrintLin Quit,L'Quit That's all, give up
BR 14 Return to supervisor
End P40_2
Programming Problem 40.6.

This solution uses indentation to show the nesting of the three loops. The size of the matrices is defined by the EQU statement defining N.

```
P40_6 CSect ,
 Using *\15
N Equ 5
 * Begin Outer loop
 LHI 1,N Initialize I in GR1
 LOuter LHI 2,N Initialize J in GR2
 LMiddle XR 0,0 Accumulated sum in GR0
 LHI 3,N Initialize K in GR3
 * Inner loop: calculate C(I,J)
 LInner LR 4,1 I
 BCTR 4,0 I-1
 MHI 4,N (I-1)*N
 ALR 4,3 (I-1)*N+K
 BCTR 4,0 (I-1)*N+K-1
 SLL 4,2 4*((I-1)*N+K-1)
 L 7,A(4) Get A(I,K)
 LR 5,3 K
 BCTR 5,0 K-1
 MHI 5,N (K-1)*N
 ALR 5,2 (K-1)*N+J
 BCTR 5,0 (K-1)*N+J-1
 SLL 5,2 4*((K-1)*N+J-1)
 M 6,B(5) A(I,K) * B(K,J)
 AR 0,7 Accumulate sum
 JCT 3,LInner Iterate on K
 * End of Inner loop
 LR 4,1 I
 BCTR 4,0 I-1
 MHI 4,N (I-1)*N
 ALR 4,3 (I-1)*N+J
 BCTR 4,0 (I-1)*N+J-1
 SLL 4,2 4*((I-1)*N+J)
 ST 0,C(4) Store C(I,J)
 JCT 2,LMiddle Iterate on J
 * End of Middle loop
 JCT 1,LOuter Iterate on I
 * End of Outer loop
 DumpOut C,C+4*(N*N) Display result in hex format
 PrintOut *,Header=NO
 A DC (N)\'1,2,3,4,5\'
 B DC (N)\'5,4,3,2,1\'
 C DS (N*N)F
End P40_6
```

Programming Problem 40.8.

* Solution to 'Bordered-Square' Programming Problem 40.8.
* This program is heavily parameterized, so that you need only to
  * change the value of N, the length of each row of the square.
* If N exceeds 58 or is less than 6, various assembly errors occur.

```
P40_8 Start 0 Print a square
 Using *\15
 * N Equ 12 Length of one edge
 SqSize Equ (N/2)*2 Ensure square size is an even value
 NZeros Equ SqSize-2 Number of inner zeros to print
```

Suggested Solutions to Selected Exercises and Programming Problems 1245
Lines Equ 60  
TopRow Equ (Lines-SqSize)/2-1  
LineLen Equ 120  
LineCntr Equ LineLen/2  
OuterCh Equ C‘1’  
InnerCh Equ C‘0’  
LeftEdge Equ LineCntr-(SqSize/2)  

PrintLin TopLine,1  
LA 1,TopRow  
SR 0,0  
D 0,"3"  
LTR 1,1  
JZ NoSkip3  
Skip3 PrintLin CCChars,1  
JCT 1,Skip3  
NoSkip3 LTR 0,0  
JZ NoSkips  
LA 1,CCChars  
AR 1,0  
PrintLin 0(1),1  
NoSkips MVI Square1+LeftEdge,OuterCh  
MVC Square1+LeftEdge+1(SqSize-1),Square1+LeftEdge fill row  
MVC Square2,Square1  
MVI Square2+LeftEdge+1,InnerCh  
MVC Square2+LeftEdge+2(NZeros-1),Square2+LeftEdge+1 fill row  
MVC Square3,Square2  
MVI Square3+LeftEdge+2,C‘’  
MVC Square3+LeftEdge+3(SqSize-5),Square3+LeftEdge+2 fill  
PrintLin OutLine,Square1  
PrintLin OutBuf,L  
PrintLin OutLine,Square2  
PrintLin OutBuf,L  
PrintLin OutLine,Square3  
PrtInner PrintLin OutBuf,L  
JCT 1,PrtInner  
MVC OutLine,Square2  
PrintLin OutBuf,L  
MVC OutLine,Square1  
PrintOut *,Header=NO  

OutBuf DC CL(LineLen+1)‘’  
Outline Equ OutBuf+1,LineLen  
Square1 DC CL(LineLen)‘’  
Square2 DC CL(LineLen)‘’  
Square3 DC CL(LineLen)‘’  
Topline DC C‘1’  
CCChars DC C‘–0’  

End P40_8
Section 41 Solutions

Section 41.2

41.2.2. The first argument \( R \) is positional; the other two arguments \( A= \) and \( LV= \) are keyword.

Section 41.3

41.3.2. Because the expansion of the OPEN macro refers to it, and you don’t want the assembly to fail due to an undefined symbol.

Section 41.4

41.4.1. The address \( X'BAD' \) is odd, so branching to it will cause a specification exception. The address \( X'D1E' \) is even and will cause a branch into the low area of memory, with unpredictable results.

41.4.2. The address \( C'BAD' \) is even, so it will cause a branch into the low area of memory, with unpredictable results. The address \( C'D1E' \) is odd and will cause a specification exception.

41.4.3. The displacement in the LA instruction at offset \( X'000000' \) (statement 6) is \( X'04F' \), but it should be \( X'02A' \).

Section 41.5

41.5.1. If executed in 24-bit addressing mode, the BAL instruction places the Instruction Length Code \( B'10' \) (BAL is 4 bytes long) in the two high-order bits of the \( R_1 \) register. In 31-bit mode, the high-order bit of GR \( R_1 \) is set from the Basic Addressing Mode bit of the PSW, which is 1 for 31-bit mode.

Section 41.7

41.7.1. Some possible but unverified instruction sequences are:

```
(01) DC H'0' Invalid operation
(02) LPSW 0,8(0,0) Privileged operation
(03) EX 0,* Execute
(04) MVI 0,0 Protection
(05) LGHI 1,-1 Addressing
IC 1,0(,1)
(06) DC X'1D11' DR 1,1: Specification
(07) AP +,** Decimal Data
(08) LA 1,1 Fixed-point overflow
SLA 1,33
(09) SRDL 0,63 Fixed-point divide
DR 0,0
(0A) AP A,A Decimal overflow
A DC P'6'
(0B) DP A,+P'0' Decimal divide
(0C) LE 0,*E'1E72' Exponent overflow
MER 0,0
(0D) LE 0,*E'1E-72' Exponent underflow
MER 0,0
(0E) LE 0,*X'41000001' Significance
SU 0,*X'41000001'
(0F) LE 0,*E'1' Floating-point divide
D 0,*E'0'
```

Programming Problem 41.2.

This program shows one way to read 80-byte records and display the results. It uses three conditional-assembly SETA statements to set values of the input and output record lengths and the program name.

* I revised an earlier version of the figure and decided to leave the old displacement in place for you. Now: What was the original value of the ABEND code?
Read and list 80-character fixed-length records, with a sequence number preceding the record image in the listing.

&OutLen SetA 121 Length of print line
&InLen SetA 80 Length of input records
&Name SetC 'Prob41_2' Name of program
&Name Csect ,
&Name AMode 24 Set required addressing mode
&Name RMode 24 Set required residence mode
Print NoGen DCB, DCBD expansions are VERY long!

SAVE (14,12) Save caller's registers
LR 12,15 Copy entry address
Using &Name,12 Establish base address
LR 11,13 Copy caller's save area address
LA 13,SaveArea Point to local save area
ST 11,SaveArea+4 Store backward link in our area
ST 13,8(,11) Store forward link in caller's area
OPEN (OutDCB,(OUTPUT)) Open output DCB
Using IHADCB,OutDCB Map the output DCB
TM Out.DCBOFLGS,DCBOFOPN Did the output DCB open OK?
JO OpenIn Yes, open the input DCB
ABEND 1,DUMP No sense trying to go further
OpenIn OPEN (InDCB,(INPUT)) Open input DCB
Using IHADCB,InDCB Map the input DCB
TM In.DCBOFLGS,DCBOFOPN Did the input DCB open OK?
Drop Out,In No more DCBD mappings needed
JO Proceed Yes, continue
PUT OutDCB,OpenMsg Tell the user the open failed
CLOSE OutDCB Close the output DCB
J Finish Say Farewell
Proceed XR 2,2 Set record count to zero
GetRec GET InDCB,InRec Read a record
AHI 2,1 Increment record count
CVD 2,DTemp Convert to packed decimal.
MVC RecNum,NumPat Move edit pattern to line
ED RecNum,DTemp+5 Edit 5 digits
PUT OutDCB,OutLine Print the output line
J GetRec Go read another record
EOF CLOSE (InDCB,,OutDCB) Close both DCBs
FREEPOOL InDCB Free input buffers
Finish FREEPOOL OutDCB Free output buffers
L 13,SaveArea+4 Point to caller's save area
LM 14,12,12(13) Restore caller's registers
XR 15,15 Set return code to zero
BR 14

NumPat DC X'402020202120' Up to 10**5-1 records

Outline DS OCL(&OutLen) Start of output line
RecNum DS CL('NumPat) Record number + carriage control
DC CL3 ' Spaces
InRec DS CL(&InLen) Input record to be listed
DC CL(&OutLen+'-'+OutLine)' ' Blanks for rest of line
OpenMsg DC CL(&OutLen)+'Unable to open input DCB' We can't print

InDCB DCB DDNAME=INPUT,LRECL=&InLen,RECFM=FBA,DSORG=PS,MACRF=GM,
X EODAD=EOF,BLKSZIE=&InLen*10
OutDCB DCB DDNAME=OUTPUT,LRECL=&OutLen,RECFM=FBA,DSORG=PS,MACRF=PM,X
BLKSIZE=&OutLen*10

SaveArea DC 9D '0' Local save area
DTemp DS D Work area for CVD
DCBD DSORG=PS,DEVD=DA Generate IHADCB Dsect
End &Name.
Using the data in Programming Problem 24.14 on page 401, the output of this program was:

Four score and seven years ago our fathers brought forth on this continent a new nation, conceived in liberty, and dedicated to the proposition that all men are created equal. Now we are engaged in a great civil war, testing whether that nation, or any nation, so conceived and so dedicated, can long endure. We are met on a great battle-field of that war. We have come to dedicate a portion of that field, as a final resting place for those who here gave their lives that that nation might live. It is altogether fitting and proper that we should do this.

But, in a larger sense, we can not dedicate, we can not consecrate, we can not hallow this ground. The brave men, living and dead, who struggled here, have consecrated it, far above our poor power to add or detract. The world will little note, nor long remember what we say here, but it can never forget what they did here. It is for us the living, rather, to be dedicated here to the unfinished work which they who fought here have thus far so nobly advanced. It is rather for us to be here dedicated to the great task remaining before us -- that from these honored dead we take increased devotion to that cause for which they gave the last full measure of devotion -- that we here highly resolve that these dead shall not have died in vain -- that this nation, under God, shall have a new birth of freedom -- and that government of the people, by the people, for the people, shall not perish from the earth.
Section 42 Solutions

Section 42.1

42.1.1. Try XC \*„\*X’01’ \. The XC instruction changes alternately into OC, XC, OC, ....
Similarly, XI \*1 alternates between OL, XI, OL, ....
What property of these two pairs of opcodes makes this possible?
You will of course remember that modifying instructions is a very poor practice that slows execution considerably, and makes the program non-reenterable.

Section 42.2

42.2.1. By convention, GR15 must contain the entry point address when entering a subprogram. The entry point address is used as a base address for any instructions (particularly in the macro expansions) that must be resolved using base-displacement addressing.

42.2.3. You can see that the GETMAIN macro generates a BAL instruction that requires base-displacement resolution. The FREEMAIN macro generates a LA instruction with explicit operands. All the other instructions either address the WA Dsect using GR13 as a base register, or use relative addressing within the Rsect. Thus, the earliest position for the DEOP 3 statement is immediately following the GETMAIN instruction.

Programming Problem 42.1

This factorial program was written to manage its own internal stack and call itself recursively.

FactA CSect ,
*******************************************************************
* Evaluate N! recursively. The largest valid N is 12. *
*******************************************************************
Using *,15
ST 14,Temp  Save return address
L 1,0,(1)  Get parameter address
L 1,0,(1)  Get N
ST 1,Temp+4  Save current value of N
ST 2,Temp+8  Save current value of GR2
L 2,StackPtr  Get stack pointer
AHI 2,12  Increment stack pointer
MVC 0(12,2),Temp  Save return address, N, GR2
ST 2,StackPtr  Save new stack pointer
CHI 1,1  Compare N to 1
JH Recur  If greater, call again
LA 0,1  1 Factorial = 1
J Exit  Return
*******************************************************************
Recur BCTR 1,0  N-1 *
ST 1,Data  Save for recursive call *
LA 1,DataPtr  Point to argument address *
BASR 14,15  Call ourselves recursively *
*******************************************************************
L 2,StackPtr  Retrieve stack pointer
L 1,4,(2)  Get value of N from call
MR 0,0  Form N*Fact(N-1)
LR 0,1  Form return value
*******************************************************************
Exit L 2,StackPtr  Retrieve stack pointer
L 14,0,(2)  Get proper return address
AHI 2,-12  Decrement stack pointer
ST 2,StackPtr  Save updated stack top pointer
L 2,20,(2)  Restore caller’s GR2

* Doing things like that could also endanger your job security.
BR 14 Return to caller

* Temp DS 2F Word 1 = return addr, Word 2 = N
Data DC F’0’ Value of N for call
DataPtr DC A(Data) Address of data item for call
StackPtr DC A(Stack-8) Initial stack pointer
Stack DC (13*3)F’0’ Fact(13) is too big, anyway

End

This is a calling program:

Call Fac Csect ,
Using *,12 Establish addresability
LR 12,15 Copy base register
LA 5,12 Max N that fits in a fullword = 12!
Test ST 5,Value Store N for call
ConvertO 5,LineN Convert N to characters
LA 1,AP Point to argument list
L 15,AF Address of factorial routine
BASR 14,15 Call it
ConvertO 0,LineFac Convert result to characters
PrintLin Line,LineLen Print the result
JCT 5,Test Reduce N by 1 and repeat
Printout *,Header=No Terminate caller
AF DC V(FactA) Address of factorial routine
AP DC A(Value) Address of N
Value DS F Argument N

LinePos DS OC Position of the output line
LineN DC CL12’ Carriage control, Value of N
DC C’ factorial = ‘
LineFac DC CL12’ Value of N factorial
LineLen Equ (*-Line) Line Length
Org LinePos Step back to line position
Line DS OCL(LineLen) Define symbolic output line length
Drop 12

End

The output from this program is:

12 factorial = 479001600
11 factorial = 39916800
10 factorial = 3628800
9 factorial = 362880
8 factorial = 40320
7 factorial = 5040
6 factorial = 720
5 factorial = 120
4 factorial = 24
3 factorial = 6
2 factorial = 2
1 factorial = 1

Programming Problem 42.3

Mine created a storage protection error for a very remote address.
Index

Special Characters

′ apostrophe
   in attribute reference 106
   in C-type constants 152
   in self-defining terms 88
− minus sign
   in expressions 99
   negation operator 14
   unary 99
underscore
   in symbols 91
/ slash, solidus
   division operator 15
   in expressions 99
× product sign
   multiplication operation 15
@ at sign
   in symbols 91
   non-invariant character 431
• bullet character
   representation of blank character 15
   representation of space character 15
$ dollar sign
$GENIO macro instruction
   definition 1008
   description 1008
   in symbols 91
   non-invariant character 431
* asterisk
   in expressions 99
   location counter reference 99
   multiplication operator 99
*PROCESS statement 1035
& ampersand
   in C-type constants 152
   in self-defining terms 88
# hash, sharp, (US) pound sign
   in symbols 91
   non-invariant character 431
+ plus sign
   addition operator 14
   in expressions 99
   unary 99
= equal sign
   literal indicator 156
| vertical bars
   absolute value operator 15
÷ division operation 15

A
A machine instruction 218
A-type address constant
   definition 853
ABEND macro instruction 942, 962
   abnormal termination 957
ABEND macro instruction 942, 957
   any kind 961
   memory dump 942
ABS
   absolute value operator 15
   absolute implied address 133
   absolute USING location 132
   access exception 59
   access register 50
ACONTROL assembler
   instruction 1035
   definition 1025
AD machine instruction 593
ADATA assembler option 91
ABR machine instruction 648
addend
   See also address constant
   definition 1025
addend definition 238, 1025
addition
   binary floating-point 648
   decimal floating-point 689
   fixed-point binary 218
   fixed-point binary integers 33
   floating-point 565
   hexadecimal floating-point 592, 598, 599
   complement addition 601
   process 598, 599
   immediate 322
   logical 225
   packed decimal 478
   packed decimal operand order
dependence 479
   packed decimal process 484
   register-immediate 322
   with carry 229
address 94
   assembly time 1025
   definition 1025
   execution time 94, 1025
   location 1025
   vs. location 94
address constant
   definition 160, 851, 1025
   delimited by parentheses 149
   expression as nominal value 149
   S-type 151
   type A 149
   type AD 159
   type V 806
   type Y 151
address generation (continued)
   signed 20-bit displacement 302
   unsigned 12-bit displacement 64, 302
address resolution
   addressable 128
   addressing halfword 1025
   base-displacement form 128
   definition 1025
   displacement 125
   DSECT 858
   explicit address 121
   highest-numbered register 130
   implied address 122, 128
   implied addresses 1025
   multiple 129
   qualified symbol 866
   relocation attribute 128
   rules 134, 303
   signed 20-bit displacement 303
   smallest displacement 130
   unsigned 12-bit displacement 64
   valid displacement 128
address table 903
   definition 930, 1025
address translation 69
   DAT 69
   definition 71, 1025
   virtual address 69
address vs. location
   execution vs. assembly time 94
addressability 68, 134
   definition 71, 136, 1026
   error 131
   definition 136
addressable
   assembly time 1025
   base-displacement resolution 1025
   definition 1025
   execution time 1025
   resolution 1025
addressing
   addressability 68
   base address 64
   base register 64
   base-displacement addressing 64, 1027
   base-displacement format 1027
   Effective Address 64
   Effective Address Register 64
   in large programs 776
   index 65
   indexed Effective Address 66
   internal subroutine 784
   mode 306
   not addressable 68
   relative-immediate 304
   with address constants 779
   without local addressability 783
addressing halfword 55, 64

Index 1253
addressing halfword (continued)
- base register specification digit 64
- definition 71, 1026
- signed 20-bit displacement 302
- unsigned 12-bit displacement 64
addressing mode 306
- 24-bit 306
- 31-bit 306
- 64-bit 306
address generation 306
- AMODE 813
- AMODE assembler instruction 813
- ADR machine instruction 593
- ADTR machine instruction 687
- ADTRA machine instruction 687
- AE machine instruction 593
- AEB machine instruction 648
- AEBR machine instruction 648
- AER machine instruction 593
- AFI machine instruction 322
- AG machine instruction 218
- AGF machine instruction 231
- AGFI machine instruction 322
- AGFR machine instruction 231
- AGHI machine instruction 322
- AGR machine instruction 218
- AH machine instruction 218
- AHI machine instruction 322
- AL machine instruction 225
- ALC machine instruction 230
- ALCG machine instruction 230
- ALCGR machine instruction 230
- ALCR machine instruction 230
- ALFI machine instruction 322
- ALG machine instruction 225
- ALGF machine instruction 231
- ALGFI machine instruction 322
- ALGFR machine instruction 231
algorithm 16, 1020
- AR machine instruction 218
- ARG machine instruction 218
- ALIAS assembler instruction 1030
alignment 46
- automatic 142
- by CNOP 210
- by NOALIGN option 141
- by ORG 169
- by SECTALGN option 141
- CNOP and SECTALGN 795
- DC and SECTALGN 795
doubleword 46
- DS and SECTALGN 795
- fullword 46
halfword 46
- implied length 142
- instructions 52
- ORG and SECTALGN 795
- quadword 46
- SECTALGN option 795
- word 46
- ALR machine instruction 225
AMODE (continued)
- definition 853
- AMODE assembler instruction 813
- AMODE assembler instruction (continued)
- See addressing mode
- ampersand
- in C-type constants 152
- in self-defining terms 88
anchor base location 1026
- base register 1026
- definition 1026
AND operation 289, 299, 1026
- definition 299, 1026
- OR operation 299
- register-immediate 324
- register-register 290
- storage-immediate 356
- storage-storage 378
AP machine instruction 489, 493
- apostrophe
- in C-type constants 152
- in self-defining terms 88
AR machine instruction 218
- architecture
- definition 16, 1026
- argument 751
- definition 774, 1026
- argument address list 752
- argument passing 745
- arithmetic
- binary addition 33
- binary division 274
- binary floating-point special values 634
- binary multiplication 265
- binary subtraction 34
- decimal floating-point 687
double-length shift 252
- hexadecimal floating-point 578
- packed decimal 477
- packed decimal addition 484
- packed decimal arithmetic rules 477
- packed decimal subtraction 486
- real vs. realistic floating-point arithmetic 731
- scaled packed decimal 513
- general rules 513
- shifts 252
- single-length shift 252
- arithmetic division
- definition 284, 1026
- process 280
- arithmetic multiplication
- definition 284, 1026
- process 272
- arithmetic representation
- definition 41, 1026
array 894
- as a table 900
binary search 906
column order 896
definition 930, 1026
general subscripts 899
multi-dimensional 899
non-homogeneous 900
one-dimensional 894
row order 896
search 905
subscribing function 897
two-dimensional 896
ASCII
- C-type constant 153
- CA-type constant 159
- numeric character 456, 472
- AMODE
- address table 903
- as a list of items 894
array (continued)
- as a table 900
- binary search 906
column order 896
definition 930, 1026
general subscripts 899
multi-dimensional 899
non-homogeneous 900
one-dimensional 894
row order 896
search 905
subscribing function 897
two-dimensional 896
Assembler
- AMODE
- address table 903
- as a list of items 894
array (continued)
- as a table 900
- binary search 906
column order 896
definition 930, 1026
general subscripts 899
multi-dimensional 899
non-homogeneous 900
one-dimensional 894
row order 896
search 905
subscribing function 897
two-dimensional 896
Assembler Language Programming for IBM z System™ Servers  Version 1.00
assembly
Exponential Symbol Dictionary 95
input records 77
invocation 74
location counter vs. instruction address 94
object code 75
process 74
pass 1 125
pass 2 127
separate 788
statements 75
assembly time 76
definition 84, 1026
location 94
assisted linkage 770, 833
V-type address constant 806
attribute assembler 168
definition 1026
integer 92
length 92, 145
program 140, 168
reference 92
relocation 92, 127
scale 92, 461
type 92
value 92, 127
attribute reference definition 1026
integer 98
length 92, 145
program 140, 168
reference 92
relocation 92, 127
scale 92, 461
type 92
value 92, 127
 augend
definition 238, 1026
AXBR machine instruction 648
AXR machine instruction 593
AXTR machine instruction 687
AXTRA machine instruction 687

B
B extended mnemonic 212
B-tree 926
definition 931, 1026
BASS machine instruction 744
base address 119, 128
definition 71, 1027
displacement 1027
effective address 1027
general purpose register 1027
base digit 64
See also base register specification digit
definition 1027
base location
base-displacement address resolution 1027
definition 1027
dependent USING statement 1027
displacement 1027
in USING assembler instruction 128
ordinary USING statement 1027
base register 64, 122
definition 71, 1027
base register specification digit 64, 111
definition 71, 1027
base register zero 133
base-displacement addressing 64
definition 1027
base_location 122
absolute 132
definition 136
base_register
definition 136
BASR machine instruction 118, 744
BASSM machine instruction 844
BC machine instruction 206, 207
BCD representation 429
BCR machine instruction 206, 207
BCT machine instruction 335
BCTR machine instruction 335
BCTR machine instruction 335
BE extended mnemonic 213
BEAR 214
begin column 77
BER extended mnemonic 213
BH extended mnemonic 213
BHR extended mnemonic 213
bias 562, 571
definition 572, 1027
exponent 571
rounding 562
Big-Endian 448
binary
floating-point 625
integer addition 33
integer subtraction 34
overflow detection recipe 33
shift 242
subtraction recipe 37
two's complementation recipe 29
binary digit
See bit
binary floating-point addition 648
characteristic 626
reserved values 627
compare and signal 650
comparison 649
constant 630, 631, 632
length modifier 632
modifiers 631, 632
binary floating-point (continued)
constant (continued)
rounding-mode suffix 630
special values 630
type DB 629
type EB 629
type LB 629
convert to decimal floating-point and hexadecimal floating-point 729
converting from integer 653
converting to integer 653
data classes
denormalized numbers 626
infinity 626
normal numbers 626
quiet NaN 626
signaling NaN 626
zero 626
Data Exception Code 637
data formats 625
decimal exponent 631
definition 2 1027
divide to integer 656
division 646
division by zero 636
exception handling 636
exponent field width 626
exponent modifier 631
exponent overflow 636
exponent underflow 636
floating-point integer 655
inexact result 636
infinity 628
invalid operation 635
lengthening instructions 651
multiplication 644
multiply and add/subtract 659
NaN (Not a Number) 626, 627
payload 631
quiet 628
signaling 628
overview 633
arithmetic with special values 634
denormalized numbers 634
exceptions 635
rounding modes 633
remainder 655
representation 626
representation range 628
rounding instructions 651
set rounding mode 638
signed zero 735
significand 626
special values 626, 627
denormalized numbers 627
infinity 627
NaN 627
square root 658
subtraction 648
test data class 640
binary search 906
definition 930, 1027
binary tree 922
binary tree (continued) 930, 1027
bind time 1027
after assembly time 1027
before execution time 1027
definition 1027
Binder 835
bit 21
data 360
definition 41, 1027
invert 356
naming problems 361
reset 356
set 356
test 358
bit bucket 244
bit-length constant 259
BL extended mnemonic 213
blank
definition 17, 1027
in constants 149, 152
not in self-defining terms 149, 152
representation in examples 15
text representation 17, 1027
Blefuscu 448
block comments 78
blocked records 953
BLR extended mnemonic 213
BM extended mnemonic 213
BMR extended mnemonic 213
BNE extended mnemonic 213
BNR extended mnemonic 213
BNH extended mnemonic 212
BNHR extended mnemonic 212
BNL extended mnemonic 212
BNLR extended mnemonic 212
BNM extended mnemonic 212
BNMR extended mnemonic 212
BNOR extended mnemonic 212
BNP extended mnemonic 212
BNPR extended mnemonic 212
BNZ extended mnemonic 213
BNZR extended mnemonic 213
BO extended mnemonic 213
Boolean operations 288
BOR extended mnemonic 213
boundary alignment
See also alignment by CNOP instruction 210
by DC/DS instruction 141
by ORG instruction 170
definition 147, 1027
BP extended mnemonic 213
BPR extended mnemonic 213
BR extended mnemonic 212
branch address 206, 305
and execute instruction 390
definition 215, 1027
branch condition 206
definition 215, 1027
branch mask 207
definition 215, 1027
branch relative 330
CGXTR machine instruction 693
CGXTRA machine instruction 693
CH machine instruction 223
character
ASCII 432
BCD 429
C-string 415
decimal floating-point 674
double-byte EBCDIC 433
EBCDIC 430
glyph 438
not allowed in symbols 91
representation
ASCII 159, 999
EBCDIC 89, 998
Unicode 437
shift-in 433
shift-out 433
Unicode 437
characteristic
binary floating-point 626
decimal floating-point 674
definition 572, 1027
floating-point 571
hexadecimal floating-point 573
CHI machine instruction 323
CHY machine instruction 223
CL machine instruction 233
class
definition 851, 852, 1027
class name 1030
CLC machine instruction 367, 379
CLCLE machine instruction 404, 408
CLCLU machine instruction 440, 442
CLFI machine instruction 323
CLG machine instruction 233
CLGFR machine instruction 233
CLG machine instruction 356
CLJY machine instruction 356
CLM machine instruction 233
CLMH machine instruction 233
CLMY machine instruction 233
CLOSE macro instruction 955
CLR machine instruction 233
CLST machine instruction 416, 420
CNOP assembler instruction 210
definition 1028
CNOP instruction
definition 215
code
definition 86, 1027
CODEPAGE assembler option 439
coefficient 673
cohort 669
definition 723, 1027
column order 896
definition 930, 1027
column-major order
definition 1028
COM assembler instruction 789, 1028
combination field 673, 674
common statement 76
common
definition 851, 1028
common section 789, 1030
COM assembler instruction 1028
definition 1028
comparison
binary floating-point 649, 650
decimal floating-point 691
decimal floating-point biased exponent 692
fixed-point arithmetic 223
fixed-point logical 233
hexadecimal floating-point 602
packed decimal 496
register-immediate 323
storage-immediate 356
storage-storage 379
COMPAT(TRANSDT) assembler option 90, 433
complement addition
hexadecimal floating-point 600, 601
process 600
packed decimal 486
complementation
fixed-point overflow 30
complex relocatability 101
definition 101, 106
term
symbol attribute reference 106
complex relocatability attribute 135
COND= in macro operand 946
Condition Code 49, 235
definition 51
retrieve/set 235
conditional assembly
conditional assembly
language 1028
definition 1028
conditional no-operation 209
definition 215, 1028
constant
address constant 149
alignment 139
all types 1000
ASCII 432
translation 433
binary 152
binary floating-point
decimal exponent 631
exponent modifier 631
length modifier 632
rounding-mode suffix 630
type DB 629
type EB 629
type LB 629
binary floating-point symbolic operand
(DMin) 630
(In) 630
(Max) 630
(Min) 630
constant (continued)
binary floating-point symbolic operand (continued)
(NaN) 630
(QNaN) 630
(SNaN) 630
bit-length 259
boundary alignment 141
class
C
character 152
type C 159
type CA 159
type CE 159
type CU 159
DBCS 435
decimal exponent 145, 577, 631, 678
decimal floating-point 676
rounding-mode suffix 677
type DD 676
type ED 676
type LD 676
decimal floating-point symbolic operand
(DMin) 676
(In) 676
(Max) 676
(Min) 676
(NaN) 676
(QNaN) 676
(SNaN) 676
duplication factor 143
embedded blanks 149, 152
exponent modifier 146, 580, 631, 678
fixed-point binary 148, 149
unsigned 149
floating-point
summary 728
hexadecimal 152
hexadecimal floating-point 577, 582
decimal exponent 578
exponent modifier 580
length modifier 579
padding 579
rounding mode suffix 582
scale modifier 579
truncation 579
type D 577
type DH 577
type E 577
type EH 577
type L 577
type LH 577
type LQ 581
hexadecimal floating-point symbolic operand
(DMin) 582
(Max) 582
(Min) 582
length 139
length attribute 145
length modifier 142
literal 156
location-counter dependent 174
constant (continued)
multiple values 144
nominal value 139
offset 825
Q-type 825
packed decimal 461
padding 154
program modifier 140
Q-type 825
rounding-mode suffix
summary 728
S-type 151
scaled fixed-point binary 545
type 139
type A 149
type AD 159
type B 152
type C 152
ASCII characters 159
EBCDIC characters 152
Unicode characters 159
type CA 159
type CE 159
type CU 159
type D 554
D machine instruction 274, 275
DAT 69
See also address translation
Dynamic Address Translation 69
data
access method 949
access technique 951
BDW 954
BLKSIZE 953
block descriptor word 954
blocked records 953
FREEPOOL macro 955
data
access method 949
access technique 951
BDW 954
BLKSIZE 953
block descriptor word 954
blocked records 953
FREEPOOL macro 955
Data Control Block 952
Data Definition Name 948
Data Set Name 947
direct access 956
DSName 947
DSORG 952
EXLST 953
free pool 954
Job File Control Block 948
data (continued)
LRECL 953
MACRF 952
Partitioned Organization 952
QSAM 951, 952
RDW 954
RECFM 953
record descriptor word 954
record formats 954
sequential access 951, 956
undefined length records 953
variable length records 953
VSAM 956
Data Control Block 948
Data Exception Code 637
binary floating-point
divide by zero 637
inexact 637
invalid operation 637
underflow 637
decimal floating-point
divide by zero 685
inexact 685
instruction availability 685
invalid operation 685
quantum exception 685
underflow 685
data groups
decimal floating-point 712
data structure
array 894
B-tree 926
doubly-linked list 919
dSECT 859
free storage list 915
hash table 927
list 913
mapping identical structures 880
mapping with dSECT 859
queue 919
stack 908, 910
tree 922
tree search 926
DBCS 433
constant 435
continuation rules 436
self-defining term 435
shift-in character 433
shift-out character 433
ward 434
DBCS assembler option 435
DC assembler instruction 139
DC statement 140
alignment 148
operands 140
delimiters 140
duplication factor 140
modifiers 140
nominal value 140
type 140
DCB 948
DCB macro instruction 952
DBS 952
DCB
MACRF 952
DCB macro instruction (continued)
Partitioned Organization
library member 952
DCBD macro instruction 955
IHADCB dummy section 955
DCBE macro instruction 956
DD machine instruction 590
DDB machine instruction 646
DDBR machine instruction 646
DDR machine instruction 590
DDTR machine instruction 687
DE machine instruction 590
DEB machine instruction 646
DEBR machine instruction 646
decimal data exception 478
definition 1028
decimal divide exception 60, 483
definition 1028
decimal exponent 145
definition 147, 1028
fixed-point binary
type F 148
type FD 148
type H 148
type HD 148
in binary floating-point
constant 631
in decimal floating-point
constant 631
in fixed-point binary constant 631
in hexadecimal floating-point constant 631
decimal floating-point
addition/subtraction 689
binary-significand format 716
characteristic 674
coefficient 673
cohort 669
combination field 674
calculate and signal 691
compare biased exponent 692
comparison 691
conceptual representation 669
constant 676
decimal exponent 676
decimal floating-point 678
decimal floating-point to
integer 694
decimal floating-point to
decimal floating-point
convert BCD to declet 672
correct decimal floating-point to
integer 694
correct decimal floating-point to
signed decimal 696
convert decimal floating-point to
signed decimal 696
correct decimal floating-point to
unsigned decimal 697
correct decimal floating-point to
unsigned decimal 697
correct declet to BCD 672
correct integer to decimal
floating-point 693
correct signed decimal to
decimal floating-point 696
correct to binary floating-point and
hexadecimal floating-point 729
decimal floating-point (continued)
convert unsigned packed decimal
to decimal floating-point 697
data classes
infinity 679
normal 679
QNaN 679
SNaN 679
subnormal 679
zero 679
data encoding 671
data formats 673
data groups 712
infinity or NaN 712
normal or subnormal, extreme
exponent 712
normal, non-extreme exponent, normal,
non-extreme exponent,
nonzero leftmost digit 712
normal, non-extreme exponent,
zero leftmost digit 712
zero, extreme exponent 712
zero, non-extreme exponent 712
declet 671
definition 1028
division 689
extract biased exponent 705
extract significant 706
floating-point integer 702
infinity 674
insert biased exponent 705
lengthening instructions 702
multiplication 688
NaN (Not a Number) 674
overview
exceptions 684
preferred encoding 672
preferred quantum 682
quantize 708
quantum 670
quantum exception 684
redundant representations 669
representation 673
options 668
properties 675
reround 710
rounding 681
rounding instructions 703
set rounding mode 704
shift significant 707
sign zero 735
significance of zero 735
test data class 679
test data group 712
ulp (unit in the last place) 670
zero 674
decimal overflow exception 60, 1028
definition 1028
decimal specification exception 481
definition 1028
declet 671
definition 724, 1028
defined symbol
definition 97, 1028
definition
null byte 1034
numeric digit 1034
OBJ 852
object code 85, 1034
object module 85, 852, 1034
offset 1034
ones’ complement representation 41, 1034
opcode 117, 1034
operand 85, 1034
operand order dependence 1034
operation code 62, 117, 1034
operator 1035
OR operation 299, 1035
Ordinary USING 891, 1035
ORG extended syntax 177, 1035
origin 85, 1035
overflow 41, 1035
packing 160, 1035
parameter 774, 1035
parameterization 177, 1035
pattern character 1035
payload 724, 1035
pipeline 216, 1035
PM 1035
post-normalization 572, 1035
postfix notation 931, 1035
postorder tree traversal 931, 1035
pre-normalization 572, 1035
preferred quantum 724, 1035
preferred exponent 724, 1035
pre-normalization 572, 1035
preorder tree traversal 931, 1035
PRINTLIN macro instruction 1010
PRINTOUT macro instruction 1012
problem state 51, 1035
program interruption 1035
program length 117, 1035
program linking 852
Program Loader 85, 1035
Program Mask 62, 1035
program object 852
Program Status Word 51, 1035
pseudo-register 852, 1035
Q-type address constant 853, 1035
qualified symbol 891, 1035
qualified symbol 891, 1035
quantum 724, 1036
queue 930, 1036
quotient 284, 1036
R(r+1) 1036
R(r[i]) 1036
radix 559, 1036
radix-complement representation 41, 1036
radix-complement representation 41, 1036
real address 71, 1036
reference control section 852, 1036
relative address 315, 1036
relocatable 97, 1036
relocate 852, 1036
relocating loader 852, 1036
relocation 85, 97, 852, 1036
relocation dictionary 851
remainder 284, 1036
return address 774, 1036
return code 774, 1036
RMODE 853
rotation shift 261, 1036
rounding digit 572, 1036
rounding mode 665, 1036
rounding modifier 665, 1036
rounding-mode suffix 622, 1036
row order 930, 1037
row-major order 1037
RSECT 1037
SBCS 1037
section 852, 1037
segment 852
self-defining term 97, 1037
Shift-1n 1037
Shift-Out 1037
sign extension 205, 1037
sign-magnitude representation 41, 1037
significance exception 622, 1037
significance indicator 1037
significance starter 1037
significant 559, 1037
simple relocatability 106, 1037
Single-Byte Character Set 1037
SNaN 665, 1037
space 17
special value 665, 1037
stack 930, 1037
statement 85, 1037
statement field 85, 1037
status flag 664, 1037
store operation 285, 1037
subtrahend 238, 1037
supervisor state 51, 1037
symbol 97, 1038
symbol attribute 97, 1038
symbol attribute reference 106, 1038
Symbol Table 136, 1038
table 930, 1038
target instruction 1038
term 106, 1038
text 852, 1038
true decimal addition 1038
truncation 160, 1038
two’s complement 1038
two’s complement representation 41, 1038
type extension 160, 1038
UCS 1038
Unicode 1038
Unicode numeric character 1038
Unicode Transformation Format 1038
definition (continued)
  Universal Character Set 1038
  unnormalized add/subtract 622, 1038
  unsigned 12-bit displacement 71
  USING assembler instruction 135, 1038
  USING Table 135, 1038
  UTF 1038
  V-type address constant 853
  virtual address 71, 1038
  virtual origin 930, 1038
  XOR operation 299, 1038
  zero duplication factor 177, 1038
  zero extension 205, 1038
  zone digit 1038, 1039
denormalization 634
  definition 572, 1028
denormalized numbers 626
  binary floating-point 634
densely packed decimal
definition 724, 1029
dependent USING 869, 889
  anchor 1029
  complex structures 869
  definition 891, 1029
  DROP assembler instruction 874
  DER machine instruction 590
  DIDBR machine instruction 656
  DIEBR machine instruction 656
digit selector 526
  definition 1029
digit selector and significance
  starter 526
  definition 1037
diminished radix-complement representation 26
  definition 41, 1029
discontinuity
  Location Counter 794
displacement 64
  20-bit 302
  addressing halfword 1029
  definition 71, 1029
  unsigned 12-bit 64
  dividend
  binary division
    by shifting 253
    definition 284, 1029
    fixed-point binary division 274
    packed decimal 483
division
  arithmetic 275
  binary floating-point 646
decimal floating-point 689
double-length 275
  fixed-point 274
  fixed-point binary process 280
  Fixed-Point Divide Exception 274
  floating-point 564
  hexadecimal floating-point 590
  logical 279
  packed decimal 483, 500
  register pair 274
division (continued)
  single-length 278
divisor
  definition 284, 1029
  fixed-point binary division 274
  packed decimal 483
  DL machine instruction 274, 279
  DLG machine instruction 274, 279
  DLGR machine instruction 274, 279
  DLR machine instruction 274, 279
double-byte EBCDIC 433
  shift-in 433
  shift-out 433
  word 434
double-ended queue
  definition 1029
doubleword 46, 179
doubly-linked list 919
  definition 930, 1029
dp machine instruction 489, 500
  DP definition 724, 1029
  DR machine instruction 274, 275
drop assembler instruction 130,
  867, 874, 890
definition 135, 1029
dependent USING 874, 890
  labeled dependent USING 890
  labeled USING 890
  ordinary USING 130, 890
  summary 890
ds assembler instruction 161
dsect assembler instruction 789,
  856, 858
  address resolution 858
  as External Dummy Section 824
  DCBD 955
  definition 891, 1029
  EPIE 960
  Location Counter 857
  multiple data structures 859
  named in Q-type address
  constant 824
  relocation attribute 857
  DSG machine instruction 274, 275
dsgf machine instruction 275
dsgfr machine instruction 275
dsg machine instruction 274, 275
  Dummy Control Section
  See DSECT assembler instruction
dummy external section 1030
  DUMPOUT macro instruction 1006
  definition 1012
  description 1006
duplicate definition 125
duplication factor 140
default 140
definition 147, 1029
dxb machine instruction 646
dxc 636
  dx assembler instruction 789
  dxr machine instruction 590
dxtr machine instruction 687
dxtra machine instruction 687
E
  EBCDIC 430, 433
  C-type constants 152
code pages 430
definition 97, 1029
double-byte 433
  in character self-defining terms 88
table 998
  ED machine instruction 522, 528
ingering 526
  flow diagram 536
  overview 526
  pattern 526
  process 529
  zoned digit 536
  EDKMK machine instruction 522,
  533
  EEITR machine instruction 705
  EEXTR machine instruction 705
  Effective Address 64
  24-bit addressing mode 307
  31-bit addressing mode 307
  64-bit addressing mode 307
  definition 71, 1029
  relative-immediate 304
  signed 20-bit displacement 302
  unsigned 12-bit displacement 302
  Effective Address Register 64
definition 71, 1029
  EFPC machine instruction 638
element
  definition 852
  Encoded length 368
definition 117, 1029
  Length Specification Byte 368
  machine length 368
dend column 77
  END record in object module 818
  ENTRY assembler instruction 807,
  1030
  entry point 751
  definition 774, 1029
  entry point identifier 763
  definition 774, 1029
  EPIE
  See Program Interruption Control
  Area
  EPIE
  See Program Interruption Element
  EQU assembler instruction 95, 164
  extended syntax 168, 1029
definition 177
  ESD record in object module 817
  CM symbol type 812
  CQ symbol type 812
  ER symbol type 812
  LD symbol type 812
  PC symbol type 812
  PQ symbol type 812
  SD symbol type 812
  SQ symbol type 812
  WX symbol type 812
  XD symbol type 812
  ESDID 804
ESDTR machine instruction 706
ESPIE macro instruction 958
program interruption exit 958
ESTAE macro instruction 962
recovery routine 962
retry routine 962
ESTAE macro instruction 962, 963
ESTAEX macro instruction 962
REXTR machine instruction 706
EX machine instruction 390
exception 59
binary floating-point 636
divide by zero 635
exponent overflow 635
inexact result 635
invalid operation 635
signaling NaN 628
decimal floating-point
divide by zero 685
inexact 685
instruction availability 685
invalid operation 685
quantum 684, 685
underflow 685
hexadecimal floating-point
division by zero 590
exponent overflow 589
exponent underflow 589
lost significance 594
exception action
binary floating-point 638
exponent overflow 639
exponent underflow 639
inexact result 639
invalid operation 638
exception condition 60
definition 62, 1029
interruption if enabled 60
executable control section 789
CSECT 789
definition 852, 1029
RSECT 789
START 789
execute exception 59
execute instructions 390
execution time 76
address 94
definition 85, 1030
explicit address 111, 112, 370
definition 117, 1030
explicit length 115, 370
definition 117, 1030
in constants 142
exponent
binary floating-point 626
decimal floating-point 674
definition 559, 1030
hexadecimal floating-point 573
exponent modifier 145
binary floating-point constant 631
decimal floating-point
custom 678
definition 147, 1030
exponent modifier (continued)
hexadecimal floating-point
custom 580
exponent overflow 569
binary floating-point 636
definition 572, 1030
hexadecimal floating-point 589
exponent underflow 569
binary floating-point 636
definition 572, 1030
hexadecimal floating-point 589
expression 99
absolute 101
complexly relocatable 101
definition 106, 1030
evaluation 100, 105
definition 106
factor 105
operator
− 99
/ 99
* 99
+ 99
unary − 99
unary + 99
operator precedence 100
paired terms 101
parentheses 99
primary 105
products 100
quotients 100
relocatable terms 100
simply relocatable 101
term 106
unpaired term 101
EXRL machine instruction 390
extended mnemonic 212
B 212
BE 213
BER 213
BH 213
BHR 213
BL 213
BLR 213
BM 213
BMR 213
BNE 213
BNE 213
BNER 213
BNH 212
BNHR 212
BNL 212
BNLR 212
BNM 212
BNMR 212
BNO 212
BNOR 212
BNP 212
BNPR 212
BNZ 213
BNZR 213
BO 213
BOR 213
BP 213
BPR 213
BR 212
extended mnemonic (continued)
BRC 331
BRE 331
BREL 331
BRH 331
BRHL 331
BRL 331
BRLL 331
BRM 331
BRML 331
BRNE 331
BRNEL 331
BRNH 331
BRNH 331
BRNLHL 331
BRNL 331
BRNLL 331
BRNM 331
BRNML 331
BRNO 331
BRNOL 331
BRNP 331
BRNP 331
BRNPL 331
BRNZ 331
BRNZ 331
BRNZL 331
BRO 331
BROL 331
BRP 331
BRPL 331
BRU 331
BRUL 331
BRZ 331
BRZL 331
BZ 213
BZR 213
definition 215, 1030
J 331
JC 331
JCT 335
JCTG 335
JE 331
JH 331
JL 331
JLC 331
JLE 331
JLH 331
JLL 331
JLM 331
JLNE 331
JLNE 331
JLH 331
JLHL 331
JLNL 331
JLNM 331
JLNO 331
JLNO 331
JLNP 331
JLNZ 331
JLO 331
JLP 331
JLU 331
JLZ 331
JM 331
JNE 331
JN 331
JNL 331
JNM 331
JNO 331
JNO 331
Index 1263
extended mnemonic (continued)
JNOP 331
JNP 331
JNZ 331
JO 331
JP 331
jump instructions 331
JXH 344
JXHG 344
JXLE 344
JXLEG 344
JZ 331
NOP 208, 213
NOPR 208, 213
extended save area conventions 759
external dummy section 789
definition 852, 1035
External Dummy Section.
definition 1030
external symbol 804, 1030
ALIAS assembler
instruction 1030
class name 1030
COM 804
common section 1030
control section name 1030
CSECT 804
definition 1030
DSECT
named in Q-type address const-
ant 824
DSECT assembler
instruction 804
dummy external section 1030
DXD 1030
DXD assembler instruction 804
ENTRY 804
ENTRY assembler
instruction 1030
EXTRN 804
EXTRN statement 1030
pseudo register 1030
renaming via ALIAS
statement 1030
RSECT 804
START 804
WXTRN 804
WXTRN statement 1030
External Symbol Dictionary 95
definition 851, 1030
ESDID 804
Owning ID 804
relocation attribute 811
extreme exponent
binary floating-point 635
decimal floating-point 685
definition 724, 1030
hexadecimal floating-point 589
EXTRN assembler instruction 804,
806
difference from WXTRN 806
EXTRN statement 1030

F
F-format records 953
FIDBR machine instruction 655
FIDR machine instruction 612
FIDTR machine instruction 702
FIEBR machine instruction 655
field separator 526
definition 1030
FIER machine instruction 612
fill character 527
definition 1030
FIXBR machine instruction 655
fixed-length records 953, 954
fixed-point binary
arithmetic division 275
compare instructions 233
comparison 223
divide exception 60
division 274
double-length division 275
double-length multiplication 265
logical division 279
logical multiplication 270
mixed integer-fraction represen-
tation 544
multiplication 264
shifting 252
signed multiplication 265
single-length division 278
single-length multiplication 267
fixed-point overflow 30
binary complementation 30
two’s complement 33
fixed-point overflow exception 59
FIXR machine instruction 612
FIXTR machine instruction 702
flag bit
Floating-Point Control
Register 636
floating-point
as rational numbers 550
binary 1027
constant
type D 554
type DB 554
type DD 554
type DH 581, 554
type E 554
type EB 554
type ED 554
type EH 581, 554
type L 554
type LB 554
type LD 554
type LH 581, 554
type LQ 581
constants summary 728
convert among types 729
decimal 1028
definition 559, 1030
exceptions summary 727
GPR-FPR copying
instructions 557
load zero instructions 556
floating-point (continued)
MaxReal 569
MinReal 569
overview 548, 730
addition/subtraction 565
base 548
bias 571
characteristic 571
division 564
exponent 548
exponent overflow 569
exponent representation 549
exponent sign 549
exponent underflow 569
exponent width 548
FP(r,p) 730
FPF(r,p) 550
FPI(r,p) 550
guard digit 562
multiplication 560
normalization 560
post-normalization 560
pre-normalization 561
radix 548
representation 548
rounding 550
rounding digit 562
significand 548
properties summary 727
real vs. realistic arithmetic 731
representation examples 736
representation summary 725
representation-independent
instructions 555, 686
rounding-mode suffix
summary 728
sign-copying instructions 557
summary 725
ulp (unit in the last place) 568
z System
base 10 551
base 16 551
base 2 551
floating-point register
pairs 552
floating-point registers 551
zero behavior 734
Floating-Point Control
Register 636
binary floating-point 636
binary rounding mode 637
decimal floating-point 687, 704
decimal rounding mode 705
DXC 636
instructions 637
floating-point register 48, 551
floating-point summary
constant rounding-mode
suffix 728
constants 728
extceptions 727
properties 727
representations 725
floating-point system FP(r,p) 550
definition 559, 1030
floating-point system FPF(r,p) 550
floating-point system FPF(r,p) (continued)
definition 559, 1030
floating-point system FPI(r,p) 550
definition 559, 1030
FPCR
definition 1030
FPR
See also floating-point register
definition 51, 1030
fraction conversion
between bases 541
definition 930, 1030
FREEMAIN macro instruction 943, 945, 947
FREEPOOL macro instruction 955
fullword 46

G
general purpose register
definition 1031
general register
definition 51, 1031
pair 48
register halves 180
generalized object file format
definition 1031
object module 1031
GET macro instruction 950
GETMAIN macro instruction 943, 947
GGn 193
definition 204, 1031
GOFF
See generalized object file format
GOFF object module
definition 852
GOFF option
definition 1031
GPR
See general purpose register
See general register
gradual underflow 634
graphic data type
See also DBCS
definition 1031
GRn 181, 193
definition 204, 1031
guard digit 562
definition 572, 1031

H
halfword 46, 179
halfword operands 184
halve instructions
hexadecimal floating-point 591
hash function 927
definition 931, 1031
hash table 927, 928
definition 931, 1031
HDR machine instruction 591
HER machine instruction 591
hex 21
See also hexadecimal
abbreviation for hexadecimal 21
hexadecimal
definition 41, 1031
digits 20
hexadecimal floating-point 573
addition/subtraction 593
no pre-normalization 593
characteristic 573
comparison 602
constant 577
conversion instructions
to/from fixed binary 606
convert to binary floating-point and
decimal floating-point 729
data representation 573
division 590
exponent 573
exponent overflow 589
exponent underflow 589, 599
halve 591
history 616
integer values 611
lengthening instructions 605
lost significance exception 594
more precise rounding 582
multiplication 586
multiply and add/subtract 614
normalized addition 592
normalized subtraction 592
post-normalization 586, 590
pre-normalization 586, 590
pseudo-zero 734
remainder 611
rounding instructions 603
square root 613
subtype H 582
symbolic operand
(DMin) 582
(Max) 582
(Min) 582
truncation in conversion 607
unnormalized addition 595
unnormalized representation 575
unnormalized subtraction 595
hexadecimal floating-point divide 60
hexadecimal floating-point exponent
overflow 60
hexadecimal floating-point exponent
underflow 60
hexadecimal floating-point lost significance 60
High Level Assembler
definition 1031
HLASAM
definition 16, 1031
ICM machine instruction 187
ICMH machine instruction 192
IEDTR machine instruction 705
IEXTR machine instruction 705
IHADCBy dummy section 955
IHADCBy macro instruction 955
IHAEPBy dummy section 960
IHAEPBy macro instruction 960
IIHF machine instruction 319
IIIH machine instruction 319
IIHL machine instruction 319
IIHF machine instruction 319
IIHL machine instruction 319
ILC
See also Instruction Length Code
definition 1031
immediate operand
add 322
arithmetic load 319
compare 323
logical AND 324, 356
logical insert 319
logical load 319, 322
logical OR 324, 356
logical XOR 325, 356
move 355
multiply 323
subtract 322
test 358
implied address 111, 112
absolute 133
base register zero 133
definition 117, 1031
implied length 115, 370
definition 117, 1031
in constants 142
in SS-type instructions 370
index 65
definition 71, 1031
index register
definition 1032
general purpose register 1032
index register specification
digit 1032
index register specification digit 65
definition 71, 1032
indexed Effective Address 66
indexing 65
definition 71, 1032
operations 334
inexact result
binary floating-point 636
decimal floating-point 684
infinity
binary floating-point 628
decimal floating-point 674
infix notation 909
definition 931, 1032
inorder tree traversal 926
definition 931, 1032
input/output
access technique
direct 951
indexed 951
sequential 951
input/output (continued)
CLOSE macro 955
FREEPOOL macro 955
GET macro 950
OPEN macro 954
PUT macro 952
QSAM
locate mode 952
move mode 952
sequential access
basic 951
BSAM 951
QSAM 951
queued 951
VSAM 956
insert 186
character 186
definition 204, 1032
logical-immediate 319
insert under mask
under mask 187
instruction
addressing halfword 55
basic types
RR 53
RS 53
RX 53
SI 53
SS 53
cycle 52
halfword alignment 52
Instruction Address 52
Instruction Length Code 55
instruction register 52
length 52
modal 308
operand address 55
operation code 54
operation code examples 56
partial completion 404
pipeline 209
Instruction Address 49, 52
definition 1032
updated 52
vs. location counter 94
instruction cycle
decode 53
definition 61
execute 53
definition 61
fetch 52
definition 61
with interruptions 58
instruction format
BRC 330
BRCL 330
RI-type 318
RIL-type 318
RRE-type 194, 416
RFF-type 443
RS-type 183, 188
RS-type shift 243
RSY-type 192, 412
RX-type 181
RXY-type 192
instruction format (continued)
SI-type 354
SIY-type 354
SS-type, single-length 368
SS-type, two-length 463
Instruction Length Code 49, 55
definition 51, 62, 1032
instruction operation
CLCL 408
CLCLE 414
CLST 420
EX 396
EXRL 390
MVC 374
MVCLE 406
MVCL 412
MVST 418
SRST 417
TR 380
TRTR 388
instruction register 52
definition 61, 1032
integer conversion
between bases 21
internal symbol
Assembler Language 1032
definition 1032
SYSADATA file 1032
internal symbol dictionary
See also symbol table
definition 1032
interruptible
definition 1032
interruptible instruction 404
interrupt 57
asynchronous 58
binary floating-point division by
zero 635
binary floating-point exponent
overflow 635
binary floating-point exponent
underflow 635
binary floating-point inexact
result 635
binary floating-point invalid opera-
tion 635
binary floating-point rounding
instructions 651
classes 58
code 58
data exception 478
decimal divide 60, 483
decimal floating-point division by
zero 684
decimal floating-point exponent
overflow 684
decimal floating-point exponent
underflow 684
decimal floating-point inexact
result 684
decimal floating-point invalid oper-
atation 684
decimal floating-point quantum
exception 684
interrupt (continued)
decimal floating-point quantum
exception 684
decimal overflow 60, 478
definition 62, 1032
disabled 58
enabled 58
ESPIE macro 958
exception 60
execute 390
execute exception 59
fixed-point divide 60
fixed-point overflow 59
hexadecimal floating-point
divide 60, 590
hexadecimal floating-point exponent
overflow 60, 589, 603
hexadecimal floating-point exponent
underflow 60, 589
hexadecimal floating-point lost sig-
nificance 60, 594
hexadecimal floating-point square
root 613
invalid operation 59
involuntary 58
maskable 959
packed decimal division 483
packed decimal
multiplication 481
PIE 958
privileged operation 59
program 59, 959
program interruption exit 958
Program Mask 60
specification exception 481, 483
SPIE macro 958
SVC 936
synchronous 59
voluntary 59
interrupt code 58
1 (invalid operation) 59
10 (decimal overflow) 60, 478
11 (decimal divide) 60, 483
12 (hexadecimal floating-point
exponent overflow) 589, 60, 603
13 (hexadecimal floating-point
exponent underflow) 589, 60
14 (hexadecimal floating-point
lost significance) 60, 594
15 (hexadecimal floating-point
divide) 60, 590
2 (privileged operation) 59
29 (hexadecimal floating-point
square root) 613
3 (execute exception) 59, 390
4 (access exception) 59
5 (addressing) 59
6 (specification) 59, 481, 483
7 (binary floating-point
exception) 637
7 (data exception) 59, 478
7 (decimal floating-point
exception) 685
8 (fixed-point overflow) 59
9 (fixed-point divide) 60, 274

1266
Assembler Language Programming for IBM z System™ Servers Version 1.00
interruption code (continued) definition 62, 1031
invalid operation exception 59 invariant EBCDIC character definition 1032
IPM machine instruction 235
IR
See also Instruction Register definition 1032

J
J extended mnemonic 331
JCe extended mnemonic 331
JCL 948
JCT extended mnemonic 335
JCTG extended mnemonic 335
JE extended mnemonic 331
JFCEB 948
JH extended mnemonic 331
JL extended mnemonic 331
JLC extended mnemonic 331
JLE extended mnemonic 331
JLH extended mnemonic 331
JLM extended mnemonic 331
JLP extended mnemonic 331
JLU extended mnemonic 331
JLZ extended mnemonic 331
JM extended mnemonic 331
JNE extended mnemonic 331
JNH extended mnemonic 331
JNL extended mnemonic 331
JNM extended mnemonic 331
JNO extended mnemonic 331
JNOP extended mnemonic 331
JNP extended mnemonic 331
JNZ extended mnemonic 331
JO extended mnemonic 331
Job Control Language 83, 948 definition 86, 1032
Job File Control Block 948
JP extended mnemonic 331
jump extended mnemonic 331
jump instructions 331
JXH extended mnemonic 344
JXHG extended mnemonic 344
JXLE extended mnemonic 344
JXLEG extended mnemonic 344
JZ extended mnemonic 331

K
KDB machine instruction 650
KDBR machine instruction 650
KDTR machine instruction 692
KEB machine instruction 650
KEBR machine instruction 650
KDVR machine instruction 650
KXTR machine instruction 692
Length Expression (continued)
explicit 369
implied 369
length field 115, 463
explicit 115, 463
implied 115, 463
single-length instruction 115
two-length instruction 116
length modifier 141, 259
binary floating-point constant 632
bit 259
byte 142, 259
decimal floating-point constant 678
definition 147, 1032
fixed-point binary 142
hexadecimal floating-point constant 579
packed decimal constant 461
zoned decimal constant 458
Length Specification Byte 368, 373
definition 1033
relation to Length Expression 373
Length Specification Digit definition 1033
lengthening instructions
binary floating-point 651
decimal floating-point 702
hexadecimal floating-point 605
LER machine instruction 556, 686
LEXBR machine instruction 651
LEXR machine instruction 603
LEY machine instruction 555
LFAS machine instruction 638
LFPC machine instruction 638
LG machine instruction 192
LGB machine instruction 198
LGBR machine instruction 198
LGD machine instruction 557, 686
LGF machine instruction 196
LGFI machine instruction 320
LGF machine instruction 196
LGHL machine instruction 192
LGH machine instruction 320
LGR machine instruction 195
LH machine instruction 184
LHI machine instruction 320
LHR machine instruction 189
library
load module 832
PDS 831
Lilliput 448
linear subscript 897
definition 930, 1033
linkage 743
linkage convention 751
argument 751
argument address list 752
argument passing 752
32-bit addresses 752
assisted linkage 770, 833
calling point identifier 764
definition 774, 1033
entry point 751
entry point identifier 763

Index 1267
linkage convention (continued)
parameter 751
return address 751
return code 765
return flag 764
RETURN macro-instruction 767
save area 756
SAVE macro-instruction 763
subroutine 751
V-type address constant 806
variable-length argument list 753
linked list 913
See also list 930, 1033
linker 75
Binder 835
boundary alignment 141, 795
common sections 822
Composite External Symbol Dictionary 821
collection sections 788
definition 85, 1033
library search 806
load module 831
options 969
linking
See program linking
linking loader
definition 852, 1033
list 913
as an array 894
definition 930, 1033
deletion 914
doubly-linked 919
insertion 913
literal 156
as a term 98
definition 156, 1033
in multiple control sections 794, 840
in Private Code section 812
rules 156
special symbol 156
literal pool 158
definition 160, 1033
Little-Endian 448
LLC machine instruction 198
LLCR machine instruction 198
LLGC machine instruction 198
LLGCR machine instruction 198
LLGF machine instruction 198
LLGH machine instruction 198
LLGHR machine instruction 198
LLG machine instruction 198, 849
LLGTR machine instruction 198, 849
LLH machine instruction 198
LLHR machine instruction 198
LLHPF machine instruction 320
LLHH machine instruction 320
LLHL machine instruction 320
LLIFP machine instruction 320
LLILH machine instruction 320
LLILL machine instruction 320
LM machine instruction 182
LMG machine instruction 192
LMH machine instruction 192
LNDBR machine instruction 642
LNDFR machine instruction 556
LNDTR machine instruction 701
LNEBR machine instruction 642
LNFR machine instruction 196
LNFR machine instruction 195
load immediate
arithmetic 319
logical 319
with ILF 319
load module 75
CESD record 832
creation 75
CTL/RLD record 832
definition 85, 852, 1033
EOM record 832
IDR record 832
loaded into memory 75
Partitioned Data Set 832
PDS 832
RLD record 832
SYM record 832
TEXT record 832
load operation 181
location 94
assembly time 94, 1033
base location 1027
definition 1033
execution time address 1033
location counter 1033
vs. address 94
location counter 94
definition 97, 1033
discontinuity 794
Location Counter values and LOCTR 796
reference 123
symbol definition 125
threading 795
vs. Instruction Address 94
location counter reference 99, 123
location vs. address 94
assembly vs. execution time 94
LOCTR group
logical
AND operation 289, 290
definition 299
Boolean 288
differences vs. arithmetic 39
operations 288
OR operation 289, 291
definition 299
XOR operation 289, 292
definition 299
logical arithmetic 225
definition 238, 1033
logical division 279
definition 284, 1033
logical multiplication 270
definition 284, 1033
logical representation 39
definition 41, 1033
logical shift 243
definition 261, 1033
double-length 248
process 243
single-length 245
LPDBR machine instruction 642
LPDFR machine instruction 556
LPDR machine instruction 584
LPDTR machine instruction 701
LPEBR machine instruction 642
LPER machine instruction 584
LPGF machine instruction 196
LPGR machine instruction 195
LPR machine instruction 189
LPXR machine instruction 584
LR machine instruction 189
LRDR machine instruction 603
LRER machine instruction 603
LRV machine instruction 449
LRVG machine instruction 449
LRVGR machine instruction 449
LRVH machine instruction 449
LRV machine instruction 449
LT machine instruction 195
LTDBR machine instruction 642
LTDR machine instruction 584
LTDT machine instruction 701
LTEBR machine instruction 642
LTE machine instruction 584
LTG machine instruction 195
LTGFR machine instruction 196
LTGR machine instruction 195
LTORG
in multiple control sections 794
LTORG assembler instruction 158
LTR machine instruction 189
LTXBR machine instruction 642
LTXR machine instruction 584
LXD machine instruction 605
LXDBR machine instruction 651
LXDR machine instruction 605
LXDTR machine instruction 701, 702
LXE machine instruction 605
LXEB machine instruction 651
LXEBR machine instruction 651
LXER machine instruction 605
LXR machine instruction 556, 686
LZD machine instruction 556
LZDR machine instruction 556
LZR machine instruction 556
LZXR machine instruction 556

M
M machine instruction 264, 265
machine instruction A 218
<table>
<thead>
<tr>
<th>Machine Instruction (continued)</th>
<th>Machine Instruction (continued)</th>
<th>Machine Instruction (continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD 593</td>
<td>CDFR 606</td>
<td>CLST 416, 420</td>
</tr>
<tr>
<td>ADB 648</td>
<td>CDFBR 635</td>
<td>CP 489, 496</td>
</tr>
<tr>
<td>ADBR 648</td>
<td>CDGBR 653</td>
<td>CPSDR 587, 686</td>
</tr>
<tr>
<td>ADR 593</td>
<td>CDGR 606</td>
<td>CR 223</td>
</tr>
<tr>
<td>ADTR 687</td>
<td>CDGTR 693</td>
<td>CSDTR 696</td>
</tr>
<tr>
<td>ADTRA 687</td>
<td>CDR 602</td>
<td>CSXTR 696</td>
</tr>
<tr>
<td>AE 593</td>
<td>CDSTR 696</td>
<td>CUDR 697</td>
</tr>
<tr>
<td>AEB 648</td>
<td>CDTR 691</td>
<td>CUSE 416, 424</td>
</tr>
<tr>
<td>AEBR 648</td>
<td>CDUTR 697</td>
<td>CUTFU 447</td>
</tr>
<tr>
<td>AER 593</td>
<td>CDXT 699</td>
<td>CUUTF 447</td>
</tr>
<tr>
<td>AFI 322</td>
<td>CDZT 699</td>
<td>CUXTR 697</td>
</tr>
<tr>
<td>AG 218</td>
<td>CE 602</td>
<td>CVB 522, 524</td>
</tr>
<tr>
<td>AGF 231</td>
<td>CEB 649</td>
<td>CVBG 522, 524</td>
</tr>
<tr>
<td>AGFI 322</td>
<td>CEBR 649</td>
<td>CVBY 522, 524</td>
</tr>
<tr>
<td>AGFR 231</td>
<td>CEDTR 692</td>
<td>CVD 522</td>
</tr>
<tr>
<td>AGHI 322</td>
<td>CEFBR 653</td>
<td>CVDG 522, 523</td>
</tr>
<tr>
<td>AGR 218</td>
<td>CEFR 606</td>
<td>CVDY 522</td>
</tr>
<tr>
<td>AH 218</td>
<td>CEGBR 653</td>
<td>CXBR 649</td>
</tr>
<tr>
<td>AHI 322</td>
<td>CEGR 606</td>
<td>CXXFR 653</td>
</tr>
<tr>
<td>AL 225</td>
<td>CER 602</td>
<td>CXFR 606</td>
</tr>
<tr>
<td>ALC 230</td>
<td>CEXTR 692</td>
<td>CXGR 606</td>
</tr>
<tr>
<td>ALCG 230</td>
<td>CFDBR 653</td>
<td>CXGTR 693</td>
</tr>
<tr>
<td>ALCGR 230</td>
<td>CFDTR 693</td>
<td>CXGTRA 693</td>
</tr>
<tr>
<td>ALCR 230</td>
<td>CFDTR 693</td>
<td>CXR 602</td>
</tr>
<tr>
<td>ALFI 322</td>
<td>CFXBR 653</td>
<td>CXST 696</td>
</tr>
<tr>
<td>ALG 225</td>
<td>CFXR 606</td>
<td>CXUTR 697</td>
</tr>
<tr>
<td>ALGF 231</td>
<td>CG 223</td>
<td>CY 223</td>
</tr>
<tr>
<td>ALGFI 322</td>
<td>CGD 522</td>
<td>CZDT 699</td>
</tr>
<tr>
<td>ALGFR 231</td>
<td>CGB 522, 524</td>
<td>CZXT 699</td>
</tr>
<tr>
<td>ALGR 225</td>
<td>CGDGR 522, 523</td>
<td>D 274, 275</td>
</tr>
<tr>
<td>ALR 225</td>
<td>CGDTR 693</td>
<td>DD 590</td>
</tr>
<tr>
<td>AP 489, 493</td>
<td>CGDTRA 693</td>
<td>DDB 646</td>
</tr>
<tr>
<td>AR 218</td>
<td>CGEBR 653</td>
<td>DDR 590</td>
</tr>
<tr>
<td>AXBR 648</td>
<td>CGER 606</td>
<td>DDTR 687</td>
</tr>
<tr>
<td>AXR 593</td>
<td>CGF 231</td>
<td>DDTRA 687</td>
</tr>
<tr>
<td>AXTR 687</td>
<td>CGF 231</td>
<td>DE 590</td>
</tr>
<tr>
<td>AXTRA 687</td>
<td>CGFI 323</td>
<td>DEB 646</td>
</tr>
<tr>
<td>BAS 744</td>
<td>CGGR 231</td>
<td>DEBR 646</td>
</tr>
<tr>
<td>BASR 744</td>
<td>CGH 323</td>
<td>DER 590</td>
</tr>
<tr>
<td>BASM 844</td>
<td>CGL 223</td>
<td>DIBBR 656</td>
</tr>
<tr>
<td>BC 206, 207</td>
<td>CH 223</td>
<td>DIEBR 656</td>
</tr>
<tr>
<td>BCR 206, 207</td>
<td>CHI 323</td>
<td>DL 274, 279</td>
</tr>
<tr>
<td>BCT 335</td>
<td>CHY 223</td>
<td>DLM 274, 279</td>
</tr>
<tr>
<td>BCTG 335</td>
<td>CL 233</td>
<td>DLGR 274, 279</td>
</tr>
<tr>
<td>BCTR 335</td>
<td>CLC 367, 379</td>
<td>DLR 274, 279</td>
</tr>
<tr>
<td>BRAS 744</td>
<td>CLCL 404, 408</td>
<td>DP 489, 500</td>
</tr>
<tr>
<td>BRASL 744</td>
<td>CLCLE 404, 414</td>
<td>DR 274, 275</td>
</tr>
<tr>
<td>BRCT 335</td>
<td>CLCLU 440, 442</td>
<td>DSG 274, 275</td>
</tr>
<tr>
<td>BRCTG 335</td>
<td>CLF 323</td>
<td>DSGF 275</td>
</tr>
<tr>
<td>BRXH 342</td>
<td>CLG 233</td>
<td>DSGFR 275</td>
</tr>
<tr>
<td>BRXHJ 342</td>
<td>CLGF 233</td>
<td>DSGR 274, 275</td>
</tr>
<tr>
<td>BRXHG 342</td>
<td>CLGFI 323</td>
<td>DXBR 646</td>
</tr>
<tr>
<td>BRXLE 342</td>
<td>CLGFR 233</td>
<td>DXR 590</td>
</tr>
<tr>
<td>BRXLG 342</td>
<td>CLGR 233</td>
<td>DXTR 687</td>
</tr>
<tr>
<td>BSM 844</td>
<td>CLI 356</td>
<td>DXTRA 687</td>
</tr>
<tr>
<td>BTH 342</td>
<td>CLJY 356</td>
<td>ED 522, 528</td>
</tr>
<tr>
<td>BTH 342</td>
<td>CLM 233</td>
<td></td>
</tr>
<tr>
<td>Machine Instruction</td>
<td>Machine Instruction</td>
<td>Machine Instruction</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>EDMK 522, 533</td>
<td>LDXTR 703</td>
<td>LFGR 195</td>
</tr>
<tr>
<td>EEDTR 705</td>
<td>LDY 555</td>
<td>LFR 189</td>
</tr>
<tr>
<td>EEXTR 705</td>
<td>LE 555</td>
<td>LFXBR 542</td>
</tr>
<tr>
<td>EFPC 638</td>
<td>LEDR 603</td>
<td>LFXR 584</td>
</tr>
<tr>
<td>ESDDTR 706</td>
<td>LEDTR 703</td>
<td>LR 189</td>
</tr>
<tr>
<td>EEXTR 706</td>
<td>LER 556, 686</td>
<td>LRD 603</td>
</tr>
<tr>
<td>EX 390</td>
<td>LEXBR 651</td>
<td>LRE 603</td>
</tr>
<tr>
<td>EXRL 390</td>
<td>LEXR 603</td>
<td>LRV 449</td>
</tr>
<tr>
<td>FIDBR 655</td>
<td>LEY 555</td>
<td>LRVG 449</td>
</tr>
<tr>
<td>FIDR 612</td>
<td>LFAS 638</td>
<td>LRVGR 449</td>
</tr>
<tr>
<td>FIDTR 702</td>
<td>LFPC 638</td>
<td>LRVH 449</td>
</tr>
<tr>
<td>FIEBR 655</td>
<td>LG 192</td>
<td>LRVIR 449</td>
</tr>
<tr>
<td>FIER 612</td>
<td>LGB 198</td>
<td>LT 195</td>
</tr>
<tr>
<td>FIXBR 655</td>
<td>LGBR 198</td>
<td>LTBDR 642</td>
</tr>
<tr>
<td>FIXR 612</td>
<td>LGDR 557, 686</td>
<td>LTDR 584</td>
</tr>
<tr>
<td>FXTR 702</td>
<td>LGF 196</td>
<td>LTDTR 701</td>
</tr>
<tr>
<td>HDR 591</td>
<td>LGFI 320</td>
<td>LTEBR 642</td>
</tr>
<tr>
<td>HER 591</td>
<td>LGFR 196</td>
<td>LTER 584</td>
</tr>
<tr>
<td>IC 186</td>
<td>LGH 192</td>
<td>LTG 195</td>
</tr>
<tr>
<td>ICMA 187</td>
<td>LGHI 320</td>
<td>LGF 196</td>
</tr>
<tr>
<td>ICMAH 192</td>
<td>LGR 195</td>
<td>LGGR 195</td>
</tr>
<tr>
<td>IEEDTR 705</td>
<td>LH 184</td>
<td>LGR 195</td>
</tr>
<tr>
<td>IEXTR 705</td>
<td>LHI 320</td>
<td>LGHI 320</td>
</tr>
<tr>
<td>IIFH 319</td>
<td>LHR 189</td>
<td>LHIH 320</td>
</tr>
<tr>
<td>IHHH 319</td>
<td>LL 198</td>
<td>LLIHF 320</td>
</tr>
<tr>
<td>IILF 319</td>
<td>LLACR 198</td>
<td>LLIH 320</td>
</tr>
<tr>
<td>IILH 319</td>
<td>LLGC 198</td>
<td>LLILH 320</td>
</tr>
<tr>
<td>IILL 319</td>
<td>LLSCR 198</td>
<td>LLILL 320</td>
</tr>
<tr>
<td>IIPM 235</td>
<td>LLDF 198</td>
<td>LLL 182</td>
</tr>
<tr>
<td>KDB 650</td>
<td>LLDGR 557, 686</td>
<td>LMG 192</td>
</tr>
<tr>
<td>KDBR 650</td>
<td>LLGFI 320</td>
<td>LMIH 192</td>
</tr>
<tr>
<td>KDTR 692</td>
<td>LLGG 198</td>
<td>LMYH 192</td>
</tr>
<tr>
<td>KEB 650</td>
<td>LLGFR 198</td>
<td>LNYH 192</td>
</tr>
<tr>
<td>KEBR 650</td>
<td>LLGHR 198</td>
<td>LNYH 192</td>
</tr>
<tr>
<td>KXBR 650</td>
<td>LLGT 198, 849</td>
<td>LNYH 192</td>
</tr>
<tr>
<td>KXTR 692</td>
<td>LLGTR 198, 849</td>
<td>LNYH 192</td>
</tr>
<tr>
<td>L 181</td>
<td>LLL 198</td>
<td>LNYH 192</td>
</tr>
<tr>
<td>LA 309</td>
<td>LLL 198</td>
<td>LNYH 192</td>
</tr>
<tr>
<td>LALR 309</td>
<td>LLLH 320</td>
<td>LNYH 192</td>
</tr>
<tr>
<td>LAY 309</td>
<td>LLLIL 320</td>
<td>LNYH 192</td>
</tr>
<tr>
<td>LB 198</td>
<td>LLLJ 320</td>
<td>LNYH 192</td>
</tr>
<tr>
<td>LBR 198</td>
<td>LLLK 320</td>
<td>LNYH 192</td>
</tr>
<tr>
<td>LCBDR 642</td>
<td>LLM 182</td>
<td>LNYH 192</td>
</tr>
<tr>
<td>LCFDR 556</td>
<td>LMG 192</td>
<td>LNYH 192</td>
</tr>
<tr>
<td>LCD 584</td>
<td>LMI 192</td>
<td>LNYH 192</td>
</tr>
<tr>
<td>LCDTR 701</td>
<td>LND 642</td>
<td>LNYH 192</td>
</tr>
<tr>
<td>LCEBR 642</td>
<td>LNDXF 556</td>
<td>LNYH 192</td>
</tr>
<tr>
<td>LCER 584</td>
<td>LNDR 584</td>
<td>LNYH 192</td>
</tr>
<tr>
<td>LCGFR 196</td>
<td>LNDTR 701</td>
<td>LNYH 192</td>
</tr>
<tr>
<td>LCR 189</td>
<td>LNEBR 642</td>
<td>LNYH 192</td>
</tr>
<tr>
<td>LCXBR 642</td>
<td>LNER 584</td>
<td>LNYH 192</td>
</tr>
<tr>
<td>LCXR 584</td>
<td>LNGF 196</td>
<td>LNYH 192</td>
</tr>
<tr>
<td>LD 555</td>
<td>LNEBF 196</td>
<td>LNYH 192</td>
</tr>
<tr>
<td>LDE 605</td>
<td>LNN 189</td>
<td>LNYH 192</td>
</tr>
<tr>
<td>LDEB 651</td>
<td>LNXBR 642</td>
<td>LNYH 192</td>
</tr>
<tr>
<td>LDEBR 651</td>
<td>LNXR 584</td>
<td>LNYH 192</td>
</tr>
<tr>
<td>LDER 605</td>
<td>LP 642</td>
<td>LNYH 192</td>
</tr>
<tr>
<td>LDETR 702</td>
<td>LPDF 556</td>
<td>LNYH 192</td>
</tr>
<tr>
<td>LDGR 557, 686</td>
<td>LPDF 584</td>
<td>LNYH 192</td>
</tr>
<tr>
<td>LDR 556, 686</td>
<td>LPDF 584</td>
<td>LNYH 192</td>
</tr>
<tr>
<td>LDXBR 651</td>
<td>LPDTR 701</td>
<td>LNYH 192</td>
</tr>
<tr>
<td>LDXR 603</td>
<td>LPEBR 642</td>
<td>LNYH 192</td>
</tr>
<tr>
<td>LDY 555</td>
<td>LPGF 196</td>
<td>LNYH 192</td>
</tr>
<tr>
<td>LE 555</td>
<td>LPGFR 196</td>
<td>LNYH 192</td>
</tr>
</tbody>
</table>

1270  Assembler Language Programming for IBM z System™ Servers  Version 1.00
machine instruction (continued)
TRT 367, 385
TRTO 443
TRTR 367, 388
TRTT 443
UNPK 454, 468
UNPKA 454, 473
UNPKU 454, 473
X 288
XC 367, 378
XCBR 653
XG 288
XGR 288
XI 355
XIHF 325
XILF 325
XIY 355
XR 288
ZAP 489, 491

machine instruction statement 76
machine language 75
machine length 368
definition 117, 1033
macro argument 937
macro instruction
ABEND 942, 962
call 937
CLOSE 955
COND= argument 946
CONVERTI 84, 1003
CONVERTO 84, 1003
DCB 952
DCBD 955
DCBE 956
definition 85, 1033
DUMPOUT 84, 1006
ESPIE 958
ESTAE 962, 963
execute form 938
FREEMAIN 943, 945, 947
FREEPOOL 955
GET 950
GETMAIN 943, 947
IARV64 943
IHADCB 955
invocation 937
list form 938
MODE= argument 940
OPEN 954
PRINTLIN 84, 1002
PRINTOUT 84, 1005
PUT 952
R-form 940
READCARD 84, 1002
register arguments 940
RETURN 767
SAVE 763
SETMIP 962
SPIE 958
STAE 962
standard form 938
STORAGE 943, 946, 947

macro instruction (continued)
SYSSSTATE 941
system services 937
macro-instruction statement 76
MAD machine instruction 614
MADB machine instruction 659
MADBR machine instruction 659
MADR machine instruction 614
MAE machine instruction 614
MAEB machine instruction 659
MAEBR machine instruction 659
MAER machine instruction 614
mantissa
definition 559, 1033
mask bit
Floating-Point Control Register 636
Program Mask 235, 60
mask byte 358
mask digit 188, 194, 207
branch 207, 331
MaxReal 569
definition 572, 1034
MDB machine instruction 644
MDBR machine instruction 644
MDE machine instruction 586
MDEB machine instruction 644
MDER machine instruction 586
MDTR machine instruction 687
ME machine instruction 586
MEE machine instruction 586
MEEB machine instruction 644
MEER machine instruction 586
memory address 45
alignment 46
memory dump
ABEND macro instruction 942
DUMPOUT macro instruction 943
MER machine instruction 586
message character 526
definition 1034
MGHI machine instruction 323
MH machine instruction 264, 268
MHI machine instruction 323
millicode 50
definition 51, 1034
MinReal 569
definition 572, 1034
minuend
definition 238, 1034
ML machine instruction 264, 270
MLG machine instruction 264, 270
MLGR machine instruction 264, 270
MLR machine instruction 264, 270
mnemonic (continued)
instruction name 84, 85, 135,
1034
modal instruction 308
modifier
bit length 259
byte length 259
definition 147, 1034
explicit length 142
exponent 140
length 140
scale 140
MF machine instruction 489, 497
MR machine instruction 264, 265
MS machine instruction 264, 268
MSD machine instruction 614
MSDB machine instruction 659
MSDBR machine instruction 659
MSDR machine instruction 614
MSE machine instruction 614
MSEB machine instruction 659
MSEBR machine instruction 659
MSER machine instruction 614
MSG machine instruction 264, 268
MSGF machine instruction 264, 268
MSGFR machine instruction 264, 268
MSGR machine instruction 264, 268
MSR machine instruction 264, 268
MSY machine instruction 264, 268
multiplicand
definition 284, 1034
multiplication
binary floating-point 644
decimal floating-point 688
fixed-point binary 264
process 272
fixed-point binary double-length product 265
fixed-point binary single-length product 267
floating-point 560
hexadecimal floating-point 586
logical 270
packed decimal 497
packed decimal operand order dependence 482
register-immediate 323
signed 265
multiplier
definition 284, 1034
multiply and add/subtract
binary floating-point 659
hexadecimal floating-point 614
multiply-defined symbols 125
MVC machine instruction 367, 374
MVCIN machine instruction 367,
375
MVCL machine instruction 404, 406
MVCLE machine instruction 404,
412
MVCLU machine instruction 440,
441
MVCOS machine instruction 367
MVI machine instruction 355
MVIY machine instruction 355
MVN machine instruction 454
MVO machine instruction 489, 507
MVST machine instruction 416, 418
MVZ machine instruction 454
MXBR machine instruction 644
MXD machine instruction 586
MXDB machine instruction 644
MXDBR machine instruction 644
MXDR machine instruction 586
MXR machine instruction 586
MXTR machine instruction 687
MXTRA machine instruction 687

N

N machine instruction 288
NaN (Not a Number)
  binary floating-point 626
decimal floating-point 674
NC machine instruction 367, 378
NG machine instruction 288
NGR machine instruction 288
NI machine instruction 355
NIHF machine instruction 324
NIHL machine instruction 324
NILF machine instruction 324
NILH machine instruction 324
NIY machine instruction 355
no-operation instruction 208
  conditional 209
definition 215, 1034
NOALIGN assembler option 141
nominal value 140
definition 147, 1034
type of constant 140
non-modal instruction 308
NOP extended mnemonic 208, 213
NPR extended mnemonic 208, 213
normalization 560
definition 572, 1034
notation
  binary 19
  blank representation in examples 15
data fields 14
  hexadecimal 20
  instruction components 15
  positional 18
  space representation in examples 15
subscripts 14
NOTHREAD assembler option 796
NR machine instruction 288
null-terminated string 415
numeric digit 454
definition 1034
in packed decimal 454

O

O machine instruction 288
OBJ object module
definition 852
object code 75
definition 75
pass 2 generation 127
object module 817
creation 75
definition 85, 1034
OC machine instruction 367, 378
offset
  by ORG instruction 170
  CUSE instruction 424
definition 1034
during relocation 841
  in Q-type constant 818
MVO instruction 507
with dependent USING 871
OG machine instruction 288
OGR machine instruction 288
OI machine instruction 355
OIHF machine instruction 325
OIHL machine instruction 325
NILF machine instruction 325
NILH machine instruction 324
NIY machine instruction 355
no-operation instruction 208
  conditional 209
definition 215, 1034
OPR extended mnemonic 208, 213
normalization 560
definition 572, 1034
operand
  binary 19
  blank representation in examples 15
  data fields 14
  hexadecimal 20
  instruction components 15
  positional 18
  space representation in examples 15
subscripts 14
NOTHREAD assembler option 796
NR machine instruction 288
null-terminated string 415
numeric digit 454
definition 1034
in packed decimal 454
operator (continued)
  unary – 99
  unary + 99
option
  *PROCESS statement 1035
ACONTROL assembler instruction 1035
definition 1035
GOFF 795, 835, 840
OR machine instruction 288
OR operation 289, 299, 1035
definition 299, 1035
register-immediate 324
register-register 291
storage-immediate 356
storage-storage 378
XOR operation
definition 299
ordinary control section
See also control section
  common control section 1028
CSECT 1028
offsets fixed at assembly time 1028
positions at execution time 1028
relocation at later times 1028
RSECT 1028
ordinary symbol 91, 1032
  external 91
  internal 91
ordinary USING 122
definition 891, 1035
shortcomings 860, 865
ORG assembler instruction 169
extended syntax 170, 1035
definition 177, 1035
origin 82
definition 85, 1035
initial location 82
overflow
  binary floating-point 635
  binary floating-point rounding 651
definition 41, 1035
fixed-point binary 30, 33
hexadecimal floating-point 589
hexadecimal floating-point rounding 603
packed decimal 478
two’s complement 33
overlay 833

P

PACK machine instruction 454, 465
packed decimal
  addition process 484
  addition rules 478
  arithmetic rules 477
  comparison 496
  comparison rules 480
  constant 461
  convert to/from decimal-floating-point 696
data exception 478

Index 1273
packed decimal (continued) 483
divide exception 483
division 500
division rules 483
editing overview 526
mixed integer-fraction representation 543
move with offset 507
multiplication 497
multiplication data exception 481
multiplication rules 481
operand order dependence 479, 482, 1034
overflow 478
representation 459
scale attribute 461
scaled arithmetic 513
general rules 513
shifting 502
sign-magnitude representation 460
specification exception 481, 483
subtraction process 486
subtraction rules 478
padding 154
by compare and move long 404
character 404
definition 160, 1035
hexadecimal floating-point constant 579
in constants 154
with blanks 155
with sign bits 155
with zeros 461
parameter 751
definition 774, 1035
parameterization 171
definition 177, 1035
partial-completion instruction 404
Partitioned Data Set Extended 835
pattern 526
corner 526
definition 1035
digit selector 526
digit selector and significance starter 526
editing 526
field separator 526
fill character 527
message character 526
payload
definition 724, 1035
PC machine instruction 936
PDSE 835
percolate 962, 965
PFPO machine instruction 731
PIA
See also Program Interruption Control Area
maskable program interruptions 959
PIE
See Program Interruption Element pipeline 209
definition 216, 1035
PKA machine instruction 454, 472
PKU machine instruction 454, 472
PM
See Program Mask post-normalization
definition 572, 1035
hexadecimal floating-point division 590
hexadecimal floating-point multiplication 586
postfix notation 909
definition 931, 1035
postorder tree traversal 926
definition 931, 1035
pre-normalization
definition 572, 1035
hexadecimal floating-point division 590
hexadecimal floating-point multiplication 586
preferred exponent 684
definition 572, 1035
preferred quantum 684
definition 724, 1035
preorder tree traversal 926
definition 931, 1035
PRINTLIN macro instruction 1002
definition 1002
description 1002
PRINTOUT macro instruction 1005
definition 1012
description 1005
Private Code section 812
privileged operation 50
privileged operation exception 59
problem state 50
definition 51, 1035
process
binary division 280
binary multiplication 272
hexadecimal floating-point addition 598
hexadecimal floating-point complement addition 600
hexadecimal floating-point subtraction 599
packed decimal addition 484
packed decimal subtraction 486
program interruption 59
access exception 59
addressing 59
data 59
decimal divide 60
decimal overflow 60
definition 1035
ESPIE macro 958
identifying token 958
execute exception 59
fixed-point divide 60
fixed-point overflow 59
hexadecimal floating-point divide 60
hexadecimal floating-point exponent overflow 60
hexadecimal floating-point exponent underflow 60
program interruption (continued)
hexadecimal floating-point lost significance 60
invalid operation 59
PIE 958
privileged operation 59
Program Mask control
decimal overflow 60
fixed-point overflow 60
hexadecimal floating-point exponent underflow 60
hexadecimal floating-point lost significance 60
specification 59
SPIE macro 958
Program Interruption Control Area 958
Program Interruption Element 960
contents 960
DSECT PIE 960
mapping macro IHAEPIE 960
Program Interruption Exit 960
program length
definition 117, 1035
program linking 819
combining object modules 819
Composite External Symbol Dictionary 821
definition 852
load modules 831
overview 75
Program Loader 75, 118, 795
boundary alignment 141, 795
definition 85
load modules 842
relocation 75
program loading
boundary alignment 795
Program Loader 75
Program Mask 49, 235, 589, 594
decimal overflow 60
definition 62, 1035
fixed-point overflow 60
hexadecimal floating-point exponent underflow 60, 589
hexadecimal floating-point lost significance 60, 594
mask bits 235
retrieve/set 235
program object 834
definition 852
Partitioned Data Set
Extended 835
PDSE 835
program object class 835
program objects
Program Status Word 49
basic addressing mode 308
Condition Code 49, 206
definition 51, 1035
extended addressing mode 308
Instruction Address 49, 52
instruction address vs. location counter 94
Instruction Length Code 49
Program Status Word (continued)
interceptions 57
new 58
old 58
Program Mask 49
switching 57
pseudo register 1030
pseudoregister
definition 852, 1035
PSW
See Program Status Word
PUT macro instruction 952

Q
Q-type address constant
definition 853, 1035
QADTR machine instruction 708
QAXTR machine instruction 708
quadword 46, 179
qualified symbol 866
definition 891, 1035
qualifier 866
definition 891, 1035
quantum 670
decimal floating-point
definition 708
quantize 708
definition 724, 1036
powers of 10 in hexadecimal 987
powers of 16 986
powers of 2 983
register
access 50
control 50
floating-point register 47, 551
floating-point register pair 552
general register 47
general register pair 242, 274
relative-immediate 304
address generation 304
relocatability
complex 1028
relocatability attribute 135
complex 135
relocatable 93, 121
absolute 106, 1025
complex 106, 1028
definition 97, 1036
location counter reference 99
simple 106, 1037
relocatable program 128
relocate
definition 852, 1036
relocating loader
definition 852, 1036
relocation 75, 94
by Program Loader 841
definition 85, 97, 852, 1036
load module creation 841
of A-type constant 823
of V-type constant 823
relocation attribute 92
complex 793
definition 811
dummy control section 857
ESDID 804
in expression evaluation 100
in External Symbol Dictionary 95
relocation dictionary
recession 972
reenterability 968, 969
assembly time 969
linking time 969
RSECT 1036
reentrant
See also reenterability
definition 1036
reference control section 789
COM 789
definition 852, 1036
DSECT 789
declaration 789
reference table
ASCII representation 999
DC statement types 1000
EBCDIC representation 998
fractions in hexadecimal and
decimal 997
hexadecimal addition 982
hexadecimal digits 981
hexadecimal multiplication 982
integers in hexadecimal and
decimal 989
powers of 10 in hexadecimal 987
powers of 16 986
powers of 2 983
representation
binary floating-point 655
definition 284, 1036
fixed-point binary division 274
hexadecimal floating-point 611
in shift instructions 248
packed decimal 483
RENT assembler option 969
representation 626, 628
arithmetic vs. logical 39
ASCII 432, 999
BCD 429
binary floating-point 626, 628
binary numbers 26
blanks in examples 15
decimal floating-point 673
decimal floating-point
conceptual 669
decimal floating-point
coding 671
diminished radix-complement 26
EBCDIC 89, 430, 998
hexadecimal 20
hexadecimal floating-point 573
logical 27
packed decimal 459
radix-complement 26
redundant decimal
floating-point 669
sign extension 32
sign-magnitude 26, 460
spaces in examples 15
Unicode 437
zoned decimal 454
residence mode
RMODE 813
RMODE assembler
instruction 813
retry 965
retry routine 962
return address 751
definition 774, 1036
return code 765
definition 774, 1036
return flag 764
RETURN macro instruction 767
RETURN macro-instruction 767
returned values 748
RLD record in object module 817
A-type constant 817
Cumulative External Dummy 818
Q-type constant 818
V-type constant 817
RLL machine instruction 242
RLLG machine instruction 242
RMODE
definition 853
rotating shift 257
definition 261, 1036
rrounder
binary floating-point 633
decimal floating-point 681
decimal floating-point
eround 710

Index

**S**

S machine instruction 218
S-type address constant 151
S-type constant 151
SAM24 machine instruction 844
SAM31 machine instruction 844
SAM64 machine instruction 844
save area
32-bit registers 756
chaining 758
doubly-linked list 757
extended conventions 759
standard 18-word 756
SAVE macro-instruction 763
SAVE macro-instruction 763
SBCS 433
definition 1037
SBRM machine instruction 638
scale modifier
fixed-point binary constant 545
hexadecimal floating-point constant 579
SD machine instruction 593
SDB machine instruction 648
SDBR machine instruction 648
SDR machine instruction 593
SDTR machine instruction 687
SDTRA machine instruction 687
SDWA 962
SE machine instruction 593
SEB machine instruction 648
SEBR machine instruction 648
SECTALGN assembler option 141, 158, 795
section
See also control section
alignment 795
common 789
color 788
definition 852, 1037
dummy 789
entry point 804
external dummy 789
linking 819
literals 794
private code 812
program object section 835
resuming 793
types 788
segment 70
definition 852
self-defining term
assembly-time constants 87
binary 87
corresponded 88
ampersand 88
apostrophe 88
translation 90, 433
DBCS 435
decimal 87
definition 97, 1037
hexadecimal 87
no embedded blanks 88
vs. C-type constant 152
sequence symbol 91
SER machine instruction 593
set rounding mode
binary floating-point 638
decimal floating-point 704
SETRP macro instruction 962
sexadecimal representation 20
SFASR machine instruction 638
SFPC machine instruction 638
SG machine instruction 218
SGF machine instruction 231
SGFR machine instruction 231
SGR machine instruction 218
SH machine instruction 218
shift
bit bucket 244
decimal floating-point
significand 707
double-length arithmetic 252
double-length logical 248
general register pair 242
packed decimal 502
process 243
rotating 257
single-length arithmetic 252
single-length logical 245
unit 243
shift-in character 433
shift-out character 433
SI-type machine instruction 114
sign extension 32, 185
definition 205, 1037
signed 20-bit displacement 303
sign-magnitude representation 26
definition 41, 1037
packed decimal 460
significance indicator 527
definition 1037
significance starter 526
definition 1037
significand
binary floating-point 626
decimal floating-point 674
definition 559, 1037
hexadecimal floating-point 548
simple I/O macros
$$GENIO 1008
CONVERTI 1003
CONVERTO 1003
DUMPOUT 1006
installation 1008
PRINTLIN 1002
PRINTOUT 1005
READCARD 1002
usage notes 1006
SL machine instruction 225
SLA machine instruction 242
SLAG machine instruction 242
SLB machine instruction 230
SLBG machine instruction 230
SLBGR machine instruction 230
SLBR machine instruction 230
SLDA machine instruction 242
SLDL machine instruction 242
SLDT machine instruction 707
SLFI machine instruction 322
SLG machine instruction 225
SLGF machine instruction 231
SLGFI machine instruction 322
SLGF instruction 231
SLGR machine instruction 225
SLL machine instruction 242
SLLG machine instruction 242
SLR machine instruction 225
SLXT machine instruction 707
SP machine instruction 489, 493
space
ASCII representation 433
EBCDIC representation 90
representation in examples 15
text representation 17
specification exception 59
packed decimal 481
SPIE macro instruction 958
program interruption exit 958
SPM machine instruction 235
SQD machine instruction 658
SQDB machine instruction 658
SQDGR machine instruction 658
SQDR machine instruction 613
SQE machine instruction 613
SQEB machine instruction 658
SQEBR machine instruction 658
SQER machine instruction 613
square root
binary floating-point 658
hexadecimal floating-point 613
hexadecimal floating-point inter-
ruption 613
SQXBR machine instruction 658
SQXR machine instruction 613
SR machine instruction 218
SRA machine instruction 242
SRAG machine instruction 242
SRDA machine instruction 242
SRDL machine instruction 242
SRDT machine instruction 707
SRL machine instruction 242
SRLG machine instruction 242
SRNMT machine instruction 704
SRP machine instruction 489, 502
SRST machine instruction 416
SRSTU machine instruction 440
SRXT machine instruction 707
SS-type machine instruction 115
ST machine instruction 181
stack 908
definition 930, 1037
pop 910
push 910
STAE macro instruction 962
START assembler instruction 789
statement 75
*PROCESS statement 1035
ACONTROL assembler instruction 1035
column positions
begin column 77
continue column 77
end column 77
CSECT 82
DC 139
definition 85, 1037
dependent USING 869
DROP assembler instruction 130
DS 161
END 82
EQU 95
EQU assembler instruction 164
free-field 79
job control 83
labeled dependent USING 875
labeled USING 866
LOCTR assembler instruction 796
LTORG 158
ORG 169
ORG extended syntax 1035
RSECT 1037
START 82
USING 128
statement field
comment 78
definition 85, 1037
name 78
operand 78
operation 78
statement field (continued)
remarks 78
statement type
Assembler 76
column positions
begin column 77
continue column 77
end column 77
CSECT 82
DC 139
definition 85, 1037
dependent USING 869
DROP assembler instruction 130
DS 161
END 82
EQU 95
EQU assembler instruction 164
free-field 79
job control 83
labeled dependent USING 875
labeled USING 866
LOCTR assembler instruction 796
LTORG 158
ORG 169
ORG extended syntax 1035
RSECT 1037
START 82
USING 128
statement field
comment 78
definition 85, 1037
name 78
operand 78
operation 78
statement type
Assembler 76
comment 76
machine instruction 76
macro-instruction 76
status preservation 749
STC machine instruction 186
STCM machine instruction 187
STCMH machine instruction 192
STD machine instruction 555
STDY machine instruction 555
STE machine instruction 555
STEF machine instruction 555
STFPC machine instruction 638
STG machine instruction 192
STH machine instruction 184
STM machine instruction 182
STMG machine instruction 192
STMH machine instruction 192
STORAGE macro instruction 943,
946, 947
return 783
subtraction
binary floating-point 648
binary integer 34
decimal floating-point 689
fixed-point binary 218
floating-point 565
hexadecimal floating-point 592
logical 225
packed decimal 478
packed decimal operand order
dependence 479
packed decimal process 486
register-immediate 322
with borrow 229
subroutines
definition 238, 1037
supervisor state 50
definition 51, 1037
SVC machine instruction 936
SXBR machine instruction 648
SXMR machine instruction 593
SXTR machine instruction 687
SXTRA machine instruction 687
SYM record in object module 817
symbol
absolute 92
attribute 97, 1026, 1038
assembler 168
definition 97
integer 92
length 92, 145
program 168
relocation 92, 127
scale 92
type 92
value 92, 127
complexly relocatable 101
defined 92
definition 97, 1038
duplicate 125
external 91, 804
external symbol 1030
internal 91, 93
internal symbol 1032
multiply defined 125
ordinary 91
ordinary symbol 1032
qualified symbol 866
relocatable 92
sequence 91
undefined 125
value vs. variable 96
variable 91
symbol attribute reference
definition 106, 1038
integer 98
length 98
scale 98
Symbol Table 125
definition 136, 1038
External Symbol Dictionary 95
external symbol table 91
ordinary symbols 125
symbolic operand
binary floating-point (DMin) 631
binary floating-point (Inf) 631
binary floating-point (Max) 631
binary floating-point (Min) 631
binary floating-point (NaN) 631
binary floating-point (QNaN) 631
binary floating-point (SNaN) 631
decimal floating-point
(DMin) 676
decimal floating-point (Inf) 676
decimal floating-point (Max) 676
decimal floating-point (Min) 676
decimal floating-point (NaN) 676
decimal floating-point (QNaN) 676
decimal floating-point (SNaN) 676
Index 1277
symbolic operand (continued) hexadecimal floating-point symbolic operand (DMin) 582 hexadecimal floating-point symbolic operand (MAX) 582 hexadecimal floating-point symbolic operand (Min) 582 SYSSTATE macro instruction 941 System Diagnostic Work Area 962

table 900 definition 930, 1038 TAM machine instruction 844 TCDB machine instruction 641 TCEB machine instruction 641 TCXB machine instruction 641 TCDT machine instruction 680 TCDET machine instruction 680 TCDXT machine instruction 680 TDGDT machine instruction 712 TDGET machine instruction 712 TDGXT machine instruction 712 term definition 106, 1038 illustration 106 literal 98 location counter reference 98 self-defining 98 symbol 98 symbol attribute reference integer 98 length 98 scale 98 TEST assembler option 91 text 817 definition 852, 1038 in load module 832 machine language 817 threading Location Counter values 795 time 1037 assembly 76, 1027 binding 1027 execution 76, 1027 linking 1027 run time See execution time TITLE assembler instruction 80 TM machine instruction 358 TMY machine instruction 358 TP machine instruction 489 TR machine instruction 367, 380 trailing significand field 673 transformation format (Unicode) 437 TRANSLATE assembler option 90, 160, 433 translate table 380, 385, 388 TRE machine instruction 422 tree B-tree 926 binary 922 tree search (continued) inorder traversal 926 postorder traversal 926 preorder traversal 926 TROO machine instruction 443 TROT machine instruction 443 TRT machine instruction 367, 385 TRTO machine instruction 443 TRTR machine instruction 367, 388 TRTT machine instruction 443 true decimal addition definition 1028, 1038 refid=ixdefn.complex relocatability 1028 truncation 154 definition 160, 1038 hexadecimal floating-point constant 579 in constants 154 two's complement overflow 33 two's complement representation definition 41, 1038 recipe TXT record in object module 817 type extension 159 all types 1000 definition 160, 1038 type AD 159 type CA 159 type CE 159 type CU 159 type DB 554, 629 type DD 554 type DH 554 type EB 629 type EH 554 type FD 159 type LB 554, 629 type LD 554 type LH 554 type LQ 581 USING assembler instruction 122, 128, 866, 869, 875 absolute USING location 133 base location 122, 128 base register 122 definition 135, 1038 dependent 1027, 1029 dependent USING 869 labeled 866, 1029 labeled dependent 875, 1029 ordinary 122, 866 qualified symbol 1032 USING Map 135 USING Table 127, 130, 135 definition 135, 1038 USING Map 135 USING(MAP) option 135 UTF-16 445 UTF-32 445 UTF-8 445 V V-format records 953 V-type address constant 806, 853 definition 853 variable vs. symbol value 96 variable length records 953, 954 variable symbol 91 variable symbols attribute 1026 symbol itself 1026 symbol's value 1026 variable-length argument list 753 virtual address 69 address translation 69 DAT 69 definition 71, 1038 virtual origin 898 definition 930, 1038 of array 898 VSAM 956 W ward in double-byte EBCDIC 434 widget 517, 519, 714 word 46, 179 workstation data 449
WXTRN assembler instruction 804, 806
difference from EXTRN 806
WXTRN statement 1030

X
X machine instruction 288
XC machine instruction 367, 378
XCGBR machine instruction 653
XG machine instruction 288
XGR machine instruction 288
XI machine instruction 355
XIHF machine instruction 325
XILF machine instruction 325
XIY machine instruction 355
XOR operation 289, 299, 1038
definition 299, 1038
register-immediate 325
register-register 292
storage-immediate 356
storage-storage 378
XR machine instruction 288

Z
ZAP machine instruction 489, 491
zero
unexpected floating-point
behavior 734
zero duplication factor 162
definition 177, 1038
zero extension 198
definition 205, 1038
zone digit 454
ASCII characters 456
definition 1038
Unicode characters 456
zoned decimal
constant 458
numeric digit 454
preferred sign 456
representation 454
sign digit 454
zone digit 454
zoned digit 536
definition 1039
in edited data 536